
Remote Control and Path Following for
the ReVolt Model Ship

Albert Havnegjerde

Master of Science in Cybernetics and Robotics

Supervisor: Morten Breivik, ITK
Co-supervisor: Tom Arne Pedersen, DNV-GL

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Preface

This thesis concludes my 2-year master’s degree specializing in Navigation, Vessel Con-
trol Systems and Robot Engineering at the Department of Engineering Cybernetics at the
Norwegian University of Science and Technology.

This thesis has not only given me valuable insight into software development, identifica-
tion, control and implementation, but also executing a project on my own. Though the
project was conducted individually, it would not be possible without the help from certain
individuals. I would like to thank my supervisor Morten Breivik, Head of Department
of Engineering Cybernetics, and co-supervisor Tom Arne Pedersen, Principal researcher
at DNV GL, for their professional guidance and suggestions throughout the project pe-
riod. An extra thanks to Tom Arne Pedersen for assisting with the simulator, arranging
and piloting the follow boat, as well as obtaining necessary equipment regarding experi-
mental sea tests. I would like to thank my friend and fellow student Vegard Kamsvåg for
assistance during experimental tests, I would like to thank Stefano Bertelli for arranging
transportation of ReVolt to and from the test area, and I would like to thank Glenn Angell
at the mechanical workshop for help with debugging and repairing ReVolt’s hardware. I
would also like to thank Roger Nilsen for help in installing and showing me how to use
the simulator for ReVolt. Finally, I would like to thank my family Marianne, Tom, Sandra
and Andrea for all their support and encouragement.

The tasks in the specialization project fall of 2017 and the following master’s thesis during
the spring of 2018 is proposed by DNV GL to support the continuous development of their
experimental platform ReVolt Model Ship, hereby referred to as ReVolt. While the spe-
cialization project regards exclusively development of a Remote Monitoring and Control
(RMC) station for ReVolt, this master’s thesis focus mostly on development, implementa-
tion and testing of motion control algorithms for path following for ReVolt. In addition,
some improvements and new functionality for the RMC station is also presented.

Available information and equipment directly relating to the execution of this master thesis
work:

• Previous Work: Master’s thesis ”Development of a Dynamic Positioning System
for the ReVolt Model Ship” [1] and ”ReVolt User Manual”.

• ReVolt: The 3 meter long physical scale model of the concept ship ReVolt is pro-
vided by DNV GL. It has sensors for navigation, three rotatable thrusters and an
onboard computer (OBC) installed. New features has been added to ReVolt’s con-
trol system during the master thesis work and the physical model is described more
in Section 6.1.

• Control System: Includes DNV GL’s thruster allocation, a Dynamic Positioning
(DP) system and a simple heading controller. The control system is launched using

i

the Robot Operating System (ROS) described in Sections 3.1.5-3.1.9.

• Digital Twin: In parallel with this project, a simulated model of ReVolt that uses
the same control system, was configured and provided by Tom Arne Pedersen with
assistance from Roger Nilsen (DNV GL). This software simplified testing of new
features developed during this master thesis work, and made it possible to test the
control system before doing experiments with the physical model. The simulator is
described more in Section 5.1.

For the list of contributions in this thesis, refer to Section 1.4.

Albert Havnegjerde
Trondheim, June 2018

ii

Abstract

The guidance system of the 3 meter long ReVolt is expanded to include a 2-D path follow-
ing system using the Line-of-Sight (LOS) guidance principle and lookahead-based steering
algorithm for computing the heading reference signal. Reference models for the heading
and speed motion is added to smooth the reference signals and create higher order deriva-
tives for the controllers. A separate software for visually placing waypoints in a navigation
map and transmitting them ReVolt is developed in C++ using Qt Creator. This software
is used for remote monitoring and control of ReVolt during simulations and experimental
tests. An improved heading controller for maintaining the correct heading during course-
keeping and course-changing maneuvers is implemented. A 1st order Nomoto model is
used to compute the parameters in the model-based feedforward term and the feedback
gains. A speed controller consisting of a feedforward and feedback term is implemented
as well.

In transit, the two aft azimuth thrusters are constrained to ±45o by the control alloca-
tion and the bow thruster remains retracted. This leaves the sway motion uncontrolled,
resulting in an underactuated configuration. The source code for controllers and LOS
steering algorithm are written in C++ and launched using ROS from the ReVolt onboard
computer.

System identification and testing of the guidance and control system are first done using
ReVolt’s Digital Twin in the simulator developed by DNV GL. Full-scale experimental
tests to assess the performance of the implemented solutions with ReVolt are done at Dora
1 harbor basin in Trondheim.

iii

Sammendrag

Reguleringssystemet til den 3 meter lange ReVolt har blitt utvidet til å støtte 2-D bane-
følging ved å bruke ”Line-of-Sight” prinsippet med ”lookahead-based” styringsalgoritme
for å beregne referansekurs. Referansemodeller for kurs- og hastighetsdynamikken er
utviklet for å glatte referansesignalene og danne høyere ordens deriverte for reguleringssys-
temet. En separat programvare for visuell plassering av veipunkter i et navigasjonskart og
overføring av de til ReVolt, er skrevet i C++ ved å bruke ”Qt Creator”. Den utviklede pro-
gramvaren er brukt til overvåking og fjernstyring av ReVolt under simuleringer og eksper-
iment. Kontrollsystemet har blitt utvidet med en forbedret regulator for å holde følge
korrekt kurs ved kursendringer. En første ordens Nomoto-modell er brukt til å beregne
en modell-basert foroverkobling i tillegg til forsterkningskonstanter i bakoverkoblingen.
En regulator for ønsket hastighet forover er utviklet, denne benytter også en forover- og
bakoverkobling.

I transitt, er de to aktre azimuth-thrusterene begrenset til ±45o i reguleringssystemet og
baugthrusteren er hevet. Dette gjør at tverrskips-bevegelsen er ukontrollert, hvilket betyr
at det er en underaktuert konfigurasjon. Kildekoden til regulerings- og guidance-systemet
er skrevet i C++ og startes av ROS på datamaskinen ombord.

Systemidentifikasjon og testing av regulerings- og guidance-systemet er først gjort ved
bruk av ReVolts digitale tvilling i simulatoren utviklet av DNV GL. Full-skala eksperiment
for å vurdere ytelsen til de implementerte løsniningene er gjort i havnebassenget Dora 1 i
Trondheim.

v

Table of Contents

Preface i

Abstract iii

Sammendrag v

Table of Contents vii

List of Tables xi

List of Figures xiii

Abbreviations xvi

Nomenclature xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Review . 2
1.3 Problem Description . 2
1.4 Contributions . 2
1.5 Outline . 3

2 Theory and Concepts for Path Following 5
2.1 Guidance, Navigation and Control Systems 5
2.2 Kinematics . 6

2.2.1 Motion Variables . 6
2.2.2 Reference Frames . 7
2.2.3 Definitions of Course, Heading and Sideslip Angles 8
2.2.4 Notation . 8
2.2.5 Transformation Between BODY and NED 9

vii

2.2.6 Transformation Between NED and ECEF 10
2.3 Modeling of Marine Crafts . 10
2.4 Reference Models . 10

2.4.1 Velocity Reference Model . 11
2.4.2 Position and Attitude Reference Model 11
2.4.3 Discretization . 12

2.5 Line-of-Sight Guidance . 12
2.5.1 Lookahead-based Steering . 13
2.5.2 Switching Mechanism for Waypoints 14

3 Remote Monitoring & Control 15
3.1 Networking and Software Fundamentals 15

3.1.1 Sockets and Protocols . 15
3.1.2 Socket Programming . 17
3.1.3 Process . 18
3.1.4 Thread . 19
3.1.5 Robot Operating System . 19
3.1.6 Nodes in ROS . 20
3.1.7 Topics in ROS . 20
3.1.8 Messages in ROS . 20
3.1.9 Rosbag Data . 20
3.1.10 CartoType Navigation Framework 21

3.2 RMC Station Introduction . 21
3.3 RMC Station Contributions . 22

3.3.1 Guidance Management . 23
3.3.2 Transmitting List of Waypoints 23
3.3.3 Image Stream Frame Distortion Removal 24

4 GNC Implementation for Path Following 27
4.1 Guidance, Navigation and Control System 27
4.2 Guidance System . 29
4.3 Control Allocation . 30
4.4 Surge Speed Controller . 33

4.4.1 Reference Model . 33
4.4.2 Low-Pass Filtering of Velocity Measurement 34
4.4.3 Control Objective . 36
4.4.4 Feedforward Term . 36
4.4.5 Feedback Term . 37
4.4.6 Combined Feedforward and Feedback 38

4.5 Heading Controller . 40
4.5.1 Nomoto Models . 40
4.5.2 Choosing Nomoto Gain and Time Constant 40
4.5.3 Reference Model . 41
4.5.4 Control Objective . 43
4.5.5 Feedforward Term . 43
4.5.6 Feedback Term . 44

viii

4.5.7 Combined Feedforward and Feedback 44
4.6 Implementation in ROS Environment . 47

5 Simulation Results 49
5.1 Simulation Platform . 49
5.2 Heading Controller Performance . 51

5.2.1 Feedforward Control Only . 51
5.2.2 PD Feedback Control Only . 54
5.2.3 Combined Feedforward and PID Feedback s.t. Wind 57

5.3 Speed Controller Performance . 59
5.3.1 Feedforward Control Only . 60
5.3.2 Feedforward and Proportional Feedback Control 62
5.3.3 Feedforward and PI Feedback s.t. Ocean Current 64

5.4 Performance of Guidance System for Path Following 66
5.4.1 Subject to Wind and Ocean Current 67
5.4.2 Subject to Both Stronger Wind and Ocean Current 71

5.5 Discussion . 75

6 Experimental Results 77
6.1 Experimental Platform . 78

6.1.1 Background . 78
6.1.2 Main Components . 79

6.2 Test Area . 80
6.3 Heading Controller Experimental Performance 81

6.3.1 Combined Feedforward and PD Feedback 82
6.3.2 Combined Feedforward and PID Feedback 85

6.4 LOS Guidance Experimental Performance 88
6.5 Discussion . 95

7 Discussion 97
7.1 Experimental vs Simulation Results . 97
7.2 Heading Controller . 97
7.3 Speed Controller . 98
7.4 Guidance System . 98
7.5 Digital Twin . 99
7.6 RMC Station . 99

8 Conclusions and Future Work 101
8.1 Conclusions . 101
8.2 Future Work . 102

Bibliography 105

Appendices 109

A Excerpt from the ReVolt Source Code 111
A.1 Heading Controller Constructor . 111

ix

A.2 Heading Controller Callback Function 113
A.3 Speed Controller Constructor . 115
A.4 Speed Controller Callback Function . 116
A.5 Guidance Law Constructor . 118
A.6 Guidance Law Callback Function . 119

B Excerpt from the RMC Station Source Code 121
B.1 Add/Remove Waypoints . 123
B.2 Draw Lines Between Waypoints . 124
B.3 Draw ReVolt’s Footprint . 126
B.4 Draw Obstacles . 127

C Images From Experimental Tests 129

D Miscellaneous 133
D.1 Previous Heading Controller for LOS Guidance Simulation 134
D.2 Excerpt from the Towing Tank at SINTEF Ocean 135
D.3 Velocity Low-pass Filter Coefficients . 137

x

List of Tables

2.1 SNAME notation (1950) for marine vessels [9]. 7

4.1 Results from a single test with ReVolt at SINTEF Ocean. Force produced
by a single thruster at different efforts. 32

4.2 Parameters used in the speed filter . 35
4.3 Effort applied to the stern thrusters and the corresponding steady state

surge speed. Results obtained with the Digital Twin in simulator. 36
4.4 First and second order Nomoto parameters for steps of δ = −5o and δ =

−15o thruster angle commands. 41
4.5 Parameters used in the reference model 43
4.6 Algorithm for pole-placement [9]. 44
4.7 Controller gains for feedback control . 45

5.1 Feedforward parameters used in simulation. 52
5.2 Controller gains used in simulations with feedback control only. 54
5.3 Controller gains used in feedback simulations 57
5.4 Parameters used in controller . 62
5.5 Controller gains used in this simulation for feedforward and feedback con-

trol. 64
5.6 LOS Guidance parameters. 66
5.7 Heading controller parameters for LOS Guidance. 66

6.1 ReVolt (scale) Specifications from [1]. 78
6.2 Heading controller parameters for LOS Guidance. 81
6.3 LOS Guidance parameters. 88
6.4 Heading controller parameters and gains for the LOS Guidance experi-

mental test. 88
6.5 Speed controller parameters and gains for the LOS Guidance experimental

test. 88

xi

D.1 Velocity low pass filter coefficients . 137

xii

List of Figures

1.1 DNV GL’s experimental platfrom ReVolt. 1

2.1 Illustration of a generic Guidance, Navigation and Control system [9] . . 5
2.2 Illustration of BODY-fixed velocities in 6 DOF. CO denotes center of ori-

gin. Figure adapted from [9] . 6
2.3 ECI, ECEF, NED and BODY coordinate systems. Figure adapted from [9]. 8
2.4 LOS guidance illustration expressed in {n}. Figure adapted from [9]. . . . 12

3.1 Illustration of the 7 layer OSI model. Figure adapted from [13] and [14]. . 16
3.2 Client-Server paradigm for a TCP socket connection. Figure adopted from

[8]. 17
3.3 Client-Server paradigm for a UDP socket connection. Figure adopted from

[8]. 18
3.4 Screenshot of the RMC station during development, fall of 2017 22
3.5 LOS Guidance test using the RMC station with DNV GL’s simulator for

ReVolt . 23
3.6 LOS Guidance Test using the RMC station in Dora 24
3.7 Screenshot of image stream distortion [8]. 25

4.1 Block diagram illustration of the Guidance, Navigation and Control Sys-
tem for path following as implemented on ReVolt. 28

4.2 Illustration of the setup. The two stern thrusters is used for propulsion and
turning . 31

4.3 Mapping of thruster effort versus the corresponding force produced. Re-
sults obtained from SINTEF Ocean. 33

4.4 Velocity Reference Model 1 m/s step response, without saturation. 34
4.5 GNSS speed measurement filtering and FFT 35
4.6 Second order mapping function using values from table 4.3 37
4.7 Speed Controller block diagram: Reference Filter, feed forward and PI-

feedback . 39

xiii

4.8 Yaw rate responses for different thruster angle commands 41
4.9 Nomoto Model comparisons . 42
4.10 Block diagram of the heading controller as implemented on ReVolt. . . . 46
4.11 GNC in ReVolt’s ROS environment for path following 48

5.1 Screenshot of DNV GL’s ReVolt Vessel Simulator. 49
5.2 Illustration of setup for performing the simulations 50
5.3 Heading controller tracking performance using only model-based feedfor-

ward as control input. 51
5.4 Yaw rate tracking performance using only model-based feedforward as

control input. 52
5.5 Thruster angle commands generated by the feedforward term. 53
5.6 Heading controller tracking performance using only PD feedback as con-

trol input. 54
5.7 Yaw rate tracking performance using only PD feedback as control input. . 55
5.8 Thruster angle commands generated by the feedback term. 56
5.9 Heading controller tracking performance using model-based feedforward

and PID feedback as control input. 57
5.10 Yaw rate tracking performance using model-based feedforward and PID

feedback as control input. 58
5.11 Thruster angle commands generated by the sum of model-based feedfor-

ward and PID feedback term. 59
5.12 Surge speed tracking performance using only model-based feedforward as

control input. No disturbances present. 60
5.13 Thruster effort commands generated by the model-based feedforward term

only. No disturbances present. 61
5.14 Surge speed tracking performance using model-based feedforward and

proportional feedback as control input. No disturbances present. 62
5.15 Thruster effort commands generated by the model-based feedforward and

proportional feedback. No disturbances present. 63
5.16 Surge speed tracking performance using model-based feedforward and

proportional-integral feedback as control input. 64
5.17 Thruster effort commands generated by the model-based feedforward and

proportional-integral feedback. 65
5.18 Line-of-sight Guidance simulation with 7 waypoints and cross-track error

subject to environmental disturbances. 67
5.19 Heading controller tracking performance in LOS simulation 68
5.20 Yaw rate tracking performance during LOS simulation 69
5.21 Surge speed tracking performance subject to wind and current. 70
5.22 Sway speed response for the LOS simulation subject to wind and current. 70
5.23 Line-of-sight Guidance simulation with 7 waypoints and cross-track error e. 71
5.24 Heading controller tracking performance in LOS simulation more distur-

bances . 72
5.25 Yaw rate tracking performance with more disturbances 73
5.26 Speed controller tracking performance with more disturbances 74

xiv

5.27 The indirectly controlled surge speed response v. Here subject to stronger
disturbances. 74

6.1 ReVolt at Dora Test Pool in Trondheim. 78
6.2 Main components and their placements on ReVolt. Figure from Stadt Tow-

ing Tank and [1]. 79
6.3 Map of the test area, from Google, with unloading area and transport stage

marked. 80
6.4 Follow boat Gunnerus Workboat. Courtesy of Tom Arne Pedersen. 80
6.5 Heading controller tracking performance during experimental test 82
6.6 Yaw rate tracking performance using model-based feedforward and PD

feedback as control input. 83
6.7 Thruster angle command during experimental test with implementation error 84
6.8 Heading controller tracking performance using model-based feedforward

and PID feedback as control input. 85
6.9 Yaw rate tracking performance using model-based feedforward and PID

feedback as control input. 86
6.10 Thruster angle commands generated by the model-based feedforward and

PD feedback term . 87
6.11 Result from the experimental test of LOS Guidance 89
6.12 Heading angle tracking performance during LOS Guidance experimental

test without sideslip compensation. 90
6.13 Yaw rate tracking performance during LOS Guidance experimental test. . 91
6.14 Thruster angle commands generated by model-based feedforward and PD

feedback. 92
6.15 Surge Speed Controller tracking performance during LOS experimental test. 93
6.16 Control input terms for surge motion. 94

B.1 Class diagram from [8] with new contributions in boldface text. 122

C.1 Transport stage with drogue connected to ReVolt’s aft. 130
C.2 Gunnerus Workboat, ReVolt, Nidelv 690 Sport 130
C.3 Transport stage without drogue. 131
C.4 ReVolt on the trailer at the unloading area. 131

D.1 LOS simulation using the old heading controller 134
D.2 LOS simulation using the old heading controller causing noisy control out-

put (no reference filter or FF) . 134
D.3 Towing tank results at SINTEF Ocean with port thruster at 25% effort. . . 135
D.4 Towing tank results at SINTEF Ocean with port thruster at 50% effort. . . 135
D.5 Towing tank results at SINTEF Ocean with port thruster at 75% effort. . . 136
D.6 Towing tank results at SINTEF Ocean with port thruster at 100% effort. . 136

xv

Abbreviations

DNV GL = Det Norske Veritas Germanischer Lloyd
GNC = Guidance, Navigation and Control
LOS = Line-of-Sight
DOF = Degree of Freedom
ECI = Earth Centered Inertial frame
ECEF = Earth Centered Earth Fixed reference frame
NED = North, East Down coordinate system
IIR = Infinite Impulse Response
FIR = Finite Impulse Response
FFT = Fast Fourier Transform
RCM = Remote Control & Monitoring
OS = Operating System
VM = Virtual Machine
ROS = Robot Operating System
API = Application Programming Interface
SDK = Software Development Kit
I/O = Input/Output
GUI = Graphical User Interface
OSI = Open System Interconnection
IP = Internet Protocol
TCP = Transport Control Protocol
UDP = User Datagram Protocol
4G = Fourth Generation Mobile Broadband
LTE = Long Term Evolution
Wi-Fi = Wireless Local Area Network
Mutex = Mutual Exclusion
VSTS = Visual Studio Team Services
USB = Universal Serial Bus
IMU = Inertial Measurement Unit
GNSS = Global Navigation Satellite Systems
FF = Feedforward
FB = Feedback
PID = Proportional Integral Derivative
GPS = Global Positioning System
DP = Dynamic Positioning
RAM = Random Access Memory
CPU = Central Processing Unit

xvi

Nomenclature

{n} = Denotes the North-East-Down frame
{b} = Denotes the BODY-fixed frame
{e} = Denotes the Earth-Centered Earth-Fixed frame
{i} = Denotes the Earth-Centered Inertial frame
η = Position and attitude vector
ν = Linear and angular velocity vector
τ = Generalized forces and moments vector
p = Position vector
Θ = Attitude vector (Euler angles)
v = Linear velocity vector
ω = Angular velocity vector
f = Force vector
m = Moment vector
x, y, z = Positions in {e}
N,E,D = North, East, Down positions in {n}
u, v, w = BODY-fixed linear velocities
l, µ = Longitude and latitude
φ, θ, ψ = Euler angles about the x, y and z-axis
p, q, r = Body-fixed angular velocities
X,Y, Z = Body-fixed force
K,M,N = Body-fixed moments
s(·), c(·) = sin(·), cos(·)
R = Rotation matrix
M = Inertia matrix
MRB = Rigid-body inertia matrix
CRB = Rigid-body Coriolis-centripetal matrix
CA = Added mass Coriolis-centripetal matrix
D = Damping matrix
∆ = Relative damping ratio matrix (boldface)
Ω = Natural frequency matrix
Ad = Reference model system matrix
Bd = Reference model actuator configuration matrix
xd = Reference model desired state vector
rb = Operator input in {b}
h = Discretization time step
wp = List of waypoints in {n}
pnk = = Position of waypoint k in {n}
αk = Path-tangential angle

xvii

ε = Along-track distance and cross-track error vector
e = Cross-track error
s = Along-track distance
χd = Desired course angle
χp = αk
∆ = lookahead distance
ψlos = Heading angle from LOS Guidance System
β = Sideslip angle
sk+1 = Distance from waypoint k to k + 1
Rk+1 = Radius of acceptance of waypoint k + 1
Uref = Reference speed over ground
uref = Reference surge speed
F = Thruster force produced vector
K = Force coefficient matrix
u = Control input to actuator(s)
T (α) = Thrust configuration matrix
α = Thruster angles in {b}
δi = Thruster angle command for thruster i
lxi = Length to thruster i in x-direction in {b}
lyi = Length to thruster i in y-direction in {b}
Km = Thrust coefficient scalar
τmi

= Thruster effort for thruster i
ωn = Natural frequency
ζ = Damping ratio
sat(·) = Saturating element
sgn(·) = Sign
Fs = Sample frequency
Fpass = End of pass-band frequency
Fstop = start of stop-band frequency
Apass = Pass-band gain
Astop = Stop-band gain
τi,FF = Feedforward control input for i
τi,FB = Feedback control input for i
M = Mass factor
σ(ud) = Damping polynomial
Kp = Proportional gain
Ki = Integral gain
Kd = Derivative gain
K = Nomoto gain
T = Nomoto time constant
s = Frequency domain variable
b = Slowly varying unknown bias
ωb = Bandwidth

xviii

Chapter 1
Introduction

1.1 Motivation

Figure 1.1: DNV GL’s experimental platfrom ReVolt.

Autonomous shipping is said to be the future of the maritime industry [2]. To realize
remote controlled and autonomous ships, a robust system for path following and low-
level controllers is an important part for maneuvering a marine craft autonomously. In the
future, ReVolt (Figure 1.1) is expected to be fully autonomous. These results are the next
step towards autonomous maneuvering of ReVolt, and enables implementation and testing
of more advanced algorithms for decision-making and collision avoidance on a physical
model.

1

Chapter 1. Introduction

1.2 Review

The motion control task of path following have undergone extensive research in recent
years. In [3], an overview of the LOS guidance for path following in the 2-D horizon-
tal plane, and the 3-D scenario with a 5-degree of freedom (DOF) underwater vehicle is
presented. In [4], the problem of straight-line path following for a fully actuated marine
craft is studied. An assumption often made for path following is that marine crafts use
only their aft main propellers and rudder for forward speed and steering, leaving sway
uncontrolled. This underactuated configuration is presented in [5], where an approach for
tracking straight-line segments at high speeds with an unmanned surface vessel (USV)
using a surge speed and yaw rate controller during full-scale experiments in Trondheims-
fjorden. The underactuated ship problem is also assessed by [6] where tracking prob-
lems are tested and solved using surge force and yaw moment as control inputs. In [7],
a predictor-based LOS guidance law for path following of an underactuated marine craft
is presented. Here, the predictor estimates the sideslip angle with high accuracy in steady
state and transient.

1.3 Problem Description

In this thesis, the goal is to expand ReVolt’s control system to include a Guidance System
which enables ReVolt to follow a predefined path with a desired speed while steering along
a LOS vector. This includes the low-level controllers for speed and heading angle as well.
Furthermore, a Guidance Management System is to be implemented in the RMC station
from the specialization project such that waypoints can be placed in the navigation map
and transmitted to ReVolt. The controllers and LOS steering algorithm should be tested
using ReVolt’s Digital Twin (simulator) before performing experimental tests at sea. The
RMC station is used for monitoring and control of ReVolt both during simulations and at
sea.

1.4 Contributions

The main contributions in this thesis are:

• Add Guidance Management functionality to the RMC station which includes way-
point generation, path, footprint and obstacle visualization.

• Develop and implement a new heading controller for ReVolt, which includes a ref-
erence model, feedforward and feedback term for use in the path following system.

• Develop and implement a surge speed controller for ReVolt, which also includes
a reference model, feedforward and feedback term for use in the path following
system.

2

1.5 Outline

• Implement a Guidance System for path following for ReVolt using the lookahead-
based steering algorithm.

• Simulate and assess the new heading and speed controllers’ tracking performance
separately.

• Simulate and assess the path following performance using the new heading and
speed controllers.

• Perform similar experimental tests at sea and assess the performance.

• Improve image streaming problem from [8].

1.5 Outline

This thesis contains a total of eight chapters. Chapter 1 contains the introduction, fol-
lowed by Chapter 2 with theory and concepts for path following adapted from [9]. Chap-
ter 3 presents an introduction to the RMC station developed in the specialization project
and the new contributions, preceded by necessary theory regarding networking and soft-
ware fundamentals. In Chapter 4, the implemented Guidance, Navigation and Control
(GNC) System for path following is described. This includes choice of control allocation,
development of heading and speed controller and implementation in the control system
with ROS environment. Simulation results for the heading controller, speed controller,
path following and a discussion relating to the results is presented in Chapter 5. Chapter
6 presents the corresponding experimental results and a discussion regarding them. Chap-
ter 7 presents a discussion implemented solutions. Lastly, a concluding remark and future
work is presented in Chapter 8.

3

Chapter 2
Theory and Concepts for Path
Following

This chapter is heavily based on the ”Handbook of Marine Craft Hydrodynamics and Mo-
tion Control” by Fossen 2011 [9].

2.1 Guidance, Navigation and Control Systems

Figure 2.1: Illustration of a generic Guidance, Navigation and Control system [9]

Figure 2.1 shows the three main components of a GNC System. The leftmost block, Guid-
ance System, is concerned with generating a desired trajectory for the marine craft. These
can be either time-varying or time-invariant. Using time-varying reference signals, known
as trajectory tracking, forces the marine craft to track a given reference value at a specific
time. Time-invariant relates to path following in which a path is predefined and places no

5

Chapter 2. Theory and Concepts for Path Following

constraint on time, only spatial constraints such as known obstacles. The reference signals
can be generated by e.g. a joystick, keyboard, weather data, guidance law algorithms or
collision avoidance data. The reference trajectories are designed by using reference mod-
els obtained from e.g low-pass filtering or through simulations to ensure feasible tracking
(marine craft able to follow). Lastly, the simplest form is called setpoint regulation, in
which desired position and attitude is constant.

In close cooperation with the guidance block, the Control System uses the scenarios ex-
plained above to carry out its control objective by generating the correct forces and mo-
ments necessary to maneuver the marine craft based on e.g. PID or Linear Quadratic (LQ)
Control. These are output from the Motion Control System and translated to thruster effort
and direction by the Control Allocation.

The rightmost block in a GNC system is the Navigation block. Here, a signal processing
unit checks the raw GPS measurements for wild-points. The filtered positions are transmit-
ted to the state estimator, an algorithm that process sensor and navigation data to provide
noise-filtered estimates of both measured and unmeasured states.

2.2 Kinematics

2.2.1 Motion Variables

co

Figure 2.2: Illustration of BODY-fixed velocities in 6 DOF. CO denotes center of origin. Figure
adapted from [9]

To determine the position and attitude of a marine craft moving in 6 DOF, six independent
coordinates are necessary. The former three states, and their derivatives, correspond to
position and translational motion (surge, sway and heave) along the x, y and z axes. The
three latter states, and their derivatives, corresponds attitude and angular velocity (roll,
pitch and yaw). The velocities are illustrated in Figure 2.2 and listed in table 2.1.

6

2.2 Kinematics

Forces and Linear and Positions and
DOF Description moments angular velocities Euler angles
1 motions in the x direction (surge) X u x
2 motions in the y direction (sway) Y v y
3 motions in the z direction (heave) Z w z
4 rolls about the x axis (roll) K p φ
5 rolls about the y axis (pitch) M q θ
6 rolls about the z axis (yaw) N r ψ

Table 2.1: SNAME notation (1950) for marine vessels [9].

2.2.2 Reference Frames

For GNC and analysis it is convenient to define earth-centered and geographic reference
frames.

• ECI: Earth-centered inertial frame, denoted {i} = (xi, yi, zi), is a nonaccelerating
reference frame, i.e. inertial and Newton’s laws apply. Its origin is located at the
center of the earth, as shown in Figure 2.3a.

• ECEF: Earth-centered Earth-fixed reference frame, denoted {e} = (xe, ye, ze) has
the same origin as ECI (see Figure 2.3a), but rotates relative to it with an angular
velocity of ωe = 7.2921 × 105 rad/s [9]. ECEF is often considered inertial for
maneuvering of marine crafts and used for GNC during long distance transit [9].

• NED: North-East-Down coordinate system denoted {n} = (xn, yn, zn) is usually
defined as a tangent plane on the surface of the earth. Its axes x, y and z is always
pointing to the true north, east and down normal to the earth’s surface, respectively.
The NED coordinate system relative to ECEF is determined by two angles latitude
µ and longitude l as seen in Figure 2.3b. During navigation, NED is fixed to the
earth’s surface and considered inertial such that Newton’s laws apply [9].

• BODY: The Body frame is denoted {b} = (xb, yb, zb) and is fixed to the marine
craft. The x-axis of the frame points towards the bow of the ship, while the y and
z axes points to the starboard and down, respectively (see Figure 2.2). The position
and attitude of a marine craft should be expressed in an inertial frame, e.g. ECEF,
NED. The linear and angular velocities of the marine craft should be expressed in
BODY.

7

Chapter 2. Theory and Concepts for Path Following

xi

yixe

ye

zi, z e
ωe

ECI/ECEF

ωe t

(a) ECI and ECEF

xe

ye

z e
ωe

ECEF

l

μ

NED

BODY
N

ED

yb

xb

zb

(b) NED and BODY

Figure 2.3: ECI, ECEF, NED and BODY coordinate systems. Figure adapted from [9].

2.2.3 Definitions of Course, Heading and Sideslip Angles

For marine crafts it is necessary to define the direction to where it is moving.

Course angle χ: ”The angle from the x-axis of the NED frame to the velocity vector of
the vehicle, positive rotation about the z-axis of the NED frame by the right-hand screw
convention” [10].

Heading angle ψ: ”The angle from the NED x-axis to the BODY x-axis, positive rotation
about the z-axis of the NED frame by the right-hand screw convention” [10].

Sideslip angle β: ”The angle from the BODY x-axis to the velocity vector of the vehi-
cle, positive rotation about the BODY z-axis frame by the right-hand screw convention”
[10].

β , χ− ψ, β = arcsin(
v

U
) (2.1)

where U =
√
u2 + v2 is the speed over ground measured by e.g. GNSS.

2.2.4 Notation

For marine craft the following notation is adopted for vectors in the coordinate systems
{b}, {e}, {n}:

veb/n = linear velocity of the point ob with respect to {n} expressed in {e}
ωbn/e = angular velocity of {n} with respect to {e} expressed in {b}

fnb = force with line of action through the point ob expressed in {n}
mn
b = moment about the point ob expressed in {n}

Θnb = Euler angles between {n} and {b}

8

2.2 Kinematics

We can now express the different quantities in Table 2.1, defined by SNAME (1950) in a
vectorial setting:

ECEF position peb/e =

xy
z



NED position pnb/n =

NE
D


Body-fixed

linear velocity vbb/n =

uv
w



Body-fixed force f bb =

XY
Z



Longitude and latitude Θen =

[
l
µ

]

Attitude (Euler angles) Θnb =

φθ
ψ


Body-fixed

angular velocity ωbb/n =

pq
r



Body-fixed moment mb
b =

KM
N



Using these, the general motion of a 6 DOF marine craft can be described with the follow-
ing vectors:

η =

[
pnb/n
Θnb

]
, ν =

[
vbb/n
ωbb/n

]
, τ =

[
f bb
mb
b

]
(2.2)

2.2.5 Transformation Between BODY and NED

The rotation matrix from BODY to NED for a 6 DOF marine craft is:

Rn
b (Θnb) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (2.3)

where s = sin(·), c = cos(·) andRn
b (Θnb) is element in SO(3).

The body-fixed velocity vector can now be expressed in {n} as:

ṗnb/n = Rn
b (Θnb)v

b
b/n (2.4)

For control design, roll φ and pitch θ is often neglected simplifying (2.3) to:

Rn
b (Θnb) = Rz,ψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.5)

under the assumption that φ = θ = 0. This is commonly used in Dynamic Positioning
(DP) systems and local path following routes due to its ”flat earth” tangent plane.

9

Chapter 2. Theory and Concepts for Path Following

2.2.6 Transformation Between NED and ECEF

The rotation matrix from NED to ECEF is:

Re
n(Θen) =

−clsµ −sl −clcµ
−slsµ cl −slcµ

cµ 0 −sµ

 (2.6)

where s = sin(·), c = cos(·) andRe
n(Θen) ∈ SO(3).

The body fixed velocity vector can now be expressed in {e} as:

ṗeb/e = Re
n(Θen)ṗnb/e = Re

n(Θen)Rn
b (Θnb)v

b
b/n (2.7)

This transformation is necessary when designing global path following system, due to
large variations in latitude µ and longitude l.

2.3 Modeling of Marine Crafts

The majority of surface vessel models are based on the 3-DOF model

η̇ = R(ψ)ν (2.8)
Mν̇ +CRB(ν) +CA(νr)νr +D(νr)νr = τ + τwind + τwave (2.9)

where

η =

NE
ψ

 , ν =

uv
r

 , τ =

XY
N

 (2.10)

νr denotes the relative velocity between the vessel and the water. τwind and τwave rep-
resent disturbances. The matrix R(ψ) is rotation about the z-axis. M = MRB + MA

is the inertia matrix consisting of the rigid-body (RB) mass matrix and added mass (A).
CRB is the rigid-body Coriolis-centripetal matrix and CA is the Coriolis added mass ma-
trix. D(νr) represents the hydrodynamic damping of the vessel.

2.4 Reference Models

Reference models is part of a guidance system and aim to create feasible trajectories for
position, attitude and/or velocity that the marine craft is able to follow. The simplest form
of a reference model is an open-loop linear low-pass filter, which are simple to implement
as well.

10

2.4 Reference Models

2.4.1 Velocity Reference Model

A velocity reference model should be at least of order 2 to obtain smooth reference signals
for desired velocity and acceleration. The second order low-pass filter is

ν̈d + 2∆Ων̇d + Ω2νd = Ω2rb (2.11)

where νd is the desired velocity, ν̇d is the desired acceleration and ν̈d is interpreted as the
desired ”jerk”. ∆ and Ω are positive definite, diagonal design matrices containing relative
damping ratios and natural frequencies

∆ = diag{ζ1, ζ2, ..., ζn} (2.12)
Ω = diag{ωn1

, ωn2
, ..., ωnn

} (2.13)

and rb is the operator input expressed in {b}. In steady state (no acceleration or jerk)

lim
t→∞

νd(t) = rb (2.14)

In state-space form this results in[
ν̇d
ν̈d

]
︸ ︷︷ ︸
ẋd

=

[
0 I

−Ω2 −2∆Ω

]
︸ ︷︷ ︸

Ad

[
νd
ν̇d

]
︸ ︷︷ ︸
xd

+

[
0

Ω2

]
︸ ︷︷ ︸
Bd

rb︸︷︷︸
u

(2.15)

2.4.2 Position and Attitude Reference Model

A third order reference filter for position and/or attitude is:

ηdi
rni

=
ω3
ni

(s+ ωn1
)(s2 + 2ζiωni

s+ ω3
ni

)
(2.16)

which is represented in state space formulation asη̇dη̈d...
ηd


︸ ︷︷ ︸

ẋd

=

 0 I 0
0 0 I

−Ω3 −(2∆ + I)Ω2 −(2∆ + I)Ω


︸ ︷︷ ︸

Ad

ηdη̇d
η̈d


︸ ︷︷ ︸

xd

+

 0
0

Ω3


︸ ︷︷ ︸

Bd

rb︸︷︷︸
u

(2.17)

where the matrices ∆ and Ω have the same properties as (2.12). The reference model also
satisfy

lim
t→∞

ηd(t) = rn (2.18)

as long as rn is constant

11

Chapter 2. Theory and Concepts for Path Following

2.4.3 Discretization

To implement the reference filter on a computer, a discretization is necessary. Using Dis-
crete Euler Method [11] yields:

xdk+1
= xdk + h[Adxdk + Bduk] (2.19)

where Ad ∈ Rn×n is the continuous-time system model matrix, Bd ∈ Rn×p is the
continuous-time input matrix and h is the sampling time.

2.5 Line-of-Sight Guidance

xn

yn

(x, y)

LOS Vector

U
e

s

(xlos, ylos)

�k

�d

�x

�y

pk

pk+1

�

RK+1

SK+1

Figure 2.4: LOS guidance illustration expressed in {n}. Figure adapted from [9].

Originally used in surface-to-air missiles, the LOS guidance is also applied to marine
crafts for path following tasks. ”Path following is the task of following a predefined path
independent of time; that is there are no temporal constraints” [9]. A path is often made up
of a sequence of interconnected straight lines defined by a list of waypoints expressed in
the {n}-frame. The position of waypoint k and the list of waypoints is defined as

pnk :=
[
xk yk

]>
(2.20)

wp :=
[
pn1 pn2 ... pnn

]
(2.21)

12

2.5 Line-of-Sight Guidance

for a path consisting of n number of waypoints and n− 1 straight line segments.

In Figure 2.4, the path is defined by a straight line between the two waypoints pnk and pnk+1.
The path is inherently rotated an angle αk relative to the xn axis and is given by

αk = atan2(yk+1 − yk, xk+1 − xk) (2.22)

where atan2(y, x) is the four-quadrant version of atan(y, x) ∈ [−π/2, π/2] [12].

By using the angle obtained from (2.22) and the marine craft’s position pn(t) relative to
pnk , we express its position in the path-fixed coordinate system. This has its origin in pnk
and rotated αk degrees, using

ε(t) = Rp(αk)>(pn(t)− pnk) (2.23)

where

Rp(αk) :=

[
cos(αk) − sin(αk)
sin(αk) cos(αk)

]
∈ SO(2) (2.24)

ε(t) = [s(t), e(t)]> is the along-track distance and cross-track error (normal to path),
respectively. SO(m) states that the matrix is orthogonal, has determinant equal to 1 and is
of order m. The control objective becomes

lim
t→∞

e(t) = 0 (2.25)

i.e. minimizing the cross-track error. If this statement holds, the marine craft will converge
to the path asymptotically.

The LOS vector is projected from the marine craft and intersects a point (xlos, ylos) on
the path defined by the two waypoints (see Figure 2.4). The distance ∆ denotes the
Lookahead-distance and decides how far from the along-track distance s(t) the LOS vec-
tor will intersect and the steering law’s aggressiveness.

To steer along the LOS vector, two guidance principles can be used [12]:

• Enclosure-based steering

• Lookahead-based steering

In this thesis, only Lookahead-based steering will be presented, due to being less compu-
tationally expensive [12].

2.5.1 Lookahead-based Steering

The desired course angle χd assignment for lookahead-based steering is formulated as

χd(e) = χp + χr(e) (2.26)

where
χp = αk (2.27)

13

Chapter 2. Theory and Concepts for Path Following

is the angle between the north axis of {n} and the straight line between pnk and pnk+1 (see
Figure 2.4), while

χr(e) := arctan

(
−e
∆

)
(2.28)

where e is the cross-track error and ∆ > 0 is the lookahead distance usually set to 1.5-2.5
ship lengths [9]. From (2.28), a small ∆ yields a large χr(e) causing more aggressive
convergence.

To enable a marine craft to follow a predefined path under the influence of ocean currents,
the controller must account for the Sideslip-angle β. Threating the current as a slowly
varying disturbance and adding integral action in the LOS steering (integral LOS), or if
velocity measurements are available the output can be

ψd = χd − β (2.29)

where β can be calculated as
β = arcsin

(v
U

)
(2.30)

v is the sway velocity and U is the speed over ground [9]. In this thesis, velocity measure-
ments are available so that (2.29) can be used.

2.5.2 Switching Mechanism for Waypoints

For changing straight line segments to track during transit, a switching mechanism is
needed. One method is to define a circle of acceptance with radius Rk+1 (see Figure
2.4). Switching to the next waypoint occurs when the vessel is inside this circle. The
equation is

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2
k+1 (2.31)

However, a criterion that doesn’t require the vessel to be inside the circle, uses the along-
track distance s for switching such that

sk+1 − s(t) ≤ Rk+1 (2.32)

where sk+1 is the distance between waypoint k and k + 1 (see Figure 2.4). A guideline
for deciding the value of Rk+1 is two times ship length.

14

Chapter 3
Remote Monitoring & Control

This chapter is an extension of the work done in ”Remote Monitoring & Control of an
Autonomous Boat” [8] as the specialization project TTK4551 fall of 2017. The special-
ization project describes the software development and implementation at a more detailed
manner. However, a brief review of necessary theory, regarding networking and software
fundamentals, will be presented here. A description of existing functionality along with
the new contributions to the software produced in thesis will also be presented.

3.1 Networking and Software Fundamentals

Open Systems Interconnection or OSI-model for short, is a reference model for network
communication. It consists of the 7 layers shown in Figure 3.1 where each layer in the
stack provides a service for the layer above. When data is transmitted, it is passed down
from the application layer where a header corresponding to the transport layer is added
first. This header is used by the transport layer at the receiving end and contains informa-
tion such as source, destination and error-checking. It then continues down the stack of
the senders side, transmitted through a physical link (network cable), before returning up
the stack to the receiver [14].

3.1.1 Sockets and Protocols

Sockets are end-points in two-ways communication between threads (3.1.4) or processes
(3.1.3) communicating over a packet-switching network, e.g. the Internet.

Transport Control Protocol (TCP) is one of two transport protocols residing in layer 4.
It is a connection-oriented and reliable protocol that transmits and receives data between
processes through sockets. To establish connection, the two processes must perform a

15

Chapter 3. Remote Monitoring & Control

Application Layer (7)

Presentation Layer (6)

Session Layer (5)

Transport Layer (4)

Network Layer (3)

Data Link Layer (2)

Physical Layer (1)

Physical Link

Application Layer (7)

Presentation Layer (6)

Session Layer (5)

Transport Layer (4)

Network Layer (3)

Data Link Layer (2)

Physical Layer (1)

Transmit
Data

Receive
Data

Sender Receiver

The 7 Layers of OSI

Figure 3.1: Illustration of the 7 layer OSI model. Figure adapted from [13] and [14].

”three-way-handshake”. The sender transmits a ”SYN” (synchronize) packet to the re-
ceiver, which then returns a ”SYN-ACK” (acknowledgement) to the sender. The sender
then transmits an ”ACK” packet to receiver and connection is established (SYN, SYN-
ACK, ACK). TCP supports flow-control (same speed between sender and receiver) and
re-transmission of lost packets. The connection remains open until the client closes the
connection [14].

User Datagram Protocol (UDP) is the other transport protocol and has no acknowledge-
ment of transmitted packets, or datagrams as they are referred to in UDP. It does not even
know if someone is receiving the datagrams sent. This is why UDP is referred to as a
connection-less protocol. The lack of ACK-segments sent increases the UDPs throughput,
meaning it can transmit a higher amount of data than TCP. The reason to use UDP over
TCP is when high transmission rates are necessary and loss of datagrams can be tolerated,
e.g. live video stream. Using checksums to detect bit-errors are employed by both UDP
and TCP. If one or more bit-errors are detected in the received datagrams or packets they
are discarded [14].

The Internet Protocol (IP) is not a transport protocol as it resides in the Network layer
of the OSI-model. It handles addressing and routing of packets/datagrams throughout the
Internet. Every device containing an network interface, e.g. Wi-Fi card, receives a unique
IP-address. This protocol along with routing protocols ensures that the packets/datagrams
is sent to the correct recipient. There are two IP versions, IPv4 and IPv6. The main
difference is the size of the address field. IPv4 uses 32 bit for addressing while IPv6 uses
128 bits. IPv6 is newer and larger due to the lack of IPv4 addresses available [14].

16

3.1 Networking and Software Fundamentals

3.1.2 Socket Programming

To establish a connection between two processes in a client-server paradigm, a library
called ”Practical C++ Sockets” can be used. This library is developed for pedagogical
reasons by Berkeley University and is a work in progress. It does, however, provide simple
means for socket communication by creating a few wrapping classes for a subset of Berke-
ley C Socket API for TCP and UDP sockets. Their website provides class documentation
and a few examples with both TCP and UDP protocols [15]. The interface is supported in
both Windows and Unix systems.

socket()

connect()

write()

Client

read()

socket()

Server

bind()

listen()

accept()

Blocks until client
connected

read()

Establish
connection

Request data

write()
Reply

Process request

close() close()

Figure 3.2: Client-Server paradigm for a TCP socket connection. Figure adopted from [8].

Figure 3.2 shows the protocol for a TCP connection between a client and a server. Firstly,
a socket-object is created by the server. This object then binds an IP-address and a specific
port number to it. The server will then listen for connections on that IP-address and port
number. accept() will block the execution of that thread (see 3.1.4) until a client has
connected using the server’s IP-address and port number. After the client established con-
nection it then writes a request which is read and processed by the server before returning
an appropriate response. This is read/write sequence can be repeated until the client task
is completed. TCP is connection oriented and will terminate when the client disconnects
[14].

Figure 3.3 shows the protocol for a UDP connection between a client and a server. Since
UDP is connectionless, both client and server needs to bind an IP-address and a port num-

17

Chapter 3. Remote Monitoring & Control

socket()

bind()

read()

Blocks until
received data

write()

write()

read()

Send data with
no guarantee of

connection

Send data with
no guarantee of

connection

Blocks until
received data

Take means to
close connection

close() close()

Take means to
close connection

Client Server

socket()

bind()

Figure 3.3: Client-Server paradigm for a UDP socket connection. Figure adopted from [8].

ber to receive data from one another. The order of the write/read is arbitrary but needs to
be reversed with respect to each other due to blocking the thread when executing a read.
When sending data, the sender has no knowledge about ”who” its sending to. This means
that the appropriate time to close the sockets needs to be implemented by the programmer,
in contrast to TCP where a socket closes when the client disconnects [14].

3.1.3 Process

Several definitions of the term process is suggested by [16], some of which are:

• A program in execution

• An instance of a program running on a computer

• The entity that can be assigned to - and executed on a processor

A process can get Resource ownership, meaning it will sometimes be allocated protected
ownership/control of resources such as main memory, I/O channels, devices and files. A
process has its own virtual address space to hold the process image, where the process
image consists of the program, data and stack and a few other attributes. A process state
can be described by the models: ”Two-state model” and ”Five-state model”. The former is

18

3.1 Networking and Software Fundamentals

the simplest version where a process can either be ”Running” or ”Not running”. The latter
is more complex and consists of

• Running

• Ready

• Blocked/Waiting

• New

• Exit

The Kernel, which handles all resource management and hardware interaction in an OS,
decides which state to put a process in [16].

3.1.4 Thread

A process contains no less than one thread. Because a process can contain more than
one thread, threads are often referred to as lightweight processes. Much like a process,
a thread is given execution time by the operating system (OS). A thread can only access
memory contained in the process’ virtual address space. Once a thread is spawned it can
have the following states, similar to a process [16]:

• Running

• Ready

• Blocked

Consider a processor with only one core and a process with one thread. Then that thread
will get all the execution time by the OS. Now, if the process contains two threads (multi-
threading), the OS (thread library) will context switch really fast between execution in-
structions in both threads, executing them concurrently. Priority and timing options can be
added to give one thread more execution time. This is useful for displaying, e.g. a video
stream while handling asynchronous button presses in an application. In a multi-threading
application, available memory can accessed by multiple threads concurrently. Worst case,
a number can be read, while it is changed, resulting in reading a wrong number. This is
called a race condition (result depends on timing of threads). This must be handled with
thread synchronization using e.g. a ”Mutex” (Mutual exclusion)[16]. Just before a thread
is accessing a shared/global variable the thread ”locks” the resource using the ”Mutex”.
All other threads that tries to access this variable are blocked until the accessing thread
calls ”unlock”.

3.1.5 Robot Operating System

Developed by Eric Berger and Keenan Wyrobek during their PhDs at Standford, ROS is
meant to help researchers and engineers to focus on invention instead of re-invention [17].
Obtaining details of published paper’s software was difficult and about 90 % of the time

19

Chapter 3. Remote Monitoring & Control

was spent re-writing source code and about 10 % of the time was used for innovation [18].
The solution was to get funded and hire software engineers to develop critical ”plumbing”
software and developer tools that enabled innovators in robotics to build on each other’s
progress. ROS now has a long list of drivers and tools for common software and hard-
ware used in robotics, e.g. GPS, Inetial Measruement Unit (IMU), motor controllers etc,
compatible with their software.

3.1.6 Nodes in ROS

ROS projects consists of nodes. Each node is essentially a process, giving it the properties
described in 3.1.3. A node performs a task, either periodically or asynchronously [19].
Nodes in ROS projects can consist of either C++ or Python code.

A node’s task can be as simple as setting an input to a DC-motor or it can perform complex
algorithms. A node usually produce some kind of result. This result is often needed
by another node in the project. The producing node can then ”publish” the result to a
topic (see 3.1.7) making it available for all the other nodes. Nodes that need the result
can just ”subscribe” to that topic to receive the message containing the data when it is
available. This enables data sharing between processes (interprocess communication),
despite separate virtual memory spaces.

3.1.7 Topics in ROS

Topics in ROS are the communication buses that nodes use to communicate (send their
results). They transmit messages (3.1.8) containing the results they generate. In ROS the
producer/consumer semantics are referred to as publisher and subscriber. The publisher
generates a result and publishes it. It does, however, not know which nodes receives it.
Likewise, a node subscribing to a topic does not know which node sent it [20]. A node can
publish and subscribe to multiple topics.

3.1.8 Messages in ROS

Messages are data structures of primitive types such as, integer, string, float and boolean
etc. Custom messages can be created from a combination of the primitive types and arrays.
Variables can then be named improve readability, e.g. Float64 velocity instead of
the default Float64 data [21].

3.1.9 Rosbag Data

Rosbag is a command-line tool for logging Messages published to Topics in ROS. Files
are stored in a .bag-format of which can be imported to Matlab with the Robotics System
Toolbox.

20

3.2 RMC Station Introduction

3.1.10 CartoType Navigation Framework

CartoType provides a framework primarily for developing offline applications using de-
tailed navigation maps. Open source maps obtained from sources such as http://
openstreetmap.org can be converted to supported formats(.ctm1) and integrated into
an application written in C++. The framework implements methods for geo-positioning
and street navigation. Platforms supported are Android, iOS, Linux, Mac OS, .NET and
Windows. The software development kit (SDK) can be downloaded at [22]. Source code
for public use can be found at [23].

3.2 RMC Station Introduction

The RMC station is developed for remote monitoring and control of ReVolt in the special-
ization project using Qt Creator and runs on Linux. A class diagram of the RMC station
software is shown Figure B.1 of Appendix B.

The RMC station software run as a single process (see Section 3.1.3) making use of a
threading library to handle synchronous and asynchronous events, while preventing race
conditions with different types of Mutex (for more info on threads/threading see Section
3.1.4).

To enable transmission of data between the RMC station and ReVolt, the connection-
oriented TCP transport protocol, described in Section 3.1.1, is used. This implies that
data can be transmitted over Wifi and 4G in a client-server paradigm. A library called
”Practical C++ Sockets” is used to create communication sockets to transmit and re-
ceive data through, in a manner described in Section 3.1.2 where the RMC station acts
as the client. This data includes, but are not limited to, a live image stream (UDP) from
a camera mounted on ReVolt, navigational information, system data and remote control
signals.

The image stream shown in Figures 3.4 and 3.6 uses the best-effort UDP transport pro-
tocol due to requiring a higher bandwidth than the other data transmitted. The MUVI K2
Sport camera publishes raw images at rate of 10 Hz which are compressed using JPEG-
compression algorithm, described more in [8]. The resulting image stream has a 720p
resolution.

A navigation map is also implemented such that basic interaction and displaying of Re-
Volt’s location geographically is possible (see [8] for creation and implementation of the
navigation map for ReVolt). ReVolt can be controlled from the RMC station in heading au-
topilot mode, by setting a heading reference and thruster effort. Alternatively, in dynamic
positioning mode, by setting a desired position and heading.

The RMC station is, however, never tested at sea in the specialization project and all
software written solely in C++.

Figure 3.4 shows the RMC station’s Graphical User Interface (GUI). The red rectangles
and numbering correspond to different data:

21

http://openstreetmap.org
http://openstreetmap.org

Chapter 3. Remote Monitoring & Control

Figure 3.4: Screenshot of the RMC station during development, fall of 2017. Note that the
”1080p/60” watermark is not the actual resolution of the received image stream.

1. Live image stream from ReVolt

2. Interactive navigation map with live view of ReVolt’s position and footprint

3. ReVolt’s navigational data

4. ReVolt’s system state

5. ReVolt’s actuator states

6. Remote Control of ReVolt (Heading Autopilot, DP, LOS Guidance)

3.3 RMC Station Contributions

The Guidance Management (”Autonomous Control” in Figure 3.5) is a new contribution
to the RMC station in this thesis. This allows the operator to place a desired number
of waypoints (shown in Figure 3.5 and Figure 3.6 as red filled squares with numbering)
and generate a path (shown as black dashed lines) between each consecutive pair. Once
the operator has placed all desired waypoints, clicking ”Execute Route” transmits the list
containing all waypoint pairs to ReVolt via Wi-Fi/4G. ReVolt uses its Guidance System,
developed in this thesis, to track the path, leaving a green footprint. The development and
implementation of the GNC system for path following is presented in Chapter 4.

22

3.3 RMC Station Contributions

Figure 3.5: LOS Guidance in the RMC station tested on DNV GLs simulator.

3.3.1 Guidance Management

The CartoType Navigation Framework, described in Section 3.1.10, forms the basis for
the Guidance Management. The open-source code includes, but are not limited to, event-
handlers and utility functions that enables panning, zooming, rotating and dragging the
map. By using event-handlers, the pixel-coordinates of a mouse-click can be converted
into a geodetic latitude and longitude in the map. For the purpose of waypoints, these
positions are drawn in the map and stored for later transmission.

For every event (e.g. zooming, clicking) occurring in the navigation map needs to be re-
drawn to display the event’s result. The method that draws/updates the map is provided
by the CartoType API. However, methods regarding waypoint placement, path drawing,
footprint trace and obstacle visualization needs to be integrated in this method. The posi-
tions of waypoints, paths, footprint and obstacles are stored in lists because they need to
be redrawn every time a map-event occurs. Source code for drawing of waypoints, paths,
footprint and obstacle is listed in Appendix B. The entire source code for the RMC station
can be made available at the Git repository at Visual Studio Team Services (VSTS).

3.3.2 Transmitting List of Waypoints

Using the established TCP connection, the Transceiver-class in the RMC station re-
ceives the list of waypoints from the MapForm-class. The list is parsed into a String,
with values separated by ”:”. Adding an identifier ”GC:” (Guidance Control) to the start

23

Chapter 3. Remote Monitoring & Control

Figure 3.6: LOS Guidance in the RMC station after finishing a run in Dora. A waypoint is skipped
due to an implementation error causing too fast iterations though waypoints. Map update was dis-
abled at the end of the run, meaning latitude and longitude in GUI does not match exact position
in map at the time of screenshot capture. Also, a setting on the camera caused the different display
format.

of the string before it is transmitted, enables ReVolt’s /TCPDatatransceiverNode
(see Section 3.1.6) to know which mode to request (Heading autopilot, DP, Guidance Con-
trol) and pass the waypoints to the /GuidanceLawNode to generate a path and perform
necessary control action.

3.3.3 Image Stream Frame Distortion Removal

An issue from the specialization project regarding the image stream showed that every few
seconds the received images would suffer from distortion (see Figure 3.7).

The reason for this being a timing-issue. The solution was to let the VideoReceiver-
class emit a signal every time a full image is received and ready to be displayed, inheriting
the rate (∼10 Hz) of the transmission from ReVolt.

24

3.3 RMC Station Contributions

Figure 3.7: Screenshot of image stream distortion [8].

25

Chapter 4
GNC Implementation for Path
Following

In this chapter, a GNC system enabling ReVolt to follow a predefined path, determined by
waypoints, is designed and implemented. The waypoints are placed by an operator at the
RMC station as described in Chapter 3. In Section 4.1 the GNC system is presented w.r.t
the generic structure of Section 2.1. In Section 4.2 the Guidance System is presented. The
control allocation for turning and forward speed is presented in Section 4.3. For main-
taining forward speed, a surge speed controller is developed and presented in Section 4.4,
this includes a feed forward and feedback term. For course-keeping and course-changing
maneuvers, a heading controller is developed and presented in Section 4.5. The heading
controller also includes a feedforward and feedback term. The system identification in this
thesis is done using ReVolt’s digital twin (see Section 5.1), developed by DNV GL. Lastly,
the implementation in the ROS environment on board ReVolt is described in Section 4.6.
A discussion regarding development and implementation is presented in Chapter 7. Simu-
lations and experimental results are presented in Chapter 5 and 6, respectively.

4.1 Guidance, Navigation and Control System

Figure 4.1 shows a block diagram of the implemented GNC System on ReVolt for path
following.

The Guidance System uses the LOS Guidance, described in Section 2.5 with the lookahead-
based steering principle described in Section 2.5.1. Lookahead-based steering is chosen in
favor of enclosure-based steering due to less computational requirements [12]. The Guid-
ance system inputs a list of waypoints that make up piece-wise interconnected straight
lines expressed in the {n}-frame. It also inputs navigational data such as the vessel’s posi-

27

Chapter 4. GNC Implementation for Path Following

L
O
S
G
u
id
a
n
ce

L
a
w

V
elo

city

R
eferen

ce

M
o
d
el

→
U

ref
u

ref

T
ra
n
sfo

rm
a
tio

n

ψ
ref

u
ref

u
d

u
˙

d

ψ
d

r
d

r
˙

d

R
eV

o
lt

A
ttitu

d
e

R
eferen

ce

M
o
d
el

F
eed

fo
rw

a
rd

C
o
n
tro

ller

F
eed

b
a
ck

C
o
n
tro

ller

H
ea
d
in
g
C
o
n
tro

ller

F
eed

fo
rw

a
rd

C
o
n
tro

ller

F
eed

b
a
ck

C
o
n
tro

ller

S
u
rg
e
S
p
eed

C
o
n
tro

ller τ
δ
,F
B

τ
δ
,F
F

C
o
n
tro

l
A
llo

ca
tio

n

τ
m

,F
B

τ
m

,F
F

τ
m

δ
=

−
τ
δ

τ
m

G
N
S
S

IM
U

ψ r

D
S
P
U
n
it

[N
,E

,U
,χ

]
⊤

U
→

u

u
→

u
f

w
p

U
ref

u
f

τ
δ

G
U
I
D
A
N
C
E
S
Y
S
T
E
M

C
O
N
T
R
O
L
S
Y
S
T
E
M

N
A
V
I
G
A
T
I
O
N
S
Y
S
T
E
M

Figure 4.1: Block diagram illustration of the Guidance, Navigation and Control System for path
following as implemented on ReVolt.

28

4.2 Guidance System

tion in the {n}-frame, speed over ground, heading and course. It then computes required
reference values for the heading and surge speed controllers regulating the cross-track er-
ror e(t) to zero. Switching of waypoints is handled using solely the along-track distance
in (2.32) as described in Section 2.5.2. Sideslip, caused by environmental disturbances,
is corrected using velocity measurements given by the GNSS (see Section 4.2). Refer-
ence models for heading and speed controllers smooth the step changes ψref → ψd and
uref → ud and create higher order derivatives for feedforward control. In Figure 4.1
the Velocity Reference Model and Attitude Reference Model is contained in the Guidance
System. In the implementation however, the reference models for the controllers exist in
their respective controller’s source code. This is for practical reasons as controlling ReVolt
manually using just the heading controller requires the reference model as well. For the
description of the reference models see Sections 4.4.1 (speed) and 4.5.3 (heading).

The Control System block contains two low-level controllers, one for controlling the
surge speed and one for heading angle. The control objectives are to track the desired
values passed by the Guidance System using a model-based feedforward and PID feedback
for heading. Similarly, model-based feedforward using desired states and PI feedback for
surge speed. The control allocation is configured to use the two aft thrusters constrained
to an angle of δmax/min = ± 45o.

The Navigation System remains the same, and collects the data from the GNSS and IMU
which are passed to the steering law and low-level controllers. Wild-point filters are al-
ready implemented for the GNSS position measurement by [1].

4.2 Guidance System

The LOS Guidance scheme described in Section 2.5 and the lookahead-based steering
principle from Section 2.5.1 is used to implement a path following system for ReVolt’s
control system.

A list containing the geodetic positions (longitude and latitude) of the waypoints is ob-
tained as described in Chapter 3. The positions are transformed to the {n}-frame using
an algorithm from [24], resulting in the waypoint list from (2.21). The path-tangential
angle ak is found using (2.22) with the positions of the current waypoint pair and express
the marine craft’s vessel in a path-fixed coordinate system with origin at pnk and x-axis
pointing along the path. The along-track distance and cross-track error (s(t), e(t)) are the
vessels coordinates in that frame.

The control objective is to asymptotically regulate the cross-track error e(t) to zero, that
is

lim
t→∞

e(t) = 0 (4.1)

The course angle assignment from (2.26) is

χd(e) = αk + χr(e) (4.2)

29

Chapter 4. GNC Implementation for Path Following

where
χr(e) := arctan 2

(e
∆

)
(4.3)

is the steering law from (2.28) and ∆ = 9 [m] is the lookahead distance. To account for
ocean currents, the sideslip-angle β is calculated using (2.30) restated here

β = arcsin
(v
U

)
(4.4)

and the desired course χd is adjusted to output the LOS heading angle

ψlos = χd + β (4.5)

Desired heading ψd and its higher order derivatives is obtained by passing ψlos through
the reference model in Section 4.5.3. Switching of waypoints is done using the along-track
distance as described in Section 2.5.2 with (2.32) restated here

sk+1 − s(t) ≤ Rk+1 (4.6)

with Rk+1 = 16 [m].

An operator inputs a speed over ground reference speed Uref , while the surge speed
controller sets a surge speed reference uref . A transformation Uref → uref is given by
the decomposing the total reference speed with the sideslip angle β

uref = Uref cos(β) (4.7)

inserting (4.4) into (4.7) yields

uref = Uref cos(arcsin
(v
U

)
) (4.8)

which, when U → Uref , can be written as

uref =
√
U2
ref − v2 (4.9)

Note that (4.9) is not implemented for now, i.e. U > Uref is possible. Since v is subtracted
before passing through the surge speed reference model, ensuring that the reference model
captures the change in v is crucial. Otherwise, v must be subtracted after filtering, caus-
ing noise in ud as no state estimator is implemented. The simulation and experimental
results for the GNC system for path following is presented in Sections 5.4 and 6.4, respec-
tively.

4.3 Control Allocation

ReVolt is described more in Section 6.1. However, a short description of propulsion system
is presented to understand the control allocation. ReVolt has two freely rotating (azimuth)
stern thrusters and a bow thruster constrained to ± 270o. DNV GL’s thrust allocation

30

4.3 Control Allocation

δmax=+45
o

δmin=-45
o

CO/CG

lx1

lx2

ly1

ly2

+

xb

yb

+

F1y

F1x

F2x

F2y

F1

F2

δ1

δ2

+

Figure 4.2: Illustration of the setup. The two stern thrusters is used for propulsion and turning

software is already available for in Dynamic Positioning. This allows independent control
forces and moments in 3-DOF. Regardless, [12], [6], [25] and [26] has shown that a con-
figuration with thrust force and moment in surge and yaw (underactuated) can be used for
”high speed” tracking/path following with only a yaw/yaw rate controller and surge speed
controller. That is, sway motion is not controlled directly. The Guidance Law outputs a
LOS heading ψlos and a speed reference Uref is set by an operator. Therefore, a decou-
pled thrust effort and thruster angle is used instead of configuring the control system to
use DNV GL’s control allocation with an underactuated configuration.

A linear relationship between the input value to the thruster and the force produced can be
described as [9]

F = Ku (4.10)

where F ∈ Rn is the force produced, K ∈ Rr×r is the force coefficient matrix andu ∈ Rr
is the control input to the actuator. The generalized control forces τ ∈ Rn is described
as

τ = T (α)F (4.11)

and inserting (4.10) for F yields

τ = T (α)Ku (4.12)

where α is a column vector of azimuth angles and T (α) ∈ Rn×r is the thrust configura-
tion matrix.

ReVolt’s configuration for path following use an identical thruster angle command δ ∈
[−45o, 45o] for each thruster. That is

α = [δ1 δ2]> (4.13)

The the configuration vectors T 1 and T 2 for thruster 1 and 2 could be obtained from

31

Chapter 4. GNC Implementation for Path Following

Figure 4.2 as

T 1(δ1) =

 cos(δ1)
sin(δ1)

−|ly1 | cos(δ1)− |lx1
| sin(δ1)

 (4.14)

T 2(δ2) =

 cos(δ2)
sin(δ2)

−|ly2 | cos(δ2)− |lx2 | sin(δ2)

 (4.15)

Combining the two column vectors from (4.14) yields the thrust configuration matrix

T (δ1, δ2) =
[
T 1 T 2

]
=

 c(δ1) c(δ2)
s(δ1) s(δ2)

|ly1 |c(δ1)− |lx1
|s(δ1) −|ly2 |c(δ2)− |lx2

|s(δ2)

 (4.16)

Both thrusters received identical input effort τ1,m = τ2,m = τm ∈ [0 100] with unit [%],
such that

u = [τm τm]> (4.17)

and since the control system also produces the same input angle for both thrusters, δ1 =
δ2 = δ. Due to symmetry lx1

= lx2
= lx, ly1 = −ly2 and K → Km > 0, the resulting

generalized forces and moments τ from (2.10) is

τ =

XY
N

 =

 2 cos(δ)
2 sin(δ)

−2|lx| sin(δ)

Kmτm (4.18)

The thrust coefficient Km is found with linear regression with some of the data collected
with ReVolt at SINTEF Ocean during a DNV GL summer internship of 2017 (see Ap-
pendix D.2). By using polyfit in Matlab with the data contained in Table 4.1 a linear

Thruster
Effort [%] 25 50 75 100

Force
Produced [N] 4 7 13.5 18

Table 4.1: Results from a single test with ReVolt at SINTEF Ocean. Force produced by a single
thruster at different efforts.

correlation between effort applied and force produced, is obtained:

F (τm) = 0.218τm − 3.5 (4.19)

The figure shows the data points from Table 4.1 versus the fitted linear function (4.19) can
be seen in Figure 4.3. Inserting (4.19) into (4.18) yields

τ =

XY
N

 =

 2 cos(δ)
2 sin(δ)

−2|lx| sin(δ)

F (τm) (4.20)

32

4.4 Surge Speed Controller

0 10 20 30 40 50 60 70 80 90 100

Thruster effort (%)

-5

0

5

10

15

20

F
o

rc
e

 P
ro

d
u

c
e

d
 (

N
)

Towing Tank: Force Produced vs Thrust Effort

Actual

Fitted

Figure 4.3: Mapping of thruster effort versus the corresponding force produced. Results obtained
from SINTEF Ocean.

4.4 Surge Speed Controller

The control objective is to asymptotically track a reference surge speed uref . This is done
using a PI controller with a feedforward term and reference model supplying a desired
velocity and acceleration, as seen in the control structure of Figure 4.7. The feed forward
term consists of a damping and inertia term. Proportional-Integral Feedback corrects de-
viations in surge speed caused by environmental disturbances and modeling erros.

4.4.1 Reference Model

To avoid large and unnecessary control efforts from the PI controller during step changes,
the second order low-pass filter from (2.11) is implemented to smooth the reference signal
in the surge motion. This now takes the form

üd + 2ζωnu̇d + ω2
nud = ω2

nuref (4.21)

Using Matlab’s System Identification Toolbox the values for ζ and ωn is found. Applying
a step corresponding to roughly 1 m/s surge speed and curve fitting a second order generic
transfer function to this response yields the necessary coefficients

ωn = 0.1583 (4.22)
ζ = 0.9994 (4.23)

33

Chapter 4. GNC Implementation for Path Following

0 10 20 30 40 50 60 70
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
From: u1 To: y1

Simulator GNSS Speed

Velocity Reference Filter

Step Response

Time (seconds)

S
u

rg
e

 S
p

e
e

d
 (

m
/s

)

Figure 4.4: Velocity Reference Model 1 m/s step response, without saturation.

with 96.29% accuracy, corresponding to the second order reference filter

üd + 0.3164u̇d + 0.0251ud = 0.0251uref (4.24)

In state-space representation this becomes[
u̇d
üd

]
=

[
0 1

−0.0251 −0.3164

] [
ud
u̇d

]
+

[
0

0.0251

]
uref (4.25)

The reference model also includes saturating elements to limit the desired surge accelera-
tion

u̇d ≤ u̇max (4.26)

Hence
u̇d → sat(u̇d) (4.27)

where

sat(x) :=
{sgn(x)xmax if |x| ≥ xmax

x else (4.28)

Discretization of the filter is done using (2.19) from Section 2.4.3.

4.4.2 Low-Pass Filtering of Velocity Measurement

A 5.order Infinite Impulse Response (IIR) low-pass filter is implemented to smooth the
surge speed measurement and suppress some noise from entering the control loop. A IIR-
filter is chosen in favor of Finite Impulse Response (FIR)-filter due to it requiring less

34

4.4 Surge Speed Controller

0 20 40 60 80 100 120

Time (seconds)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
S

p
e
e
d
 (

m
/s

)

Speed Measurement Test

GNSS Speed Measurement

Filtered Measurement

(a) Time domain (t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

f (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

|P
1

(f
)|

Fast Fourier Transform

(b) Frequency domain (f)

Figure 4.5: (a) GNSS speed measurement versus a low-pass filtered version of the signal. (b) The
Fast Fourier Transform (FFT) identifies which frequencies occurs in the signal. The test was done
by dragging ReVolt on its carrier/wagon outside and logging the speed.

computing power [27]. The equation for the filter is given by

yk =
1

a0
(b0xk + b1xk−1 + . . .+ bMxk−M − a1yk−1 − . . .− aNyk−N) (4.29)

where bi and ai are the (M + 1) = 6 and N = 5 filter coefficients, respectively. Here
yk = uf (t) is the filtered surge speed output of the filter at time step k. xk = u(t) is the
input surge speed at time step k. Note that all yk and xk prior to time step 0 is equal to 0.
The filter coefficients are listen in Appendix D.3.

Figure 4.5a shows the measured speed versus the filter speed. Note the slight delay in
the filtered signal. This is due to the filter time constant, and the downside of using a
low-pass filter as opposed to a state estimator. Figure 4.5b shows the occurrence of the
different frequencies in the measured signal. These were obtained by using Fast Fourier
Transform (FFT) function in Matlab fft. By inspecting frequencies in the FFT, a filter
can be designed using Matlab’s FilterDesigner with parameters listed in Table 4.2
and selecting the minimal order necessary to realize the filter.

Parameter Value
Fs 10 Hz
Fpass 0.5 Hz
Fstop 2 Hz
Apass 1 dB
Astop 60 dB

Table 4.2: Parameters used in the speed filter

Note that having a small difference between Fstop and Fpass or large difference between
Astop and Apass increases the order of the filter (number of coefficients) which increases

35

Chapter 4. GNC Implementation for Path Following

the complexity of the implementation in practice. A compromise is necessary to filter
noise with minimal delay.

4.4.3 Control Objective

The surge error is defined as
ũ(t) , ud(t)− uf (t) (4.30)

where ud(t) is the time-varying, desired surge speed supplied by the reference filter in
Section 4.4.1 and uf (t) is the low-pass filtered velocity measurement from Section 4.4.2.
The control objective is to minimize ũ(t) such that

lim
t→∞

ũ(t) = 0 (4.31)

in the presence of wind and ocean currents. Wave filtering is not part of this thesis due to
rare occurrence of waves in test area. The control law (output of controller) is formulated
as

τm = τm,FF + τm,FB (4.32)

where τm,FF ∈ [0 100]> [%] is the feedforward term that ensures a forward speed tra-
jectory and τm,FB ∈ [0 100]> [%] is the feedback term that corrects errors caused by
environmental disturbances and modeling uncertainties.

4.4.4 Feedforward Term

The identification of the feed forward term is obtained with the Digital Twin and consists
of an acceleration and velocity feedforward

τm,FF = Mu̇d + σ(ud) (4.33)

whereMu̇d is the inertia term and σ(ud) is the steady-state polynomial damping term.

The damping term σ(ud) is calculated by applying a series of steps to the stern thrusters
and recording the steady state surge speeds for each step. These are listed in table 4.3.

Thruster
Effort [%] 10 20 30 40 50 60 70 80 90 100

Surge
Speed [m/s] 0.42 0.60 0.74 0.86 0.96 1.07 1.16 1.24 1.32 1.40

Table 4.3: Effort applied to the stern thrusters and the corresponding steady state surge speed.
Results obtained with the Digital Twin in simulator.

Using polyfit in Matlab, with the two rows of table 4.3 as vectors, the following second
order polynomial mapping function is obtained (see Figure 4.6):

σ(ud) = 46.9590u2d + 6.3054ud − 0.3211 (4.34)

36

4.4 Surge Speed Controller

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Surge speed (m/s)

0

20

40

60

80

100

120

T
h

ru
s
te

r
e

ff
o

rt
 (

%
)

Simulator: Effort vs Surge Speed

Actual

Fitted

Figure 4.6: Second order mapping function using values from table 4.3

In (4.34), the desired velocity ud is mapped into an effort and applied to the thrusters as
part of the feed forward. With ReVolt in practice, a thruster effort lower that approximately
15% is not enough to overcome the friction in the bearings. Further processing of the
polynomial (see [25]) is not part of this thesis.

M in the inertia term is found by step response simulations using τm,FF only. M =
800 gives sufficient results (see Figure 5.12) The total feedforward control effort be-
comes

τm,FF = 800ud + 46.9590u2d + 6.3054ud − 0.3211 (4.35)

4.4.5 Feedback Term

A PI controller is chosen as feedback due to its simplicity and robustness. The time-
continuous PI controller for the speed controller takes the form

τm,FB = Kpũ(t) +Ki

∫ t

0

ũ(τ)dτ (4.36)

where τm,FB ∈ [0, 100] is the feedback effort, ũ(t) = ud − uf (t), Kp > 0 and Ki > 0
are the proportional and integral gain, respectively.

To implement the PI controller a discretization is necessary, this takes the form

τm,FB [k] = Kpũ[k] +KiTs

n∑
k=0

ũ[k] (4.37)

where k is the current time step and Ts is the sample time.

37

Chapter 4. GNC Implementation for Path Following

4.4.6 Combined Feedforward and Feedback

Combining (4.35) and (4.37) the total control effort which yields

τm = τm,FF + τm,FB (4.38)

τm = Mu̇d + σ(ud) +Kpũ(t) +Ki

∫ t

0

ũ(τ)dτ (4.39)

where τm ∈ [0, 100].

A block diagram of the surge speed controller including saturation elements is shown in
Figure 4.7. Simulations results for the surge speed controller are presented in Section
5.3.

38

4.4 Surge Speed Controller

R
eferen

ce

M
o
d
el

u
ref

s
a
t(x

)
F
eed

fo
rw

a
rd

u̇
d

u
d

ũ

K
p

∫
K

i

C
o
n
tr
o
l

A
llo

c
a
tio

n
R
eV

o
lt

D
eco

m
p
o
se

V
elo

cities
R

nb

⊤

uv

N
˙

E
˙

L
P
F
ilter τ

m
,F
F

τ
m

,F
B

τ
m

τ
m

τ
m

u
f

Uχψ
+

+

+

+

+

−

s
a
t(
x
)

sa
t(x

)

Figure 4.7: Speed Controller block diagram: Reference Filter, feed forward and PI-feedback

39

Chapter 4. GNC Implementation for Path Following

4.5 Heading Controller

The heading controller in this thesis is a new contribution to the control system. The pre-
vious heading controller consisted solely of PD controller with heading angle feedback
and low-pass filtering of the error. Due to noisy control output from the controller (see
Appendix D.1), a new one is desired. The new controller uses 1.order Nomoto model for
pole-placement of feedback and feedforward computation and receives feedback from both
heading angle and yaw rate. A 3.order reference model is implemented to compute desired
heading and higher order derivatives (desired yaw rate and yaw acceleration). The simula-
tions and experimental results are presented in Sections 5.2 and 6.3, respectively.

4.5.1 Nomoto Models

The heading controller is based on the 1.order Nomoto model, which is obtained from the
2.order model given by [9]:

r

δ
(s) =

K(1 + T3s)

(1 + T1s)(1 + T2s)
(4.40)

Setting
T := T1 + T2 − T3 (4.41)

yields the 1.order model
r

δ
(s) =

K

1 + Ts
(4.42)

The models (4.40) and (4.42) describes yaw rate r response due to change in rudder angle
(in this case thruster angle command δ) and has decoupled sway-yaw motion. They are
are derived from the Yaw subsystem [9]

Mν̇ +N(u0)ν = bδ (4.43)

which has coupled surge-sway motions and assumes constant surge speed u0 and ν =
[v ψ]>. In (4.40), (4.42) and (4.43), the heading angle is a pure integrator of yaw rate, i.e.
ψ̇ = r.

4.5.2 Choosing Nomoto Gain and Time Constant

To determine the gain and time constant K and T in (4.42), Matlab’s System identification
Toolbox is used. By inputting one of the yaw rate responses r in Figure 4.8, with the
corresponding thruster angle δ. Selecting a desired number of zeros and poles (e.g. 0 and
1 for first order model) yields a transfer function containing the parameters for the selected
yaw rate response.

The parameters for the first and second order models in Figures 4.9a and 4.9b are listed in
Table 4.4

40

4.5 Heading Controller

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

-1

0

1

2

3

4

5

Y
a
w

 R
a
te

 (
d
e
g
/s

)

Yaw Rate Response To Different

=-5

=-10

=-15

=-20

=-25

=-30

Figure 4.8: Yaw rate responses for different thruster angle commands δ. Thruster effort is set to
τm = 60 [%], corresponding to a constant forward speed of u0 = 1.07 [m/s]. Response is obtained
from DNV GL’s ReVolt Simulator with the Digital Twin. Premature stop in logging caused drop in
yaw rate at δ = −15o.

1. order δ = −5o 1. order δ = −15o

K = −0.136174 K = −0.137094
T = 2.117039 T = 2.445675

Table 4.4: First and second order Nomoto parameters for steps of δ = −5o and δ = −15o thruster
angle commands.

For control design, parameters for the 1.order transfer function with a step of δ = −5o is
chosen, such that (4.42) yields

r

δ
(s) =

−0.1361

1 + 2.1170s
(4.44)

4.5.3 Reference Model

The 3.order reference filter described in Section 2.4.2, is used to compute the desired states
ψd, rd and ṙd needed for turning. The reference model for the heading reference signal is
as follows

ψd
ψref

(s) =
ω3
n

(s+ ωn)(s2 + 2ζωns+ ω2
n)

(4.45)

41

Chapter 4. GNC Implementation for Path Following

0 5 10 15 20 25
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
From: u1 To: Out(1)

Revolt Simulator

First Order Model

Second Order Model

Step Response Comparison for =5 deg

Time (seconds)

Y
a
w

 R
a
te

 (
d
e
g
/s

)

(a) δ = −5o step input.

0 5 10 15 20 25
-0.5

0

0.5

1

1.5

2

2.5
From: u1 To: y1

Revolt Simulator

First Order Model

Second Order Model

Step Response Comparison for =15 deg

Time (seconds)

Y
a
w

 R
a
te

 (
d
e
g
/s

)

(b) δ = −15o step input.

Figure 4.9: Comparison between first and second order Nomoto model and ReVolt Simulator for
two different thruster angle commands. Note that the ReVolt simulator yaw rate drops out at e.g.
t ≈ 2 in Figure 4.9b, this is due to communication issues between the simulator and ReVolt control
system. The yaw rate in the simulator was observed to be smooth.

where ψref is the operator input (or ψlos for LOS guidance), ζ is the damping ratio and
ωn is the natural frequency. From (4.45) it can be seen that for a constant ψref

lim
t→∞

ψd(t) = ψref (4.46)

and that ψ̇d = rd and ψ̈d = ṙd = ad is smooth and bounded for steps in ψref [9]. A
saturating element is added to limit the desired yaw rate |rd| ≤ rmax [rad/s]. An additional
saturation is added to limit the desired yaw acceleration |ad| ≤ amax [rad/s2] as well. The
saturating element is defined as

sat(x) :=
{sgn(x)xmax if |x| ≥ xmax

x else (4.47)

The state space equation for the third order reference filter for from input ψref to ψd is as
stated in [9]

ψ̇d = sat(rd) (4.48)
ṙd = sat(ad) (4.49)

ȧd = −(2ζ + 1)ωnsat(ad)− (2ζ + 1)ω2
nsat(rd) + ω3

n(ψref − ψd) (4.50)

choosing ζ = 1 yields a critically damped system, leaving ωn as the tuning parameter. All
parameters for the reference model are listen in Table 4.5

Mapping from 〈−π, π〉 to 〈−∞,∞〉: The reference signals from the operator at the RMC
station and the LOS Guidance algorithm is discontinuous in the 〈−π, π〉 junction. This
causes unwanted behavior from the reference model and inherently the vessel. As the
reference signal passes the discontinuity from e.g. positive π, the reference will then be

42

4.5 Heading Controller

Reference Model Parameters
ωn 0.60
ζ 1.00

rmax 3
amax 0.5

Table 4.5: Parameters used in the reference model

> −π, causing the reference filter to ”reverse” back to towards −π through the origin.
The problem is solved by the use of a mapping-algorithm from [5].

Mapping from 〈−∞,∞〉 to 〈−π, π〉: For use in the heading controller the desired head-
ing angle output by the reference model needs to be mapped back to 〈−π, π〉. This is also
done using a mapping algorithm from [5].

4.5.4 Control Objective

Error states for heading and yaw rate is defined as

ψ̃ , ψd − ψ (4.51)

r̃ , rd − r (4.52)

where ψd is the desired heading and rd is the desired yaw rate. These are time-varying and
supplied by the reference model. ψ and r are the heading angle and yaw rate measured by
the IMU. The controller needs to ensure that

lim
t→∞

ψ̃ = 0 (4.53)

lim
t→∞

r̃ = 0 (4.54)

and work in the presence of wind and current. A wave filter is omitted from this thesis as
wave forces are generally weak in the test area. The control law is formulated as

τδ = τδ,FF + τδ,FB (4.55)

consisting of a feedforward (FF) term, to ensure better tracking during course-changing
maneuvers. The feedback (FB) term corrects errors caused by model uncertainties and
environmental disturbances.

4.5.5 Feedforward Term

To obtain better tracking performance during course-changing maneuvers, a feedforward
term is proposed by [9]. The term is obtained from the basis of (4.42), which in the time
domain is written as

τδ,FF =
T

K

(
ṙd +

1

T
rd

)
(4.56)

43

Chapter 4. GNC Implementation for Path Following

where rd is the desired yaw rate from the reference model.

Considering the 1. order Nomoto model with an unknown bias b

T ṙ + r = Kδ + b (4.57)

where ḃ ≈ 0 and τδ,FF = δ. Inserting for δ yields

T ṙ + r = K
T

K

(
ṙd +

1

T
rd

)
+ b (4.58)

and it follows that
− b = T ˙̃r + r̃ (4.59)

At steady state ˙̃r = 0→ r = −b, i.e. a steady state error is present if b 6= 0.

4.5.6 Feedback Term

To counteract the unknown bias b a PID feedback is implemented as

τδ,FB = −
(
Kpψ̃(t) +Ki

∫ t

0

ψ̃(τ)dτ +Kdr̃(t)

)
(4.60)

the values for Kp, Ki and Kd is chosen from the following algorithm with ωn and ζ is
chosen as in Table 4.5 where

Algorithm 1 Pole-placement algorithm
1: Specify the bandwidth ωb > 0 and relative damping ratio ζ > 0
2: Compute the natural frequency ωn = ωb√

1−2ζ2+
√

4ζ4−4ζ2+2

3: Compute the P gain: Kp = mω2
n

4: Compute the D gain: Kd = 2ζωnm− d
5: Compute the I gain: Ki = ω

10Kp

Table 4.6: Algorithm for pole-placement [9].

m =
T

K
, d =

1

K
(4.61)

In [9] its stated that the bandwidth ωb should be around 0.01 rad/s for larger vessels and 0.1
rad/s for smaller vessels. As ReVolt is probably even smaller, further increase in bandwidth
could be desirable. Using ωn = 0.6 sets the bandwidth at about ωb ≈ 0.64× ωn = 0.384
rad/s. The resulting controller gains are listed in Table 4.7

4.5.7 Combined Feedforward and Feedback

Using a combined feedforward feedback controller results in the control law:

τδ =
T

K

(
ṙd +

1

T
rd

)
−
(
Kpψ̃(t) +Ki

∫ t

0

ψ̃(τ)dτ +Kdr̃(t)

)
(4.62)

44

4.5 Heading Controller

Controller Gains
Kp -6.422
Ki -0.385
Kd -14.113

Table 4.7: Controller gains for feedback control

illustrated in a block diagram in Figure 4.10 (next page). In ReVolt the control law is
”flipped” before its applied to the actuators, i.e. δ = −τδ . A block diagram of the heading
controller is shown in Figure 4.10. Simulation and experimental results for the heading
controller are presented in Sections 5.2 and 6.3, respectively.

45

Chapter 4. GNC Implementation for Path Following

R
eferen

ce

M
o
d
el

ψ
ref

ψ
d

R
eV

o
lt

r
d

r
˙

d

ψr

F
eed

fo
rw

a
rd

τ
δ
,F

F

K
p

K
d

∫
K

i

ψ
̃

r
̃

−

−

τ
δ
,F

B

C
o
n
tro

l

A
llo

ca
tio

n

+

+

+

+

τ
δ

δ

s
a
t(
x
)

s
a
t(
x
)

s
a
t(
x
)

s
a
t(
x
)

δ

−

Figure 4.10: Block diagram of the heading controller as implemented on ReVolt.

46

4.6 Implementation in ROS Environment

4.6 Implementation in ROS Environment

Figure 4.11 shows the relationship between the GuidanceLawNode and the main node,
ControllerNode in a custom made ROS graph with most nodes omitted. The latter
handles the central logic of the control system, i.e. which mode to select (DP, path fol-
lowing, emergency stop etc.). It subscribes to topics containing necessary sensor data to
perform each of the tasks expected from the active mode and publishes the required state
and/or setpoints to their respective controllers.

The GuidanceLawNode is written in C++ and contains the algorithm for lookahead-
based steering. It subscribes to the topic guidance law input, published by the main
node at a controlled rate of 10 Hz. The topic has a message containing the state-variables
for heading ψ, north position N , east position E, speed over ground U and course over
ground χ. Every time this message is received, a callback function executes the algorithm
with results depending on the contents of the message (vessel state) and also based on
the topic containing the list of waypoints list of waypoints. The list of waypoints
is received from the navigation map in the RMC station through a TCP connection. The
GuidanceLawNode then publishes reference values for the heading and speed controller
through heading controller input and speed controller input.

SpeedControllerNode and HeadingControllerNode responds to these topics
by performing the corresponding callback functions containing reference models, feedfor-
ward and feedback control algorithm for both controllers. Matrix and vector arithmetics
is performed using Eigen library. For an excerpt from the source code to the controllers
and guidance law see Appendix A.

47

Chapter 4. GNC Implementation for Path Following

/ObserverNode

/GuidanceLawNode/sog_cog

/speed_controller_input

/ControllerNode /guidance_law_input

/heading_controller_input

/SpeedControllerNode

/HeadingControllerNode

/speed_controller_output

/heading_controller_output

Controlled Rate: 10 Hz

Rate: Inherited

Rate: Inherited

/thrustAllocNode

Rate: Inherited

Rate: Inherited

/vectorVS330

Rate: 10 Hz

/vectorVS330/velocity

MAIN NODE

/pod_angle_input

/stern_thruster_setpoints

�ref, �

uref, u

�,N,E,U,�

/TCPDatatranceiver

/external_command

/list_of_waypoints

-δ, -δ

δ

ntot

ntot, ntot

U, χ

Figure 4.11: Guidance, Navigation and Control in ROS environment for Path Following as im-
plemented onboard ReVolt. Colored nodes (ellipses) and topics (rectangles) are new to the control
system. /TCPDataTransceiver was added during the specialization project Fall 2017. However, new
functionality to support Guidance Management in the RMC station is added in this thesis.

48

Chapter 5
Simulation Results

5.1 Simulation Platform

Figure 5.1: Screenshot of DNV GL’s ReVolt Vessel Simulator.

All simulation results is obtained through the use the actual ReVolt control system in
connection with DNV GL’s ReVolt Vessel Simulator (see Figure 5.1). This is a program
for Windows that contains a model of the ReVolt and have been updated with the data
from the Towing tank results performed with ReVolt at SINTEF Ocean during the summer
of 2017 which the author helped produce. The simulator contains simulated modules for
the HULL, IMU, GPS, thruster configuration and much more which allows testing of the
ReVolt control system without needing the actual HULL, IMU, GPS or thrusters. A preset
of environmental disturbances can also be added. Since the simulator communicates with

49

Chapter 5. Simulation Results

ReVolt Vessel
Simulator

From Simulator to
ReVolt Control System:

GNSS:

Θen

ψ

U

χ

IMU:

Θnb

ω
b
b/n

Disturbances:

τwind

τwaves

ReVolt Control
System

Windows OS Ubuntu 16.04

ROS Kinetic

Modbus Protocol

From ReVolt Control System
to Simulator:

Thruster effort command:

Thruster angle command:

,τm τm

δ, δ

RMC Station

TCP/
UDP

Ubuntu 16.04

From RMC Station to ReVolt
Control System:

List of waypoints

ψrefHeading
Autopilot Mode:

,τm τm

WP-
tracking: Uref

Figure 5.2: Illustration of setup for performing the simulations. Simulator and ReVolt can trans-
mit/receive more data than shown in the figure.

the actual control system, all simulations must run in real-time. Communication is done
through the Modbus protocol as the control system runs on another computer using Ubuntu
16.04. Data is logged using rosbag tool in ROS, described briefly in Section 3.1.9. An
illustration of the setup for obtaining simulation results is shown in Figure 5.2.

An important thing to note with the simulator is that the during its development it was
observed that the vessel model, Digital Twin, was observed to be unstable in yaw for
δ = 0o at any speeds. Similar tests with the physical vessel had not been performed
so it was assumed that the instability was due to the Digital Twin’s small dimensions (the
models are actually meant for larger vessels). A virtual rudder was added to make it stable.
Later, it was discovered that the physical model was unstable as well. However, the virtual
rudder made system identification in this thesis possible.

50

5.2 Heading Controller Performance

5.2 Heading Controller Performance

The tracking performance of the heading controller developed in Section 4.5 is presented
here. Three different simulations is performed

1. Feedforward control only (no disturbances)

2. Feedback control only (no disturbances)

3. Combined Feedforward and Feedback control with varying winds up to 2 m/s

For all heading controller simulations, the steps are 10o, 45o and 90o, returning to 0o

between each step. Resulting in a total of six steps. The section contains plots of the
tracking performances for the heading and the corresponding deviation from the desired
state. Furthermore, tracking performances for the desired yaw rate is also present, with
a corresponding deviation from the desired state. Lastly, there exists plots of the control
inputs that resulted in the tracking performances in question.

5.2.1 Feedforward Control Only

0

20

40

60

80

100

H
e

a
d

in
g

a
n

g
le

 (
d

e
g

)

Heading Controller Tracking Performance Using
FF

 Only

d

ref

0 50 100 150 200 250 300 350 400 450 500 550

Time (seconds)

-5

0

5

H
e

a
d

in
g

e
rr

o
r

(d
e

g
) ~

Figure 5.3: Heading controller tracking performance using only model-based feedforward as control
input.

51

Chapter 5. Simulation Results

In Figure 5.3 a slight steady state error can be observed at the steps of 45o and 90o which
can be explained by the control input plot in Figure 5.5. Observe that the Heading Er-
ror shows spikes at step changes. This is because of communication issues between the
simulator and control system, as it was observed to be continuous in the simulator during
testing. Feedforward parameters are listed in Table 5.1.

Feedforward Parameters
K -0.1361
T 2.1170
ωn 0.35
ζ 1

Table 5.1: Feedforward parameters used in simulation.

-4

-2

0

2

4

Y
a
w

 r
a
te

(d
e
g
/s

)

Yaw Rate Tracking Performance Using
FF

 Only

r

r
d

0 50 100 150 200 250 300 350 400 450 500 550

Time (seconds)

-0.5

0

0.5

Y
a
w

 r
a
te

e
rr

o
r

(d
e
g
/s

)

~r

Figure 5.4: Yaw rate tracking performance using only model-based feedforward as control input.

In Figure 5.4 the corresponding yaw rate tracking performance is shown. At t ≈ 325 the
reference filter saturates at 3 o/s and a slight overshoot appears. In the implementation,
the yaw acceleration is set to 0 (instant steady-state) when yaw rate reaches its limit and
the vessel’s yaw acceleration is not able to follow.

52

5.2 Heading Controller Performance

0 50 100 150 200 250 300 350 400 450 500 550

Time (seconds)

-40

-30

-20

-10

0

10

20

30

40

T
h
ru

s
te

r
a
n
g
le

c
o
m

m
a
n
d
 (

d
e
g
)

Control Input Terms

 =
FF

 +
FB

FF

FB

Figure 5.5: Thruster angle commands generated by the feedforward term.

Figure 5.5 shows the control input using only the feedforward term with desired states
generated by the reference filter. The model is most accurate for steps in thruster angle
close to δ = ±5o. The input can be observed to be larger causing the small offset in
Figure 5.3. At t ≈ 325 and 425 (top of the ”spikes”) the desired yaw rate saturates, setting
ṙd = 0 causing the decrease and flattening control input.

53

Chapter 5. Simulation Results

5.2.2 PD Feedback Control Only

The controller gains are generated as described in Section 4.5.6. Initially however, the
reference model and feedback gains where chosen with a bandwidth ωb such that ωn =
0.35 rad/s which resulted in the following gains used in the heading controller simulations.
Note that the integral gain Ki is set to zero due to no environmental disturbances.

Feedback Gains
Kp −2.1853
Ki 0
Kd −5.1932

Table 5.2: Controller gains used in simulations with feedback control only.

0

20

40

60

80

100

H
e
a
d
in

g

a
n
g
le

 (
d
e
g
)

Heading Controller Tracking Performance Using
FB

 Only

d

ref

0 50 100 150 200 250 300 350 400 450 500 550

Time (seconds)

-20

0

20

H
e
a
d
in

g

e
rr

o
r

(d
e
g
) ~

Figure 5.6: Heading controller tracking performance using only PD feedback as control input.

In Figure 5.6 the tracking performance using only feedback is shown. As can be expected
from a PD, the response lags a few seconds behind. This is because during course chang-
ing, the PD will only act if there is a deviation from the desired states. It does however,
converge nicely for all steps.

54

5.2 Heading Controller Performance

-4

-2

0

2

4

Y
a

w
 r

a
te

(d
e

g
/s

)
Yaw Rate Tracking Performance Using

FB
 Only

r

r
d

0 50 100 150 200 250 300 350 400 450 500 550

Time (seconds)

-5

0

5

Y
a

w
 r

a
te

e
rr

o
r

(d
e

g
/s

)

~r

Figure 5.7: Yaw rate tracking performance using only PD feedback as control input.

In Figure 5.7, the yaw rate also lags behind when only using feedback for control before
converging.

55

Chapter 5. Simulation Results

0 50 100 150 200 250 300 350 400 450 500 550

Time (seconds)

-30

-20

-10

0

10

20

30

T
h
ru

s
te

r
a
n
g
le

c
o
m

m
a
n
d
 (

d
e
g
)

Control Input Terms

 =
FF

 +
FB

FF

FB

Figure 5.8: Thruster angle commands generated by the feedback term.

The control input is generated by yaw and yaw rate errors, which suffers from signal
”dropout” for a few milliseconds (see error plots of Figures 5.6 and 5.7). As a result, the
control input also suffers accordingly as seen clearly at response maxima and minima in
Figure 5.8.

56

5.2 Heading Controller Performance

5.2.3 Combined Feedforward and PID Feedback s.t. Wind

Combined FF+FB simulation parameters
Kp −2.185
Ki −0.076
Kd −5.193
ωn 0.350
ζ 1.000
K -0.136
T 2.117

Table 5.3: Controller gains used in feedback simulations

For the combined Feedforward (FF) + Feedback (FB) simulations, a time-varying wind
disturbance ≈ 2 m/s is added with direction −90o in {n}. Figure 5.9 shows the tracking
performance for six steps. Notice the longer simulation time as the response needs longer
time to stabilize, and the nonzero integral gain. In the steady-state region of ψ = 90o, the
wind directions is parallel to the vessel and bow-facing.

0

20

40

60

80

100

H
e
a
d
in

g

a
n
g
le

 (
d
e
g
)

Heading Controller Tracking Performance Using
FF

 +
FB

d

ref

0 100 200 300 400 500 600 700 800 900

Time (seconds)

-5

0

5

H
e
a
d
in

g

e
rr

o
r

(d
e
g
) ~

Figure 5.9: Heading controller tracking performance using model-based feedforward and PID feed-
back as control input.

57

Chapter 5. Simulation Results

-4

-2

0

2

4

Y
a

w
 r

a
te

(d
e

g
/s

)
Yaw Rate Tracking Performance Using

FF
 +

FB

r

r
d

0 100 200 300 400 500 600 700 800 900

Time (seconds)

-1

0

1

Y
a

w
 r

a
te

e
rr

o
r

(d
e

g
/s

)

~r

Figure 5.10: Yaw rate tracking performance using model-based feedforward and PID feedback as
control input.

In Figure 5.10, a combined feedforward and feedback improves tracking during course-
changing maneuvers (compared to Figure 5.7) as well as rejecting the errors caused the
wind.

58

5.3 Speed Controller Performance

0 100 200 300 400 500 600 700 800 900

Time (seconds)

-50

-40

-30

-20

-10

0

10

20

30

40

50

T
h
ru

s
te

r
a
n
g
le

c
o
m

m
a
n
d
 (

d
e
g
)

Control Input Terms

 =
FF

 +
FB

FF

FB

Figure 5.11: Thruster angle commands generated by the sum of model-based feedforward and PID
feedback term.

In Figure 5.11, the combined FF and FB effort is shown. The FB term is constantly
working to reject the disturbance caused by the wind, except at the steady-state region
from t ≈ 700 to t ≈ 800 as the wind is directly facing the vessel.

5.3 Speed Controller Performance

The Speed Controller’s tracking performance, developed in Section 4.4, is presented here.
A total of three steps is performed, starting at 0 to 0.3 m/s, 0 to 0.5 m/s and lastly, 0 to 1.0
m/s. Each of these steps is performed using:

1. Feedforward control only (no disturbances)

2. Combined Feedforward and Proportional-Feedback Control (no disturbances)

3. Combined Feedforward and PI-Feedback Control (subject to ocean current)

59

Chapter 5. Simulation Results

For each simulation, a plot of the tracking performance and the corresponding deviation
from the desired state is presented. Furthermore, a plot of the control input that resulted in
the tracking performance in question. Note that the Digital Twin’s state is reset after u→
uref for a period of time such that next step change and simulation is displayed instantly
in the figures (see e.g. Figure 5.13) and that the vessel’s heading is zero ∀ t.

5.3.1 Feedforward Control Only

In this simulation, no environmental disturbance is present.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
u
rg

e
 s

p
e
e
d

(m
/s

)

Surge Speed Controller Tracking Performance Using
m,FF

 Only

u (GNSS Simulator)

u
d
 (Reference Filter)

u
f
 (Low-Pass Filter)

u
ref

 (Input Reference)

0 50 100 150 200 250 300 350 400

Time (seconds)

-0.1

-0.05

0

0.05

S
u
rg

e
 s

p
e
e
d

e
rr

o
r

(m
/s

)

u
d
 - u

~u = u
d
 - u

f

Figure 5.12: Surge speed tracking performance using only model-based feedforward as control
input. No disturbances present.

Figure 5.12 shows the tracking performance for the surge speed controller using τm,FF
only, along with the surge speed error for the speed measurement and low-pass filtered
measurement. Notice a deviation at the first step and also a slight overshoot in the last.
This is caused by modeling errors in the damping term σ(ud) and inertia Mud. Sudden
drop in surge speed is the result of resetting the simulator between the steps, also causing
the spikes in Surge speed error (they do not enter the control loop in practice). See Section
4.4.4 for development feedforward term.

60

5.3 Speed Controller Performance

0 50 100 150 200 250 300 350 400

Time (seconds)

-10

0

10

20

30

40

50

60

T
h
ru

s
te

r
e
ff
o
rt

c
o
m

m
a
n
d
 (

%
)

Control Input Terms

m
 =

m,FF
 +

m,FB

m,FF

m,FB

Figure 5.13: Thruster effort commands generated by the model-based feedforward term only. No
disturbances present.

Figure 5.13 shows the control input for the surge speed steps of 0.3, 0.5 and 1 m/s (return-
ing to zero after each step convergence) generated by the feedforward term only.

61

Chapter 5. Simulation Results

5.3.2 Feedforward and Proportional Feedback Control

Parameters for controller is listed in Table 5.4. In this simulation, no environmental dis-
turbance is present.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
u

rg
e

 s
p

e
e

d

(m
/s

)

Surge Speed Controller Tracking Performance Using
m,FF

 +
m,FB

u (GNSS Simulator)

u
d
 (Reference Filter)

u
f
 (Low-Pass Filter)

u
ref

 (Input Reference)

0 50 100 150 200 250 300 350

Time (seconds)

-0.05

0

0.05

S
u

rg
e

 s
p

e
e

d

e
rr

o
r

(m
/s

)

u
d
 - u

~u = u
d
 - u

f

Figure 5.14: Surge speed tracking performance using model-based feedforward and proportional
feedback as control input. No disturbances present.

Combining feedforward and proportional feedback eliminates the steady-state error and
overshoot.

Parameter Value
Kp 50
Ki 0
M 800

σ(ud) see (4.34)

Table 5.4: Parameters used in controller

62

5.3 Speed Controller Performance

0 50 100 150 200 250 300 350

Time (seconds)

-10

0

10

20

30

40

50

60

T
h
ru

s
te

r
e
ff
o
rt

c
o
m

m
a
n
d
 (

%
)

Control Input Terms

m
 =

m,FF
 +

m,FB

m,FF

m,FB

Figure 5.15: Thruster effort commands generated by the model-based feedforward and proportional
feedback. No disturbances present.

The proportional feedback accounts for just a small portion of control effort applied when
not subject to disturbances.

63

Chapter 5. Simulation Results

5.3.3 Feedforward and PI Feedback s.t. Ocean Current

Disturbance Parameters:

• Current Speed: 0.3 m/s

• Current Direction: 180o in {n}

The current is directed towards the vessel such that no sideslip occurs.

Controller Parameters:

Parameter Value
Kp 100
Ki 7.5
M 800

σ(ud) see (4.34)

Table 5.5: Controller gains used in this simulation for feedforward and feedback control.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
u

rg
e

 s
p

e
e

d

(m
/s

)

Surge Speed Controller Tracking Performance Using
m,FF

 +
m,FB

u (GNSS Simulator)

u
d
 (Reference Filter)

u
f
 (Low-Pass Filter)

u
ref

 (Input Reference)

0 100 200 300 400 500 600

Time (seconds)

-0.05

0

0.05

S
u

rg
e

 s
p

e
e

d

e
rr

o
r

(m
/s

)

u
d
 - u

~u = u
d
 - u

f

Figure 5.16: Surge speed tracking performance using model-based feedforward and proportional-
integral feedback as control input.

64

5.3 Speed Controller Performance

In Figure 5.16, a small offset appears in the transient response for each step. There is
a slight delay due to the low-pass filtering of the velocity measurement and the initial
conditions of the surge speed is nonzero unlike the filter.

0 100 200 300 400 500 600

Time (seconds)

-10

0

10

20

30

40

50

60

70

80

90

T
h
ru

s
te

r
e
ff
o
rt

c
o
m

m
a
n
d
 (

%
)

Control Input Terms

m
 =

m,FF
 +

m,FB

m,FF

m,FB

Figure 5.17: Thruster effort commands generated by the model-based feedforward and proportional-
integral feedback.

In Figure 5.17, the combined feedforward feedback control input applied to the vessel
is shown. The constant ocean current is directed at the bow of the vessel increasing the
control effort needed to counteract the disturbance.

65

Chapter 5. Simulation Results

5.4 Performance of Guidance System for Path Following

The simulation results for the LOS Guidance system developed in Section 2.5, with the
speed and heading controller developed in Section 4.4 and 4.5 is presented here. Two LOS
Guidance simulations is presented:

1. Subject to wind and ocean current

2. Subject to both stronger wind and ocean current

For both simulations, the wind is time-varying and ocean current is constant in {n}.

LOS Guidance Parameters [m]
∆ 12

Rk+1 12

Table 5.6: LOS Guidance parameters.

Table 5.6 lists the parameters used in the LOS Guidance algorithm for these simulations.
Remember that ∆ is the lookahead distance from (2.28) which decides the aggressiveness
of the steering law. A small ∆ yields a faster convergence. Rk+1 is the circle of acceptance
radius used to decide when to switch waypoints. It is however, not necessary for the vessel
to be inside the circle to switch waypoints, which is done using the along-track distance
from (4.6).

The heading controller parameters for the following simulations, obtained from Section
4.5 are restated in Table 5.7.

Heading Controller Parameters
Kp -6.422
Ki -0.385
Kd -14.113
ωn 0.600
ζ 1.000
K -0.136
T 2.117

Table 5.7: Heading controller parameters for LOS Guidance.

The Speed controller’s parameters remains the same.

66

5.4 Performance of Guidance System for Path Following

5.4.1 Subject to Wind and Ocean Current

Environmental disturbance data:

• Wind Speed: Varying around ∼ 2 m/s

• Wind Direction: 180o in {n}

• Current Speed: 0.2 m/s

• Current Direction: −45o in {n}

-60 -40 -20 0 20 40 60 80 100

East Position (m)

-40

-20

0

20

40

60

80

100

120

N
o

rt
h

 P
o

s
it
io

n
 (

m
)

LOS Guidance Tracking Performance in NE-plane (wind and current)

Initial Position

Start

Finish

Position

Waypoint

Path

0 50 100 150 200 250 300 350 400

Time (seconds)

-20

0

20

C
ro

s
s
-t

ra
c
k

e
rr

o
r

(m
)

Figure 5.18: Line-of-sight Guidance simulation with 7 waypoints and cross-track error subject to
environmental disturbances.

67

Chapter 5. Simulation Results

-200

-100

0

100

200

H
e

a
d

in
g

 a
n

g
le

(d
e

g
)

Heading Angle Tracking Performance (wind and ocean current)

d

los
 =

d
 -

-20

0

20

S
id

e
s
lip

(d
e

g
)

0 50 100 150 200 250 300 350 400

Time (seconds)

-50

0

50

T
h

ru
s
te

r
a

n
g

le

 c
o

m
m

a
n

d
 (

d
e

g
)

Figure 5.19: Heading controller tracking performance with LOS heading ψlos desired heading ψd
generated by the reference model and current heading ψ. Sideslip angle β and total thruster angle
command δ = −τδ .

Figure 5.18 shows the a LOS simulation by positions in the NE-plane with disturbances. It
also shows the cross-track error e(t) converging to zero after waypoint switching. Cross-
track error after t ≈ 370 can be neglected as waypoint iteration is already complete.

In Figure 5.19, the LOS angle ψlos is passed through the reference filter to obtain ψd and
its higher order derivatives. Notice that the desired heading ψd generated by the filter is
discontinuous at 〈−π, π〉, yet the filter’s desired heading chooses the shortest path. This is
due to the wrapping schemes described in Section 4.5.3. The heading angle ψ tracks the
desired heading ψd and converges to ψlos. Also, notice a sudden step in β at t ≈ 20 due to
the sideslip compensation being disabled for speed over ground U < 0.2 as u 6� v in the
initial phase. The Thruster angle command initial angle is saturated due to the difference
in initial state of the vessel versus the reference model. Furthermore, it suffers from the
same noise as in the Heading controller simulations of Section 5.2. However, far less noisy
compared to when using the previous heading controller for LOS Guidance (see Appendix
D.1).

68

5.4 Performance of Guidance System for Path Following

-10

-8

-6

-4

-2

0

2

4

Y
a
w

 r
a
te

(d
e
g
/s

)
Yaw Rate Tracking Performance (wind and ocean current)

r

r
d

0 50 100 150 200 250 300 350 400

Time (seconds)

-10

0

10

Y
a
w

 r
a
te

e
rr

o
r

(d
e
g
/s

)

~r

Figure 5.20: Yaw rate tracking performance with desired yaw rate rd generated by the reference
model and current yaw rate r. Along with the corresponding yaw rate error r̃ = rd − r.

The desired yaw rate rd in Figure 5.20 is obtained from the reference filter. From t > 25
the yaw rate tracks the desired yaw rate in a satisfactory manner. Initially, the yaw rate is
far off its trajectory due to the difference in initial states between the vessel and reference
model (see Figure 5.19).

69

Chapter 5. Simulation Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
S

p
e
e
d
 (

m
/s

)
Surge Speed Tracking Performance (wind and ocean current)

u (GNSS)

u
d
 (Reference Filter)

u
f
 (Low-Pass Filter)

u
ref

 (Input Reference)

0 50 100 150 200 250 300 350 400

Time (seconds)

0

50

100

T
h
ru

s
te

r
e
ff
o
rt

c
o
m

m
a
n
d
 (

%
)

m

Figure 5.21: Surge speed tracking performance subject to wind and current.

Figure 5.21 shows the surge speed tracking performance during a LOS simulation with
reference speed 1 m/s. The transient has some deviation, contributed by the filter ini-
tial conditions not being identical to the vessel’s. Also, sideslip compensation kicks in at
U ≥ 0.2 m/s and that u/uf decreases during turning. Due to occurring waypoint switches,
the response don’t always have time to reach steady state. The distance between waypoints
could have been increased, but waypoints were placed inside Dora Test Pool (see e.g. Fig-
ure 3.5). Alternatively, a smaller Uref gives the response more time to converge.

0 50 100 150 200 250 300 350 400

Time (seconds)

-0.3

-0.2

-0.1

0

0.1

S
p

e
e

d
 (

m
/s

)

Sway Speed Response (wind and ocean current)

Figure 5.22: Sway speed response for the LOS simulation subject to wind and current.

In Figure 5.22, the sway speed v response is shown. This response would contribute to the
velocity transformation Uref → uref from (4.9) not implemented here.

70

5.4 Performance of Guidance System for Path Following

5.4.2 Subject to Both Stronger Wind and Ocean Current

Environmental disturbance data:

• Wind Speed: Varying around ∼ 4 m/s

• Wind Direction: 180o in {n}

• Current Speed: 0.4 m/s

• Current Direction: −45o in {n}

-20 0 20 40 60 80 100

East Position (m)

-120

-100

-80

-60

-40

-20

0

20

40

60

80

N
o

rt
h

 P
o

s
it
io

n
 (

m
)

LOS Guidance Tracking Performance in NE-plane (wind and current)

 Initial Position

Start

Finish

Position

Waypoint

Path

0 50 100 150 200 250 300 350 400 450

Time (seconds)

-50

0

50

100

C
ro

s
s
-t

ra
c
k

e
rr

o
r

(m
)

Figure 5.23: Line-of-sight Guidance simulation with 7 waypoints and cross-track error e.

71

Chapter 5. Simulation Results

-200

-100

0

100

200

H
e

a
d

in
g

 a
n

g
le

(d
e

g
)

Heading Angle Tracking Performance (wind and ocean current)

d

los
 =

d
 -

-100

0

100

S
id

e
s
lip

(d
e

g
)

0 50 100 150 200 250 300 350 400 450

Time (seconds)

-50

0

50

T
h

ru
s
te

r
a

n
g

le

 c
o

m
m

a
n

d
 (

d
e

g
)

Figure 5.24: Heading controller tracking performance with LOS heading ψlos desired heading ψd
generated by the reference model and current heading ψ. Sideslip angle β and total thruster angle
command δ is also shown. Here subject to stronger disturbances.

In Figure 5.23 the LOS tracking performance subject to stronger disturbances is shown.
Despite the extra disturbance the vessel still tracks the desired path, the lookahead distance
∆ could however be smaller giving a faster convergence to the path in the initial phase and
through waypoint 3. One could argue that the angle between waypoint 2 and 4 is to steep
or that cruising speed is to high. A speed profile for each waypoint based on steepness and
length could resolve this issue.

In Figure 5.24, the vessel’s heading angle ψ still tracks the desired heading ψd sufficiently
with the reference ψlos and added sideslip β compensation. Notice also the low noise in
Thruster angle command, compared to that in Appendix D.1.

72

5.4 Performance of Guidance System for Path Following

-4

-2

0

2

4

6
Y

a
w

 r
a
te

(d
e
g
/s

)

Yaw Rate Tracking Performance (wind and ocean current)

r

r
d

0 50 100 150 200 250 300 350 400 450

Time (seconds)

-10

0

10

Y
a
w

 r
a
te

e
rr

o
r

(d
e
g
/s

)

~r

Figure 5.25: Yaw rate tracking performance with desired yaw rate rd generated by the reference
model and current yaw rate r. Along with the corresponding yaw rate error r̃ = rd−r. Here subject
to stronger disturbances.

Figure 5.25 shows yaw rate tracking and yaw rate error when subject to stronger distur-
bances.

73

Chapter 5. Simulation Results

-0.5

0

0.5

1

1.5
S

p
e
e
d
 (

m
/s

)
Surge Speed Tracking Performance (wind and ocean current)

u (GNSS)

u
d
 (Reference Filter)

u
f
 (Low-Pass Filter)

u
ref

 (Input Reference)

0 50 100 150 200 250 300 350 400 450

Time (seconds)

0

50

100

T
h
ru

s
te

r
e
ff
o
rt

c
o
m

m
a
n
d
 (

%
)

m

Figure 5.26: Speed controller tracking performance with input reference uref , desired surge speed
ud generated by the velocity reference model, low-pass filtered velocity measurement uf and surge
speed u decomposed from speed over ground U . Here subject to stronger disturbances.

0 50 100 150 200 250 300 350 400 450

Time (seconds)

-0.4

-0.2

0

0.2

0.4

S
p

e
e

d
 (

m
/s

)

Sway Speed Response (wind and ocean current)

Figure 5.27: The indirectly controlled surge speed response v. Here subject to stronger disturbances.

In Figure 5.26, the surge speed convergence is interrupted by the changes in heading due
to waypoint switching. Also, the velocity reference transformation (4.9) in Section 4.2 is
not implemented here, causing the reference surge speed uref to be constant, i.e. trying
to maintain a surge speed of 1 m/s while having a non-zero sway speed (see Figure 5.27),
causing U > uref .

74

5.5 Discussion

5.5 Discussion

The controllers for heading and speed are developed to be used by the Guidance System
for path following and their performance directly affect the results of that. By performing
different step responses for speed and heading, the dynamics during course-keeping and
course-changing maneuvers are presented. The heading controller showed that using FF
only, a satisfactory tracking could be obtained. Adding disturbance in the form of wind was
corrected by a PID feedback controller and resulted in good tracking despite not having
wind FF.

The surge speed controller also tracked the desired trajectory, but due to some modeling
errors, some deviations were observed. This was corrected using a proportional feedback,
which resulted in satisfactory performance. The integral feedback was added to counteract
the ocean currents.

Combining these two controllers, the Guidance System tracking performance proved to
work well, with some reduction in speed controller performance. Given more time, the
speed controller would converge as well. However, during course-changing maneuvers,
the surge speed drops and sway speed increases. A transformation Uref → uref would
lower the surge speed reference during turning, such that U = Uref and reducing extra
demand for control effort (see (4.9) in Section 4.2).

75

Chapter 6
Experimental Results

All experimental tests were performed at Dora I in Trondheim, from which the image
in Figure 6.1 is taken. A map of the test area is shown in Figure 6.3. The location is
sheltered from waves, and the ocean current is fairly weak further inside the test area.
A brief presentation of the experimental platform ReVolt is presented first, followed by
the information about the test area and routines. The experimental results obtained, are
discussed in Section 6.5. In this chapter the following test are presented

1. Heading Controller Experimental Performance

2. Performance of Guidance System for path following with combined heading and
speed controller

77

Chapter 6. Experimental Results

6.1 Experimental Platform

Figure 6.1: ReVolt at Dora Test Pool in Trondheim.

A brief description of the experimental platform ReVolt is presented here. For a thorough
explanation of ReVolt’s sensors, actuators and embedded computerized control platform
refer to [1].

6.1.1 Background

ReVolt is a 1:20 scale-model of the concept ship ReVolt. The concept ship was designed by
the international certification body and classification society, DNV GL in 2014. It is also
unmanned, fully electric and designed for speed around 6 knots (concept ship). ReVolt
(scale) is built by Stadt Towing Tank (STT).

ReVolt (scale) specifications is listed in Table 6.1

Length 3m Draft 0.23m
Width 0.72m Battery voltage 12V
Weight 257kg Max engine power 360W
Top speed 2 knots Battery capacity 900Wh

Table 6.1: ReVolt (scale) Specifications from [1].

78

6.1 Experimental Platform

Figure 6.2: Main components and their placements on ReVolt. Figure from Stadt Towing Tank and
[1].

6.1.2 Main Components

Figure 6.2 shows and lists the main components of ReVolt. Providing position and head-
ing, a Hemisphere Vector VS330 GNSS. This two antennas to determine position and
heading as well as additional correction data such as Satellite Based Augmentation Sys-
tem (SBAS) and Real Time Kinematic (RTK). GNSS measurements for the experimental
tests used SBAS as RTK was not available at the time.

The Xsens MTI-G-710 IMU also provides position in addition to roll, pitch and yaw
motion. Note that the yaw and yaw rate used in the heading controller is provided by the
IMU and not the GNSS as this was the default configuration in the control system.

Two stern azimuth thrusters made up of two AC motors for thrust and stepper motors for
direction. The retractable and smaller bow thruster uses a DC motor for thrust. The OBC
that runs the control system is a Tank-720-PC with Ubuntu 16.04. A radio controller
(RC) receiver is connected to enable RC remote control. ReVolt uses two 12V batteries
for power.

79

Chapter 6. Experimental Results

6.2 Test Area

Unloading Area

Transport Stage

Test

Area

Figure 6.3: Map of the test area, from Google, with unloading area and transport stage marked.

At test-day, ReVolt is unloaded from transportation at the Unloading Area next to the
launch-ramp. Pre-launch checks of hull, sensors and actuators are performed w.r.t the
ReVolt’s User Manual for testing. After launch, ReVolt is transported to Dora 1 using
Gunnerus Workboat, from now on referred to Workboat, shown in Figure 6.4. A challenge
during transportation is the sea state rounding the pier. For rough sea states, a drogue is
connected to ReVolt for stability, and it is towed 3-5 m behind Workboat (see Appendix
C). For calms sea states ReVolt could simply be moored along side Workboat.

Figure 6.4: Follow boat Gunnerus Workboat. Courtesy of Tom Arne Pedersen.

80

6.3 Heading Controller Experimental Performance

6.3 Heading Controller Experimental Performance

The tracking performance for experimental tests of the heading controller is presented
here. The plots visualizes the data in the same way as with the heading controller simula-
tions in Section 5.2. In the simulations, FF, FB and FF+FB is performed. Here, however,
only two experiments with combined FF+FB is presented. The latter adds integral action.
ReVolt is unstable for thruster angles of 0o, this may be due to weight balancing, so using
FF only is ineffective.

Date: May 9th, 2018

Weather conditions:

• Sunny, 23.5oC

• Wind, 6.9 m/s (moderate breeze) from south

• No waves, weak ocean current

The feedback gains used in the experimental results differ slightly from that of the simu-
lations. The parameters and gains are listed in Table 6.2.

Heading Controller Parameters and Gains
Kp -10.000
Ki 0.000
Kd -5.000
ωn 0.600
ζ 1.000
K -0.136
T 2.117

Table 6.2: Heading controller parameters for LOS Guidance.

Due to time and battery life the feedback gains were selected as in the previous heading
controller. This is because they are known to stabilize ReVolt. New tests with parameters
in Table 5.3 and 5.7 is desirable.

81

Chapter 6. Experimental Results

6.3.1 Combined Feedforward and PD Feedback

-200

-100

0

100

200

H
e

a
d

in
g

a
n

g
le

 (
d

e
g

)

Heading Controller Tracking Performance Using
FF

 +
FB

d

r

0 50 100 150 200 250 300 350

Time (seconds)

-10

0

10

H
e

a
d

in
g

e
rr

o
r

(d
e

g
) ~

Figure 6.5: Heading controller tracking performance using model-based feedforward and PD feed-
back as control input. The reference ψr cannot be set directly from the RMC station, but has to be
incremented quickly in steps of 10 at e.g. t ≈ 190.

Figure 6.5 shows an experiment with four step changes. The relative sizes are 10o, 45o,
−90o and −180o. Step sizes similar to those in simulations where selected, with some
differences due to test area limits. No integral action is present during this test, and the
largest errors occur during course-changing maneuvers.

82

6.3 Heading Controller Experimental Performance

-6

-4

-2

0

2

4

6

Y
a

w
 r

a
te

(d
e

g
/s

)
Yaw Rate Tracking Performance Using

FF
 +

FB

r

r
d

0 50 100 150 200 250 300 350

Time (seconds)

-5

0

5

Y
a

w
 r

a
te

e
rr

o
r

(d
e

g
/s

)

~r

Figure 6.6: Yaw rate tracking performance using model-based feedforward and PD feedback as
control input.

Figure 6.6 shows the yaw rate tracking performance. Comparing to Figure 5.10, the yaw
rate has more difficulty stabilizing but still tracks the desired trajectory.

83

Chapter 6. Experimental Results

0 50 100 150 200 250 300 350

Time (seconds)

-50

-40

-30

-20

-10

0

10

20

30

40

50

T
h
ru

s
te

r
a
n
g
le

c
o
m

m
a
n
d
 (

d
e
g
)

Control Input Terms

 =
FF

 +
FB

FF

FB

Implementation

error

Figure 6.7: Thruster angle commands generated by the model-based feedforward and PD feedback
term. The implementation errors are the red triangles, caused by repeated incrementation of rd
(rd > rmax) at time step k and saturating again at time step k + 1 (rd = rmax). The error is
resolved in LOS experiments.

Compared to the Figure 5.11, the feedback term (with different gains) in Figure 6.7 needs
to work a lot more to stabilize ReVolt.

84

6.3 Heading Controller Experimental Performance

6.3.2 Combined Feedforward and PID Feedback

-200

-100

0

100

200

H
e
a
d
in

g

a
n
g
le

 (
d
e
g
)

Heading Controller Tracking Performance Using
FF

 +
FB

d

r

0 50 100 150 200 250 300 350 400

Time (seconds)

-10

0

10

H
e
a
d
in

g

e
rr

o
r

(d
e
g
)

~

Figure 6.8: Heading controller tracking performance using model-based feedforward and PID feed-
back as control input.

In Figure 6.8, the same parameters as in Table 6.2 is used, except with integral gain Ki =
−1.0.

85

Chapter 6. Experimental Results

-6

-4

-2

0

2

4

6

Y
a
w

 r
a
te

(d
e
g
/s

)
Yaw Rate Tracking Performance Using

FF
 +

FB

r

r
d

0 50 100 150 200 250 300 350 400

Time (seconds)

-5

0

5

Y
a
w

 r
a
te

e
rr

o
r

(d
e
g
/s

)

~r

Figure 6.9: Yaw rate tracking performance using model-based feedforward and PID feedback as
control input.

Figure 6.9 shows the yaw rate tracking response with added integral action.

86

6.3 Heading Controller Experimental Performance

0 50 100 150 200 250 300 350 400

Time (seconds)

-50

-40

-30

-20

-10

0

10

20

30

40

50

T
h

ru
s
te

r
a

n
g

le

c
o
m

m
a

n
d
 (

d
e

g
)

Control Input Terms

 =
FF

 +
FB

FF

FB

Implementation error

Figure 6.10: Thruster angle commands generated by the model-based feedforward and PID feed-
back term. The implementation errors are the red triangles, caused by repeated incrementation of
rd (rd > rmax) at time step k and saturating again at time step k + 1 (rd = rmax). The error is
resolved in LOS experiments.

Figure 6.10 shows the control input terms. The implementation error causes the ripples
which appear as a triangle in the figure.

87

Chapter 6. Experimental Results

6.4 LOS Guidance Experimental Performance

The experimental results for the LOS Guidance System developed in Section 2.5, with the
speed and heading controller developed in Sections 4.4 and 4.5 is presented here.

Date: May 28th, 2018

Weather conditions:

• Cloudy, 19.8oC

• Wind, 2.8 m/s (light breeze) from southwest

• No waves, weak ocean current

The following results are from a single experiment. Table 6.3 shows the parameters used

LOS Guidance Parameters [m]
∆ 9

Rk+1 16

Table 6.3: LOS Guidance parameters.

in the LOS Guidance algorithm. Note the changes from the simulations in Table 5.6 and
that sideslip compensation is not used, due to no ocean currents present. The lookahead
distance is decreased, i.e. more aggressive convergence. The distance from waypoint
before switching occurs is increased, i.e. more time to approach next path.

Heading Controller Parameters and Gains
Kp -10.000
Ki 0.000
Kd -5.000
ωn 0.600
ζ 1.000
K -0.136
T 2.117

Table 6.4: Heading controller parameters and gains for the LOS Guidance experimental test.
Chapter

Parameter Value
Kp 100
Ki 7.5
M 800

σ(ud) see (4.34)

Table 6.5: Speed controller parameters and gains for the LOS Guidance experimental test.

Tables 6.4 and 6.5 lists the parameters and gains in the heading and speed controller.

88

6.4 LOS Guidance Experimental Performance

-30 -20 -10 0 10 20 30 40 50 60

East Position (m)

0

50

100

150

200

250
N

o
rt

h
 P

o
s
it
io

n
 (

m
)

LOS Guidance Tracking Performance in NE-plane (Experimental Test)

 Initial Position

Start

Finish

Position

Waypoint

Path

0 50 100 150 200 250 300 350

Time (seconds)

-50

0

50

100

C
ro

s
s
-t

ra
c
k

e
rr

o
r

(m
)

Figure 6.11: Result from the experimental test of LOS Guidance. Due to signal loss some waypoints
where skipped.

In Figure 6.11, the path tracking performance is shown. In the cross-track error term
there is only four convergence trajectories whereas the plot of positions infer that there
should be six (number of straight-line segments). An implementation error in ReVolt’s
control system caused the algorithm to increment tracked waypoints to fast, if Wi-Fi signal
strength is low at the time of waypoint switching. From ”Start”=1, the path between
waypoint 2-3 and between 5-6 are skipped. Regardless, the cross-track error converges to
zero for every tracked straight-line segment

89

Chapter 6. Experimental Results

-200

-100

0

100

200

H
e

a
d

in
g

 a
n

g
le

(d
e

g
)

Heading Angle Tracking Performance (Experimental Test)

d

los
 =

d

0 50 100 150 200 250 300 350

Time (seconds)

-40

-20

0

20

H
e

a
d

in
g

e
rr

o
r

(d
e

g
)

~

Figure 6.12: Heading angle tracking performance during LOS Guidance experimental test without
sideslip compensation.

Initially in Figure 6.12, the heading reference model’s initial conditions deviate from Re-
Volt’s initial condition. This causes a large error which saturates the actuators. At t ≈ 25
ReVolt’s heading ψ converges to and tracks the desired heading ψd.

90

6.4 LOS Guidance Experimental Performance

-15

-10

-5

0

5

10

Y
a
w

 r
a
te

(d
e
g
/s

)
Yaw Rate Tracking Performance (Experimental Test)

r

r
d

0 50 100 150 200 250 300 350

Time (seconds)

-20

0

20

Y
a
w

 r
a
te

e
rr

o
r

(d
e
g
/s

)

~r

Figure 6.13: Yaw rate tracking performance during LOS Guidance experimental test.

The saturation in the actuators causes the large deviation in yaw rate in Figure 6.13. As
with the heading controller experiments, the yaw rate tracks the desired yaw rate in the
same manner.

91

Chapter 6. Experimental Results

0 50 100 150 200 250 300 350

Time (seconds)

-80

-60

-40

-20

0

20

40

60

80

T
h
ru

s
te

r
a
n
g
le

 c
o
m

m
a
n
d
 (

d
e
g
)

Control Input Terms for Thruster Angles

 =
FF

 +
FB

FF

FB

Figure 6.14: Thruster angle commands generated by model-based feedforward and PD feedback.

Due to the differential in initial conditions between ReVolt and the heading reference
model, the large feedback term in Figure 6.14 accounts for the saturation at ±45o in δ
and inherently the larger-than-desired yaw rate in Figure 6.13 as thrust builds up. Notice
that the implementation error shown in Figures 6.7 and 6.10 from Section 6.3 causing the
ripples in δFF is removed.

92

6.4 LOS Guidance Experimental Performance

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
p
e
e
d
 (

m
/s

)
Surge Speed Tracking Performance (Experimental Test)

u (GNSS)

u
d
 (Reference Filter)

u
f
 (Low-Pass Filter)

u
ref

 (Input Reference)

0 50 100 150 200 250 300 350

Time (seconds)

-1

0

1

S
p
e
e
d
 (

m
/s

)

Sway Speed Response

v

Figure 6.15: Surge Speed Controller tracking performance during LOS experimental test.

Figure 6.15 shows the speed controller tracking performance during the Guidance System
for path following test. A few things to note here is that friction in the thruster bearings
causes no rotation for τm < 15 and that the initial thruster angle is saturated at δ = −45o,
due to initial conditions of heading reference model. This contributes to the lower-than-
desired surge speed and large sway speed (see bottom of Figure 6.15). At t ≈ 25 the vessel
stabilizes and starts to gain surge speed with a large integral term resulting overshoot at
t ≈ 30. The oscillations from t ≈ 100 is perhaps caused by to large feedback gains as the
current is weak (see Section 5.3.2).

93

Chapter 6. Experimental Results

0 50 100 150 200 250 300 350

Time (seconds)

-10

0

10

20

30

40

50

60

70

80

90

T
h
ru

s
te

r

e
ff
o
rt

 (
%

)
Control Input Terms for Thruster Effort

m
 =

m,FF
 +

m,FB

m,FF

m,FB

Figure 6.16: Control input terms for surge motion.

As shown in Figure 6.16, it takes approximately 10 seconds before an effort τm > 15 is
produced by combined FF and FB.

94

6.5 Discussion

6.5 Discussion

An isolated speed controller test is not performed like in the simulations, as setting a
thruster angle command δ = 0o causes unstable behavior (see Section 7.5). The only
speed controller test performed is during the LOS Guidance experiment. Friction in the
bearings of the thrusters could be compensated by processing the damping term σ(ud)
from Section 4.4.4 to exclude the area of σ(ud) < 15. Also, the feedback gains for the
speed controller using during LOS Guidance is set for much stronger currents than present
during the experiment (see Section 5.3.3). A reduction might just eliminate the oscillating
response in Figure 6.15.

The heading controller with a combined FF and FB term resulted in good tracking both
with and without integral action, despite including the reference model implementation er-
ror shown in Figures 6.7 and 6.10. This error has been since fixed. The heading controller
gains used in all experimental tests were not the ones found in Section 4.5.6. Given more
time these would be used in the next experiments. Moreover, experimental tests using a
FB term only would also help assess the heading controllers performance.

The Guidance System tracks the waypoints (it sees) well using the heading controller with
a reference model, FF and FB term. Sideslip compensation is omitted as ocean current is
weak. Another experiment with sideslip compensation active is desired to compare results.
The implementation error that caused to fast iteration through list of waypoints was hard
to discover and reproduce using the simulator, as Wi-Fi connection was perfect on land.
Sadly, once it was discovered there was no time to implement a fix and do a re-run.

95

Chapter 7
Discussion

This chapter presents a discussion regarding the overall comparison between simulations
and experiments as well as the development and implementation from the preceding chap-
ters.

7.1 Experimental vs Simulation Results

Simulations were performed on ReVolt’s digital twin which has been updated with the tow-
ing tank data from SINTEF Ocean, and added a virtual rudder for stability. The controllers
performed well for all simulations. It is a fact that the experimental tests requires consid-
erably more planning and effort to execute properly. Though some challenges regarding
battery life, implementation errors discovered at sea and differences between the simulated
and physical model, the overall results of the experimental tests are useful.

7.2 Heading Controller

The new heading controller was developed to increase the robustness of the low-level
controllers used in LOS Guidance in the present, and with Collision Avoidance (COLAV)
in the future. The previous heading controller consisted solely of a PD feedback term with
low-pass error filtering. It became apparent after LOS simulations that a noisy thruster
angle command was produced for time-varying setpoints (see Appendix D.1).

The new heading controller uses wrapping functions to allow a discontinuous signal from
an operator or LOS algorithm like 〈−π, π〉 to be mapped to a continuous signal 〈−∞,
∞〉 and used in the 3.order linear reference model with state saturation. The continuous

97

Chapter 7. Discussion

signals generate smooth trajectories for ψd, rd and ṙd that the vessel can follow. Further-
more, the continuous desired heading is mapped back to 〈−π, π〉 to be used in the control
system.

A 1.order Nomoto model is used to determine the mass and damping during course chang-
ing maneuvers such that feedforward control can be utilized for better trajectory tracking.
The Nomoto model, along with bandwidth ωb > 0, is also used the select PID feedback
gains and reference model natural frequency ωn > 0 with damping factor ζ = 1.

However, it lacks a few sophisticated features such as Wave Filtering, which avoids 1.order
wave forces entering the control loop. This is not considered crucial, as the test area is
protected from waves. A wind feedforward would increase response time during course-
changing maneuvers subject to wind disturbance, as opposed to just integral action. A
wind sensor and an accurate model of the wind force is required for this.

Lastly, gain scheduling of the tuning parameters in the linear reference model should be
implemented as a current step change of 1 takes the same time to reach as a step of e.g.
10.

7.3 Speed Controller

The new surge speed controller was developed to enable ReVolt to maintain a desired
forward speed while following a predefined path. In the future, when ReVolt has the
ability to sense its environment, the speed controller should receive setpoint corrections
from the COLAV system to prevent collisions if necessary.

A 2.order (velocity) reference model generates the desired states ud and u̇d. Furthermore,
a 2.order damping polynomial σ(ud) is produced from steady-state measurements with
the simulator, which takes a desired surge speed as input and outputs a thruster effort as
a part of the feedforward. This damping term could be improved by performing the same
system identification tests at sea, as the simulator is not identical to the actual vessel.
Moreover, further processing of σ(ud) is necessary to overcome friction in the bearings at
lower thruster efforts when performing experiments at sea (see Section 4.4.4).

The last part of the feedforward is the inertia term Mud. The mass factor M in the inertia
term is constant in the control system while dependent on states in practice. This as-
sumption contributes to the offsets in the speed controller simulations in Section 5.3.1 (see
Figure 5.13) which are corrected by a proportional feedback with low-pass filtering of the
surge speed in Section 5.3.2 (see Figure 5.15). Integral action with integral anti-windup is
added to compensate for ocean currents.

7.4 Guidance System

The Guidance System was developed to enable ReVolt to follow a predefined path de-
fined by straight-line segments between user-placed waypoints in the RMC station. The

98

7.5 Digital Twin

lookahead-based steering principle was chosen as it required less computing power, as op-
posed to enclosure-based steering. The algorithm outputs a LOS heading reference ψlos
to the heading controller and an operator sets the speed over ground reference Uref to the
speed controller. The Guidance System contains reference models, which are discussed in
the sections above due to the implementation (see Section 4.1).

7.5 Digital Twin

A major advantage of using the Digital Twin is that it interacts with ReVolt’s actual con-
trol system. This means the source code does not need to be translated from e.g. Mat-
lab/Simulink, but can be written directly in C++ (or Python) and tested in real time.
The downside of the real time testing was that some simulations took a lot of time to
finish, and if an error occurred with the control system, debugging and restart was re-
quired. Despite the virtual rudder added to the Digital Twin, the experimental results
shows promise.

7.6 RMC Station

The contributions to the RMC station in this thesis are based on the work done in the
specialization project. During that period the RMC station was never tested at sea. The
simulations and experimental tests performed at sea have shown that the RMC station can
be used for remote monitoring and control. It was, however, only tested with Wifi. This
has limitations in form of signal loss at larger distances. This is especially apparent in the
live image stream. A 4G sim-card for both ReVolt and the RMC station is obtained, but
needs to be set up.

The waypoint placement, path and footprint drawing worked satisfactory. Regardless, fur-
ther improvements to the interactive map would improve the user-experience. For instance,
editing waypoints by dragging them around the map instead of deleting and placing them
again. Also, no constrains are put on placing the waypoints. Such constraints could be
distance and angle between waypoints or only allowing waypoints to be placed in wa-
ter.

Since ReVolt should have a Collision Avoidance System in the future, a class for creating
instances of Obstacle and drawing the current state of the obstacles in the navigation
map is implemented, but needs to be improved and tested properly. For now, testing has
only been done using manually written geodetic positions transmitted from ReVolt. Obsta-
cles needs to be generated by the simulator and transmitted to ReVolt first. From there, the
obstacles states must be transmitted to the RMC station for visualization. Later, when Re-
Volt can sense its environment, ReVolt should track the obstacles on its own at sea.

99

Chapter 8
Conclusions and Future Work

8.1 Conclusions

Two low-level controllers have been developed for ReVolt. A new heading controller
for turning, and a surge speed controller for forward speed. Both controllers use reference
models for generating desired states for use in feedback and feedforward control. The con-
trol allocation uses the two azimuth thrusters constrained at ±45o, while the bow thruster
remains retracted during transit.

Furthermore, a LOS Guidance System for path following has been added to ReVolt’s con-
trol system. This enables ReVolt to follow a predefined path independent of time by is-
suing reference values to the heading and speed controllers for convergence towards the
path. The heading controller also improves manual control of ReVolt using the RC re-
mote.

The RMC station from the specialization project has been further developed to support
waypoint generation by selecting positions in the navigation map. The list of waypoints is
transmitted to ReVolt using a TCP socket connection where the path is generated. Addi-
tional improvements to the RMC station includes eliminating the occurring image distor-
tion. Moreover, the RMC station has been used during both simulations and experimental
results at sea for the first time.

Simulations using the Digital Twin and control system has been performed to assess the
tracking performance of each controller separately. For the heading controller, a FF only
tracks the desired trajectories well, with a slight steady state error when no disturbances is
present. The FB only obtains no steady-state error with a slight delay. A FF-FB combina-
tion showed the best performance despite begin subject to wind disturbance.

The speed controller required a FF and Proportional-FB to obtain satisfactory tracking due
to some modeling errors in the damping and inertia term. Moreover, the Guidance System

101

Chapter 8. Conclusions and Future Work

for path following have been assessed with overall very good performance using combined
FF-FB for both controllers.

Similar experimental tests for path following, including heading (FF-FB) and speed con-
troller (FF-FB), and a separate heading controller test have been performed in the Dora
harbor basin in Trondheim. A FB term was necessary to stabilize ReVolt and though
few differences between simulator and physical model, the experimental performance was
good.

8.2 Future Work

Collision Avoidance System

Expanding the GNC System with a reactive collision avoidance algorithm, e.g. Velocity
Obstacles, is the next step towards making ReVolt autonomous. Today, ReVolt is in the
process of acquiring sensing ability using camera and LIDAR fusion. Until this process is
complete the DNV GL’s simulator for ReVolt can provide simulated moving obstacles to
avoid.

Control System Robustness

Here is a list of suggestions to improving the control system implementation:

• Merge contributions from branch guidance-system into master.

• Implement the Uref → uref transformation in GuidanceLawNode

• Reset waypoint iterator after a LOS run in GuidanceLawNode*

• Select suitable control mode (e.g. DP) after finishing a LOS run.

• Create an implicit waypoint #0 from initial position to waypoint #1 for more pre-
dictable initial convergence.

• Add constraints to waypoint placements (distance, angle, in water etc.)

• Initialize both reference models with vessel’s initial state.*

• Allow speed controller feedback term to induce negative effort to stop vessel more
rapidly.

• Use parameter gain scheduling for the heading reference model to increase response
time to smaller step changes.

• Allow speed controller and setting a manual thruster effort to be used interchange-
ably in heading control mode when controlling from RMC station (model initial
condition important here).

• Add setpoint change to speed controller in RMC station.

102

8.2 Future Work

* The ROS environment provides services which provides request/reply interactions be-
tween nodes (as opposed to broadcast with publisher/subscriber). This allows calls to user-
defined methods based on user-defined conditions or requests in rqt reconfigure
during run-time.

103

Bibliography

[1] K. Alfheim H. & Muggerud, “Development of a dynamic positioning system for the
revolt model ship,” Norwegian University of Science and Technology, Department
of Engineering Cybernetics, Tech. Rep., 2017.

[2] (2011). Rolls royce, ship intelligence, [Online]. Available: http://www.rolls-
royce.com/˜/media/Files/R/Rolls-Royce/documents/customers/
marine/ship-intel/rr-ship-intel-aawa-8pg.pdf.

[3] A. Lekkas and T. Fossen, “Line-of-sight guidance for path following of marine
vehicles,” Tech. Rep., Jun. 2013.

[4] E. Peymani and T. I. Fossen, “2d path following for marine craft: A least-square
approach,” IFAC Proceedings Volumes, vol. 46, no. 23, pp. 98 –103, 2013, 9th
IFAC Symposium on Nonlinear Control Systems, ISSN: 1474-6670. DOI: https:
//doi.org/10.3182/20130904-3-FR-2041.00095. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/
S1474667016316421.

[5] M. Breivik, “Nonlinear maneuvering control of underactuated ships,” Tech. Rep.,
Jun. 2003.

[6] E. Lefeber, K. Y. Pettersen, and H. Nijmeijer, “Tracking control of an underactuated
ship,” IEEE Transactions on Control Systems Technology, vol. 11, no. 1, pp. 52–61,
2003, ISSN: 1063-6536. DOI: 10.1109/TCST.2002.806465.

[7] L. Liu, D. Wang, Z. Peng, and H. Wang, “Predictor-based los guidance law for
path following of underactuated marine surface vehicles with sideslip compensa-
tion,” Ocean Engineering, vol. 124, pp. 340 –348, 2016, ISSN: 0029-8018. DOI:
https://doi.org/10.1016/j.oceaneng.2016.07.057. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0029801816303031.

[8] A. Havnegjerde, “Remote monitoring & control of an autonomous boat,” Tech.
Rep., Dec. 2018.

[9] T. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons, 2011.

105

http://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/rr-ship-intel-aawa-8pg.pdf
http://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/rr-ship-intel-aawa-8pg.pdf
http://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/rr-ship-intel-aawa-8pg.pdf
http://dx.doi.org/https://doi.org/10.3182/20130904-3-FR-2041.00095
http://dx.doi.org/https://doi.org/10.3182/20130904-3-FR-2041.00095
http://www.sciencedirect.com/science/article/pii/S1474667016316421
http://www.sciencedirect.com/science/article/pii/S1474667016316421
http://dx.doi.org/10.1109/TCST.2002.806465
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2016.07.057
http://www.sciencedirect.com/science/article/pii/S0029801816303031
http://www.sciencedirect.com/science/article/pii/S0029801816303031

BIBLIOGRAPHY

[10] T. Fossen. (2016). Marine craft hydrodynamics: Kinematics, [Online]. Available:
http://www.fossen.biz/wiley/Ch2.pdf (visited on 05/19/2018).

[11] O. Egeland and J. T. Gravdahl, Modeling and Simulation for Automatic Control.
Marine Cybernetics, 2002, ISBN: 9788292356012. [Online]. Available: https:
//books.google.no/books?id=oK0VAAAACAAJ.

[12] M. Breivik and T. Fossen, “Guidance laws for autonomous underwater vehicles,”
Jan. 2009.

[13] (). Webopedia osi model, [Online]. Available: https://www.webopedia.
com/quick_ref/OSI_Layers.asp (visited on 04/20/2018).

[14] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach (6th
Edition), 6th. Pearson, 2012, ISBN: 0132856204, 9780132856201.

[15] Unversity of California, Berkeley. (). Practical c++ sockets, [Online]. Available:
http://cs.ecs.baylor.edu/˜donahoo/practical/CSockets/
practical/ (visited on 04/20/2018).

[16] W. Stallings, Operating Systems: Internals and Design Principles, 6th. Upper Sad-
dle River, NJ, USA: Prentice Hall Press, 2008, ISBN: 0136006329, 9780136006329.

[17] EngineerJobs.com. (2013). Robot operating system (ros), [Online]. Available: https:
//magazine.engineerjobs.com/2013/robot-operating-system.
htm (visited on 04/03/2018).

[18] IEEE Spectrum. (). The origin story of ros, the linux of robotics, [Online]. Available:
https://spectrum.ieee.org/automaton/robotics/robotics-
software/the-origin-story-of-ros-the-linux-of-robotics
(visited on 04/23/2018).

[19] ROS - Robot Operating System. (). Node description, [Online]. Available: http:
//wiki.ros.org/Nodes (visited on 04/20/2018).

[20] ——, (). Topics description, [Online]. Available: http://wiki.ros.org/
Topics (visited on 04/20/2018).

[21] ——, (). Message description, [Online]. Available: http://wiki.ros.org/
Topics (visited on 04/23/2018).

[22] CartoType. (2017). Cartotype sdk, [Online]. Available: http://www.cartotype.
com/developers/evaluation-sdks (visited on 05/23/2018).

[23] ——, (2017). Cartotype public repository. https://github.com/CartoType/
CartoType-Public-4-4, (visited on 05/23/2018).

[24] (2011). Estimate flat earth position from geodetic latitude, longitude and altitude,
mathworks, [Online]. Available: http : / / se . mathworks . com / help /
aerotbx/ug/lla2flat.html?requestedDomain=www.mathworks.
com.

[25] M. Breivik, V. E. Hovstein, and T. Fossen, “Straight-line target tracking for un-
manned surface vehicles,” pp. 131–149, Oct. 2008.

[26] B.-O. H. Eriksen and M. Breivik, “Modeling, identification and control of high-
speed asvs: Theory and experiments,” in Sensing and Control for Autonomous Ve-
hicles: Applications to Land, Water and Air Vehicles, T. I. Fossen, K. Y. Pettersen,
and H. Nijmeijer, Eds. Cham: Springer International Publishing, 2017, pp. 407–
431, ISBN: 978-3-319-55372-6. DOI: 10.1007/978-3-319-55372-6_19.

106

http://www.fossen.biz/wiley/Ch2.pdf
https://books.google.no/books?id=oK0VAAAACAAJ
https://books.google.no/books?id=oK0VAAAACAAJ
https://www.webopedia.com/quick_ref/OSI_Layers.asp
https://www.webopedia.com/quick_ref/OSI_Layers.asp
http://cs.ecs.baylor.edu/~donahoo/practical/CSockets/practical/
http://cs.ecs.baylor.edu/~donahoo/practical/CSockets/practical/
https://magazine.engineerjobs.com/2013/robot-operating-system.htm
https://magazine.engineerjobs.com/2013/robot-operating-system.htm
https://magazine.engineerjobs.com/2013/robot-operating-system.htm
https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-story-of-ros-the-linux-of-robotics
https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-story-of-ros-the-linux-of-robotics
http://wiki.ros.org/Nodes
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/Topics
http://wiki.ros.org/Topics
http://wiki.ros.org/Topics
http://www.cartotype.com/developers/evaluation-sdks
http://www.cartotype.com/developers/evaluation-sdks
https://github.com/CartoType/CartoType-Public-4-4
https://github.com/CartoType/CartoType-Public-4-4
http://se.mathworks.com/help/aerotbx/ug/lla2flat.html?requestedDomain=www.mathworks.com
http://se.mathworks.com/help/aerotbx/ug/lla2flat.html?requestedDomain=www.mathworks.com
http://se.mathworks.com/help/aerotbx/ug/lla2flat.html?requestedDomain=www.mathworks.com
http://dx.doi.org/10.1007/978-3-319-55372-6_19

BIBLIOGRAPHY

[Online]. Available: https://doi.org/10.1007/978-3-319-55372-
6_19.

[27] miniDPS. (2018). Fir vs iir filtering, [Online]. Available: https://www.minidsp.
com/applications/dsp-basics/fir-vs-iir-filtering.

107

https://doi.org/10.1007/978-3-319-55372-6_19
https://doi.org/10.1007/978-3-319-55372-6_19
https://www.minidsp.com/applications/dsp-basics/fir-vs-iir-filtering
https://www.minidsp.com/applications/dsp-basics/fir-vs-iir-filtering

Appendices

109

Appendix A
Excerpt from the ReVolt Source
Code

A.1 Heading Controller Constructor

HeadingController::HeadingController(ros::NodeHandle nh){
/* Reference Model Init */
const double zeta = 1;
const double omega_n = 0.6;
const double c = -pow(omega_n,3);
const double b = -(2*zeta+1)*pow(omega_n,2);
const double a = -(2*zeta+1)*omega_n;

A_d << 0, 1, 0,
0, 0, 1,
c, b, a;

B_d << 0, 0,-c;

m_x_d << 0, 0, 0;

r_max = 3*D2R;
r_dot_max = 1*D2R;

/* Wrapping function variables */
accumulation = 0;
state = 0;
psi_last = 0;

111

/* Nomoto Model parameters */
K = -0.1371;
T = 2.4457;

/* Feedback variables and parameters*/
double m = T/K;
double d = 1/K;
K_p = m*pow(omega_n,2);
K_i = omega_n*K_p/10.0;
K_d = (2*zeta*omega_n*m - d);
psi_tilde = 0;
r_tilde = 0;
ROS_INFO("Heading Controller Gains:

Kp = %f, Ki = %f, Kd = %f", K_p, K_i, K_d);

/* Init publishers */
controlInputPub = nh.advertise<std_msgs::Float64>(
"heading_controller_output", 1);

/*Init subscribers */
stateSub = nh.subscribe("heading_controller_input",
1, &HeadingController::computeControlInput, this);

// Code for logging, methods and services omitted
}

112

A.2 Heading Controller Callback Function

void HeadingController::computeControlInput(const
custom_msgs::HeadingControllerInput &input){

Vector3d x_d;
// Calculate dt
if(!prev_time.isZero()){

dt = ros::Time::now() - prev_time;
prev_time = ros::Time::now();

}
else{

// init prev_time
prev_time = ros::Time::now();
return;

}

// Continuous signal for the reference filter [-Inf Inf]
double psi_continuous = wrapToInf(input.setpoint*D2R);
x_d = referenceFilter(psi_continuous);
// Wrap desired heading from filter back to [-pi pi]
x_d(0) = wrapToPi(x_d(0));

// Compute feedforward term
delta_ff = -((T/K)*(x_d(2) + (1/T)*x_d(1)));

// Compute feedback term
double psi_tilde = x_d(0) -input.state*D2R;
double r_tilde = x_d(1) - input.r;

if(psi_tilde > M_PI)
psi_tilde = psi_tilde - 2*M_PI;

else if(psi_tilde < -M_PI)
psi_tilde = psi_tilde + 2*M_PI;

psi_tilde_integral += psi_tilde*dt.toSec();

// Integrator anti-windup (max 20 deg from integrator)
if(K_i*psi_tilde_integral > 20.0*D2R)

psi_tilde_integral = 20.0*D2R/K_i;
else if(K_i*psi_tilde_integral < -20.0*D2R)

psi_tilde_integral = -20.0*D2R/K_i;

double delta_fb = -(K_p*psi_tilde +
K_i*psi_tilde_integral + K_d*r_tilde);

113

if(delta_fb != delta_fb){
ROS_INFO("nan in fb");
return;

}

if(delta_ff != delta_ff){
ROS_INFO("nan in ff");
return;

}

// Fill message : FF + FB
controlInput.data = (delta_ff + delta_fb)*R2D;

if(controlInput.data != controlInput.data){
ROS_INFO("nan in control input");
return;

}

// Saturate angle
if(controlInput.data > 45)

controlInput.data = 45;
else if(controlInput.data < -45)

controlInput.data = -45;

controlInputPub.publish(controlInput);
// Code for logging, methods and services omitted

}

114

A.3 Speed Controller Constructor

SpeedController::SpeedController(ros::NodeHandle nh){
// PI parameters and variables
Kp = 100;
Ki = 7.5;
u_tilde_integral = 0.0;

// Define velocity reference model parameters
const double zeta = 0.9994;
const double omega_n = 0.1583;

const double a = 2*zeta*omega_n;
const double b = pow(omega_n,2);

// State space matrices for filter (member fields)
A << 0, 1,

-b, -a;

B << 0, b;

x << 0, 0;

// Initialize [b, a] filter coefficients

u_f = 0.0;
// Init subscribers, publishers and services
stateSub = nh.subscribe("speed_controller_input",
1, &SpeedController::computeControlInput, this);
// Code for logging, methods and services omitted

}

115

A.4 Speed Controller Callback Function

void SpeedController::computeControlInput(const
custom_msgs::SpeedControllerInput &input){
// Calculate dt
if(!prev_time.isZero()){

dt = ros::Time::now() - prev_time;
prev_time = ros::Time::now();

}
else{

// init prev_time
prev_time = ros::Time::now();
return;

}

// Filter surge velocity
u_f = measurementFilter(input.u);

// Apply reference velocity to ’Reference Filter’
// to obtain u_d (desired speed) at index [0]
std::vector<double> u_d_vector =
referenceFilter(input.u_ref);

double u_d = u_d_vector[0];
double u_d_dot = u_d_vector[1];

// Map u_ref to thruster effort n_ff and use
// it as feedforward
double n_ff = mapToEffort(u_d) + 800*u_d_dot;

// Surge error variable = u_d - u_f
double u_tilde = u_d - u_f;
// Integrate error
u_tilde_integral += u_tilde*dt.toSec();

// Integrator anti-windup
if(u_tilde_integral > 100.0/Ki)

u_tilde_integral = 100.0/Ki;
else if(u_tilde_integral < -100.0/Ki)

u_tilde_integral = -100.0/Ki;

// Fill message : FF + FB)
controlInput.data = n_ff
+ (Kp*u_tilde + Ki*u_tilde_integral);

// Limit output

116

if(controlInput.data > 100)
controlInput.data = 100;

else if(controlInput.data < 0)
controlInput.data = 0;

// Publish total control input
controlInputPub.publish(controlInput);

// Code for logging, methods and services omitted

117

A.5 Guidance Law Constructor

GuidanceLaw::GuidanceLaw(ros::NodeHandle nh){
// Init BODY velocity vector
v_b = Vector2d::Zero();
// Init NED velocity vector
p_n_dot = Vector2d::Zero();
// Init Rotation Matrix
R_psi << cos(0.0), -sin(0.0),

sin(0.0), cos(0.0);

f = (SEMIMAJORAXIS - SEMIMINORAXIS) / SEMIMAJORAXIS;
R = SEMIMAJORAXIS;

speed_controller_input_pub = nh.advertise<
custom_msgs::SpeedControllerInput>(
"speed_controller_input", 1);

heading_controller_input_pub = nh.advertise<
custom_msgs::HeadingControllerInput>(
"heading_controller_input", 1);

guidance_law_input_sub = nh.subscribe(
"guidance_law_input",

1, &GuidanceLaw::computeOutput, this);
waypoint_sub = nh.subscribe("waypoint_list",
1, &GuidanceLaw::processWaypoints, this);

ned_sub = nh.subscribe("ned_origin",
1, &GuidanceLaw::updateNEDOrigin, this);

// k - waypoint iterator
k = 0;
yk=0;
xk=0;
yk_1=100;
xk_1=100;

}

118

A.6 Guidance Law Callback Function

void GuidanceLaw::computeOutput(const
custom_msgs::GuidanceLawInput &input){
// Create messages
custom_msgs::HeadingControllerInput heading_msg;
custom_msgs::SpeedControllerInput speed_msg;

// Decompose Speed over ground U with angle chi and
// update NED velocity vector
// velocity in north direction
p_n_dot(0) = input.U*cos(input.chi*D2R);
// velocity in east direction
p_n_dot(1) = input.U*sin(input.chi*D2R);

// Update 2D Rotation matrix
updateRotationMatrix(input.psi*D2R);

// Transform vector from NED to BODY
v_b = R_psi.transpose()*p_n_dot;

// Lookahead distance (12m)
double delta_e = 12;

// Calculate path tangential angle chi_p/a_k
double a_k = atan2(yk_1 - yk, xk_1 - xk);

Vector2d p_tilde;
p_tilde << input.N-xk, input.E-yk;

Matrix2d R_ak;
R_ak << cos(a_k), -sin(a_k),

sin(a_k), cos(a_k);

// Calculate cross-track error
Vector2d se = R_ak.transpose()*p_tilde;
// Calculate LOS steering law
double chi_r = atan2(-se(1), delta_e);

// Calculate desired course chi_d
double chi_d = a_k + chi_r;

// Calculate sideslip beta

119

double beta;
if(input.U < 0.2)

beta = 0;
else

beta = asin(v_b(1)/input.U);

// GuidanceLaw Node outputs desired heading
double psi_d = chi_d - beta;
if(psi_d > M_PI)

psi_d = psi_d - 2*M_PI;
else if(psi_d < -M_PI)

psi_d = psi_d + 2*M_PI;

heading_msg.state = input.psi;
heading_msg.setpoint = psi_d*R2D;
heading_msg.error = psi_d*R2D - input.psi;
heading_msg.r = input.r;
heading_msg.source = 1;
speed_msg.u = v_b(0);
speed_msg.v = v_b(1);
speed_msg.u_ref = 1;

// Publish to topics
heading_controller_input_pub.publish(heading_msg);
speed_controller_input_pub.publish(speed_msg);

// Check to see if increment in setpoints is necessary
double sk_1 = sqrt(pow(xk_1-xk, 2) + pow(yk_1 - yk, 2));

if(sk_1 - se(0) < 16.0/*Rk_1*/){
k+=2;

}
// Code for logging, methods and services omitted

}

120

Appendix B
Excerpt from the RMC Station
Source Code

121

C
lass D

iagram
 For The R

em
ote C

ontrol &
 M

onitoring A
pplication

M
ainW

indow
 extends Q

M
ainW

indow

- *ui: U
i::M

ainW
indow

- *m
apForm

: M
apForm

- *vid: VideoR
eceiver

- *f: Fram
eStorage

- frm
_m

utex: Q
M

utex
- videoStream

O
pened: bool

- video_stream
_w

idth: int
- video_stream

_height: int

- *tranceiver: Tranceiver
- revoltState: std::vector<double>
- m

_revolt_storage_w
rl: Q

R
eadW

riteLock
- hc_buttons_setEnabled(bool): void
- dp_buttons_setEnabled(bool): void
- dataStream

O
pened: bool

- enableH
eadingButtonPressed: void

- parseD
ataLine(std::string line): std::vector<double>

- storeListO
fW

aypoints(std::list<pair<double<double>>* list): vo
- *obstacleU

pdateTim
er: Q

Tim
er

- *m
_revolt_m

tx: Q
M

utex
- m

apO
pened: bool

- w
pToggleC

ondition: bool
- updateD

isplay(): void
- clearR

evoltD
ata(): boid

slots:
+ setH

eadingR
eference(arg: int): void

+ updateW
aypointList(): void

- on_video_stream
_button_clicked(): void

- displayVideo(): void
- updateState(): void
- trackO

bstacles(): void
- on_pushButton_data_stream

_clicked(): void
- on_spinbox_psi_r_valueC

hanged(arg1, int): void
- on_pushbutton_enable_heading_control_clicked(): void
- on_speedSlider_valueC

hanged(value: int): void
- on_pushButton_reset_clicked(): void
- on_pushButton_enable_dp_control_clicked(): void
- on_pushButton_dp_ref_clicked(): void
- on_pushButton_navM

ap_clicked(): void
- on_pushButton_track_revolt_clicked(): void
- on_pushB

utton_place_w
p_clicked()(): void

- on_pushB
utton_rem

ove_last_w
p_clicked(): void

- on_pushB
utton_clear_all_w

p_clicked(): void
- on_pushB

utton_execute_clicked(): void
- on_pushB

utton_clear_footprint_clicked(): void

Tranceiver extends Q
Thread

run(): void
+ getM

onitoredD
ataLine(): std::string

+ setM
onitoredD

ataLine(data[]: char, buffLen: int): void
+ setC

om
m

and(id: int): void
+ adjustSpeedR

ef(addN
ew

H
eading: int): void

+ getH
eadingR

eference(): int
+ setD

PR
eference(N

_ref: double, E_ref: double, PSI_ref: double): void
+ setListO

fW
aypoints(std::list<pair<double, double> w

aypointList): void
+ disableExternalC

om
m

and(): void
+ closeC

onnection(): void
- setW

aypoints(stringstream
 &

oss): void
- m

_w
aypoint_list: std::list<pair<double,double>>

- *sock: TC
PSocket

- closed: bool
- m

onitoredD
ataLine: bool

- *com
m

and_m
utex: Q

M
utex

- *data_m
utex: Q

M
utex

- recvBuffer[128+1]: char
- bytesR

eceived: int
- totalBytesR

eceived: int
- sendBuffer[17+1]: char
- headingR

eference: int
- speedR

eference: int
- tau_N

: double
- tau_E: double
- tau_PSI: double
- N

_ref: double
- E_ref: double
- PSI_ref: double
signal: new

D
ataR

eceived(): void

VideoR
eceiver extends Q

Thread
run(): void
+ closeStream

(): void
+ openStream

(): void
+ clientInit(): int
+ getIm

age(): Q
Im

age
slot: + storeIm

age(M
at fram

e): void
- videoStream

C
losed: bool

- sendFram
e: Q

Im
age

- *fram
e_m

utex: Q
M

utex
signal: - new

Im
ageAvailable(Q

Im
age im

age): void

M
apForm

 extends Q
D

ialog
- *ui: U

i::M
apForm

- iFram
ew

ork: std::unique_ptr<C
artoType::C

Fram
ew

ork>
- error: C

artoType::TR
esult

- *m
_tracking_tim

er: Q
Tim

er
- navD

ata: C
artoType::TN

avigationD
ata

- m
_m

ap_drag_enabled: bool
- m

_m
ap_drag_anchor: C

artoType::TPoint
- m

_m
ap_drag_offset: C

artoType::TPoint
- m

_using_im
age_server: bool

- m
_on_route_tim

e: double
- m

_tracking_revolt: bool
- m

_revolt_nav_m
utex: Q

M
utex

- m
_revolt_lat: double

- m
_revolt_lon: double

- *m
_geom

etry: C
artoTyype::C

G
eom

etry
m

_w
aypoint_list:std::list <std::pair<double, double>>

- m
_w

aypoint_placem
ent: bool

- m
_position_list:std::list <C

artoType::TPoint>
- previousPosition: C

artoType::TPoint
m

_obstacle_list: std::list<O
bstacle>

+ toggleTrackR
evolt(): void

+ setR
evoltPosition(lat: double, lon: double): void

+ updateO
bstaclesPositions(positions: std::vector<double>): void

+ getO
bstacleList(): std::list<O

bstacle>
+ setW

aypointPlacem
ent(): void

+ rem
oveLastW

aypoint(): bool
+ rem

oveA
llW

aypoints(): void
+ clearFootprint(): boid
+ getW

aypointList(): std::list<std::pair<double, double>>
- navM

apInit(): void
- navM

apU
pdate(): void

- C
opyBitm

apToIm
age(aSource: const C

artoTyhpe::TBitm
ap&, aD

est: Q
- w

heelEvent(*aEvent: Q
W

heelEvent) override
- m

ousePressEvent(*aEvent: Q
M

ouseEvent) override
- m

ouseR
eleaseEvent(*aEvent: Q

M
ouseEvent) override

- m
ouseM

oveEvent(*aEvent: Q
M

ouselEvent) override
- LeftButtonD

ow
n(aX: int32_t, aY: int32_t)

- LeftButtonU
p(aX: int32_t, aY: int32_t)

- R
ightButtonD

ow
n(aX: int32_t, aY: int32_t)

- R
ightButtonD

ow
n(aX: int32_t, aY: int32_t)

- PanToD
raggedPosition(): void

- StopD
ragging(): void

- addW
aypointList(int32_t aX, int32_t aY): void

- draw
LinesB

etw
eenW

aypoints(Q
Im

age &
chart): void

- draw
R

evoltFootprint(Q
Im

age &
chart): void

- draw
O

bstacles(Q
Im

age &
chart): void

slot: - revoltTrackingU
pdater(): void

signal: - w
aypointListC

hanged(): void

PracticalSocket
U
se

PracticalSocket
U
se

Login

+ correctLogin(): void
slot: on_pushButton_clicked(): vo
- *ui: U

i::Login
- m

w
: M

ainW
indow

O
bstacle

+ setO
bstaclePositionN

ED
(double obs_N

, double obs_E): void
+ getO

bstaclePositionN
ED

(): std::vector<double>
+ getO

bstaclePositionIN
T(): std::vector<int32_t>

+ getR
adius(): int

+ setC
ourse(double obs_course): void

+ setVelocity(double obs_vel): void

- convertToIntegerC
oordinates(double obs_N

, double obs_E): void
- obs_id: int
- obs_N

: int
- obs_E: int
- obs_vel: double
- obs_course: double
- obs_latitude: int32_t
- obs_longitude: int32_t
- obs_radius: int

Figure B.1: Class diagram from [8] with new contributions in boldface text.

122

B.1 Add/Remove Waypoints

void MapForm::addWaypointToList(int32_t aY, int32_t aX){
CartoType::TPoint p(aX, aY);
error = iFramework->ConvertPoint(p,
CartoType::TCoordType::Display,
CartoType::TCoordType::Degree);

// Convert integer coordinates to regular decimal
// coordinates as we add them to the list
m_waypoint_list.push_back(pair<double,
double>(p.iY/CONVERSION, p.iX/CONVERSION));

emit waypointListChanged();
navMapUpdate();

}

bool MapForm::removeLastWaypoint(){
if(!m_waypoint_list.empty()){

m_waypoint_list.pop_back();
emit waypointListChanged();
navMapUpdate();
return true;

}
else

return false;
}

123

B.2 Draw Lines Between Waypoints

void MapForm::drawLinesBetweenWaypoints(QImage &chart){
if(m_waypoint_list.empty())

return;

std::list<pair<double,double>>::iterator it;
QPainter painter(&chart);
QPen linePen(Qt::black, 2, Qt::DashLine);
QPen waypointPen(Qt::red, 7);
painter.setPen(linePen);
int waypointNumber = 1;
it = m_waypoint_list.begin();
// Draws lines from FIRST to LAST position in the list
while(it!=m_waypoint_list.end()){

// Extract first pair of coordinates from list
int32_t integer_latitude1 = (*it).first*CONVERSION;
int32_t integer_longitude1 = (*it).second*CONVERSION;
CartoType::TPoint wp1(integer_longitude1,
integer_latitude1);
iFramework->ConvertPoint(wp1,
CartoType::TCoordType::Degree,
CartoType::TCoordType::Screen);

// Draws the last waypoint in the list and returns
if(std::next(it,1) == m_waypoint_list.end()){

painter.setPen(waypointPen);
painter.drawPoint(wp1.iX,wp1.iY);
painter.setPen(Qt::black);
painter.drawText(wp1.iX,wp1.iY,
QString::number(waypointNumber));
return;

}

// Otherwise
it++;

// Extract next pair from list
int32_t integer_latitude2 = (*it).first*CONVERSION;
int32_t integer_longitude2 = (*it).second*CONVERSION;
CartoType::TPoint wp2(integer_longitude2,
integer_latitude2);
iFramework->ConvertPoint(wp2,
CartoType::TCoordType::Degree,
CartoType::TCoordType::Screen);

124

// Draw waypoins, waypoint numbers and lines between
// the current pair
painter.setPen(waypointPen);
painter.drawPoint(wp1.iX,wp1.iY);
painter.drawPoint(wp2.iX,wp2.iY);
painter.setPen(Qt::black);
painter.drawText(wp1.iX,wp1.iY,
QString::number(waypointNumber));
painter.drawText(wp2.iX,wp2.iY,
QString::number(waypointNumber+1));
painter.setPen(linePen);
painter.drawLine(wp1.iX, wp1.iY, wp2.iX, wp2.iY);
waypointNumber++;

}
}

125

B.3 Draw ReVolt’s Footprint

void MapForm::drawRevoltFootprint(QImage &chart){
// For the case of a single position (No
// line can be drawn)
if(m_position_list.size() < 2)

return;

QPainter footprintPainter(&chart);
QPen footprintPen(QColor(0, 170 , 0), 2, Qt::SolidLine);
footprintPainter.setPen(footprintPen);

std::list<CartoType::TPoint>::iterator it;
it=std::prev(m_position_list.end(),1);

// Draw lines from LAST to FIRST position in the list
while(it!=std::prev(m_position_list.begin(), 1)){

CartoType::TPoint current((*it).iX, (*it).iY);
iFramework->ConvertPoint(current,
CartoType::TCoordType::Degree,
CartoType::TCoordType::Screen);

// At final iteration
if(it == m_position_list.begin())

return;

// Otherwise get previous point
it--;
CartoType::TPoint previous((*it).iX, (*it).iY);
iFramework->ConvertPoint(previous,
CartoType::TCoordType::Degree,
CartoType::TCoordType::Screen);

footprintPainter.drawLine(current.iX,
current.iY, previous.iX, previous.iY);

}
}

126

B.4 Draw Obstacles

void MapForm::drawObstacles(QImage &chart){
if(m_obstacle_list.empty())

return;

QPainter obstaclePainter(&chart);
QPen radiusPen(QColor(255, 170, 0), 2);
QPen obstaclePen(QColor(255, 170, 0),
iFramework->MetersToPixels(3));

obstaclePainter.setPen(radiusPen);

std::list<Obstacle>::iterator it;
const int REVOLT_RADIUS = 5;
for(it=m_obstacle_list.begin();
it!=m_obstacle_list.end(); it++){
std::vector<int32_t> temp =
(*it).getObstaclePositionINT();
const int OBS_RADIUS = (*it).getRadius();
CartoType::TPoint obs(temp[1], temp[0]);
iFramework->ConvertPoint(obs,
CartoType::TCoordType::Degree,
CartoType::TCoordType::Screen);

obstaclePainter.drawEllipse(QPoint(obs.iX,obs.iY),
iFramework->MetersToPixels(OBS_RADIUS),
iFramework->MetersToPixels(OBS_RADIUS));

obstaclePainter.drawEllipse(QPoint(obs.iX,obs.iY),
iFramework->MetersToPixels(OBS_RADIUS+REVOLT_RADIUS),
iFramework->MetersToPixels(OBS_RADIUS+REVOLT_RADIUS));

obstaclePainter.setPen(obstaclePen);
obstaclePainter.drawPoint(obs.iX, obs.iY);

}
}

127

Appendix C
Images From Experimental Tests

129

Figure C.1: Transport stage with drogue connected to ReVolt’s aft.

Figure C.2: Gunnerus Workboat(left), ReVolt and Nidelv 690 Sport. Courtesy of Tom Arne Peder-
sen.

130

Figure C.3: Transport stage without drogue.

Figure C.4: ReVolt on the trailer at the unloading area.

131

Appendix D
Miscellaneous

133

D.1 Previous Heading Controller for LOS Guidance Sim-
ulation

-20 0 20 40 60 80 100

East Position (m)

-150

-100

-50

0

50

100

N
o
rt

h
 P

o
s
it
io

n
 (

m
)

LOS Guidance Tracking Performance in NE-plane (no disturbances)

Initial Position
Start

Finish

Position

Waypoint

Path

0 100 200 300 400 500 600

Time (seconds)

-20

-10

0

10

20

C
ro

s
s
-t

ra
c
k

e
rr

o
r

(m
)

Figure D.1: LOS simulation using the old heading controller

0 100 200 300 400 500 600
-200

-100

0

100

200

H
e

a
d

in
g

 a
n

g
le

 (
d

e
g

)

Heading Tracking Performance (no disturbances)

d
 =

d

0 100 200 300 400 500 600

Time (seconds)

-50

0

50

T
h

ru
s
te

r
a

n
g

le
 (

d
e

g
)

Figure D.2: LOS simulation using the old heading controller causing noisy control output (no ref-
erence filter or FF)

134

D.2 Excerpt from the Towing Tank at SINTEF Ocean

Tests and processing were performed during the DNV GL summer internship in 2017.

Figure D.3: Towing tank results at SINTEF Ocean with port thruster at 25% effort.

Figure D.4: Towing tank results at SINTEF Ocean with port thruster at 50% effort.

135

Figure D.5: Towing tank results at SINTEF Ocean with port thruster at 75% effort.

Figure D.6: Towing tank results at SINTEF Ocean with port thruster at 100% effort.

In Figures D.3, D.4, D.5 and D.6, the Ftot is the total force produced by the thruster,
combining both thrusters yields 2× Ftot. Red markings is steady state area.

136

D.3 Velocity Low-pass Filter Coefficients

i bi ai
0 0.000109 1
1 0.000546 -3.840964
2 0.001092 6.007554
3 0.001092 -4.766603
4 0.000546 1.914322
5 0.000109 -0.310815

Table D.1: Velocity low pass filter coefficients

137

	Preface
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Nomenclature
	Introduction
	Motivation
	Review
	Problem Description
	Contributions
	Outline

	Theory and Concepts for Path Following
	Guidance, Navigation and Control Systems
	Kinematics
	Motion Variables
	Reference Frames
	Definitions of Course, Heading and Sideslip Angles
	Notation
	Transformation Between BODY and NED
	Transformation Between NED and ECEF

	Modeling of Marine Crafts
	Reference Models
	Velocity Reference Model
	Position and Attitude Reference Model
	Discretization

	Line-of-Sight Guidance
	Lookahead-based Steering
	Switching Mechanism for Waypoints

	Remote Monitoring & Control
	Networking and Software Fundamentals
	Sockets and Protocols
	Socket Programming
	Process
	Thread
	Robot Operating System
	Nodes in ROS
	Topics in ROS
	Messages in ROS
	Rosbag Data
	CartoType Navigation Framework

	RMC Station Introduction
	RMC Station Contributions
	Guidance Management
	Transmitting List of Waypoints
	Image Stream Frame Distortion Removal

	GNC Implementation for Path Following
	Guidance, Navigation and Control System
	Guidance System
	Control Allocation
	Surge Speed Controller
	Reference Model
	Low-Pass Filtering of Velocity Measurement
	Control Objective
	Feedforward Term
	Feedback Term
	Combined Feedforward and Feedback

	Heading Controller
	Nomoto Models
	Choosing Nomoto Gain and Time Constant
	Reference Model
	Control Objective
	Feedforward Term
	Feedback Term
	Combined Feedforward and Feedback

	Implementation in ROS Environment

	Simulation Results
	Simulation Platform
	Heading Controller Performance
	Feedforward Control Only
	PD Feedback Control Only
	Combined Feedforward and PID Feedback s.t. Wind

	Speed Controller Performance
	Feedforward Control Only
	Feedforward and Proportional Feedback Control
	Feedforward and PI Feedback s.t. Ocean Current

	Performance of Guidance System for Path Following
	Subject to Wind and Ocean Current
	Subject to Both Stronger Wind and Ocean Current

	Discussion

	Experimental Results
	Experimental Platform
	Background
	Main Components

	Test Area
	Heading Controller Experimental Performance
	Combined Feedforward and PD Feedback
	Combined Feedforward and PID Feedback

	LOS Guidance Experimental Performance
	Discussion

	Discussion
	Experimental vs Simulation Results
	Heading Controller
	Speed Controller
	Guidance System
	Digital Twin
	RMC Station

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	Excerpt from the ReVolt Source Code
	Heading Controller Constructor
	Heading Controller Callback Function
	Speed Controller Constructor
	Speed Controller Callback Function
	Guidance Law Constructor
	Guidance Law Callback Function

	Excerpt from the RMC Station Source Code
	Add/Remove Waypoints
	Draw Lines Between Waypoints
	Draw ReVolt's Footprint
	Draw Obstacles

	Images From Experimental Tests
	Miscellaneous
	Previous Heading Controller for LOS Guidance Simulation
	Excerpt from the Towing Tank at SINTEF Ocean
	Velocity Low-pass Filter Coefficients

