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Preface

This thesis concludes what has been an educational semester and covers
some of my findings. However, the sum of what I have learned these past
months goes beyond the contents of this document. For that I would like to
take this opportunity to thank some of the people that contributed to the
process. First off, I owe a big thank you to my supervisors Morten Breivik,
Bjørn-Olav Holtung Eriksen, and Mikkel Eske Nørgaard Sørensen. The
discussions I have had with them during our meetings have been important
in giving me confidence as a newbie about to embark upon a new journey
filled with challenges. I would also like to thank the people at Maritime
Robotics for supplying a test platform and the support they provided during
my experiments.

The work covered in this thesis is based on the article [7] written by my su-
pervisors Bjørn-Olav and Morten. The article formulates a control-oriented
model and a method for manual model identification. As I was tasked with
extending this existing modelling framework I have benefited from some
of the resources made available to me from work with [7]. A list of these
resources is provided below:

– Access to sensor data gathered through experiments performed by the
authors of the article. This has allowed me to test my own method in
a realistic environment.

– Parameters of the control-oriented model identified in the article. This
has aided me in creating simulation environments based on the control
oriented model.

– Access to the Telemetron surface vessel was provided by Maritime
Robotics. That includes sensor equipment for measuring heading, rate
of turn, and speed over ground.

– A python script for interfacing with the vessel used in full scale exper-
iments was provided. Besides from saving me the trouble of creating
one, it also aided me in creating a realistic simulation environment to
test my implementation.
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– As co-supervisor Bjørn-Olav had experience with the vessel I used in
my full scale experiments, and accompanied me as a certified vessel
operator, he played an important part in troubleshooting the vessel’s
onboard systems.

Besides from the elements of the list above, my work with this project has
been independent in its nature. My supervisors have primarily assisted me
through challenging my ideas and providing feedback on my thesis.



Abstract

This thesis investigates a method for identification of a non-first principle
control-oriented model for autonomous surface vehicles (ASVs) suggested
in [7]. The goal is to develop an automatic substitute for the identification
procedure. The identification is divided into three steps: steady state iden-
tification (SSID), data extraction, and a parameter identification with linear
regression. Automatic solutions are developed for each step, implemented,
and tested in full-scale.

The identification procedure is based on analysis of data collected from
experiments performed by executing input step sequences. To automate the
experiments a method for online SSID in noisy processes suggested in [5] is
adapted and applied. The method is based on the behavior of a ratio between
two variance estimates and performs well given reasonable sea conditions.

Measurements of damping and inertia are extracted from each step response
performed in the experiment. Damping is read directly from steady state
behavior, while inertia is obtain by curve fitting the transient response.
The curve fitting is solved using numerical optimization, more specifically
through application of Broyden, Fletcher, Goldfarb, and Shanno’s method
(BFGS).

The measurements of damping and inertia are gathered in data sets and
linear regression is applied to identify models describing the data in each set.
An automatic weighting scheme is formulated to be used in the regression,
and ridge regression is applied for regularization.

The developed method is implemented as a real time system using the Robot
Operating System (ROS). Then, full-scale experiments are performed using
a surface vessel supplied by Maritime Robotics called Telemetron.

Results from the experiment emphasizes the need for better experiment de-
signs and strategies to combat the effects of the high signal-to-noise ratio
present in some parts of the state space. Methods for identifying and repeat-
ing step responses heavily influenced by disturbances, and for detecting and
removing outliers in the data sets are considered necessary if the method
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is to be used without human supervision. That being said, given that the
vessel behaves within reason during the experiments the method represents
a powerful and easily accessible modelling tool.



Sammendrag

Denne oppgaven undersøker en metode for identifisering av en ikke-første
prinsipp kontrollorientert modell for autonome overflatekjøretøyer (ASVs)
som foresl̊as i [7]. Målet er å utvikle en automatisk erstatning for identi-
fikasjonsprosedyren. Identifikasjonen er delt inn i tre trinn: steady state
identifikasjon (SSID), generering av m̊alepunkter og en parameteridenti-
fikasjon gjor med bruk av lineær regresjon. Automatiske løsninger utvikles
for hvert trinn, implementeres og testes i fullskala.

Identifikasjonsprosedyren er basert p̊a analyse av data samlet fra eksperi-
menter utført som en sekvens av steg i inngangssignalet. For å automatisere
eksperimentene blir en metode for online SSID i støyete prosesser, foresl̊att
i [5], tilpasset og anvendt. Metoden er basert p̊a oppførselen til et forhold
mellom to variansestimater og ser ut til å fungere bra gitt rimelige sjøforhold.

Målinger av dempning og treghet utvinnes fra hver steg respons i forsøket.
Målinger av dempning kan leses direkte fra steady state, mens treghetm̊alinger
finnes ved å tilpasse en kurve til transientene. Kurvetilpassningen gjøres ved
hjelp av numerisk optimalisering, nærmere bestemt ved anvendelse av Broy-
den, Fletcher, Goldfarb og Shanno’s metode (BFGS).

Målingene av demping og treghet samles i datasett, og lineær regresjon
brukes for å identifisere modeller som beskriver dataene i hvert sett. En
automatisk vektingsmetode formuleres og annvendes i regresjonen, og ridge
regresjon brukes for regularisering.

Den utviklede metoden implementeres som et sanntidssystem ved bruk av
Robot Operating System (ROS). Deretter utføres fullskala eksperimenter
ved bruk av et overflatefartøy som tilhører Maritime Robotics, kalt Telemetron.

Resultater fra eksperimentene legger vekt p̊a behovet for bedre planlegging
av eksperimenter og strategier for å bekjempe effektene av det høye signal-til-
støy forholdet som er tilstede i enkelte deler av tilstandsrommet. Metoder for
å identifisere og gjenta trinnresponser som er sterkt p̊avirket av forstyrrelser,
og for å detektere og fjerne avvikere i datasettene anses nødvendig hvis meto-
den skal brukes uten menneskelig tilsyn. N̊ar det er sagt, gitt at fartøyet
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oppfører seg innenfor fornuftens grenser under forsøkene, representerer meto-
den et kraftig og lett tilgjengelig modelleringsverktøy.



Contents

Preface i

Abstract iii

Sammendrag v

List of tables ix

List of figures xiii

List of acronyms xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 An approach to modelling and identification of high-speed
vessels 5
2.1 Vessel modelling . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Traditional vessel modelling . . . . . . . . . . . . . . . 6
2.1.2 Empirical modelling . . . . . . . . . . . . . . . . . . . 7

2.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Weighted linear least squares . . . . . . . . . . . . . . 10
2.2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Cross validation . . . . . . . . . . . . . . . . . . . . . 15

2.3 Model identification . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Experiment design and data collection . . . . . . . . . 19
2.3.2 Data extraction . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Parameter identification . . . . . . . . . . . . . . . . . 32
2.3.4 Model validation . . . . . . . . . . . . . . . . . . . . . 36

vii



CONTENTS

3 A method for automatic model identification 37
3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 The steady state identification problem . . . . . . . . 38
3.1.2 A method for steady state identification . . . . . . . . 43
3.1.3 Application of method to surface vessel step responses 46

3.2 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 Numerical optimization . . . . . . . . . . . . . . . . . 57
3.2.2 Data sets obtained from extraction . . . . . . . . . . . 61

3.3 Parameter identification . . . . . . . . . . . . . . . . . . . . . 64
3.3.1 Model reduction . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Regularization . . . . . . . . . . . . . . . . . . . . . . 65
3.3.3 Weighting scheme . . . . . . . . . . . . . . . . . . . . 66
3.3.4 Identified models . . . . . . . . . . . . . . . . . . . . . 69

3.4 Proposed model and identification extensions . . . . . . . . . 71
3.4.1 Propagation delay . . . . . . . . . . . . . . . . . . . . 71
3.4.2 Second order model . . . . . . . . . . . . . . . . . . . 72

4 Results from full-scale experiments 75
4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Steady state identification . . . . . . . . . . . . . . . . . . . . 80
4.3 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Parameter identification . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusions and future work 85
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87

viii



List of tables

3.1 Parameters of experimental procedure used in [7]. . . . . . . . 38
3.2 Filter coefficients and R boundaries used throughout this

chapter, where h is the time step. . . . . . . . . . . . . . . . . 52

4.1 Parameters of experimental procedure used in [7]. . . . . . . . 75
4.2 Filter coefficients and R boundaries used throughout this

chapter, where h is the time step. . . . . . . . . . . . . . . . . 80

ix



LIST OF TABLES

x



List of figures

1.1 The Telemetron autonomous surface vehicles (ASV). Photo
courtesy of Maritime Robotics. . . . . . . . . . . . . . . . . . 2

2.1 Description of surface vessel with 6 degrees of freedom (DOF). 6
2.2 The vessel states, x = [U r]>, described in a North-East

reference frame and the body frame. . . . . . . . . . . . . . . 8
2.3 Samples from a system where the variance of y is clearly de-

pendent on x. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Overfitting due to insufficient ratio between model complexity

and number of data points. . . . . . . . . . . . . . . . . . . . 13
2.5 Regularization example. . . . . . . . . . . . . . . . . . . . . . 14
2.6 K-fold cross validation. . . . . . . . . . . . . . . . . . . . . . . 16
2.7 A visual outline of the modelling approach presented in [7]. . 17
2.8 The intention of the two first steps is to provided data well

distributed in the state space. . . . . . . . . . . . . . . . . . . 19
2.9 Translation of input boundaries to state space. . . . . . . . . 21
2.10 An example of how uniformly distributed step sequences

might sample the state space. . . . . . . . . . . . . . . . . . . 22
2.11 Encounters with low signal-to-noise ratio during identification

experiments done in [7]. . . . . . . . . . . . . . . . . . . . . . 23
2.12 Flow of iterative modelling procedures. . . . . . . . . . . . . . 24
2.13 In step 3, inertia and damping data is extracted from each

step response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.14 Step response with significant difference between measured

steady state value and state measured at end of transient. . . 27
2.15 Example of an inertia measurement. . . . . . . . . . . . . . . 28
2.16 A step response approximated by a first order and a second

order system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.17 The consequence of not being able to describe overshoots

when measuring inertia. . . . . . . . . . . . . . . . . . . . . . 30
2.18 Step 4 produces a model for each extracted data set. . . . . . 32
2.19 Encounters with low signal-to-noise ratio during identification

experiments done in [7]. . . . . . . . . . . . . . . . . . . . . . 35

xi



LIST OF FIGURES

2.20 The model is validated in step 5. . . . . . . . . . . . . . . . . 36

3.1 Throttle experiment performed by the authors of [7]. The
parameters used can be found in Table 3.1. . . . . . . . . . . 39

3.2 Rudder experiment performed by the authors of [7]. The
parameters used can be found in Table 3.1. . . . . . . . . . . 40

3.3 The effects of premature steady state identification versus
overdue identification on the inertia measurement. . . . . . . 42

3.4 Hypothetical probability density function of R during steady
state and transient state. . . . . . . . . . . . . . . . . . . . . 43

3.5 Variance measurements used in steady state identification. . . 45
3.6 Application of the method described in [5] for steady state

identification in a rudder experiment performed by the au-
thors of [7]. The parameters used can be found in Table 3.2. . 48

3.7 Plots of the two variance measurements defining R through
equation (3.8). The parameters used can be found in Table 3.2. 49

3.8 Parts of the results from applications of the steady state iden-
tification (SSID) method. 3.1. Grey areas represent steady
state regions and white regions are transients. The parame-
ters used can be found in Table 3.2. . . . . . . . . . . . . . . 51

3.9 The method is unable to identify steady state before the next
step is applied. The parameters used can be found in Table
3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Exponential smoothing. . . . . . . . . . . . . . . . . . . . . . 53
3.11 Desired behavior of δ2

f in a throttle step sequence. . . . . . . 54
3.12 Mean square error between simulated and actual step re-

sponse for a set of inertia values. Figure taken from [11]. . . . 57
3.13 A visualization of the Wolfe conditions. Figure adapted from

[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.14 Data sets with measurements extracted from experiments

performed in [7]. . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.15 Regularization example. . . . . . . . . . . . . . . . . . . . . . 66
3.16 Weighting scheme applied to Dmr . . . . . . . . . . . . . . . . 68
3.17 Models identified using data sets from Figure 3.14. . . . . . . 70
3.18 How results from identification of td,δ and mr would look like.

An input step was applied at t ≈ 1187.0. . . . . . . . . . . . . 73

4.1 Throttle experiment performed using the ROS implementa-
tion of the method developed in Chapter 3. The parameters
of the experiment can be found in Table 4.1. . . . . . . . . . . 76

4.2 Rudder experiment performed using the ROS implementation
of the method developed in Chapter 3. The parameters of the
experiment can be found in Table 4.1. . . . . . . . . . . . . . 77

xii



LIST OF FIGURES

4.3 Examples of step responses that are unfit for using in identi-
fication and should be repeated. . . . . . . . . . . . . . . . . . 79

4.4 Parts of the results from applications of the SSID method
in full-scale experiment. Grey areas represent steady state
regions and white regions are transients. Parameters of the
SSID method are listed in Table 4.2. . . . . . . . . . . . . . . 81

4.5 The transient, white region, shows an example of premature
SSID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Data sets with measurements extracted from full-scale exper-
iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Models identified using data sets from Figure 4.6. . . . . . . . 84

xiii



LIST OF FIGURES

xiv



List of acronyms

ASV autonomous surface vehicles. xi, 1, 2, 5, 8, 85

BFGS Broyden, Fletcher, Goldfarb, and Shanno’s method. 58, 59, 61

CV cross validation. 15, 16

DOF degrees of freedom. xi, 6, 8

LTI linear time-invariant. 26, 27, 29, 31, 41, 56, 67, 73

PDF probability density function. 43, 44

ROS the Robot Operating System. 4, 75, 85

ROT rate of turn. 8, 19, 25, 31, 33, 34, 36, 41, 50, 52, 56, 68, 69, 72, 80

SOG speed over ground. 8, 19, 21–23, 27, 30, 31, 33, 34, 36, 47, 50, 52, 54,
64, 78, 80

SSID steady state identification. xii, xiii, 3, 37, 38, 41–43, 47, 50–52, 55,
56, 62, 71, 72, 78, 80–82, 85

xv



List of acronyms

xvi



Chapter 1

Introduction

1.1 Motivation

There are many possible applications of ASVs. Currently, they are centered
around military and scientific operations at sea. As with other automated
solutions, ASVs are well suited for dirty, dull and dangerous tasks, as they
remove the need for a human operator. This frees an important resource and
offers potential improvements in cost, safety, availability and more. Com-
pared to other small-sized autonomous vehicles suited for operations at sea,
like the aerial and submerged alternatives, ASVs offer greater capabilities
in terms of payload capacity and persistence [18]. This means that they can
make an important contribution to a heterogeneous network of autonomous
vehicles operating at sea. They can provide support in terms of service as a
potential base station and as a communication interface between units below
and above the water surface. Examples of application areas for ASVs include
military intelligence and surveillance, mine countermeasures, oil and gas ex-
ploration, and hydrographic, oceanographic and environmental surveillance.
A historical perspective of the evolution of unmanned surface vehicles is pre-
sented in [2], and a look at the more recent development is given in [12].

A beneficial element to have in any application of surface vessels is the option
to maneuver at high speeds without significant loss in operational capabil-
ities. To achieve this, it is advantageous for path planning and trajectory
tracking methods to increase the feasibility of their output by consulting
an accurate model. More specifically, a model that is representative of the
vessel’s dynamics in all modes of operation, whether it be in displacement,
semi-displacement or planning. Such a model also allows for improvements
in control objectives where a model-based approach is a feasible solution,
possibly in combination with feedback to correct for eventual unmodelled
disturbances. Work with this kind of control-oriented modelling is done in
[17] and [18] where a selection of models are compared and applied in control
designs.
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CHAPTER 1. INTRODUCTION

Figure 1.1: The Telemetron ASV. Photo courtesy of Maritime Robotics.

Another article that investigates the topic of control-oriented modelling of
small, agile ASVs capable of aggressive maneuvering at high speeds is [7].
The article is based on further development of a modelling and control ap-
proach suggested in [4] and [3]. It proposes the use of a non-first principle
model and an empirical identification procedure. The method was tested in
a full-scale identification experiment using an ASV provided by Maritime
Robotics. The vessel, named Telemetron, is shown in Figure 1.1. The iden-
tified model and its application in various control schemes showed promising
results in a variety of performance metrics presented in [7]. Due to the ves-
sel having continuously changing dynamics as a result of factors like wear
and tear of the engine, as well as algae growth on the hull, the model has
to be updated every so often in order to facilitate reliable results in further
research done with the vessel. The implications of an automatic modelling
method go beyond the salvation of future researchers who are forced to re-
visit the modelling procedure. It also means that any research or other
application requiring that a model is in place becomes more accessible as
researcher will not have to spend time on learning about modelling.

1.2 Problem description

To avoid having to manually carry out the modelling procedure every time,
a time consuming process, the call for a fully automatic implementation is
issued. That is essentially what the work covered in this thesis has aimed to
accomplish. The modelling method as it is presented in [7] can be described
as consisting of three separable steps. Therefore the objective of this thesis
is to automate, or provide automatic substitutes, for each of these three steps
and tie them together in such a way that the entire procedure can be initiated
and completed with the push of a button. It is of course important that the
automation does not come at the cost of a loss in performance.
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1.3. CONTRIBUTIONS

1.3 Contributions

Before specifying the contributions of this work, contributions from previous
work with the method is described. A brief description of the three steps that
outline the modelling method as it is described in [7] goes as follows. The
first step is an online steady state identification performed by the operator
of the vessel. The second step is the extraction of data from the identified
transient and steady state regions. The extracted data is measurements of
inertia and damping from throughout the state space. The third and final
step is to use linear regression to generate statistical models of damping
and inertia which can be used to parameterize the kinetic model equations
describing the vessel dynamics. Now, the results from work done during
the autumn of 2017. For the first step, an investigation of steady state
identification methods that are capable of handling noisy signals lead to the
method suggested by [5]. For step two, numerical optimization was applied
to extract measurements of inertia. The linear regression of the third step
was left unchanged in practice as tools such as regularization and weighting
served little purpose in the simplistic simulation environment.

With previous contributions in place the contributions of the work done for
this thesis can be made clear. The first part of the work was concerned with
adapting the method for use on real data and the following contributions
were made.

1. Analysis of the performance of the original method when applied to
data from real experiments.

2. Adapted the SSID method suggested in [5] to handle the signal com-
plexity of surface vessel applications, and formulated guidelines for
identification of method parameters.

3. Modification of the linear regression step including:

(a) altered damping and inertia models (basis functions) suggested
in [7],

(b) applied new regularization technique, and

(c) formulated fully automatic weighting scheme for use in identifi-
cation of inertia models.

4. Proposed model extensions for inclusion and identification of propa-
gation delay and second order terms.

The second part of the work was concerned with testing the method in
full-scale and the contributions were as follows.

1. Automated solutions for rudder bias identification were proposed and
set up for comparison. The following two methods were implemented.

3
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(a) Use of rudder bias as hyperparameter in identification of rate of
turn damping model.

(b) Using motion control to measure rudder input at constant head-
ing as part of preliminary rudder bias identification experiment.
A PID-controller with state feedback linearization was imple-
mented.

2. The model identification method was implemented as a real time solu-
tion using the Robot Operating System (ROS). Some features of the
implementation were:

(a) Framework for user interaction during experiment including com-
mands for

i. lossless navigation to any part of the experimental procedure,

ii. pausing and stopping without loosing progress in ongoing
experiment, and

iii. loading backup to resume from any prior point of an experi-
ment.

(b) Simulation environment.

3. Full-scale experiments were performed using the Telemetron.

Due to poor time management on my part neither the rudder bias identifi-
cation nor any details of the implementation are covered in this thesis.

1.4 Outline

This report is organized as follows. Chapter 2 describes the model and iden-
tification method suggested in [7]. The description of each step is followed
by a discussion of weaknesses that one should be aware of when attempting
to automate the step. Chapter 3 describes the automated solutions to each
step described in Chapter 2, and shows results from each step of the method
when applied to data gathered by the authors of [7]. Weaknesses of the au-
tomatic solutions are highlighted in discussions at the end of each section.
The last section of the chapter covers proposed model extensions that were
not implemented but that are considered important when moving forward
with development of the method. Chapter 4 covers results obtained from
application of the automated method in full-scale using the Telemetron ves-
sel. Rounding it off is the conclusions in Chapter 5, giving a retrospective
assessment of what has been done, including suggestions of what should be
done in future work to improve the solution. Throughout Chapter 2 and
Chapter 3 topics that might be unfamiliar but essential for understanding
will be introduced as they become relevant.
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Chapter 2

An approach to modelling
and identification of
high-speed vessels

This chapter will provide some background for vessel modelling and cover
the approach to modelling and identification of high-speed ASVs suggested
in [7]. More specifically, this article suggests the use of a non first princi-
ple model and the empirical identification method. Extra care is put into
discussion of the method because the intention of this work is to automa-
tize the modelling procedure which means that one can not rely on human
intervention to correct or suppress the unforeseen. Once the method has
been described and discussed, the next chapter will describe the proposed
automatic solution.

Note that throughout the chapter, figures with data from experiments per-
formed by the authors of [7] is shown. However, all the figures were created
using the automated method developed in Chapter 3. The results should
still be representative of what is achievable with the method developed in
[7] as the two methods have comparable performance.

2.1 Vessel modelling

This section will first provide some background to vessel modelling by cov-
ering a more traditional vessel model and approach. The limitations of
the traditional approach will serve as motivation for the new approach and
model which will be introduced at the end of the section.
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CHAPTER 2. AN APPROACH TO MODELLING AND
IDENTIFICATION OF HIGH-SPEED VESSELS

2.1.1 Traditional vessel modelling

In order to describe the complete motion of a surface vessel in 3D-space
6DOF are needed, 3DOF for translation and 3DOF for rotation; see Figure
2.1. However, most surface vessel control applications are restricted to the
horizontal plane, thus a formulation with 3DOF is often sufficient. The
3DOF needed to describe horizontal motion are surge, sway and yaw.

surge

sway

heave

yaw

pitch

roll

Figure 2.1: Description of surface vessel with 6 DOF.

When tasked with designing a control oriented model of a surface vessel
operating in the horizontal plane, a reasonable starting point is the 3DOF
maneuvering model described in [9]. The model is formulated as

η̇ = R(ψ)ν (2.1a)

Mν̇ +C(ν)ν +D(ν)ν = τ + τwind + τwave, (2.1b)

where η =
[
N E ψ

]> ∈ R2 × S describes the vessel position and heading

in a North-East reference frame; ν =
[
u v r

]> ∈ R3 describes the vessel
velocity in the body frame; and τ , τwind, τwave ∈ R3 describes the forces
and moments generated by actuators, wind and waves acting on the vessel.
As for the matrices, R(ψ) is the rotation matrix about the z-axis, M is
the inertia matrix, C(ν) represents the Coriolis and centripetal effects, and
D(ν) contains the hydrodynamic damping forces. Obtaining accurate values
for the model parameters of (2.1b) is generally not an easy task in practice.
Furthermore, the result is a model designed for a category of surface vessels
known as displacement vessels. Displacement vessels are described by [8] in
a classification of surface vessels based on the dimensionless Froude number

Fn =
Ur√
Lg

. (2.2)
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2.1. VESSEL MODELLING

Here Ur is the vessel velocity relative to the water, L is the overall submerged
length of the vessel, and g is the gravitational acceleration. Displacement
vessels are those that operate in the approximate region Fn < 0.4. They
are objects of study in [9] and are accurately described by (2.1).

The kinetics of displacement vessels are characterized by dominant hydro-
static terms. For vessels that are faster and/or smaller, the effects of hy-
drostatics decrease relative to hydrodynamic effects as we move through the
region of semi-displacement vessels which operate at higher Froude numbers.
High-speed vessels with Fn > 1.0 − 1.2, such as the Telemetron studied in
this thesis, can enter the region of planning vessels where aerodynamic forces
start to become significant and should be included in the model in some way.
This means that using (2.1) is not be a good option for accurate control of
high-speed surface vessels. An in depth description of some considerations
and methods for modelling the kinetics of these kinds of vessels can be found
in [8]. However, in this thesis a more empirically focused modelling method
is put in focus. This is a method described by [7] where a non-first princi-
ple model is formulated, and a parameter identification process using linear
regression is suggested. The model suggested by [7] will be closer reviewed
in the next section, and the identification method will be described and
discussed in section 2.3.

2.1.2 Empirical modelling

As mentioned in the previous section, the author of [8] provides a variety of
tools for describing vessels operating at high speeds. The models covered in
both [8] and [9] belong to the class of first principle models. These models
rely on breaking down the system into subsystems that can be described by
the laws of physics, the first principles. Consequently the model complexity,
as well as the complexity of the modelling procedure, is dependent on how
many subsystems or how many elements of physics have to be included in
order to get an accurate representation of the real system. As illustrated by
the variety of physical phenomena considered in [8], high-speed vessels can
be regarded as complicated systems.

This is where non first principle modelling can become relevant. Starting
with a set of differential equations,

ẋ(t) = f(x(t), τ (t)), (2.3)

where x(t) is the state and τ (t) the input vector, the properties of the model
can be identified using observations of system behavior. This comes with a
shift in focus from physics to statistics. There has not been done as much
work with non first principle models of marine vessels compared to work
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with first principles; but, as mentioned earlier, one article that covers the
subject is [7].

U

u

v

r

North

East

χ
β

Figure 2.2: The vessel states, x = [U r]>, described in a North-East
reference frame and the body frame.

The article, [7], describes a 2DOF control-oriented model. 2DOF are chosen
due to the fact that ASVs are generally underactuated, unable of indepen-
dent control of surge, sway, and yaw. The states of the 2DOF model are
the vessel’s speed over ground (SOG), U =

√
u2 + v2, where u and v are

surge and sway; and the vessel’s rate of turn (ROT), or yaw rate, r. The
kinematic equations are found as a modification of (2.1a) and given by

η̇ =

cos(χ) 0
sin(χ) 0

0 1

[U
r

]
, (2.4a)

χ̇ = r + β̇, (2.4b)

where χ = ψ + β is the course angle, and β the sideslip angle. As SOG
can only have positive values U ≥ 0 an assumption of positive surge speed
u > 0 is made to remove ambiguity from the model. Consequently, the
system’s valid configuration space becomes limited. But, the limitation is
reasonable when considering that the typical control application involves
vessels in forward motion.

As mentioned in section 2.1.1, the kinetics of a marine vessel can be chal-
lenging to model if the vessel is allowed to operate at high speeds. Therefore
[7] proposes the use of a simple non first-principle model on the form

M(x)ẋ+ σ(x) = τ , (2.5)
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to make modelling more approachable. The terms of the model are unit-
less; x = [U r]> is the state vector, M = diag(mU (x),mr(x)) is the inertia
matrix, σ(x) = [σU (x) σr(x)]> is a damping term, and τ = [τm τδ]

> is the
control input where τm ∈ [0, 1] and τδ ∈ [−1, 1] describes the motor throttle
and rudder angle respectively. The elements of M(x) and σ(x) are chosen
to have a polynomial basis and will be identified using linear regression.
This process will be described in section 2.3.3, and linear regression will be
introduced in section 2.2.

When working with empirical models such as this one, it’s important to
be aware of the fact that the model is only valid within the region of the
state space in which the system explored during the experiments used for
parameter identification. The behavior of the identified model outside of
this region is unpredictable and often quite dramatic. That is because good
extrapolation is not a general property of functions used in curve fitting.

2.2 Linear regression

The model presented in the previous section represents a general structure.
As mentioned, the elements of M(x) and σ(x) have a polynomial basis.
This means that a they are assumed to have a structure which can be rep-
resented by polynomials. Measurements of the elements will be obtained
during the identification process described in section 2.3 and these will be
used to identify the parameter of the polynomial structures used to describe
the terms of the model. An introduction to linear regression will be given
here. And then its application in the model identification process will be
described in section 2.3.3. For details on the subject of linear regression and
statistical learning, literature such as [10] is highly recommended.

Linear regression is a method used to model the relationship between a
dependent variable y and some independent variables x. At the core of this
relationship lies a linear combination of a vector of basis functions φ(x),
describing the underlying structure of the model; and a parameter vector
β, instantiating the structure. The first step of the regression is to identify
some φ(x) able to represent the most relevant behavior of our system based
on knowledge about its nature. Then, given a φ(x), measurements from
experimentation are used to determine the value of β that minimizes an error
term, ε, which represents the unmodelled system dynamics, disturbances
and noise.

From the description above, the measurement and estimate of y can be
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formulated as

y(x,β) = φ(x)>β + ε, and (2.6a)

ŷ(x,β) = φ(x)>β. (2.6b)

Using the fact that y(x,β) is linear in terms of β, the regression looks for
the β that minimizes the least square error, εLS , between measurement and
estimate. The least square error is given by

εLS =
1

N

N∑
i=1

(yi − φ(xi)
>β)2, (2.7)

where N is the total number of measurements, and yi and xi is the i’th pair
of measurements in the data set

{
{x1,x2, . . . ,xN}, {y1, y2, . . . , yN}

}
. The

minimization of (2.7) has the analytic solution

β = (X>X)−1X>Y , (2.8)

where X =
[
φ(x1)> φ(x2)> . . . φ(xN )>

]>
and Y =

[
y1 y2 . . . yN

]>
.

At this point all the terms necessary to evaluate the estimated model, (2.6),
are available. Performance of the model in real world applications depends
on the various limitations encountered, and decisions made, throughout the
regression process. For example; the choice of which measurements of y to
include, which is relevant if outliers are a threat; the choice of which φ(x) to
base the model on, a high degree of non-linearity increases the risk of overfit-
ting while a simple basis might be unable to capture essential dynamics; the
quantity and quality of measurements, elements that determine the amount
of noise that slips through as well as its impact; etc. There is a variety of
countermeasures available to limit the impact of some of these shortcomings.
Three of them are described below and will be taken advantage of later on.
These are weighted linear least squares, regularization, and cross-validation.

2.2.1 Weighted linear least squares

The nature of a system can be such that the reliability of measurements is
correlated with the system state. This happens when the variance of the
error term, ε, in our model (2.6) is not constant, but dependent on x. That
is, in general:

Var(εi|xi) = g(xi) 6= constant, (2.9)

where g(xi) is some unknown function. The effect is illustrated in Figure
2.3. Looking at Figure 2.3 it is fair to say that a measurement at a high
x-value is more likely an accurate representation of the true function value
than a measurement with a lower x-value. If this is the case and it is
not accounted for, the model may suffer as imprecise data points will have

10
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the same influence as precise data points. This is especially concerning as
the regression considers the quadratic error, meaning large errors, such as
the ones generally found in high variance regions, have considerable more
impact.

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

y

Figure 2.3: Samples from a system where the variance of y is clearly depen-
dent on x.

In the context of modelling marine vessels the phenomenon is expected to
be encountered when applying regression to identify model parameters due
to multiple causes. When a surface vessel operates at speeds close to zero,
effects on the system state caused by disturbances, such as waves, current
and wind, will be quite large relative to the state value. This means that it
becomes difficult to get a good representation of the actual vessel dynamics
at low speed, separated from the dynamics of the sea. Furthermore effects
of control input are hard to identify in this region as well. The inertia of
surface vessels at speeds close to zero can be many times greater than inertia
experienced at higher speeds, which in combination with the high damping
of the low speed region, means that environmental effects will dominate.
Perhaps most importantly is how inertia influences the acceleration of a
system at different values, but this discussion will be picked up later on.

The idea behind weighted least squares is that a weight is assigned to each
point in the data set which indicates how reliable this measurement is rela-
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tive to the others. The new least square error can be formulated as

εLS =
1

N

N∑
i=1

w2
i (yi − φ(xi)

>β)2, (2.10)

where wi > 0 are weight coefficients. This way the regression makes the
most out of measurements from trusted regions of the state space, while
also evaluating measurements from regions of the state space troubled by
uncertainty more skeptically. Weighted least squares is therefore advan-
tageous to use when evaluating small data sets where there might not be
enough data points to guarantee a proper representation of the underlying
dynamics. If the weights are wrongfully determined, weighted least squares
can serve against its purpose by giving uncertain regions a high influence.
Another important issue is the effect of outliers in weighted least squares.
As with other types of regression they are troublesome, but an outliers
negative influence can be significantly multiplied if it appears in a highly
trusted/weighted region.

The challenging part of weighted least squares is that (2.9) is difficult to
determine, so it must be estimated in some manner, or weights must be
determined with a heuristic approach. For estimation of the functional form
of (2.9), one can use techniques such as feasible generalized least square
estimation, but the quality of the estimation will be dependent on the data
set. The estimator is biased, and in order to minimize the bias, a large
data set is required. Consequently, estimating the functional form of (2.9)
is not a good option for the purpose of this thesis because measurements
are extracted in a way that generates relatively few data points. Therefore,
a priori knowledge of the measurement dynamics will be used to formulate
a weighting scheme later on. For more information about weighted linear
regression [13] is recommended, in addition to [10].

2.2.2 Regularization

A central problem in statistical modelling is overfitting. Overfitting is what
happens when a model starts to describe the behavior of noise in the data
and loses sight of the relationship between dependent and independent vari-
ables. It occurs when the ratio between data points and model parameters
becomes too small. This allows the model to specialize on the data set used
in the regression and thus losing generality. The phenomenon is illustrated
in Figure 2.4. Overfitting is an element of concern in the identification
process described in this report as it aims to use a relatively sparse data set.

One of many techniques to counteract the regression’s desire to overfit is
regularization. With regularization, a term is added to the least square
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Figure 2.4: Overfitting due to insufficient ratio between model complexity
and number of data points. The identified model, red line, is too focused on
minimizing the error to measurements, blue marks, to successfully capture
the dynamics of the true signal, green line.

error (2.7) whose purpose is to reduce model complexity, for example by
penalizing large parameter values. Equation (2.7) becomes

εLS =
1

N

N∑
i=1

(yi − φ(xi)
>β)2 + λR(β), (2.11)

where λ > 0 is a parameter determining the weight of the regularization
term relative to that of the sum-of-squares error term, and R(β) is a penalty
function chosen to have the desirable impact on β.

A class of penalty functions that has seen wide use is

R(β) =

M∑
j=1

|βj |q, (2.12)

where M is the number of model parameters in β, and q ∈ R>0. By adding
the regularization term to the least square error as in (2.11) it generally
does not have a closed form solution anymore. Instead the overall problem
can be formulated as a quadratic problem with (2.7) acting as the objective
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function, subject to the constraint given by (2.12) as

β∗reg = argmin
β

1

N

N∑
i=1

(yi − φ(xi)
>β)2 (2.13a)

subject to
M∑
j=1

|βj |q ≤ η (2.13b)

where there is a one-to-one correspondence between η and λ; see [10] for
further details.

β∗ridgeβ∗lasso

β∗

β1

β2

Figure 2.5: Regularization example. Solutions to lasso, β∗lasso; ridge regres-
sion, β∗ridge; and standard linear regression, β∗, are plotted. With them,
visualizations of the lasso constraint, red square; ridge constraint, blue cir-
cle; and contours of the least square error function, blue and red ellipses.
Figure adapted from [10].

In this thesis the two cases q = 1 and q = 2 will become relevant. These are
also the most widely used, and they are known as lasso and ridge regression
respectively. The difference in functionality between the two is illustrated
in Figure 2.5. The figure shows a case where the parameter vector has
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two variables, β1 and β2, and minimizer of (2.7) is the green dot labeled
β∗. When a regularization term is added as in equation (2.11) the problem
becomes constrained as mentioned earlier. The constraint in the cases of
lasso and ridge regression has the form of shown in (2.13b) and its outer
boundary is visualized as the red square, |β1|+ |β2| ≤ ηlasso, and blue circle,
β2

1 + β2
2 ≤ ηridge, respectively. The ellipses centered at β∗ represent the

contours of the objective function, which is the equivalent of the least square
error (2.7). At the point where the outer red ellipse intersects with the red
square, or rather the point with the lowest least square error satisfying the
lasso constraint, lies the solution, β∗lasso, to the lasso method. Likewise,
β∗ridge is the solution to the ridge regression.

Figure 2.5 displays some of the properties of lasso and ridge regression.
Lasso tends to drive some elements of β to zero, working somewhat like
a feature selection method, selecting a subset of the available parameters;
and generally restricts the size of the elements. Ridge regression on the
other hand, does not exclude any elements of β. It generally keeps them
all and shrinks together correlated elements of β. The discussion of when
to use which of the two will be picked up in section 3.3.2. For more details
about lasso and ridge regression, as well as other regularization methods the
insightful discussion of the topic in [10] is recommended.

2.2.3 Cross validation

Cross validation (CV) is a technique that can be used to determine hyper-
parameters, meaning parameters that has to be set before the regression is
performed, such as the regularization weight λ. The method has multiple
variations. A commonly used, and rather intuitive, variant is K-fold CV.
The workings of the method is illustrated in Figure 2.6. In K-fold CV the
data set is divided into K subsets, or folds. Iterating through the folds, each
fold takes a turn serving as validation data while the other K − 1 folds are
used for training. Performing a regression on the training folds and validat-
ing the resulting model using the validation fold produces a validation error,
denoted ei in the figure. After going through each fold, a validation score,
Eval, is obtained by averaging the validation errors from each iteration.

Provided a set of possible hyperparameter values, for example a range be-
tween an upper and lower bound, K-fold CV can be performed for each
value. Once the whole set has been evaluated, the hyperparameter value
with the best Eval is chosen. As the use of CV in hyperparameter identi-
fication is an optimization problem, there are more sophisticated methods
for obtaining a solution. However, linear regression is a post processing
step in the method covered in this thesis. As such, there are no strict time
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Figure 2.6: K-Fold cross validation. One fold of samples is excluded from
training and used to validate at each iteration. The average validation error,
Eval, of all iterations can be used to score hyperparameter values.

constraints; additionally, boundaries of the hyperparameter ranges that are
suitable for the system studied here have been determined in earlier work.

The choice of how many folds, K, to use in CV comes down to multiple
factors. In general it is recommended to use K = 10. Increasing the number
of folds means that the validation error, Eval, will have a higher variance as
the training data becomes similar for each iteration. Decreasing the number
of folds means, Eval, will be more biased as it becomes an overestimate.
The deciding factor in context of this thesis is the small size of the data set
compared to the complexity of the model. By choosing K = N , which is
called leave-one-out, the regression can make the most of each data point.
Normally, computation time is a considerable factor as well. But as a rela-
tively small data set is being used, and there are no strict time constraints,
it is a feasible option.

2.3 Model identification

The model identification procedure can be thought of as a five step process.
A rough sketch of it is shown in Figure 2.7 where some intermediate results
are shown. The details of the figure are not essential at this point as similar
results will be presented and discussed later on. For now the contents of
the figure will serve as a visual reference for the purpose of each step in the
modelling procedure as they are described later in this section.

Now a brief description of each step in the method is given and then each
step will be expanded upon in the sections that follow.
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r
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1. Experiment design

2. Data collection

4. Parameter identification

5. Model validation

3. Data extraction

Figure 2.7: A visual outline of
the modelling approach presented
in [7].
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1, 2 The first and second step of the method are experiment design and
data collection. The modelling method is based on collecting data
from the vessel’s step response; more specifically, recording transient
and steady state responses. Therefore, the experiments are performed
by executing a sequence of steps in input τ . To achieve a satisfactory
sampling of the vessel’s dynamics throughout the state space some
thought has to be put into design of the step sequence.

3 The third step is to analyze the data collected in step two, and extract
measurements that are descriptive in a modelling context. Measure-
ments of the vessel’s transient behavior is used to identify the pa-
rameters of the inertia term M(x), while measurements of the steady
state behavior is used to identify the parameters of the damping vector
σ(x).

4 The fourth step is to feed the measurements extracted in step two
into a parameter identification tool such as linear regression. Given
that the measurements are well distributed in the vessel’s state space,
the linear regression should provide sufficiently accurate estimates of
M(x) and σ(x).

5 The fifth and final step is to ensure that the newly identified model
performs adequately. This is done by comparing the models simulated
response to the vessel’s actual response in a validation experiment.
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2.3.1 Experiment design and data collection

r

U

2. Data collection

5. Model validation

4. Parameter identification

3. Data extraction

1. Experiment design

Figure 2.8: The intention of the
two first steps is to provided data
well distributed in the state space.

To gather data for the model identifica-
tion, [7] describes experiments consist-
ing of a sequence of step responses. The
step responses are recorded, then data
from the transient is used to describe
the vessel’s inertia, and steady state
data is used to describe the damping.
The experimental procedure described
in [7] for gathering data to estimate
SOG parameters, mU (x) and σU (x), is
formulated as follows. Note: The nota-
tion has been slightly modified in order
to increase generality.

Experimental procedure

1. Start at τm = τm,min. Select τδ =
τδ,min

2. Step τm stepwise from τm,min to
τm,max in steps of τm,∆, letting
the vessel SOG and ROT reach
steady state before the next step
is applied. Let the vessel do at
least on full turn after reaching
steady state, to be able to mini-
mize the effect of external distur-
bances through averaging.

3. Step τm stepwise from τm,max to
τm,min, in the same fashion as in
step 2.

4. Repeat step 2 and 3 with the next
rudder setting.

As noted in [7], the experimental proce-
dure for identification of ROT parameters, mr(x) and σr(x), is the same,
except the roles of τm and τδ are switched. Figure 2.8, under ”Data collec-
tion”, shows the ROT response of one iteration from identification of ROT
parameters. Both increasing and decreasing input steps are performed to
include the effects of rate dependent hysteresis. The experimental procedure
is also designed with an assumption of symmetric rudder response in mind.
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This means that samples from the region of state space where r < 0 can be
obtained by mirroring data sets obtained later on.

The use of step responses to model surface vessel dynamics is discussed in
[4]. In this article the concept of maneuverability, which is a central concept
in studies of aircraft [1], is adapted to a marine setting. As described in
[1] maneuverability is ’a measure of the ability to achieve and transition
between steady maneuvers.’ In the context of maneuverability, data from
the steady state achieved in a step response can be used to describe the
vessel’s maneuver performance, which in our case is closely related to the
damping term of the model (2.5), σ(x). This is easily seen by evaluating
the equation (2.5) in steady state, where ẋ is zero. The transient of the
step response can be used to describe the vessel’s agility. And, if maneuver
performance is evaluated first, this means that the recorded transient can
be used to estimate the inertia of the model (2.5), M(x). This process will
be expanded upon in section 2.3.2.

Parameters of the experimental procedure

The input bound parameters, τm,min, τm,max, τδ,min, and τδ,max, decide the
size of the region in state space where the model is valid. Extrapolation
is generally not considered in empirical model identification so the model
has to be saturated when operation takes place outside the valid region.
Therefore, operation should be restricted to be within this region in state
space as there are no promises of accuracy when operating outside of it.

Even though maximizing the valid region of the model is desirable, there
are some considerations that should done before setting the input bounds.
These consideration are usually case specific. In [4] a similar experimental
procedure is described where τm,min is chosen to be

τm,min = 0.4. (2.14)

This was done because ”a throttle input of less than [0.4] was barely recog-
nizable on the surge speed output, which means that the range [0 0.4] in
practice constitutes a dead band.” The authors of [7] chose τm,max to be

τm,max = 0.6, (2.15)

because ”[they] observed that the motor response [was] greatly reduced for
τm > 0.6 [...].” As the vessel studied in this report is the same as the one
studied in [7] the same bound will be used here. Additionally, since the
experiments are going to be done automatically in the work covered by this
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thesis, the bound defined by τδ,max will be tightened when combined with
large values of τm; more specifically,

τδ,max =

{
0.4, if τm > τm,max − τm,∆
1.0, else.

(2.16)

This is a safety/comfort measure as aborting a potentially dangerous ma-
neuver, like a sharp turn at high speed, has the added delay of a manual
takeover. When it comes to τδ,min, it can be favourable to select a nonzero
value small enough to ensure proper sampling near r = 0, but large enough
for it to be reasonable to complete a circle in steady state, as suggested in
step 2 of the ”Experimental procedure.” Failing to complete a circle will re-
sult in a current induced bias, this is primarily a threat in low SOG regions
where the signal-to-noise ratio is low. An exaggerated illustration of the
valid model regions belonging to the three cases presented here is shown in
Figure 2.9.

r

U

Figure 2.9: An exaggerated example of how different input boundaries might
translate into the state space. The red region and the green region could be
from restrictions in motor input with the purpose of removing dead bands
in opposite end of the input range. The blue region could be from a wish to
avoid sharp turns at high speed for safety reasons.

In addition to the input bound parameters, the step sizes, τm,∆ and τδ,∆, are
also important for the outcome of the modelling procedure. As just men-
tioned, the input bounds could be tightened to leave out input intervals with
negligible effect. The input steps’ varying effect throughout the state space
is important to be aware of when formulating the experimental procedure
also. A visualization of how uniform steps might translate to the state space
is shown in Figure 2.10. As seen in the figure, steps in throttle tend to have
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a large effect in the middle of the input range but it decreases in direction
of either boundary. The effect of rudder steps is also dependent on U . How-
ever, the effect of rudder steps is closer to being uniformly distributed in the
direction of r.

r

U

Figure 2.10: An example of how uniformly distributed step sequences might
sample the state space. In this case the step lengths are τm,∆ = 0.1, each
throttle step visualized as a blue line; and τδ,∆ = 0.25, each rudder step
visualized as a red line.

A model built on measurements distributed as they are in Figure 2.10 would
be vulnerable to overfitting due to the long distances between measurements
in the U direction in the middle of the state space. To counter this one could
decrease the step size. However, this would also mean that distances between
measurements in other parts of the state space become smaller. For low SOG
regions this can have a negative effect on the quality of measurements. Ex-
ecuting a small step in this region results in a low signal-to-noise ratio, as
the effects of disturbances become hard to distinguish from a step response.
In Figure 2.11 two cases encountered in work with the collected data from
[7] are shown. Although, these represent the worst case, similar behavior
is not unexpected when operating in low speed regions. This emphasizes
the fact that this modelling approach should be performed under good con-
ditions/calm sea if a good representation of the vessel dynamics is to be
obtained; particularly in this low speed region. This is also noted in [4] in
the context of control applications, where it is mentioned that creation of the
vessel model should be focused on capturing the vessel dynamics in nominal
conditions. Then feedback terms should be used to counter discrepancies
due to disturbances.

Increasing step size to reduce the impact of disturbance on step responses
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(a) Step in throttle during identification of SOG parameters.
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(b) Step in rudder during identification of ROT parameters.

Figure 2.11: Encounters with low signal-to-noise ratio during identification
experiments done in [7].

is not necessarily a good idea either. That is because the low SOG region is
also where the vessel dynamics change the most and thus sufficient sampling
is required to achieve a good description. One solution would be to perform
a new experiment using the same step size but sampling at an offset by
setting τnewm,min = τ oldm,min + 1

2τm,∆.

A better solution, and also a common approach in empirically based mod-
elling [20], is to make the intention of the initial experiment to gather data
about the system, learn from it, and then use the newly found knowledge to
improve the modelling process in an iterative fashion. An illustration of this
procedure, comparable to the method overview of Figure 2.7, is shown in
Figure 2.12. Normally, the initial experiment is part of an extensive analy-
sis to determine a variety of system properties. This is essentially what has
been done in terms of modelling in [7]. But as suggested in the article’s fu-
ture work bullet list, extending the method to become iterative would likely
be beneficial. Generally, every element of the procedure can be examined for
improvements. But since results from [7] were satisfactory, most elements,
like model structure selection, can be left out of future iterations of the
method. Instead the iterative extension of the procedure should be aimed
at identifying a new experiment that achieves a better sampling of the state
space. Steps should be chosen to achieve a more uniform sampling of the
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Experiment design

Data collection

Model structure selection

Parameter identification

Model validation

Model OK?

Yes

No

Data extraction

Stopp

Start

Figure 2.12: Flow of an iterative modelling procedure. Model structure
selection is skipped in this method as results from [7] were satisfactory.
This flow chart is an extension of the one in Figure 2.7. Figure adapted
from [20].

state space. Additionally, the space between each sample should be small
enough to avoid overfitting and sufficiently sample the regions of the state
space hosting complex dynamics. At the same time the step size should be
large enough ensure a usable signal-to-noise ratio.
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2.3.2 Data extraction

1. Experiment design

3. Data extraction

2. Data collection

5. Model validation

4. Parameter identification

Figure 2.13: In step 3, inertia
and damping data is extracted
from each step response.

By performing the experimental proce-
dure described at the start of the previ-
ous section a collection of step responses
spread throughout the state space is ob-
tained. The next step of the method
described in [7] is to analyze each step
response of the collection, as illustrated
by Figure 2.7 in the transition from step
2 to 3. Through the analysis a measure-
ment of damping σ, an element of σ(x),
is extracted from the steady state region
of the step response. Then a measure-
ment of inertia m, a diagonal element of
M(x), is extracted from the transient.
The extraction of σ and m is illustrated
in Figure 2.13. Each measurement is de-
scribed by the step response’s location
in state space. This results in two types
of data sets:

Dσ =
{
{x1,x2, . . . ,xNσ},
{σ1, σ2, . . . , σNσ}

}
,

(2.17a)

Dm =
{
{x1,x2, . . . ,xNm},
{m1,m2, . . . ,mNm}

}
,

(2.17b)

The data sets can be expanded by as-
suming that the vessel has a symmetric
rudder response and therefore mirror all
the measurements about the ROT axis;
mirror and flip sign in the case of Dσr .

Measuring damping

By evaluating the model (2.5) in steady
state, that is with ẋ = 0, it is reduced
to

σ(x) = τ . (2.18)

This means that the elements of σ(x)
can be measured directly from input
during steady state. The average of x

over the whole steady state duration is used to locate the measurement in
state space.
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The results of applying this procedure on data from a throttle step experi-
ment and from a rudder step experiment are the two data sets

DσU =
{
{xU,1, . . . ,xU,NσU },
{σU,1 . . . , σU,NσU }

}
,

(2.19a)

Dσr =
{
{xr,1, . . . ,xr,Nσr },
{σr,1, . . . , σr,Nσr }

}
,

(2.19b)

The contents of Dσr is shown as the bottom right plot in Figure 2.7.

Measuring inertia

To measure inertia a first order linear time-invariant (LTI) system is fitted
to the transient part of the vessel’s step response. For example, throttle
transients are approximated by simulating

mUi
˙∆Ui + ki∆Ui = ∆τmi , (2.20)

where mUi is assumed to be a constant inertia term during step i; ∆Ui =

Û − U−i , where Û is the system state; ∆τmi = τm − τ−mi ; and ki =
σ+
Ui
−σ−

Ui

U+
i −U

−
i

with (·)− and (·)+ denoting the a priori and a posteriori steady state values
respectively. Similarly, mr is estimated from rudder steps by exchanging
U for r, and τm for τδ. To select an estimate the authors of [7] suggests
evaluating the root mean square error between the simulated system (2.20)
and the measured vessel response for a set of inertia values. Then choose
the one producing the lowest error. To locate the measurement in state
space, the midrange value of the transient is calculated. It is found as

x = (
U+
i +U−

i
2 ,

U+
i +U−

i
2 ).

The results of applying this procedure on data from a throttle step experi-
ment and from a rudder step experiment are the two data sets

DmU =
{
{xU,1,xU,2, . . . ,xU,NmU }, {mU,1,mU,2, . . . ,mU,NmU

}
}

, (2.21a)

Dmr =
{
{xr,1,xr,2, . . . ,xr,Nmr }, {mr,1,mr,2, . . . ,mr,Nmr }

}
, (2.21b)

The content of Dmr is shown as the bottom left plot in Figure 2.13.

Measurement accuracy

There are limited ways to improve the quality of damping measurements due
to the simple measurements procedure. Besides from making sure circles
are completed in steady state for each step, and that the experiments are
performed under good conditions, there are no obvious factors to play with
that doesn’t include system upgrades; i.e. sensor quality.
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The accuracy of measurements in the damping data sets (2.19) affect the
inertia measurements as the LTI system (2.20) depend on its values. In the
low SOG region, where the signal-to-noise ratio is low, this dependency can
cause quite dramatic errors in inertia measurements. An example is shown
in Figure 2.14 where the vessel is left facing the current approximately head
on at the end of the transient. The horizontal, red line is the measured
steady state value of the step response, the r element of xr,i in data set
(2.19b). This value clearly deviates from where the vessel enters steady
state, the value illustrated by the green line. However, this is not considered
by the LTI system (2.20). Consequently, the red transient in Figure 2.14
is the simulated instance of system (2.20) that best fits the vessel response
when evaluated with a least square error.
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Figure 2.14: Step response with significant difference between measured
steady state value and state measured at end of transient.

By studying the lower left plot of Figure 2.13 one can get an impression
of how significant this error is. The measurement produced by this step
is the one that is significantly higher than the rest; there are actually two
because every data point is mirrored due to the symmetric rudder response
assumption. As seen in the plot it has nearly double the value of any other
measurement. Even though these kinds of errors only appear with significant
size when the signal-to-noise ratio is low, they are a direct consequence of
the method used to generate the measurements, and not caused by some
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abnormality. The disturbances in steady state is purely due to current and
measurements noise.

It should be mentioned that although the error appears to be very large in
the data set the simulated transient in Figure 2.14 captures the vessel dy-
namics better than one might expect. This is due to the fact that changes
in inertia do not have a linear effect on transient behavior. However, the
linear regression performed later on primarily considers the size of the mea-
surement error and not its effect. In other words it is primarily the size of
the error that counts, but this will be discussed in greater detail in section
2.3.3 when it becomes more relevant.
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Figure 2.15: A step response from the experiment performed by the authors
of [7], plotted together with a first order approximation generated by the
inertia measurement technique described in [7] using equation (2.20). Below
it is a plot of the input signal and the measured actuator output.

Another important source of error is propagation delay, td. Propagation
delay comes from the time it takes the input signal to propagate through
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the different parts of the system and actuate it. The delay has a consistent
effect on measurements as it is a constant value that is always present. The
effects of td can be seen in both plots of Figure 2.15. The figure shows the
vessel’s actual step response and actuator output in blue; in addition to the
simulated response of LTI system (2.20) and the input reference signal in
red. As seen in the figure, the setup used on the Telemetron for these exper-
iments had a propagation delay of td ≈ 0.5s. This constitutes a significant
part of the transient in this case and results in a rather large gap between
simulated and actual response. Thus propagation delay translates into the
inertia models as a positive bias because the inertia measurements have to
be artificially large to compensate for the gap and lower the square error.
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Figure 2.16: A step response from the experiment performed by the authors
of [7] with propagation delay manually removed. The step is plotted together
with a first order approximation generated by the inertia measurement tech-
nique described in [7] using equation (2.20). A second order approximation
generated by a second order Nomoto model is included as well.

Propagation delay meant that the measured inertia became artificially high
to compensate for the gap it created. By looking at Figure 2.15 one can
see that there is another, relatively large, gap between simulation and re-
ality. That would be the gap created by the overshoot. Because a first
order LTI system like equation (2.20) can not emulate higher order behavior
like overshoots this too means that inertia measurements have to be artifi-
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cially adjusted to compensate. Figure 2.16 shows a step response where the
propagation delay has been manually removed from the inertia measuring
process in order to get a better look at the effect of overshoots. In the pres-
ence of overshoots the inertia value is lowered so that the transient might
rise quicker and thus minimize the gap beneath the overshoot. The actual
impact of this effect is most clear when the method is used in a simulation
environment where propagation delay is not present and actuator dynamics
have a limited effect as an integrated part of the model. Such a scenario was
studied in [11] where overshoots appeared to be the major cause of mea-
surement errors. Figure 2.17 shows the results that were obtained during
the process of modelling mr. It shows a correlation between negative mea-
surement error and regions of the state space where overshoots occur. Note
that errors seem to be smaller for measurements at high SOG, depending
on perspective that is not necessarily true. The reason why is discussed in
section 2.3.3.
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Figure 2.17: Inertia measurements obtained by applying the modelling
method in a simulation environment based on the model identified in [7].
The simplicity of the simulation environment allows the consequence of the
methods inability to describe overshoots to shine through. This figure is
taken directly from [11].

As mentioned, the inability to capture the overshoot phenomenon is due to
insufficient model order. Model order is a property that should be deter-
mined in the initial tests of an empirically based modelling process [20]. In
the context of surface vessels model order is a common topic when making
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heading autopilots. A well known model used in heading control applica-
tions is the Nomoto model [15][9]. Details about the Nomoto model are not
relevant here but some of the considerations done when making one are. Per-
haps the most common variants of the model are first order Nomoto, and
second order Nomoto. When choosing between them, the question boils
down to whether the model has to be able to describe overshoots or not.
The overshoot in yaw rate comes from a coupling effect between sway and
yaw [19]. This effect is not captured by the first order Nomoto as it is can-
celed out when reducing the second order version to first order. The same
is true for the LTI system (2.20) as it is practically equal to a first order
Nomoto model when used to identify mr.

The coupling effect between sway and yaw becomes relevant when the ves-
sel operates in regions of the state space where ROT is high. While the
first order model is often satisfactory for larger vessels incapable of such
maneuvers and vessels with limited operating space, the vessel target group
of the modelling method presented in [7] are smaller and faster, like the
Telemetron. That means that measurements from a significant part of the
state space will be contaminated with this error as seen in Figure 2.17. Fig-
ure 2.16 provided an example of how a first order system has to deal with
overshoots when fitted based on a square error. The figure also shows how
a second order system might represent the step response. In this case a
second order Nomoto model is used and its parameters identified manually.
The complexity of the second order approximation allows it to capture the
overshoot and thus more accurately describe the transient.

In Figure 2.15 one can see how the input step translates to actuator output
after the propagation delay has passed. The model (2.5) also attempts to
intentionally capture these actuator dynamics. As seen in Figure 2.16 the
actuator dynamics are captured similarly to how propagation delay is. By
creating a gap beneath the response of equation (2.20) it forces the inertia
measurement to attain a higher value. Looking at the response from the
second order Nomoto model one can see that the actuator dynamics are
better represented. However, the actuator dynamics and the overshoot are
captured by the same parameter, so in the steps where there is no overshoot
the actuator dynamics wont be described properly. To do that one would
have to use the measured actuator output or include nonlinearities in the
system equation used to generate measurements, the equivalent of equation
(2.20).

This discussion of measurement accuracy has been focused on measurement
of ROT dynamics. The same themes are also relevant in the case of mea-
suring SOG dynamics although the importance of each element might vary.
Overshoots, for example, are not a big concern which means that using a
first order system is more viable than in the ROT case.
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2.3.3 Parameter identification

1. Experiment design

4. Parameter identification

3. Data extraction

2. Data collection

5. Model validation

Figure 2.18: Step 4 produces a
model for each extracted data set.

The data extraction step covered in sec-
tion 2.3.2 produced the four data sets of
equations (2.19a), (2.19b), (2.21a), and
(2.21a). This section will be looking at
how models of σU , σr, mU , and mr are
obtained with the method described in
[7]. A preview of the results obtained
with this step is shown in Figure 2.18.

The previous section, section 2.2, de-
scribes the basics of linear regression
which should be familiar before engag-
ing the method described here. To ap-
ply linear regression in the identification
of damping and inertia models, σ̂(x)
and m̂(x), the models must be formu-
lated as a linear combination of the pa-
rameter vector β and basis functions
φ(x),

σ̂(x) = φσ(x)>βσ, (2.22a)

m̂(x) = φM (x)>βm. (2.22b)

The main objective of the regression is
to identify the β’s that minimize the

mean squared error between these models and the measurements in the
corresponding data sets, Dσ and Dm. This is achieved by minimizing the
objective function of a weighted lasso, on the form

ε =
1

N

N∑
i=1

wi(yi − φ(xi)
>β)2 + λ|β|, (2.23)

where N is the size of the data set being analyzed, wi is the weight of the
i’th measurement, yi is the i’th measurement from the data set, and λ is the
regularization parameter. The authors of [7] do not describe a particular
weighting scheme. Weights seem to be determined through inspection as
there are not many measurements that are specifically weighted. It is likely
that it has been used to penalize measurements that are of an obvious low
quality.

Basis functions

For the damping basis functions φσ(x) the authors of [7] suggest using
fourth order polynomials based on the structure of the data sets and the use
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of polynomial damping terms in [9]. This give them the form

φσ(x) = [1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4,

U3r, U2r2, Ur3, r4]>.
(2.24)

As seen in the left plot of Figure 2.18 the structure of the inertia measure-
ments exhibit asymptotic behavior at low SOG values. This dynamic can
not be properly captured by polynomial models of reasonable order. To
overcome this the authors of [7] suggests adding an asymptotic term to the
polynomial basis of equation 2.24. The basis functions used in identification
of inertia models becomes

φm(x) = [1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4,

U3r, U2r2, Ur3, r4, tanh(a(U − b)]>.
(2.25)

Using the basis functions (2.24) and (2.25) to generate ROT damping and in-
ertia models, equations (2.22a) and (2.22b), by minimizing the mean square
error in equation (2.23) in terms of β results in the ROT inertia and damping
models shown in Figure 2.18.

It should be noted that the basis functions suggested by the authors of [7]
are not necessarily sufficient in the general case. As the model also aims
to describe actuator dynamics, phenomenon like deadband could add more
complex behavior. For example, a deadband in the upper range of throttle
input could add asymptotic like behavior to σU (x).

Utilization of regularization

The general purpose of regularization is to reduce model complexity, often
by constraining the size of the elements in the model’s parameter vector.
The different ways in which regularization schemes achieve this goal can be
utilized by choosing a scheme that best serves the purpose of the specific
problem at hand. For example, the authors of [7] have chosen to use L1-
regularization, also known as lasso. As described in section 2.2, lasso has a
tendency to drive parameters to zero making it suitable for overparameter-
ized applications. As mentioned in section 2.3.1 it is assumed that the vessel
has a symmetric rudder response. That implies that both inertia models and
the SOG damping model are symmetric about the SOG axis; while the ROT
damping model is asymmetric about the SOG axis. Considering the basis
functions (2.24) and (2.25) contain both symmetric and asymmetric terms it
makes sense to use lasso. It makes sense because when modelling symmetric
behavior lasso should set the elements of β that correspond to asymmetric
terms in φ(x) equal to zero; and vice versa for an asymmetric model.
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However, when modelling with regression it is common practice to use nu-
merical solvers. This means that parameters will generally not be set equal
to zero, unless specific initial conditions or termination criteria are being
used. As a result the symmetric models are expected to have some asym-
metric behavior due small, but nonzero, asymmetric terms. Even though the
resulting error will not necessarily be impactful, it is unnecessary. Not only
because it unnecessarily introduces an error but also because the characteris-
tics of lasso are not properly utilized but still chosen over other regularization
techniques with potentially beneficial characteristics. In section 3.3 we will
be looking at model reduction and another regularization alternative.

Utilization of weights

Weighting is a tool that can be used to combat a multitude of error sources.
However, obtaining the insight to properly do so is nontrivial in the general
case. Combining the ability to visually inspect the measurements of the
data, with knowledge about the expected behavior of the dynamics allows
one to pick out obvious outliers in the data set and reduce their weight. As
mentioned in section 2.2, it is not easy to assign weights based on statisti-
cal properties of the data becasue the data set is rather sparse. Assigning
weights based on mathematical descriptions of the physical disturbances
influencing the measurements is not easy either. It requires a good under-
standing of the physical process which is something the method presented in
[7] is trying to avoid as high-speed vessels can be quite complicated systems.

Even though the system is very complicated, there is one aspect of the
modelling procedure that is well understood. That is the extraction of mea-
surements, not as in sensor data, but the procedure described in the previous
section, section 2.3.2. And it just so happens that the manner in which the
measurements are obtained is very impactful for how errors translate into
the data set. In the discussion at the end of the previous section, four signif-
icant errors in the inertia measuring where brought up. These errors mainly
affected the expected value of the measurement, as opposed to the variance,
and thus can not be directly countered by weighting. As mentioned during
discussion of the impact of overshoots on measurements, it seems like the
error remains equal, or even gets smaller, when moving further into the state
space where SOG is high. This can be seen in Figure 2.17. From what was
said about the occurrence of overshoots this seems a bit peculiar. Over-
shoots are something that occur with increasing magnitude when operation
take place in regions of the state space with high ROT values. Clearly, errors
are not linearly transformed into the inertia data set.

This nonlinear transformation also makes sense when looking at the error
visualized in Figure 2.14. The figure showed how a high signal-to-noise ratio
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meant that the measured steady state value was unfit for use in the inertia
measuring process. The phenomenon lead to an outlier in the data set with
an error of about εmr = 20. Although the outlier seems to have a quite
dramatic value, the simulated transient does better at describing the real
transient than one might expect. A similar case is shown in Figure 2.19a.
If an error of this size appeared in a region of the state space where inertia
values are lower the effect would be much more dramatic as seen in Figure
2.19b. This means that even though an error of εmr = 1 could be acceptable
in some parts of the state space, it could be unacceptable in other parts.
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(a) Step in throttle during identification of SOG parameters.
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(b) Step in rudder during identification of ROT parameters.

Figure 2.19: Encounters with low signal-to-noise ratio during identification
experiments done in [7].

Unfortunately, the linear regression does not consider this. It merely evalu-
ates the squared distance from the model to each measurement. Thus if it
evaluates a model during the regression process that describes the low iner-
tia region fairly well, but there is a relatively large error in the high inertia
region, the parameter vector will be adjusted to reduce the total error which
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might mean that significant errors will occur in the low inertia region. This
is an effect that influences the variance of measurements across the whole
state space and should be dealt with. The use of weights to counter the
effect is investigated in section 3.3, but it is also important to be aware of
this during the measurement extraction step.

2.3.4 Model validation

1. Experiment design

4. Parameter identification

5. Model validation

3. Data extraction

2. Data collection

Figure 2.20: The model is vali-
dated in step 5.

The last step of the model identification
procedure suggested in [7] is to validate
the identified vessel model. Figure 2.20
shows an overview of the validation re-
sults presented in the article. The val-
idation experiment shown in the figure
does a decent job of exploring the modes
of the ROT dynamics. It is however
somewhat lacking in its investigation of
SOG dynamics. Additionally, the ex-
periment only consists of step responses
so including various oscillatory inputs
as well would be a good start. When
validating it is generally a good idea to
use rich signals that are a good repre-
sentation of what will be encountered in
actual applications.

A closer look at the results is not im-
portant at this point. Although valida-
tion is an essential part of any modelling
procedure it has not been given enough
attention during the work with this the-
sis to receive discussion beyond this sec-
tion. This means that even though re-
sults from, and execution of, each step
of the modelling procedure presented in
Chapter 3 are compared to the method
in [7], a comparison of the methods’
overall performance will not be done.
The results should therefore be ana-
lyzed with some skepticism.
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Chapter 3

A method for automatic
model identification

In this chapter an automatic method for model identification based on the
method suggested in [7] is described. An attempt at automating the pro-
cedure was made the autumn of 2017 and is described in [11]. The project
work described in [11] successfully developed an automated procedure in a
simulation environment where the model identified in [7] was simulated. The
last piece of work done in [11] was applying the method on actual vessel data
gathered by the authors of [7]. Although the application of the automated
method on actual data was not entirely successful, each step of the method
showed potential. A fully functional automated modelling procedure is what
is presented in this chapter.

The method presented in this chapter is mainly an automated extension of
the method presented in [7]. In Chapter 2 some weaknesses and potential
improvements of the method were discussed. Most of these will not be
adressed and/or implemented in this chapter as the focus will be on the
challenges of automating the method. Instead, a description of strategies
for general improvement can be found in section 3.4. Some of the challenges
that arise when attempting to automate the procedure are as follows:

1. First of all the experiment performed in the data collection step must
be carried out automatically. With no human operator in the loop a
method for SSID is needed to identify the transition between transient
and steady state such that inertia and damping measurements can be
obtained, and to progress the experimental procedure by initiating
new input steps.

2. Although the procedure for obtaining damping measurements is fully
automatic, the current brute force solution for measuring inertia trans-
lates poorly to an automatic solution capable of handling the general
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case as both search boundaries and resolution must be set, and the
resulting set sizes could be come quite large. It also extends poorly
to the multivariate case which will likely be relevant when looking to
improve the model.

3. At its core linear regression is an automatic process. The challenges of
automation faced in the parameter identification step are identification
of an automatic weighting scheme.

From the challenges listed above it is clear that the focus of this chapter
will be on step 2 ”Data collection,” step 3 ”Data extraction,” and step 4
”Parameter identification.” Step 1 ”Experiment design” will be left as it is
in [7]. In fact this chapter will use the same experiment data used in the
model identification performed in [7], and thus the same experiment. There
are some consequences of doing this as the SSID technique suggested in
this chapter obviously will not match the exact choices made by the human
operator who performed the experiments in [7]. These consequences will be
made clear as they become relevant, and their impact on the result will be
discussed as well.

3.1 Data collection

This section will look at how the experiment can be executed automatically.
The experimental procedure remains the same as the one described in section
2.3.1 with the parameters used in [7] which are listed in Table 3.1. Algorithm
1 shows an algorithmic representation of the experimental procedure for a
throttle experiment. The main challenge of the algorithm is the SSID in
line 11, and the rest of this section is dedicated to answering the challenge
it poses. Figure 3.1 and Figure 3.2 show the data collected in the throttle
experiment and rudder experiment.

Table 3.1: Parameters of experimental procedure used in [7].

Input τmin τmax τ∆

τm 0 0.6 0.1
τδ 0 1 0.333

3.1.1 The steady state identification problem

The purpose of SSID in this method is to determine a point in time tss
when the vessel has reached steady state so that measurements of inertia
and damping can be extracted from their respective regions. That is, iner-
tia measurements can be extracted from the data sampled before tss, and
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Figure 3.1: Throttle experiment performed by the authors of [7]. The pa-
rameters used can be found in Table 3.1.
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Figure 3.2: Rudder experiment performed by the authors of [7]. The pa-
rameters used can be found in Table 3.1.
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Algorithm 1 Experimental procedure (throttle case)

1: procedure Experiment(τmin, τmax, τ∆)
2: for τδ = τδ,min to τδ,max step τδ,∆ do
3: ExecuteStepSequence(τδ, τm,min, τm,max, τm,∆)
4: ExecuteStepSequence(τδ, τm,max, τm,min, −τm,∆)
5: end for
6: end procedure
7:

8: procedure ExecuteStepSequence(τδ, τm,min, τm,max, τm,∆)
9: for τm = τm,min to τm,max step τm,∆ do

10: Apply step input to actuators.
11: Let U and r reach steady state.
12: Let the vessel do at least on full turn after reaching steady state.
13: end for
14: end procedure

measurements of damping can be extracted from the data following tss. It is
not crucial that tss is a high quality estimate of the time of actual transition
between transient and steady state t∗ss. Rather, it should be a point in time
after the transition is completed. Whether it is t∗ss + 1 second or t∗ss + 10
seconds is not important, as will be demonstrated now.

First, given that the results of the SSID can be described as

tss = t∗ss + ∆t, (3.1)

where ∆t is an arbitrary length of time; how would the size of ∆t influence
the damping measurements? From section 2.3.2 the damping measurement
was read directly from the input value, σr = τδ in the ROT case. Its location
in state space xσr was found by letting the vessel complete a turn after steady
state had been identified and then average the state value during the turn.
Clearly, as long as ∆t ≥ 0 the damping measurements are not influenced
by the value of ∆t. If ∆t < 0 the measurement of xσr would suffer as data
points from the non zero mean transient would impact the average.

Second, how will the size of ∆t influence the inertia measurements? The
answer to that can be seen in Figure 3.3. In the description of the inertia
measurement process described in 2.3.2 it is mentioned that the simulated
step response of a first order LTI system is curve fitted to the vessel’s step re-
sponse to measure inertia. The results from six such simulations, performed
with different values of tss, is shown in the figure. As seen in the figure the
first order responses hold a constant value once the transient is over. This
constant value is determined by the already obtained damping measurement
which means that the only degree of freedom left in the simulated system is
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Figure 3.3: The effects of premature steady state identification versus over-
due identification on the inertia measurement.

the inertia parameter. Because the inertia parameter is unable to influence
the simulated system’s steady state behavior it does not matter what size
∆t has. Even if there was a relatively large disturbance affecting the signal
at some point after t∗ss the system has no practical way to describe it.

Looking at Figure 3.3 one can see that after a certain point the value of tss
has negligible effect on the inertia measurements. Judging by the values of
mr shown in the legend of the figure, this point is somewhere close to tss,3.
Any value tss < tss,3 would have to be considered a premature SSID as
the value of the measurement start to change. Premature SSID would also
affect the inertia measurement indirectly as xmr is dependent on xσr . Al-
though delayed identification is favourable, there are some situations where
accurate identification of the transition between transient and steady state
is important. Figure 2.14 showed an example of such a situation. When
the signal-to-noise ratio is low scenarios can occur where it becomes hard
to distinguish the effects of current from the step response transient. These
situations are already troublesome and increased accuracy of the SSID will
not have a significant effect (positive) unless other aspects of the method
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are improved as well.

In conclusion, the focus of the SSID method should be on certainty rather
than accuracy. In general, this reduces the difficulty of the problem as the
method will be allowed to take a passive approach, waiting out disturbances
that result in ambiguous behavior.

3.1.2 A method for steady state identification

The method that is going to be used for SSID in this thesis is one suggested
in [5] and more recently discussed and described in [16]. A very approachable
introduction to SSID and a relatively expansive overview of its use in various
fields is given in [5], and it is therefore a highly recommended starting point
for further investigation of the subject.

Rss,0.50 Rts,0.95

R

P
D
F

Rss

Rts

Figure 3.4: Hypothetical probability density function of R during steady
state and transient state.

A common approach to SSID is statistical hypothesis testing where a null
hypothesis, H0, is formulated and a suitable test statistic, R, is defined. For
SSID the H0 should be formulated as a condition that when satisfied by R
implies that ”the system is probably in steady state.” Similarly an alternate
hypothesis/condition, H1, must be formulated such that when satisfied re-
jects H0, implying that ”the system is probably in transient state.” Figure
3.4 shows the probability density function (PDF) of R in two hypothetical
scenarios and will be used to define H0 and H1. More specifically it shows
the PDF of R when the system operates in steady state, labeled Rss; and
the PDF of R when the system is in transient state, Rts. Looking at the
figure one could argue that a reasonable formulation of H0 and H1 could be
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H0 : R ≤ Rlb, and (3.2a)

H1 : R ≥ Rub, (3.2b)

where Rlb is a lower bound, and Rub is an upper bound. Furthermore Rlb
and Rub should be well separated to minimize the likelihood of R fluctuating
between the two conditions. For example, assume a vessel is in steady state
when a step in input is initiated. The vessel transitions into to transient
state and H0 is rejected (H1 is accepted). Shortly thereafter a disturbance
affects the vessel state causing R to drop for a moment. If Rlb and Rub are
too close R might drop below Rlb causing H0 to be accepted and a false,
premature identification of steady state occurs.

As stated in the previous section being certain that steady state is correctly
identified is a priority. This means that Rlb should have a value that is
characteristic of steady state behavior. For the scenario presented in Figure
3.4, one could consider setting Rlb = Rss,0.50 or even lower. Setting the
boundary even lower means that the certainty of steady state is higher, but
if Rlb is set too low steady state might not be identified for a considerable
amount of time after it occurs as values of R satisfying H0 in this case only
occurs as fluctuations due to disturbances.

Although the PDF of Rts is depicted as belonging to a normal distribution
in Figure 3.4 the case is quite different when working with surface vessel
step responses. There will not be any characteristic values of R during the
transient, nor a well defined range of values, that provide a good choice for
Rub. Another way in which the application covered in this thesis differ from
the general application is that identification of transient state is purely need
to avoid premature identification of steady state. This is because the system
already knows when the transient/step response starts; it starts when the
step input is applied. That is not entirely true as dead time delays the
transient but there are better option for correcting for dead time, some are
discussed in 3.4. How does this affect the choice of Rub? It means that Rub
should be set to a value that is comfortably reached by R during all step
responses, while maximizing the distance to Rlb. The issue should become
clearer later on once the behavior of R is introduced.

Defining the R statistic

The R statistic should be a defined as a value that has a distinctly different
behavior in steady state when compared to its behavior in transient state.
The authors of [5] suggest an R statistic based on the ratio between two
measurements of variance. The two variance measurements are based on
the distances d1 and d2 visualized in Figure 3.5. The figure shows a plot of
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Figure 3.5: Figure showing the deviations used to measure variance. The
deviation d1 being the distance between current measurement of the state
variable Ui and the filtered measurement of U at the previous time step,
Uf,i−1. And d2 being the deviation between Ui, and the measurement of
U at the previous time step, Ui−1. The data seen in the figure is from a
simulated transient response.

the vessel state U during a transient. The black line in the figure represents
the true value of U , Utrue; the red marks are the sensor measurements, U ;
and the blue marks are generated by filtering the measurements, and are
given the notation Uf . To describe the general case the notation xtrue, x,
and xf will be used. As seen in the figure the distances can be defined as

d1 = xi − xi−1, and (3.3)

d2 = xi − xf,i−1, (3.4)

where xi denotes the i’th measurement of x. The idea is that when the
system reaches steady state the filtered value xf will be centered in the
measurements x, approximating the true value xtrue. If measurements from
an interval of steady state are examined one should be able to see that
the variance estimated by d2, σ2

d2
, is approximately equal to the variance

estimated by d1, σ2
d2

. When the system enters transient state xf will start
to lag behind xtrue, creating a gap between the two signals such as the one
seen in Figure 3.5. When this gap grows in size so does d2 which means
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that the ratio between the two variance estimates, rσ2 =
σ2
d2

σ2
d1

, quickly grows.

This means that the ratio between d2 and d1 can serve as a good foundation
for making a distinction between transient and steady state as the two cases
can be described by

rσ2 ≈ 1 in steady state, and

rσ2 � 1 in transient state.

Based on the discussion above an R statistic can be formulated. First of,
the authors of [5] defines the filtered state value xf as x run through an
exponential filter,

xf,i = λ1xi + (1− λ1)xf,i−1, (3.5)

where λ1 > 0 is a constant filter coefficient. Second, the two variance esti-
mates d2 and d1 are measured by the two exponentially filtered values

ν2
f,i = λ2(xi − xf,i−1)2 + (1− λ2)ν2

f,i−1, and (3.6)

δ2
f,i = λ3(xi − xi−1)2 + (1− λ3)δ2

f,i−1, (3.7)

where λ2 > 0 and λ3 > 0 are constant filter coefficients, similar to λ1.
Finally, the R statistic is defined as

R =
(2− λ1)ν2

f,i

δ2
f,i

. (3.8)

The derivation of the equation for the R-statistic (3.8) is described in [5].

3.1.3 Application of method to surface vessel step responses

Figure 3.6 shows the results of applying the method to the rudder experi-
ment. As seen in the figure, R has a distinct, spiking behavior during the
transients, and in steady state R falls down to a lower value which seems to
be in roughly the same range for all the steady state regions. This behavior
goes well with the hypotheses of equations (3.2a) and (3.2b) that were for-
mulated to determine if the system is in steady or transient state. Before
the results are analyzed further a closer look will be taken at how the R
statistic functions.

As described by equation (3.8), R is determined by the two variance mea-
surements ν2

f and δ2
f . The behavior of these two values is shown in Figure

3.7a and 3.7b. Starting with Figure 3.7a one can see that ν2
f is responsible

for the spiking behavior in R. This makes sense as equation 3.6 defines
ν2
f as the difference between the measured and the filtered signal. When a

transient occurs the filtered signal lags behind the measurements causing ν2
f
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to generate the spikes seen in the figure. However, these spikes alone are
not well suited for SSID. As seen in the figure, the height of the spikes is
correlated to the vessel’s SOG as rudder steps at high SOG are larger and
steeper; remember that each pair of ascending and descending transients
is performed with a constant throttle input and thus at roughly the same
SOG.

To balance the height of each spike one can make use of the fact that the
variance measured by δ2

f is measured as the difference in state value between
each sample. During a transient this difference is primarily a measure of the
vessel state’s acceleration caused by input change. Therefore, δ2

f is also going
to spike during transients, and can be used to scale the spike in R. Note
these spikes are not the large spikes seen in Figure 3.7.

Although hard to see in Figure 3.7a, the steady state value of ν2
f is also

correlated with SOG. This is because disturbances become more violent
when the vessel operates at high speed. Again, this affects δ2

f in a similar

fashion, and so δ2
f can also be used to scale the steady state value of R.

Figure 3.11 shows a δ2
f during an interval from a throttle step experiment

where the effect can be seen much clearer; observe how δ2
f increases as SOG

increases. To summarize, the behavior of R is caused by ν2
f spiking due

to lag between measured and filtered state, and made independent of noise
level, and transient characteristics, through δ2

f .
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Figure 3.6: Application of the method described in [5] for steady state iden-
tification in a rudder experiment performed by the authors of [7]. The
parameters used can be found in Table 3.2.
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Figure 3.7: Plots of the two variance measurements defining R through
equation (3.8). The parameters used can be found in Table 3.2.
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Figure 3.8a and Figure 3.8b shows a portion of the results from application
of the SSID method to the rudder and throttle experiments. As seen in
the figures the SSID seems to be pretty accurate; although, as mentioned
in section 3.1.1 it is preferable with a reasonably delayed identification. In
general, this could be achieved by increasing the λ1, the filtering coefficient
of the state. But, because the method is applied to previously recorded data,
as opposed to on-line with live data, its parameters have to be overfitted
to deal with certain scenarios that other wise could have been either waited
out or called for a redo of the step (if framework for redos were in place).
A couple of restricting scenarios will be discussed later but first a case that
could not be solved with realistic application of SSID method.

Of the two experiments examined, the motor experiment was the hardest
to obtain proper results from. This is partially because SSID performed by
a human operator can vary in consistency. In experiments like the throttle
experiment, which contained 146 step responses and lasted nearly 2 hours, it
is hard for a person to stay focused. This is a typical reason and important
motivator for pushing for automated solutions. In this case, the most rele-
vant consequence was the fact that completing a circle in steady state, line
12 of Algorithm 1, was sometimes skipped, and the cases where there was
significant premature identification. These consequences have in common
that they reduce the duration of steady state and thus it becomes difficult
to apply a method that should play on certainty. An example of where the
SSID method was unable to settle in time is shown in Figure 3.9. As seen
in the figure the value of the R statistic has yet to settle when a new step is
applied at roughly t = 4160 seconds. It is clear that if the vessel had been
given a few more seconds in steady state the identification would have been
successful as the value of R is very close to Rlb and thus accepting H0. One
could argue that Rlb could be raised to allow it to happen, but this was not
done as the parameters of the method are already fairly overfitted at this
point and error is in the data and not the method in this context.

There are a couple more of these cases in the motor experiment meaning
some datapoints are left out. Because of this, the models of σU and mU

obtained in the later stages of the modelling procedure are not considered
valid and fit for comparison to the manual case. The data will still be used in
the analysis, but should be analyzed with this in mind. Another important
factor that impacts both the SOG and ROT models obtained later is the
methods inability to properly describe the inconsistency of human operators.
This means that the steady state interval will differ from the ones found in [7]
and thus the effects of disturbances, especially current, will be different. This
does not directly affect damping measurements, but measurements of inertia
and particularly the vessel state measurements used to locate damping and
inertia measurements in the state space. This should also be kept in mind
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Figure 3.8: Parts of the results from applications of the SSID method. 3.1.
Grey areas represent steady state regions and white regions are transients.
The parameters used can be found in Table 3.2.
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Figure 3.9: The method is unable to identify steady state before the next
step is applied. The parameters used can be found in Table 3.2.

when evaluating future results.

Filter coefficient values λ1, λ2, and λ3, and bounds Rlb and Rlu

Although the SSID method can be considered automatic in operation, it is
not without parameters. As of now, the parameter values can not be found
automatically. That means the model identification method presented in
this chapter can not be considered fully automatic. However, finding suitable
values for the parameters of the SSID method is an intuitive procedure which
will be described here. Results from applying following the procedure using
data from [7] are shown in Table 3.2.

Table 3.2: Filter coefficients and R boundaries used throughout this chapter,
where h is the time step.

Experiment λ1 λ2 λ1 Rlb Rub
SOG 0.2h 0.5h 0.075h 700 2000
ROT 0.3h 0.75h 0.5h 2000 6000
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Figure 3.10: Exponential smoothing.

The filter coefficient values λ1, λ2, and λ3 should be determined first. To
calculate R the method uses the two variance measurements ν2

f and δ2
f ,

as well as a filtered state xf . These three measurements are all obtained
through exponential filtering as seen equations (3.6), (3.7) and (3.5). The
value of the filter coefficient determines how the weight of a sample decays
as new samples arrive, the decays is illustrated in Figure 3.10. As seen
in the figure, increasing the value of λ essentially means measurements are
forgotten quicker. In our application it makes more sense to consider the
past n seconds than the past n samples to avoid a solution that depends on
sensor sampling rate. Therefore the value of the filter coefficient will always
be multiplied with the sampling step size h.

When looking for a good set of filter coefficients one can start by either
studying ν2

f which is dependent on λ2, and λ1 through its dependency of

xf ; or δ2
f which is controlled by λ3. In this case ν2

f will be studied first and
when doing so one should start with xf and λ1.

Coefficient λ1 is the most intuitive of the three. It restricts the filtered
state’s ability to describe rapid change, and thus is responsible for creating
the gap between measured and filtered state. The value of λ1 should be
low enough so that the gap remains for the duration of the transient. As a
slightly delayed identification is preferred, see start of the section, λ1 should
be chosen such that xf catches up to x a short period after x reaches steady
state. Decreasing λ1 too much is not advisable as xf should still be able to
follow oscillations due to the vessel rotating in current. Because the steps of
the experiments are spread throughout the state space the generated tran-
sients vary in behavior but checking xf against all of them is not desirable.
Instead it should be enough to use data from the slowest step that will be
performed during the experiment. This means the step starting with the
lowest throttle input and the largest rudder angle.
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With λ1 in place λ2 can be chosen to achieve satisfactory behavior of ν2
f .

Coefficient λ2 determines how sensitive ν2
f is to the gap formed between xf

and x. A high λ2 means that the height of the spike in ν2
f will be tall, but

it also starts to describe noise and disturbances instead of the trend. The
value of ν2

f should therefore be chosen so that ν2
f spikes distinctly during

the transient and decays quickly after, but it should also be a relatively
smooth signal. As δ2

f primarily scales the R statistic, ν2
f can be an good

representation of how R will behave.
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Figure 3.11: Desired behavior of δ2
f in a throttle step sequence.

To determine λ3 the behavior of δ2
f must be examined. As mentioned earlier

the intensity of noise and disturbances increases with SOG and this is what
δ2
f is supposed to capture. Therefore λ3 should be chosen such that the value

of δ2
f increases with steps in throttle. The desired behavior can be seen in

Figure 3.11. The figure also shows the behavior of δ2
f for different values

of λ3. If λ3 is too large the value of δ2
f fluctuates significantly and these

fluctuations will be transferred to R. If λ3 is too low δ2
f will lag behind the

state and R will be scaled poorly. Rudder steps should not affect δ2
f . Except

for spiking during the transient the value of δ2
f should be approximately the

same before and after the step.
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Having lots of data available is generally beneficial in an identification pro-
cess, but spending a lot of time on gathering data defeats the purpose of the
automated procedure that follows. From the description of filter coefficient
identification described above a minimum of needed data can be determined.
To choose λ1 and λ2 data from the slowest transient is needed. Thus two
steps are required, one throttle step for λ1,U and λ2,U , and one rudder step
for λ1,r and λ2,r. To choose λ3,U and λ3,r its recommended to perform a
couple of consecutive throttle steps and a couple of consecutive rudder steps
as using single steps could be challenging.

With values for the filter coefficients in place, and thus the R statistic, R
can be used to determine a good set of values for the boundaries Rlb and
Rlb which define H0 and H1. The boundaries were to be chosen such that:

1) Rlb and Rub are well separated, and

2) during any transient R should comfortably be able to reach Rub.

It was also suggested that Rlb should be chosen as a characteristic steady
state value. However, this suggestion should be relaxed as sea conditions
can be unpredictable and to some extent challenge the concept of steady
state. Instead, the criteria is reformulated as:

3) Rlb should be high enough so that R dips comfortably below during
the noisiest forms of steady state.

Based on the three criteria presented above Rub should be determined using
data from the slowest transient as it should have the lowest spike, thus the
data used to identify λ1 and λ2 should be sufficient. To find a value for Rlb
data from steps at high speed should be used.

Even though the necessity of this identification process implies that the
SSID is not fully automatic, it has been reduced from a typical dull, dirty,
dangerous task in the manual case to an automatic process preceded by a
one time parameter identification. Furthermore, the identification process
can be considered easily accessible as it is of a visual nature and very little
theoretical insight is required to obtain satisfactory results. It is also possi-
ble that automation of the parameter identification is feasible, especially if
framework for redos of poorly executed steps is in place.

3.2 Data extraction

This section describes the automation of the data extraction procedure sug-
gested in [7] and discussed in section 2.3.2. As described in section 2.3.2
damping measurements can be taken directly as the input during steady
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state using equation (2.18), and are therefore already obtained automati-
cally. Therefore, this section will be centered around the method for extrac-
tion of inertia measurements. An automatic method for extracting inertia
measurements was suggested during work leading up to this thesis, per-
formed in the autumn of 2017 [11]. The automated method was successfully
applied on the SSID results obtained at that time and has remained largely
unchanged.

The main ideas of the original method described in section 2.3.2 are restated
here to give a more complete picture of the method. Inertia measurements
are obtained by fitting the step response of a first order LTI system to the
recorded step response of the vessel. The first order LTI system can be
formulated as follows when measuring ROT inertia;

mri∆̇ri + ki∆ri = ∆τδi , (3.9)

where i means the i’th transient of the experiment is under examination,
and mri is assumed to be a constant inertia term during step i, ∆ri = r̂−r−i ,

∆τδi = τδ − τ−δi and ki =
σ+
ri
−σ−

ri

r+i −r
−
i

with (·)− and (·)+ denoting the a priori

and a posteriori steady state values respectively.

The authors of [7] suggested that a set of possible inertia values could be
used to evaluate the root mean square error between the simulated response
of system (3.9) and the inertia value producing the lowest error is chosen
as the inertia measurement. To avoid depending on a priori knowledge to
identify a suitable range of values and choose a satisfactory resolution, and
to generally improve performance, the application of numerical optimization
algorithms was suggested during the work with [11].

The mean square error εi between the simulated step response of system
(3.9) and the recorded vessel response from the i’th rudder step is formulated
as

εri =
1

Nri

Nri∑
j=1

(ri,j − r̂i,j(mri))
2, (3.10)

where ri,j and r̂i,j are the j’th data points of the recorded vessel step response
and the simulated step response of system (3.9). Figure 3.12 shows a plot of
εri evaluated for a range of inertia values. The figure reveals that the εri has
a strictly quasiconvex form, and this is noted to be true for all other recorded
steps, both from the throttle experiment and the rudder experiment. During
the work described in [11] the inertia extraction was formulated as a one
dimensional optimization problem where the mean square error (3.10) serves
as the objective function and mri as the optimization variable.
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Figure 3.12: Mean square error between simulated and actual step response
for a set of inertia values. Figure taken from [11].

3.2.1 Numerical optimization

This section will cover how numerical optimization tools can be utilized to
obtain inertia measurements. For a good introduction on numerical opti-
mization the book [14] is highly recommended. The discussion that follows
in this section is based on that book and it provides a good starting point
if further details or alternative methods are wanted.

Properties of the objective function

To start off, some properties of the optimization problem should be made
clear. As noted earlier, the objective function (3.10) seems to be strictly
quasiconvex. A strictly quasiconvex function is defined as follows [6].

Definition 3.1. A function ε : S → R defined on a convex subset S of
a real vector space is quasiconvex if and only if for every m1,m2 ∈ S and
λ ∈ [0, 1] the inequality ε(λm1 + (1− λ)m2) < max

{
ε(m1), ε(m2)

}
holds.

This is important as it means that the objective function only has one min-
imum; given that the quasiconvex assumption is right. Because one of the
elements in the objective function (3.10), ri,j , is a signal from the real world,
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and thus has few limits in terms of complexity, it is not unthinkable that
multiple minima can appear in the objective. However, considering that the
optimization variablemri is very limited in its ability to affect the behavior of
the system (3.9), essentially only increasing or decreasing the time constant
of the step response, it is considered highly unlikely that multiple minima
appear in the objective. The cases where this could happen would likely be
the effect of a very dramatic disturbance, for example a collision, and can
assumed to be dealt with before the data is used in the data extraction step,
by requiring a redo of the step for example.

The gradient is an important concept in optimization. In order to obtain an
analytical gradient of the objective function (3.10) the system (3.9) would
have to be discretized, increasing the complexity of the optimization prob-
lem. Instead derivative free optimization will be considered. There are
multiple approaches to derivative free optimization, see [14], but in this case
finite differences will be used to estimate the gradient which means that
methods requiring the gradient to be calculated can be used. More specifi-
cally the gradient will be estimated as a forward finite difference,

∇mriεri =
εri(mri + ∆mri)− ε(mri)

∆mri

, (3.11)

where ∆mri is a small step. Finite differences are vulnerable to objective
functions that can not be accurately evaluated, for example nosiy objective
functions. Even though ri,j in the objective (3.10) comes from a very noisy
signal, the objective function is smooth because the derivative of the area
between a smooth line and a non-smooth line is the derivative of an area
between two smooth lines plus a constant term.

BFGS, a quasi-Newton method

As mentioned earlier the book [14] describes a good selection of approaches
to numerical optimization. One of the more popular methods is the Broy-
den, Fletcher, Goldfarb, and Shanno’s method (BFGS) method, the most
commonly used variation of the quasi-Newton algorithm. It can be found in
most optimization libraries.

As a quasi-Newton method, BFGS works by approximating the objective
function, (3.10) in this case, by a quadratic model at each iteration k of the
algorithm. The solution to the quadratic model is found as

mri,k+1(p) = εri,k +∇εri,kp+
1

2
pBkp, (3.12)

where p ∈ R is the search direction; εri,k is the objective (3.10) evaluated at
the current step mri,k; and Bk is an approximation of the Hessian, or the
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second order derivative of (3.10) in this one dimensional case. The search
direction that minimizes this quadratic approximation is calculated as

pk = −Hk∇εri,k, (3.13)

where Hk = B−1
k . With the new search direction pk, the solution at the

current step and next iterate of the algorithm will be

mri,k+1 = mri,k + αkpk, (3.14)

where αk > 0 is a currently unknown step length. A line search method
for finding a satisfactory αk is described in the next section. Given a step
length αk, the Hessian approximation can be updated for the next iteration
at mri,k+1 as

Hk+1 =
mri,k+1 −mri,k

∇εk+1 −∇εk
, (3.15)

and a new search direction and step length can be found using equation
(3.13) and the line search described in the next section. The algorithm con-
tinues until the current solution mri,k satisfies a set of termination criteria.

Line search based on Wolfe conditions

As mentioned above, the objective function is approximated by a quadratic
function at each step mri,k of the BFGS. If αk = 1, the solution of the cur-
rent step mri,k+1 will be the solution of the quadratic approximation. It is
unlikely that this also is the actual solution of the objective function (3.10)
as the objective is not a quadratic function, and both the gradient (3.11) and
Hessian (3.15) are estimates. However, the closer the algorithms gets to the
actual solution of the objective (3.10), the better the quadratic approxima-
tion will be; given that Bk becomes an increasingly accurate approximation
[14]. A solid set of conditions should be used to determine whether or not
the current solution mri,k+1 brings the algorithm sufficiently close to the so-
lution such that it is beneficial to calculate a new quadratic approximation.
And, an efficient line search method is needed to suggest new step lengths
in case the current is rejected.

The conditions used to evaluate the step of a quasi-Newton method such
as this one should be formulated such that αk = 1 is the optimal initial
guess. Because, as mentioned earlier, when the algorithm approaches the
solution of the objective, the quadratic approximation becomes better. And
therefore, at some iterate k = k∗ the step length αk = 1 should be admissible
for all iterates after k∗ which gives the algorithm a superlinear convergence
[14].
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Figure 3.13: A visualization of the Wolfe conditions. Figure adapted from
[11].

A set of conditions that have seen wide use are the Wolfe conditions which
are formulated as

εri,j ≤ εri,k + c1αj∇εri,kpk, (3.16a)∣∣∇εri,jpk∣∣ ≤ c2

∣∣∇εri,kpk∣∣, (3.16b)

where εri,j is the objective function evaluated at iteration j of the line search,
αj is the suggested step length, and 0 < c1 < c2 < 1 are constant design
parameters. Figure 3.13 shows a visualization of the Wolfe conditions (3.16).
Condition (3.16a) is known as the sufficient decrease condition and εri val-
ues satisfying it are colored orange in the figure. It accepts any step length
that gives a reduction in the objective function large enough to satisfy ex-
pectations based on knowledge of the current value and gradient estimate.
Condition (3.16b) is called the strong curvature condition and εri values
satisfying it are colored red in the figure. It requires the gradient in the new
point to be smaller than the current gradient because a high gradient value
suggests there is still much to be gained by moving in the current direction
pk. Values satisfying both condition are colored green in the figure.
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If the the next step mri,k, found with equation (3.14) using initial step length
αk, fails to satisfy the Wolfe conditions (3.16), a method for selecting a new
step length must be in place. The line search described in [14] is taken to
use. When a step length is suggested, one of four cases can occur.

Case 1: The step fails to satisfy the sufficient decrease condition (3.16a).
This is exemplified by a step landing to the right of the intersection between
the objective function and the line of sufficient decrease in Figure 3.13. In
this case the sufficient decrease condition is implying that a larger objective
reduction was expected based on the length of the step and the derivative
at the current position. It is therefore likely that a better solution can be
found closer to the current step, and an interpolation is performed.

Case 2: The step fails to satisfy the strong curvature condition, and has a
negative gradient in the direction of the step. This is exemplified by a step
landing in the orange interval of the objective function in Figure 3.13. In
this case the curvature condition is implying that substantial gains can be
achieved by stepping further in the current direction, and an extrapolation
is performed.

Case 3: The step fails to satisfy the strong curvature condition, and has
a positive gradient in the direction of the step. This is not possible in the
case illustrated by Figure 3.13, but would have appeared as a orange interval
between the green interval and line of sufficient decrease. In this case the
curvature condition is implying that substantial gains can be achieved by
reducing the step length, and an interpolation is performed.

Case 4: The step satisfies both Wolfe conditions. The current step length
is considered satisfactory and a new iteration of the BFGS can be started.

Further details about the line search are not considered important for the
intuition of the algorithm. Instead, [14] is referred to as the line search, in-
terpolation, and extrapolation described there match what was implemented
and used in this chapter.

3.2.2 Data sets obtained from extraction

Figure 3.14a and 3.14b show the data sets DmU and Dmr , equivalent of the
inertia sets described in section 2.3.2, that were obtained when extracting
inertia measurements from the transients identified in section 3.1.3. Com-
paring the general data structures shown in the figures to the ones obtained
with the manual method in [7], there are strong similarities. This is not
unexpected when considering that practically the same evaluation criteria
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were used; a root mean square error in [7], and the mean square error ob-
jective (3.10) used here. If anything one would expect the inertia values,
mU and mr, to be more precisely determined using the numerical optimiza-
tion technique as adjusting the termination criteria adds little to an already
low computation time, while in the manual case the problem scales poorly
with precision as a predetermined set of inertia values was used and iterated
through.

Although the inertia values m are expected to be very similar to what was
obtained in [7], there are some noticeable differences, especially in DmU

which was generated from the throttle experiment. The biggest source of
the inertia errors is believed to be due to the results of the SSID described
in section 3.1.3. As mentioned during the discussion of the SSID results
it was necessary to overfit the SSID parameters in order to minimize the
consequences of the incompatibility between human SSID and the result of
the applied method. However, there were still some invalid results produced
from the throttle experiment, and while the majority were valid, the qual-
ity of the state measurements varied as a significant portion of the SSID
intervals ended up too short, and thus susceptible to disturbances. These
inaccuracies transfer into the inertia measurement m. The effect is similar
to the case illustrated by Figure 2.14 in section 2.3.1, but generally has a
lower impact.

The steady state intervals obtained from the rudder experiment were more
consistent and the results in Figure 3.14b do not seem to be significantly
impacted by the overfitted SSID parameters. The biggest difference from the
mr data set Dmr obtained in [7] is the value of the outlier. In Figure 3.14b
it is shown to have a value of about mr ≈ 40, while in [7] it is approximately
doubled. This is probably due to the authors of [7] having manually set
the time of steady state tss to be later than what was found in section 3.1.
For example, looking at the figure, if tss was chosen to be tss ≥ 110s there
would be a significant gap between the current simulated transient and the
actual signal. In order to reduce the gap and decrease the mean square error
of the objective (3.10) the inertia value mr of the simulated transient (3.9)
would have to increase significantly.

As just mentioned, there is some variance in the quality of the state mea-
surement. Besides from affecting the measured inertia, low quality state
measurements also mean that the measurements’ placement in the state
space will be inaccurate. The effect is easily seen in Figure 3.14a where the
measurements are supposed to form arcs for each throttle step, similar to
the pattern seen in Figure 3.14a.

Figure 3.14c and 3.14d show the data sets DσU and Dσr . Because damping
measurements are read directly of the control input as described in section
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Figure 3.14: Data sets with measurements extracted from experiments per-
formed in [7].
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2.3.2, the values of σU and σr should be identical to what was found in
[7]. However, the measurements’ placement in state space is subject to the
same errors that affected the inertia data sets. Because damping data can
be obtained from both experiments, measurements of σr extracted from the
throttle experiments are included in Dσr ; the same applies in the SOG case.
It might be better to leave them out as they are of a lower quality than the
ones obtained from the rudder experiment, as mentioned earlier. However,
they will be included as excluding them halves the size of the data set,
making it quite sparse.

3.3 Parameter identification

Because the parameter identification step is done using linear regression it
is automatic at its core. When used as described in [7], and covered in
section 2.3.3, the only aspect that is considered manual is the weighting
scheme. When the step was examined with the intention of automation
and improvement during project work done in the autumn of 2017 [11],
the examination was based on application of the method in a simulation
environment. The simulation environment did not produce data with enough
complexity for the purpose of techniques like regularization and weighting
to be of importance. As the data from [7] was available it was decided
that the examination of weighting and regularization should be saved for
future work, the work done in this thesis, were the method was applied
to the experimental data. This section will cover new suggestions for use
of regularization and weighting. Some background for the utilization of
regularization and weighting has already been covered in the discussion at
the end of section 2.3.3.

3.3.1 Model reduction

As discussed in section 2.3.3 the basis functions φσ(x) and φm(x) are both
based on fourth order polynomials and were formulated as

φσ(x) = [1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4,

U3r, U2r2, Ur3, r4]>, and
(3.17a)

φm(x) = [1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4,

U3r, U2r2, Ur3, r4, tanh(a(U − b)]>.
(3.17b)

The two basis functions contain both even and odd functions. Due to the
assumption of symmetric rudder response, all models are assumed to be
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either even or odd about the zy-plane in a coordinate system where x, y,
z correspond to r, U , σ (or m). This can be seen in Figure 3.14 where the
models mU , and mr are even about the (m,U)-plane; while σU and σr are
respectively even and odd about the (σ, U)-plane.

When φσ(x) and φm(x) are used to describe an even model, all elements
of the corresponding parameter vector β describing odd terms should be
set to zero; opposite in the case of an odd model. To do this the authors
of [7] utilized the regularized linear regression technique known as lasso.
Lasso was described in section 2.2 and has the property of feature selection
as it drives a selection of values in β to zero. However, lasso is generally
implemented as a numerical solver and therefore it is unlikely that any of the
elements in β actually receive the value zero, and instead are left as small
but nonzero values. The resulting error can easily be avoided by removing
redundant terms. The new reduced models are formulated as

φσr(x) = [1, U, r, U2, Ur, U3, U2r, r3, U4, U3r, Ur3]>, (3.18a)

φσU (x) = [1, U, U2, r2, U3, Ur2, U4, U2r2, r4]>, (3.18b)

φmr(x) = [1, U, U2, r2, U3, Ur2, U4, U2r2, r4, tanh(ar(U − br)]>. (3.18c)

φmU (x) = [1, U, U2, r2, U3, Ur2, U4, U2r2, r4, tanh(aU (U − bU )]>. (3.18d)

3.3.2 Regularization

Because the basis models of equation (3.18) no longer contain redundant
terms, the use of lasso for regularization should be reconsidered. Perhaps the
most commonly applied regularization technique in linear regression when
looking to minimize prediction errors is ridge regression [10]. A comparison
and interpretation of the workings of lasso and ridge is given in section 2.2.
Now that more context is given to the regularization issue, the description
of how ridge and lasso effectively influence the elements of the parameter
vector β can be continued.

Section 2.2 described a group of penalty functions used in regularization
that were formulated as

R(β) =

M∑
j=1

|βj |q, (3.19)

where M is the number of model parameters in β, and q ∈ R>0. Figure
3.15 shows how three different variations of the penalty (3.19) might affect
the elements of the parameter vector β in a two dimensional case. When
q = 0 the linear regression applying the penalty (3.19) is called best subset
regression. Best subset regression essentially works by picking out the least

65



CHAPTER 3. A METHOD FOR AUTOMATIC MODEL
IDENTIFICATION

descriptive elements of the parameter vector β, removing them by assign a
value of zero, and then utilize the remaining elements to form the model.
Using the identification of mU as an example, best subset regression would
zero the elements of βU corresponding to odd basis functions in φm(x) of
equation (3.17b) as the model is even and there is no need for the odd
elements. When q = 2 the linear regression applying the penalty (3.19) is
called ridge. Ridge essentially works by reducing the values of the parameter
vector β according to the explained variance of the corresponding elements
in φ(x). More specifically, the coefficient βi of an element φi(x) with low
explained variance is reduced heavily, while elements with high explained
values are only slightly reduced as these are considered critical in capturing
the model dynamics. Lasso lies between best subset regression and ridge
at q = 1, which means that its properties are a balance of feature selection
and favouring elements that have a high explained variance. However, since
feature selection is no longer as important and ridge’s ability to favour high
explained variance is better, ridge should be the preferred option.

β2

β1

β∗

Best subset

La
ss

o

Ridge

Figure 3.15: Illustration of how different regularization penalties might affect
the parameter vector with increasing regularization weight λ. β∗ denotes
the solution of the regression without regularization. Note lasso and ridge
shrink continuously while best subset regression makes two discrete steps.
Figure adapted from [10].

3.3.3 Weighting scheme

The weighting scheme described here is motivated by the discussion of uti-
lization of weights in section 2.3.3. Weighting will be applied to combat the
effects the inertia measuring process has on the variance of inertia values.
It is not intended to account for variance in the state measurements as this
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has been considered a complex issue so far. This means that weighting will
not be considered in identification of damping models as disturbances only
affect the state measurements in the damping data set. Leaving out weight-
ing from the damping model identification is justified by the fact that the
damping data sets contain approximately twice as many data points as the
inertia sets, and the complexities of the models are lower than in the inertia
case.

From the discussion of weighting in section 2.3.3 it was concluded that er-
rors in the inertia value caused by disturbances and noise were not linearly
transformed into the data set through the measurement method. The impli-
cation of an error of εm = 1 varies based on the true inertia value m∗. For
example a measurement of m = m∗ + εm where m∗ = 20 and εm = 1 could
be considered fairly accurate. On the other hand, a measurement where
m∗ = 1 and εm = 1 would be considered an outlier and should be removed.
This effect is not considered by the linear regression as it only aims to min-
imize the mean square error and thus an error of εm = 1 is considered to
be equally bad independently of the true value m∗. The weighting scheme
described below is aimed at assigning weights based on inertia value.

Inertia measurements are obtained by simulating the step response of a first
order LTI system on the form

mẋ+ kx = τ , (3.20)

as described in sections 2.3.2 and 3.2. Then, the value of m that minimizes
the mean square error between simulated and actual step response is chosen
as the measurement. One interpretation of this process is that the measure-
ment is chosen by matching the derivative of the state through the simulated
transient, ẋ, with the derivative of the state through the actual transient,
ẋ. The sensitivity of ẋ with respect to m at a given point in the step xc can
be measured as

∂ẋ|x=xc

∂m
= −m−2(τ − kxc), (3.21)

which for any point xc during the transient becomes some constant multi-
plied by m−2. Based on this a weighting scheme is suggested, formulated as

wi = (
mup +mdown

2
)−2, (3.22)

where mup and mdown forms the measurement pair generated by the same
step in opposite directions.

The scheme gives a low weight to measurements with a high value as errors
will be larger in these measurements. If a measurement has a negative error,
lowering its value, the measurements receives a higher weight. This is not
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considered a problem as disturbances causing the vessel to accelerate faster,
and thus lowering the measured inertia, are believed to be rare and usually
of an insignificant size.

When combining regularization and weighting it is important to remember
that the regularization coefficient λ determines the weight of the regulariza-
tion penalty relative to the weight of the mean square error. Therefore the
mean of the weights should be kept at a value near 1 so as not to disturb this
balance. To do this the weights are linearly transformed to be in the interval
wi ∈ (wmin, wmax) = (0.5, 1.5). The resulting weighting scheme becomes

wi = a(
mup +mdown

2
)−2 + b, (3.23)

where

a =
wmin − wmax
m−2
max −m−2

min

, and

b = wmax − am−2
min,

and mmin and mmin are the minimum and maximum inertia values in the
data set. Results from application of the weighting scheme to data from the
ROT data set are shown in Figure 3.16.
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Figure 3.16: Weighting scheme applied to Dmr .

68



3.3. PARAMETER IDENTIFICATION

Outlier detection

Outliers pose a significant threat in applications of linear regression. Weight-
ing as it was used by the authors of [7] played an important role in combating
outlier. Through manual inspection outlier could be selected visually and
assigned a weight depending on how dramatic they were. As a more gener-
alized weighting scheme has been suggested here there is no effective weight
to deal with outliers.

An effort was made to apply the standard score technique for outlier detec-
tion [13]. It works by assigning a score to each value in a data set where the
score indicates how many standard deviations the value deviates from the
mean of the set. The technique was applied by considering measurements
generated with the same throttle input as a data set because these measure-
ments generally have inertia values in the same range. However, the data
sets were to small for the method to be effective. Twelve measurements are
generated for each throttle input in an rudder step experiment, but there
is effectively only six as they are mirrored about the ROT axis. Even in
the set associated with the lowest throttle input, which contains an outlier
with mr ≈ 40 and the other measurements all being mr ≈ 20, the outlier
only received a standard score of z = 1.97; recommended z-score thresholds
typically do not go lower than z = 2.5.

Not having a proper solution for outliers is likely to have a significant impact
on the regression results as the outlier in the mr data set mentioned earlier
is very large. Furthermore, since this particular outlier is not caused by
unexpected behavior or any abnormal disturbance as discussed in section
2.3.3, outliers like it are expected to happen. Finding a proper method
for handling outliers is therefore an import task for future work, unless the
inertia measurement process is to be modified.

3.3.4 Identified models

Figure 3.17 shows the identified models. Unfortunately, weighting was not
successfully combined with ridge regression, and due to time constraints
the reason was not identified. Because the weighting scheme is essential
for identification of the mr model as there is no outlier detection in place,
the inertia models are identified using lasso combined with the weighting
scheme. No weighting scheme was formulated for use on the damping data
sets, so these are found using ridge. Successfully combining the weighting
scheme and ridge regression is not believed to be a particularly difficult task
and is left for future work.

69



CHAPTER 3. A METHOD FOR AUTOMATIC MODEL
IDENTIFICATION

−20
0

20
0

10

0

1

2

r [deg/s]
U [m/s]

m
U

(a) mU

−20
0

20
0

10

0

10

20

30

40

r [deg/s]
U [m/s]

m
r

(b) mr

−20
0

20
0

10

0

0.2

0.4

0.6

r [deg/s]
U [m/s]

σ
U

(c) σU

−20
0

20
0

10

−1

−0.5

0

0.5

1

r [deg/s]
U [m/s]

σ
r

(d) σr

Figure 3.17: Models identified using data sets from Figure 3.14.
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The model surfaces are nicely centered in the measurements for the most
part; although this might be difficult to see without 3D inspection capa-
bilities. They seem to be structurally very similar to the models obtained
in [7]. However, no quantitative comparison will be given here. Because
the data gathered from the throttle experiment has considerable errors as it
was the hardest to obtain proper measurements from, explained in section
3.1.3, its difficult to say how well the mU model captures the data structure.
The model of mr does a captures the dynamics of the data well, considering
the presence of the outliers. Removing the outliers does allow the model to
better capture the transition at the end of the asymptotic behavior, but the
results are satisfactory with outlier present. The model of σU is also affected
by outliers, although they only cause a slight change in curvature. These
outliers come from the problematic application of SSID on the throttle ex-
periment discussed in section 3.1.3 and are not expected to be a problem in
a real application. The model of σr generally seems to be a good fit, but it
somewhat struggles to properly capture the damping dynamics at very high
throttle input and very high rudder angle. Insufficient model complexity
and a low amount of samples could be the cause.

3.4 Proposed model and identification extensions

This section will cover some suggestions for extension of the model and of
the model identification method. These suggestions were not investigated
enough to be included in the implementation, but they are believed to offer
significant improvement if proven to be feasible. Therefore, the proposed
extensions are highly relevant for future work.

3.4.1 Propagation delay

Propagation delay was identified as a significant source of error in the dis-
cussion presented in section 2.3.2. It meant that all inertia measurements
received artificially high values. Propagation delay is generally a constant
value, although it might differ depending on the destination of the delayed
signal. This means that in the general case propagation delay is a vector
td = [td,m, td,δ], where td,m and td,δ are the delays associated with the motor
and rudder actuators. Extending the vessel model to include td could be
done by formulating the model equation (2.5) as

M(x)ẋ+ σ(x) = τ (t− td), (3.24)

where t is a vector with duplicate entries of the current time.
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There are various ways to get an estimate of td. If measurements of the true
actuator output are available td could be obtained by for example applying
a SSID technique to the true actuator output signals. Then td could be
obtained as the time between applied reference input and time of detected
transient.

If measurements of true actuator output are unavailable td can be found
using numerical optimization. The objective function (3.10) used in section
3.2 for curve fitting of step responses can be extended to include a term
describing the delay. Using identification of mr and td,δ as an example, the
new objective could be formulated as

εri =
1

Nri − td,δh−1

Nri∑
j=td,δh−1

(ri,j − r̂i,j(mri))
2

+
1

td,δh−1

td,δh
−1∑

j=1

(ri,j − r−i )2,

(3.25)

where h is the sampling rate, and r−i is the state measurement from the
previous steady state interval. In this objective function there are two opti-
mization variables mr and td. Although this increases the complexity of the
problem, it is unlikely that the likelihood of multiple minima in the objective
increases; given no abnormal scenarios as described in section 3.2.1. That is
because the simulated delay plus transient is still very limited in its ability
to describe vessel dynamics.

Figure 3.18 illustrates how the objective function would work. The first
term of the function is similar to the original objective. It evaluates the
mean square error between simulated and actual step; the simulated step
being the green line in the figure. But there is a slight change; the simulated
step starts at some time td,δ in the actual transient. The second term is an
extension of the preceding steady state by some time td,δ. This extended
steady state is visualized as a red line in the figure and has the constant
value r−i .

3.4.2 Second order model

The motivation for increasing the model order is described in the discussion
of measurement accuracy in section 2.3.2. It is mentioned that since high
speed surface vessels are expected to operate in regions of the state space
where rudder steps cause overshoots in ROT, a first order model will not
accurately capture the dynamics of the step responses. This means that the
inertia measurements become artificially low.
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Figure 3.18: How results from identification of td,δ and mr would look like.
An input step was applied at t ≈ 1187.0.

To improve the inertia measurement process it is proposed to apply a second
order LTI system in the curve fitting process. Using measuring of mr as an
example, the new system could be formulated as

nri∆̈ri +mri∆̇ri + ki∆ri = ∆τδi , (3.26)

where nri is the jerk coefficient. Note that inertia is not a well defined
concept in a second order system and the validity of interpreting mri as
inertia should be investigated further. By adding the second order term,
nri enters the numerical optimization objective as a second optimization
variable. The new second order extension of the previous objective function
(3.10) has the form

εri =
1

Nri

Nri∑
j=1

(ri,j − r̂i,j(mri , nri))
2, (3.27)

where r̂i,j(mri , nri) is the step response generated by simulating system
(3.26).

As more complex representations of the vessel’s step response can be ob-
tained by increasing the model order, it is very likely that the objective
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function contains multiple minima. This means that the optimization prob-
lem becomes significantly harder to solve. Fortunately the desired minimum
should have a decent physical interpretation. By considering the physical
properties of the system, constraints can be formulated to restrict the valid
region of the objective function. The physical properties should also allow
for good estimates of the optimization variable which could be used as the
initial point of the search. With a good set of constraints and a good esti-
mate it should be possible to isolate the desired minimum and formulate a
feasible measuring strategy.

First off, estimation strategies will be suggested. To estimate inertia mr one
could simply solve the old optimization problem. The solution should be a
very good inertia measurement as it is the one inertia models are based on
in the current model identification method. To estimate a value for the jerk
coefficient nr the concept of damping ratio could be used. The damping
ratio of system (3.26) is given as

ζi =
mri

2
√
kinri

. (3.28)

When ζ = 1.0 the system is critically damped, and so has no overshoot. A
critically damped system should be a good initial estimate. By solving the
damping ratio (3.28) for nri and using the previously calculated value of ki
and the estimated mri the jerk coefficient could be estimated as

n̂ri =
m2
ri

4kiζ2
i

. (3.29)

With estimations in place, boundaries can be formulated. Overshoots are
one of few phenomena that cause a negative error in the inertia measurement
found with the original method. This means that the lower boundary could
be set as the value of the inertia estimate; or at least close to it. The upper
boundary could for example be set as the inertia estimate plus a certain
percentage of the estimated value. Boundaries for the jerk coefficient can
be formulated based on the damping ratio ζ. As mentioned earlier, ζ = 1.0
implies the system is critically damped. An underdamped system, capable
of producing overshoots, has a ζ > 1.0; and the system is overdamped when
ζ < 1.0. The boundaries can therefore be formulated as ζlo ≤ ζ ≤ ζhi where
the values for ζlo and ζhi are set so that the overshoot is within reason; for
example 0.9 ≤ ζ ≤ 1.25.

The strategy described above could be used to expand the model (2.5) to
the second order, and then use linear regression to find model parameters for
the jerk coefficient n, as is done for inertia and damping. Or, it could solely
be used to increase the accuracy of the inertia measurements, and leave the
model as it is; however the validity of this must be investigated further.
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Chapter 4

Results from full-scale
experiments

4.1 Experiments

Figure 4.1 and Figure 4.2 show the full-scale experiments performed using
a ROS implementation of the automatic model identification method. The
implementation is not covered in this thesis. The parameters of the exper-
iment can be found in Table 4.1. Additionally the following boundary is
used

τδ,max =

{
0.4, if τm > τm,max − τm,∆
1.0, else.

(4.1)

The reason for using τ∆,δ = 0.2, instead of 0.33 as in [7], is because the
rudder was capped at τδ = 0.8, unlike at τδ = 1 as it was earlier. This
means signal-to-noise ratio will be a bigger threat this time around.

Table 4.1: Parameters of experimental procedure used in [7].

Input τmin τmax τ∆

τm 0 0.6 0.1
τδ 0 0.8 0.2

It should be noted that intervals of the experiment where a manual takeover
was necessary to avoid collisions have been removed. Collision avoidance
is something that should be added to the implemented system using its
existing framework for user interaction where the user is replaced with a
collision avoidance system. This is a necessity for the feasibility of the
identification method as it is unlikely that the vessel will not cause danger if
left running on its own for one hour at a time. It should also be noted that
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Figure 4.1: Throttle experiment performed using the ROS implementation
of the method developed in Chapter 3. The parameters of the experiment
can be found in Table 4.1.
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Figure 4.2: Rudder experiment performed using the ROS implementation
of the method developed in Chapter 3. The parameters of the experiment
can be found in Table 4.1.
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a bug in the implementation caused premature SSID in a couple of some
steps; intervals of manual takeover in an attempt to repeat these steps have
been removed from the data. Neither the bug or its consequences will be
discussed further as there are more important factors to cover. A third note
is that due to time constraint circles in steady state were only completed if
the r indicated that the turn would take less than one minute to complete. If
the vessel was turning to slowly the next step was applied after ten seconds.
One last note; the rudder experiment was performed with low fuel while
the throttle experiment was performed with a full tank. This affects the
identified models and should be kept in mind throughout the chapter, that
being said it will not be addressed in the discussion as it will be focused on
the general structures of the results.

Comparing the experiments of figures 4.1 and 4.1 to the experiments done in
[7] and shown in figures 3.1 and 3.2, it is clear that the motor dynamics are
quite different. This can easily be seen by observing the effect of stepping
the throttle from τm = 0.5 to τm = 0.6. In the experiments presented here
this step approximately doubles the steady state value of U , causing changes
up to 8 meters per second. In the experiments shown in Chapter 3 the pre-
ceding step from τm = 0.4 to τm = 0.5 is larger and the step only causes a
change in U of about 3 meters per second. This is concerning as signal-to-
noise ratio will likely become a bigger problem, and the measurements will
be less uniformly spread throughout the state space as there will be a large
gap between the ones extracted from operations at max throttle and the
rest. At the same time this increases the motivation behind development of
an automatic model identification procedure. This is because it proves that
the vessel dynamics can change significantly over time and thus the model
parameters need to be re-identified relatively often to guarantee satisfactory
performance of which ever system utilizes it. The changing actuator dynam-
ics also emphasizes the need for a better approach to experiment design so
that experiments may be formulated such that measurements can be well
placed in the state space. A small discussion of this is given at the end of
section 2.3.1, but this is important for future work.

Some of the steps that were performed were of a very low quality due to
significant disturbances although this is somewhat hard to see in the figures
due to the time scale, the two first step sequences of the rudder experiment
include visible examples. In some cases the disturbances were so bad that
the step did not characterize the vessel dynamics at all, Figure 4.3 provides
two examples. As seen in Figure 4.3a at t ≈ 3100, the effects of the throttle
step barely affect SOG. Figure 4.3b shows a case where the step is dragged
out over a longer interval. Neither of these two steps are fit for use in
an parameter identification procedure and calls for the need of method for
detecting and repeating uncharacteristic steps. This also emphasizes the
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(a) Disturbances dominating throttle step.

(b) Disturbances dominating rudder step.

Figure 4.3: Examples of step responses that are unfit for using in identifica-
tion and should be repeated.
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fact that experiments should be performed in ideal sea conditions.

4.2 Steady state identification

Results of the SSID are shown in Figure 4.4. The parameters of the SSID are
listed in Table 4.2. For the most part the SSID method was well behaved, but
as some steps were dominated by disturbances as shown in Figure 4.3 some
identifications were premature. An example of premature identification is
shown in Figure 4.5. The root of the problem lies in the experiment and will
translate through all the following steps. Unfortunately, other challenges
with use of the SSID will not be discussed here, but a good portion was
covered in section 3.1.

Table 4.2: Filter coefficients and R boundaries used throughout this chapter,
where h is the time step.

Experiment λ1 λ2 λ1 Rlb Rub
SOG 0.1h 0.5h 1.0h 1500 6200
ROT 0.075h 0.75h 0.5h 40 95

4.3 Data extraction

Results of the data extraction procedures are shown in Figure 4.6. As can
be seen in all data sets there is a large gap between the measurements
generated with max throttle input and the rest. This is especially clear in the
SOG data sets and will likely cause overfitting in the during the parameter
identification. Although the spread should be equally large in the Dmr set,
hysteresis has had significant impact on the measurements generated with
τm = 0.5 causing the gap to be filled by a line of measurements. There is also
quite a lot of noise in the inertia data sets. Most of it is explained by how
the signal-to-noise ratio affected the transients, and the fact that full turns
in steady state were only completed for a relatively small percentage of the
steps. Not completing turns affect the steady state measurements, especially
when there are significant disturbances present, and this facilitates poor
inertia measurements. A closer look at the concerns of the data extraction
raised in sections 3.2 and 2.3.2 will not be taken here, but they are assumed
to be equally relevant.

4.4 Parameter identification

The identified models are shown in Figure 4.7. Starting with the model of
mU one can see significant overfitting in the large gap behind measurements
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Figure 4.4: Parts of the results from applications of the SSID method in
full-scale experiment. Grey areas represent steady state regions and white
regions are transients. Parameters of the SSID method are listed in Table
4.2.
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Figure 4.5: The transient, white region, shows an example of premature
SSID.

generated with max throttle input. This was expected and although regu-
larization provides a counter measure, it can only do so much. The proper
solution is to formulate the experiment such that measurements are evenly
spread throughout the state space. There are also a couple of outliers which
are extra influential as they are located next to the large gap and thus there
are not enough measurements nearby for the weighting scheme to sufficiently
deal with them. The model of mr is somewhat better as the gap is filled
due to hysteresis as mentioned earlier. Looking at the model for σU the
new actuator dynamics cause a plateau like structure to form in the gap.
Looking at this new structure it might be necessary to add an asymptotic
term to the basis function of σU , similarly to what is done for the inertia
models. However, the model identified in Figure 4.7c does a surprisingly
good job. The model for σr is a fairly good representation of the structure
of the data set, no obvious shortcomings can be seen.
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Figure 4.6: Data sets with measurements extracted from full-scale experi-
ments.
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Figure 4.7: Models identified using data sets from Figure 4.6.

84



Chapter 5

Conclusions and future work

The purpose of the work described in this thesis was to analyze and automate
the model identification procedure suggested in [7]. Through the analysis of
the original manual method room for improvement was highlighted in the
different steps of the method. To start the development of an automatic
replacement three steps of the method where focused on. These steps were
data collection, data extraction and parameter identification. Automatic
solutions for each step were formulated and some of the weaknesses of the
new solutions were discussed based on results obtained from application of
the method on real data gathered by the authors of [7].

To further assess the steps of the automated method it was implemented
as a real time system using ROS. Full scale experiments were performed
using an ASV provided by Maritime Robotics. A rather brief discussion of
the results from the experiments suggested that there is a need for better
experiment design and a framework for detecting, rejecting and repeating
poorly executed steps.

5.1 Future work

A list of suggestions for future work is provided:

• Extend the model identification procedure to be iterative as described
at the end of section 2.3.1. This way experiments can be formulated
that cover the state space better.

• Look into methods for detecting and repeating input steps that pro-
duce step response not suited for measurement extraction. The pro-
posed SSID method could maybe used for this.

• Include outlier detection in the identification procedure. See discussion
in section 3.3.3.
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• Extend the model to include propagation delay as described in section
3.4.

• Look into increasing the model order as described in section 3.4 to
better capture the dynamics at high speeds.
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