


set of possible velocities can be defined as:

Vp = {(u, v, r) ∈ R× R× R | g(u, v, r) ≥ 0} , (35)

where g(u, v, r) is a positive semidefinite function for fea-
sible velocities with respect to the actuator constraints.
An approximation of the 3 DOF set is done by projecting
the set into three 2 DOF sets to simplify calculations.
We justify this approximation by noting that each of the
steady-state solution boundary faces are almost parallel
with one axis, see Fig. 2. Following this, faces that are par-
allel with one axis can be parameterized by the remaining
two variables. Notice, however, that we lose information
where all three variables are correlated, and can therefore
not model faces which are not parallel with one of the axes.
The result of the approximation is the following three sets
of possible velocities:

Vp,(u,r) = {(u, r) ∈ R× R | g(u,r)(u, r) ≥ 0} (36)

Vp,(v,r) = {(v, r) ∈ R× R | g(v,r)(v, r) ≥ 0} (37)

Vp,(u,v) = {(u, v) ∈ R× R | g(u,v)(u, v) ≥ 0}, (38)

where g(u,r)(u, r), g(v,r)(v, r) and g(u,v)(u, v) are greater
than or equal to zero for velocities inside the corresponding
boundaries. Given m, n and k approximated boundaries,
defined by the functions ha,(u,r)(u, r) = hb,(v,r)(v, r) =
hc,(u,v)(u, v) = 0, a ∈ {1, 2, ...,m}, b ∈ {1, 2, ..., n} and
c ∈ {1, 2, ..., k}, the approximated functions are given as:

g(u,r)(u, r) = min(h1,(u,r)(u, r),h2,(u,r)(u, r),

..., hm,(u,r)(u, r)) (39)

g(v,r)(v, r) = min(h1,(v,r)(v, r),h2,(v,r)(v, r),

..., hn,(v,r)(v, r)) (40)

g(u,v)(u, v) = min(h1,(u,v)(u, v),h2,(u,v)(u, v),

, ..., hk,(u,v)(u, v)). (41)

Here, the functions ha,(u,r)(u, r) = hb,(v,r)(v, r) =
hc,(u,v)(u, v) = 0 are defined by using regression on the
boundary of the sets Vp(u,r) , Vp(v,r) and Vp(u,v) , where

∇ha,(u,r)(u, r), ∇hb,(v,r)(v, r) and ∇hc,(u,v)(u, v) are re-
quired to be pointing inwards to the valid solutions. Next,
the space of reachable points within one time step T needs
to be defined. Using

ν̇min = [u̇min, v̇min, ṙmin] = M−1(τmin(u)−DLν
∗)
(42)

ν̇max = [u̇max, v̇max, ṙmax] = M−1(τmax(u)−DLν
∗),
(43)

we find the acceleration limits and the reachable velocities
for the current time step, resulting in the dynamic velocity
window

Vw = {(u, v, r) ∈ R× R× R |
u ∈ [u∗ + u̇minT, u

∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]}, (44)

which we project into the three cases

Vw,(u,r) ={(u, r) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (45)

Vw,(v,r) ={(v, r) ∈ R× R | v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (46)

Vw,(u,v) ={(u, v) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]}. (47)

This defines the sets of dynamically feasible velocities as

Vf,(u,r) , Vp,(u,r) ∩ Vw,(u,r) (48)

Vf,(v,r) , Vp,(v,r) ∩ Vw,(v,r) (49)

Vf,(u,v) , Vp,(u,v) ∩ Vw,(u,v). (50)

Next, the sets of dynamically feasible velocities are dis-
cretised uniformly to obtain discrete sets of dynamically
feasible velocities. For the 3 DOF case, the desired velocity
is defined as

νd , [ud, vd, rd]
>. (51)

Given νd, the optimal dynamically feasible velocity νf =
[uf , vf , rf ]> can be selected as

νf = argmax
(u,v,r)∈Vf

G(ν,νd), (52)

where Vf is the general 3 DOF solution and G(ν,νd) is an
objective function, which is defined as

G(ν,νd)
4
= surge(u, ud) + sway(v, vd)

+ yawrate(r, rd), (53)

with

surge(u, ud) = 1− |ud − u|
max
u′∈Vf

(|ud − u′|)
∈ [0, 1] (54)

sway(v, vd) = 1− |vd − u|
max
v′∈Vf

(|vd − v′|)
∈ [0, 1] (55)

yawrate(r, rd) = 1− |rd − r|
max
r′∈Vf

(|rd − r′|)
∈ [0, 1]. (56)

Notice that by using this objective function, we minimise
the scaled 1-norm of the entire discrete set of dynamically
feasible velocity pairs. For the three 2 DOF case, this
algorithm is modified to fit 2 DOF and run once for each
velocity pair scenario; surge speed and yaw rate, sway
speed and yaw rate, and surge and sway speed. Resulting
in the sets of dynamically feasible velocities

νf,(u,r) = [νf,u, 0, νf,r]
> (57)

νf,(v,r) = [0, νf,v, νf,r]
> (58)

νf,(u,v) = [νf,u, νf,v, 0]>, (59)

which combines into

νf =
νf,(u,r) + νf,(v,r) + νf,(u,v)

2
(60)

for the full 3 DOF case. Fig. 3 illustrates Vp, Vw, Vf and
νd = [0.15 m/s,−0.07 m/s,−1.4324 deg /s] given a current
velocity ν = [0.2 m/s, −0.05 m/s −1.1459 deg /s].

5.2 Dynamic Window-based Controller

We now combine the traditional control design with the
simplified DW algorithm in order to develop a dynamic
window-based controller (DWC). In this setup, the sim-
plified DW algorithm will use α = [αu, αv, αr]

> as an
input such that νd = α. In the case where α is an in-
feasible velocity, the simplified DW algorithm will modify
α to a feasible velocity αf = [αf,u, αf,v, αf,r]

>, otherwise
αf = α. We want the ship to reach αf after the time T ,
hence the desired acceleration is chosen to be

α̇DWC =
αf − ν
T

, (61)
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Fig. 3. The dynamically feasible velocity set, surrounded
by the boundaries of the dynamic velocity window
and set of possible velocities.

and

αDWC =

∫ t

0

α̇DWCdσ +αDWC(0). (62)

Both αDWC and α̇DWC are used in the kinetic controller
(22) which is modified to

τ = Mα̇DWC +DLαDWC . (63)

When comparing the control law (63) against (22), it can
be seen that the feedback term −K2(z2)z2 in (22) is not
included in (63) since the DWC makes the optimal velocity

pair track the target velocity by using (61)-(62). The
DWC is a feedforward-based control algorithm which has
some weaknesses against uncertainties and disturbances
since the DWC is heavily model-dependent. Introducing a
feedback term and adaptation can help to overcome these
weaknesses.

6. SIMULATION RESULTS

In this section, we present numerical simulation results of
the two motion controllers using the nonlinear ship model
and actuator constraints of CSAD presented in Section 2.
In addition, performance metrics are used to evaluate the
controller behavior.

The control target is defined through a 4-corner test
(Skjetne et al., 2017). The 4-corner test first tests the
surge, sway and yaw motion individually and then increase
the complexity of the task until the ship needs to do a
combined surge, sway and yaw motion. In this test we
use set-point tracking. This will affect (25) and (29) since
η̇t = 0 and η̈t = 0. The initial ship states are chosen to be
η(0) = [5, 1, 0] and ν(0) = 0. The control gains are listed
in Table 2, which are chosen such that the benchmark
controller (BC) does not exceed the magnitude satura-
tion constraints and follow the tuning rules suggested in
(Sørensen et al., 2018).

Table 2. Control gains

BC DWC

Γ1 diag([0.03, 0.03, 0.0349]) −||−
Γ2 diag([0.2, 0.12, 0.1745])M N/A
∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ [0.7, 1] N/A

6.1 Performance Metrics

To evaluate and compare the performance of the two
controllers, performance metrics are used. We define

e(t)
4
=

√
η̄(t)>η̄(t), (64)

as the error inputs for the performance metrics, with η̄

being the normalized signal of η̃ = [x̃, ỹ, ψ̃]>
4
= η − ηt,

where x̃, ỹ and ψ̃ are in the intervals [−0.5, 0.5] in the ex-
pected operational space of the ship (Eriksen and Breivik,
2017). These signals represent the instantaneous control
errors, while we would like to consider the accumulated
errors over time. Therefore, we use the performance metric
integral of the absolute error (IAE)

IAE(e, t)
4
=

∫ t

0

|e(σ)|dσ, (65)

which integrates the temporal evolution of the absolute
error. We also consider the integral of the absolute error
multiplied by the energy consumption (IAEW) (Sørensen
and Breivik, 2015) as

IAEW (e, t)
4
=

∫ t

0

|e(σ)|dσ
∫ t

0

P (σ)dσ, (66)

where

P (t) = |ν(t)>τ (t)| (67)
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represents the mechanical power. IAEW thus indicates
which controller has the best combined control accuracy
and energy efficiency in one single metric.

6.2 Simulation Results

In Fig. 4, the outline of the ship pose is plotted to show
the transient convergence behavior.
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Fig. 4. The 4-corner test, where the dashed blue outline
represents the DWC-controlled ship, the dash-dotted
black outline represents the BC-controlled ship, while
the green outline represents the 4-corner box.

Fig. 5 shows the pose of the ship together with the target
pose. It can be seen that both control laws are able to
track the target pose even though the DWC does not have
a traditional velocity feedback term. Additionally, it can
be seen that there is a small difference in how fast the
controllers are able to track the target pose, where DWC
is the fastest.

Fig. 6 shows that the DWC commands the control inputs
to stay just below the maximum magnitude constraints
of the actuators, while BC is tuned such that it does not
exceed the magnitude constraints. The DWC keeps the
control inputs high longer than the BC, since the DWC
tracks the optimal velocity αf which is on the boundaries
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Fig. 5. Tracking the target pose.

of the window unless the target velocity α is inside the
velocity window, while the control inputs from BC have a
more conservative behavior.
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Fig. 6. The commanded control inputs with magnitude
limits.

Fig. 7 illustrates how the surge speed, sway speed and
yaw rate moves in the velocity space in order to track the
target through the 4-corner test. The velocities of the ship
are small in magnitude while performing the 4-corner test.
This satisfies the requirements for assuming a linear ship
model.

In Fig. 8, the performance metrics IAE and IAEW are
shown. In particular, the IAE trajectory in the left of Fig.
8 confirms that the DWC has a faster transient response
since it converges faster to a stationary value. The IAEW
trajectory in the right of Fig. 8 shows that the DWC
uses slightly more energy to fulfil the control objective.
DWC have a better overall performance, since it has a
faster transient response, but it comes at a cost in energy
consumption as shown in IAEW.

7. CONCLUSION

This paper has proposed an extension of a simplified dy-
namic window algorithm from 2 DOF to 3 DOF, as a way
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Fig. 7. Velocity trajectories in the set of possible velocities
Vp.

to ensure that the actuator constraints of a fully actuated
ship are satisfied. This algorithm has been used as a dy-
namic window-based controller (DWC) to guarantee that
ship velocities remain within a feasible set. The DWC was
evaluated against a motion controller using a traditional
design approach. The methods were compared through
numerical simulations, using two performance metrics to
compare the behavior of the controllers. The simulation
results showed that the proposed DWC controller has good
tracking performance and that it is able to handle actuator
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Fig. 8. IAE and IAEW performance metrics.

magnitude constraints.

Future work will include introducing model uncertainties
and unknown disturbances and making a stability analysis
of the proposed control algorithm. It is also relevant to con-
sider actuator rate constraints in addition to magnitude
constraints. Finally, it is desirable to experimentally verify
the results by implementing the methods on a model-scale
test vessel in a controlled environment.
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