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Preface

Marine autonomy and automation is a field that has been an interest for me for
a long period of time. To achieve the goal of safe and predictable autonomous
marine operations, many challenges have to be solved. Autonomous marine
systems will start to have a larger presence in our lives in the future, possibly
leading to new and more efficient ways to travel, transport and explore the seas.
Constraint handling control methods will be an important part of tomorrow’s
research, as it can contribute to safer and more energy efficient operations.

This thesis is written as a part of a M.Sc. degree in Cybernetics and Robotics
at the Department of Engineering Cybernetics, Norwegian University of Science
and Technology (NTNU). I would like to thank my supervisors Morten Breivik
and Mikkel Eske Nørgaard Sørensen for their valuable guidance, help and sup-
port throughout the project. I would also like to thank my family and friends,
for always believing in me and supporting me for the entirety of my studies.
Additional thanks go out to the students and everyone affiliated with NTNU
for making these years such a great experience, and in particular Tore Egil Sæ-
terdal for the cooperation and the many hours spent in the laboratory together
throughout this project. Further thanks goes out to senior engineer Torgeir
Wahl at the Department of Marine Technology for his valuable support during
the experimental work done in the Marine Cybernetics Laboratory.

The goal of the project was to investigate the effects of handling actuator
constraints. This was done through the development of different constraint han-
dling methods which was combined with cascaded feedback controllers. During
the semester the supervisors have contributed with guidance through an hourly
bi-weekly follow-up meeting where the progress of the thesis and other related
topics were discussed. In addition to this, Mikkel assisted with the laboratory
experiments.

The work is based upon previous work done by the supervisors, where ex-
tensions to their work were developed in order to achieve the above goal. In
order to develop a dynamic window-based controller for dynamic positioning,
effort was put into extending the 2 degrees of freedom dynamic window-based
controller into 3 degrees of freedom. In addition to this, a new magnitude-rate
saturation model usable in ship motion control systems was introduced.

Throughout the semester, two laboratory weeks were planned and conducted
at the Marine Cybernetics Laboratory at NTNU, where the model ship C/S
Inocean Cat I Arctic Drillship was used for the experiments in the ocean basin.
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During the first laboratory week, it became clear that it was necessary to make
changes to and improve the mathematical ship model, including the thrust al-
location model, as the simulated performance of the ship did not correspond
well to the actual laboratory performance, which especially had a negative im-
pact on the strictly model-based dynamic window-based controller. Thus, new
laboratory performance tests of the model ship were conducted in order to be
able to identify and redesign the model parameters, and find actual actuator
limitations. In addition to this, it deemed necessary to further improve upon
the already implemented laboratory design, as the estimator was not designed
to handle lost measurements from the laboratory camera positioning system,
resulting in worsening effects on performance. Because of this, extensive effort
was put into finding a solution, and a redesign of the estimator was done. These
challenges resulted in extra days spent in the laboratory where new implemen-
tations were tested in order to have working solutions ready for the second
laboratory week.

The work done in this thesis resulted in two publications. In “A Dynamic
Window-Based Controller for Dynamic Positioning Satisfying Actuator Magni-
tude Constraints”, the 3 degrees of freedom dynamic window-based controller
is presented and tested against a traditional controller, and is accepted to the
IFAC CAMS 2018 conference. In “Improvement of Ship Motion Control Using a
Magnitude-Rate Saturation Model”, accepted to the IEEE CCTA 2018 confer-
ence, the magnitude-rate saturation model introduced for ship motion control
systems in this thesis is presented, and its performance is tested through labora-
tory experiments where it is shown that such a model can increase both control
accuracy and energy efficiency, and at the same time also reduce actuator wear
and tear.

Contributing to two publications during the semester has given an additional
workload, but the resulting experience and knowledge with academic work has
been a rewarding involvement. In particular, a substantial amount of time was
spent on the IEEE CCTA article, where the four first weeks of the semester
were spent on writing and doing laboratory work related to the first version of
this article.

Ole Nikolai Lyngstadaas
Trondheim, June 11, 2018

II



Abstract

Numerous motion controllers and autopilots have been proposed over the years.
Most control algorithms found in the literature do not explicitly consider sat-
uration constraints for the actuators. In traditional control theory, an ideal
controller might achieve perfect reference tracking in simulations, having no or
non-sufficient limitations on the control input. However, in real-life applications
it would not be feasible due to limitations in physical output and wear and tear
of the actuators.

This thesis presents mathematical modeling of a ship and actuator con-
straints, and the development and implementation of cascaded feedback con-
trollers, including stability analysis and suggested tuning rules. In addition, a
magnitude-rate saturation model is modified to fit ship motion control systems
and used to handle actuator constraints. Furthermore, the use of a simplified
dynamic window algorithm to handle actuator magnitude constraints for a 3
degrees of freedom dynamic positioning controller for ships, is developed. To
accomplish this, a simplified version of the 2 degrees of freedom dynamic win-
dow algorithm, where the collision avoidance part of the algorithm is removed,
is extended into 3 degrees of freedom. This extended algorithm is then used
to design a dynamic window-based controller which guarantees that the veloc-
ities remain within a feasible set, while simultaneously respecting the actuator
magnitude constraints.

The controllers are tested through numerical simulations and laboratory ex-
periments in the ocean basin at the Marine Cybernetics Laboratory at NTNU.
The model-scale ship C/S Inocean Cat I Arctic Drillship is used for the exper-
iments throughout this thesis, and a set of improvements to its mathematical
model is presented. A set of performance metrics are used to evaluate the per-
formance of the different controllers in terms of control accuracy and energy
efficiency for both pose and velocity tracking, in addition to actuator wear and
tear. In addition, the effects of including the presented magnitude-rate satura-
tion model is thoroughly investigated.
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Sammendrag

Mange kontroll- og autopilotsystemer har blitt foresl̊att gjennom årene. De fleste
kontrollalgoritmene som finnes i litteraturen behandler ikke eksplisitt metnings-
begrensningene til aktuatorene. I tradisjonell kontrollteori kan en ideell kon-
troller oppn̊a perfekt referansefølging i simuleringer, hvor den ikke har noen eller
ikke tilstrekkelige begrensninger p̊a kontrollsignalet. I virkelige applikasjoner
ville det imidlertidig ikke vært mulig p̊a grunn av fysiske begrensninger og sli-
tasje p̊a aktuatorene.

Denne oppgaven presenterer matematisk modellering av skip og aktuator-
begrensninger, samt design og implementering av kaskadekontrollere, inkludert
stabilitetsanalyse og foresl̊atte tuningsregler. I tillegg er en mengde- og rate-
begresningsmodell modifisert til å passe kontrollsystemer for skip og brukes
til å h̊andtere aktuatorbegrensninger. Videre er en forenklet dynamisk vindu-
algoritme brukt til å h̊andtere aktuatorbegrensninger for en dynamisk posisjoner-
ingsskontroller for skip i tre frihetsgrader utviklet. For å oppn̊a dette blir en
dynamisk vindu-algoritme i to frihetsgrader, hvor antikollisjonsdelen av algorit-
men er fjernet, utvidet til tre frihetsgrader. Denne utvidede algoritmen brukes s̊a
til å designe en dynamisk vindu-basert kontroller som garanterer at hastighetene
forblir innenfor et dynamisk mulig sett, samtidig som aktuatorbegrensningene
blir overholdt.

Kontrollerne blir testet gjennom numeriske simuleringer og laboratorieforsøk
i testbassenget i Marine Cybernetics Laboratory ved NTNU. Modellfartøyet C/S
Inocean Cat I Arctic Drillship brukes til forsøkene gjennom hele denne oppgaven,
og et sett av forbedringer til den matematiske modellen til fartøyet blir presen-
tert. Et sett med ytelsesmetrikker brukes til å evaluere ytelsen til de forskjellige
kontrollerne med hensyn til kontrollnøyaktighet og energieffektivitet for b̊ade
posisjons- og hastighetsfølging, i tillegg til slitasje p̊a aktuatorene. I tillegg blir
effektene av å inkludere den presenterte mengde- og ratebegrensningsmodellen
grundig undersøkt.

V



VI



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIX

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXIII

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXV

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and previous work . . . . . . . . . . . . . . . . . . . 1
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Ship modeling and actuator constraints . . . . . . . . . . . . 5
2.1 Mathematical modeling of a ship . . . . . . . . . . . . . . . . . 5

2.1.1 CSAD model . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Experimental tests and updated model parameters for

CSAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Thrust allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Actuator limitations . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Actuator constraint modeling . . . . . . . . . . . . . . . . . . . 14

2.4.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . 14

VII



TABLE OF CONTENTS

2.4.2 A magnitude-rate saturation model . . . . . . . . . . . . 16
2.4.3 Analysis of the constraint models . . . . . . . . . . . . . 18

2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Constraint handling control methods . . . . . . . . . . . . . . 23
3.1 Cascaded feedback controllers . . . . . . . . . . . . . . . . . . . 23

3.1.1 Linear pose and velocity feedback (LP-LV) . . . . . . . 24
3.1.2 Nonlinear pose and linear velocity feedback (NP-LV) . . 27
3.1.3 Nonlinear pose and velocity feedback (NP-NV) . . . . . 31
3.1.4 Tuning rules . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.5 Stability in cascade with the MRS model . . . . . . . . 34

3.2 Dynamic window-based controllers . . . . . . . . . . . . . . . . 35
3.2.1 A 2 DOF dynamic window algorithm . . . . . . . . . . 36
3.2.2 A 2 DOF dynamic window-based controller . . . . . . . 41
3.2.3 Extending the 2 DOF DW algorithm into 3 DOF . . . . 44
3.2.4 A 3 DOF dynamic window-based controller . . . . . . . 53
3.2.5 Model comparison . . . . . . . . . . . . . . . . . . . . . 57

3.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Controller and actuator constraint parameters . . . . . . . . . . 63
4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Main simulation results . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Comparison of the cascaded feedback controllers . . . . 65
4.4.2 LP-LV with constraint handling methods . . . . . . . . 69
4.4.3 NP-LV with constraint handling methods . . . . . . . . 73
4.4.4 NP-NV with constraint handling methods . . . . . . . . 77
4.4.5 DWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Extended simulation results . . . . . . . . . . . . . . . . . . . . 89
4.5.1 DWC with model uncertainties . . . . . . . . . . . . . . 89
4.5.2 DWC with estimation noise . . . . . . . . . . . . . . . . 96
4.5.3 DWC with a system time delay . . . . . . . . . . . . . . 102
4.5.4 DWC with all disturbances . . . . . . . . . . . . . . . . 106

4.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1 Marine Cybernetics Laboratory . . . . . . . . . . . . . . . . . . 115

VIII



TABLE OF CONTENTS

5.1.1 Laboratory hardware . . . . . . . . . . . . . . . . . . . . 116
5.1.2 Laboratory software . . . . . . . . . . . . . . . . . . . . 116

5.2 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.1 Fault tolerant estimator design . . . . . . . . . . . . . . 118

5.3 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Experimental results - Laboratory week 1 . . . . . . . . . . . . 122

5.4.1 NP-LV with constraint handling methods . . . . . . . . 123
5.4.2 NP-NV with constraint handling methods . . . . . . . . 127
5.4.3 NP-LV with different MRS effects . . . . . . . . . . . . 130
5.4.4 NP-NV with different MRS effects . . . . . . . . . . . . 134
5.4.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Experimental results - Laboratory week 2 . . . . . . . . . . . . 138
5.5.1 NP-LV vs NP-NV . . . . . . . . . . . . . . . . . . . . . 138
5.5.2 NP-LV with constraint handling methods . . . . . . . . 142
5.5.3 NP-NV with constraint handling methods . . . . . . . . 146
5.5.4 DWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.5.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Conclusions and future work . . . . . . . . . . . . . . . . . . . 165
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A CSAD model, parameters and code . . . . . . . . . . . . . . . 175
A.1 CSAD MATLAB code . . . . . . . . . . . . . . . . . . . . . . . 175

A.1.1 Vessel function . . . . . . . . . . . . . . . . . . . . . . . 175
A.1.2 CSAD function . . . . . . . . . . . . . . . . . . . . . . . 175

B DWC code and implementation improvements . . . . . . . . 179
B.1 DWC MATLAB code . . . . . . . . . . . . . . . . . . . . . . . 179

B.1.1 Pose controller . . . . . . . . . . . . . . . . . . . . . . . 180
B.1.2 3 DOF dynamic window algorithm . . . . . . . . . . . . 180
B.1.3 Function to find feasible velocities, g(u, v, r) . . . . . . . 186

IX



TABLE OF CONTENTS

B.1.4 Objective function, G(νd, νf ) . . . . . . . . . . . . . . . 187
B.1.5 Velocity controller . . . . . . . . . . . . . . . . . . . . . 188

B.2 Improvements to the DW algorithm . . . . . . . . . . . . . . . 188
B.2.1 Improvement to movement on the boundary of Vp . . . 189

C Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
C.1 Improvement of Ship Motion Control Using a Magnitude-Rate

Saturation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 192
C.2 A Dynamic Window-Based Controller for Dynamic Positioning

Satisfying Actuator Magnitude Constraints . . . . . . . . . . . 199

X



List of Figures

2.1 C/S Inocean Cat I Arctic Drillship in the MC-Lab. . . . . . . . 7

2.2 Surge speed [m/s] for the updated CSAD models with maximum
surge force as input. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Sway speed [m/s] for the updated CSAD models with maximum
sway force as input. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Yaw rate [deg/s] for the updated CSAD models with maximum
yaw moment as input. . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Block diagram for the simulator setup used to investigate ac-
tuator magnitude constraints τmax and τmin, and steady-state
velocities ν. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Simulated actuator outputs for the presented thrust allocation
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Block diagram for the cascaded magnitude and rate saturation
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Block diagram for the MRS model (2.31). . . . . . . . . . . . . 17

2.9 Test of actuator constraint methods for scenario 1. . . . . . . . 20

2.10 Test of actuator constraint methods for scenario 2. . . . . . . . 20

2.11 Test of different K1,1 gains for the MRS model using a square
wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.12 Test of different K1,1 gains for the MRS model using a triangle
wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 LF represents a linear feedback term as a function of the control
error e, while NF represents a nonlinear feedback term based on
a sigmoid function of e using a tuning parameter ∆, such as in
(3.21)-(3.24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Block diagram for the ship control systems as presented above,
with the included MRS model. . . . . . . . . . . . . . . . . . . 34

XI



LIST OF FIGURES

3.3 Possible combinations of surge speed and yaw rate, with respect
to actuator magnitude limits, for the linearized ship model. The
boundaries of Vp are shown as the red line. . . . . . . . . . . . 37

3.4 Function to find possible velocities for surge speed and yaw rate. 38

3.5 The dynamically feasible velocity set, surrounded by the bound-
aries of the dynamic velocity window and the possible velocity
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Steady-state solutions of (3.53) for a uniformly distributed set of
control inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Possible combinations of surge speed and yaw rate, with respect
to actuator magnitude limits, for the linearized ship model. The
boundaries of Vp are shown as the red line. . . . . . . . . . . . 46

3.8 Possible combinations of sway speed and yaw rate, with respect
to actuator magnitude limits, for the linearized ship model. The
boundaries of Vp are shown as the red line. . . . . . . . . . . . 47

3.9 Possible combinations of surge and sway speed, with respect to
actuator magnitude limits, for the linearized ship model. The
boundaries of Vp are shown as the red line. . . . . . . . . . . . 48

3.10 Function to find possible velocities for surge and yaw rate. . . . 49

3.11 Function to find possible velocities for sway and yaw rate. . . . 50

3.12 Function to find possible velocities for surge and sway. . . . . . 50

3.13 The dynamically feasible velocity set for surge speed and yaw
rate, surrounded by the boundaries of the dynamic velocity win-
dow and the possible velocity set. . . . . . . . . . . . . . . . . . 52

3.14 The dynamically feasible velocity set for sway speed and yaw rate,
surrounded by the boundaries of the dynamic velocity window
and the possible velocity set. . . . . . . . . . . . . . . . . . . . 53

3.15 The dynamically feasible velocity set for surge and sway speed,
surrounded by the boundaries of the dynamic velocity window
and the possible velocity set. . . . . . . . . . . . . . . . . . . . 54

3.16 Block diagram for the dynamic window-based controller without
feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.17 Possible combinations of surge speed and yaw rate, with respect
to actuator magnitude limits, for the full nonlinear ship model.
The boundaries of Vp based on the linear model are shown as the
red line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

XII



LIST OF FIGURES

3.18 Possible combinations of sway speed and yaw rate, with respect
to actuator magnitude limits, for the full nonlinear ship model.
The boundaries of Vp based on the linear model are shown as the
red line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.19 Possible combinations of surge and sway, with respect to actu-
ator magnitude limits, for the full nonlinear ship model. The
boundaries of Vp based on the linear model are shown as the red
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 The 4-corner dynamic positioning test. Modified from [25]. . . 62

4.2 4-corner path plot for the cascaded feedback controllers. . . . . 66

4.3 Commanded actuator inputs for the cascaded feedback controllers. 67

4.4 IAE, IAEW and IADC for the cascaded feedback controllers. . 68

4.5 4-corner path plot for the LP-LV controller with and without
actuator constraint handling methods. . . . . . . . . . . . . . . 70

4.6 Commanded actuator inputs for the LP-LV controller with and
without actuator constraint handling methods. . . . . . . . . . 71

4.7 IAE, IAEW and IADC for the LP-LV controller with and without
actuator constraint handling methods. . . . . . . . . . . . . . . 72

4.8 4-corner path plot for the NP-LV controller with and without
actuator constraint handling methods. . . . . . . . . . . . . . . 74

4.9 Commanded actuator inputs for the NP-LV controller with and
without actuator constraint handling methods. . . . . . . . . . 75

4.10 IAE, IAEW and IADC for the NP-LV controller with and without
actuator constraint handling methods. . . . . . . . . . . . . . . 76

4.11 4-corner path plot for the NP-NV controller with and without
actuator constraint handling methods. . . . . . . . . . . . . . . 78

4.12 Commanded actuator inputs for the NP-NV controller with and
without actuator constraint handling methods. . . . . . . . . . 79

4.13 IAE, IAEW and IADC for the NP-NV controller with and with-
out actuator constraint handling methods. . . . . . . . . . . . . 80

4.14 4-corner path plot for the DWC and the NP-NV controller. . . 82

4.15 Commanded actuator inputs for the DWC and the NP-NV con-
troller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.16 Yaw rate-surge window for the 3 DOF DWC. . . . . . . . . . . 83

4.17 Yaw rate-sway window for the 3 DOF DWC. . . . . . . . . . . 83

4.18 Sway-surge window for the 3 DOF DWC. . . . . . . . . . . . . 84

XIII



LIST OF FIGURES

4.19 Tracking of the desired surge speed αu for the DWC, where the
upper and lower limits of the velocity window are included. The
top figure represents the whole 4-corner test, while the bottom is
zoomed in for illustrative purposes. . . . . . . . . . . . . . . . . 85

4.20 Tracking of the desired surge speed αu for the NP-NV controller. 85

4.21 IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.22 4-corner path plot for the DWC and the NP-NV controller with
lowered pose tracking-gains. . . . . . . . . . . . . . . . . . . . . 88

4.23 4-corner path plot for the DWC and the NP-NV controller, here
for the case of +50% model uncertainties. . . . . . . . . . . . . 90

4.24 Commanded actuator inputs for the DWC and the NP-NV con-
troller, here for the case of +50% model uncertainties. . . . . . 91

4.25 Yaw rate-sway window for the 3 DOF DWC, here for case of
+50% model uncertainties. . . . . . . . . . . . . . . . . . . . . 92

4.26 Tracking of the desired surge speed αu for the DWC, here for case
of +50% model uncertainties, where the upper and lower limits of
the velocity window are included. The top figure represents the
whole 4-corner test, while the bottom is zoomed in for illustrative
purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.27 IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller, here for the case of +50% model uncertainties. 94

4.28 The noise which is added to the velocity to mimic estimation
noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.29 4-corner path plot for the DWC and the NP-NV controller with
velocity estimation noise. . . . . . . . . . . . . . . . . . . . . . 97

4.30 Commanded actuator inputs for the DWC and the NP-NV con-
troller with estimation noise. . . . . . . . . . . . . . . . . . . . 98

4.31 The desired acceleration α̇DWC in surge when measurement noise
is present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.32 Tracking of the desired surge speed αu for the DWC with estima-
tion noise, where the upper and lower limits of the velocity win-
dow are included. The top figure represents the whole 4-corner
test, while the bottom is zoomed in for illustrative purposes. . 100

4.33 IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller when measurement noise is present. . . . . . 101

4.34 4-corner path plot for the DWC and the NP-NV controller with
a system time delay. . . . . . . . . . . . . . . . . . . . . . . . . 102

XIV



LIST OF FIGURES

4.35 Commanded actuator inputs for the DWC and the NP-NV con-
troller with a system time delay. . . . . . . . . . . . . . . . . . 103

4.36 Tracking of the desired surge speed αu for the DWC with a system
time delay, where the upper and lower limits of the velocity win-
dow are included. The top figure represents the whole 4-corner
test, while the bottom is zoomed in for illustrative purposes. . 104

4.37 IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller, where a system time delay is present. . . . . 105

4.38 4-corner path plot for the DWC and the NP-NV controller with
all disturbances. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.39 Commanded actuator inputs for the DWC and the NP-NV con-
troller with all disturbances. . . . . . . . . . . . . . . . . . . . . 108

4.40 Yaw rate-surge window for the 3 DOF DWC. . . . . . . . . . . 109
4.41 Yaw rate-sway window for the 3 DOF DWC. . . . . . . . . . . 110
4.42 Sway-surge window for the 3 DOF DWC. . . . . . . . . . . . . 110
4.43 Tracking of the desired surge speed αu for the DWC with a system

time delay, where the upper and lower limits of the velocity win-
dow are included. The top figure represents the whole 4-corner
test, while the bottom is zoomed in for illustrative purposes. . 111

4.44 IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller with all disturbances. . . . . . . . . . . . . . 112

5.1 MC-Lab basin [32]. . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 MC-Lab block diagram. . . . . . . . . . . . . . . . . . . . . . . 117
5.3 A spike in the estimated surge speed, cause by the Qualisys cam-

era system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4 Block diagram for the updated velocity estimator. . . . . . . . 121
5.5 4-corner path plot for the NP-LV controller with and without

actuator constraint handling methods. . . . . . . . . . . . . . . 124
5.6 Commanded actuator inputs for the NP-LV controller with and

without actuator constraint handling methods. . . . . . . . . . 125
5.7 IAE, IAEW and IADC for the NP-LV controller with and without

actuator constraint handling methods. . . . . . . . . . . . . . . 126
5.8 4-corner path plot for the NP-NV controller with and without

actuator constraint handling methods. . . . . . . . . . . . . . . 127
5.9 Commanded actuator inputs for the NP-NV controller with and

without actuator constraint handling methods. . . . . . . . . . 128
5.10 IAE, IAEW and IADC for the NP-NV controller with and with-

out actuator constraint handling methods. . . . . . . . . . . . . 129

XV



LIST OF FIGURES

5.11 4-corner path plot for the NP-LV controller with different MRS
effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.12 Commanded actuator inputs for the NP-LV controller with dif-
ferent MRS effects. . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.13 IAE and IAEW for pose tracking for the NP-LV controller with
different MRS effects. . . . . . . . . . . . . . . . . . . . . . . . 133

5.14 4-corner path plot for the NP-NV controller with different MRS
effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.15 Commanded actuator inputs for the NP-NV controller with dif-
ferent MRS effects. . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.16 IAE and IAEW for pose tracking for the NP-NV controller with
different MRS effects. . . . . . . . . . . . . . . . . . . . . . . . 136

5.17 4-corner path plot for the comparison between the NP-NV and
NP-LV controllers. . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.18 Commanded actuator inputs for the comparison between the NP-
LV and NP-NV controllers. . . . . . . . . . . . . . . . . . . . . 140

5.19 IAE, IAEW and IADC for the comparison between the NP-LV
and NP-NV controllers. . . . . . . . . . . . . . . . . . . . . . . 141

5.20 4-corner path plot for the NP-LV controller with actuator con-
straint handling methods. . . . . . . . . . . . . . . . . . . . . . 143

5.21 Commanded actuator inputs for the NP-LV controller with actu-
ator constraint handling methods. . . . . . . . . . . . . . . . . 144

5.22 IAE, IAEW and IADC for the NP-LV controller with actuator
constraint handling methods. . . . . . . . . . . . . . . . . . . . 145

5.23 4-corner path plot for the NP-NV controller with and without
actuator constraint handling methods. . . . . . . . . . . . . . . 147

5.24 Commanded actuator inputs for the NP-NV controller with and
without actuator constraint handling methods. . . . . . . . . . 148

5.25 IAE, IAEW and IADC for the NP-NV controller with and with-
out actuator constraint handling methods. . . . . . . . . . . . . 149

5.26 4-corner path plot for the experiment with the DWC. . . . . . 151
5.27 Commanded actuator inputs for the experiment with the DWC. 152
5.28 Yaw rate-surge speed window for the 3DOF DWC. . . . . . . . 153
5.29 Yaw rate-sway speed window for the 3DOF DWC. . . . . . . . 153
5.30 Sway-surge speed window for the 3DOF DWC. . . . . . . . . . 154
5.31 IAE, IAEW and IADC for the experiment with the DWC. . . . 155

6.1 The commanded surge input for the DWC when accounting for
a known time delay. . . . . . . . . . . . . . . . . . . . . . . . . 161

XVI



LIST OF FIGURES

6.2 Block diagram for a suggestion for an improvement to the dynamic-
window based controller. . . . . . . . . . . . . . . . . . . . . . . 163

7.1 Block diagram for using the DW algorithm as a reference gener-
ator for a cascaded feedback controller. . . . . . . . . . . . . . . 167

B.1 Improving performance by adding feasible velocities to the bound-
ary line of Vp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

XVII



XVIII



List of Tables

1 Notations, continued on next page. . . . . . . . . . . . . . . . . XXIII

2 Notations, continuation from previous page. . . . . . . . . . . . XXIV

2.1 Numerical values for the ship model parameters for CSAD. . . 10

2.2 Numerical values for the actuator model parameters. . . . . . . 13

4.1 Controller gains and actuator constraint parameters for the sim-
ulations with the cascaded feedback controllers. . . . . . . . . . 66

4.2 Performance metrics for the cascaded feedback controllers. . . . 69

4.3 Controller gains and actuator constraint parameters for the sim-
ulations with the LP-LV controller with and without actuator
constraint handling methods. . . . . . . . . . . . . . . . . . . . 70

4.4 Performance metrics for the LP-LV controller with and without
constraint handling methods. . . . . . . . . . . . . . . . . . . . 73

4.5 Controller gains and actuator constraint parameters for the sim-
ulations with the NP-LV controller with and without actuator
constraint handling methods. . . . . . . . . . . . . . . . . . . . 73

4.6 Performance metrics for the NP-LV controller with and without
constraint handling methods. . . . . . . . . . . . . . . . . . . . 75

4.7 Controller gains and actuator constraint parameters for the sim-
ulations with the NP-NV controller with and without actuator
constraint handling methods. . . . . . . . . . . . . . . . . . . . 77

4.8 Performance metrics for the NP-NV controller with and without
constraint handling methods. . . . . . . . . . . . . . . . . . . . 79

4.9 Controller gains and actuator constraint parameters for the sim-
ulation with the DWC. . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Performance metrics for the simulation with the DWC and the
NP-NV controller. . . . . . . . . . . . . . . . . . . . . . . . . . 87

XIX



LIST OF TABLES

4.11 Performance metrics for the simulation with the DWC and the
NP-NV controller with lowered pose tracking-gains. . . . . . . . 88

4.12 Controller gains and actuator constraint parameters for the sim-
ulation with the DWC with model uncertainties. . . . . . . . . 89

4.13 Performance metrics for the simulation with the DWC and the
NP-NV controller with model uncertainties. The actual percent-
age of model uncertainties are shown in the upper-left corner of
each table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.14 Performance metrics for the simulation with the the DWC and
the NP-NV controller with estimation noise. . . . . . . . . . . . 102

4.15 Performance metrics for the simulation with the DWC and the
NP-NV controller with a system time delay. . . . . . . . . . . . 106

4.16 Controller gains and actuator constraint parameters for the sim-
ulation with the DWC with all disturbances. . . . . . . . . . . 107

4.17 Performance metrics for the simulation with the DWC and the
NP-NV controller with estimation noise. . . . . . . . . . . . . . 111

5.1 Controller gains and actuator constraint parameters for the ex-
periments with the NP-LV controller. . . . . . . . . . . . . . . . 123

5.2 Performance metrics for the experiments with the NP-LV con-
troller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Controller gains and actuator constraint parameters for the ex-
periments with the NP-NV controller. . . . . . . . . . . . . . . 127

5.4 Performance metrics for the experiments with the NP-NV con-
troller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Controller gains and actuator constraint parameters for the ex-
periments with the NP-LV controller with different MRS effects. 131

5.6 Performance metrics for the experiments with the NP-LV con-
troller with different MRS effects. . . . . . . . . . . . . . . . . . 134

5.7 Performance metrics for the experiments with the NP-NV con-
troller with different MRS effects. . . . . . . . . . . . . . . . . . 137

5.8 Controller gains and actuator constraint parameters for the ex-
periments with the NP-NV and NP-LV controllers. . . . . . . . 138

5.9 Performance metrics for the experiments with the NP-LV and
NP-NV controllers. . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.10 Controller gains and actuator constraint parameters for the ex-
periments with the NP-LV controller. . . . . . . . . . . . . . . . 142

5.11 Performance metrics for the experiments with the NP-LV con-
troller with actuator constraint handling methods. . . . . . . . 144

XX



LIST OF TABLES

5.12 Controller gains and actuator constraint parameters for the ex-
periments with the NP-NV controller with constraint handling
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.13 Performance metrics for the experiments with the NP-NV con-
troller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.14 Controller gains and actuator constraint parameters for the ex-
periment with the DWC. . . . . . . . . . . . . . . . . . . . . . . 150

5.15 Performance metrics for the experiment with the DWC. . . . . 152

XXI



XXII



Notation

The notation list is intended as a reference for the reader. Symbols only used in
a small part of the thesis are not included in the notation list. All symbols are
explained as they are introduced throughout the thesis. Bold symbols denote a
vector or a matrix.

Symbol Description
(x, y) Cartesian position
ψ Heading angle

(u, v) Body-fixed linear velocities
r Yaw rate
η Vessel pose
ηt Target vessel pose
ν Body velocity
νt Target body velocity
M Inertia matrix
C(ν) Coriolis-centripetal matrix
D(ν) Damping matrix
R(ψ) Rotation matrix
S(r) Skew-symmetric matrix
τ Force vector
KT Actuator force matrix
T Actuator configuration matrix
u Actuator inputs [V]
m Magnitude constraints
r Rate constraints
K MRS model gain matrix

Table 1: Notations, continued on next page.
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Symbol Description
z Error variable
ē Normed error
V Control Lyapunov function
α(·) Stabilizing function, desired velocity
Γ Controller gain matrix

Ω(·) Nonlinear controller gain matrix
K(·) Nonlinear controller gain function
vd Desired velocity, CB guidance
vt Target velocity, CB guidance
p Interceptor position, CB guidance
pt Target position, CB guidance
∆ Lookahead distance, tuning variables
T Time constant
νss Steady-state body velocity
ν∗ Current velocity
Vp Set of possible velocities
Vw Dynamic velocity window
Vf Set of dynamically feasible velocities
νd Desired velocity, for the dynamic window
νt Target velocity, for the dynamic window
νf Optimal velocity, for the dynamic window
αf Feasible velocity, for the dynamic window

αDWC Stabilizing function, desired velocity

Table 2: Notations, continuation from previous page.
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Abbreviations

The list of abbreviations is intended as a reference for the reader. Abbreviations
are explained as they are introduced throughout the thesis.

Abbreviations Description
AUV Autonomous Underwater Vehicle
CB Constant bearing

CSAD C/S Inocean Cat I Drillship
CLF Control Lyapunof function
DOF Degrees-of-freedom
DP Dynamic positioning
DW Dynamic window

DWC Dynamic window-based controller
IADC Integral of absolute differentiated control
IAE Integral of the absolute error

IAEW IAE multiplied by the energy consumption
ISS Input-to-state stable
LOS Line-of-sight

LP-LV Linear pose and velocity feedback
NED North-East-Down

MC-Lab Marine Cybernetics Laboratory
MRS Magnitude-rate-saturation

NP-LV Nonlinear pose and linear velocity feedback
NP-NV Nonlinear pose and velocity feedback

UES Uniformly exponentially stable
UGAS Uniformly asymptotically stable
ULES Uniformly locally exponentially stable
UGES Uniformly globally exponentially stable
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Chapter 1

Introduction

1.1 Motivation and previous work

Most of today’s ships have autopilot systems that usually lead the ship along
the desired heading and velocity. Numerous motion controllers and autopilot
systems have been developed over the years, but most control systems do not
explicitly consider actuator constraints. Examples of traditional motion control
designs for ships are given in [1]. Not considering actuator constraints may lead
to unsatisfying performance or stability issues, and should be avoided.

Several ways of handling both magnitude and rate constraints have been
developed. Handling the constraints may lead to a more energy efficient per-
formance and less wear and tear on the actuators, which are both crucial for a
ship’s ability to operate at sea over longer periods and to reduce maintenance
cost. In [2], model predictive control for systems with actuator magnitude and
rate constraints is presented. In [3], the dynamic window algorithm is suggested
as a method to perform collision avoidance and deal with constraints imposed
by limited velocities and accelerations for mobile robots. The dynamic window
algorithm was modified for autonomous underwater vehicles (AUVs) in [4], and
showed promising results for handling magnitude and rate constraints for the
actuators. In [5], a simplification of the dynamic window algorithm in [4] is
developed for a 2 degrees of freedom heading and speed controller, by removing
the collision avoidance part of the algorithm.

Building on the algorithm in [5], it is possible to develop a 3 degrees of
freedom dynamic window-based controller which can be used for dynamic po-
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CHAPTER 1. INTRODUCTION

sitioning, while at the same time also satisfying actuator constraints [6]. This
is a step in the direction of a state-of-the-art dynamic positioning controller
which combines control accuracy, energy efficiency and constraint handling. To
develop this controller, the dynamic window algorithm has to be extended into
3 degrees of freedom and combined with a cascaded motion controller, which
can be based on the design in [7].

In addition to this, other ways of handling magnitude and rate saturation
effects have been developed in the literature. In [8], a magnitude-rate satura-
tion model is derived to address the issue of anti-windup in systems affected
by magnitude and rate constraints. By modifying the model in [8], it can be
included as a part of a cascaded motion control system for ships to handle actu-
ator constraints, and likely improve energy efficiency and reduce actuator wear
and tear [9].

It is then clear that actuator constraint handling is an important and widely
researched topic for ship motion control, along with other types of control sys-
tems, and that there are much needed research to be done in the field, which will
have the capability to potentially further improve overall control performance,
efficiency and accuracy.

1.2 Problem formulation

The goal of this thesis is to investigate the effects of handling actuator con-
straints. Firstly, by developing a combination of a dynamic window algorithm
and a nonlinear cascaded feedback control algorithm to implement an energy
efficient constraint handling controller, and secondly, by implementing other
models for the purpose of comparison and a thorough investigation on the ef-
fects on ship performance by using such models. Specifically, the following tasks
are to be done in the thesis:

• Perform a background and literature review to provide information and
relevant references on:

– Nonlinear feedback control algorithms.
– Dynamic window-based control and other state-of-the-art constraint

handling methods.
– Marine Cybernetics Laboratory and C/S Inocean Cat I Arctic Drill-

ship.

• Develop and implement a nonlinear cascaded feedback control algorithm
as a pose and speed controller for a ship in MATLAB/Simulink.
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• Combine a constraint handling algorithm from the literature study with
the cascaded feedback controllers to handle actuator constraints.
• Develop and implement a combination of the dynamic window algorithm

and a nonlinear cascaded feedback control algorithm as a pose and speed
controller for a ship in MATLAB/Simulink to address the problem of
magnitude constraints for the actuators.
• Evaluate the closed-loop performance of the combined control algorithms

using performance metrics and simulations to investigate the differences
in pose and velocity tracking and energy efficiency.
• Test the performance of the algorithms in model-scale experiments in the

Marine Cybernetics Laboratory.

1.3 Contributions

The contributions of this thesis are:

• An update to the C/S Inocean Cat I Arctic Drillship model, including
thrust allocation and actuator limitations.
• Actuator constraint modeling, and a magnitude-rate saturation model

used to handle actuator constraints on ships, including a comparison to
other methods, an analysis on performance and stability, and suggested
tuning rules.

– The article ”Improvement of Ship Motion Control Using a Magnitude-
Rate Saturation Model, in Proceedings of the 2nd IEEE Conference
on Control Technology and Applications” [9] is based upon this work.

• A review of previously developed nonlinear cascaded feedback controllers,
including tuning rules and stability analyses, and the effects on perfor-
mance by combining these with the above magnitude-rate saturation model.
• The development of a 3 degrees of freedom dynamic window-based con-

troller which satisfies actuator magnitude constraints.

– The article ”A Dynamic Window-Based Controller for Dynamic Po-
sitioning Satisfying Actuator Magnitude Constraints, in Proceedings
of the 11th IFAC Conference on Control Applications in Marine Sys-
tems, Robotics, and Vehicles” [6] is based upon this work.

• A thorough evaluation of the above control algorithms through a number
of numerical simulations and laboratory experiments.
• A fault tolerant estimator designed to handle lost camera positioning mea-

surements.
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• Suggestions for alternative uses for the dynamic window algorithm and
further research regarding actuator constraint handling methods.

1.4 Outline

This thesis is divided into several distinctive chapters. Chapter 2 presents math-
ematical modeling of a ship, the C/S Inocean Cat I Drillship model and its
updated model parameters, actuator constraint modeling and an analysis of
different constraint handling methods. Chapter 3 contains constraint handling
control methods, including cascaded feedback controllers and the development
of a 3 degrees of freedom dynamic window-based controller. Simulation results
and an analysis of these, along with the description of several performance met-
rics, are presented in Chapter 4. Chapter 5 contains information about the Ma-
rine Cybernetics Laboratory and the laboratory implementations, in addition
to the experimental results and an analysis of these. A thorough examination
of the combined results from the numerical simulations and laboratory exper-
iments are discussed in Chapter 6. Some concluding remarks and suggestions
for future work are presented in Chapter 7.
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Chapter 2

Ship modeling and actuator
constraints

This chapter contains mathematical modeling of surface vessels, thrust allo-
cation, and actuator constraints. The modeling of the model-scale ship C/S
Inocean Cat I Arctic Drillship, hereafter abbreviated CSAD, is presented, and
possible ways of modeling and handling actuator constraints are discussed and
analysed.

2.1 Mathematical modeling of a ship

A ship can be differentially described by 6 degrees of freedom (DOF) equations
of motion. The two modes are (x, y, z) and (φ, θ, ψ), where the first mode refer
to surge, sway, and heave, respectively, which describes the ship’s position in
a three-dimensional space. The second mode refers to roll, pitch, and yaw,
respectively, and describes the orientation of the ship. Assuming that the ship
is longitudinally and laterally metacentrically stable for small amplitudes of
φ = θ = φ̇ = θ̇ ≈ 0, it is possible to discard the dynamics of roll and pitch. It is
also reasonable to assume that the ship floats with z ≈ 0 in mean, which means
that the heave dynamics are discardable as well. The resulting model for the
purpose of manoeuvring the ship in the horizontal plane then becomes a 3 DOF
model.

If we let an inertial frame be approximated by an earth-fixed reference frame
{e} called NED (North-East-Down), and a body-fixed frame {b} be attached
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to the ship, the state of the vessel can then be taken as η = [x, y, ψ] ∈ R2 × S,
where S = [−π, π), and ν = [u, v, r] ∈ R3, where (x, y) is the Cartesian position,
ψ is the heading (yaw) angle, (u, v) are the body-fixed linear velocities (surge
and sway speed), and r is the yaw rate.

The 3 DOF dynamics of the surface vessel can then be stated as in [1]:

η̇ = R(ψ)ν (2.1)

Mν̇ +C(ν)ν +D(ν)ν = τ , (2.2)

where

R(ψ) =




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2.3)

is a rotation matrix R ∈ SO(3), and where M ∈ R3×3, C(ν) ∈ R3×3, D(ν) ∈
R3×3 and τ = [τ1, τ2, τ3]> represent the inertia matrix, Coriolis and centripetal
matrix, damping matrix, and control input vector, respectively. The system
matrices are assumed to satisfy the properties M = M> > 0, C(ν) = −C(ν)>

and D(ν) > 0.

2.1.1 CSAD model

The model-scale ship CSAD, which is a 1:90 model-scale replica of the full-
scale Statoil Cat I Arctic Drillship, with length L = 2.578m is shown in Figure
2.1. The following model for CSAD is used for control design and evaluation
through both numerical simulations and laboratory experiments in the Marine
Cybernetics Laboratory (MC-Lab) throughout this thesis. The numerical values
for the model parameters can be found in Table 2.1. The inertia matrix is given
as

M = MRB +MA, (2.4)

where

MRB =



m 0 0
0 m mxg
0 mxg Iz


 (2.5)

MA =



−Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ


 , (2.6)
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Figure 2.1: C/S Inocean Cat I Arctic Drillship in the MC-Lab.

where m is the mass, xg is the distance along the x-axis in the body frame from
the centre of gravity, and Iz is the moment of inertia about the z-axis in the
body frame. The Coriolis and centripetal matrix is given as

C(ν) = CRB(ν) +CA(ν), (2.7)

where

CRB(ν) =




0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0


 (2.8)

CA(ν) =




0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0


 , (2.9)

with

cA,13(ν) = −Yv̇v − Yṙr (2.10)

cA,23(ν) = −Xu̇u. (2.11)

Finally, the damping matrix D(ν) is given as

D(ν) = DL +DNL(ν), (2.12)
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where

DL =



−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr


 (2.13)

DNL(ν) =



dNL,11(ν) 0 0

0 dNL,22(ν) dNL,23(ν)
0 dNL,32(ν) dNL,33(ν)


 , (2.14)

with

dNL,11(ν) = −X|u|u|u| −Xuuuu
2 (2.15)

dNL,22(ν) = −Y|v|v|v| − Y|r|v|r| − Yvvvv2 (2.16)

dNL,23(ν) = −Y|r|r|r| − Y|v|r|r| − Yrrrr2 − Yuru (2.17)

dNL,32(ν) = −N|v|v|v| −N|r|v|v| −Nvvvv2 −Nuvu (2.18)

dNL,33(ν) = −N|r|r|r| −N|v|r|v| −Nrrrr2 −Nuru. (2.19)

To successfully accommodate for the Munk moment, the damping terms

Yur = Xu̇ (2.20)

Nuv = −(Yv̇ −Xu̇) (2.21)

Nur = Yṙ, (2.22)

which, when multiplied with surge speed u are linearly increasing with the
forward speed, are added to the damping matrix. This will result in a more
physically realistic model behaviour, and will ensure that the model will not
give rise to a physically impossible motion [5], [20].

2.1.2 Experimental tests and updated model parameters
for CSAD

Several changes have been done to the numerical model parameters for CSAD
throughout the work done in this thesis.

The parameters in Table 2.1 that are marked in bold are the ones that differ
from the latest article regarding CSAD [12]. There, the parameters in the added
mass matrix MA were positively signed. This, which is possibly due to a typo,
would result in removed mass, which would result in an erroneous impact on
the ship’s performance in simulations. This mistake was therefore corrected.
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Furthermore, the parameters Nr, N|r|r and Nrrr, which relate to the yaw
motion, were found to be too small in the original model, which resulted in an
infeasible maximum yaw rate. These values had not been scaled to fit a realistic
yaw rate, which were found to be approxmimately 5 [deg/s] in the laboratory
experiments conducted in the MC-Lab last year [13].

To approximate appropriate values for these parameters, the initial scaling
were kept as in [12], with the higher order terms N|r|r and Nrrr dependent on
Nr. The ship model was simulated with a constant maximum yaw moment, see
Section 2.3. The value of Nr was then tuned until the model yielded a yaw rate
of 5 [deg/s]. In addition, the sign of the parameter Y|v|v was corrected. The
final parameter values for the updated CSAD model used in laboratory week 1
are displayed in Table 2.1, where the updated parameters are marked in bold.

Then, at the end of laboratory week 1, several performance tests were con-
ducted to find the maximum velocities and actuator outputs due to poor overall
laboratory performance of the model-based dynamic window-based controller
throughout the week, and several model discrepancies were found. The model
was corrected through the same method as before, using the updated maximum
actuator forces and moments, see Section 2.3, and the final values for the up-
dated CSAD model are displayed in Table 2.1. The model behaviour for the
laboratory week 1 model and the final model based on the updated thrust allo-
cation model, are shown in Figure 2.2, 2.3 and 2.4. The spikes in these figures
are caused by a combination of a poorly calibrated laboratory camera position-
ing system and a velocity estimator which was not designed to handle the poor
calibration. Subsequent work was later done to improve both the camera cali-
bration and estimator. See Section 5.2 for more details. Using this model, the
maximum velocities will be 0.4142 [m/s], 0.109 [m/s] and 6.327 [deg/s] in surge,
sway and yaw rate, respectively, which corresponds well to the experimental
results from the laboratory tests.
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CHAPTER 2. SHIP MODELING AND ACTUATOR CONSTRAINTS

Parameters Old values [12] Lab week 1
values [9]

Updated values

L 2.578 2.578 2.578
m 127.92 127.92 127.92
xg 0 0.0375 0.0375
Iz 61.967 61.967 61.967
Xu̇ 3.262 −3.262 −10
Yv̇ 28.89 −28.89 −105
Yṙ 0.525 −0.525 −0.525
Nv̇ 0.157 −0.157 −0.157
Nṙ 13.98 −13.98 −3.495
Xu −2.332 −2.332 −5.35
X|u|u 0 0 0
Xuuu −8.557 −8.557 −19.6312
Yv −4.673 −4.673 −10.16
Y|v|v 0.3976 −0.3976 −0.8647
Yvvv −313.3 −313.3 −681.1745
Nv 0 0 0
N|v|v −0.2088 −0.2088 −0.2088
Nvvv 0 0 0
Yr −7.25 −7.25 −7.25
Y|r|r −3.450 −3.450 −3.450
Yrrr 0 0 0
Nr −0.0168 −7.141 −14.55
N|r|r −0.0115 −4.888 −9.9597
Nrrr −0.000358 −0.152 −0.3101
N|v|r 0.08 0.08 0.08
N|r|v 0.08 0.08 0.08
Y|v|r −0.845 -0.845 -0.845
Y|r|v −0.805 -0.805 -0.805

Table 2.1: Numerical values for the ship model parameters for CSAD.
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Figure 2.2: Surge speed [m/s] for the updated CSAD models with maximum
surge force as input.
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Figure 2.3: Sway speed [m/s] for the updated CSAD models with maximum
sway force as input.
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Figure 2.4: Yaw rate [deg/s] for the updated CSAD models with maximum yaw
moment as input.

2.2 Thrust allocation

The presented ship model describes a fully actuated ship, where the actuator
forces and moments are modeled using six azimuth thrusters,
u = [u1, u2, u3, u4, u5, u6]> ∈ R6 [6], [12]. These are related to the input vector
τ through the actuator model

τ (u) = TKTu, (2.23)

where T ∈ R3×6 is an actuator configuration matrix, while KT ∈ R6×6 is an
actuator force matrix. The actuator configuration matrix is

T =



c(δ1) c(δ2) c(δ3) c(δ4) c(δ5) c(δ6)
s(δ1) s(δ2) s(δ3) s(δ4) s(δ5) s(δ6)
φ1 φ2 φ3 φ4 φ5 φ6


 , (2.24)

where c(δi) = cos(δi) and s(δi) = sin(δi). The constant φi = Li cos(βi) sin(δi),

with Li =
√
L2
x,i + L2

y,i, where Lx,i and Ly,i represent the physical placements

of the ith actuator, and βi = tan(Lx,i/Ly,i) for i ∈ [1, 6]. The actuator force
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Parameter Value Parameter Value
Lx,1 1.0678 Ly,1 0.0
Lx,2 0.9344 Ly,2 0.11
Lx,3 0.9344 Ly,3 -0.11
Lx,4 -1.1644 Ly,4 0.0
Lx,5 -0.9911 Ly,5 -0.1644
Lx,6 -0.9911 Ly,6 0.1644

Table 2.2: Numerical values for the actuator model parameters.

matrix is given as

KT = diag([KT,1,KT,2,KT,3,KT,4,KT,5,KT,6]), (2.25)

where KT,i > 0 is the thrust force from the ith propeller. Here, the actuators
are fixed to the angles δ = [π, π/4,−π/4, 0, 5π/4, 3π/4]. The numerical values
for Lx,i and Ly,i are shown in Table 2.2.

2.3 Actuator limitations

The six actuators of CSAD are, by design, limited to ui ∈ [−0.5, 0.5] [V] [12],
where ui is the actuator input for actuator i in volt. Simulating the vessel
with the thrust allocation model for all possible inputs of u = [u1, . . . , u6], it is
possible to find the actuator forces and moments magnitude limits. These limits
will be used in the design of the dynamic window-based controller (DWC) in
Section 3.2 and the magnitude-rate saturation (MRS) model given in (2.31) in
Section 2.4.2. The simulator setup is shown in Figure 2.5.

The thrust allocation model originally used for this thesis and in laboratory
week 1, was given by the thrust coefficients

KT = diag([0.3763, 0.3901, 0.3776, 0.5641, 0.4799, 0.5588]), (2.26)

which resulted in the following actuator magnitude limits: 1.1089 [N ] in surge,
0.6387 [N ] in sway, and 0.6176 [Nm] in yaw. These values were used for the
design of the dynamic window-based controller and the MRS model used in
laboratory week 1. However, by the performance tests done in the end of the
week, these values were found to be inconsistent with the actual performance of
CSAD. The real values were found to be approximately 3.6 [N ] in surge, 2.0 [N ]

13



CHAPTER 2. SHIP MODELING AND ACTUATOR CONSTRAINTS

u Thrust allocation Ship

τ data

ν data

Figure 2.5: Block diagram for the simulator setup used to investigate actuator
magnitude constraints τmax and τmin, and steady-state velocities ν.

in sway, and 1.7 [Nm] in yaw. The thrust coefficient matrix KT was simply up-
scaled to fit the measured performance, and a same-valued diagonal matrix was
found to be more consistent with the actual actuator performance. By using

KT = diag([1.491, 1.491, 1.491, 1.491, 1.491, 1.491]), (2.27)

a performance which corresponded well to the actual laboratory behaviour was
found. The resulting actuator outputs simulated for all values of u are shown
in Figure 2.6, giving the actuator magnitude limits 3.5996 [N] in surge, 2.0032
[N] in sway, and 1.7027 [Nm] in yaw. The dynamic window-based controller in
this thesis is based upon these actuator limits.

2.4 Actuator constraint modeling

Modeling the vessel’s actuator constraints is important because it ensures that
the controller output remains inside a feasible range of values. Both magnitude
and rate constraints will impact a vessel’s ability to manoeuvre, and should be
handled in the control system to either keep the controller output within desired
values, or to give more accurate simulations.

2.4.1 Basic methods

Magnitude and rate constraints can easily be implemented using simple well-
known methods, as shown below. Combining these models as a cascade system,
as shown in Figure 2.7, we can ensure that the controller output will remain
within feasible values at all times, and that the vessel can execute the desired
task.
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Figure 2.6: Simulated actuator outputs for the presented thrust allocation
model.

Magnitude constraints

The commanded control input with saturation τs is bounded as follows

τs,i(τc,i) =





τi,min if τc,i ≤ τi,min
τi if τi,min < τc,i < τi,max, ∀i ∈ {1, . . . , 3},
τi,max if τc,i ≥ τi,max

(2.28)

where τc,i is the commanded control input with i ∈ {1, 2, 3} without satura-
tion, to control surge, sway and yaw forces and moment, respectively. The
saturation limits are represented by τmin = [τ1,min, τ2,min, τ3,min]> and τmax =
[τ1,max, τ2,max, τ3,max]> with negative and positive bounded elements, respec-
tively. This model is often referred to as a saturation block in programs such as
MATLAB/Simulink.
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Figure 2.7: Block diagram for the cascaded magnitude and rate saturation
model.

Rate constraints

The rate constraints can be modeled by a simple first-order low-pass filter. Such
a filter has the differential equation

δ̇ = ωc(τc − δ)

τs = δ,
(2.29)

where τc, δ, τs and ωc are the input, the state, the output and time constant
of the filter, which represents the actuator rate constraints, respectively.

2.4.2 A magnitude-rate saturation model

An approach to model magnitude-rate saturation, is to introduce the following
dynamical system with a discontinuous right-hand side

δ̇ = diag(r)sign(satm(τc − δ))

τmrs = δ,
(2.30)

where τc, δ and τmrs are the input, the state, and the output of the MRS,
respectively, and where m = [m1, . . . ,mp] and r = [r1, . . . , rp], p ∈ {1, 2, 3},
are vectors whose strictly positive components specify the magnitude and rate
constraints, respectively.

This discontinuous model exactly describes the MRS effects, but does, how-
ever, require special care due to its discontinuity, and is not so easy to handle
from an analysis and synthesis point of view. The model is often approximated
by a high gain model where the sign-function is replaced by a high gain followed
by a saturation. Other solutions are also available, and is discussed in greater
detail in [8].
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Figure 2.8: Block diagram for the MRS model (2.31).

To get around the problems mentioned above, another MRS model is pro-
posed:

δ̇ = satr(τ̇c +K(τc − δ))

τmrs = satm(δ),
(2.31)

where K > 0 is a diagonal tuning matrix. The matrix is introduced in order
to avoid an unstable cancellation between the derivative operator s and the
integrator in Figure 2.8, where the block diagram for the MRS model is shown.
The derivative of the input, τ̇c, is supposed to exist and can be calculated
using numerical derivation. The saturation limits satr and satm are modeled
as the saturation block given above, and contain the vessel’s rate and magnitude
constraints, respectively. See [8] for further details.

The main difference between (2.30) and (2.31) is that in (2.30) the magnitude
of the input is limited before entering the rate limiter, whereas in (2.31), the rate
is limited first and then magnitude next. As a consequence of this difference,
the state δ of (2.30) will never exceed the magnitude bound m, but the state
of (2.31) can exceed the bound m, although its output τmrs never does.

For systems that are likely to be subject to integral-windup, which can hap-
pen when a large change in controller setpoints occur, or when an ideal output is
physically impossible, model (2.31) can effectively be extended with an external
signal v to prevent such windup problems. This extension to (2.31) is given by

δ̇ = satr(τ̇c +K(τc − δ) + v)

τmrs = satm(δ),
(2.32)

and is discussed in greater detail in [8]. As we are not looking to handle integral-
windup effcts, v = 0 for the remainder of this thesis.
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Model (2.30) and (2.31) require more accurate knowledge about the rate
constraints of the vessel’s actuators than the combined model (2.28) and (2.29).
However, all three models will be implemented and tested through simulations,
and the best performing model will be chosen and then combined in cascade
with ship motion control systems presented in this thesis to investigate notable
effects on performance when considering actuator saturation effects.

2.4.3 Analysis of the constraint models

To test the behaviour of the different MRS models, they will be subject to the
following test scenarios:

Scenario 1: τ1 =

{
4 cos(t/2), if t < 20

2 cos(t/4), if t ≥ 20
(2.33)

Scenario 2: τ1 =





2.5, if t < 10

−2, 5, if 10 < t < 20

4, if 20 < t < 30

−4, if 30 < t < 40

1, if t ≥ 40,

(2.34)

where the tracking of surge force τ1 will be used for the analysis.

Choice of actuator constraint parameters

The actuator constraint parameters can be tuned in order to affect the ship’s
performance in a desired way. While limiting the magnitude limits of the ac-
tuators can be a good way of saving energy, and in many cases, if not severely
reduced, not lead to any drastic changes in performance, tuning the rate con-
straints can both lead to a more energy efficient performance and less wear and
tear for the actuators as the actuators will react less to small disturbances, which
usually lead to actuator twitching and an unnecessary use of energy without ac-
tually improving accuracy or overall performance [9]. The use of an actuator
constraint model, such as the proposed MRS model in (2.31), can therefore, if
tuned properly to fit the desired operational environment, be beneficial in many
scenarios where accuracy and energy efficiency is more important than achieving
the fastest possible convergence toward the target destination.
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Choice of gain matrix K for the MRS model

The diagonal matrix K = diag([K1,1,K2,2,K3,3]) is given as a free parameter
and is introduced in order to avoid unstable cancellations during linear oper-
ation. The choice of this parameter affects the speed of the inner-loop in the
MRS model, and should be chosen based on the desired tracking performance.
An important observation is that neither of the elements of the matrix can be
equal to 1, and thus also K 6= I. A Ki,i > 1, i ∈ {1, 2, 3}, will ensure an
accurate tracking of the desired rate, while a Ki,i < 1 will enforce a slower
convergence towards the commanded thrust. This can be beneficial for systems
where energy efficiency is most important, because the performance will be too
slow to follow target spikes in the commanded thrust.

Simulation of constraint handling methods

Using the same constraints, the different constraint handling methods have been
simulated for Scenario 1 in (2.33) and Scenario 2 in (2.34). The results are shown
in Figure 2.9 and 2.10. By inspecting the simulation results, its clear that
both the alternative constraint handling methods outperform the low-pass filter
model. We can see that all the models keep the values within the magnitude
and rate constraints of the system. However, model (2.30) becomes almost
discontinuous in parts of the simulation, which is realistically infeasible for a
system with rate constraints, which means that this model will be neglected.
The proposed MRS model in (2.31) is therefore the overall best model to handle
actuator constraints, and will be used for numerical simulations and laboratory
experiments.

Suggested tuning rules

Although you can use the MRS model in (2.31) to mimic a system’s constraints
to get more accurate simulations, the main use of this model in this thesis is
to investigate energy efficiency and overall performance increase by limiting the
actuator outputs.

Maximizing the output from an actuator is usually very inefficient in terms
of energy usage, and often does not contribute a lot to increased performance.
Since energy efficiency is in focus, it is suggested to limit the magnitude outputs
of the actuators at 80 percent of their maximum values, giving

m = [0.8ma,1, 0.8ma,2, 0.8ma,3], (2.35)
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Figure 2.9: Test of actuator constraint methods for scenario 1.
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Figure 2.10: Test of actuator constraint methods for scenario 2.
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where, specifically for CSAD, ma = [3.5996, 2.0032, 1.7027] are the actual mag-
nitude limits of the actuators in surge [N], sway [N] and yaw [Nm], respectively.

The rate constraints should be selected as

r = [m1/tmrs,m2/tmrs,m3/tmrs], (2.36)

where tmrs is the desired time [s] for the actuators to go from zero to maximum
thrust allowed by m. Here, tmrs = 1, as it seemed to fit the desired performance
for CSAD.

The gain matrix K can be chosen as

K = diag([K1,1,
m2

m1
K1,1,

m3

m1
K1,1]), (2.37)

where the original ratio between the actuator outputs in surge [N], sway [N],
and yaw [Nm] has been retained. Under normal operations it is desired to have
all the diagonal elements Ki,i > 1 to ensure a fast tracking of the target signal
in all 3 degrees of freedom. Here, K1,1 = 5 is chosen to make all the elements
of K sufficiently large.

A low valued gain matrixK can be beneficial if there are a lot of disturbances
in the system, such as spikes in the target signal. The system then might ignore
many of the smaller spikes, and thus save energy. Having a low K1,1 gain can
then be useful for a vessel which highly values energy efficiency over a fast and
responsive performance. For comparison purposes, the MRS model for a high
and a low value of K1,1 is shown in Figure 2.11 and 2.12. The main focus of
this thesis will be on K1,1 as presented above, but K1,1 = 0.8 will be tested
experimentally in the laboratory.

Note that this tuning is adjusted for the updated ship model and new thrust
allocation model, and equals the tuning used in laboratory week 2. A discussion
regarding this tuning is presented in Chapter 5 and Chapter 6.

2.5 Chapter summary

In this chapter, mathematical modeling of a ship was presented, along with the
CSAD model. Necessary changes done to the model were declared and discussed,
along with the updated model parameters. The thrust allocation used for the
experiments and its actuator limitations were explained in detail. Then, several
methods of handling actuator constraints were introduced and analysed, and
suggested tuning rules for the constraint handling methods were presented.
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Figure 2.11: Test of different K1,1 gains for the MRS model using a square wave.
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Figure 2.12: Test of different K1,1 gains for the MRS model using a triangle
wave.
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Chapter 3

Constraint handling control
methods

This chapter contains feedback control design for various control systems, in-
cluding stability analysis. The effects of using nonlinear feedback terms will be
investigated through simulations and performance metrics in Chapter 4, and by
laboratory experiments in Chapter 5, where also the effects on performance by
using an MRS model will be investigated. In addition to this, dynamic window-
based controllers which satisfies actuator magnitude constraints for the use in
2 DOF and 3 DOF operations are presented.

3.1 Cascaded feedback controllers

The control objective is to make η̃(t) , η(t) − ηt(t) → 0 as t → ∞ and
ν̃(t) , ν(t) − νt(t) → 0 as t → ∞, where ηt = [xt(t), yt(t), ψt(t)]

> ∈ R2 × S is
the pose associated with the target point, which is C2 and bounded and twice
differentiable, and νt = [ut(t), vt(t), rt(t)] ∈ R3 is the target velocity. The
motion of the target is typically defined by a human or generated by a guidance
system.

By using a design similar to the backstepping method, as in [16], [19], where
the control design is divided into two stages, including the definition of new
state variables and deriving the control laws through control Lyapunov functions
(CLFs), but where we omit the coupling between the pose and velocity control
loops, we end up with a cascaded system. This cascaded system corresponds
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CHAPTER 3. CONSTRAINT HANDLING CONTROL METHODS

to a classical inner-outer loop guidance and control structure, where the outer
loop handles the kinematics and the inner loop the kinetics. The total system
can then be analysed by cascade theory, such as in [11] and [21]. It should be
noted that the nonlinear feedback control concept presented here is an initial
step toward handling actuator constraints.

The feedback control design in this section is based on the work done in [7]
and [15].

It is desirable to investigate the effects of using nonlinear feedback terms,
and thus we design and investigate three combinations of linear and nonlinear
feedback terms.

For notational simplicity, the time t is omitted in the rest of this chapter.

3.1.1 Linear pose and velocity feedback (LP-LV)

Defining the error variables z1 and z2 as

z1 , R>(ψ)(η − ηt) (3.1)

z2 , ν −α, (3.2)

where α ∈ R3 is a vector of stabilising functions, which can be interpreted as a
desired velocity and which is to be designed later.

For the kinematic control part, we choose the positive definite CLF as

V1 , 1

2
z>1 z1. (3.3)

Then, the derivative of V1 with respect to the z1-dynamics becomes

V̇1 = z>1 ż1

= z>1 (S(r)>R>(ψ)(η − ηt) +R>(ψ)(η̇ − η̇t))
= z>1 (S(r)>z1 +R>(ψ)(η̇ − η̇t)),

(3.4)

where

S(r) =




0 −r 0
r 0 0
0 0 0


 (3.5)

is a skew-symmetric matrix satisfying z>1 S(r)z1 = 0, ∀z1. This gives

V̇1 = z>1 (ν −R>(ψ)η̇t). (3.6)
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3.1. CASCADED FEEDBACK CONTROLLERS

Using (3.2), we get

V̇1 = z>1 (z2 +α−R>(ψ)η̇t)

= z>1 z2 + z>1 (α−R>(ψ)η̇t),
(3.7)

where the stabilising function is chosen as

α = R>(ψ)η̇t − Γ1z1, (3.8)

where Γ1 = Γ>1 > 0, which results in

V̇1 = −z>1 Γ1z1 + z>1 z2. (3.9)

Considering this as a system on the form ẋ = f(t, x, u). If z2 is seen as an input
with z2 = 0, it can be concluded that the origin of the system is uniformly
globally exponentially stable (UGES). It can then be concluded from Lemma
4.6 from [10], as repeated in Lemma 1 below, that the subsystem

ż1 = S(r)>z1 − Γ1z1 + z2 (3.10)

is input-to-state stable (ISS). Note that (3.9) shows that S(r) in (3.10) does not
affect the ISS property.

Lemma 1 Suppose f(t, x, u) is continuously differentiable and globally Lips-
chitz in (x, u), uniformly in t. If the unforced system ẋ = f(t, x, 0) has a glob-
ally exponentially stable equilibrium point at the origin x = 0, then the system
ẋ = f(t, x, u) is input-to-state stable.

For the kinetic control, the z2-dynamics can be written as

Mż2 = M(ν̇ − α̇)

= τ −C(ν)ν −D(ν)ν −Mα̇,
(3.11)

where the time derivative of (3.8) becomes

α̇ = R>(ψ)η̈t + S(r)>R>(ψ)η̇t − Γ1ż1, (3.12)

where ηt is the pose of the target point and ż1 is given by (3.10). The CLF for
z2 is then defined as

V2 , 1

2
z>2 Mz2. (3.13)
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The derivative of (3.13) becomes

V̇2 = z>2 Mż2

= z>2 (τ −Cν −Dν −Mα̇),
(3.14)

where the following simplifications has and will be applied for the rest of this
chapter to achieve notational brevity: C(ν) = C, D(ν) = D, R(ψ) = R, and
S(r) = S. Using this, the control input can be chosen as

τ = Mα̇+Cν +Dν − Γ2z2, (3.15)

where Γ2 > 0, which results in

V̇2 = −z>2 Γ2z2 < 0, (3.16)

which makes the origin of the z2-dynamics

ż2 = −M−1Γ2z2 (3.17)

UGES.

However, as there are to be experimental tests in the MC-Lab, choosing the
control input as

τ = Mα̇+Cα+Dα− Γ2z2 (3.18)

is beneficial due to possible signal errors on ν. This does however change (3.17)
to

ż2 = −M−1(C +D + Γ2)z2, (3.19)

where the convergence rate of the z2-dynamics becomes influenced by the ves-
sel’s C and D matrices, but which also is UGES in the origin.

Stability analysis

The total closed-loop dynamics become

ż1 = S>z1 − Γ1z1 + z2

ż2 = −M−1(C +D + Γ2)z2.
(3.20)

Theorem 2 The origin (z1, z2) = (0,0) of the overall system (3.20) is UGES.
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Proof (modified from [15]): Using Theorem 2.1 and Proposition 2.3 from [21],
and knowing that both subsystems are separately UGES if the z1-dynamics in
(3.20) are unperturbed (z2 = 0), and the kinematic control loop has linear
growth in the perturbation term z2, it can be concluded that the origin of the
total cascade system (z1, z2) = (0,0) is UGES as well.

However, it is important to note that UGES is not physically possible to
achieve since the saturation constraints for the actuators limit the achievable
control performance. In the following sections, saturation constraints for the
actuators will be considered in the control design by introducing nonlinear feed-
back terms.

3.1.2 Nonlinear pose and linear velocity feedback (NP-
LV)

By now introducing a nonlinear pose feedback inspired by a constant bearing
(CB) guidance concept, which was originally developed for interceptor missiles,
but then used for vessel control in [22], we can improve the overall pose control
performance. CB guidance is a two-point guidance scheme where the interceptor
is supposed to align to the relative interceptor-target velocity along the line-of-
sight (LOS) vector between the interceptor and the target.

CB guidance is usually implemented as proportional navigation, where you
make the rotation rate of the interceptor velocity directly proportional to the
rotation rate of the interceptor target LOS. Another method is to implement
CB guidance through the direct velocity assignment

vd = vt − κ(p)
p̃

|p̃| , (3.21)

where vt ∈ R2 is the target velocity and

p̃ , p− pt (3.22)

is the LOS vector between the interceptor position p = [x, y]> ∈ R2 and the
target position pt = [xt, yt]

> ∈ R2, such that

|p̃| ,
√
p̃>p̃ ≥ 0 (3.23)

is the Euclidean length of p̃. Furthermore, κ ≥ 0 can be chosen as

κ(p) = Ua,max
|p̃|√

p̃>p̃+ ∆2
p̃

, (3.24)
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Figure 3.1: LF represents a linear feedback term as a function of the control
error e, while NF represents a nonlinear feedback term based on a sigmoid
function of e using a tuning parameter ∆, such as in (3.21)-(3.24).

where Ua,max > 0 is the maximum approach speed towards the target and
∆p̃ > 0 is a tuning parameter which affects transient convergence behaviour
between the interceptor and target.

The result of using such nonlinear feedback is shown for a scalar error e ∈ R
in Figure 3.1, where the effects of varying ∆-gains are shown. The linear and
nonlinear functions displayed in Figure 3.1 are respectively given as τ(e) = κ(e)

and τ(e) = κ
e√

e2 + ∆2
, where κ = 6.

Introducing the CB guidance nonlinear feedback into the controller, the sta-
bilising function becomes

α = R>η̇t −K1(z1)z1, (3.25)

where
K1(z1) , Γ1Ω(z1), (3.26)
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and

Ω(z1) =




1√
z>1,p̃z1,p̃ + ∆2

p̃

I2×2 02×1

01×2
1√

z2
1,ψ̃

+ ∆ψ̃2



, (3.27)

and, as before, Γ1 > 0, and where z1,p̃ ,
[
z1,1, z1,2

]>
, z1,ψ̃ , z1,3, ∆p̃ > 0 and

∆ψ̃ > 0. It is possible to choose

Ω(z1) =
1√

z>1 z1 + ∆2
I3×3, (3.28)

if ∆p̃ = ∆ψ̃ = ∆ > 0, but then it is not possible to define a different transient
behaviour for the position and heading.

Choosing (3.27), the derivative of (3.25) becomes

α̇ = R>η̈t + S>R>η̇t − K̇1(z1)z1 −K1(z1)ż1, (3.29)

where the derivative of (3.26) is given by

K̇1(z1) = −Γ1Ω̇(z1) = −Γ1




z>1,p̃ż1,p̃

(z>1,p̃ż1,p̃ + ∆2
p̃)

3
2

I2×2 02×1

01×2
z>
1,ψ̃
ż1,ψ̃

(z2
1,ψ̃

+ ∆2
ψ̃

)
3
2



.

(3.30)

Stability analysis

The total closed-loop dynamics now become

ż1 = S>z1 −K1(z1)z1 + z2

ż2 = −M−1(C +D + Γ2)z2.
(3.31)

Here, we have that

|z1| � 1⇒ ż1 ≈ S>z1 − Γ1ρ(z1) + z2, (3.32)
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where ρ = col(z1,p̃/|z1,p̃|, z1,ψ̃/|z1,ψ̃|) is a vectorial sign-like function that satu-
rates the error z1, and

|z1| ≈ 0⇒ ż1 = S>z1 − Γ1




1

∆p̃
I2×2 02×1

01×2
1

∆ψ̃


 z1 + z2, (3.33)

where the linear dynamics are recovered, scaled by ∆i, around the origin.

Theorem 3 The origin (z1, z2) = (0,0) is UGAS, and on each compact set
B ⊂ R6 containing the origin, it is UES.

Proof (modified from [15]): We have that if the z2-dynamics is UGES, the
unperturbed z1-dynamics is UGAS, since (3.3) is C1 and positive definite. V̇1 is
negative definite ∀z1 6= 0 and (3.3) is radially unbounded ∀z1 6= 0.

Next, it can be shown that the z1-subsystem is growth restricted by sat-
isfying Assumption 7 in [21], where α4(s) = s, α5(s) = 1, α1(s) = 1

2s
2, and

α6(s) =
√

2s. Additionally, Assumption 8 in [21] is satisfied by having λ = 2,
V = 1

2z
>
1 z1, and W1(z1) = z>1 K1(z1)z1. With these conditions satisfied, The-

orem 2.3 in [21] states that the origin (z1, z2) = (0,0) is UGAS.
For |z(t0)| ∈ B and the definition of UGAS, there exists L > 0 so that

|z(t)| ≤ L, ∀t ≥ t0 ≥ 0. This also means that |z1,p̃| ≤ L and |z1,ψ̃| ≤ L, which
further implies that ∃γ > 0 such that Γ1Ω(z1) + Ω(z1)Γ1 > γI. Using the
quadratic Lyapunov function

V (z1, z2) = z>1 z1 +
1

2
b2z
>
2 Mz2, (3.34)

we get

V̇ = 2z>1 [−Sz1 − Γ1Ω(z1)z1 + z2] + b2z
>
2 M [−M−1(C +D + Γ2)z2]

= −z1[Γ1Ω(z1) + Ω(z1)Γ1]z1 + 2z>1 z2 − b2z>2 (D + Γ2)z2

= −z1[Γ1Ω(z1) + Ω(z1)Γ1]z1 + 2z>1 z2 − b2z>2 (Θ)z2

≤ −γ|z1|2 + 2|z1||z2| − b2λmin(Θ)|z2|2

= −γ
2
|z1|2 −

γ

2
|z1|2 + κ|z1|2 +

1

κ
|z2|2 − b2λmin(Θ)|z2|2

= −γ
2
|z1|2 −

(
b2λmin(Θ)− 2

γ

)
|z2|2,

(3.35)
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where Θ = D+ Γ2, where C is cancelled out because it is skew-symmetric and
thus z>2 Cz2 = 0, and where we used Young’s inequality xy ≤ κx2 + 1

4κy
2, κ =

γ
2 > 0. Choosing for instance

b2 =
1

λmin(Θ)

(γ
2

+
2

γ

)
, (3.36)

gives

V̇ ≤ −γ
2
|z|2, (3.37)

which proves UES on the compact set B.
Note that UGAS shows that the stability of this system is global. The second

part of the theorem shows that for any practical set B of initial conditions, the
convergence is in fact exponential.

3.1.3 Nonlinear pose and velocity feedback (NP-NV)

By now also introducing a nonlinear velocity feedback, the control law (3.18)
changes to

τ = Mα̇+Cα+Dα−K2(z2)z2, (3.38)

where

K2(z2) = Γ2Ω2(z2) = Γ2




1√
z>2,ṽz2,ṽ + ∆2

ṽ

I2×2 02×1

01×2
1√

z22,r̃ + ∆r̃2



, (3.39)

and, as before, Γ2 > 0, and where z2,ṽ ,
[
z2,1, z2,2

]>
, z2,r̃ , z2,3, ∆ṽ > 0 and

∆r̃ > 0.

Stability analysis

The total closed-loop dynamics now become

ż1 = S>z1 −K1(z1)z1 + z2

ż2 = −M−1(C +D +K2(z2))z2.
(3.40)

Theorem 4 The origin (z1, z2) = (0,0) is UGAS, and on each compact set
B ⊂ R6 containing the origin, it is UES.
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Proof (modified from [15]): The z2-dynamics can be proven to be UGAS
using Theorem 4.9 in [10], since (3.13) is C1 and positive definite, V̇2 is negative
definite ∀z2 6= 0 and (3.13) is radially unbounded ∀z2 6= 0. A similar conclusion
can be made for the unperturbed z1-dynamics.

Next, it can be shown that the z1-subsystem is growth restricted by sat-
isfying Assumption 7 in [21], where α4(s) = s, α5(s) = 1, α1(s) = 1

2s
2, and

α6(s) =
√

2s. Additionally, Assumption 8 in [21] is satisfied by having λ = 2,
V = 1

2z
>
1 z1, and W1(z1) = z>1 K1(z1)z1. With these conditions satisfied, The-

orem 2.3 in [21] states that the origin (z1, z2) = (0,0) is UGAS.
For |z(t0)| ∈ B and the definition of UGAS, there exists L > 0 so that

|z(t)| ≤ L, ∀t ≥ t0 ≥ 0. This also means that |z1,p̃| ≤ L, |z1,ψ̃| ≤ L, |z2,ṽ| ≤ L,
and |z2,r̃| ≤ L, which further implies that ∃γi > 0 such that ΓiΩ(zi)+Ω(zi)Γi >
γiI, i = 1, 2. Using the quadratic Lyapunov function

V (z1, z2) = z>1 z1 + b2z
>
2 Mz2, (3.41)

we get

V̇ = 2z>1 [−Sz1 − Γ1Ω(z1)z1 + z2] + 2b2z
>
2 M [−M−1(C +D + Γ2Ω(z2))z2]

= −z1[Γ1Ω(z1) + Ω(z1)Γ1]z1 + 2z>1 z2 − 2b2z
>
2 [D + Γ2Ω(z2)]z2

= −z1[Γ1Ω(z1) + Ω(z1)Γ1]z1 + 2z>1 z2 − 2b2z
>
2 IΛ(z2)z2

= −z1[Γ1Ω(z1) + Ω(z1)Γ1]z1 + 2z>1 z2 − b2z>2 [IΛ(z2) + Λ(z2)I]z2

≤ −γ1|z1|2 + 2|z1||z2| − b2γ2|z2|2

= −γ1
2
|z1|2 −

γ1
2
|z1|2 + κ|z1|2 +

1

κ
|z2|2 − b2γ2|z2|2

= −γ1
2
|z1|2 −

(
b2γ2 −

2

γ1

)
|z2|2,

(3.42)
where IΛ(z2) = D+Γ2Ω(z2) and Γ2Ω(z2)z2 = K2(z2)z2, where C is cancelled
out because it is skew-symmetric and thus z>2 Cz2 = 0, which holds for the proof
as stated above because 2D+ Γ2Ω(z2) + Ω(z2)Γ2 > Γ2Ω(z2) + Ω(z2)Γ2 since
it is assumed that D > 0, and where we used Young’s inequality. Choosing for
instance

b2 =
1

γ2

(γ1
2

+
2

γ1

)
|z2|2, (3.43)

gives

V̇ ≤ −γ1
2
|z|2, (3.44)

which proves UES on the compact set B.
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3.1.4 Tuning rules

The following tuning rules are suggested to get the desired behaviour [15]. Con-
sidering the z1-dynamics in (3.20), (3.31), and (3.40), it can be seen that the
choice of the Γ1 gain matrix determines the time constant of the z1-dynamics
with linear feedback. For simplicity, the time constants matrix for the pose
subsystem is defined as

T1 , Γ−11 , (3.45)

where

T1 =



Tp 0 0
0 Tp 0
0 0 Tψ


 , (3.46)

where Tp > 0 and Tψ > 0 are the time constants for position control and
heading control, respectively. A similar observation can be made regarding the
z2-dynamics in (3.20), (3.31), and (3.40), where the choice of the Γ2 gain matrix
determines the time constants of the z2-dynamics with linear feedback. Again,
for simplicity, the time constants are defined as

T2 ,MΓ−12 , (3.47)

where

T2 =



Tv 0 0
0 Tv 0
0 0 Tr


 , (3.48)

where Tv > 0 and Tr > 0 are the time constants for speed control and yaw rate
control, respectively.

It is desired that the kinetic subsystem has faster dynamics than the kine-
matic subsystem. Hence, the kinetic dynamics must have smaller time con-
stants, which means that

Tv < Tp (3.49)

Tr < Tψ. (3.50)

Next, ∆p, ∆ψ, ∆v and ∆r, must be chosen. The control parameter ∆ is
usually known as the lookahead distance in line of sight guidance [23]. In [29],
it is shown that a small ∆-value corresponds to fast convergence to the path,
but with a large overshoot, while a large ∆-value reduces overshoot and results
in a smooth but slow convergence. Here, the ∆-values scale the linear feedback
gains and therefore the time constants of the linear region. If the ∆-values are
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equal to 1, they will result in the same response as the linear controllers in
the linear region. If they are larger than 1, they will give a slower response in
this region. If they are chosen smaller than 1, they will give a faster response.
Hence, the ∆-values for the NP and NV feedback terms must be chosen such
that the conditions in (3.49)-(3.50) are not broken in the linear region, where
the time constants will be related to Γ1(1, 1)/∆p, Γ1(3, 3)/∆ψ, Γ2(1, 1)/∆v,
and Γ2(3, 3)/∆r.

3.1.5 Stability in cascade with the MRS model

The MRS model is included as a part of the cascaded control system as shown
in Figure 3.2. As the three controllers, LP-LV, NP-LV and NP-NV, are shown
to be stable, it is the necessary to prove that the MRS model and its effects will
not have an impact on the stability of the system.

Ship

Pose Control Velocity Control MRS Model

Guidance System
ηt, η̇t, η̈t

α

α̇

τc

τmrs

ν

η

Figure 3.2: Block diagram for the ship control systems as presented above, with
the included MRS model.

When investigating the stability analysis of the MRS model in a cascaded
system, there are some properties of (2.32) that the following lemma guarantees.
These are

• item 1 guarantees that the output of (2.32) always satisfies the magnitude
and rate limits;

• item 2 guarantees that if (2.32) is properly initialized, then the output of
τmrs of (2.32) coincides with its input τc as long as (τc, τ̇c) never exceed
the magnitude and rate limits;
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• item 3 then complements item 2, by specifying that (τmrs−τc) will remain
an L2 signal despite the occurrence of either a wrong initialization, and/or
a non-zero v ∈ L2, and/or a choice of τc which exceeds the magnitude or
rate limits (restricted by an arbitrarily small amount) in such a way that
the excess of saturation is an L2 signal.

Lemma 5 Modified from [8].
Given any signal τc(·) such that τ̇c is well defined for almost all t, for any
diagonal matrix K > 0, the MRS model (2.32) satisfies the following:

(i) for any measurable v(·), satm(τmrs(t)) = τmrs(t) and satr(τ̇mrs(t)) =
τ̇mrs(t), for almost all t ≥ 0;

(ii) if δ(0) = τc(0), satm(τc(t)) = τc(t), satr(τ̇c(t)) = τ̇c(t) and v(t) = 0,
∀t ≥ 0, then τmrs(t) = τc(t), ∀t ≥ 0;

(iii) for any δ(0), if ||v||2 <∞ and ∃ε > 0 such that ||τc−satm(1−ε)(τc)||2 <∞
and ||τ̇c − satr(1−ε)(τ̇c)||2 <∞, then ||τmrs − τc||2 <∞.

As the proof of Lemma 5 is quite long and mathematically tedious, for the
purpose of readability it is not included here and can be found in [8].

It is then proven that if the input signal to the MRS model, which can be
interpreted as a nonlinear filter, is an L2 signal, the output signal of the MRS
model will be an L2 signal as well, so it can be concluded that the MRS model
does not alter the stability properties of the system.

3.2 Dynamic window-based controllers

The dynamic window approach was originally developed for robotics motion
planning in [3], and is an online collision avoidance strategy for mobile robots.
The approach is derived directly from the dynamics of the robot, and is designed
to deal with constraints imposed by limited feasible velocities and accelerations.
The algorithm consists of two main steps. First, generate a valid search space,
then select an optimal solution within the search space which can be reached
within a short time interval and are free from collisions. The optimization goal
is to select a pose and velocity that brings the robot to the desired position
without colliding with any object on the way.

Here, a step-by-step design procedure for a simplified version of the dynamic
window (DW) algorithm, where the collision avoidance part of the algorithm is
removed, is presented. First, a 2 degrees of freedom version for surge speed and
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yaw rate, based on the work done in [4], [5] and [17] is explained. Then, it is
extended into a full 3 degrees of freedom algorithm to include sway speed as
well.

Because our main focus for the controller is pose navigation during lower
velocities, it is possible to simplify the design procedure. The dynamic window
algorithm and control system in this thesis is therefore based on a linearized
dynamic positioning (DP) model, which means that the the nonlinear parts of
the damping matrix D and the Coriolis and centripetal matrix C are neglected,
since in low-speed manoeuvres the linear damping will dominate over both the
nonlinear damping and the Coriolis and centripetal forces. Because of this, the
model will only be valid for lower velocities, and will otherwise be underactuated
outside of the valid area of the controller. The feasible velocities in which
the controller can operate has to be determined through simulations where the
linearized model is compared to the full ship model.

This gives the following 3 DOF dynamics [1]:

η̇ = R(ψ)ν (3.51)

Mν̇ +DLν = τ (3.52)

where DL is given by (2.13).
A 2 DOF controller is usually applied to control surge speed and yaw rate of

a vessel which is to operate with higher velocities, while a 3 DOF controller is
commonly used for low speed manoeuvring, such as in DP operations. Although
the main focus of this thesis is to control vessels in 3 DOF during lower velocities,
the 2 DOF DW algorithm and its DWC is presented here because it is crucial to
fully understand the implementation of the full 3 DOF DWC. Here, the 2 DOF
DWC is based on the linearized ship model in order to make the extension into
3 DOF more understandable for the reader. If the reader wishes to implement
the 2 DOF DWC, the presented design should be extended to include the full
nonlinear ship model to increase performance.

3.2.1 A 2 DOF dynamic window algorithm

Based on the linearized ship model and the actuator magnitude constraints, a
set of possible steady-state velocities can be found. This set contains all the ve-
locities the ship can achieve with respect to the actuator magnitude constraints.
The possible velocities can be found by computing the steady-state solution of
the kinetics (3.52) for all possible control inputs:

τ (u) = DLνss (3.53)
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Figure 3.3: Possible combinations of surge speed and yaw rate, with respect to
actuator magnitude limits, for the linearized ship model. The boundaries of Vp
are shown as the red line.

within the actuator magnitude constraints

ui ∈ [−0.5, 0.5]. (3.54)

The steady-state solutions of (3.53) for a uniformly distributed set of con-
trol inputs are shown in Figure 3.3. By designing an approximation of the
boundaries, the set of possible velocities can be defined as:

Vp = {(u, r) ∈ R× R | g(u, r) ≥ 0}, (3.55)

where g(u, r) is greater than or equal to zero for valid solutions of (3.53)-(3.54),
and negative otherwise. Given m approximated boundaries, defined by the
functions ha(u, r) = 0, a ∈ {1, 2, ...,m}, which are defined by using regression
on the boundary lines of Vp, where ∇ha(u, r) is required to be pointing inwards
to the valid solutions, the approximated g(u, r) is given as:

g(u, r) = min(h1(u, r), h2(u, r), ..., hm(u, r)). (3.56)
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Figure 3.4: Function to find possible velocities for surge speed and yaw rate.

In Figure 3.4, a plot of the function g(u, r) is shown.
Next, the space of reachable points within one time step T needs to be

defined. This is done by finding the acceleration limits, and based on these,
the set of reachable velocities can be computed. The possible ship acceleration
limits can be found by evaluating

ν̇ = M−1(τ (u)−DLν
∗), (3.57)

for the current velocity ν∗ = ν = [u, r] and the boundaries of the control input
vector. The acceleration limits at the current time step can be computed as:

ν̇min = [u̇min, ṙmin] = M−1(τmin(u)−DLν
∗) (3.58)

ν̇max = [u̇max, ṙmax] = M−1(τmax(u)−DLν
∗), (3.59)

where τmin and τmax are the minimum and maximum possible control inputs,
respectively. The minimum and maximum achievable velocities within the cur-
rent time step can then be computed as:
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νmin = ν + T ν̇min (3.60)

νmax = ν + T ν̇max. (3.61)

It should be noted that this method does not consider actuator rate satu-
rations. However, by introducing dynamics to the control input vector τ , the
algorithm can also be further developed to handle rate constraints.

Using T as the time allowed for acceleration during the next time step,
the dynamic velocity window is then defined using the acceleration limits from
(3.58) and (3.59) as

Vw = {(u, r) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]}. (3.62)

The set of dynamically feasible velocities is then defined as

Vf , Vp ∩ Vw. (3.63)

Next, the set of dynamically feasible velocities Vf is discretized uniformly to
obtain a discrete set of dynamically feasible velocity pairs.

The desired velocity is defined as

ν1d , [ud, rd]
>, (3.64)

since the focus is on controlling the surge speed and yaw rate. The optimal
velocity pair ν1f = [uf , rf ]> can be selected as

ν1f = arg max
(u,r)∈Vf

G(u, ud, r, rd), (3.65)

where G(u, ud, r, rd) is an objective function, which is defined as

G(u, ud, r, rd) , surge(u, ud) + yawrate(r, rd), (3.66)

with

surge(u, ud) = 1− |ud − u|
max
u′∈Vf

(|ud − u′|)
∈ [0, 1] (3.67)

yawrate(r, rd) = 1− |rd − r|
max
r′∈Vf

(|rd − r′|)
∈ [0, 1]. (3.68)
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Figure 3.5: The dynamically feasible velocity set, surrounded by the boundaries
of the dynamic velocity window and the possible velocity set.

Notice that by using this objective function, we minimize the scaled 1-norm
of the entire discrete set of dynamically velocity pairs. In [3], [4] and [28], a
distance function and tuning parameters are used to achieve collision avoidance,
but this function is removed here since we only focus on handling actuator
constraints. As a result, the tuning parameters also become redundant since
the remaining two functions are orthogonal to each other. Figure 3.5 illustrates
Vp, Vw, Vf and ν1d = [0.4 m/s, 0.0262 rad/s]> given a current velocity pair of
ν = [0.3 m/s, 0.0349 rad/s]>. Note that this figure is not to scale, and is used
for illustrative purposes only. In reality, the window is much smaller due to the
acceleration limits per time step T .
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3.2.2 A 2 DOF dynamic window-based controller

In order to use the 2 DOF dynamic window algorithm presented above as a part
of a control system, several changes has to be done to the controller presented
in Section 3.1. This control system will not be used in either simulations or lab-
oratory experiments, but will be presented here for the purpose of widening the
reader’s understanding on how a dynamic window-based controller is designed.

Since the focus is on controlling the surge speed and yaw rate, the control
objective is modified to ψ̃ , ψ(t)−ψt(t)→ 0 as t→∞ and ũ , u(t)−ut(t)→ 0
as t→∞, where ψt(t) ∈ S represents the heading associated with a target ship
and ut is the target surge speed. Furthermore, ψt(t) is C2 and bounded.

Using a combination of a cascaded feedback controller, as presented in Sec-
tion 3.1, and a dynamic feedback controller where the dynamics of the uncon-
trolled sway mode enters the yaw control law [18], the control input can be
chosen as

τ = Mα̇+DLα−K2(z2)z2. (3.69)

Here the NP-NV controller from Section 3.1.3 which is modified to be used on
the linearized shop model is chosen.

Now, the error variables z1 and z2 = [z2,u, z2,v, z2,r]
> are defined as

z1 , ψ − ψt (3.70)

z2 , ν −α, (3.71)

where, as before, α = [αu, αv, αr] ∈ R3 is a vector of stabilising functions, which
can be interpreted as a desired velocity, such that

αu = ut (3.72)

αr = ψ̇t −K1(z1)z1, (3.73)

where

K1(z1) = Γ1
1√

z21 + ∆2
ψ̃

(3.74)

represents a nonlinear control gain with Γ1 > 0 and ∆ψ̃ > 0. The nonlinear
feedback term in (3.69) is, as before, given as

K2(z2) = Γ2




1√
z>2,ṽz2,ṽ + ∆2

ṽ

I2×2 02×1

01×2
1√

z22,r̃ + ∆r̃2



, (3.75)
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with the control gain Γ2 > 0, where z2,ṽ is defined as z2,ṽ , [z2,u, z2,v]
>,

∆ṽ > 0 and ∆r̃ > 0. The time derivative of the vector of stabilising functions
then becomes

α̇ = [u̇t, α̇v, α̇r]
>, (3.76)

where u̇t is the target surge acceleration, and

α̇r = ψ̈t − K̇1(z1)z1 −K1(z1)ż1, (3.77)

with
ż1 = −K1(z1)z1 + z2,r̃ (3.78)

and

K̇1(z1) = Γ1
z1ż1

(
z21 + ∆2

ψ̃

) 3
2

. (3.79)

Based on the design of the dynamics of the uncontrolled sway mode in [18],
the variable αv is a dynamic state of the controller, and is given by

m22α̇v = −d22(ν)αv + γ(αr, α̇r, z2), (3.80)

where
γ(αr, α̇r, z2) = K2,22(z2)z2,v −m23α̇r − d23(ν)αr, (3.81)

and mij , dij(ν) and K2,ij(z2) are components at the ith row and jth column
of the matrices M , DL and K2(z2), while

αv =

∫ t

0

α̇v(σ)dσ + αv(0), αv(0) = v(0). (3.82)

Combining this with the simplified 2 DOF dynamic window algorithm, we
can develop a dynamic window-based controller. In this setup, the simplified
dynamic window algorithm will use α1 = [αu, αr]

> as an input such that ν1d =
α1. In the case where α1 is an infeasible velocity, the algorithm will modify α1

to a feasible velocity α1f = [αf,u, αf,r]
>, otherwise α1f = α. A pseudocode of

the simplified DW algorithm is shown in Algorithm 1.
After the optimal velocity pair α1f is found, the vector of stabilising func-

tions is given as
αf = [αf,u, αf,v, αf,r]

>, (3.83)

where αf,v is, as in (3.82), given as

αf,v =

∫ t

0

α̇f,v(σ)dσ + αf,v(0), αf,v(0) = v(0), (3.84)

42



3.2. DYNAMIC WINDOW-BASED CONTROLLERS

Algorithm 1 Pseudocode of the simplified DW algorithm

1: Vw is calculated using (3.58),(3.59) and (3.62) and discretized uniformly
2: if the desired velocity vector α1 ∈ Vf then
3: The closest reachable velocity row and column to α1 is shifted such that
α1 is one of the reachable velocity pairs in Vw

4: end if
5: Remove all the reachable velocity pairs in Vw which are outside of the g(u, r)

boundaries to describe the set of dynamically feasible velocities Vf
6: Select the optimal velocity pair α1f through maximizing the objective func-

tion (3.66) over the discrete feasible search space Vf = Vp ∩ Vw

where, as in (3.80),

m22α̇f,v = −d22(ν)αf,v + γ(αr, α̇r, z2), (3.85)

with, based on (3.81),

γ(αr, α̇r, z2) = −m23α̇r − d23(ν)αr. (3.86)

We want the ship to reach αf after time T , hence the desired acceleration
is chosen to be

α̇DWC =
αf − ν
T

, (3.87)

which means that

αDWC =

∫ t

0

α̇DWCdσ +αDWC(0). (3.88)

Both αDWC and α̇DWC are used in the kinetic controller which is modified to

τ = Mα̇DWC +DLαDWC , (3.89)

for the case of the linearized ship model.
The DWC uses the heading controller given in (3.73) together with the

target speed ut as inputs to the simplified DW algorithm, which is described in
Algorithm 1, in order to determine the vector of stabilizing functions given in
(3.83)-(3.86). Based on (3.83), the desired acceleration and velocity vectors are
found using (3.87)-(3.88), which are used to construct the control input (3.89).

When comparing the control law in (3.89) against (3.69), it can be seen that
the feedback term −K2(z2)z2 in (3.69) is not included in (3.89) since the DWC
makes the optimal velocity pair track the target velocity by using (3.87)-(3.88).
For a more detailed discussing regarding this topic, see the end of Section 3.2.4.
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Stability analysis

The dynamic feedback controller is proven stable in [18]. There, through the
use of Lyapunov augments, the equilibrium (z1, z2) = (0,0) of the z-subsystem
is proved UGAS. The unforced αv-subsystem (γ(αr, α̇r, z2) = 0) is clearly expo-
nentially stable, and since (z1, z2) ∈ L∞ and (αr, α̇r) ∈ L∞, then γ(αr, α̇r, z2) ∈
L∞. This then implies that the αv-subsystem is input-to-state stable from γ(·)
to αv. This is proven in greater detail in [18].

To achieve a stability proof of the dynamic window algorithm, and then
thus the full 2 DOF dynamic window-based controller, is rather difficult and
tedious work. In [17], a dynamic window algorithm used for horizontal collision
avoidance is proved stable based on the work done in [31]. There, the controller
is found to be UGAS and ULES in an obstacle-free environment, and, based
on this result and cascade theory, such as in [11] and [21], it is then possible to
conclude that the 2 DOF dynamic window-based controller based on a dynamic
feedback controller is stable and UGAS as well, as it is an algorithm based on
the dynamic window algorithm where the collision avoidance part is removed,
and where the dynamic feedback controller clearly is stable, as proven above.

3.2.3 Extending the 2 DOF DW algorithm into 3 DOF

To extend the above algorithm into 3 DOF, it is required to include sway speed.
Thus, it is required to recompute the steady-state kinetics in (3.52) with the
included sway motion. Simulating (3.53) with sway speed included, will yield
the steady-state velocities needed to create the dynamic window.

Based on the linearized ship model and its actuator constraints, a set of
possible velocities can be found. This set contains all the velocities the ship can
achieve with respect to the actuator magnitude constraints. The steady-state
solutions of (3.53) for a uniformly distributed set of control inputs, are shown in
Figure 3.6. By designing an approximation of the boundaries, the set of possible
velocities can be defined as

Vp = {(u, v, r) ∈ R× R× R | g(u, v, r) ≥ 0}, (3.90)

where g(u, v, r) is a positive semidefinite function for feasible velocities with
respect to the actuator constraints.

However, it is possible to split the 3 DOF problem into three 2 DOF prob-
lems. Here, an approximation of the 3 DOF set is done by projecting the set
into three 2 DOF sets to simplify calculations [6]. Justifying the approximation
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Figure 3.6: Steady-state solutions of (3.53) for a uniformly distributed set of
control inputs.

by noting that each of the steady-state solution boundary faces are almost par-
allel with one axis. Following this, faces that are parallel with one axis can be
parametrized by the remaining two variables. Notice, however, that we lose in-
formation where all three variables are correlated, and can therefore not model
faces which are not parallel with one of the axis. The result of the approximation
is the following three sets of possible velocities:

Vp,(u,r) = {(u, r) ∈ R× R | g(u,r)(u, r) ≥ 0} (3.91)

Vp,(v,r) = {(v, r) ∈ R× R | g(v,r)(v, r) ≥ 0} (3.92)

Vp,(u,v) = {(u, v) ∈ R× R | g(u,v)(u, v) ≥ 0}, (3.93)

where g(u,r)(u, r), g(v,r)(v, r) and g(u,v)(u, v) are greater than or equal to zero
for velocities inside the corresponding boundaries. The three sets are shown in
Figure 3.7, 3.8 and 3.9, where the discrete solutions show the steady-state solu-
tions for the respective 2 DOF window, and the red lines show the boundaries
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Figure 3.7: Possible combinations of surge speed and yaw rate, with respect to
actuator magnitude limits, for the linearized ship model. The boundaries of Vp
are shown as the red line.

of the respective set of possible velocities. An alternative to this method, which
possibly would result in a more correct 3 DOF set of possible velocities, would
be to compute the set analytically. However, this would be more challenging
and time consuming, and would be most beneficial when using the full nonlinear
model together with the dynamic window algorithm.

Given m, n and k approximated boundaries, defined by the functions
ha,(u,r)(u, r) = hb,(v,r)(v, r) = hc,(u,v)(u, v) = 0, a ∈ {1, 2, ...,m}, b ∈ {1, 2, ..., n}
and c ∈ {1, 2, ..., k}, the approximated functions are given as:

g(u,r)(u, r) = min(h1,(u,r)(u, r), h2,(u,r)(u, r), ..., hm,(u,r)(u, r)) (3.94)

g(v,r)(v, r) = min(h1,(v,r)(v, r), h2,(v,r)(v, r), ..., hn,(v,r)(v, r)) (3.95)

g(u,v)(u, v) = min(h1,(u,v)(u, v), h2,(u,v)(u, v), ..., hk,(u,v)(u, v)). (3.96)

Here, the functions ha,(u,r)(u, r) = hb,(v,r)(v, r) = hc,(u,v)(u, v) = 0 are defined
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Figure 3.8: Possible combinations of sway speed and yaw rate, with respect to
actuator magnitude limits, for the linearized ship model. The boundaries of Vp
are shown as the red line.

by using regression on the boundary of the sets Vp(u,r) , Vp(v,r) and Vp(u,v) , where
∇ha,(u,r)(u, r), ∇hb,(v,r)(v, r) and ∇hc,(u,v)(u, v) are required to be pointing
inwards to the valid solutions. In Figure 3.10, 3.11 and 3.12, plots for the
functions (3.94)-(3.96) are shown.

Next, the space of reachable points within one time step T needs to be
defined. Using

ν̇min = [u̇min, v̇min, ṙmin] = M−1(τmin(u)−DLν
∗) (3.97)

ν̇max = [u̇max, v̇max, ṙmax] = M−1(τmax(u)−DLν
∗), (3.98)

where τmin and τmax are the minimum and maximum possible control inputs,
respectively, and ν∗ is the current velocity ν, we find the acceleration limits and
the reachable velocities for the current time step. The minimum and maximum
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Figure 3.9: Possible combinations of surge and sway speed, with respect to
actuator magnitude limits, for the linearized ship model. The boundaries of Vp
are shown as the red line.

achievable velocities within the current time step can then be computed as:

νmin = ν + T ν̇min (3.99)

νmax = ν + T ν̇max. (3.100)

Using T as the time allowed for acceleration during the next time step,
the dynamic velocity window is then defined using the acceleration limits from
(3.97) and (3.98) as

Vw = {(u, v, r) ∈ R× R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ] ∧ r ∈ [r∗ + ṙminT, r

∗ + ṙmaxT ]}, (3.101)
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Figure 3.10: Function to find possible velocities for surge and yaw rate.

which we project into the three cases

Vw,(u,r) = {(u, r) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (3.102)

Vw,(v,r) = {(v, r) ∈ R× R | v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (3.103)

Vw,(u,v) = {(u, v) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]}. (3.104)

This defines the sets of dynamically feasible velocities as

Vf,(u,r) , Vp,(u,r) ∩ Vw,(u,r) (3.105)

Vf,(v,r) , Vp,(v,r) ∩ Vw,(v,r) (3.106)

Vf,(u,v) , Vp,(u,v) ∩ Vw,(u,v), (3.107)
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Figure 3.11: Function to find possible velocities for sway and yaw rate.

Figure 3.12: Function to find possible velocities for surge and sway.
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which for the whole window can be expressed as

Vf , (Vp,(u,r) ∪ Vp,(v,r) ∪ Vp,(u,v)) ∩ (Vw,(u,r) ∪ Vw,(v,r) ∪ Vw,(u,v)). (3.108)

Next, the sets of dynamically feasible velocities are discretized uniformly to
obtain discrete sets of dynamically feasible velocities. For the 3 DOF case, the
desired velocity is defined as

νd , [ud, vd, rd]
>. (3.109)

Given νd, the optimal dynamically feasible velocity νf = [uf , vf , rf ]> can be
selected as

νf = arg max
(u,v,r)∈Vf

G(ν,νd), (3.110)

where Vf is the general 3 DOF solution and G(ν,νd) is an objective function,
which is defined as

G(ν,νd) , surge(u, ud) + sway(v, vd) + yawrate(r, rd), (3.111)

with

surge(u, ud) = 1− |ud − u|
max
u′∈Vf

(|ud − u′|)
∈ [0, 1] (3.112)

sway(v, vd) = 1− |vd − u|
max
v′∈Vf

(|vd − v′|)
∈ [0, 1] (3.113)

yawrate(r, rd) = 1− |rd − r|
max
r′∈Vf

(|rd − r′|)
∈ [0, 1]. (3.114)

Notice that by using this objective function, we minimise the scaled 1-norm of
the entire discrete set of dynamically feasible velocities. For the three 2 DOF
case, this algorithm is modified to fit 2 DOF and run once for each velocity pair
scenario; surge speed and yaw rate, sway speed and yaw rate, and surge and
sway speed. Resulting in the sets of dynamically feasible velocities

νf,(u,r) = [νf,u, 0, νf,r]
> (3.115)

νf,(v,r) = [0, νf,v, νf,r]
> (3.116)

νf,(u,r) = [νf,u, νf,v, 0]>, (3.117)
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Figure 3.13: The dynamically feasible velocity set for surge speed and yaw rate,
surrounded by the boundaries of the dynamic velocity window and the possible
velocity set.

which combines into

νf =
νf,(u,r) + νf,(v,r) + νf,(u,v)

2
(3.118)

for the full 3 DOF case.

Figures 3.13, 3.14 and 3.15 illustrate the sets Vp, Vw and Vf for the three 2
DOF cases, where νd = [0.4 m/s, 0.13 m/s, 0.0262 rad/s]> given a current veloc-
ity ν = [0.3 m/s, 0.1 m/s, 0.0349 rad/s]>. Note that this is not to scale, and is
used for illustrative purposes only. In reality, the window is smaller due to the
acceleration limits per time step T .
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Figure 3.14: The dynamically feasible velocity set for sway speed and yaw rate,
surrounded by the boundaries of the dynamic velocity window and the possible
velocity set.

3.2.4 A 3 DOF dynamic window-based controller

In order to use the above result as a dynamic window-based controller, we
combine the previous traditional control design with the simplified dynamic
window algorithm.

In this setup, the simplified DW algorithm will use α = [αu, αv, αr]
> as an

input such that νd = α. In the case where α is an infeasible velocity, the simpli-
fied DW algorithm will modify α to a feasible velocity αf = [αf,u, αf,v, αf,r]

>,
otherwise αf = α. A pseudo-code of the simplified DW algorithm is shown in
Algorithm 2.
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Figure 3.15: The dynamically feasible velocity set for surge and sway speed,
surrounded by the boundaries of the dynamic velocity window and the possible
velocity set.

Algorithm 2 Pseudocode of the simplified DW algorithm for 3 DOF

1: Vw is calculated using (3.97),(3.98) and (3.101) and discretized uniformly
2: if the desired velocity vector α ∈ Vf then
3: The closest reachable velocity row and column to α is shifted such that
α is one of the reachable velocities in Vw

4: end if
5: Remove all the reachable velocities in Vw which are outside of the g(u, v, r)

boundaries to describe the set of dynamically feasible velocities Vf
6: Select the optimal velocity pair αf through maximizing the objective func-

tion (3.111) over the discrete feasible search space Vf = Vp ∩ Vw
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For the three 2 DOF case, this algorithm is modified to fit 2 DOF and run
once for each velocity pair scenario; surge speed and yaw rate, sway speed and
yaw rate, and surge and sway speed. Resulting in the vectors of stabilising
functions:

αf,(u,r) = [αf,u, 0, αf,r]
> (3.119)

αf,(v,r) = [0, αf,v, αf,r]
> (3.120)

αf,(u,v) = [αf,u, αf,v, 0]>, (3.121)

which, as in (3.118), combines into

αf =
αf,(u,r) +αf,(v,r) +αf,(u,v)

2
(3.122)

for the full 3 DOF case.
We want the ship to reach αf after the time T , hence the desired acceleration

is chosen to be

α̇DWC =
αf − ν
T

, (3.123)

which means that

αDWC =

∫ t

0

α̇DWCdσ +αDWC(0). (3.124)

Both αDWC and α̇DWC are used in the linear kinetic controller which is mod-
ified to

τ = Mα̇DWC +DLαDWC . (3.125)

The 3 DOF DWC uses the desired velocity given in (3.25) together with the
current velocity ν as inputs to the simplified DW algorithm, which is described
in Algorithm 2, in order to determine the vector of stabilizing functions given in
(3.119)-(3.122). Based on (3.122), the desired acceleration and velocity vectors
are found using (3.123)-(3.124), which are used to construct the control input
(3.125). The block diagram for the DWC is shown in Figure 3.16.

When comparing the control law in (3.125) against (3.38), it can be seen
that the feedback term −K2(z2)z2 in (3.38) is not included in (3.125) since
the DWC makes the optimal velocity track the target velocity by using (3.123)-
(3.124). However, the DWC is a feedforward-based control algorthim which
has some weaknesses against uncertainties and disturbances since the DWC is
heavily model-dependent, and (3.125) can only fulfil the control objective when
the DWC model is correct. In practice, when the model is not perfectly known,
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the control law (3.125) should also include a feedback term. This feedback
term will also accommodate for internal uncertainties and external disturbances,
instead of just controlling the surge speed, sway speed and yaw rate. When
the system is affected by internal uncertainties and external disturbances, the
DWC will attempt to compensate for them since the DWC tries to find the
optimal velocity. However, the performance in terms of robustness for the DWC
is limited by the actuator constraints, which give a maximum bound on the
uncertainties and disturbances which the controller can compensate for. If it is
necessary to compensate for model uncertainties or external disturbances, the
kinetic controller can be modified to include the feedback term −K2(z2)z2:

τ = Mα̇DWC +DLαDWC −K2(z2)z2. (3.126)

Ship

Pose Control Dynamic Window Velocity Control

Guidance System
ηt, η̇t

νd αDWC

α̇DWC

τ

ν

η

Figure 3.16: Block diagram for the dynamic window-based controller without
feedback.

Stability analysis

To achieve a stability proof of the dynamic window algorithm, and then thus
the full 3 DOF dynamic window-based controller, is rather difficult and tedious
work. In [17], a dynamic window algorithm used for horizontal collision avoid-
ance is proved stable based on the work done in [31]. There, the controller
is found to be UGAS and ULES in an obstacle-free environment. Combin-
ing this result with the stability analysis done in Section 3.1.3 and by using
cascade theory, such as in [11] and [21], one can conclude that the 3 DOF dy-
namic window-based controller, with or without the feedback term, is stable and
ULES, as it is an algorithm based on the dynamic window algorithm where the

56



3.2. DYNAMIC WINDOW-BASED CONTROLLERS

collision avoidance part is removed, and where the nonlinear cascaded feedback
is UES, as proven in Section 3.1.3.

3.2.5 Model comparison
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Figure 3.17: Possible combinations of surge speed and yaw rate, with respect to
actuator magnitude limits, for the full nonlinear ship model. The boundaries of
Vp based on the linear model are shown as the red line.

To get an understanding of where the linear model is valid, a comparison
between the linear and nonlinear model is needed. In Section 3.2.3, the possible
velocities for the linear model were found by computing the steady-state veloc-
ities for all possible control inputs. For the nonlinear model, the calculation is
modified to

τ (u) = Cνss +Dνss, (3.127)

where (3.53) is modified to include the Coriolis and centripetal matrix C from
(2.7) and the full nonlinear damping matrix D in (2.12).
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Figure 3.18: Possible combinations of sway speed and yaw rate, with respect to
actuator magnitude limits, for the full nonlinear ship model. The boundaries of
Vp based on the linear model are shown as the red line.

The comparison between the linear and nonlinear model is shown in Figure
3.17, 3.18 and 3.19, where the discrete solutions of (3.127) are shown by the
blue circular outline, and the boundaries for the set of possible velocities for the
linear model are shown by the red outline.

As can be seen in Figure 3.17, including the nonlinearities in the ship model
for the yaw rate-surge speed window will decrease the maximum steady-state ve-
locities, effectively reducing the maximum velocities the ship can achieve within
actuator magnitude constraints given in (3.54). This means that, for the case
of the yaw rate-surge speed window, one can safely use the linear DWC, as the
ship physically cannot achieve velocities that lie outside of the linear window,
effectively being limited by the boundaries of the possible velocities set for the
nonlinear model, which is limited by the discrete solutions as shown in Figure
3.17. The same can be seen for the surge-sway speed window in Figure 3.19.
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Figure 3.19: Possible combinations of surge and sway, with respect to actuator
magnitude limits, for the full nonlinear ship model. The boundaries of Vp based
on the linear model are shown as the red line.

However, this would not lead to an energy efficient behaviour, as the controller
would assume that the ship could reach higher velocities, and thus command
maximum thrust without actually achieving a higher velocity, effectively wasting
energy.

For the yaw rate-sway speed window shown in Figure 3.18, it is shown that
the nonlinear model has discrete solutions that lie outside the boundaries for
the set of possible velocities for the linear model, meaning that the actual ship
can achieve greater velocities than what the linear window allows. This means
that if the linear DWC commanded a maximum thrust to achieve a velocity on
the border of its set of possible velocities, it would exceed the linear limitations,
resulting in an empty set of feasible velocities, which potentially would end up
with the algorithm choosing αf,(v,r) = 0, effectively affecting the choice of the
optimal velocity par αf in (3.122), and thus also the commanded control input.

Based on this, it can then be considered smart to use the linear DWC for
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what it is designed for; pose navigation during lower velocities, where one keeps
the velocities well within the boundaries of the full nonlinear model. Suggested
operational space for the velocities are approximately: [−0.2, 0.2] (m/s) for surge
speed, [−0.1, 0.1] (m/s) for sway speed, and [−3.5, 3.5] (deg/s) for yaw rate. If
one wishes to violate the suggested limits, one should consider implementing a
dynamic window-based controller based on the full nonlinear ship model instead.

3.3 Chapter summary

In this chapter, cascaded feedback and dynamic window-based controllers were
discussed. First, a linear cascaded feedback controller was implemented, and
then step-by-step developed into a nonlinear cascaded feedback controller. The
stability of the different feedback controllers were analysed, and tuning rules
were presented. In addition, it was investigated if the MRS model would im-
pact the stability of the controllers when added to the control system in cascade.
Then, a linear 2 DOF dynamic window algorithm and its correlated dynamic
window-based controller based on a dynamic feedback controller, was presented.
The 2 DOF dynamic window algorithm was extended into 3 DOF, and a 3 DOF
dynamic window-based controller was developed. The dynamic window-based
controllers were presented along with a brief stability analysis. Then, a com-
parison between the linear and nonlinear ship model for 3 DOF was discussed,
in order to find out for which velocities the linear model would be valid.
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Chapter 4

Simulation results

This chapter contains the results from numerical simulations of the different con-
trol algorithms, with and without constraint handling methods. The simulation
details are presented, and then some performance metrics are discussed. The
simulation results are split into two parts; main simulation results, where the
control algorithms are simulated without external disturbances or uncertainties,
and extended simulation results, where disturbances and uncertainties are intro-
duced in order to analyse how the control schemes perform during non-optimal
scenarios, like in the laboratory.

4.1 Simulation scenario

A so-called 4-corner test, as shown in Figure 4.1, is used for the simulations
and experiments. This test is used in [25] as a way to compare the performance
of dynamic positioning control algorithms. The ship is first initialized in dy-
namic positioning to point straight North at heading 0 (deg). Then the following
setpoint changes are commanded:

1. Position change 2 [m] straight North: Tests a pure surge movement ahead.

2. Position change 2 [m] straight East: Tests a pure sway movement in the
starboard direction.

3. Heading change 45 [deg] clockwise: Tests a pure yaw motion while keeping
the position steady.
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Figure 4.1: The 4-corner dynamic positioning test. Modified from [25].

4. Position change 2 [m] straight South: Tests a combined surge-sway move-
ment while keeping heading steady.

5. Position change 2 [m] straight West and heading change 45 [deg] counter-
clockwise: Tests a combined surge-sway-yaw movement.

The system is implemented such that the target will automatically change
setpoint when the ship is within 0.005 [m] from the target in both x and y posi-
tion and 0.3 [deg] from the target heading. When the 4-corner test is completed,
the ship will have returned accurately to its initial position and heading, ready
for a new test at the same pose and along the same track.

Trajectory tracking

Note that for such a 4-corner test, the target motion is simplified to a setpoint,
hence η̇t = η̈t = 0, unless a trajectory tracking module is used. The simulations
and most laboratory experiments will be conducted with setpoint tracking, but
some experiments are conducted using trajectory tracking.

Trajectory tracking is defined as a control system that forces the system
output y(t) ∈ Rm to track a desired output yd(t) ∈ Rm, and is commonly
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implemented through low-pass filters for the generation of position, velocity
and acceleration trajectories, as explained in [1].

4.2 Controller and actuator constraint parame-
ters

The controller gains and the actuator constraints for the different numerical
simulations will be presented along with the results. For convenience, the con-
trol laws for the different controllers are repeated here:

LP-LV:

α = −Γ1z1 (4.1)

α̇ = −Γ1ż1 (4.2)

τ = Mα̇+Cα+Dα− Γ2z2, (4.3)

NP-LV:

α = −K1(z1)z1 (4.4)

α̇ = −K̇1(z1)z1 −K1(z1)ż1 (4.5)

τ = Mα̇+Cα+Dα− Γ2z2, (4.6)

NP-NV:

α = −K1(z1)z1 (4.7)

α̇ = −K̇1(z1)z1 −K1(z1)ż1 (4.8)

τ = Mα̇+Cα+Dα−K2(z2)z2, (4.9)

DWC:

α = −K1(z1)z1 (4.10)

τ = Mα̇DWC +DLαDWC , (4.11)

DWC-FB:

α = −K1(z1)z1 (4.12)

τ = Mα̇DWC +DLαDWC −K2(z2)z2, (4.13)
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where αDWC and α̇DWC are chosen by the dynamic window algorithm, and
DWC-FB refers to the dynamic window-based controller with a nonlinear feed-
back term included. Note that these are modified for setpoint tracking where
η̈t = η̇t = 0.

In order to make the results as comparable as possible to the experimental
results, the simulations are run using MATLAB/Simulink with the numerical
solver ode4 (Runge-Kutta) with a fixed-step size of 0.01[s], which is the same
solver and sampling time used in the MC-Lab.

4.3 Performance metrics

To evaluate and objectively compare the performance of the different controllers,
performance metrics are used. Here, we define

ē1(t) ,
√
z̄>1 z̄1

ē2(t) ,
√
z̄>2 z̄2,

as the error inputs for the performance metrics, where z1 is the pose error and
defined in (3.1), and z2 is the velocity error and defined in (3.2), and where z̄1
and z̄2 are the normalized error signals in the intervals [−0.5, 0.5] in the expected
operational space of the ship [26]. It is necessary to normalize the metrics
because they contain measurements in different units, and it is not desirable
that one measurement impacts the metric more than the others. To obtain this
normalization, the position errors are divided by 4 [m] and the heading error
by π

2 [rad], since the position errors will be in the intervals [−2, 2] [m] and the
heading error in the interval [−π4 , π4 ] [rad]. The velocity errors are divided by
2νmax, where the maximum surge and sway speeds and yaw rate are described
in Section 2.1.2, since, e.g. for surge speed u, the velocity error will be in the
interval [−umax, umax], where umax is the maximum steady-state surge velocity.
These signals represent the instantaneous control errors, while it is wanted to
consider the accumulated errors over time. Therefore, the performance metric
integral of the absolute error (IAE)

IAE(t) ,
∫ t

0

|ē(σ)|dσ, (4.14)
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which integrates the temporal evolution of the absolute error, is used. Also, the
integral of the absolute error multiplied by the energy consumption (IAEW) [16]

IAEW (t) ,
∫ t

0

|ē(σ)|dσ
∫ t

0

P (σ)dσ, (4.15)

with
P (t) = |ν(t)>τ |, (4.16)

which represents the mechanical power, is applied. IAEW thus indicates which
controller has the best combined control accuracy and energy use in one single
metric. Then, using the integral of absolute differentiated control (IADC) [14],
[26], defined as

IADC(t) ,
∫ t

0

| ˙̄τ(σ)|dσ, (4.17)

where
τ̄ =
√
τ>τ , (4.18)

and ˙̄τ is computed using numerical derivation, which penalizes actuator changes,
and thus a measurement for actuator wear and tear is obtained.

4.4 Main simulation results

4.4.1 Comparison of the cascaded feedback controllers

Here, a comparison of the unconstrained cascaded feedback controllers are shown.
The gains, which are chosen by the tuning rules in Section 3.1.4, and actuator
constraint parameters for this simulation are shown in Table 4.1. These gains
have been chosen such that the LP-LV time constants for the kinematic and
kinetic controllers are Tp = 12.5 > Tv = 5 and Tψ = 14.32 > Tr = 5.73,
which satisfy the tuning rules. Furthermore, ∆p, ∆ψ, ∆v and ∆r are chosen
such that the time constant with the kinematic control loop do not become
smaller than that of the kinetic control loop. With the chosen ∆-values, the
time constants in the linear region associated with the NP-LV controller are
Tp = 6.25 > Tv = 5 and Tψ = 7.16 > Tr = 5.73, while the time constants in the
linear region associated with the NP-NV controller are Tp = 6.25 > Tv = 3.5
and Tψ = 7.16 > Tr = 5.73.

In Figure 4.2, the outline of the ship pose is plotted to show the pose motion
pattern of the different controllers. Here, the blue outline represents the un-
constrained LP-LV-controlled ship, the dash-dotted black outline represents the
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LP-LV NP-LV NP-NV

Γ1 diag([0.08, 0.08, 0.0698]) −||− −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||− −||−

∆p̃,ψ̃ − [0.5, 0.5] −||−
∆ṽ,r̃ − − [0.7, 1.0]
m − − −
r − − −
K − − −

Table 4.1: Controller gains and actuator constraint parameters for the simula-
tions with the cascaded feedback controllers.
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Figure 4.2: 4-corner path plot for the cascaded feedback controllers.
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Figure 4.3: Commanded actuator inputs for the cascaded feedback controllers.

unconstrained NP-LV-controlled ship, the dashed green outline represents the
unconstrained NP-NV-controlled ship, while the dashed red outline represents
the 4-corner target reference. It should be noted that the ship heading is not
properly portrayed in these plots, but that they are used to display the trajec-
tory of each controller. To get a better understanding of the best performing
controller in terms of position and heading, the performance metrics should be
used.

Figure 4.3 shows the commanded control inputs for the three different con-
trollers. It can be seen that the unconstrained LP-LV controller greatly exceeds
the actuator constraints of CSAD presented in Section 2.3, while the two other
controllers have a more conservative performance. This plot also shows that
the LP-LV controller is slower than the other two controllers, as it uses a longer
time to stabilize around the setpoint limits for the 4-corner test presented in
Section 4.1. The NP-LV and NP-NV controllers have similar performance, but
where the NP-NV controller is slightly faster.
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Figure 4.4: IAE, IAEW and IADC for the cascaded feedback controllers.
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LP-LV NP-LV NP-NV

IAE e1 45.112 44.338 42.548
IAEW e1 317.450 305.267 299.787
IAE e2 17.356 9.608 7.670

IAEW e2 122.133 66.154 54.039
IADC 37.458 29.422 32.958

Table 4.2: Performance metrics for the cascaded feedback controllers.

Figure 4.4 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the three controllers.
The IAE and IAEW metrics for pose tracking show that the three controllers
have similar performance in the sense of accuracy and energy usage, but where
the LP-LV controller has a slower transient performance. However, the IAE
and IAEW metrics for velocity tracking show that the LP-LV controller is less
accurate and energy efficient compared to its nonlinear counterparts, where
the NP-NV controller comes out as the best performing controller. The IADC
metrics show that, in the sense of actuator usage and wear and tear, the NP-
LV controller has the best performance. The final values for the performance
metrics are summarized in Table 4.2, where the best performing controller is
marked in bold, and where it is shown that the NP-NV controller has the best
overall performance of the cascaded feedback controllers.

4.4.2 LP-LV with constraint handling methods

Here, simulation results for the LP-LV controller with and without constraint
handling methods will be presented. The gains, which are chosen by the tuning
rules in Section 3.1.4, and actuator constraint parameters for this simulation
are shown in Table 4.3.

In Figure 4.5, the outline of the ship pose is plotted to show the pose motion
pattern of the different controllers. Here, the blue outline represents the un-
constrained LP-LV-controlled ship, the dash-dotted black outline represents the
magnitude constrained LP-LV-controlled ship, the dashed green outline repre-
sents the LP-LV-controlled ship with MRS effects, while the dashed red outline
represents the 4-corner target reference.

Figure 4.6 shows the commanded control inputs for the three different con-
trollers. It can be seen that the unconstrained LP-LV controller greatly exceeds
the actuator constraints of CSAD presented in Section 2.3, while the two other
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Unconstrained Mag. constr. MRS

Γ1 diag([0.08, 0.08, 0.0698]) −||− −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||− −||−

∆p̃,ψ̃ − − −
∆ṽ,r̃ − − −
m − [2.88, 1.60, 1.36] −||−
r − − [2.88, 1.60, 1.36]
K − − [5, 2.78, 2.36]

Table 4.3: Controller gains and actuator constraint parameters for the simula-
tions with the LP-LV controller with and without actuator constraint handling
methods.
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Figure 4.5: 4-corner path plot for the LP-LV controller with and without actu-
ator constraint handling methods.
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Figure 4.6: Commanded actuator inputs for the LP-LV controller with and
without actuator constraint handling methods.

controllers have a more conservative performance, limited by the designed con-
straints. It is important to remember that the unconstrained case is unrealistic,
because the simulated ship operates with no upper and lower limits on its actu-
ators, and thus the result is only used as a benchmark in order to see how the
different actuator constraint models affect performance.

Figure 4.7 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the three controllers.
The IAE and IAEW metrics for pose tracking show that introducing actuator
constraints decreases the overall pose tracking accuracy, but has little impact on
energy use. The IAE and IAEW metrics for velocity tracking show that actuator
constraints results in a negative impact on performance in velocity tracking.
However, the IADC metrics show that actuator constraints can have a positive
impact on overall actuator usage and wear and tear. The final values for the
performance metrics are summarized in Table 4.4, where the best performing

71



CHAPTER 4. SIMULATION RESULTS

0 50 100 150 200 250 300 350 400
0

20

40

60

IA
E

Pose tracking metrics

0 50 100 150 200 250 300 350 400
0

200

400

IA
E

W

0 50 100 150 200 250 300 350 400
0

20

40

60

IA
E

Velocity tracking metrics

0 50 100 150 200 250 300 350 400
0

100

200

300

IA
E

W

0 50 100 150 200 250 300 350 400

Time [s]

0

20

40

IA
E

W

IADC metrics

LP-LV unconstrained
LP-LV mag. constr.
LP-LV MRS

Figure 4.7: IAE, IAEW and IADC for the LP-LV controller with and without
actuator constraint handling methods.
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controller is marked in bold.

Unconstrained Mag. constr. MRS

IAE e1 45.112 51.558 52.938
IAEW e1 317.450 315.666 323.815
IAE e2 17.356 40.990 43.326

IAEW e2 122.133 250.962 265.020
IADC 37.458 35.901 30.550

Table 4.4: Performance metrics for the LP-LV controller with and without con-
straint handling methods.

4.4.3 NP-LV with constraint handling methods

Here, simulation results for the NP-LV controller with and without constraint
handling methods will be presented. The gains, which are chosen by the tuning
rules in Section 3.1.4, and actuator constraint parameters for this simulation
are shown in Table 4.5.

Unconstrained Mag. constr. MRS

Γ1 diag([0.08, 0.08, 0.0698]) −||− −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||− −||−

∆p̃,ψ̃ [0.5, 0.5] −||− −||−
∆ṽ,r̃ − − −
m − [2.88, 1.60, 1.36] −||−
r − − [2.88, 1.60, 1.36]
K − − [5, 2.78, 2.36]

Table 4.5: Controller gains and actuator constraint parameters for the simula-
tions with the NP-LV controller with and without actuator constraint handling
methods.

In Figure 4.8, the outline of the ship pose is plotted to show the pose motion
pattern of the different controllers. Here, the blue outline represents the uncon-
strained NP-LV-controlled ship, the dash-dotted black outline represents the
magnitude constrained NP-LV-controlled ship, the dashed green outline repre-
sents the NP-LV-controlled ship with MRS effects, while the dashed red outline
represents the 4-corner target reference.
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Figure 4.8: 4-corner path plot for the NP-LV controller with and without actu-
ator constraint handling methods.

Figure 4.9 shows the commanded control inputs for the three different con-
trollers. It can be seen that the unconstrained NP-LV controller greatly exceeds
the actuator constraints in of CSAD in sway motion, as presented in Section 2.3,
while the two other controllers have a more conservative performance, limited
by the designed constraints. It is important to remember that the unconstrained
case is unrealistic, because the simulated ship operates with no upper and lower
limits on its actuators, and thus the result is only used as a benchmark in order
to see how the different actuator constraint models affect performance.

Figure 4.10 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the three controllers.
The IAE and IAEW metrics for pose tracking show that introducing actuator
constraints decreases the overall pose tracking accuracy by a small amount, but
has little impact on energy use. The IAE and IAEW metrics for velocity tracking
show that actuator constraints results in a negative impact on performance in
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Figure 4.9: Commanded actuator inputs for the NP-LV controller with and
without actuator constraint handling methods.

Unconstrained Mag. constr. MRS

IAE e1 44.338 47.999 48.788
IAEW e1 305.267 314.623 322.975
IAE e2 9.608 15.185 16.569

IAEW e2 66.154 100.583 109.653
IADC 29.422 21.269 25.622

Table 4.6: Performance metrics for the NP-LV controller with and without
constraint handling methods.

velocity tracking. However, the IADC metrics show that actuator constraints
can have a positive impact on overall actuator usage and wear and tear. The
final values for the performance metrics are summarized in Table 4.6, where the
best performing controller is marked in bold.
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Figure 4.10: IAE, IAEW and IADC for the NP-LV controller with and without
actuator constraint handling methods.

76



4.4. MAIN SIMULATION RESULTS

4.4.4 NP-NV with constraint handling methods

Here, simulation results for the NP-NV controller with and without constraint
handling methods will be presented. The gains, which are chosen by the tuning
rules in Section 3.1.4, and actuator constraint parameters for this simulation
are shown in Table 4.7.

Unconstrained Mag. constr. MRS

Γ1 diag([0.08, 0.08, 0.0698]) −||− −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||− −||−

∆p̃,ψ̃ [0.5, 0.5] −||− −||−
∆ṽ,r̃ [0.7, 1.0] −||− −||−
m − [2.88, 1.60, 1.36] −||−
r − − [2.88, 1.60, 1.36]
K − − [5, 2.78, 2.36]

Table 4.7: Controller gains and actuator constraint parameters for the simula-
tions with the NP-NV controller with and without actuator constraint handling
methods.

In Figure 4.11, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the blue outline represents the
unconstrained NP-NV-controlled ship, the dash-dotted black outline represents
the magnitude constrained NP-NV-controlled ship, the dashed green outline
represents the NP-NV-controlled ship with MRS effects, while the dashed red
outline represents the 4-corner target reference.

Figure 4.12 shows the commanded control inputs for the three different con-
trollers. It can be seen that the unconstrained NP-NV controller greatly exceeds
the actuator constraints in of CSAD in sway motion, as presented in Section 2.3,
while the two other controllers have a more conservative performance, limited
by the designed constraints. It is important to remember that the unconstrained
case is unrealistic, because the simulated ship operates with no upper and lower
limits on its actuators, and thus the result is only used as a benchmark in order
to see how the different actuator constraint models affect performance.

Figure 4.13 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the three controllers.
The IAE and IAEW metrics for pose tracking show that introducing actuator
constraints decreases the overall pose tracking accuracy by a small amount, but
has little impact on energy use. The IAE and IAEW metrics for velocity tracking

77



CHAPTER 4. SIMULATION RESULTS

-1.5 -1 -0.5 0 0.5 1 1.5

East [m]

5

5.5

6

6.5

7

N
or

th
 [m

] NP-NV unconstrained
NP-NV mag. constr.
NP-NV MRS
Target

Figure 4.11: 4-corner path plot for the NP-NV controller with and without
actuator constraint handling methods.

show that actuator constraints results in a negative impact on performance in
velocity tracking. However, the IADC metrics show that actuator constraints
can have a positive impact on overall actuator usage and wear and tear. The
final values for the performance metrics are summarized in Table 4.8, where the
best performing controller is marked in bold.
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Figure 4.12: Commanded actuator inputs for the NP-NV controller with and
without actuator constraint handling methods.

Unconstrained Mag. constr. MRS

IAE e1 42.548 46.519 47.874
IAEW e1 299.787 312.903 321.806
IAE e2 7.670 14.718 16.108

IAEW e2 54.039 98.996 108.277
IADC 32.958 21.114 28.553

Table 4.8: Performance metrics for the NP-NV controller with and without
constraint handling methods.
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Figure 4.13: IAE, IAEW and IADC for the NP-NV controller with and without
actuator constraint handling methods.
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4.4.5 DWC

Here, simulation results for the dynamic window-based controller will be pre-
sented. It will be tested against a magnitude constrained NP-NV, where the
magntiude constraints are equal to the constraint the DWC is designed with.
The gains, which are chosen by the tuning rules in Section 3.1.4, and actuator
constraint parameters for this simulation are shown in Table 4.9. The DWC is
simulated without the feedback, as it has no impact on the control performance
where no uncertainties or disturbances are involved.

NP-NV DWC

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −

∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ [0.7, 1.0] −
m [3.5996, 2.0003, 1.7027] −||−
r − −
K − −

Table 4.9: Controller gains and actuator constraint parameters for the simula-
tion with the DWC.

In Figure 4.14, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the dash-dotted blue outline
represents the DWC, the dashed black outline represents the magnitude con-
strained NP-NV-controlled ship, while the red outline represents the 4-corner
target reference.

Figure 4.15 shows the commanded control inputs for the two different con-
trollers. It can be seen that the DWC keeps the control inputs higher longer
than the NP-NV controller, since the DWC tracks the optimal velocity αf which
is on the boundaries of the window of possible velocities Vp, unless the target
velocity α is inside the velocity window. It can then be seen that the NP-NV
controller has a more conservative behaviour.

Figure 4.16, 4.17 and 4.18 illustrates how the surge speed, sway speed and
yaw rate moves in the velocity space in order to track the target through the
4-corner test. Here, the blue dash-dotted outline represents the DWC, while
the NP-NV controller, represented by the black dashed outline, is included for
comparative purposes.

Figure 4.19 illustrates closer how the DWC tracks the desired velocity. The
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Figure 4.14: 4-corner path plot for the DWC and the NP-NV controller.
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Figure 4.15: Commanded actuator inputs for the DWC and the NP-NV con-
troller.
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Figure 4.16: Yaw rate-surge window for the 3 DOF DWC.
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Figure 4.17: Yaw rate-sway window for the 3 DOF DWC.
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Figure 4.18: Sway-surge window for the 3 DOF DWC.

tracking of surge speed is used for this illustration. Here the upper and lower
limits of the velocity window, given by (3.100) and (3.99), respectively, are
represented by the blue and red outline, respectively, while the green outline
represents the current velocity of CSAD, the dashed magenta outline the desired
velocity αu, and the dash-dotted black outline the chosen velocity αf,u. It is
shown how the DW algorithm chooses a chosen velocity αf,u on the border of its
window in order to track the desired velocity αu, where the size of the window
satisfies the actuator constraints. In Figure 4.20, for illustrative purposes the
same result is plotted for the NP-NV controller, where it can be seen that the
NP-NV controller has a slower convergence towards the desired velocity αu.

Figure 4.21 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. The
IAE and IAEW metrics for pose tracking show that the DWC has a more
accurate and energy efficient pose tracking performance. The IAE and IAEW
metrics for velocity tracking show that the DWC has a more accurate and more
energy efficient velocity tracking performance as well. It can also be seen that
the DWC is slightly faster at performing the 4-corner test than the NP-NV
controller. The IADC metrics show that the DWC has a bigger usage of the
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Figure 4.19: Tracking of the desired surge speed αu for the DWC, where the
upper and lower limits of the velocity window are included. The top figure
represents the whole 4-corner test, while the bottom is zoomed in for illustrative
purposes.
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Figure 4.20: Tracking of the desired surge speed αu for the NP-NV controller.
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Figure 4.21: IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller.
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NP-NV DWC

IAE e1 44.487 42.541
IAEW e1 307.659 299.399
IAE e2 11.396 10.610

IAEW e2 78.813 74.669
IADC 25.464 37.950

Table 4.10: Performance metrics for the simulation with the DWC and the
NP-NV controller.

actuators, which is to be expected by the result shown in Figure 4.15, where
the commanded actuator inputs have a higher rate of change than for the NP-
NV controller. The final values for the performance metrics are summarized in
Table 4.10, where the best performing controller is marked in bold, and it is
shown that the DWC has the overall best performance.

DWC - Less aggressive pose tracking

It was desired to test how the DWC would perform when the pose tracking-gains
were lowered. Lowering Γ2 to diag([0.03, 0.03, 0.349]) for both controllers, while
the rest of the parameters were kept as in Table 4.9, the two controllers were
simulated conducting the 4-corner test again.

In Figure 4.22, the outline of the ship pose is plotted to show the pose motion
pattern of the different controllers. Here, the dash-dotted blue outline repre-
sents the DWC, the dashed black outline represents the magnitude constrained
NP-NV-controlled ship, while the red outline represents the 4-corner target ref-
erence. Notice how the simulated ships follow much closer to target reference,
than when the pose tracking-gain was higher.

In Table 4.11, the final values for the performance metrics for this simulation
are summarized. Here, the best performing controller is marked in bold, and
it is shown that the DWC again has the overall best performance, beating NP-
NV in all metrics except for IADC. Notice the substantial difference in velocity
tracking performance. Comparing this result to the main result in Table 4.10,
we can see that the energy use for both pose and velocity tracking has been
severely reduced. By reducing the pose tracking-gain, it is desired to follow
a lower velocity, and thus making the IAE metrics for velocity tracking lower.
The IAE metrics for pose tracking has about doubled, due to the usage of
setpoint tracking and a longer simulation time for the 4-corner test, but the
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overall accuracy of the ship performance has increased. Based on this, one can
conclude that if accuracy is more important than the time used for transit, lower
pose tracking-gains are beneficial. This statement is valid for all the controllers
presented in this thesis.
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Figure 4.22: 4-corner path plot for the DWC and the NP-NV controller with
lowered pose tracking-gains.

NP-NV DWC

IAE e1 96.698 91.644
IAEW e1 207.050 201.850
IAE e2 3.156 1.324

IAEW e2 6.757 2.916
IADC 10.946 26.559

Table 4.11: Performance metrics for the simulation with the DWC and the
NP-NV controller with lowered pose tracking-gains.
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4.5 Extended simulation results

In this section, simulations which are exposed to disturbances, uncertainties
and time delays are presented. The purpose is to analyse how the different
controllers perform when exposed to such effects, and to try to mimic the lab-
oratory environment to have a better comparison between the simulations and
the experiments done in Chapter 5. The results from this section is meant to
be used as a part of the discussion in Chapter 6.

4.5.1 DWC with model uncertainties

Here, it is desired to analyse how model uncertainties impact the performance
of the DWC and the NP-NV controller. Because of this, simulation results for
different amounts of model uncertainties are presented. The gains, which are
chosen by the tuning rules in Section 3.1.4, and actuator constraint parameters
for this simulation are shown in Table 4.12. The DWC is simulated with a
nonlinear feedback, such as in (3.126) and discussed in Section 3.2.4.

NP-NV DWC

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||−

∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ [0.7, 1.0] −||−
m [3.5996, 2.0003, 1.7027] −||−
r − −
K − −

Table 4.12: Controller gains and actuator constraint parameters for the simula-
tion with the DWC with model uncertainties.

The simulations are done with 0%, +15%, -30% and +50% model uncertain-
ties, where the matrices M in (2.4), C in (2.7). and D in (2.12), are adjusted
according to the percentages. Here, the figures show the effects on performance
on the extreme case of +50% model uncertainties, while the rest of the results
are summed up in Table 4.13.

In Figure 4.23, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the dash-dotted blue outline
represents the DWC, the dashed black outline represents the magnitude con-
strained NP-NV-controlled ship, while the red outline represents the 4-corner
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Figure 4.23: 4-corner path plot for the DWC and the NP-NV controller, here
for the case of +50% model uncertainties.

target reference.
Figure 4.24 shows the commanded control inputs for the two different con-

trollers. It can be seen that the model uncertainties have not created stability
issues for either of the controllers, and that they both have a similar perfor-
mance as in the simulation conducted without model uncertainties, as shown in
Figure 4.15, but where the usage of the actuators in τ2 is slightly higher.

As an example of velocity tracking performance, Figure 4.25 illustrates how
the sway speed and yaw rate moves in the velocity space in order to track the
target through the 4-corner test. Here, the blue dash-dotted outline represents
the DWC, while the NP-NV controller, represented by the black dashed outline,
is included for comparative purposes. When comparing Figure 4.25 to Figure
4.17, it can be seen that the model uncertainties have had some negative perfor-
mance impacts on the velocity tracking performance of both of the controllers.

This is illustrated further in Figure 4.26, where it is shown how the DWC
tracks the surge speed. Here the upper and lower limits of the velocity window,
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Figure 4.24: Commanded actuator inputs for the DWC and the NP-NV con-
troller, here for the case of +50% model uncertainties.

given by (3.100) and (3.99), respectively, are represented by the blue and red
outline, respectively, while the green outline represents the current velocity of
CSAD, the dashed magenta outline the desired velocity αu, and the dash-dotted
black outline the chosen velocity αf,u. It is shown how the DWC chooses a
chosen velocity αf,u on the border of its window when tracking the desired
velocity, but that the window size is smaller compared to the one in Figure
4.19 because the increase in the model parameters have reduced the size of the
dynamic velocity window.

Figure 4.27 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers.
The IAE and IAEW metrics for pose tracking show that the DWC still have
a more energy efficient performance than the NP-NV controller, but is now
less accurate. The IAE and IAEW metrics for velocity tracking show that
the NP-NV controller has a more accurate and more energy efficient velocity
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Figure 4.25: Yaw rate-sway window for the 3 DOF DWC, here for case of +50%
model uncertainties.

tracking performance as well. It can also be seen that the DWC still is slightly
faster at performing the 4-corner test than the NP-NV controller. The IADC
metrics show that the DWC has a bigger usage of the actuators, which is to be
expected by the result shown in Figure 4.24, where the commanded actuator
inputs have a higher rate of change than for the NP-NV controller. The final
values for the performance metrics are summarized in Table 4.13, where the
result for different model uncertainties are displayed. For every simulation, the
best performing controller is marked in bold. It can be seen that when no model
uncertainties are introduced, the DWC with a nonlinear feedback is clearly the
best performing controller, as was shown in Section 4.4.5. When the values of
the model parameters are reduced, the DWC still performs better than the NP-
NV controller, but when the parameters are increased, the NP-NV has a better
overall performance. It can be concluded that in terms of controller robustness,
the NP-NV controller wins because the DWC is a highly model-based controller,
and will require a significantly accurate model to work optimally in real life
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Figure 4.26: Tracking of the desired surge speed αu for the DWC, here for case
of +50% model uncertainties, where the upper and lower limits of the velocity
window are included. The top figure represents the whole 4-corner test, while
the bottom is zoomed in for illustrative purposes.

scenarios. However, the most important result from this simulation is that
introducing model uncertainties into the different control laws do not create
instabilities in the performance, meaning that they are both feasible to use in
real life operations, even if the ship model they are based on is not perfectly
modeled.
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Figure 4.27: IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller, here for the case of +50% model uncertainties.
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0% NP-NV DWC
IAE e1 44.487 42.660

IAEW e1 307.659 299.346
IAE e2 11.396 10.854

IAEW e2 78.813 76.163
IADC 25.464 38.430

+15% NP-NV DWC
IAE e1 43.488 43.524

IAEW e1 309.897 299.999
IAE e2 11.569 12.354

IAEW e2 82.443 85.152
IADC 24.435 40.963

-30% NP-NV DWC
IAE e1 48.139 42.139

IAEW e1 300.999 298.870
IAE e2 17.049 9.889

IAEW e2 106.601 69.978
IADC 17.601 35.947

+50% NP-NV DWC
IAE e1 42.162 45.735

IAEW e1 314.442 301.348
IAE e2 13.081 16.350

IAEW e2 97.558 107.695
IADC 25.464 34.342

Table 4.13: Performance metrics for the simulation with the DWC and the
NP-NV controller with model uncertainties. The actual percentage of model
uncertainties are shown in the upper-left corner of each table.
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4.5.2 DWC with estimation noise
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Figure 4.28: The noise which is added to the velocity to mimic estimation noise.

Here, it is desired to analyse how estimation noise impact the performance of
the DWC and the NP-NV controller. The gains, which are chosen by the tuning
rules in Section 3.1.4, and actuator constraint parameters for this simulation are
the same as in the previous simulation, and are shown in Table 4.12. The DWC
is simulated with a nonlinear feedback, such as in (3.126) and discussed in
Section 3.2.4.

The simulations are done with noise which is meant to represent a small
amount of noise on the velocity estimate, causing small twitches and thus in-
creasing the total use of the actuators in order to compensate for the veloc-
ity measurement noise. It was desired to closely analyse how noise like this
would impact the overall control performance, and especially the commanded
actuator input and energy efficiency. The noise added is meant to only cre-
ate small twitches, and is represented by a cosine, in which the amplitude is
|Au| = |Av| < 10−5 [m/s] for surge speed and sway speed, respectively, and
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Figure 4.29: 4-corner path plot for the DWC and the NP-NV controller with
velocity estimation noise.

|Ar| < 10−6 [rad/s] for yaw rate, and is shown in Figure 4.28.

In Figure 4.29, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the dash-dotted blue outline
represents the DWC, the dashed black outline represents the magnitude con-
strained NP-NV-controlled ship, while the red outline represents the 4-corner
target reference.

Figure 4.30 shows the commanded control inputs for the two different con-
trollers. It can be seen that the presence of velocity estimation noise has caused
a severe actuator twitching for the DWC, while the NP-NV controller is more
or less unaffected. The loss of performance for the DWC can be explained by
the fact that the DWC is a model predictive controller, and when the velocity
at the next time step is not how it predicted, it will try to compensate for this
by either increasing or decreasing thrust, resulting in actuator twitching. It can
also be seen that adding a nonlinear feedback was not enough to compensate
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Figure 4.30: Commanded actuator inputs for the DWC and the NP-NV con-
troller with estimation noise.

for such noise. As can be seen in the path plot in Figure 4.29, the DWC still
navigates the 4-corner in more or less the same way as before, but compared
to the NP-NV controller, it has a performance loss due to how it selects the
desired acceleration, given by α̇DWC in (3.123). The small measurement noise
is enough to make instabilities for the DW algorithm, creating severe twitching
in the choice of α̇DWC as shown for desired surge acceleration in Figure 4.31,
and thus affecting performance through the commanded control input.

Figure 4.32 illustrates how the DWC tracks the target surge speed. Here
the upper and lower limits of the velocity window, given by (3.100) and (3.99),
respectively, are represented by the blue and red outline, respectively, while
the green outline represents the current velocity of CSAD, the dashed magenta
outline the desired velocity αu, and the dash-dotted black outline the chosen
velocity αf,u. It is shown that the DWC chooses a desired velocity at the
border of its velocity window, even when in the presence of noise. However, the
small vibrations in velocity ν caused by the estimation noise, causes the desired
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Figure 4.31: The desired acceleration α̇DWC in surge when measurement noise
is present.

acceleration to oscillate, which in the end causes severe actuator twitching. It
is then clear that the DW algorithm is very sensitive in its prediction, and we
see that even when the predicted velocity is just a few µm/s off at every time
step, it can cause problems, which indicates that the DWC is in need of very
accurate measurements to be feasible in real life operations.

Figure 4.33 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. The
IAE and IAEW metrics for pose tracking show that the DWC still has a better
accuracy, while NP-NV has a more energy efficient behaviour. The same result
is repeated in the IAE and IAEW metrics for velocity tracking. It can be seen
that the DWC still is slightly faster at performing the 4-corner test. However,
one should remember that this result is not completely comparable to real life
experiments as no rate constraints are presents in this simulation environment,
and thus one can expect the controllers to behave differently in a laboratory
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Figure 4.32: Tracking of the desired surge speed αu for the DWC with estimation
noise, where the upper and lower limits of the velocity window are included. The
top figure represents the whole 4-corner test, while the bottom is zoomed in for
illustrative purposes.

environment, and that the experimental performance of DWC would decrease if
it was tested through laboratory experiments were such noise were present. The
final values for the performance metrics are summarized in Table 4.14, where
the best performing controller is marked in bold. Comparing the values to the
ones in Table 4.13 for the case of 0% model uncertainties, it can be seen that
the performance of the NP-NV controller is almost unaffected by the velocity
measurement noise, except for in the IADC metrics. It can be concluded that
the NP-NV controller is the most robust controller of the two, and that it has
the overall best performance and ability to handle small amounts of noise in the
measurement signal.
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Figure 4.33: IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller when measurement noise is present.
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NP-NV DWC
IAE e1 44.487 42.661

IAEW e1 307.641 313.597
IAE e2 11.435 10.876

IAEW e2 79.529 79.951
IADC 95.529 22568

Table 4.14: Performance metrics for the simulation with the the DWC and the
NP-NV controller with estimation noise.

4.5.3 DWC with a system time delay
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Figure 4.34: 4-corner path plot for the DWC and the NP-NV controller with a
system time delay.

Here, it is desired to analyse how a system time delay impacts the perfor-
mance of the DWC and the NP-NV controller. The time delay td = 0.02 [s] is
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Figure 4.35: Commanded actuator inputs for the DWC and the NP-NV con-
troller with a system time delay.

added to the commanded actuator inputs during simulation. The gains, which
are chosen by the tuning rules in Section 3.1.4, and actuator constraint param-
eters for this simulation are the same as in the previous simulation, and shown
in Table 4.12. The DWC is simulated with a nonlinear feedback, such as in
(3.126) and discussed in Section 3.2.4.

In Figure 4.34, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the dash-dotted blue outline
represents the DWC, the dashed black outline represents the magnitude con-
strained NP-NV-controlled ship, while the red outline represents the 4-corner
target reference.

Figure 4.35 shows the commanded control inputs for the two different con-
trollers. It can be seen that the presence of a system time delay has caused
the actuators to oscillate for the DWC, while the NP-NV controller is more or
less unaffected. As in Section 4.5.2, the current velocity does not match the
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Figure 4.36: Tracking of the desired surge speed αu for the DWC with a system
time delay, where the upper and lower limits of the velocity window are included.
The top figure represents the whole 4-corner test, while the bottom is zoomed
in for illustrative purposes.

predicted velocity at the next time step, causing severe actuator twitching and
performance loss. As can be seen in the path plot in Figure 4.34, the DWC still
navigates the 4-corner in more or less the same way as before, but compared
to the NP-NV controller, it has a performance loss due to how it selects the
desired acceleration, given by α̇DWC in (3.123).

Figure 4.36 illustrates how the DWC tracks the target surge speed. Here
the upper and lower limits of the velocity window, given by (3.100) and (3.99),
respectively, are represented by the blue and red outline, respectively, while the
green outline represents the current velocity of CSAD, the magenta outline the
desired velocity αu, and the dash-dotted black outline the chosen velocity αf,u.
Notice how the current velocity oscillates around the desired velocity.

Figure 4.37 shows the performance metrics IAE and IAEW for pose tracking
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Figure 4.37: IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller, where a system time delay is present.
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NP-NV DWC
IAE e1 44.507 42.698

IAEW e1 307.460 713.507
IAE e2 11.425 11.333

IAEW e2 78.926 189.910
IADC 25.491 70901

Table 4.15: Performance metrics for the simulation with the DWC and the
NP-NV controller with a system time delay.

and velocity tracking, along with the IADC metric, for the two controllers. The
IAE and IAEW metrics show that the DWC has a better accuracy, but that
the NP-NV controller is much more energy efficient. It can be seen that the
DWC still is slightly faster at performing the 4-corner test. However, one should
remember that this result is not completely comparable to real life experiments
as no rate constraints are presents in this simulation environment, and thus one
can expect the controllers to behave differently in a laboratory environment,
and that the experimental performance of DWC would decrease if it was tested
through laboratory experiments were such a time delay was present. The final
values for the performance metrics are summarized in Table 4.15, where the
best performing controller is marked in bold. Comparing the values to the ones
in Table 4.13 for the case of 0% model uncertainties, it can be seen that the
performance of the NP-NV controller is almost unaffected by the system time
delay. It can then be concluded that, once again, the NP-NV controller is the
most robust controller of the two, and that it has the best overall performance
and ability to handle system time delays.

4.5.4 DWC with all disturbances

The previous sections have analysed how different types of disturbances affect
the performance of the DWC and the NP-NV controller. It is now desired to
analyse how a combination of all of the different disturbances will affect the
overall performance. This combination can represent a simulated laboratory
environment, where different types of disturbances will be present. Here, the
simulations are done with similar estimation noise as in Section 4.5.2, with
+20% model uncertainties, and with a system time delay td = 0.09 [s], which is
supposed to mimic the time delay caused by the different operational frequencies
for the different subsystems in the laboratory setup, see Chapter 5. In addition
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NP-NV DWC

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||−

∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ [0.7, 1.0] −||−
m [3.5996, 2.0003, 1.7027] −||−
r [5.76, 3.20, 2.72] −||−
K [5, 2.78, 2.37] −||−

Table 4.16: Controller gains and actuator constraint parameters for the simula-
tion with the DWC with all disturbances.
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Figure 4.38: 4-corner path plot for the DWC and the NP-NV controller with all
disturbances.
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Figure 4.39: Commanded actuator inputs for the DWC and the NP-NV con-
troller with all disturbances.

to this, in order to include rate constraints, the controllers are simulated with an
MRS model. The gains, which are chosen by the tuning rules in Section 3.1.4,
and actuator constraint parameters for this simulation are shown in Table 4.16,
where the rate constraints are set sufficiently high so that they would not be too
limiting on the performance. The DWC is simulated with a nonlinear feedback,
such as in (3.126) and discussed in Section 3.2.4.

In Figure 4.38, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the dash-dotted blue outline
represents the DWC, the dashed black outline represents the magnitude con-
strained NP-NV-controlled ship, while the red outline represents the 4-corner
target reference.

Figure 4.39 shows the commanded control inputs for the two different con-
trollers. It is shown that the combination of the disturbances have resulted in
severe actuator twitching where the control input signal oscillates during the
whole simulation, but where the oscillating is limited by the rate constraints in
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Figure 4.40: Yaw rate-surge window for the 3 DOF DWC.

the MRS model. We see that the combination of a noisy velocity estimate and
a time delay has further decreased overall performance.

Figure 4.40, 4.41 and 4.42 illustrate how the surge speed, sway speed and
yaw rate moves in the velocity space in order to track the target through the
4-corner test. Here, the blue dash-dotted outline represents the DWC, while
the NP-NV controller, represented by the black dashed outline, is included for
comparative purposes. It can be seen that the disturbance effects, as discussed
in the previous sections, have a huge impact on the DWC’s ability to track the
desired velocity.

Figure 4.43 illustrates more closely how the DWC tracks the target surge
speed. Here the upper and lower limits of the velocity window, given by (3.100)
and (3.99), respectively, are represented by the blue and red outline, respectively,
while the green outline represents the current velocity of CSAD, the dashed
magenta outline the desired velocity αu, and the dash-dotted black outline the
chosen velocity αf,u. Notice how the current velocity oscillates around the
desired velocity.
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Figure 4.41: Yaw rate-sway window for the 3 DOF DWC.
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Figure 4.42: Sway-surge window for the 3 DOF DWC.
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Figure 4.43: Tracking of the desired surge speed αu for the DWC with a system
time delay, where the upper and lower limits of the velocity window are included.
The top figure represents the whole 4-corner test, while the bottom is zoomed
in for illustrative purposes.

NP-NV DWC
IAE e1 44.720 44.892

IAEW e1 321.865 702.865
IAE e2 13.202 28.236

IAEW e2 95.015 442.094
IADC 80.921 1757.4

Table 4.17: Performance metrics for the simulation with the DWC and the
NP-NV controller with estimation noise.

Figure 4.44 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. Here
it is shown that, when under the effect of a combination of disturbances, the
NP-NV controller is both more accurate and energy efficient than the DWC,
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Figure 4.44: IAE, IAEW and IADC for pose tracking for the DWC and the
NP-NV controller with all disturbances.
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but that the DWC still has a faster transient response. The final values for the
performance metrics are summarized in Table 4.17, where the best performing
controller is marked in bold. Comparing the values to the ones in Table 4.13 for
the case of 0% model uncertainties, it can be seen that the performance of the
NP-NV controller has not been severely reduced, except for in the IADC metric.
It can be concluded that the NP-NV controller is the most robust controller of
the two, and that it has the overall best performance and ability to handle a
combination of disturbances, which one can expect to be present in real life
environments.

4.6 Comparison

The different control algorithms were tested in simulations and evaluated by
different performance metrics. In the main simulation results, where no dis-
turbances or uncertainties were present, it was shown that the best performing
cascaded feedback controller was the NP-NV-controller, proving that the in-
cluded nonlinearities indeed have a positive impact on the overall performance.
The different cascaded feedback controllers were also tested with constraint
handling methods, but in a simulation environment, which can be thought of as
an optimal environment, the included saturation effects only slowed the vessel
down in its 4-corner test. It is therefore necessary to test the performance of
the different controllers in the MC-Lab in order to get a better picture on how
including the different constraint handling method will impact the performance.

The extended simulation results, which were included in order to investigate
how different types of disturbances could affect the performance of the DWC and
the cascaded feedback controllers, showed that its expectable that the DWC will
have performance issues in laboratory experiments as it is not currently designed
to handle uncertain noise and time delays while running at such a high frequency.
The NP-NV controller proved to be a much more robust controller, handling
the simulated disturbances without much change in overall performance.

4.7 Chapter summary

In this chapter, the 4-corner test was presented along with three different perfor-
mance metrics. The different control algorithms were tested with and without
constraint handling methods, and in environments with and without external
disturbances, time delays and model uncertainties. A further discussion about
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the combination of the simulation results and the experimental results presented
in Chapter 5, is presented in Chapter 6.
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Chapter 5

Experimental results

In this chapter, experimental results from the Marine Cybernetics Laboratory
will be presented. During the project, two full weeks were spent in the labora-
tory, in addition to several other shorter visits used for testing of new implemen-
tations between the two main laboratory weeks. As a part of the process of the
work done in this thesis, the results from the two weeks will be presented and
discussed separately. Many important changes were done to the design and im-
plementations of the different controllers between the laboratory weeks. These
changes were based on the results from the first week, and includes changes done
to both the laboratory implementation, the ship model and the controllers.

5.1 Marine Cybernetics Laboratory

The Marine Cybernetics laboratory is a small ocean basin laboratory at the
Department of Marine Technology at NTNU. Due to its relatively small size
and advanced instrumental package, the facility is especially suited for tests of
motion control system for model-scale surface vessels, but is also suitable for
more specialized hydrodynamic tests due to the advanced towing carriage, which
has capability for precise movement of models up to six degrees of freedom for
both surface ships and submersibles. The basin measures 40 [m] × 6.45 [m] ×
1.5 [m] in length, breadth and depth, respectively, and is displayed in Figure
5.1.
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Figure 5.1: MC-Lab basin [32].

5.1.1 Laboratory hardware

The lab is equipped with a Qualisys Track Manager (QTM) system for mo-
tion capture, which is used for position measurements for the on-board control
system. The inputs to the Qualisys system come from three Oqus high-speed
infrared (IR) cameras, which tracks the IR reflector orbs fitted on the model-
scale ships. The QTM system is installed on a dedicated workstation, using
P2P communication with the Oqus cameras.

Experiments can be fully supervised from a control room equipped with
a dedicated computer for the QTM system and a TV connected to 2 high-
resolution video cameras. The internal communications in the lab are done over
IP on a dedicated WLAN network, allowing for wireless control of the model-
scale ships, as well as transfer of experimental data from the on-board computer.
The ship is equipped with a National Instrument CompactRIO (cRIO) embed-
ded computer system for control computation.

5.1.2 Laboratory software

To communicate with the ship, the dedicated laptops are fitted with a sub-
stantial software suite, which includes a LabVIEW Full Development System,
MATLAB with Simulink package, as well as the National Instruments complete
Veristand software package. The full list of software is listed in [32].
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Figure 5.2: MC-Lab block diagram.

While the Qualisys system supplies position measurements, it does not com-
pute velocities. Instead, using the position measurements, the on-board com-
puter estimates body-fixed velocities for control feedback with an applied deriva-
tive filter, as seen in Figure 5.2, where the block diagram for the ship system
used for the laboratory experiments is shown. Here, it can be seen that the dif-
ferent parts of the control system run at different frequencies. The main system
runs at 100 Hz, which includes the controller and the estimator, while the QTM
transmits updated position measurements to the control system at 20 Hz. The
guidance system and the thrust allocation update the reference target and the
commanded actuator inputs, respectively, at a frequency of 10 Hz. This is the
main setup for the experiments, and will be used throughout the experiments
unless anything else is stated.

5.2 Estimator

During laboratory week 1, it became clear that the estimator was not designed to
handle a poorly calibrated camera system, giving spikes in the estimated velocity
signal, and thus affecting the controller performance. This can be observed
for all the experiments throughout laboratory week 1. The poor calibration
resulted in that the position measurement occasionally froze, leading the control
system to believe that the ship was stationary. When the signal freeze was over,
the measured position would be updated, effectively giving a huge rise in the
estimated velocity for this time step, which affected the overall performance.
Before laboratory week 2, it was then necessary to redesign the estimator to be
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fault tolerant to improve performance.

5.2.1 Fault tolerant estimator design

The initial velocity estimator for the laboratory implementation of CSAD was
implemented as a derivative filter. The first step towards handling the signal
spikes was to limit the allowed accelerations in the estimator. The allowed
accelerations were determined through velocity tests with CSAD in the MC-Lab
basin, conducted between the two main laboratory weeks. Maximum thrust in
each DOF was used in the experiments, which provided the acceleration limits
for CSAD:

|au,max| = 0.13m/s2 (5.1)

|av,max| = 0.0267m/s2 (5.2)

|ar,max| = 0.0052 rad/s2. (5.3)

Since the estimator is running at 100Hz, these limits were then scaled to fit the
acceleration limits per time step, ts = 0.01 [s], effectively preventing a higher
acceleration than what is physically possible for CSAD to achieve. Note that
these acceleration limits are based on the average acceleration from zero to
maximum velocity, and thus some tuning of allowed accelerations per time step
was needed, where data from the velocity experiments were used as input to an
offline simulator used for testing the new estimator design. Suitable values for
the acceleration limits used in the estimator were then found to be |amax| =
[0.0011m/s2, 0.0004539m/s2, 0.0007098 rad/s2].

This change to the estimator was tested, and proved not to affect the overall
tracking accuracy of the controller, while at the same time reducing spikes in
the estimator, efficiently reducing actuator wear and tear. However, it deemed
necessary to further improve upon the estimator’s fault tolerance, as it was
desired to reduce the estimator spikes as much as possible, and this was not
an efficient enough method on its own. Thus, more effort was put into further
improving the fault tolerance of the estimator.

The spikes occur when the Qualisys camera system loses the ship, and then
transmits the last measured position until the ship is detected again, which
usually happens within a few samples. When this happens, the control system
will assume that the ship has a constant pose, while the ship is actually moving
about in the basin. When the Qualisys system then detects the ship again
and updates the measured pose, the estimated pose jumps to the updated pose,
resulting in a sudden change in the velocity estimate. This phenomenon is shown

118



5.2. ESTIMATOR

1.55 1.56 1.57 1.58 1.59 1.6 1.61 1.62 1.63 1.64 1.65

104

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Surge speed estimate

Figure 5.3: A spike in the estimated surge speed, cause by the Qualisys camera
system.

in Figure 5.3. It is strongly desirable to avoid the velocity spikes to reduce noise
on the commanded actuator inputs.

To handle the camera system’s faults, a redesign of the estimator was imple-
mented. Here, the estimator is designed to have two main states of operation;
normal operation and lost measurement signal operation. Comparing each new
sample to the previous sample, with precision down to the 8th decimal, we can
identify frozen measurement signals from the Qualisys system, which runs at
20 Hz. This means that, since the computer on-board the ship, including the
estimator, runs at 100 Hz, that every five consecutive samples from the Qual-
isys system will be identical. However, if the following sample is identical to
the previous five, the signal can be assumed to be frozen and lost. A boolean
signal is then sent to a switch in the estimator, telling the estimator to switch
state until the lost measurement signal is restored. The two estimator states
are explained below.
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Normal operation

The velocity estimator is implemented as a derivative filter using the pose mea-
surements ηm = [xm, ym, ψm] as input. For normal operation, this is imple-
mented as

ηf,n = aηm,n + (1− a)ηf,n−1 (5.4)

η̇m,n =
ηm,n − ηm,n−1

ts
(5.5)

η̇f,n = bη̇m,n + (1− b)η̇f,n−1 (5.6)

ν̂f,n = R>(ψm,n)η̇f,n, (5.7)

where ηf is the estimated pose, η̇m is the derivative of the measured pose
calculated using numerical derivation, η̇f is the derivative of the estimated pose,
R is a rotation matrix as in (2.3), ψm is the measured heading, ν̂f is the body-
fixed estimated velocity, ts is the sample time, and a, b ∈ R are the cut-off
parameters for the filter. Here, a = 0.08 and b = 0.05. When the boolean signal
indicate that the Qualisys measurement signal is lost, it switches state to the
lost measurement signal operation.

Lost measurement signal operation

Here, the estimator keeps the last estimated velocity as ν̂fl = ν̂f constant along
with the last measured heading as ψml = ψm, and uses it to estimate the pose
η̂l until the lost measurement signal is restored.

η̂l,n =

∫ ts,n

ts,n−1

R(ψml)ν̂fldσ + η̂l,n−1 (5.8)

(5.9)

where η̂l is initialized using the value of η̂f from the previous sample where the
measurement signal was not considered lost

η̂l,n−1 = η̂f,n−1. (5.10)

Then, when the lost measurement signal is restored, the estimator switches
back to the state of normal operation, and is initialized by

ηf,n−1 = η̂l,n−1 (5.11)

η̇f,n−1 = R(ψml)ν̂fl. (5.12)
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Figure 5.4: Block diagram for the updated velocity estimator.

The block diagram for the updated estimator is shown in Figure 5.4. This
design ensures a fault tolerant estimator, which removes most of the spikes
caused by the lost Qualisys measurement signals. This revised estimator was
used for laboratory week 2, and we can see a great improvement in the com-
manded actuator input plots compared to the same plots from laboratory week
1.

5.3 Experimental details

The controller gains and the actuator constraints for the different experiments
will be presented along with the results. For convenience, the control laws for
the different controllers are repeated here:

NP-LV:

α = −K1(z1)z1 (5.13)

α̇ = −K̇1(z1)z1 −K1(z1)ż1 (5.14)

τ = Mα̇+Cα+Dα− Γ1z2, (5.15)

NP-NV:

α = −K1(z1)z1 (5.16)

α̇ = −K̇1(z1)z1 −K1(z1)ż1 (5.17)

τ = Mα̇+Cα+Dα−K2(z2)z2, (5.18)
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DWC-FB:

α = −K1(z1)z1 (5.19)

τ = Mα̇DWC +DLαDWC −K2(z2)z2, (5.20)

where αDWC and α̇DWC are chosen by the dynamic window algorithm, and
DWC-FB refers to the dynamic window-based controller with a nonlinear feed-
back term included. Note that these are modified for setpoint tracking where
η̈t = η̇t = 0.

The experimental tests will be conducted through the 4-corner test, as pre-
sented in Section 4.1. Unless something else is stated, the experiments are
conducted with setpoint tracking.

5.4 Experimental results - Laboratory week 1

The main focus of the first laboratory week was to test the performance of
the NP-LV and NP-NV controllers with constraint handling methods, and to
compare the performance of these methods. In addition to this, it was desired to
the test the performance of the dynamic window-based controller and compare
its performance to the other controllers.

During this week, it became clear that there were several modeling mistakes
done in both the thrust allocation and ship model, as the simulated model
performance did not correspond well with the laboratory behaviour of CSAD.
Because of this, in addition to the tests presented below, several other tests were
conducted to collect data which could be used to redesign the mathematical
model of CSAD and the thrust allocation model.

In addition to this, the estimator, as explained in more detail above, did not
handle signal faults, and thus caused several spikes in the commanded control
signal τ . Several tests were conducted, and extensive work was put into finding
a proper solution for this problem.

The experiments are conducted under the following conditions: In the exper-
iments, the actual model-scale ship’sM , C andD matrices will differ somewhat
from those used in the controllers. Also, measurement noise is present in the
Qualisys motion tracking system used in the laboratory.
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5.4.1 NP-LV with constraint handling methods

Here, the experimental results for the NP-LV controller with and without con-
straint handling methods will be presented. The gains, which are chosen by the
tuning rules in Section 3.1.4, and actuator constraint parameters for this exper-
iment are shown in Table 5.1. Originally, the magnitude constraints were given
by m = [1.1089, 0.6387, 0.6176], based on simulations done with the thrust allo-
cation model. Based on these constraints, the rate constraints r were designed
such that the vessel would be able to go from zero to max thrust in [0.6, 0.6, 0.8]
[s] for surge, sway and yaw, respectively. Keeping the ratio between the magni-
tude constraints m, the gain matrix K was then designed. Because it became
clear that the magnitude constraints m were set too low, they were upscaled as
shown in Table 5.1, while the other values were kept the same.

Unconstrained Mag. constr. MRS

Γ1 diag([0.08, 0.08, 0.0698]) −||− −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||− −||−

∆p̃,ψ̃ [0.5, 0.5] −||− −||−
∆ṽ,r̃ − − −
m − [2, 1.5, 1] −||−
r − − [1.85, 1.06, 0.77]
K − − [4, 2.31, 2.23]

Table 5.1: Controller gains and actuator constraint parameters for the experi-
ments with the NP-LV controller.

In Figure 5.5, the outline of the ship pose is plotted to show the pose motion
pattern of the different controllers. Here, the blue outline represents the uncon-
strained NP-LV-controlled ship, the dash-dotted black outline represents the
magnitude constrained NP-LV-controlled ship, the dashed green outline repre-
sents the NP-LV-controlled ship with MRS effects, while the dashed red outline
represents the 4-corner target reference.

Figure 5.6 shows the commanded control inputs for the three different con-
trollers. It can be seen that the NP-LV with MRS effects handles the spikes
generated by the faulty estimator better than the two other controllers, result-
ing in a more smooth performance, which is beneficial for actuator wear and
tear and energy efficiency.

Figure 5.7 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the three controllers.
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Figure 5.5: 4-corner path plot for the NP-LV controller with and without actu-
ator constraint handling methods.

The controllers have similar performance, but with respect to pose and veloc-
ity tracking, the magnitude constrained NP-LV-controller has the best overall
performance, which shows that limiting the actuator magnitude constraints can
not only be positive for the case of energy efficiency, but also for performance
accuracy. However, using the IADC metric, we can see that that the NP-LV
controller with MRS effects achieves nearly the same performance as the mag-
nitude constrained NP-LV controller while having less usage of the actuators,
which is beneficial. That the NP-LV controller with MRS effects is slower and
less accurate than the other controllers, is to be expected as we have introduced
designed rate constraints for the system. Based on this, one can thus conclude
that the NP-LV-controller with MRS effects has the overall best and desired
performance. The final values for the performance metrics are summarized in
Table 5.2, where the best performing controller is marked in bold.
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Figure 5.6: Commanded actuator inputs for the NP-LV controller with and
without actuator constraint handling methods.

Unconstrained Mag. const. MRS

IAE e1 92.996 90.964 92.854
IAEW e1 410.115 366.085 382.230
IAE e2 26.040 25.190 26.141

IAEW e2 114.837 101.377 107.609
IADC 95.999 105.382 58.731

Time [s] 343 336 339

Table 5.2: Performance metrics for the experiments with the NP-LV controller.
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Figure 5.7: IAE, IAEW and IADC for the NP-LV controller with and without
actuator constraint handling methods.
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5.4.2 NP-NV with constraint handling methods

Here, the experimental results for the NP-NV controller with and without con-
straint handling methods will be presented. The gains, which are chosen by
the tuning rules in Section 3.1.4, and actuator constraint parameters for this
experiment are shown in Table 5.3.

Unconstrained Mag. constr. MRS

Γ1 diag([0.08, 0.08, 0.0698]) −||− −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||− −||−

∆p̃,ψ̃ [0.5, 0.5] −||− −||−
∆ṽ,r̃ [0.7, 1.0] −||− −||−
m − [2, 1.5, 1] −||−
r − − [1.85, 1.06, 0.77]
K − − [4, 2.31, 2.23]

Table 5.3: Controller gains and actuator constraint parameters for the experi-
ments with the NP-NV controller.

-1.5 -1 -0.5 0 0.5 1 1.5

East [m]

4.5

5

5.5

6

6.5

7

N
or

th
 [m

]

Unconstrained
Magnitude constrained
MRS
Reference

Figure 5.8: 4-corner path plot for the NP-NV controller with and without ac-
tuator constraint handling methods.
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Figure 5.9: Commanded actuator inputs for the NP-NV controller with and
without actuator constraint handling methods.

In Figure 5.8, the outline of the ship pose is plotted to show the pose motion
pattern of the different controllers. Here, the blue outline represents the uncon-
strained NP-NV-controlled ship, the dash-dotted black outline represents the
magnitude constrained NP-NV-controlled ship, the dashed green outline repre-
sents the NP-NV-controlled ship with MRS effects, while the dashed red outline
represents the 4-corner target reference.

Figure 5.9 shows the commanded control inputs for the three different con-
trollers. It can be seen that the NP-NV controller with MRS effects handles the
spikes generated by the faulty estimator better than the two other controllers,
resulting in a more smooth performance, which is beneficial for actuator wear
and tear and energy efficiency, and that the magnitude constrained NP-NV-
controlled ship is slower than the other controllers, because it needed more time
for setpoint stabilization.
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Figure 5.10: IAE, IAEW and IADC for the NP-NV controller with and without
actuator constraint handling methods.
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Figure 5.10 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the three controllers. The
IAE and IAEW metrics show that the controllers have similar performance, but
that the magnitude constrained NP-NV-controlled ship is slower without much
increase in performance. Using the IADC metric, we can see that the NP-
NV controller with MRS effects achieves nearly the same performance as the
magnitude constrained NP-LV controller while using less time and having less
usage of the actuators. Based on this, one can thus conclude that the NP-NV-
controller with MRS effects has the overall best and desired performance. The
final values for the performance metrics are summarized in Table 5.4, where the
best performing controller is marked in bold.

Unconstrained Mag. constr. MRS

IAE e1 89.396 89.086 90.382
IAEW e1 460.084 399.465 403.793
IAE e2 23.322 22.817 24.043

IAEW e2 120.239 102.314 107.415
IADC 118.260 197.500 63.327

Time [s] 311 341 312

Table 5.4: Performance metrics for the experiments with the NP-NV controller.

5.4.3 NP-LV with different MRS effects

The gains and actuator constraint parameters for this experiment are shown
in Table 5.5. Here, the actuator constraint parameters for the case of a high
valued gain matrix K are chosen as in Section 5.4.1, while for the case of a low
valued gain matrix K, K1,1 is chosen as K1,1 = 0.8. The controller gains are
chosen as in Section 3.1.4.

In Figure 5.11, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the blue outline represents the
NP-NV-controlled ship with MRS effects with a high valued gain matrix K,
the dash-dotted black outline represents the NP-NV-controlled ship with MRS
effects with a low valued gain matrix K, while the dashed red outline represents
the 4-corner target reference.
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High K1,1-gain Low K1,1-gain

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||−

∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ − −
m [2, 1.5, 1] −||−
r [1.85, 1.06, 0.77] −||−
K [4, 2.31, 2.23] [0.8, 0.46, 0.45]

Table 5.5: Controller gains and actuator constraint parameters for the experi-
ments with the NP-LV controller with different MRS effects.
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Figure 5.11: 4-corner path plot for the NP-LV controller with different MRS
effects.
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Figure 5.12: Commanded actuator inputs for the NP-LV controller with different
MRS effects.

Figure 5.12 shows the commanded control inputs for the two different con-
trollers. It can be seen that the NP-LV controller with a low valued gain matrix
K handles the spikes generated by the faulty estimator slightly better than the
one with a high valued gain matrix K, but with an overall slower performance.

Figure 5.13 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. The
metrics show that the NP-LV controller with a low valued gain matrix K has
better performance for both pose and velocity tracking, along with less use of the
actuators, and thus is the best controller. The final values for the performance
metrics are summarized in Table 5.6, where the best performing controller is
marked in bold.
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Figure 5.13: IAE and IAEW for pose tracking for the NP-LV controller with
different MRS effects.
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High K1,1-gain Low K1,1-gain

IAE e1 92.854 92.620
IAEW e1 382.230 371.852
IAE e2 26.141 25.794

IAEW e2 107.609 103.559
IADC 58.731 52.673

Time [s] 339 340

Table 5.6: Performance metrics for the experiments with the NP-LV controller
with different MRS effects.

5.4.4 NP-NV with different MRS effects

The gains and actuator constraint parameters for this experiment are as in
Section 5.4.3, and shown in Table 5.5.
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Figure 5.14: 4-corner path plot for the NP-NV controller with different MRS
effects.
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Figure 5.15: Commanded actuator inputs for the NP-NV controller with differ-
ent MRS effects.

In Figure 5.14, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the blue outline represents the
NP-NV-controlled ship with MRS effects with a high valued gain matrix K,
the dash-dotted black outline represents the NP-NV-controlled ship with MRS
effects with a low valued gain matrix K, while the dashed red outline represents
the 4-corner target reference.

Figure 5.15 shows the commanded control inputs for the two different con-
trollers. It can be seen that the NP-LV controller with a low valued gain matrix
K has a slightly smoother behaviour, but the difference is, however, not signif-
icantly large enough to have a considerable impact on overall performance.
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Figure 5.16: IAE and IAEW for pose tracking for the NP-NV controller with
different MRS effects.
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High K1,1-gain Low K1,1-gain

IAE e1 90.382 90.716
IAEW e1 403.793 403.763
IAE e2 24.043 24.335

IAEW e2 107.414 108.313
IADC 63.526 62.513

Time [s] 312 314

Table 5.7: Performance metrics for the experiments with the NP-NV controller
with different MRS effects.

Figure 5.16 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. The
metrics show that the NP-NV controller with a high valued gain matrix K has
slightly better pose tracking accuracy, but a marginally higher energy usage.
For velocity tracking, the NP-NV controller with a high valued gain matrix K
is slightly better in both tracking accuracy and energy efficiency. For IADC,
the NP-NV controller with a low valued gain matrix K wins, which is to be
expected. Based on this, the NP-NV controller with a high valued gain matrix
K is the overall best performing controller in this experiment The final values for
the performance metrics are summarized in Table 5.7, where the best performing
controller is marked in bold.

5.4.5 Comparison

During this laboratory week, the NP-LV and the NP-NV controllers were tested
with constraint handling methods. For the NP-LV controller, it was shown that
including the MRS model could improve both accuracy and energy efficiency
compared to the unconstrained controller. In addition, the actuator usage was
almost halved, as shown in the IADC metric. However, only using magnitude
saturation effects on the NP-LV-controlled ship proved to be able to further
improve accuracy and energy efficiency, but at the cost of a higher actuator
wear and tear compared to when the MRS model was used. Furthermore,
it was shown that using a low valued gain matrix K could further improve
performance for the NP-LV controller with the MRS model included.

For the NP-NV controller, it was shown that including the MRS model could
improve energy efficiency, but at a small cost in accuracy. However, with the
MRS model included, the actuator usage was nearly halved, as shown in the
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IADC metric. Again, only using magnitude saturation effects could further
improve both accuracy and energy efficiency, but at the cost of actuator wear
and tear, which was more than three times as high for the magnitude constrained
NP-NV controller compared to when the MRS model was included. It was also
shown that lowering the value of the gain matrix K had more or less no impact
on the performance of the NP-NV controller with the MRS model included.

It was also desired to test the DWC during this laboratory week, but due to
the observed modeling errors, the DWC needed to be redesigned, and also, as
discussed above, the estimator needed to be improved. The test were therefore
postponed until the second laboratory week.

5.5 Experimental results - Laboratory week 2

The focus of the second laboratory week was to test the performance of the cas-
caded feedback controllers with constraint handling methods with the updated
ship model and estimator design. However, it should be noted that the updated
estimator did not successfully remove all of the estimation noise present in the
first laboratory week, but that the overall amount of noise was severely reduced.
It was also desired to thoroughly test the DWC, and compare its performance
to that of the other controllers.

5.5.1 NP-LV vs NP-NV

NP-LV NP-NV

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||−

∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ − [0.7, 1.0]
m − −
r − −
K − −

Table 5.8: Controller gains and actuator constraint parameters for the experi-
ments with the NP-NV and NP-LV controllers.

The gains and actuator constraint parameters for this experiment are shown
in Table 5.8. In this experiment, the performance of the unconstrained NP-LV
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Figure 5.17: 4-corner path plot for the comparison between the NP-NV and
NP-LV controllers.

and NP-NV controllers are tested against each other. It was desired to compare
these controllers with the updated CSAD model to directly investigate the ben-
efits of using linear and nonlinear velocity feedbacks. Here, the controller gains
are chosen as in Section 3.1.4, and as the experiments are done on unconstrained
controllers, no actuator limitations are included.

In Figure 5.17, the outline of the ship pose is plotted to show the pose mo-
tion pattern of the different controllers. Here, the dash-dotted black outline
represents the unconstrained NP-LV-controlled ship, the dashed green outline
represents the unconstrained NP-NV-controlled ship, while the dashed red out-
line represents the 4-corner target reference.

Figure 5.18 shows the commanded control inputs for the two different con-
trollers. It can be seen that the unconstrained NP-LV controller has a slightly
more smooth performance, which is beneficial for actuator wear and tear and
energy efficiency.
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Figure 5.18: Commanded actuator inputs for the comparison between the NP-
LV and NP-NV controllers.

Figure 5.19 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. The
IAE metrics show that the controllers have similar tracking performance for pose
and velocity tracking, while the IAEW metrics show that the NP-LV controller
uses less energy than its nonlinear counterpart. By the IADC metric, we also see
that the NP-LV controller achieves a better overall performance by less usage of
the actuators. Based on this, it can be concluded that the NP-LV controller has
a better overall performance than the NP-NV controller. The final values for the
performance metrics are summarized in Table 5.9, where the best performing
controller is marked in bold.
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Figure 5.19: IAE, IAEW and IADC for the comparison between the NP-LV and
NP-NV controllers.
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NP-LV NP-NV

IAE e1 77.776 79.238
IAEW e1 418.619 503.311
IAE e2 20.540 20.625

IAEW e2 110.555 131.008
IADC 89.295 106.640

Time [s] 305 312

Table 5.9: Performance metrics for the experiments with the NP-LV and NP-NV
controllers.

5.5.2 NP-LV with constraint handling methods

Here, experimental results for the NP-LV controller with actuator constraint
handling methods will be presented. The gains, which are chosen by the tuning
rules in Section 3.1.4, and actuator constraint parameters for this experiment
are shown in Table 5.10. It was desired to compare these controllers with the
unconstrained NP-LV controller as well, but unfortunately the data for this
laboratory experiment were found to be corrupted.

Mag. constr. MRS

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||−

∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ − −
m [2.88, 1.60, 1.36] −||−
r − [2.88, 1.60, 1.36]
K − [5, 2.78, 2.36]

Table 5.10: Controller gains and actuator constraint parameters for the experi-
ments with the NP-LV controller.
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Figure 5.20: 4-corner path plot for the NP-LV controller with actuator con-
straint handling methods.

This experiment was conducted using trajectory tracking. For convenience,
the control law for the NP-LV controller used together with trajectory tracking
is repeated here:

α = R>η̇t −K1(z1)z1 (5.21)

α̇ = R>η̈t + S>R>η̇t − K̇1(z1)z1 −K1(z1)ż1 (5.22)

τ = Mα̇+Cα+Dα− Γ1z2. (5.23)

In Figure 5.20, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the dash-dotted black out-
line represents the magntiude constrained NP-LV-controlled ship, the dashed
green outline represents the NP-NV-controlled ship with MRS effects, while the
dashed red outline represents the 4-corner trajectory target reference.
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Figure 5.21: Commanded actuator inputs for the NP-LV controller with actua-
tor constraint handling methods.

Figure 5.21 shows the commanded control inputs for the two different con-
trollers. It can be seen that the NP-LV controller with MRS effects has a more
smooth performance, which is beneficial for actuator wear and tear.

Mag. constr. MRS

IAE e1 21.3657 23.4945
IAEW e1 50.330 54.091
IAE e2 10.848 14.088

IAEW e2 25.5545 32.434
IADC 96.927 73.837

Time [s] 499 497

Table 5.11: Performance metrics for the experiments with the NP-LV controller
with actuator constraint handling methods.
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Figure 5.22: IAE, IAEW and IADC for the NP-LV controller with actuator
constraint handling methods.

145



CHAPTER 5. EXPERIMENTAL RESULTS

Figures 5.22 show the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. The
IAE and IAEW metrics show that the magnitude constrained NP-LV controlled
ship has a better pose and velocity tracking performance, together with a higher
energy efficiency. The IADC metric show that the NP-LV controlled ship with
MRS effects has less use of the actuators, but since the difference in performance
from the magnitude constrained NP-LV is quite substantial, the magnitude
constrained NP-LV has the best overall performance in this experiment. The
final values for the performance metrics are summarized in Table 5.11, where
the best performing controller is marked in bold.

5.5.3 NP-NV with constraint handling methods

Here, experimental results for the NP-NV controller with and without constraint
handling methods will be presented. The gains, which are chosen by the tuning
rules in Section 3.1.4, and actuator constraint parameters for this experiment
are shown in Table 5.12.

Unconstrained Mag. constr. MRS

Γ1 diag([0.08, 0.08, 0.0698]) −||− −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||− −||−

∆p̃,ψ̃ [0.5, 0.5] −||− −||−
∆ṽ,r̃ [0.7, 1.0] −||− −||−
m − [2.88, 1.60, 1.36] −||−
r − − [2.88, 1.60, 1.36]
K − − [5, 2.78, 2.36]

Table 5.12: Controller gains and actuator constraint parameters for the experi-
ments with the NP-NV controller with constraint handling methods.

In Figure 5.23, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the blue outline represents the
unconstrained NP-NV-controlled ship, the dash-dotted black outline represents
the magnitude constrained NP-NV-controlled ship, the dashed green outline
represents the NP-NV-controlled ship with MRS effects, while the dashed red
outline represents the 4-corner target reference.

Figure 5.24 shows the commanded control inputs for the three different con-
trollers. It can be seen that the NP-NV controller with MRS effects handles the
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Figure 5.23: 4-corner path plot for the NP-NV controller with and without
actuator constraint handling methods.

spikes generated by the estimator better than the two other controllers, result-
ing in a more smooth performance, which is beneficial for actuator wear and
tear.

Figure 5.25 shows the performance metrics IAE and IAEW for pose track-
ing and velocity tracking, along with the IADC metric, for the three controllers.
The metrics show that the controllers have similar pose tracking performance,
but that the NP-NV controller with the MRS model included has a less accu-
rate and energy efficient performance in velocity tracking. However, the NP-NV
controller with the MRS model included has a much lower value in the IADC
metric. Based on this, one can thus conclude that the NP-NV-controller with
MRS effects has the overall best and desired performance. The final values for
the performance metrics are summarized in Table 5.13, where the best perform-
ing controller is noted in bold.
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Figure 5.24: Commanded actuator inputs for the NP-NV controller with and
without actuator constraint handling methods.

Unconstrained Magnitude
constrained

MRS

IAE e1 79.238 80.932 85.176
IAEW e1 503.311 504.451 508.479
IAE e2 20.625 22.014 25.218

IAEW e2 131.008 137.217 150.543
IADC 106.640 97.807 66.105

Time [s] 312 303 311

Table 5.13: Performance metrics for the experiments with the NP-NV controller.
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Figure 5.25: IAE, IAEW and IADC for the NP-NV controller with and without
actuator constraint handling methods.

149



CHAPTER 5. EXPERIMENTAL RESULTS

5.5.4 DWC

Here, experimental results for the experiment with the DWC controller will be
presented. The gains, which are chosen by the tuning rules in Section 3.1.4, and
actuator constraint parameters for this experiment are shown in Table 5.14.
As this is a laboratory experiment where disturbances are present, the experi-
ment with the DWC is conducted with a nonlinear feedback, such as in (3.126)
and discussed in Section 3.2.4. The DWC was tested against the magnitude
constrained NP-NV controller. Here, the laboratory system in Figure 5.2 was
modified such that all the subsystems were running on the same frequency in
order to reduced the amount of system time delays.

NP-NV DWC

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||−

∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ [0.7, 1.0] −||−
m [3.5996, 2.0003, 1.7027] −||−
r − −
K − −

Table 5.14: Controller gains and actuator constraint parameters for the experi-
ment with the DWC.

In Figure 5.26, the outline of the ship pose is plotted to show the pose
motion pattern of the different controllers. Here, the blue outline represents
the DWC, the dashed green outline represents the magnitude constrained NP-
NV-controlled ship, while the dashed red outline represents the 4-corner target
reference.

Figure 5.27 shows the commanded control inputs for the two different con-
trollers. As predicted, because of system disturbances and time delays, the
DWC has a oscillating control signal, causing actuator twitching, as in the sim-
ulations where disturbances were present. Comparing Figure 5.27 to simulation
results in Figure 4.39, it can be seen that the commanded actuator inputs for
the DWC have a very similar performance, meaning that the poor laboratory
performance most likely is caused by similar disturbances. It is shown in Fig-
ure 5.26 that the DWC, similarly to the simulation results in Figure 4.38, still
navigates the 4-corner test, but that it has wider transient arches than in the
simulations.
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Figure 5.26: 4-corner path plot for the experiment with the DWC.

The same can be seen in Figure 4.40, 4.41 and 4.42, which illustrate how
the surge speed, sway speed and yaw rate move in the velocity space in order
to track the target through the 4-corner test, where again the performance is
similar to that of the simulation. Here, the blue dash-dotted outline represents
the DWC, while the green outline represents the target velocity. It can be
seen that the disturbances present in the laboratory have a huge impact on the
DWC’s ability to track the desired velocity.

Figure 5.31 shows the performance metrics IAE and IAEW for pose tracking
and velocity tracking, along with the IADC metric, for the two controllers. Here
it is shown that, when laboratory disturbances are present and not account for,
the NP-NV controller is both more accurate and energy efficient than the DWC,
but that the DWC still has a faster transient response. The final values for the
performance metrics are summarized in Table 5.15, where the best performing
controller is marked in bold.

151



CHAPTER 5. EXPERIMENTAL RESULTS

0 50 100 150 200 250 300
-4

-2

0

2

4

1
 [N

]

0 50 100 150 200 250 300

-2

0

2

2
 [N

]

0 50 100 150 200 250 300

Time [s]

-2

0

2

3
 [N

m
]

DWC
NP-NV mag.constr

Figure 5.27: Commanded actuator inputs for the experiment with the DWC.

NP-NV DWC

IAE e1 80.932 95.700
IAEW e1 504.451 1926.300
IAE e2 22.014 36.800

IAEW e2 151.217 741.600
IADC 97.087 1999.800

Time [s] 303 268

Table 5.15: Performance metrics for the experiment with the DWC.
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Figure 5.28: Yaw rate-surge speed window for the 3DOF DWC.
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Figure 5.29: Yaw rate-sway speed window for the 3DOF DWC.
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Figure 5.30: Sway-surge speed window for the 3DOF DWC.

5.5.5 Comparison

In this week, the NP-LV and the NP-NV controller were tested with the up-
dated ship model and estimator, and with other actuator saturation effects. In
addition, the DWC was finally experimentally tested.

First, a direct test with the NP-LV controller against the NP-NV controller
was conducted. There it was shown that the NP-LV controller had both better
accuracy and energy efficiency, along with less actuator wear and tear.

Then, it was shown that the magnitude constrained NP-LV controller slightly
outperformed the NP-LV controller with the MRS model included when using
trajectory tracking. However, using the MRS model resulted in almost a 25%
reduction in actuator wear and tear.

For the NP-NV controller, similar results could be observed. However, both
the magnitude constrained controller and the controller with MRS effects in-
cluded got outperformed by the unconstrained controller. Possibly this is an
indication that the actuator saturation effects were poorly tuned for the exper-
iments this week, and that the saturation effects used in the first week were a
better fit for improving the performance of CSAD.
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Figure 5.31: IAE, IAEW and IADC for the experiment with the DWC.
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Lastly, the DWC was tested. As investigated in the simulations, the labora-
tory performance of the current implementation of the DWC was unstable due
to the presence of disturbances and time delays. One important observation is
that the experimental results coincide in great detail with the simulated results
in Section 4.5.4.

5.6 Chapter summary

In this chapter, the Marine Cybernetics Laboratory was presented along with
its hardware and software packages. In addition, the work done with the esti-
mator was explained in detail. Then the experimental results for the different
control algorithms from the two laboratory weeks were presented. A discussion
about the combined result from the numerical simulations and the laboratory
experiments follows in Chapter 6.
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Chapter 6

Discussion

The different control algorithms were tested with and without actuator con-
straint handling methods in both numerical simulations and laboratory experi-
ments and were evaluated through the use of performance metrics. These results
can be combined in order to better understand in which scenarios the controllers
have the best performance, and when it would be recommended to use the dif-
ferent actuator saturation effects and models.

Through simulations it became clear that the included nonlinearities in the
NP-LV and the NP-NV controllers were beneficial for the total performance of
the controllers, since the nonlinear feedback modifies the convergence rate to
be faster than the linear feedback in the linear region. From the simulation
results it could be seen that the NP-NV controller is the most accurate and
energy efficient of the three controllers, while also having the fastest transient
response. However, it should be noted that the magnitude of τ1 and τ2 are the
lowest for the NP-LV controller, while in addition also having the least usage of
the actuators. In laboratory week 1, it was shown that the NP-NV controller
had the best accuracy, while the NP-LV controller had the best energy efficiency
and the least actuator wear and tear. Furthermore, in laboratory week 2, with
the updated ship model and estimator, which had greatly reduced noise in the
velocity estimates, the NP-LV controller were shown to have the best control
accuracy and energy efficiency, along with the least actuator wear and tear.
Based on this, it can be concluded that the NP-LV controller comes out on
top. The reason why the simulation results are different from the experimental
results is because of the disturbances and uncertainties present in the laboratory.
The NP-NV controller is inherently a more aggressive control scheme due to its
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nonlinear velocity feedback, which possibly made it better at handling the larger
disturbances present in the first laboratory week, mostly caused by the velocity
estimator. With the updated estimator, the amount of disturbances on the
velocity estimate were greatly reduced, and the NP-LV controller achieved a
better overall performance. It can be noted that the nonlinear velocity feedback
in the NP-NV controller possibly increases the controller’s robustness, but at
the cost of energy usage. This robustness probably caused the NP-NV controller
to outperform the NP-LV controller in the first laboratory week where the ship
model had notable modeling errors. Another noteworthy observation is that the
NP-NV controller still had the higher magnitude on the commanded actuator
input signal in the laboratory experiments, which potentially can result in overall
poorer performance, as will be discussed next.

Introducing actuator saturation effects into the numerical simulator yielded
no practically useful results, as the reduction in the allowed magnitude and
rate outputs of the actuators only caused the boat to navigate the 4-corner test
slower. This is due to the fact that the simulator is a perfect scenario where
no noise or disturbances are present, and where actuator saturation effects have
no positive impact on performance. The main results for the usage of actuator
constraint handling methods thus comes from the laboratory experiments.

In laboratory week 1, it was shown that including magnitude saturation or
MRS effects had positive impacts on performance, where it was shown that
the NP-LV and NP-NV controllers with the MRS model included had the best
overall performance due to their reduction in actuator wear and tear. It was
also shown that changing the gain matrixK can result in improved performance
for the MRS model, proving that, as with other models and controllers, tuning
is essential to achieve optimal control performance. In laboratory week 2, the
MRS model was tuned differently, allowing for a higher rate of change in the
commanded actuator input signal. With the now reduced estimation noise,
the effects of the MRS model was reduced, but the notable positive effects on
actuator usage were still visible. This accentuates the importance of the choice
of constraints while using such a model, and that one must carefully choose the
saturation limits m and r along with the MRS gain matrix K, which has to be
based on the ship you are to use it on and the environments it is to operate in,
in order to achieve positive effects on performance. Based on this, it is shown
that the MRS model can, if tuned properly, increase a controller’s robustness,
making it less vulnerable to noise and disturbances, while at the same time also
having the potential to increase both control accuracy and energy efficiency and
effectively decrease actuator twitching. These effects are especially important
for vessels which must operate for longer times at sea, and can be particularly
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useful for ships in DP operations, effectively contributing to the longevity of the
operation with a reduced need for maintenance and repairs. It should also be
noted that the MRS model was tested on CSAD with another thrust allocation
model, where the azimuth thrusters were not locked in specific angles. Here, it
greatly reduced overall actuator twitching and energy usage.

Through the main simulation results, it was shown that, theoretically, the
DWC was the best performing controller in this thesis. It should be noted
that the DWC is based on the linear ship model, while the cascaded feedback
controllers were tested based on the full nonlinear ship model, which has im-
proved their overall performance, making the DWC’s victory more profound. In
the extended simulation results, it was shown that the current implementation
of the DWC had some robustness issues. It was proven to be able to handle
model uncertainties without creating instabilities in the commanded actuator
signal, but started having issues when estimation noise and time delays were
introduced into the simulator. These effects had little to no effect on the over-
all performance of the NP-NV controller, proving that the cascaded feedback
controllers have a high level of robustness and thus can handle normal amounts
of disturbances and time delays without having performance issues. Through
the extended simulations results, it then became clear that it was expected that
the DWC would have some performance issues when experimentally tested in
the laboratory, where we knew that estimation noise were present due to the
estimator and the camera position measurement system, and which we learned
while testing the DWC, that CSAD most likely had a system time delay which
we had no control over.

When experimentally testing the DWC, it became clear that there was sev-
eral issues that needed to be addressed. In Figure 5.2, the original MC-Lab
system block diagram is shown. To address the issue of system time delays, the
system was changed in order to make sure that every subsystem were running
on the same frequency. However, this did not have any impact on performance,
and other adjustments to the algorithm were tried. Effort was put into including
acceleration limits and rate constraints in the algorithm, minorly reducing or
increasing the window size, redesigning the choice of the desired velocity, and
including nonlinear feedback terms with different gains. Unfortunately, neither
of these adjustments yielded any noteworthy improvements to performance. It
thus became clear that there most likely was a system time delay present which
caused instabilities for the DWC, and it was clear that for the DWC to work
optimally, it is in need of an excellent ship model, not only of the ship’s dynam-
ics, but also of the signal processing in the system. To be able to account for a
system time delay and reduce model uncertainties, a good model identification
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and analysis is then recommended.
The reason why the DWC is so sensitive to time delays is because as long

as the desired velocity α is outside of the window, the controller will keep the
control inputs high while tracking the optimal velocity αf on the boundaries
of the window. Theoretically, when α is inside the window, the DWC will
decrease the control inputs and track the desired velocity. However, when a time
delay which is larger than one sample is present, the DWC will overshoot the
desired velocity, practically making the window slide past the desired velocity.
At the next time step, the desired velocity will then be outside the window
again, making the DWC command the control input at maximum thrust in the
opposite direction, effectively making the control signal oscillate while trying
to track the desired velocity α. The DWC being a model predictive controller,
these kind of oscillations can occur not only because of time delays, but whenever
the current velocity at the next time step does not coincide with the predicted
velocity, especially if the current velocity will end up outside of the predicted
window. DWC being a feedforward approach makes it especially vulnerable to
time delays and disturbances in measured signals, which is why it is usually not
recommended to use such signals in feedforward-based controllers, and rather
base the tracking signals upon reference signals.

In order to increase the DWC’s performance, it is then necessary to increase
the overall robustness of the controller. To avoid the problems which occur
when time delays are present, greatly increasing the window size is an option.
In practical situations, there is no need to run the DW algorithm at 100 Hz. By
lowering the frequency of the algorithm, the algorithm will be less prone to time
delays creating stability issues, since the desired velocity α will most likely still
be inside the window, which is now larger because of the reduction in algorithm
frequency, unless the time delay is sufficiently big. If an analysis of the system
time delay has been done and the time delay has been identified, one option
is also to account for the time delay inside the algorithm, where it would be
possible to increase the window size with an amount which corresponds to the
maximum added time delay td to the total time T = ts + td which the window
is based upon, where ts is the sampling time of the control system and T is the
allowed time for acceleration for the DW algorithm during the next time step.

This was investigated through simulations, where the DWC was run at 100
Hz, and a time delay of td = 0.02 [s] was present. The results are shown
in Figure 6.1, where in the top plot the commanded surge force is shown for
the case where the time delay is not accounted for. The middle plot shows
how the performance has improved when the time delay is exactly accounted
for. The lower plot shows how the performance has further improved when

160



0 50 100 150 200 250 300
-5

0

5

1
 [N

]

0 50 100 150 200 250 300
-5

0

5

1
 [N

]

0 50 100 150 200 250 300

Time [s]

-5

0

5

1
 [N

]

T = 0.1s
T = 0.3s
T = 0.4s

Figure 6.1: The commanded surge input for the DWC when accounting for a
known time delay.

T = ts + td + te has been extended to include an additional time term te = 0.01
[s], which is meant to further increase the window size, resulting in a smoother
control input signal because it makes sure that the desired velocity α does not
exactly end up on the boundary of the window one time step before it is reached,
making the controller have a smother transient response on the actuators when
approaching the desired velocity α. The improvement of performance can be
observed in the figure, where the overshoots present in the middle plot have
been avoided. From this, it can be concluded that by increasing the window
size can effectively smoothen the performance of the DWC, which will result
in an improvement to the overall performance when disturbances, uncertainties
and time delays are present.

There is not much that can be done for the case of estimator estimation
noise, expect for possibly filtering out the worst noise. For the case of ships
that does not use estimated measurements, it would be beneficial to directly
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account for the disturbances, such as ocean currents, in the DW algorithm if
they are measurable through sensor systems. This was tested through simula-
tions, where disturbances were added to the simulator and then accounted for
in the DW algorithm, which improved performance. To further increase the
robustness of the DWC in real life scenarios, it would be beneficial to include
a nonlinear feedback term to better account for external disturbances and un-
certainties. In addition, extending this feedback into an adaptive feedback term
can further increase performance. Adaptive control is a technique where the
goal is to estimate unknown parameters of the system model. The estimates are
then used to adjust the control input, thus compensating for model uncertain-
ties and system disturbances and leading to improved performance. Different
adaptive techniques have been investigated in the later years, including model
reference adaptive control (MRAC) and L1 adaptive control. As seen in [30],
adaptive control can improve ship performance where the model have inherent
uncertainties, and therefore also further improve the performance of the DWC,
which is vulnerable to both uncertainties and disturbances.

Furthermore, for the DWC to accurately predict the velocity at the next
time step, actuator rate constraints will have to be added to the algorithm. This
would limit the window size based on the actuator acceleration limits during
the next time step, making sure that the chosen optimal velocity αf actually is
feasible.

In addition, in the current design the window size is based on the linear ship
model. As an extension to the work done in [5] and [6], a possible improvement
to (3.97) and (3.98) would be to modify these to include the full model, giving

ν̇min = M−1(τmin(u)−Cν∗ −Dν∗) (6.1)

ν̇max = M−1(τmax(u)−Cν∗ −Dν∗). (6.2)

This would give more physical realistic acceleration limits when operating during
higher velocities inside the linear model-based DWC, increasing the accuracy of
the predicted velocity αf at the next time step, which potentially could improve
overall performance by preventing oscillations caused by wrongly predicted ve-
locities.

By working with the DWC, several things has thus been learned. When
operating with a DW based on a linearized ship model designed to be used
for low-speed manoeuvres, such as in dynamic positioning, a perfectly modeled
mathematical model of the ship is not completely necessary, but one should
strive to get it as accurate as possible to improve the overall performance. Sys-
tem time delays should be identified and accounted for inside the algorithm,
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Figure 6.2: Block diagram for a suggestion for an improvement to the dynamic-
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and if disturbances are measurable, accounting for these in the DW algorithm
is beneficial as well, and in addition, to achieve a better performance, a nonlin-
ear feedback, such as the one from the NP-NV controller, should be included in
the control system in order to better account for disturbances and uncertainties.
Furthermore, this feedback could be extended to include adaptive control terms
in order to further improve performance. In addition, to more accurately predict
the velocity at the next time step, actuator rate constraints should be included
into the algorithm as well. Moreover, it could be beneficial for the algorithm
to work with larger window sizes, which could make the algorithm avoid oscil-
lating around a desired velocity. To achieve this, the algorithm should run at
lower frequencies, resulting in a higher system sampling time ts, thus increas-
ing the window size. This could possibly be combined with a control system
which runs at a higher frequency, where the DW algorithm chooses the desired
velocity αDWC and acceleration α̇DWC for the next time T , while the feedback
controller runs at a higher frequency, to more effectively account for the exter-
nal disturbances. A suggestion for such a motion control system is presented
in Figure 6.2, where disturbances should be measured by sensor systems and
accounted for in both the DW algorithm and the adaptive velocity controller.
Here the velocity controller runs at 50 Hz to effectively account for external dis-
turbances, while the rest of the system runs at 5 Hz to make the set of feasible
velocities larger to obtain an overall smoother control performance.
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While the DWC continues to be the best performing controller in numerical
simulations, it is clear that more work has to be done with the algorithm in order
to make it work properly in real life scenarios. One could say that the DWC has
great potential, and when the presented issues are solved, possibly through the
suggestions discussed here, it will be interesting to see if the control algorithm
will be able to live up to its full potential when applied to real life scenarios
on-board actual vessels. Unfortunately, there was not enough laboratory time
available during the time this project was done to test any of the suggested
changes to the DWC system in laboratory environments.
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Chapter 7

Conclusions and future
work

7.1 Conclusions

Throughout this thesis, several controllers have been designed and tested. Cas-
caded feedback controllers were developed, and it was shown through both
numerical simulations and laboratory experiments that including nonlineari-
ties into the feedback algorithms improve both control accuracy and energy
efficiency. The effects of handling actuator constraints were investigated, and
proven to be of importance to increase overall ship performance. An MRS model
was modified to fit ship motion control systems, and was implemented in order
to handle actuator constraints. It was shown that such a model, if tuned cor-
rectly, can further increase the overall control accuracy and energy efficiency of
a controller, while at the same time also reduce actuator wear and tear, for a
ship in setpoint navigation.

Furthermore, dynamic window-based controllers were developed. Through
numerical simulations it was shown that the 3 DOF DWC outperformed the
other controllers in both control accuracy and energy efficiency. However,
through laboratory experiments, the controller was shown to have stability issues
due to system time delays. Because of this, further improvements are needed
to be added into the control algorithm in order to account for time delays, dis-
turbances and uncertainties before the controller is ready to work optimally in
a real-life experimental environment.
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Motion control systems for ships have traditionally not focused on handling
actuator constraints. Through this thesis, it has been shown that taking actua-
tor constraints into consideration when designing a controller will be beneficial
in most scenarios. More research and effort needs to be put into this field, and
will result in more accurate and efficient motion control systems for ships in the
coming future.

7.2 Future work

The following topics are suggested as a continuation to this thesis:

• Conduct a proper model identification of the model-scale ship CSAD to
obtain a more precise ship model, a better understanding of the limitations
of the actuators, and to identify system time delays.

• Further develop the presented nonlinear cascaded feedback controller so
that it handles actuator constraints.

• Increase the performance of the MRS model by optimizing the choice of
actuator constraints and tuning rules through a set of laboratory experi-
ments.

• Extend the 3 DOF DWC to include the full nonlinear ship model to
achieve an overall better control performance, and possibly compute the
set through analytical methods to obtain a more precise 3 DOF set of
possible velocities.

• Introduce dynamics to the control input vector τ for the dynamic window
algorithm in order to handle rate constraints, to make sure that the chosen
optimal velocity αf actually is feasible.

• Include adaptive control algorithms into the DWC in order to better ac-
count for disturbances and uncertainties present in the ship motion control
system and the environment it operates in.

• Develop suggested window-sizing rules to ensure that an oscillating control
input signal for the DWC is avoided.

• A thorough stability analysis of the DWC to obtain a better understanding
about under which conditions the control algorithm is stable.

In addition, while working with the DW algorithm for a longer period of
time, several ideas for alternative uses for the algorithm were contemplated.
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Figure 7.1: Block diagram for using the DW algorithm as a reference generator
for a cascaded feedback controller.

Using the DW algorithm as a reference generator

Instead of using the dynamic window algorithm to create a dynamic window-
based controller, it could be used as a reference generator. The implementation
would be similar to that of the DWC presented here, but instead of creating the
desired acceleration and velocity, α̇DWC and αDWC , respectively, the chosen
optimal velocity which is to be achieved within the next time step T could be
used as a reference signal. Thus, the DW algorithm would, if necessary, modify
the desired velocity νd from the pose controller to a feasible desired velocity αf ,
and thereby making sure that the motion control system satisfies the actuator
constraints. The feasible velocity could then be used together with a reference
model, which is commonly implemented by low-pass filters, to obtain the desired
acceleration α̇f , or it could be computed using numerical derivation. Using this
DW implementation together with the NP-NV controller, the control law would
be modified to

τ = Mα̇f +DLαf −K2(z2)z2, (7.1)

for the case of the use on the linearized ship model. This could potentially
remove the problems with actuator twitching caused by the oscillating α̇DWC

in the current DWC implementation when disturbances and time delays are
present. A block diagram for such a system is presented in Figure 7.1.
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Dynamic window-based estimator

It would be possible to implement an estimator based on the DW algorithm.
Such an estimator would be performing well in dead reckoning scenarios, as for
example in the MC-Lab when the measurement signal is lost, and would be
similar to a Kalman filter or an observer.

This estimator, as with any use of the dynamic window algorithm, is in need
of a good ship model to function properly. It would use the control input at
the current time step τn as input, and would, based on the current estimated
velocity ν̂n, estimate, through the use of the dynamic window algorithm, the
velocity at the next time step ν̂n+1 based on the ship dynamics and the control
input. An estimate for the pose at the next time step η̂n+1 could then be
computed by using the estimated velocities ν̂n+1 and ν̂n and the pose at the
the current time step η̂n.

Using such an estimator in the MC-Lab could potentially remove the need
to use measurements from the camera positioning system, except for during
initialization or resetting of the system. Because of this, it would be possible
to get around the unwanted estimation noise that are added to the control
system in the MC-Lab with the current estimator. In addition, such as system,
because it is based on the dynamics of the ship, would make sure that only
feasible estimated velocities would be sent to the control system, meaning that
it would be a robust estimator in the sense that it would not feed the controller
with dynamically infeasible velocity and pose estimates.

Dynamic window-based guidance system

Another thought is that algorithms such as the dynamic window algorithm,
could potentially be used in autonomy modules, such as guidance systems, to
make sure that the target trajectory is feasible for the ship it is used on. This
could be a part of a high-level anti-collision approach, creating an anti-collision
dynamic window-based guidance system, which for example could be used in
hard-to-navigate scenarios where it is important that the ship can exactly follow
the desired path in order to avoid collisions with the terrain.
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Appendix A

CSAD model, parameters
and code

Here, the MATLAB code for the implementation of the full model of CSAD is
presented. See Section 2.1 for a more thorough explanation of the modeling.

A.1 CSAD MATLAB code

A.1.1 Vessel function

1 f unc t i on [ Eta dot , Nu dot ] = Vesse l ( eta , tau s ,Nu)
2 Nu dot = CSAD full (Nu, tau s ) ;
3 yaw = eta (3 ) ;
4 R =[ cos (yaw) −s i n (yaw) 0 ;
5 s i n (yaw) cos (yaw) 0 ;
6 0 0 1 ] ;
7 Eta dot = R∗Nu;
8 end

A.1.2 CSAD function

1 f unc t i on nu dot = CSAD full (Nu, tau )
2 X u = −5.35;
3 X uu = 0 ;
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4 X uuu = −19.6312;
5

6 Y v = −10.16;
7 Y vv = −0.8647;
8 Y vvv = −681.1745;
9

10 Y r = −7.25;
11 Y rr = −3.45;
12 Y rrr = 0 ;
13

14 N v = 0 ;
15 N vv = −0.2088;
16 N vvv = 0 ;
17

18 N r = −14.55;
19 N rr = −9.9597;
20 N rrr = −0.3101;
21

22 N rv = 0 . 0 8 ;
23 N vr = 0 . 0 8 ;
24 Y rv = −0.805;
25 Y vr = −0.845;
26

27 X ud = −10;
28 Y vd = −105;
29 Y rd = −0.525;
30 N vd = −0.157;
31 N rd = −3.4950;
32

33 Nur = Y rd ;
34 Nuv = −(Y vd−X ud ) ;
35 Yur = X ud ;
36

37 x g = 0 . 0 3 7 5 ;
38 m = 1 2 7 . 9 2 ;
39 I z = 6 1 . 9 6 7 ;
40

41 u = Nu(1) ;
42 v = Nu(2) ;
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43 r = Nu(3) ;
44

45 d 11 = − X u − X uu∗abs (u) − X uuu∗u ˆ2 ;
46 d 22 = − Y v − Y vv∗abs ( v ) − Y rv∗abs ( r ) − Y vvv∗v

ˆ2 ;
47 d 23 = − Y r − Y rr ∗abs ( r ) − Y vr∗abs ( v ) − Y rrr ∗ r

ˆ2 − Yur∗u ;
48 d 32 = − N v − N vv∗abs ( v ) − N rv∗abs ( r ) − N vvv∗v

ˆ2 − Nuv∗u ;
49 d 33 = − N r − N rr ∗abs ( r ) − N vr∗abs ( v ) − N rrr ∗ r

ˆ2 − Nur∗u ;
50

51 D = [ d 11 0 0 ;
52 0 d 22 d 23 ;
53 0 d 32 d 33 ] ;
54

55 CA = [ 0 0 Y vd∗v+Y rd∗ r ;
56 0 0 −X ud∗u ;
57 −Y rd∗ r−Y vd∗v X ud∗u 0 ] ;
58

59 CRB = [ 0 0 −m∗( x g ∗ r+v ) ;
60 0 0 m∗u ;
61 m∗( x g ∗ r+v ) −m∗u 0 ] ;
62

63 C = CRB + CA;
64

65 M RB c = [m 0 0 ;
66 0 m m∗x g ;
67 0 m∗x g I z ] ;
68

69 M A c = [−X ud 0 0 ;
70 0 −Y vd −Y rd ;
71 0 −N vd −N rd ] ;
72

73 M = M RB c + M A c ;
74

75 nu dot = M\( tau − C∗Nu − D∗Nu) ;
76 end
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Appendix B

DWC code and
implementation
improvements

Here, the code needed to implement the 3 DOF dynamic window-based con-
troller in MATLAB/Simulink is presented. In addition, a fix which removes
actuator twitching due to operation on or close to the boundary lines of Vp is
also presented.

B.1 DWC MATLAB code

This is the code for the DWC based on the linearized ship model without a
nonlinear feedback. It can further be extended to account for disturbances,
time delays and uncertainties through the suggested improvements discussed in
Chapter 6. When doing experiments with the DWC in the MC-Lab, it became
clear that the processing time of this algorithm could be a potential issue if it is
wished to run the control system at a high frequency, as the algorithm is quite
computationally heavy. It is thus necessary to keep code optimization in mind.
This code is not the most optimized one or the one used in the laboratory,
but is included here because it is the most readable and easy to understand
of the DWC implementations that were developed in this project. The reader
should thus possibly put effort into optimizing this code if it is wanted to do
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experimental tests on a model-scale vessel with limited computational powers,
or, simply, reduce the frequency of the control system.

B.1.1 Pose controller

1 f unc t i on Nu d = PoseControl ( Eta t , Eta tdot , Eta )
2 Gamma1 = diag ( [ 0 . 0 8 , 0 . 08 , 0 . 0 6 9 8 ] ) ;
3 d e l t a p s i = 0 . 5 ;
4 d e l t a p = 0 . 5 ;
5

6 p s i = Eta (3 ) ;
7

8 R = [ cos ( p s i ) −s i n ( p s i ) 0 ; s i n ( p s i ) cos ( p s i ) 0 ; 0 0
1 ] ;

9 R T = R’ ;
10

11 z1 = R T ∗ ( Eta − Eta t ) ;
12

13 z1 p = [ z1 (1 ) , z1 (2 ) ] ’ ;
14 z 1 p s i = z1 (3 ) ;
15

16 f i r s t = 1/( s q r t ( z1 p ’∗ z1 p + d e l t a p ˆ2) ) ;
17 second = 1/( s q r t ( z 1 p s i ˆ2 + d e l t a p s i ˆ2) ) ;
18

19 K1 = Gamma1∗ [ f i r s t ∗ eye (2 , 2 ) z e ro s (2 , 1 ) ; z e r o s (1 , 2 )
second ] ;

20

21 Nu d = R T ∗ Eta tdot − K1 ∗ z1 ;
22 end

B.1.2 3 DOF dynamic window algorithm

1 f unc t i on [ alpha DWC dot ] = CSAD DWC3 linear (Nu d , Nu)
2 tau min = [−3.5996 −2.0032 −1 .7027 ] ’ ;
3 tau max = [ 3 . 5 9 9 6 2 .0032 1 . 7 0 2 7 ] ’ ;
4

5 [M,C,D] = CSAD linear2 (Nu) ;
6 Nu dot min = M\( tau min − D∗Nu) ;
7 Nu dot max = M\( tau max − D∗Nu) ;
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8

9 t s = 0 . 0 1 ;
10 Nu min = Nu+t s ∗Nu dot min ;
11 Nu max = Nu+t s ∗Nu dot max ;
12

13 %% Yawrate/ surge
14 u p o i n t s y s = l i n s p a c e ( Nu min (1) ,Nu max (1) ,21) ;
15 r p o i n t s y s = l i n s p a c e ( Nu min (3) ,Nu max (3) ,21) ;
16

17 i f CSAD g3 linear (Nu d , ’ yawrate surge ’ )>0 && ( Nu d (1)
>= Nu min (1) && Nu d (1)<= Nu max (1) ) && ( Nu d (3)>=

Nu min (3) && Nu d (3)<= Nu max (3) )
18 u d i f f y s = u po in t s y s−Nu d (1) ;
19 [ ˜ , u move ys ] = min ( abs ( u d i f f y s ) ) ;
20 u p o i n t s y s ( u move ys ) = u p o i n t s y s ( u move ys )−

u d i f f y s ( u move ys ) ;
21

22 r d i f f y s = r p o i n t s y s−Nu d (3) ;
23 [ ˜ , r move ys ] = min ( abs ( r d i f f y s ) ) ;
24 r p o i n t s y s ( r move ys ) = r p o i n t s y s ( r move ys )−

r d i f f y s ( r move ys ) ;
25 end
26

27 i f CSAD g3 linear (Nu d , ’ yawrate surge ’ )>0 && ( Nu d (1)
>= Nu min (1) && Nu d (1)<= Nu max (1) )

28 u d i f f y s = u po in t s y s−Nu d (1) ;
29 [ ˜ , u move ys ] = min ( abs ( u d i f f y s ) ) ;
30 u p o i n t s y s ( u move ys ) = u p o i n t s y s ( u move ys )−

u d i f f y s ( u move ys ) ;
31 end
32

33 i f CSAD g3 linear (Nu d , ’ yawrate surge ’ )>0 && ( Nu d (3)
>= Nu min (3) && Nu d (3)<= Nu max (3) )

34 r d i f f y s = r p o i n t s y s−Nu d (3) ;
35 [ ˜ , r move ys ] = min ( abs ( r d i f f y s ) ) ;
36 r p o i n t s y s ( r move ys ) = r p o i n t s y s ( r move ys )−

r d i f f y s ( r move ys ) ;
37 end
38
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39 uu po in t s y s =[ u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ;
u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ;
u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ;
u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ;
u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ; u p o i n t s y s ;
u p o i n t s y s ; u p o i n t s y s ] ;

40 r r p o i n t s y s =[ r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ;
r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ;
r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ;
r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ;
r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ; r p o i n t s y s ;
r p o i n t s y s ; r p o i n t s y s ] ’ ;

41

42 u s s y s = reshape ( uu po int s ys , [ 1 , 2 1 ∗ 2 1 ] ) ;
43 r s s y s = reshape ( r r p o i n t s y s , [ 1 , 2 1 ∗ 2 1 ] ) ;
44 Nu r ys = ze ro s (3 ,21∗21) ;
45 Nu r ys ( 1 , : ) = u s s y s ;
46 Nu r ys ( 3 , : ) = r s s y s ;
47 h ys = CSAD g3 linear ( Nu r ys , ’ yawrate surge ’ ) ;
48

49 Max point =21∗21;
50 Max point=Max point−sum( h ys<0) ;
51 Nu f ys = [ uu po in t s y s ( h ys>=0) ze ro s ( Max point , 1 )

r r p o i n t s y s ( h ys>=0) ] ’ ;
52

53 Ob ys = CSAD object ive funct ion dw3 (Nu d , Nu f ys , ’
yawrate surge ’ ) ;

54

55 [ ˜ , v e l p a i r y s ] = max( Ob ys ( : , 3 ) ) ;
56

57 a lpha ys = Nu f ys ( : , v e l p a i r y s ) ;
58

59 %% Yawrate/sway
60 v po int s ysw = l i n s p a c e ( Nu min (2) ,Nu max (2) ,21) ;
61 r po in t s y sw = l i n s p a c e ( Nu min (3) ,Nu max (3) ,21) ;
62

63 i f CSAD g3 linear (Nu d , ’ yawrate sway ’ )>0 && ( Nu d (2)
>= Nu min (2) && Nu d (2)<= Nu max (2) ) && ( Nu d (3)>=

Nu min (3) && Nu d (3)<= Nu max (3) )
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64 v d i f f y s w = v points ysw−Nu d (2) ;
65 [ ˜ , v move ysw ] = min ( abs ( v d i f f y s w ) ) ;
66 v po int s ysw ( v move ysw ) = v po int s ysw ( v move ysw

)−v d i f f y s w ( v move ysw ) ;
67

68 r d i f f y s w = r po int s ysw−Nu d (3) ;
69 [ ˜ , r move ysw ] = min ( abs ( r d i f f y s w ) ) ;
70 r po in t s y sw ( r move ysw ) = r po in t s y sw ( r move ysw

)−r d i f f y s w ( r move ysw ) ;
71 end
72

73 i f CSAD g3 linear (Nu d , ’ yawrate sway ’ )>0 && ( Nu d (2)>=
Nu min (2) && Nu d (2)<= Nu max (2) )

74 v d i f f y s w = v points ysw−Nu d (2) ;
75 [ ˜ , v move ysw ] = min ( abs ( v d i f f y s w ) ) ;
76 v po int s ysw ( v move ysw ) = v po int s ysw ( v move ysw

)−v d i f f y s w ( v move ysw ) ;
77 end
78

79 i f CSAD g3 linear (Nu d , ’ yawrate sway ’ )>0 && ( Nu d (3)>=
Nu min (3) && Nu d (3)<= Nu max (3) )

80 r d i f f y s w = r po int s ysw−Nu d (3) ;
81 [ ˜ , r move ysw ] = min ( abs ( r d i f f y s w ) ) ;
82 r po in t s y sw ( r move ysw ) = r po in t s y sw ( r move ysw

)−r d i f f y s w ( r move ysw ) ;
83 end
84

85 vv po ints ysw =[ v po int s ysw ; v po int s ysw ; v po int s ysw
; v po int s ysw ; v po int s ysw ; v po int s ysw ;
v po int s ysw ; v po int s ysw ; v po int s ysw ;
v po int s ysw ; v po int s ysw ; v po int s ysw ;
v po int s ysw ; v po int s ysw ; v po int s ysw ;
v po int s ysw ; v po int s ysw ; v po int s ysw ;
v po int s ysw ; v po int s ysw ; v po int s ysw ] ;

86 r r p o i n t s y s w =[ r po in t s y sw ; r po in t s y sw ; r po in t s y sw
; r po in t s y sw ; r po in t s y sw ; r po in t s y sw ;
r po in t s y sw ; r po in t s y sw ; r po in t s y sw ;
r po in t s y sw ; r po in t s y sw ; r po in t s y sw ;
r po in t s y sw ; r po in t s y sw ; r po in t s y sw ;
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r po in t s y sw ; r po in t s y sw ; r po in t s y sw ;
r po in t s y sw ; r po in t s y sw ; r po in t s y sw ] ’ ;

87

88 vss ysw = reshape ( vv points ysw , [ 1 , 2 1 ∗ 2 1 ] ) ;
89 r s s ysw = reshape ( r r po in t s y sw , [ 1 , 2 1 ∗ 2 1 ] ) ;
90 Nu r ysw = ze ro s (3 ,21∗21) ;
91 Nu r ysw ( 2 , : ) = vss ysw ;
92 Nu r ysw ( 3 , : ) = rs s ysw ;
93 h ysw = CSAD g3 linear ( Nu r ysw , ’ yawrate sway ’ ) ;
94

95 Max point =21∗21;
96 Max point=Max point−sum( h ysw<0) ;
97 Nu f ysw = [ z e ro s ( Max point , 1 ) vv po ints ysw ( h ysw>=0)

r r p o i n t s y s w ( h ysw>=0) ] ’ ;
98

99 Ob ysw = CSAD object ive funct ion dw3 (Nu d , Nu f ysw , ’
yawrate sway ’ ) ;

100

101 [ ˜ , v e l p a i r y s w ] = max( Ob ysw ( : , 3 ) ) ;
102

103 alpha ysw = Nu f ysw ( : , v e l p a i r y s w ) ;
104

105 %% Sway/ Surge
106 v po in t s sws = l i n s p a c e ( Nu min (2) ,Nu max (2) ,21) ;
107 u po in t s sws = l i n s p a c e ( Nu min (1) ,Nu max (1) ,21) ;
108

109 i f CSAD g3 linear (Nu d , ’ sway surge ’ )>0 && ( Nu d (2)>=
Nu min (2) && Nu d (2)<= Nu max (2) ) && ( Nu d (1)>=
Nu min (1) && Nu d (1)<= Nu max (1) )

110 v d i f f s w s = v po int s sws−Nu d (2) ;
111 [ ˜ , v move sws ] = min ( abs ( v d i f f s w s ) ) ;
112 v po in t s sws ( v move sws ) = v po in t s sws ( v move sws

)−v d i f f s w s ( v move sws ) ;
113

114 u d i f f s w s = u po int s sws−Nu d (1) ;
115 [ ˜ , u move sws ] = min ( abs ( u d i f f s w s ) ) ;
116 u po in t s sws ( u move sws ) = u po in t s sws ( u move sws

)−u d i f f s w s ( u move sws ) ;
117 end
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118

119 i f CSAD g3 linear (Nu d , ’ sway surge ’ )>0 && ( Nu d (2)>=
Nu min (2) && Nu d (2)<= Nu max (2) )

120 v d i f f s w s = v po int s sws−Nu d (2) ;
121 [ ˜ , v move sws ] = min ( abs ( v d i f f s w s ) ) ;
122 v po in t s sws ( v move sws ) = v po in t s sws ( v move sws

)−v d i f f s w s ( v move sws ) ;
123 end
124

125 i f CSAD g3 linear (Nu d , ’ sway surge ’ )>0 && ( Nu d (1)>=
Nu min (1) && Nu d (1)<= Nu max (1) )

126 u d i f f s w s = u po int s sws−Nu d (1) ;
127 [ ˜ , u move sws ] = min ( abs ( u d i f f s w s ) ) ;
128 u po in t s sws ( u move sws ) = u po in t s sws ( u move sws

)−u d i f f s w s ( u move sws ) ;
129 end
130

131 vv po in t s sws =[ v po in t s sws ; v po in t s sws ; v po in t s sws
; v po in t s sws ; v po in t s sws ; v po in t s sws ;
v po in t s sws ; v po in t s sws ; v po in t s sws ;
v po in t s sws ; v po in t s sws ; v po in t s sws ;
v po in t s sws ; v po in t s sws ; v po in t s sws ;
v po in t s sws ; v po in t s sws ; v po in t s sws ;
v po in t s sws ; v po in t s sws ; v po in t s sws ] ’ ;

132 uu po int s sws =[ u po in t s sws ; u po in t s sws ; u po in t s sws
; u po in t s sws ; u po in t s sws ; u po in t s sws ;
u po in t s sws ; u po in t s sws ; u po in t s sws ;
u po in t s sws ; u po in t s sws ; u po in t s sws ;
u po in t s sws ; u po in t s sws ; u po in t s sws ;
u po in t s sws ; u po in t s sws ; u po in t s sws ;
u po in t s sws ; u po in t s sws ; u po in t s sws ] ;

133

134 vss sws = reshape ( vv po ints sws , [ 1 , 2 1 ∗ 2 1 ] ) ;
135 uss sws = reshape ( uu points sws , [ 1 , 2 1 ∗ 2 1 ] ) ;
136 Nu r sws = ze ro s (3 ,21∗21) ;
137 Nu r sws ( 2 , : ) = vss sws ;
138 Nu r sws ( 1 , : ) = uss sws ;
139 h sws = CSAD g3 linear ( Nu r sws , ’ sway surge ’ ) ;
140
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141 Max point =21∗21;
142 Max point=Max point−sum( h sws<0) ;
143 Nu f sws = [ uu po int s sws ( h sws>=0) vv po in t s sws (

h sws>=0) ze ro s ( Max point , 1 ) ] ’ ;
144

145 Ob sws = CSAD object ive funct ion dw3 (Nu d , Nu f sws , ’
sway surge ’ ) ;

146

147 [ ˜ , v e l p a i r s w s ] = max( Ob sws ( : , 3 ) ) ;
148

149 alpha sws = Nu f sws ( : , v e l p a i r s w s ) ;
150

151 %%
152 alpha f DWC = ( a lpha ys + alpha ysw + alpha sws ) /2 ;
153

154 alpha DWC dot = ( alpha f DWC − Nu) / t s ;
155 end

B.1.3 Function to find feasible velocities, g(u, v, r)

1 f unc t i on h = CSAD g3 linear (Nu, sw i t chcase )
2 switch sw i t chcase
3 case ’ yawrate surge ’
4 r r y s = Nu( 3 , : ) ’ ;
5 uu ys = Nu( 1 , : ) ’ ;
6 h1 ys = ( r r y s +0.117) ;
7 h2 ys = (3 .3684∗ r r y s + 0 .6728) − uu ys ;
8 h3 ys = (−3.3684∗ r r y s + 0 .6728) − uu ys ;
9 h4 ys = −( r r y s −0.117) ;

10 h5 ys = −(3.3684∗ r r y s − 0 .6728) + uu ys ;
11 h6 ys = −(−3.3684∗ r r y s − 0 .6728) + uu ys ;
12 h = min ( [ h1 ys ’ ; h2 ys ’ ; h3 ys ’ ; h4 ys ’ ; h5 ys ’ ;

h6 ys ’ ] ) ’ ;
13

14 case ’ yawrate sway ’
15 rr ysw = Nu( 3 , : ) ’ ;
16 vv ysw = Nu( 2 , : ) ’ ;
17 h1 ysw = (0 .97171∗ rr ysw + 0.1972) − vv ysw ;
18 h2 ysw = (−2.3992∗ rr ysw + 0.1972) − vv ysw ;
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19 h3 ysw = −(0.97171∗ rr ysw − 0 .1972) + vv ysw ;
20 h4 ysw = −(−2.3992∗ rr ysw − 0 .1972) + vv ysw ;
21 h = min ( [ h1 ysw ’ ; h2 ysw ’ ; h3 ysw ’ ; h4 ysw ’ ] ) ’ ;
22

23 case ’ sway surge ’
24 uu sws = Nu( 1 , : ) ’ ;
25 vv sws = Nu( 2 , : ) ’ ;
26 h1 sws = ( vv sws +0.1972) ;
27 h2 sws = (3 .464∗ vv sws + 0 .9618) − uu sws ;
28 h3 sws = (1 .4041∗ vv sws + 0 .6728) − uu sws ;
29 h4 sws = (−1.4041∗ vv sws + 0 .6728) − uu sws ;
30 h5 sws = (−3.464∗ vv sws + 0 .9618) − uu sws ;
31 h6 sws = −(vv sws −0.1972) ;
32 h7 sws = −(3.464∗ vv sws − 0 .9618) + uu sws ;
33 h8 sws = −(1.4041∗ vv sws − 0 .6728) + uu sws ;
34 h9 sws = −(−1.4041∗vv sws − 0 .6728) + uu sws ;
35 h10 sws = −(−3.464∗vv sws − 0 .9618) + uu sws ;
36 h = min ( [ h1 sws ’ ; h2 sws ’ ; h3 sws ’ ; h4 sws ’ ;

h5 sws ’ ; h6 sws ’ ; h7 sws ’ ; h8 sws ’ ; h9 sws ’ ;
h10 sws ’ ] ) ’ ;

37

38 otherwi s e
39 h = 0 ;
40 end
41 end

B.1.4 Objective function, G(νd, νf )

1 f unc t i on Ob = CSAD object ive funct ion dw3 (Nu d , Nu f ,
sw i t chcase )

2 u f = Nu f ( 1 , : ) ;
3 u d = Nu d ( 1 , : ) ;
4 v f = Nu f ( 2 , : ) ;
5 v d = Nu d ( 2 , : ) ;
6 r f = Nu f ( 3 , : ) ;
7 r d = Nu d ( 3 , : ) ;
8

9 surge = 1 − abs ( u d − u f ) /(max( abs ( u d − u f ) ) ) ;
10 sway = 1 − abs ( v d − v f ) /(max( abs ( v d − v f ) ) ) ;
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11 yawrate = 1 − abs ( r d − r f ) /(max( abs ( r d− r f ) ) ) ;
12

13 switch sw i t chcase
14 case ’ yawrate surge ’
15 Ob = [ yawrate ’ surge ’ yawrate ’+ surge ’ ] ;
16 case ’ yawrate sway ’
17 Ob = [ yawrate ’ sway ’ yawrate ’+sway ’ ] ;
18 case ’ sway surge ’
19 Ob = [ sway ’ surge ’ sway ’+ surge ’ ] ;
20 otherwi s e
21 Ob = [ 0 0 0 ] ;
22 end
23 end

B.1.5 Velocity controller

1 f unc t i on Tau dw = Veloc i tyContro l (Alpha DWC ,
Alpha DWC dot , Nu)

2 [M, C, D] = CSAD linear2 (Nu) ;
3 Tau dw = M ∗ Alpha DWC dot + D ∗ Alpha DWC ;
4 end

B.2 Improvements to the DW algorithm

When operating close to the boundary lines of Vp, in most cases the algorithm
does not include feasible velocities at the boundary. This means that actua-
tor twitching can occur as the algorithm tracks the desired velocity along the
boundary lines of Vp. To get around this, effort has been put into adding a
fix that always makes sure that there are feasible velocities along the boundary
lines of Vp, thus removing the unwanted actuator twitching that can occur when
operating at or close to maximum velocities. Here, a fix for the left and right
boundaries of Vp for the 2 DOF yaw rate-sway speed case is presented. Similar
fixes will have to be implemented for all the other boundary lines of all three 2
DOF cases in order to properly improve performance in all possible operational
scenarios.

Figure B.1 illustrates Vp, Vw, Vf and νd = [0.4 m/s, 0.13 m/s, 1.5 deg/s]>

given a current velocity of ν = [0.3 m/s, 0.1 m/s, 2 deg/s]>. Note that this figure
is not to scale, and is used for illustrative purposes only. The lower plot shows
the whole yaw rate-sway speed window, while the upper right plot shows a
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zoomed-in version of the yaw rate-sway speed window were no boundary line fix
is included. The upper left plot shows how the fix has added discrete solutions
along the boundary line of Vp, effectively making it possible to move along the
boundary line without causing actuator twitching.

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

Boundary of V
p

Boundary of V
w

Discrete solutions
Current velocity
Target velocity
Chosen velocity

1.4 1.6 1.8 2
0.11

0.12

0.13

0.14

1.4 1.6 1.8 2
0.11

0.12

0.13

0.14

Figure B.1: Improving performance by adding feasible velocities to the boundary
line of Vp.

B.2.1 Improvement to movement on the boundary of Vp

This code should be added to the 3 DOF dynamic window algorithm, and
should, for this specific example, be added at line 98 in the given code. The
code is given by:

1 i f sum(h<0)>0
2 i f Nu(3) > −9.4405e−13 && Nu(2) >= 0
3 v1 = −2.3992∗ r po in t s y sw + 0 . 1 9 7 2 ;
4 Nu b = [ z e ro s (1 , 21 ) ; v1 ; r po in t s y sw ] ;
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5 h2 = gDW(Nu b , Nu min , Nu max) ;
6 Nu fb = Nu b ( : , h2>=0) ;
7 Nu f ysw = [ Nu f ysw Nu fb ] ;
8 e l s e i f Nu(3 ) > 0 .0822 && Nu(2) < 0
9 v1 = −2.3992∗ r po in t s y sw + 0 . 1 9 7 2 ;

10 Nu b = [ z e ro s (1 , 21 ) ; v1 ; r po in t s y sw ] ;
11 h2 = gDW(Nu b , Nu min , Nu max) ;
12 Nu fb = Nu b ( : , h2>=0) ;
13 Nu f ysw = [ Nu f ysw Nu fb ] ;
14 e l s e i f Nu(3 ) < −0.0822 && Nu(2) > 0
15 v1 = −2.3992∗ r po in t s y sw − 0 . 1 9 7 2 ;
16 Nu b = [ z e ro s (1 , 21 ) ; v1 ; r po in t s y sw ] ;
17 h2 = gDW(Nu b , Nu min , Nu max) ;
18 Nu fb = Nu b ( : , h2>=0) ;
19 Nu f ysw = [ Nu f ysw Nu fb ] ;
20 e l s e i f Nu(3 ) < 9 .4405 e−13 && Nu(2) <= 0
21 v1 = −2.3992∗ r po in t s y sw + 0 . 1 9 7 2 ;
22 Nu b = [ z e ro s (1 , 21 ) ; v1 ; r po in t s y sw ] ;
23 h2 = gDW(Nu b , Nu min , Nu max) ;
24 Nu fb = Nu b ( : , h2>=0) ;
25 Nu f ysw = [ Nu f ysw Nu fb ] ;
26 end
27 end

where the function gDW (ν,νmin,νmax) is given by

1 f unc t i on h = gDW(Nu, Nu min , Nu max)
2 r r = Nu( 3 , : ) ’ ;
3 vv = Nu( 2 , : ) ’ ;
4

5 h1 = −(vv−Nu max (2) ) ;
6 h2 = ( vv−Nu min (2) ) ;
7 h3 = −(rr−Nu max (3) ) ;
8 h4 = ( rr−Nu min (3) ) ;
9

10 h = min ( [ h1 ’ ; h2 ’ ; h3 ’ ; h4 ’ ] ) ’ ;
11

12 end
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Appendix C

Publications

Here, the publications that are based upon the work done in this thesis are
presented. First, the article ”Improvement of Ship Motion Control Using a
Magnitude-Rate Saturation Model, in Proceedings of the 2nd IEEE Conference
on Control Technology and Applications” [9], is presented. Then, the article
”A Dynamic Window-Based Controller for Dynamic Positioning Satisfying Ac-
tuator Magnitude Constraints, in Proceedings of the 11th IFAC Conference on
Control Applications in Marine Systems, Robotics, and Vehciles” [6], is pre-
sented. The final version of the second article is to be submitted by July 5,
2018. The current version, as of June 11, 2018, is included here, but changes
may have been done to the final version after this thesis has been handed in. For
more accurate reading, it is recommended to find the final version elsewhere,
but the current version is included here because, as of June 11, 2018, the article
is yet to be available online and might be of interest to the early readers of this
thesis.
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Improvement of Ship Motion Control Using a
Magnitude-Rate Saturation Model

Ole Nikolai Lyngstadaas, Tore Egil Sæterdal, Mikkel Eske Nørgaard Sørensen, Morten Breivik

Abstract— Motion control concepts for ships have tradition-
ally not focused on handling actuator constraints. This paper
investigates the effects on performance of a pair of nonlinear
control schemes by developing and implementing a magnitude-
rate saturation (MRS) model. The effects of using the MRS
model is tested in experiments with a model ship in an ocean
basin. Performance metrics are used to evaluate performance
in terms of control error, energy efficiency, and actuator wear
and tear.

Index Terms— Ship motion control, Magnitude-rate satura-
tion model, Constraint handling, Nonlinear control, Model-scale
experiments, Wear and tear

I. INTRODUCTION
In traditional control theory, an ideal controller might

achieve perfect reference tracking in simulations, having no
or non-sufficient limitations on the control input. However,
in real-life applications it would not be feasible due to
limitations in physical output and wear and tear of the
actuators.

Several ways of handling actuator constraints have been
investigated throughout the years. In [1], model predictive
control for systems with actuator magnitude and rate con-
straints is presented. A solution using a modified dynamic
window approach to handle actuator constraints is investi-
gated in [2], and further expanded in [3].

To easily include magnitude and rate saturation (MRS)
effects into a control system, a possible low-level approach
is to limit the output of the control signal within the limits
of the actuators. However, this may lead to an under-damped
closed-loop system. To avoid this, effort has been put into
implementing a model for combining MRS to smoothen the
control output within allowed actuator limits. In [4], an MRS
model is derived to address the issue of anti-windup, and the
MRS model used in this paper is based on this approach.

In particular, the magnitude and rate saturations in this
paper are set at lower limits than the actual actuator con-
straints. The main purpose is to investigate how limiting the
actuator’s magnitude and rate outputs will impact the overall
performance of the motion control system. The MRS model,
depending on how it is tuned, can be implemented in a
simulation scenario, where the purpose is to mimic the actual
constraints of the system, or be used to limit actuator outputs
in laboratory experiments and on-board actual vessels.

O. N. Lyngstadaas and T. E. Sæterdal are M.Sc. students at the De-
partment of Engineering Cybernetics, Norwegian University of Science and
Technology (NTNU), NO-7491 Trondheim, Norway. M. E. N. Sørensen
and M. Breivik are with the Centre for Autonomous Marine Operations and
Systems, Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU), NO-7491 Trondheim, Norway. Email:
{mikkel.e.n.sorensen, morten.breivik}@ieee.org

The main contribution of this paper are the experimental
results from scale testing on a 1:90 ship model. The MRS
model from [4] is adapted to a three degrees of freedom
(DOF) ship model and experimentally tested at the Marine
Cybernetics Laboratory (MC-Lab) at the Norwegian Uni-
versity of Science and Technology (NTNU) in Trondheim,
Norway. Furthermore, the positive effects of employing MRS
to a pair of nonlinear feedback control schemes from [5] have
been investigated.

The rest of this paper is organized as follows: Section II
presents a mathematical ship model; Section III defines the
control objective and the 4-corner test, derivation of the MRS
model, and also presents a pair of nonlinear controllers from
[5]; Section IV presents the experimental results from model-
scale testing in the MC-Lab, while Section V concludes the
paper.

II. SHIP MODEL

The motion of a ship can be represented by the pose
vector η = [x, y, ψ]

> ∈ R2 × S and the velocity vector
ν = [u, v, r]

> ∈ R3. Here, (x, y) represents the Cartesian
position in the local earth-fixed reference frame, ψ is the
yaw angle, (u, v) represents the body-fixed linear velocities
and r is the yaw rate. The 3-DOF dynamics of a ship can
then be stated as in [6]:

η̇ = R(ψ)ν (1)
Mν̇ +C(ν)ν +D(ν)ν = τ , (2)

where M ∈ R3×3, C(ν) ∈ R3×3, D(ν) ∈ R3×3 and
τ = [τ1, τ2, τ3]> represent the inertia matrix, Coriolis and
centripetal matrix, damping matrix and control input vector,
respectively. The rotation matrix R(ψ) ∈ SO(3) is given by

R(ψ) =




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 . (3)

The system matrices are assumed to satisfy the properties
M = M> > 0, C(ν) = −C(ν)> and D(ν) > 0.

A. Nominal model

The model and parameters of the model-scale ship C/S
Inocean Cat I Drillship (CSAD) [7], as shown in Fig. 1,
will be used in this paper. CSAD is a 1:90 scale replica of
a supply ship, with a length of L = 2.578 m. The inertia
matrix is given as

M = MRB +MA, (4)
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Fig. 1: C/S Inocean Cat I Drillship in the MC-lab.

where

MRB =



m 0 0
0 m mxg
0 mxg Iz


 (5)

MA =



−Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ


 . (6)

The mass of CSAD is m = 127.92 kg, while xg =
0.00375 m is the distance along the x-axis in the body frame
from the centre of gravity, and Iz = 61.987 kg m2 is the
moment of inertia about the z-axis in the body frame. Other
parameter values are listed in Table I, which are updated
values from [7], where a few changes to the numerical values
and signs have been done to better fit the actual laboratory
performance of CSAD.

CSAD has six azimuth thrusters, which in the experiments
presented here are fixed to the angles
δ = [π, π/4,−π/4, 0, 5π/4, 3π/4]> rad, in the body-fixed
coordinate system, giving a fully actuated vessel [3].

The Coriolis and centripetal matrix is

C(ν) = CRB(ν) +CA(ν), (7)

with

CRB(ν) =




0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0


 (8)

CA(ν) =




0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0


 , (9)

where

cA,13(ν) = −Yṙr − Yv̇v (10)
cA,23(ν) = −Xu̇u. (11)

Finally, the damping matrix D(ν) is given as

D(ν) = DL +DNL(ν), (12)

where

DL =



−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr


 (13)

TABLE I: Parameters for CSAD, updated from [7].

Parameter Value

Xu̇ −3.262
Yv̇ −28.890
Yṙ −0.525
Nv̇ −0.157
Nṙ −13.980
Xu −2.332
X|u|u 0
Xuuu −8.557
Yv −4.673
Y|v|v −0.398
Yvvv −313.300
Yr −7.250

Parameter Value

Y|r|r −3.450
Yrrr 0
Nr −6.916
N|r|r −4.734
Nrrr −0.147
Nv 0
N|v|v −0.209
Nvvv 0
N|r|v 0.080
N|v|r 0.080
Y|r|v −0.805
Y|v|r −0.845

DNL(ν) =



dNL,11(ν) 0 0

0 dNL,22(ν) dNL,23(ν)
0 dNL,32(ν) dNL,33(ν)


 , (14)

with

dNL,11(ν) = −X|u|u|u| −Xuuuu
2 (15)

dNL,22(ν) = −Y|v|v|v| − Y|r|v|v| − Yvvvv2 (16)

dNL,23(ν) = −Y|r|r|r| − Y|v|r|v| − Yrrrv2 − Yuru (17)

dNL,32(ν) = −N|v|v|v| −N|r|v|r| −Nvvvv2 −Nuvu
(18)

dNL,33(ν) = −N|r|r|v| −N|v|r|v| −Nrrrr2 −Nuru,
(19)

where

Yur = Xu̇ (20)
Nuv = −(Yv̇ −Xu̇) (21)
Nur = Yṙ, (22)

which are damping terms which are linearly increasing with
the forward speed. These are added to compensate for the
Munk moment, and to get a more physically realistic model
behavior [2], [8].

III. CONTROL DESIGN
A. Control objective and 4-corner test

The main control objective is to make η̃(t)
4
= η(t) −

ηt(t) −→ 0 t → ∞, where ηt(t) = [xt(t), yt(t), ψt(t)]
> ∈

R2 × S represents the pose associated with a target point.
The motion of the target is typically defined by a human or
generated by a guidance system. For notational simplicity,
time t will mostly be omitted for the rest of the paper.

It is desirable to investigate the effect of the magnitude-
rate saturation model during different ship maneuvers. For
this reason, a 4-corner maneuvering test is used, as shown
in Fig. 2. For comparison, the experiments will be conducted
with and without using the MRS model to identify notable
effects on performance.

The 4-corner maneuvering test is proposed in [9] as a
way to compare ship performance of dynamic positioning
control algorithms. The ship is first initialized in dynamic
positioning to point straight North at heading 0 (deg). Then
the following setpoint changes are commanded:
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Fig. 2: The 4-corner dynamic positioning test. Modified from
[9].

• Position change 2 (m) straight North: tests a pure surge
movement ahead.

• Position change 2 (m) straight East: tests a pure sway
movement in the starboard direction.

• Heading change 45 (deg) clockwise: tests a pure yaw
motion while keeping position steady.

• Position change 2 (m) straight South: tests a combined
surge-sway movement while keeping heading steady.

• Position change 2 (m) straight West and heading change
45 (deg) counterclockwise: tests a combined surge-
sway-yaw movement.

B. Magnitude-rate saturation model design

Modelling the vessel’s actuator constraints is important to
ensure that the controller output remains inside a feasible
range of values. Both magnitude and rate constraints will
impact a vessel’s ability to maneuver, and should be handled
in the control system.

1) Saturation modeling: A generalized saturation block
for an actuator can be modeled as

τs,i(τi) =





τi,min if τi ≤ τi,min
τi if τi,min < τi < τi,max, ∀i ∈ {1, 2, 3},
τi,max if τi ≥ τi,max

(23)
where τi is the commanded control input without saturation
with i ∈ {1, 2, 3} to control surge, sway and yaw forces
and moment, respectively. The saturation limits are repre-
sented by τmin = [τ1,min, τ2,min, τ3,min]> and τmax =
[τ1,max, τ2,max, τ3,max]> with negative and positive bounded
elements, respectively.

s 1
s

K

+

+

δ̇ δτ c τmrs

−+

Fig. 3: Block diagram for the MRS model (24).

2) Magnitude-rate saturation model: An approach to
model the MRS effects is given by

δ̇ = satr(τ̇ c +K(τc − δ)) (24)
τmrs = satm(δ), (25)

where τ c, δ and τmrs are the input, state and output of the
MRS model, respectively, and where K > 0 is a diagonal
tuning matrix. The matrix is introduced in order to avoid an
unstable cancellation between the derivative operator s and
the integrator in Fig. 3, where the block diagram for the MRS
model is shown. Because of this, an important observation is
that neither of the elements of the matrix K can be equal to
1, and thus also K 6= I . The gain matrix K affects the speed
of the inner-loop in the MRS model, and should be chosen
based on the desired tracking performance. The derivative
of the input, τ̇ c, is supposed to exist and can be calculated
using numerical derivation. The saturation limits satr and
satm are modeled as the saturation block above, and contain
the vessel’s rate and magnitude constraints, respectively. See
[4] for further details.

In this setup, the rate is limited first and the magnitude
next, meaning that the MRS model state δ can exceed the
magnitude-bounds vectorm, although the output τmrs never
does. It should also be noted that this model can be further
extended to effectively solve anti-windup problems, should
such effects be needed to be accounted for.

C. Nonlinear control design

The MRS model will be tested with two types of feedback
controllers in order to investigate the impact on performance
for both linear and nonlinear feedback terms.

1) Nonlinear pose and linear velocity feedbacks: Using
a control scheme based on a combination of nonlinear
feedback of pose and linear feedback of velocity from [5],
the control input can be chosen as

τ = Mα̇+C(ν)α+D(ν)α− Γ2z2, (26)

where

α̇ = R>(ψ)η̈t + S(r)>R>(ψ)η̇t − K̇1(·)z1 −K1(·)ż1,
(27)
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with Γ2 > 0 and where

S(r) =




0 −r 0
r 0 0
0 0 0


 . (28)

Here, the error variables z1 = [z1,x, z1,y, z1,ψ]> and z2 =
[z2,u, z2,v, z2,r]

> are defined as

z1
4
= R(ψ)(η − ηt) (29)

z2
4
= ν −α, (30)

where α ∈ R3 is a vector of stabilizing functions, which
can be interpreted as a desired velocity. As in [5], α can be
chosen as

α = R>(ψ)η̇t −K1(·)z1, (31)

with the nonlinear feedback term K1(·) chosen as

K1(·) = Γ1




1√
z>1,p̃z1,p̃ + ∆2

p̃

I2×2 02×1

01×2
1√

z2
1,ψ̃

+ ∆2
ψ̃



,

(32)

where z1,p̃ = [z1,x, z1,y]>, Γ1 > 0 and ∆i > 0 are tuning
parameters. Furthermore, K̇1(·) is given by

K̇1(·) = −Γ1




z>1,p̃ż1,p̃

(z>1,p̃z1,p̃ + ∆2
p̃)

3
2

I2×2 02×1

01×2
z1,ψ̃ ż1,ψ̃

(z2
1,ψ̃

+ ∆2
ψ̃

)
3
2


 .

(33)
2) Nonlinear pose and velocity feedbacks: The other

control scheme from [5] augments (26) with a nonlinear
velocity feedback term, giving the control input

τ = Mα̇+C(ν)α+D(ν)α−K2(·)z2, (34)

where α̇ and α are given by (27) and (31), respectively, and
with the nonlinear feedback term K2(·) chosen as

K2(·) = Γ2




1√
z2,ν̃>z2,ṽ + ∆2

ṽ

I2×2 02×1

01×2
1√

z2,r̃2 + ∆2
r̃


 ,

(35)

where z2,ṽ = [z2,u, z2,v]
> and ∆i > 0 are tuning parame-

ters. The feedback gain Γ2 is the same matrix as in (26).
The nonlinear pose and linear velocity feedback controller

and the nonlinear pose and velocity feedback controller will
be abbreviated NP-LV and NP-NV, respectively, throughout
the rest of this paper.

TABLE II: Control gains.

NP-LV NP-NV

Γ1 diag([0.08, 0.08, 0.0698]) −||−
Γ2 diag([0.2, 0.2, 0.1745])M −||−
∆p̃ 0.5 −||−
∆ψ̃ 0.5 −||−
∆ṽ − 0.7
∆r̃ − 1
K diag([4, 3, 2]) −||−

3) Stability: Based on the theorems and stability proofs
in [10], we can conclude that the two controllers have the
following stability properties: The origin (z1, z2) = (0,0)
is uniformly globally asymptotically stable (UGAS) and on
each compact set B ⊂ R6 containing the origin, it is
uniformly exponentially stable (UES) [10]. The MRS model
is a nonlinear filter, and it is proven in [4] that the output
will be an L2 signal if the input is an L2 signal, so it can be
concluded that the MRS model does not alter the stability
properties of the system.

4) Parameter tuning: The experiments are conducted with
the gain parameters shown in Table II. The choice of the
gain parameters for the two controllers are based on the
tuning rules described in [10]. Here, the goal is to make the
kinetic subsystem faster than the kinematic subsystem, which
means that the kinetic subsystem needs to have smaller time
constants than the kinematic subsystem in the linear region.
The ∆-values scale the linear feedback gains and therefore
the resulting time constants of the linear region, and must
therefore be chosen such that they do not make the kinematic
subsystem faster than the kinetic subsystem.

The actuator saturation limits are chosen by the follow-
ing set of suggested tuning rules as well [11]. Here, the
magnitude saturation limits are set lower than the actual
limitations in order to save energy, and chosen as m =
[2, 1.5, 1]. The rate saturation limits are chosen by r =
[m1/tmrs,1,m2/tmrs,2,m3/tmrs,3]>, where m1, m2 and
m3 are the magnitude saturation limits given by m, and
where tmrs,1, tmrs,2 and tmrs,3 are the desired transition
times for the actuators to go from zero to max thrust
in surge, sway and yaw, respectively. Here, suitable val-
ues for the rate saturation limits were found to be r =
[1.9, 1.1, 0.8]. Then, the gain matrix K can be chosen by
K = diag([K1,1,

m2

m1
K1,1,

m3

m1
K1,1]), where under normal

operations it is desired to have all the diagonal elements
Ki,i > 1, ∀i ∈ {1, 2, 3}. Here, K1,1 = 4 to ensure a fast
tracking of the target signal in all three degrees of freedom.
The block diagram for the full control system is shown in
Fig. 4.

IV. EXPERIMENTAL RESULTS AND
PERFORMANCE EVALUATION

A. Marine Cybernetics Laboratory

As already mentioned, the MC-Lab is a small ocean basin
at NTNU. Due to its relatively small size and advanced
instrumentation package, the facility is especially suited for
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τ c
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Fig. 4: Block diagram for the ship control system.

tests of motion control systems for marine vessel models, but
is also suitable for more specialized hydrodynamic tests due
to the advanced towing carriage, which has capability for
precise movement of models up to six degrees of freedom
[12].

The experiments will be conducted under the following
conditions: In the experiments, the actual model ship’s M ,
C and D matrices will differ somewhat from those used in
the controllers. Also, measurement noise is present in the
Qualisys motion tracking system used in the laboratory.

B. Performance metrics

Performance metrics are used to objectively compare the
performance of different control schemes. In this paper, the
error variable is defined as the scaled norm of the pose
control error z1, such that

e =
√
z̄>1 z̄1, (36)

where

z̄1 = [
z1,x
4
,
z1,y
4
,
z1,ψ
π/2

]>. (37)

Since the position and yaw angle in pose have different
units, we have defined the normalized pose error signals z̄1,x,
z̄1,y and z̄1,ψ on the intervals [−0.5, 0.5] in the expected
operational space of the ship [13]. To get this interval, the
position errors are divided by 4 and the yaw error is divided
by π

2 , since the position errors are in the intervals [−2, 2]
and the yaw error is in the interval [−π4 , π4 ], resulting in the
normalized control error e.

Three different performance metrics are used in this paper,
namely IAE, IAEW and IADC. The IAE (integral of the
absolute error) metric is defined as an unweighted integral
over time:

IAE(t) =

∫ t

0

|e(γ)| dγ. (38)

The IAEW (integral of the absolute error multiplied by
energy consumption) metric scales IAE by the energy con-
sumption

IAEW (t) =

∫ t

0

|e(γ)| dγ
∫ t

0

P (γ)dγ, (39)

where P =
∣∣ν>τ

∣∣, thus yielding a measure of energy
efficiency.

Since the aim of the MRS model is also to reduce
actuator wear and tear, it is interesting to investigate the
dynamic behavior of the control signal. The IADC (integral
of absolute differentiated control) metric is defined as in [13]:

IADC(t) =

∫ t

t0

| ˙̄τ(γ)| dγ, (40)

with τ̄(t) =
√
τ>τ , and where ˙̄τ is computed using

numerical derivation.

C. Experimental results

In the experiments, the target pose changes between set-
points for the 4-corner test. The system is implemented such
that the target will automatically change to the next setpoint
when the ship is within 0.003 m from the target in both x
and y direction and 0.2 deg from the target heading. When
the 4-corner test is completed, the ship will have returned
accurately to its initial position and heading, ready for a new
test at the same pose and along the same track.

While CSAD has a length of L = 2.578 m, its outline has
been scaled by 1:6 in the 4-corner plots in Fig. 5 and 8, to
better display the ship behaviour. By the plotted values of
the performance metrics in Fig. 6 and 9, the effects of the
MRS model on control performance can be examined. Fig.
5 shows the 4-corner track and the actual trajectory for the
CSAD with and without the MRS model applied to the NP-
LV controller. The results show no remarkable difference in
the trajectory.

The performance metrics are plotted in Fig. 6. The metrics
show that the while MRS does not reduce the overall tracking
error by the IAE metric, both energy consumption (IAEW)
and actuator wear and tear (IADC) are reduced by 6.8% and
38.8%, respectively.

In Fig. 7, the commanded thrust signals are shown for
the 4-corner test. It can be seen that the MRS contributes to
a smoother and amplitude-wise smaller control signal, while
achieving approximately the same tracking performance. The
spikes that can be seen in the control signal, especially
during transients, are caused by noise related to the velocity
estimation.

Fig. 8 displays the 4-corner trajectory for the NP-NV
controller. Even though the NP-NV-controlled vessel with
MRS effects takes a wider arch in the coupled motion
(5 −→ 1) in Fig. 2, the overall tracking error is not increased,
as seen in Table III.

Furthermore, Fig. 9 shows improvement in energy effi-
ciency, shown by the IAEW metric, and lower actuator wear
and tear through the IADC metric. The reduction is greater
for the NP-NV controller than the NP-LV controller, which
is due to the fact the NP-NV is inherently a more aggressive
controller, and thus benefits more from using an MRS model.
For the NP-NV controller, the reduction is 12.2% and 46.4%
for IAEW and IADC, respectively.
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Fig. 5: Vessel performing the 4-corner manoeuver using the
NP-LV controller.
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Fig. 6: Performance metrics for NP-LV.
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Fig. 7: Commanded control input for NP-LV.
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Fig. 8: Vessel performing the 4-corner maneuver using the
NP-NV controller.
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Fig. 9: Performance metrics for NP-NV.
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Fig. 10: Commanded control input for NP-NV.
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TABLE III: Performance metrics final values.

NP-LV NP-LV
MRS

NP-NV NP-NV
MRS

IAE final 92.99 92.85 89.49 90.38
IAEW
final

410.12 382.23 460.08 403.79

IADC final 95.99 58.73 118.26 63.34

Fig. 10 shows the commanded control inputs for the NP-
NV controller. Similar to NP-LV, a smoothing effect can be
observed, although less significant. This is likely due to the
nature of the pure nonlinear feedback, giving overall better
tracking performance, which has previously been discussed
in [5].

A significant effect of the MRS model, which can be seen
in the performance metrics in Fig. 6 and 9, is that it results
in a significantly reduced rate of change in the commanded
control input.

The final values for the performance metrics are displayed
in Table III, where the best performing controller for the
different metrics is noted in bold.

V. CONCLUSION

Depending on the type of controller that is being used,
including an MRS model to limit the actuator magnitude
and rate outputs can contribute positively in several ways. As
seen in both cases presented, an MRS model can effectively
reduce actuator twitching, and thus wear and tear, without the
degradation of performance in ship control. In addition, it has
the potential to improve overall energy efficiency and pose
tracking abilities, as can be seen from the performance met-
rics and trajectory plots, and can thus have positive effects
on ship performance in setpoint navigation. These effects are
especially important for vessels which must operate for long
times at sea, and can be particularly useful for ships in DP
operations, effectively contributing to the longevity of the
operation with a reduced need for maintenance and repairs.

Future work includes optimizing the MRS model to further
improve performance. This includes, through experimental
tests in a laboratory, further tuning of the gain matrix K
and the desired magnitude and rate saturation effects to
obtain optimal ship control for the wanted ship operational
environment.
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Abstract: This paper considers the use of a simplified dynamic window (DW) algorithm to
handle actuator magnitude constraints for a 3 degrees-of-freedom dynamic positioning controller
for ships. To accomplish this, we use the simplified DW algorithm to design a dynamic window-
based controller (DWC) which guarantees that the velocities remain within a feasible set, while
simultaneously respecting the actuator constraints. The DWC is compared with a benchmark
motion controller which uses nonlinear position and velocity feedback terms. The comparison is
made using performance metrics which consider both control accuracy and energy efficiency.

1. INTRODUCTION

Numerous motion controllers and autopilots have been
proposed over the years. However, many control algo-
rithms found in the literature do not explicitly consider
saturation constraints for the actuators. Examples of tradi-
tional motion control designs for ships are given in (Fossen,
2011). Not considering actuator constraints may lead to
unsatisfying performance or stability issues.

In (Fox et al., 1997), the dynamic window (DW) algorithm
is suggested as a method to perform collision avoidance
and deal with actuator constraints imposed by limited
velocities and accelerations for mobile robots. The DW al-
gorithm is modified for AUVs in (Eriksen et al., 2016), and
shows promising results for handling actuator magnitude
and rate constraints. In (Sørensen et al., 2017), a simpli-
fication of this algorithm is developed for a 2 degrees-of-
freedom (DOF) heading and speed controller, by removing
the collision avoidance part of the algorithm. In (Sørensen
et al., 2017), this DW-based controller (DWC) is combined
with a motion controller based on the design in (Sørensen
and Breivik, 2016).

The contribution of this paper is the extension of the 2
DOF DWC presented in (Sørensen et al., 2017) to a 3
DOF DWC suitable for dynamic positioning (DP). The 3
DOF DWC is compared with a benchmark controller (BC)
from (Sørensen and Breivik, 2016), where the comparison
is made using performance metrics which consider both
control accuracy and energy efficiency.

The structure of the paper is as follows: A mathematical
ship model is presented in Section 2; Section 3 describes
the assumptions and control objective; Section 4 presents
the design of a benchmark controller inspired by backstep-
ping and constant-bearing guidance; Section 5 presents

the proposed DWC concept; Section 6 presents simulation
results, while Section 7 concludes the paper.

2. SHIP MODEL

The motion of a ship can be represented by the pose

vector η = [x, y, ψ]
> ∈ R2 × S and the velocity vector

ν = [u, v, r]
> ∈ R3. Here, (x, y) represents the Cartesian

position in a local earth-fixed reference frame, ψ is the yaw
angle, (u, v) represents the body-fixed linear velocities and
r is the yaw rate. The 3 DOF dynamics of a ship can then
be stated as (Fossen, 2011):

η̇ = R(ψ)ν (1)

Mν̇ +C(ν)ν +D(ν)ν = τ , (2)

where M ∈ R3×3, C(ν) ∈ R3×3, D(ν) ∈ R3×3 and
τ = [τ1, τ2, τ3]> represent the inertia matrix, Coriolis
and centripetal matrix, damping matrix and control input
vector, respectively. The rotation matrix R(ψ) ∈ SO(3) is
given as

R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
. (3)

The system matrices are assumed to satisfy the properties
M = M> > 0, C(ν) = −C(ν)> and D(ν) > 0. In this
paper, we use the model and parameters of the model-scale
ship CyberShip Inocean Cat I Arctic Drillship (CSAD)
(Bjørnø et al., 2017) for control design and evaluation
through numerical simulations. CSAD is a 1:90 scale
replica of the full-scale Statoil Cat I Arctic Drillship, with
a length of L = 2.578 m, shown in Fig 1. The inertia matrix
is given as

M = MRB +MA, (4)

where
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Fig. 1. CyberShip Inocean Cat I Arctic Drillship in the
Marine Cybernetics Laboratory at NTNU.

MRB =

[
m 0 0
0 m mxg
0 mxg Iz

]
(5)

MA =

[−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

]
. (6)

The mass of CSAD is m = 127.92 kg, while xg =
0.00375 m is the distance along the x-axis in the body
frame from the center of gravity. The moment of inertia
about the z-axis in the body frame is Iz = 61.987 kg m2.
Other parameter values are listed in Table 1. Note that Nr,
which is marked in bold, has been changed to correspond
better with to the actual physical behavior of CSAD. The
Coriolis and centripetal matrix is

C(ν) = CRB(ν) +CA(ν), (7)

with

CRB(ν) =

[
0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

]
(8)

CA(ν) =

[
0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0

]
, (9)

where

cA,13(ν) = −Yv̇v −
1

2
(Nv̇ + Yṙ)r (10)

cA,23(ν) = −Xu̇u. (11)

Finally, the damping matrix D(ν) is given as

D(ν) = DL +DNL(ν), (12)

where

DL =

[−Xu 0 0
0 −Yv 0
0 0 −Nr

]
(13)

DNL(ν) =

[
dNL,11(ν) 0 0

0 dNL,22(ν) 0
0 0 dNL,33(ν)

]
, (14)

and

dNL,11(ν) = −X|u|u|u| −Xuuuu
2 (15)

dNL,22(ν) = −Y|v|v|v| − Y|r|v|r| (16)

dNL,33(ν) = −N|v|r|v| −N|r|r|r|. (17)

The considered model describes a fully actuated ship,
where the actuator forces and moments are modelled using
the six mounted thrusters u = [u1, u2, u3, u4, u5, u6]> ∈ R6

Table 1. Parameters for CSAD (Bjørnø et al.,
2017)

Parameter Value

Xu̇ −3.262
Yv̇ −28.89

Yṙ −0.525

Nv̇ −0.157
Nṙ −13.98

Xu −2.332

X|u|u 0

Parameter Value

Xuuu −8.557

Yv −4.673
Y|v|v 0.398

Y|r|v −0.805

N|v|r 0.080

Nr -6.900
N|r|r −0.0115

(Bjørnø et al., 2017). These are related to the input vector
τ through the actuator model

τ (u) = TKTu, (18)

where T ∈ R3×6 is an actuator configuration matrix, while
KT ∈ R6×6 is an actuator force matrix. The actuator
configuration matrix is

T =

[
c(δ1) c(δ2) c(δ3) c(δ4) c(δ5) c(δ6)
s(δ1) s(δ2) s(δ3) s(δ4) s(δ5) s(δ6)
φ1 φ2 φ3 φ4 φ5 φ6

]
, (19)

where c(δi) = cos(δi), s(δi) = sin(δi). The constant φi =

Li cos(βi) sin(δi) with Li =
√
L2
x,i + L2

y,i, where Lx,i and

Ly,i represent the physical placements of the ith actuator
and βi = tan(Ly,i/Lx,i) for i ∈ [1, 6]. The actuator force
matrix is given as

KT = diag([KT,1,KT,2,KT,3,KT,4,KT,5,KT,6]), (20)

where KT,i > 0 is the thrust force from the ith pro-
peller. In (Bjørnø et al., 2017), the actuator magni-
tude constraints are stated as ui ∈ [−0.5, 0.5]. In this
work, we fix the actuators to the following angles δ =
[π, π/4,−π/4, 0, 5π/4, 3π/4].

The considered ship has to move at low speeds in order to
be fully actuated for DP operations. Assuming low-speed
maneuvers, the kinetic model in (2) can be simplified to

Mν̇ +DLν = τ , (21)

since in low-speed maneuvers the linear damping will dom-
inate over both the nonlinear damping and the Coriolis
and centripetal forces(Fossen, 2011). The model (21) will
be used in the control designs in the following sections.

3. ASSUMPTIONS AND CONTROL OBJECTIVE

It is assumed that both the pose vector η(t) and velocity
vector ν(t) can be measured, and that no disturbances and
uncertainties affect the system.

The control objective is to make η̃(t)
4
= η(t)−ηt(t)→ 0 as

t→∞, where ηt(t) ∈ R2×S represents the pose associated
with a virtual target ship. The motion of the target ship is
typically defined by a human or generated by a guidance
system.

For notational simplicity, the time t is omitted in the rest
of this paper.

4. BENCHMARK CONTROLLER

In (Sørensen and Breivik, 2016), a cascaded motion con-
troller with nonlinear pose and velocity feedback is sug-
gested, which is shown to be able to limit the control signal
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with respect to the control error. It should be noted that
this controller is a step towards a final solution which can
handle actuator magnitude constrains. The controller from
(Sørensen and Breivik, 2016) is modified to a low-speed
DP-version where the control input can be chosen as

τ = Mα̇+DLα−K2(z2)z2. (22)

The error variables z1 = [z1,x, z1,y, z1,ψ]> and z2 =
[z2,u, z2,v, z2,r]

> are defined as

z1
4
= R>(ψ)(η − ηt) (23)

z2
4
= ν −α, (24)

and α = [αu, αv, αr] ∈ R3 is a vector of stabilising
functions. This can be interpreted as a desired velocity

α = R>η̇t −K1(z1)z1, (25)

where

K1(z1)
4
= Γ1Ω(z1), (26)

and

Ω(z1)
4
=




1√
z>
1,p̃

z1,p̃+∆2
p̃

I2×2 02×1

01×2
1√

z2
1,ψ̃

+∆2

ψ̃


 (27)

represents a nonlinear control gain with Γ1 > 0, z1,p̃
4
=

[z1,x, z1,y]>, ∆p̃ > 0 and ∆ψ̃ > 0 and ∆ψ̃ > 0. The

nonlinear feedback term in (22) is given as

K2(z2) = Γ2




1√
z>
2,ṽ

z2,ṽ+∆2
ṽ

I2×2 02×1

01×2
1√

z2
2,r̃

+∆2
r̃


 , (28)

with the control gain Γ2 > 0, where z2,ṽ is defined as

z2,ṽ
4
= [z2,u, z2,v]

>, ∆ṽ > 0 and ∆r̃ > 0. The time
derivative of α is:

α̇ =R>η̈t + S>R>η̇t − K̇1(z1)z1 −K1(z1)ż1, (29)

where

K̇1(z1) =− Γ1




z>1,p̃ż1,p̃I2×2

(z>
1,p̃

z1,p̃+∆2
p̃
)
3
2

02×1

01×2
z1,ψ̃ ż1,ψ̃

(z2
1,ψ̃

+∆2

ψ̃
)
3
2


 , (30)

with

ż1 = S>z1 −K1(z1)z1 + z2, (31)

where

S(r) =

[
0 −r 0
r 0 0
0 0 0

]
(32)

is a skew-symmetric matrix satisfying z>1 S(r)>z1 = 0.

5. DYNAMIC WINDOW-BASED CONTROL DESIGN

5.1 Simplified Dynamic Window Algorithm

Here, we present a 3 DOF extension to the 2 DOF DWC
controller presented in (Sørensen et al., 2017).

Based on the ship model and its actuator magnitude con-
straints, a set of possible velocities can be found. This set
contains all velocities the ship can achieve with respect to
the actuator magnitude constraints. The possible velocities

can be found by computing the steady-state solutions of
the kinetics of (21) for all possible control inputs:

τ (u) = DLνss, (33)

within the actuator magnitude constraints

ui ∈ [−0.5, 0.5]. (34)

The steady-state solutions of (33) for a uniformly dis-
tributed set of the control inputs is shown in Fig. 2. The
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Fig. 2. Possible combinations of surge speed, sway speed
and yaw rate, with respect to the actuator magnitude
saturation limits.
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set of possible velocities can be defined as:

Vp = {(u, v, r) ∈ R× R× R | g(u, v, r) ≥ 0} , (35)

where g(u, v, r) is a positive semidefinite function for fea-
sible velocities with respect to the actuator constraints.
An approximation of the 3 DOF set is done by projecting
the set into three 2 DOF sets to simplify calculations.
We justify this approximation by noting that each of the
steady-state solution boundary faces are almost parallel
with one axis, see Fig. 2. Following this, faces that are par-
allel with one axis can be parameterized by the remaining
two variables. Notice, however, that we lose information
where all three variables are correlated, and can therefore
not model faces which are not parallel with one of the axes.
The result of the approximation is the following three sets
of possible velocities:

Vp,(u,r) = {(u, r) ∈ R× R | g(u,r)(u, r) ≥ 0} (36)

Vp,(v,r) = {(v, r) ∈ R× R | g(v,r)(v, r) ≥ 0} (37)

Vp,(u,v) = {(u, v) ∈ R× R | g(u,v)(u, v) ≥ 0}, (38)

where g(u,r)(u, r), g(v,r)(v, r) and g(u,v)(u, v) are greater
than or equal to zero for velocities inside the corresponding
boundaries. Given m, n and k approximated boundaries,
defined by the functions ha,(u,r)(u, r) = hb,(v,r)(v, r) =
hc,(u,v)(u, v) = 0, a ∈ {1, 2, ...,m}, b ∈ {1, 2, ..., n} and
c ∈ {1, 2, ..., k}, the approximated functions are given as:

g(u,r)(u, r) = min(h1,(u,r)(u, r),h2,(u,r)(u, r),

..., hm,(u,r)(u, r)) (39)

g(v,r)(v, r) = min(h1,(v,r)(v, r),h2,(v,r)(v, r),

..., hn,(v,r)(v, r)) (40)

g(u,v)(u, v) = min(h1,(u,v)(u, v),h2,(u,v)(u, v),

, ..., hk,(u,v)(u, v)). (41)

Here, the functions ha,(u,r)(u, r) = hb,(v,r)(v, r) =
hc,(u,v)(u, v) = 0 are defined by using regression on the
boundary of the sets Vp(u,r) , Vp(v,r) and Vp(u,v) , where

∇ha,(u,r)(u, r), ∇hb,(v,r)(v, r) and ∇hc,(u,v)(u, v) are re-
quired to be pointing inwards to the valid solutions. Next,
the space of reachable points within one time step T needs
to be defined. Using

ν̇min = [u̇min, v̇min, ṙmin] = M−1(τmin(u)−DLν
∗)
(42)

ν̇max = [u̇max, v̇max, ṙmax] = M−1(τmax(u)−DLν
∗),
(43)

we find the acceleration limits and the reachable velocities
for the current time step, resulting in the dynamic velocity
window

Vw = {(u, v, r) ∈ R× R× R |
u ∈ [u∗ + u̇minT, u

∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]}, (44)

which we project into the three cases

Vw,(u,r) ={(u, r) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (45)

Vw,(v,r) ={(v, r) ∈ R× R | v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (46)

Vw,(u,v) ={(u, v) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]}. (47)

This defines the sets of dynamically feasible velocities as

Vf,(u,r) , Vp,(u,r) ∩ Vw,(u,r) (48)

Vf,(v,r) , Vp,(v,r) ∩ Vw,(v,r) (49)

Vf,(u,v) , Vp,(u,v) ∩ Vw,(u,v). (50)

Next, the sets of dynamically feasible velocities are dis-
cretised uniformly to obtain discrete sets of dynamically
feasible velocities. For the 3 DOF case, the desired velocity
is defined as

νd , [ud, vd, rd]
>. (51)

Given νd, the optimal dynamically feasible velocity νf =
[uf , vf , rf ]> can be selected as

νf = argmax
(u,v,r)∈Vf

G(ν,νd), (52)

where Vf is the general 3 DOF solution and G(ν,νd) is an
objective function, which is defined as

G(ν,νd)
4
= surge(u, ud) + sway(v, vd)

+ yawrate(r, rd), (53)

with

surge(u, ud) = 1− |ud − u|
max
u′∈Vf

(|ud − u′|)
∈ [0, 1] (54)

sway(v, vd) = 1− |vd − u|
max
v′∈Vf

(|vd − v′|)
∈ [0, 1] (55)

yawrate(r, rd) = 1− |rd − r|
max
r′∈Vf

(|rd − r′|)
∈ [0, 1]. (56)

Notice that by using this objective function, we minimise
the scaled 1-norm of the entire discrete set of dynamically
feasible velocity pairs. For the three 2 DOF case, this
algorithm is modified to fit 2 DOF and run once for each
velocity pair scenario; surge speed and yaw rate, sway
speed and yaw rate, and surge and sway speed. Resulting
in the sets of dynamically feasible velocities

νf,(u,r) = [νf,u, 0, νf,r]
> (57)

νf,(v,r) = [0, νf,v, νf,r]
> (58)

νf,(u,v) = [νf,u, νf,v, 0]>, (59)

which combines into

νf =
νf,(u,r) + νf,(v,r) + νf,(u,v)

2
(60)

for the full 3 DOF case. Fig. 3 illustrates Vp, Vw, Vf and
νd = [0.15 m/s,−0.07 m/s,−1.4324 deg /s] given a current
velocity ν = [0.2 m/s, −0.05 m/s −1.1459 deg /s].

5.2 Dynamic Window-based Controller

We now combine the traditional control design with the
simplified DW algorithm in order to develop a dynamic
window-based controller (DWC). In this setup, the sim-
plified DW algorithm will use α = [αu, αv, αr]

> as an
input such that νd = α. In the case where α is an in-
feasible velocity, the simplified DW algorithm will modify
α to a feasible velocity αf = [αf,u, αf,v, αf,r]

>, otherwise
αf = α. We want the ship to reach αf after the time T ,
hence the desired acceleration is chosen to be

α̇DWC =
αf − ν
T

, (61)
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Fig. 3. The dynamically feasible velocity set, surrounded
by the boundaries of the dynamic velocity window
and set of possible velocities.

and

αDWC =

∫ t

0

α̇DWCdσ +αDWC(0). (62)

Both αDWC and α̇DWC are used in the kinetic controller
(22) which is modified to

τ = Mα̇DWC +DLαDWC . (63)

When comparing the control law (63) against (22), it can
be seen that the feedback term −K2(z2)z2 in (22) is not
included in (63) since the DWC makes the optimal velocity

pair track the target velocity by using (61)-(62). The
DWC is a feedforward-based control algorithm which has
some weaknesses against uncertainties and disturbances
since the DWC is heavily model-dependent. Introducing a
feedback term and adaptation can help to overcome these
weaknesses.

6. SIMULATION RESULTS

In this section, we present numerical simulation results of
the two motion controllers using the nonlinear ship model
and actuator constraints of CSAD presented in Section 2.
In addition, performance metrics are used to evaluate the
controller behavior.

The control target is defined through a 4-corner test
(Skjetne et al., 2017). The 4-corner test first tests the
surge, sway and yaw motion individually and then increase
the complexity of the task until the ship needs to do a
combined surge, sway and yaw motion. In this test we
use set-point tracking. This will affect (25) and (29) since
η̇t = 0 and η̈t = 0. The initial ship states are chosen to be
η(0) = [5, 1, 0] and ν(0) = 0. The control gains are listed
in Table 2, which are chosen such that the benchmark
controller (BC) does not exceed the magnitude satura-
tion constraints and follow the tuning rules suggested in
(Sørensen et al., 2018).

Table 2. Control gains

BC DWC

Γ1 diag([0.03, 0.03, 0.0349]) −||−
Γ2 diag([0.2, 0.12, 0.1745])M N/A
∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ [0.7, 1] N/A

6.1 Performance Metrics

To evaluate and compare the performance of the two
controllers, performance metrics are used. We define

e(t)
4
=

√
η̄(t)>η̄(t), (64)

as the error inputs for the performance metrics, with η̄

being the normalized signal of η̃ = [x̃, ỹ, ψ̃]>
4
= η − ηt,

where x̃, ỹ and ψ̃ are in the intervals [−0.5, 0.5] in the ex-
pected operational space of the ship (Eriksen and Breivik,
2017). These signals represent the instantaneous control
errors, while we would like to consider the accumulated
errors over time. Therefore, we use the performance metric
integral of the absolute error (IAE)

IAE(e, t)
4
=

∫ t

0

|e(σ)|dσ, (65)

which integrates the temporal evolution of the absolute
error. We also consider the integral of the absolute error
multiplied by the energy consumption (IAEW) (Sørensen
and Breivik, 2015) as

IAEW (e, t)
4
=

∫ t

0

|e(σ)|dσ
∫ t

0

P (σ)dσ, (66)

where

P (t) = |ν(t)>τ (t)| (67)
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represents the mechanical power. IAEW thus indicates
which controller has the best combined control accuracy
and energy efficiency in one single metric.

6.2 Simulation Results

In Fig. 4, the outline of the ship pose is plotted to show
the transient convergence behavior.
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Fig. 4. The 4-corner test, where the dashed blue outline
represents the DWC-controlled ship, the dash-dotted
black outline represents the BC-controlled ship, while
the green outline represents the 4-corner box.

Fig. 5 shows the pose of the ship together with the target
pose. It can be seen that both control laws are able to
track the target pose even though the DWC does not have
a traditional velocity feedback term. Additionally, it can
be seen that there is a small difference in how fast the
controllers are able to track the target pose, where DWC
is the fastest.

Fig. 6 shows that the DWC commands the control inputs
to stay just below the maximum magnitude constraints
of the actuators, while BC is tuned such that it does not
exceed the magnitude constraints. The DWC keeps the
control inputs high longer than the BC, since the DWC
tracks the optimal velocity αf which is on the boundaries
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Fig. 5. Tracking the target pose.

of the window unless the target velocity α is inside the
velocity window, while the control inputs from BC have a
more conservative behavior.
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Fig. 6. The commanded control inputs with magnitude
limits.

Fig. 7 illustrates how the surge speed, sway speed and
yaw rate moves in the velocity space in order to track the
target through the 4-corner test. The velocities of the ship
are small in magnitude while performing the 4-corner test.
This satisfies the requirements for assuming a linear ship
model.

In Fig. 8, the performance metrics IAE and IAEW are
shown. In particular, the IAE trajectory in the left of Fig.
8 confirms that the DWC has a faster transient response
since it converges faster to a stationary value. The IAEW
trajectory in the right of Fig. 8 shows that the DWC
uses slightly more energy to fulfil the control objective.
DWC have a better overall performance, since it has a
faster transient response, but it comes at a cost in energy
consumption as shown in IAEW.

7. CONCLUSION

This paper has proposed an extension of a simplified dy-
namic window algorithm from 2 DOF to 3 DOF, as a way
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Fig. 7. Velocity trajectories in the set of possible velocities
Vp.

to ensure that the actuator constraints of a fully actuated
ship are satisfied. This algorithm has been used as a dy-
namic window-based controller (DWC) to guarantee that
ship velocities remain within a feasible set. The DWC was
evaluated against a motion controller using a traditional
design approach. The methods were compared through
numerical simulations, using two performance metrics to
compare the behavior of the controllers. The simulation
results showed that the proposed DWC controller has good
tracking performance and that it is able to handle actuator
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Fig. 8. IAE and IAEW performance metrics.

magnitude constraints.

Future work will include introducing model uncertainties
and unknown disturbances and making a stability analysis
of the proposed control algorithm. It is also relevant to con-
sider actuator rate constraints in addition to magnitude
constraints. Finally, it is desirable to experimentally verify
the results by implementing the methods on a model-scale
test vessel in a controlled environment.
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