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Abstract

To estimate friction introduced by plastering strips inside of laboratory tunnels, an equation

named after Reidar Birkeland is used at NTNU. In this thesis, four different geometries

with three different strip distances are simulated numerically using OpenFOAM to test the

accuracy of the equation. The calculated friction factors from 36 runs are analyzed. Other

factors, including how length to development and secondary currents interact with the strip

roughness, are also looked at.

With a 24 percent average overestimation of the friction factor λ, the Birkeland equa-

tion is decidedly out of its domain of accuracy in these cases. To ensure reliable head loss

measurements, length to development was investigated. Starting out with a uniform velocity

profile gave values between 2 and 3.5 of C = λL/D, with L being length to development and

D being four times the hydraulic radius, for most geometries and flow velocities. An implicit

assumption made by Birkeland was that the strips act as isolated roughness elements, with

one not being affected by the former. This was found to be true for all cases tested.
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Chapter 1

Introduction

Real tunnels have real roughness, leading to head loss as water flows through them. When

doing experiments in the laboratory, this roughness must somehow be replicated. In the

hydraulic laboratory at NTNU, the most common method is to glue strips on the inside of

otherwise smooth acrylic glass tunnels. Examples of this from 2017 include several master

theses; Brøste [2017], Gjerde [2017], Perzyna [2017] and Ekeade [2017]. The equation used by

all of them to estimate the friction introduced by these strips is called the Birkeland equation.

1.1 Preexisting methods for quantifying strip rough-

ness

To estimate the roughness introduced by discrete elements in a channel, a few different

methods exist. Morris [1963] gives formulas for the drag experienced in pipes with different

spacing of roughness elements. The formula used depends on if one element affects the

flow situation at the next, and he distinguishes between quasi-smooth, hyper-turbulent and

isolated roughness flow. In quasi-smooth flow the depressions between elements are short, and

the recirculation happening there does not affect the macroscopic flow in the main channel.

Hyper-turbulent flow is distinguished by the wake structures of each element affecting the

next one. Isolated roughness flow occurs when each element can be treated as a separate

source of form drag, with no influence of the previous one. For the rough part of the friction

with isolated roughness, Morris [1963] postulates this scaling:

λrough ∝ λsmoothCD
Lr
P

h

ri

ri
L
. (1.1)

1
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Here Lr is the peripheral length of the roughness element, P is wetted perimeter of the pipe,

ri is the pipe radius inside the elements, h is height of the roughness elements and L is the

distance between them. CD is the drag coefficient of the discrete elements’ surfaces.

1.2 Development of the Birkeland equation

Due to shortcomings of the formula of Morris [1963] in predicting the friction factor in his

tests, Birkeland [2008] decided to make a new one. The goal was that a new equation would

give better results for the type of tunnels used in the laboratory. He used the same concept

of splitting the friction contributions of the smooth and rough parts, and the variables used

are loosely based on equation 1.1. Based on the geometry of his case, isolated roughness

flow was assumed to be present. This implies that the wake structure of an element is not

affecting the drag introduced by ones downstream, setting a lower bound on strip spacing

used with the resulting equation. Birkeland [2008] uses this scaling:

λrough ∝ C0 (
L

4R
)C1 (

h

4R
)C2 (

Lr
4R

)C3 , (1.2)

with R being the hydraulic radius of the tunnel and Lr being the length of the roughness

element. Lr equals the wetted perimeter, P , if the strip is plastered around the whole

periphery of the tunnel. The differences between the equations of Morris [1963] and Birkeland

[2008] is that the former scales the rough friction with the smooth one, uses the calculated

drag coefficient for the roughness shape and that it has the ratio of constriction to intra-

element distance as a factor.

To tune the coefficients, several experiments where conducted using the setup showed

in figure 1.1. Head losses over a 1.61 meter stretch in a laboratory tunnel were recorded

using two pressure measurements. A filter was installed at the inlet to avoid coherent flow

structures from the inlet pipe convecting into the studied domain. The resulting friction

factors were calculated using the Darcy-Weisbach equation:

Head loss [mH2O] = λ
x2 − x1

4R

u2

2g
. (1.3)

The investigated variables are shown in table 1.1. Including the base case without strips,

a total of 20 configurations were ran three times each. Based on a least-square regression of
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Figure 1.1: Experimental setup used by Birkeland [2008].

Variable Configurations

L [m]
0.1 (not for h=5mm or h=9mm ),
0.2 (not for h=9mm), 0.4, 0.6

Q [l/s] 19.1, 28.1
h [mm] 3, 5, 9

Table 1.1: Configurations used in tuning the Birkeland equation.

the powers and a constant, the resulting equation reads:

λrough = 8.43(
L

4R
)−0.796(

h

4R
)1.655(

Lr
4R

)1. (1.4)

1.3 Critique of the equation

To put this section in context, the Birkeland equation was not meant to be a universal law

of nature. It was highly tuned for the work done in the master thesis it is a part of, and is

not a result of rigorous testing by Reidar Birkeland. It has, however, been put to great use

in the laboratory at NTNU, and is thus deserving of a closer look.
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The isloated roughness flow assumption

In structuring his equation after Morris [1963] and equation 1.1, Birkeland [2008] implicitly

assumes isolated roughness flow. This is a priori only valid over a certain range of velocities

and strip distances for each geometry, with an unknown relationship between the variables.

When this bound is overstepped, strips are hit by the wake of the one prior, rendering rough

surface vortices as the main source of drag (Morris [1963]). For the strip distances and

velocities subjected to study by Birkeland, this was not reported to be the case.

Strip placement

All of Birkelands tests seem to have been done without strip roughness on the floor of the

tunnel. Although not mentioned explicitly in his thesis, all pictures show the same method

of application. Today, several of the tunnels in the lab have strips glued around the whole

perimeter. Figure 1.2 shows two pictures of Birkelands usage of the strips, paired with two

examples of how it is used in the lab today. The difference is in theory being accounted for

by the factor Lr, giving the length of the roughness elements. As the flow was not constricted

in all directions by Birkeland [2008], one might however experience different effects when it

is.

Multiphase flow

All of Birkelands experiments were done with the tunnel full of water. Both Gjerde [2017]

and Brøste [2017] have a water-air mixture running through their tunnels. This comes with

an increase in head loss as a result of the energy expended in mixing the two (Nestmann

[2017]).

Flow development

As seen in figure 1.1, the velocity profile of the inflow pipe is broken up by a filter. This

kills coherent structures, and is regarded as good practice. There can however be traces

of the inflow conditions far downstream, even with several turbulence generating trips in

the form of strips underway. In Garcia [2017], the inflow pipe had a sideways bend right

before the inlet to the tunnel. 5.11 meters downstream of the inlet, equalling 32 times the
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Figure 1.2: Applications of strip roughness. Top: Two pictures of the setup used by
Birkeland [2008]. Bottom: Setups used by Brøste [2017] to the left and Gjerde [2017]
to the right.

hydraulic diameter, the horizontal velocity profile was still skewed. No length of development

is prescribed when using the equation, and only a global friction factor is calculated. The

effective friction might change downstream until the flow is fully developed, at which point

the pressure loss is uniform between sections. Length to development is therefore a factor to

consider when setting up experiments using strip roughness, but one that is not taken into

account in the equation or its use. All experiments were performed with the same distance

between measurement points, and were thus unable to see any downstream change in friction.

Shape effects

The Birkeland equation scales all variables with hydraulic diameter, four times the hydraulic

radius. When using the Darcy-Weisbach equation to calculate head loss, velocity squared

comes in as an additional factor. Shape effects are however neglected. Secondary flow

patterns are strongly affected by the shape of the cross section (Miller [1990]), and this can
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thus alter how large the effect of the strips is on head losses. All experiments done by Reidar

Birkeland were on the same cross section shape and size.

Inflow effects

Depending on the experimental configuration, the flow might come in swirling, accelerated

or decelerated. This has the possibility of affecting energy loss (Pope [2000]) and length

to development (Zagarola and Smits [1998]) but can be very hard to quantify a priori. As

mentioned above, swirl was detected over 30 hydraulic diameters downstream of the inlet by

Garcia [2017], even with the use of a filter at the inflow.

1.4 Contents and structure of this thesis

Besides the precision of the equation itself, all of the aforementioned factors are possible

topics of study. In this thesis, four different cross section shapes are simulated numerically to

look at the isolated roughness flow assumption, length to development, strength of secondary

flow and strip induced roughness. This is done in chapter 6 after a walk through of the

theory, numerical methods and software used. The results are discussed in chapter 7.



Chapter 2

Theory of fluid motion

To facilitate the discussions about the methods used in this thesis, the central theory needed

is presented in this chapter. This includes the assumptions made in calling a fluid continuous,

via the Navier-Stokes equations to the models used to solve them and the numerical methods

employed in doing so.

2.1 General assumptions

2.1.1 Continuum hypothesis

At a microscopic level, a fluid consists of molecules in constant motion. The ratio of the mean

free path between these particles, l, and the smallest macroscopic flow structure, L, is the

Knudsen number Kn ≡ l/L. To treat the fluid as a continuum, Kn� 1 is a constraint. One

can examine air at atmospheric pressure as an example. The mean free path is 10−8 m, and

the average time between collisions for a particle is 10−10 s (Pope [2000]). When dealing with

a system of small length scales, say 10−4 m, and high velocities, 102 m/s, the time scale is

10−6 s. Our Knudsen number is then Kn = 10−8 m/10−4 m = 10−4, and satisfies the criteria

for a continuum. When dealing with water, which is denser than air, and systems with larger

scales and lower velocities, the Knudsen number will be orders of magnitude smaller, and it

can safely be treated as a continuum.

7
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2.1.2 Newtonian fluids

All the fluids used here are assumed to be Newtonian, defined as fluids where the viscous

stresses scale linearly with the local strain rate.

2.1.3 Incompressibility

The assumption of incompressibility is made in the making of the subsequent equations.

This excludes flows at high Mach numbers, flows of mixed fluids and flows with large internal

differences in density or temperature.

2.2 Conservation laws

2.2.1 Conservation of mass

The equations of fluid motion are based on the notion of a control volume with a surface S,

a volume V and a unit normal vector n. The mass of the control volume is then:

M =

∫
V
ρ dV (2.1)

The net flow across the surface is given by∫
S
ρ(u · n)dS, (2.2)

and without internal sources, mass conservation implies that it equals the change in mass:

d

dt

∫
V
ρ dV = −

∫
S
ρ(u · n)dS. (2.3)

The minus sign entails that mass is lost when it flows out of the control volume. Pulling

the time derivative inside of the integral can be done due to the control volume being constant

in time. Gauss’ theorem is applied to the surface integral, leading to
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∫
V

∂ρ

∂t
dV = −

∫
V
∇(ρu)dV, (2.4)

after which collecting the terms on the left side gives∫
V
(
∂ρ

∂t
+∇(ρu))dV = 0. (2.5)

As this result is true however big or small the control volume is, the term inside the

integral must be zero. Using index notation in place of ∇ gives∫
V
(
∂ρ

∂t
+
∂(ρui)

∂xi
)dV = 0. (2.6)

In incompressible flow, the density is constant along fluid paths. Introducing the material

derivative:
D

Dt
=

∂

∂t
+ ui

∂

∂xi
(2.7)

For the density, the material derivative becomes

∂ρ/∂t+ ui∂ρ/∂xi . (2.8)

This is zero due to the incompressibility, leaving

∂ui
∂xi

= 0. (2.9)

This shows that the continuity equation for incompressible flows describes a divergence free

velocity field.

2.2.2 Conservation of momentum

The formulation of conservation of momentum is based on Newton’s second law, stating that

the change of momentum on an element equals the sum of forces acting on it. The material

derivative D(ρu)/Dt is the momentum change, and the forces consist of body forces ρf and

surface forces P. Our starting point becomes:

ρ
Du

Dt
= ρf + P. (2.10)
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The only body force considered here is gravity, g. Other body forces, not accounted for,

include magnetic and electric fields. Our surface forces are pressure and viscous forces. To

derive the momentum equation a differential element, shown in figure 2.1,is used. Only two

spatial directions are considered.

Figure 2.1: A differential element of dimension dx, dy, dz. Shown are stresses acting
on the (y,z) planes.

σ is the total stress tensor. When written σij, i is the normal direction of the plane, and j

refers to the direction of the stress component. Tallying up all forces acting in the x-direction

gives:

Fx = (σxx +
∂σxx
∂x

dx− σxx) dy + (σyx +
∂σyx
∂y

dy − σyx) dx

= (
∂σxx
∂x

+
∂σyx
∂y

) dxdy,

(2.11)

with equivalent systems in the y and z-directions. The general expression is F/dV = ∇σ.

Splitting σ into pressure and viscous forces:

σ = τ − Ip, (2.12)

with I being the identity matrix. The viscous tensor is given by the assumption of the

fluid being Newtonian, and reads:

τij = µ (
∂ui
∂xj

+
∂uj
∂xi

) . (2.13)
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The surface forces in 2.10 can now be written as:

P =
F

dV
= ∇ · τ −∇p. (2.14)

By combining the results of 2.10, 2.13, 2.14 and the divergence free criterion of 2.9, the

momentum equation can be constructed:

ρ
Du

Dt
= ρg−∇p+ µ∇2u. (2.15)

If the fluid density is constant, the gravity term can be incorporated into a modified

pressure (Pope [2000]). To do this, one starts by defining a potential ψ ≡ |g|z. This leads to

the formulation:

ρg = −ρ∇ψ = −p|g|e3 (2.16)

making sure that gravity acts in the negative z-direction and letting e3 be a unit vector in

the z-direction. Defining a modified pressure p̃:

p̃ ≡ p+ ρ|g|z, (2.17)

having the property

∇p̃ = ∇p+ ρ∇ψ. (2.18)

Substituting 2.16 and 2.18 into the momentum equation, the gravity term is eliminated:

ρ
Du

Dt
= −∇p̃+ µ∇2u. (2.19)

The tilde is omitted in the following, but the equation used is 2.19, with modified pressure.

Arriving finally at the complete Navier-Stokes equations, here written together for com-

pleteness:

∂ui
∂xi

= 0 (2.20)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xjxj

(2.21)



CHAPTER 2. THEORY OF FLUID MOTION 12

For small domains with moderate Reynolds numbers, the Navier-Stokes equations can

be solved directly with numerical methods, meaning that all the turbulent frequencies and

features of the flow are resolved. When the need for accuracy is lower or the available

resources are limited, one has to resort to modelling of some kind. The methods of solving

the equations are usually split into three categories:

Direct numerical simulation (DNS)

In DNS, the continuity and momentum equations are solved directly. All relevant scales

are resolved, and the results can be used to gain insight into flow configurations and verify

other models. The downside comes with the large amounts of computing power needed; the

number of grid points scale as Re9/4, while the time steps grow as
√
Re (Rogallo and Moin

[1984]). As a consequence, DNS is mostly used for research purposes.

Large eddy simulation (LES)

For practical and engineering applications, LES finds more use than DNS. Here the large

scales are simulated directly, while the viscous scales are modelled. The cut off between

direct simulation and modelling is set so as to resolve a certain percentage of the flow energy,

while the dissipation happens in the sub-grid scales. LES is computationally cheaper than

DNS. It has problems with wall-bounded flows, where it needs to tend to DNS levels of

resolution to capture the relevant scales. To circumvent this, a subcategory called Detached

eddy simulation (DES) uses RANS close to the wall and LES away from it.

Reynolds-averaged Navier-Stokes equations (RANS)

The last category of models are under the umbrella of RANS. Here another set of equations,

shown in section 2.3, are solved in place of the Navier-Stokes equations. This reduces the

computational requirements at the cost of decreased accuracy. It sees wide use in engineering

applications due to the body of testing the models have been through Pope [2000].
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2.3 Reynolds-averaged Navier-Stokes equations

The idea behind the RANS equations is to treat the flow statistically. This starts by splitting

the velocity field into an average and a fluctuating part:

u(x, t) = <u(x, t)>+ u′(x, t) (2.22)

The important concept here is the statistical mean, denoted <>. It is defined as the integral

over the sample space, weighted by the probability density function (Pope [2000]). As the

PDF is often not known a priori, the statistical average can be approximated by ensemble

averaging of N experiments:

<u(t)>N =
1

N

N∑
n=1

un(t) . (2.23)

In the case of statistically stationary flow, one can perform a time average instead:

<u(t)>T =
1

T2 − T1

∫ T2

t=T1

u(t) dt . (2.24)

If the flow is spatially homogeneous, one can use spatial averaging:

<u(t)>L =
1

L3

∫∫∫
Li

u(xi, t) dxi . (2.25)

In either case the velocity profile becomes smoother, as shown in figure 2.2.

Applying the statistical average to Navier-Stokes, noting that the equations are divergence

free and that <u′> = 0, gives the Reynolds averaged Navier-Stokes equations. The notation

used here is ui,j ≡ ∂ui/∂xj.

<ui>, i = 0 (2.26)

∂t<ui>+ (<ui><uj>),j = −1

ρ
<p>,i + ν<ui>,jj −<u′iu′j>,j (2.27)

The act of averaging brings up a new unknown. It is underlined above, and is called Reynolds

stress: R ≡ <u′iu
′
j>. To see why it is deemed a stress, the RANS equations can be rewritten
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Figure 2.2: Instantaneous and ensemble averaged velocities.

like this:

ρ∂t<ui>+ ρ(<ui><uj>),j︸ ︷︷ ︸
material derivative of average velocity

= (µ<ui>,j −<p>δij − ρ<u′iu′j>),j︸ ︷︷ ︸
divergence of stress

(2.28)

Using a divergence operator on the right hand side, these terms can be transformed into

surface integrals by Gauss’ theorem when using the integral form of the equations. Now the

stress term makes sense, as they are indeed acting on the surface of the fluid element.

The closure problem

By introducing the statistical averaging, a new variable containing higher order moments of

the original variables appears. This is called the closure problem, and is as consequence of the

Navier-Stokes equations being non-linear. To close the equations, some level of modelling is

required. As the unknown disappears in laminar flow (the fluctuations are zero), the models

are called turbulence models. Which level of closure one decides to go to determines the

number and complexity of the equations to be solved.
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2.4 Derived quantities

In addition to the four unknowns in the Navier-Stokes equations (three velocity components

and pressure), other variables and equations can be derived through algebra.

2.4.1 The kinetic energy equation

Kinetic energy is defined as:

Ek =
1

2
uiui (2.29)

To derive a transport equation for kinetic energy, the operator u · () is applied to the Navier-

Stokes equations. All the derivations can be found in chapter five of Pope [2000]. The

resulting equation reads:

∂Ek
∂t

+ uj
∂Ek
∂xj

+
1

ρ

∂uip

∂xi
= 2ν

∂uiSij

∂xj
− 2νSijSij (2.30)

Another term appearing here is the rate of strain tensor S:

Sij ≡
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (2.31)

The RANS kinetic energy equations

By looking at the individual contributions of the mean and fluctuating field, the mean and

turbulent kinetic energy equations can be constructed.

k ≡ 1

2
<u′iu

′
i> (2.32)

is the turbulent kinetic energy, and is half the trace of R.

E ≡ 1

2
<uiui> (2.33)

is the kinetic energy of the mean field. The transport equation for k:

∂k

∂t
+ uj

∂k

∂xj
+

∂

∂xj
(
1

2
<u′iu

′
ju
′
j>+

<u′ip>

ρ
) = ν∇2k + P − ε̃ . (2.34)
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And for E:

∂E

∂t
+

∂

∂xj
(<uj>Ek +<uj><uiuj>+

<uj><p>

ρ
− 2ν<ui>Sij) = −P − ε . (2.35)

The new terms here are the production

P ≡ −<u′iu′j>
∂<ui>

∂xj
, (2.36)

the mean dissipation rate

ε ≡ 2νSijSij (2.37)

and the pseudo-dissipation rate

ε̃ ≡ ν<
∂u′i
∂xj

∂u′i
∂xj

>. (2.38)

The latter is in most cases virtually equal to the dissipation rate, but simplifies the turbulent

kinetic energy equation a lot. Note here that the production term appears with opposite

signs in the two equations. As P is almost always positive, it transports energy from the

mean field to the the fluctuating one. The dissipation term is a sink term in both equations,

being definite positive and appearing with a negative sign.

2.4.2 Reynolds stress transport equations

One can also derive transport equations for the Reynolds stresses by starting with Navier-

Stokes equations for the instantaneous field and the RANS equations, and subtracting one

from the other. This is then multiplied by uj, averaged and added to the result of doing the

same with ui. The end result looks like this (Durbin and Reif [2011]):

D

Dt
(u′iu

′
j) +

∂

∂xk
Tijk = Pij +Rij − εij. (2.39)

There are three new terms here. The turbulent transport:

Tijk ≡ u′iu
′
ju
′
k + p′u′jδik + p′u′iδjk − ν

∂u′iu
′
j

∂xk
. (2.40)

The production tensor, of which half the trace (i = j) is equal to 2.36:

Pij ≡ −u′juk
∂ui
∂xk
− u′iu′k

∂uj
∂xk

. (2.41)
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A very important term, the pressure-strain tensor:

Rij ≡
p′

ρ
(
∂u′j
∂xi

+
∂u′i
∂xj

) (2.42)

Lastly, the dissipation tensor, again with the property that half the trace equals the pseudo-

dissipation rate 2.38:

εij ≡ 2ν
∂u′i
∂xk

∂u′j
∂xk

(2.43)

Half of the trace of 2.39 is the turbulent kinetic energy equation, 2.34.

Head loss

Because a vector field can be hard to read, a bulk description of the flow energy is often used.

The change in velocity height, quantified by the Bernoulli equation, over a stretch is referred

to as head loss.

(
U2

1 − U2
2

2g
) + (z1 − z2) + (

p1 − p2

ρ
) = Head Loss1−2 (2.44)

2.5 Wall effects

At a wall, the no-slip condition gives zero velocity. In the near field, viscosity plays a large

role due to the lower local Reynolds number. As a result, the velocity profile looks very

different than in the free stream (Pope [2000]). For the inner part of attached boundary

layers in turbulent flows, there are characteristic zones based on the length scale wall units:

y+ ≡ u∗y

ν
, (2.45)

with

u∗ ≡
√
τw/ρ. (2.46)

The velocity scale reads:

u+ ≡ <u>

u∗
. (2.47)

Figure 2.3 shows a velocity profile obtained through DNS by John Kim and Moser [1987],

compared with the stipulated wall laws of Prandtl [1938] and Von Kármán [1930].
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Figure 2.3: The velocity profile close to the wall. Solid line is DNS data from John Kim
and Moser [1987], dotted line is the wall law.

Figure 2.4: The distinct zones close to the wall as defined by Pope [2000].
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Figure 2.5: Budget of turbulent kinetic energy from John Kim and Moser [1987].
Figure taken from Pope [2000].

As the velocity profile changes close to the wall, so does the terms of the turbulent kinetic

energy equation 2.34. Figure 2.5 shows the energy budget. Production, viscous diffusion and

dissipation all finds their peak values at y+<20. This makes modelling this part of the flow

challenging in terms of resolution, discussed further in section 2.6.2.

2.6 Turbulence modelling with RANS

Almost all engineering flows are turbulent (Pope [2000]), characterized by a high Reynolds

number, Re ≡ UD
ν

. Turbulent flows are distinguished by a large separation of scales, ir-

regularity, complex vortical motion, larger dissipation of energy and increased transport of

momentum, mass and heat. The first characteristic can prove problematic, seeing that the

ratio of the largest to the smallest scales grow as Re3/4 (Kolmogorov [1941]). Turbulence

models remove the need to model these scales in exchange for a lower accuracy.

A family of turbulence models which sees wide use in practical applications is collectively

known as Reynolds Averaged Navier-Stokes or RANS models. They are based on equations

2.26 and 2.27. To make a closed system of equations, the Reynolds stress needs to be supplied,

and the models differ in how they do this.
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2.6.1 First order closure

The first family of models are those that use some scalar quantity to connect the Reynolds

stress to the other, known quantities of the flow. This is called first order closure.

One subsection of first order models use turbulent viscosity to model the Reynolds stress.

They are collectively known as turbulent viscosity models, and are based on the Boussinesq

hypothesis (Boussinesq [1877]). The analogy made is based on the stress/strain relationship

for a Newtonian fluid:

σij = ρν(ui,j + uj,i)− δijp, (2.48)

with ρν acting as a proportionality constant. Extrapolating this to the turbulent stress gives:

<u′iu
′
j> =

2

3
kδij − 2νTSij (2.49)

or, with the Reynolds stress anisotropy defined as aij ≡ <u′iu
′
j>− 2

3
kδij:

aij = −2νTSij. (2.50)

The new variable here is νT , turbulent viscosity. By supplying this, the system is closed.

The Boussinesq hypothesis is built on two assumptions. The first one is that the anisotropy

of the Reynolds stress scales with the gradients of the mean flow, and the second is that the

relationship is the one written above. A further discussion of their pros and cons are made

in section A.1 in the appendix.

The k-epsilon model

The most popular of the turbulent viscosity models is the k-epsilon model. Here, the closure

of the turbulent viscosity is done by way of turbulent kinetic energy and dissipation rate.

The construction of the relationship is dimensional: kinematic viscosity has dimension m2/s,

kinetic energy has dimensions m2/s2, and dissipation has dimensions m2/s3. The formula

then has to be on the form:

νT = Cµk
2/ε (2.51)

with Cµ being constant. Given the fields of k and ε, the equations are closed. The

transport equation for k, 2.34, can be rewritten to have one unclosed term by introducing
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T′, where Ti = 1
2
<uiujuj>+<uip>/ρ− 2ν<uisij>. The full equation then reads:

Dk

Dt
= −∇ ·T′ + P − ε, (2.52)

and is closed with the specification of T′. This is modelled with a gradient-diffusion hypoth-

esis:

T′ = − νt
σk
∇k, (2.53)

and the final equation is
Dk

Dt
= ∇ · ( νt

σk
∇k) + P − ε. (2.54)

The constant, σk, is one of five total in the standard k-epsilon model, and is set to unity.

For ε, the original transport equation is not used at all. Instead, a fully empirical model

equation, based on that for k, is employed:

Dε

Dt
= −∇ · ( νt

σε
∇ε) + Cε1

Pε
k
− Cε2

ε2

k
. (2.55)

The production and dissipation terms are transformed using ε/k times a constant. The full

list of constants in the standard model is:

Cµ = 0.09 Cε1 = 1.44 Cε2 = 1.92

σk = 1.0 σε = 1.3

2.6.2 Wall modelling

The k-epsilon model is well tested in- and outside of its domain of applicability. Problems

arise close to the wall, as the tuning of the model coefficients is done at high Reynolds

numbers. As the local Reynolds number decreases, so does the accuracy of the model. The

steep gradients of velocity and turbulent quantities normal to the wall means that a very fine

grid needs to be employed here in order to capture the gradients adequately (Pope [2000]).

A common estimate is 10 grid cells in the viscous region (y+ ≤ 5), as given by Nikitin

et al. [2000]. It can be problematic if one chooses to make the cells too flat in an attempt to

decrease the total amount, as a high aspect ratio can degrade the results or lead to instability

(Olsen [2012]). There is also a danger of oscillations in the solution, giving negative k and ε

values (Ferziger and Peric [2012]).

If the flow is somewhat parallel to the wall, wall functions can be applied. Boundary
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conditions are applied at a certain distance from the wall, inside the log layer (y+ ≈ 50).

The following relations are taken from Pope [2000], and are also found in OpenFOAMs

implementation, summed up by Liu [2017]. The standard log-law reads:

<u> = u∗(
1

κ
ln y+ +B), (2.56)

with the von Karman constant κ = 0.41 and B = 5.5 (Pope [2000]). Assuming a balance of

production and dissipation gives

ε =
u∗3

κy
, (2.57)

and the turbulent viscosity formulation given in section 2.6.1 allows writing:

−<u′v′> = u∗2 = C1/2
µ k . (2.58)

For the first grid point, where the boundary conditions are applied, the subscript yg is used.

This allows the definition of

u∗nominal ≡ C1/4
µ k1/2

g , (2.59)

with a corresponding estimate of y+
g :

y+
g ≡

ygu
∗
nominal

ν
. (2.60)

The nominal mean velocity is given by the log-law:

<u>g nominal = u∗nominal(
1

κ
ln y+

g +B) . (2.61)

To make the solution more robust, the shear stress is used as a boundary condition in the

mean momentum equation:

−<u′v′>g = u∗2nominal
<u>g

<u>g nominal

. (2.62)

This acts as a restoring force if <u>g exceeds <u>g nominal. For k and the normal stresses,

a zero-normal gradient boundary condition is used, while epsilon gets evaluated based on

equation 2.57:

εg =
u∗3nominal
κyg

. (2.63)

Wall functions can reduce the computational requirements substantially, as they lower the

number of cells necessary close to the wall. There are however cases where their accuracy is

poor; separation zones and flows with strong adverse pressure gradients being two examples
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(Wilcox et al. [1993]).

2.7 Flow development

A flow is said to be developed when its mean statistics do not change in the streamwise

direction. The quantity to be investigated in this thesis is head loss, and its value between

equally spaced measurements along the tested pipes. Different estimates for the length needed

to be developed are found in the literature; Zagarola and Smits [1998] uses the result of Dean

and Bradshaw [1976] to come up with their formulas. Splitting the development into a laminar

to turbulent transition, a boundary layer development length and a large-eddy development

length, they find different Reynolds number dependencies for the three. The large-eddy

development has a minute impact on head loss, as the secondary currents generated by the

strips will overshadow them by an order of magnitude or more in terms of momentum transfer

to the walls. Combined with the strips acting as tripping devices for turbulence, the length

to be used for an estimated length to development is the boundary layer development length.

This has an inverse scaling with the skin friction (Zagarola and Smits [1998]); L/D ≈ C/λ,

with λ being skin friction, D is channel height and C a constant. Seeing as skin friction

decreases with increasing Reynolds numbers, one will expect L to increase with the Reynolds

number in a smooth pipe. Again, the strips will interfere with this in some a priori unknown

way. A result giving an upper limit for what might be expected is L = 30D at Re = 105

from Dean and Bradshaw [1976].

2.8 Secondary currents

Secondary currents are flows in straight channels that do not align with the stream direction.

They are split into two categories, depending on their origin; Prandtl’s first and second kind,

after Ludwig Prandtl. Prandtl [1952] contains the theoretical basis for this section.

The mechanism behind secondary currents of Prandtl’s first kind is the centrifugal force

exerted as a result of mean curvature of the flow. The force balance between the centrifugal

acceleration and the vertical pressure gradient leads to circulation in the plane.

The second kind is generated by the turbulence. Citing Nezu et al. [1993], the foremost

driving factor is anisotropy between
√
v′v′ and

√
w′w′. These are the fluctuations in y-

and z-directions respectively, in a system where the main flow direction is x. Looking at
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the production term from the kinetic energy transport equation, equation 2.36, and setting

i = 2 and j = 3 or vice versa explains why. An increase in anisotropy comes with increased

production of turbulence at the expense of the kinetic energy of the mean field.

Figure 2.6 shows the mechanisms behind the generation of secondary currents of Prandtl’s

second kind, as well as their interconnections. Most relevant to the results of this thesis is the

increase of momentum and energy transfer that comes with secondary currents, regardless

of their origin. This leads to increased head loss in an otherwise smooth pipe, as energy is

transferred from driving the flow forward to generating turbulence.

Figure 2.6: Mechanisms generating secondary currents of Prandtl’s second kind, taken
from Nezu et al. [1993].



Chapter 3

Numerical methods

3.1 Computational domain

To handle a domain of interest numerically, it needs to be discretized. To discretize an

equation encompasses turning something continuous into something discrete. For the Navier-

Stokes equations, the differential equations are turned into algebraic ones, while a discrete

grid is created to represent the originally continuous solution space.

3.1.1 The finite volume approach

The finite volume method is one of the two main ways of converting partial differential

equations into algebraic ones, the other one being finite differences. While the finite difference

method is based on replacing derivatives directly with differences, akin to the definition of

the derivative, the finite volume method is based on an idea of using the integral form of the

governing equations. The computational domain gets split up into finite volumes, also called

grid cells. The variables are computed as mean values inside of each cell, and these values

are the unknowns. The equations are discretized from their integral form, enforced by flux

balances over the cell faces. The latter fulfills the conservation properties of the governing

equations by design, given that three conditions are met (taken from Uhlmann [2012]):

• Coverage: The whole domain needs to be covered by the grid cells.

• Overlap: If cells overlap, each cell face must appear an even amount of times to ensure

conservation, as fluxes going out of one cell need to appear in another.

25
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• Flux uniqueness: The fluxes should be computed on cell faces, not for cells as a

whole, and then at the end of the loop be added to their cells. This ensures that the

same volume of water is not being accounted for multiple times in one loop through

the domain.

Due to its flexibility in terms of grid arrangements as well as guaranteed conservation,

the finite volume approach sees wide use in CFD programs today, among them OpenFOAM.

3.1.2 Grids and truncation error

As mentioned above, the continuous computational domain is covered by discretely sized grid

cells. The difference between the real result and the one obtained from a discretization is

named truncation error. The size of this error is decided by the grid point spacing together

with the magnitude of the gradients and choice of numerical scheme. This is covered in

section 3.2.

3.1.3 Boundary conditions

For equations that are not strictly hyperbolic, where only incoming information needs to be

specified (Hirsch [2007]), initial and boundary conditions are needed. Some are given by the

physics of the problem, an example being the no-slip condition on the wall leading to zero

velocity here. Others need to be decided, and making practical as well as physically sound

choices here can make or break a calculation. Boundary conditions can in general be put

into three categories:

• Dirichlet boundary conditions: The variable takes a set value at the boundary.

• von Neumann boundary conditions: The gradient of the variable takes a set value

at the boundary.

• Mixed type boundary conditions: Some combination of the two above.
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3.2 Analyzing numerical schemes

To solve the original partial differential equations on a discrete grid, a numerical scheme

is needed. In order to ensure that the solution is sound, the scheme needs to have three

properties (Hirsch [2007]);

• Consistency: The algebraic equation should go to its original PDE when grid spacing

and time step goes to zero. In other words, the limit of the truncation error should be

zero in the aforementioned case.

• Convergence: The solution of the algebraic equation should tend to the solution of

its original PDE when grid spacing and time steps goes to zero. Note that a consistent

scheme may not be convergent if it is not stable.

• Stability: Small errors introduced by machine precision or round-off error should not

grow without bounds.

3.2.1 Consistency

To prove consistency means showing that the truncation error goes to zero, which starts by

finding it. An example of a truncation error, adopted from Uhlmann [2012], is found by

studying the second order approximation of a first derivative, ∂u
∂x

. The goal is to approximate

this derivative using the discrete values on an equally spaced grid. Here ui, ui−1 and ui−2 are

used, i being the index of the grid point where the derivative is to be evaluated. At the end,

the equation should have this form:

(u,x)i =
aui + bui−1 + cui−2

∆x
+O(∆x2), (3.1)

achieving a second order truncation error. Starting by performing Taylor expansions around

a grid point:

ui = ui (3.2)

ui−1 = ui −∆x(u,x)i +
∆x2

2
(u,xx)i −

∆x3

6
(u,xxx)i + ... (3.3)

ui−2 = ui − 2∆x(u,x)i +
(2∆x)2

2
(u,xx)i −

(2∆x)3

6
(u,xxx)i + ... (3.4)
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Now, the equations can be tallied up:

aui + bui−1 + cui−2

∆x
=

ui
∆x

(a+ b+ c)− (b+ 2c)(u,x)i +
∆x

2
(b+ 4c)(u,xx)i +O(∆x2) (3.5)

The conditions that have to be met are:

• a+ b+ c = 0, to avoid the error increasing as 1
∆x

;

• b+ 2c = −1, to have the wanted derivative with a factor of one;

• b+ 4c = 0, to get rid of the first order error term.

This gives the factors a = 3/2, b = −2 and c = 1/2. Finally, equation 3.1 with the correct

weights:

(u,x)i =
3ui − 2ui−1 + ui−2

2∆x
+ ε (3.6)

The leading error term is the first term that gets omitted from the approximation:

ε = −∆x2

6
(b+ 8c)(u,xxx)i +O(∆x3) = −∆x2

3
(u,xxx)i +O(∆x3) (3.7)

Here it is a second order term, meaning the approximation is in fact of second order. Another

observation is that the terms vanish with decreasing ∆x, and the scheme is thus proven to

be consistent.

3.2.2 Stability

Analyzing the stability can be done in several ways. Many methods are restricted to linear

problems, and almost all of them run into problems when complex schemes and boundary

conditions are being investigated. One of these, named the Equivalent Differential Equation

method, is used underneath in section 3.3.1. By instead turning the problem into one with

periodic boundary conditions, a von Neumann analysis can be performed. A von Neumann

analysis is one of the most general ways of proving the stability of a scheme. Note that the

boundaries need separate treatment here. The key trick to a von Neumann stability analysis

is turning the solution into a Fourier series in the spatial frequency domain. To do this, the

domain is mapped onto the length (−L, 0), thus letting itself being mapped onto a finite

Fourier series in the domain (−L,L). The method then goes like this (Hirsch [2007]):

1. Replace all the terms of the form un+k
i+m with un+k

i+m ⇒ V n+keI(i+m)θ.
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2. Simplify, dividing all the terms by eIiθ.

3. From the resulting relation, extract an error amplification factor G ≡ V n+1

V n .

4. Check the criterion |G| ≤ 1 for all angles −π ≤ θ ≥ π.

Step number four ensures that introduced errors do not grow without bounds using the

scheme in question. An example of this method being used is found in Konangi and Palakurthi

[2016], where the stability of the SIMPLE algorithm is being analyzed.

3.2.3 Convergence

Proving convergence is hard. Often, the solution to the original PDE is not known before-

hand. Instead, a theorem is used:

Given a properly posed initial value problem (A), and a finite difference approx-

imation to it (B) that satisfies the consistency condition, stability is a necessary

and sufficient condition that B is a convergent approximation.

Lax and Richtmyer [1956]

This allows taking convergence for granted if the scheme used is proven to be stable and

consistent.

3.3 Other traits of numerical schemes

Besides the three properties from section 3.2, there are other important phenomenon one

needs to have an idea about when dealing with numerical schemes.

3.3.1 Numerical diffusion

Turbulent flow is convection dominated, as the Reynolds number, being high, can be inter-

preted as the ratio of convective to diffusive motion. A lot of insight into the behaviour of

numerical solutions to the Navier-Stokes equations can therefore be gained by ignoring the
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diffusion, and study a simple convection equation:

u,t + au,x = 0 with a constant. (3.8)

An explicit, forward difference in time (using time nodes n and n + 1) with a first order

upwind scheme in space (using space nodes i and i− 1) is employed. The scheme reads:

un+1
i − uni

∆t
+

a

∆x
(uni − uni−1) = ε with ε being the truncation error. (3.9)

Taylor expansions around uni are used to find replacements for the other grid points:

un+1
i = uni + ∆t(u,t)

n
i +

∆t2

2
(u,tt)

n
i +

∆t3

6
(u,ttt)

n
i + ...

uni−1 = uni −∆x(u,x)
n
i +

∆x2

2
(u,xx)

n
i −

∆x3

6
(u,xxx)

n
i + ... (3.10)

Inserting the Taylor expansions into 3.9:

{u,t + au, x}in +
∆t

2
(u,tt)

n
i +O(∆t2,∆x2) = 0 (3.11)

The term in curly brackets is the original equation (3.8), while the rest of the left hand side

is the resulting truncation error ε.

Notes to be made here are that the scheme is consistent, with the error going to zero with

∆t and ∆x, and that the truncation error is of first order in time and space. The next step

is to replace all higher order time derivatives by space derivatives. To achieve this, equation

3.8 is differentiated with respect to time, giving

u,tt + a(u,x),t = 0

u,tt = −a(u,t),x (3.12)

where the last change can be done due to the interchangeability of time and space derivatives.

Using the original equation 3.8 to replace u,t gives

u,tt = a2u,xx. (3.13)

This is then entered into 3.11 to yield

{u,t + au, x}in =
a∆x

2
(1− a∆t

∆x
)(u,xx)

n
i +O(∆t2,∆x2). (3.14)
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The leading error term is now a second derivative in space; to the leading error term, a

convection-diffusion equation is solved in place of the original convection equation. This

leads to numerical diffusion, smearing out the convected quantity. The term a∆x
2

(1− a∆t
∆x

) is

often coined numerical viscosity.

Another note about this new term introduced by the discretization, is that it puts an im-

portant restraint on the grid spacing and time step; if the numerical viscosity is negative, the

error will grow without bounds. A necessary condition for stability, and thereby convergence,

is therefore
a∆t

∆x
≤ 1, (3.15)

known as the Courant–Friedrichs–Lewy condition or CFL number.

3.3.2 Boundedness

Some values are bounded by physical laws. Kinetic energy k is for example always positive.

Any numerical scheme should optimally guarantee boundedness of such variables. It is dif-

ficult in practice; only some first order schemes (see 3.4.2) holds up to this wish. Higher

order schemes can produce unbounded results, especially if steep gradients are not properly

captured by the grid (Ferziger and Peric [2012]).

Use of limiters

To improve the boundedness of higher order schemes, flux limiters can be used. OpenFOAM

use the Total Variation Diminishing method, introduced by Harten [1983], to enable switching

between higher and lower order schemes at discontinuities. By using a lower order scheme

with more dissipation close to large gradients, the simulation is kept stable at the cost of

accuracy.

3.3.3 Iterative methods

Fluid mechanics problems are usually represented by large matrices. These can always be

solved by Gauss elimination, but this method is extremely computationally expensive for

most matrices of the size seen in CFD. Instead, iterative methods are usually employed. A

solution is guessed, and an equation is used to improve it. Given a cheap method and a small

total number of iterations needed, this method is often less costly than a direct solution
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(Ferziger and Peric [2012]). Starting with a system

Aφ = Q , (3.16)

we arrive at a solution φn after n iterations. This is not an exact solution, but retains a

residual

Aφn = Q− ρn. (3.17)

The iteration error is defined as

εn ≡ φ− φn, (3.18)

and the residual is thus

Aεn = ρn. (3.19)

The goal of any iterative method is to drive this residual down, and with it the iteration

error.

3.3.4 Accuracy

All numerical solutions are only accurate to a certain extent. Common error sources are

(Casey and Wintergerste [2000]):

• Modelling errors, introduced by the equations themselves not perfectly picturing the

actual physics.

• Numerical errors, also known as discretization errors. Discussed in section 3.2.

• Convergence errors or iteration errors. Discussed in section 3.2 and 3.3.3.

• Round-off errors, due to machine precision being finite.

• Boundary- and initial condition errors.

• Human errors.

• Bugs in the software.
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3.4 Schemes used in this thesis

3.4.1 SIMPLE

SIMPLE, or Semi Implicit Method for Pressure Linked Equations, is a classical method for

solving a problem with the Navier-Stokes equations: for incompressible flow, the pressure

and velocity are tightly linked. There are however no explicit way to compute the pressure

field from the momentum equation (Moukalled et al. [2016]). A solution to this was proposed

by Patankar and Spalding [1983], and is now widely used in commercial CFD codes.

The method employed by Patankar and Spalding [1983] for solving the momentum and

continuity equations is known as a segregated approach. The solution, where both the pres-

sure and velocity field should satisfy both equations, is found by letting each of the fields

satisfy them separately and then correcting them iteratively, using a pressure correction

equation. The intermediate solutions might violate mass or energy conservation, as only one

equation is enforced at a time. The procedure is summarized as following by Moukalled et al.

[2016]:

1. Guess a velocity field, un, and a pressure field, pn.

2. Solve the momentum equation for the new velocity field, u∗f .

3. Update the mass flow rates in line with u∗f to get a mass flow field, m∗f .

4. Use m∗f to get the pressure correction field, p′, through the pressure correction equation.

5. Update the pressure and velocity fields to satisfy the continuity equation using the

pressure correction field.

6. Set un and pn to equal the updated fields.

7. Return to step two and repeat until convergence.

Stability

Konangi and Palakurthi [2016] did an extended von Neumann stability analysis of the scheme,

verified by numerical trials. The stability region for a 1D case is shown in figure 3.1. For the

range of flow velocities that occur in fluid dynamics, the SIMPLE algorithm is stable. This

is the far left of the graph, at very low Mach numbers.
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Figure 3.1: The stability region for a 1D SIMPLE scheme. Shown are CFL and Mach
numbers. Konangi and Palakurthi [2016].

3.4.2 Upwind

Going by the name of Gauss upwind, the upwind scheme is a first order scheme. A glance

into the OpenFOAM tutorials using foamSearch reveals that it is the most popular scheme

for discretizing k and epsilon. This is due to the focus being on boundedness rather than the

accuracy of these variables.

A thorough testing of the accuracy of this scheme, as well as the ones below, is available at

Holzmann [2018]. He used OpenFOAM and several grids, differing in non-orthogonality and

structure, to look at how the schemes compared to a analyitcal solution of a pure convection

equation. For the upwind scheme, he comments that the scheme is very sensitive to flows at

an angle to the grid, when the diffusive character of the scheme becomes overwhelming. The

upwind scheme is used for k and epsilon in the simulations.

Stability

The stability of this scheme is discussed in section 3.3.1, with the resulting stability limit set

by the Courant number; Co < 1.
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3.4.3 Linear

The linear scheme is a second order scheme, named Gauss linear in OpenFOAM. It is

known for being unstable, and the limited version Gauss limitedLinear is normally used.

Holzmann [2018] comments that it leads to errors growing without bounds if left unchecked

on a nonorthogonal grid. The limited linear scheme is used for νt in the simulations.

Stability

The stability of the central, second order scheme that the linear scheme is based on can be

checked by way of von Neumann analysis.

Using grid points i, i− 1 and i+ 1 on a uniform grid with an explicit forward difference

in time, the scheme looks like this:

un+1
i = uni −

σ

2
(uni+1 − uni−1), defining σ ≡ ∆ta/∆x. (3.20)

Adding the Fourier modes as described in section 3.2.2 yields:

ûn+1eIiθ = ûneIiθ − σ

2
(ûneI(i+1)θ − ûneI(i−1)θ). (3.21)

Dividing by eIiθ:

ûn+1 = ûn(1− σ

2
(eIθ − e−Iθ)). (3.22)

Using the fact that eIa = cos(a) + Isin(a) and that cosine and sine are even and odd,

respectively, G becomes:

G =
ûn+1

ûn
= 1− σ Isin(θ) with 0 ≤ θ ≤ π. (3.23)

The condition for stability is |G| ≤ 1. To make matters easier, |G|2 = GG∗ is computed,

with G∗ being the complex conjugate.

GG∗ = (1− σ Isin(θ))(1 + σ Isin(θ)) = 1 + σ2sin2θ ≥ 1. (3.24)

The scheme is thus unconditionally unstable.
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3.4.4 Linear Upwind

Referenced as Gauss linearUpwind in the fvSchemes file (see 4.4), the linear upwind

scheme is a second order scheme. It uses upwind interpolation weights, and uses an explicit

correction based on the local cell gradient. The scheme is described in Warming and Beam

[1976], which is the base of OpenFOAMs implementation. They refer to it as the MU scheme,

as it is a hybrid of a first order upwind scheme and the second order MacCormack algorithm

(Warming et al. [1973]). It is used here for velocity flux (denoted (phi, U) in fvSchemes)

in the simulations, as it is advisable to have at least second order accuracy for this term

(Ferziger and Peric [2012]). For the linear upwind scheme, Holzmann [2018] comments that

it ”increases the accuracy while being more stable - compared to the upwind and linear

schemes.”

Stability

The scheme has a larger stability bound than the separate algorithms, as it corrects to the

most stable one (Warming and Beam [1976]). Knowing that the upwind scheme has Co < 1

as a limit (see 3.3.1), this is also sufficient when using the linear upwind scheme.



Chapter 4

OpenFOAM

First released in 2004, OpenFOAM is a free, open-source toolbox for CFD developed by

OpenCFD Ltd (OpenCFD [2018b]). At the time of writing, the latest official release is

OpenFOAM-v1712. The version used in this thesis, both on the personal desktop and on

Fram, is version 5.0, released in July 2017.

What sets OpenFOAM apart from most commercial CFD programs is the lack of a GUI.

All input is done with text files, written in C++. Apart from this, workflow is similar to

that of other CFD software. It can be split into three distinct parts:

• Preprocessing: The user decides on the extent of the computational domain, and

creates a mesh. Depending on the size, resolution and complexity of the grid, this can

take anywhere from a few hours to several weeks. A lot of care should be taken here;

garbage in, garbage out applies strongly.

• Solving: Boundary conditions, solver and solver settings, length of the simulation,

available computing power and required quality of the retrieved statistics all influence

the time spent in this step. A steady-state solution where one is looking for mean drag

in a small domain is a lot less expensive than a DNS looking for triple correlations to

tune a Reynolds stress transport model.

• Postprocessing: Depending on the goal, all available statistics can get extracted and

made more accessible with graphs, isovels, streamlines or 2D figures using one of the

vast number of available tools. OpenFOAM comes prepackaged with ParaView, but

can also produce raw data or gnuplot files.

37
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In the following sections, the file structure used by OpenFOAM will be explained, before

the steps above are investigated more thoroughly, including some examples from the expe-

rience gained during the work with this thesis. All names of files and folders are written

in italic (e.g. system), while names of commands are in bold text (e.g. mpirun -np 128

simpleFoam). Modules like ParaView and simpleFoam are in plain text.

4.1 File structure in OpenFOAM

OpenFOAM is not run through a GUI, but rather through file manipulation and command

line arguments. There are many ways to access and run an OpenFOAM case, but only the

standard method used in the tutorials is presented here. In figure 4.1 the file structure of

cavity, a tutorial case, is shown.

Figure 4.1: File structure from a tutorial case.

The 0 folder is a time folder, containing boundary conditions for the solver. During a run,

several file folders with data from the flow field at different times will be made. In constant,

information about the fluid being simulated, transportProperties, and about the turbulence,

turbulenceProperties, resides. The mesh is stored in polyMesh. In system information about
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the solvers is stored. This includes discretization schemes, residual tolerances, time step

lengths and more.

OpenFOAM solvers can also be run in parallel. The decomposeParDict file seen in figure

4.1 contains information about how to decompose the domain.

4.2 Preprocessing

If a pre-decided geometry is to be studied, the choice of computational domain is mostly

given. The caveat is that flow must be aptly developed before it reaches an area where

statistics are extracted. This can be achieved through imposing an inlet profile, having a

intro section or using cyclic boundary conditions. If instead one is looking to investigate a

phenomenon, both the size and shape of the domain must be established from principles.

There are two main tools for generating meshes in OpenFOAM; blockMesh and snap-

pyHexMesh. The former relies only on the dictionary blockMeshDict for input, while the

latter can use information stored in .nas, .stl or .obj files as well as its standard input,

snappyHexMeshDict.

4.2.1 Meshing with blockMesh

For geometries easily defined by blocks or cylinders, blockMesh is an accurate and reliable

tool. Using the input dictionary blockMeshDict as shown in figure 4.2, it creates hexahedral

fully structured blocks. The vertices must be defined, and the edges can be straight lines, arcs

or splines. Number of grid cells and size grading in each direction can be varied. Running

blockMesh generates a mesh, stored in the constant/polyMesh folder as files named points,

boundary, faces and cells.

4.2.2 Meshing with snappyHexMesh

The main tool for meshing complex geometries to use with OpenFOAM is snappyHexMesh.

To run it requires a snappyHexMeshDict, located in the system folder and a background

mesh, stored in the constant/polyMesh folder. This is often generated using blockMesh, but

any hexahedral mesh with an aspect ratio close to one will work. Additionally surface files

that are to be meshed can be placed in the constant/triSurface folder. The main parts of the
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Figure 4.2: An example blockMeshDict, adopted from the grid test.

snappyHexMeshDict used in chapter 6 is shown in figure B.1. snappyHexMesh works in three,

optional stages. Based on a surface file and a location in the mesh it starts by castellating

the mesh. This entails removing any cells not inside the area where the background mesh

cells intersect the surface file, and doing refinement in areas specified by the dictionary. Each

refinement level splits each grid line in two, giving an eightfold increase in number of cells.

Next, it snaps the cell surfaces to that of the surface file(s). Lastly, it adds boundary layers

to the snapped mesh.

Each of these steps are not done in a random fashion; rather, the user is given large

freedom to choose how the mesh is made. This has its pros and cons, as the balance between

a good mesh and reasonable time to completion can be hard to strike. Refinement levels,

quality parameters, snap settings and number of iterations decide the end result. Some

important quality controls made by snappyHexMesh are (OpenCFD [2018b]):

• maxNonOrtho: Limits the non-orthogonality. Defined as the angle made by the

vector between the two adjacent cell centres across the common face and the face

normal.

• maxBoundarySkewness:: Drawing a line between cell centers, the distance from its

intersection with the face to the face centre normalized by the length of the whole line.

• maxConcave: Concavity is set as the largest interior angle of a face.
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• maxFaceThicknessRatio: Limits the aspect ratio of the cells. Calculated as ratio of

longest to shortest edge.

For all of these, high values will often lead to convergence problems or instabilities when

running simulations on the final mesh. Besides the quality parameters, there are several

practical choices to be made in the dictionary. Three of the most important are:

• nCellsBetweenLevels: Sets the number of buffer cells between one level of refinement

and the next. The number one here would signal a twofold jump in cell size, giving a

large stretching ratio.

• featureAngle: An angle in degrees. All cells that see an angle above this will be

refined to the highest level set in the dictionary.

• tolerance: This number times the maximum local edge length gives the radius inside

of which each point searches for a surface to snap to.

The workflow of meshing with snappyHexMesh is largely one of trial and error, as it is

hard to know a priori how a certain tweak to the dictionary will end up affecting the mesh.

To asses the change, it is usually no other way than to mesh the geometry and look at the

result. Besides a visual inspection in ParaView or a similar program, OpenFOAM has a

command line utility called checkMesh. A sample output can be found in figure B.2.

4.3 Solving

OpenFOAM comes with a large number of solvers. The main categories of applications are

(OpenCFD [2018d]):

• Incompressible flows

• Compressible flows

• Multiphase flows

• DNS

• Combustion
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• Heat transfer and buoyancy-driven flows

• Particle-tracking flows

Within the categories, there are specialized solvers for turbulent flows, steady and tran-

sient flows as well as a bunch of other cases. In this thesis, the simpleFoam solver is used. It

is developed for steady state, incompressible flows. The workflow of all solvers are somewhat

similar, but depending on the variables different files and adjustments are necessary. For

incompressible flows, the absolute value of pressure is irrelevant, as it is only a flow variable.

For multiphase flows, a file giving the ratio of fluid in each cell is needed. The files and some

adjustments needed for steady state solvers, more precisely simpleFoam, are up next.

4.3.1 The system folder

Holding all the information about the solution process, the files contained in the system folder

are first in line.

controlDict

An example of a controlDict file can be seen in figure 4.3. Take special note of the entries

regarding time; as simpleFoam is a steady state solver, it gives number of iterations instead

of actual time. To control when data is written, the user can manipulate writeControl

and writeInterval. The entry purgeWrite gives the number of time step folders to be kept,

keeping all if set to 0. If one wishes to execute additional operations on the calculated field

values during run time, these can be entered under functions. As these tools come under the

umbrella of post-processing, they are discussed in section 4.4.

fvSchemes

The schemes used are given in fvSchemes. For the simulations in this thesis, the dictionary

used is shown in figure 4.4. The entries are grouped by type (CFD Direct [2018]):

• ddtSchemes: First and second derivatives in time.

• gdradSchemes: Gradient calculation, ∇.
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Figure 4.3: Parts of the controlDict file used for the simulations.

• divSchemes: Divergence, ∇·.

• laplacianSchemes: Laplacian, ∇2.

• interpolationSchemes: Cell to face interpolation of variables.

• snGradSchemes: The normal component of a gradient, seen from a face.

• wallDist: Distance to wall, used by the LRR model among others.

OpenFOAM comes with a vast number of schemes, but only a few are suited in each

category. To see which schemes are used in the tutorials, a great command line tool is

foamSearch. An output giving the schemes used for the velocity vector divergence is shown

in figure 4.5.

fvSolution

The tolerances and settings of the solvers are controlled with this dictionary (CFD Direct

[2018]). An example used for simpleFoam can be seen in figure B.3. Choices of smoothers,
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Figure 4.4: The fvSchemes file used for the k-epsilon simulations.

preconditioners and fine-tuning of how the problem is solved are done here. When a time

step goes through several iterations, different tolerances can be prescribed for the final step.

This is also relevant for steady state solvers using the SIMPLE algorithm, as the correction

step can be enforced a minimum amount of times. The most important entries are:

• solver: Chooses solver to use.

• preconditioner: Chooses preconditioner to use.

• tolerance: The lower threshold for the residual before the solver stops iterating.

• relTol: The lowest ratio of the residual to the initial residual before the solver stops

iterating.

• pRefValue: For incompressible solvers, only relative pressure matters. This gives a

reference pressure in the cell given by pRefCell.

• relaxationFactors: The amount of under-relaxation to apply to the fields. 0 is no

change between iterations, while 1 is enforcing diagonal dominance.

• nNonorthogonalCorrectors: Specifies the number of times to solve the pressure

correction equation, see section 3.4.1.
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Figure 4.5: Output of using foamSearch to find all the entries named div(phi,U) in the
tutorials. Invoking the option -c counts the number of appearances.

4.3.2 The 0 folder

All the information about the initial fields are placed in this folder, or whichever folder is set

as the start time. Only the boundary conditions used are discussed here; a full list can be

found at OpenCFD [2018c]. In the same manner as for the numerical schemes, foamSearch

can be used to see which boundary conditions the tutorials employ.

U

This file contains the boundary and initial conditions for the velocity field. In the simula-

tions, the walls and inlet take Dirichlet conditions. The walls obey no-slip, while the inlet

takes a fixed value equalling that of the internal field. At the outlet, a modified von Neu-

mann condition allowing reverse flow is applied, called inletOutlet. The U file used in the

simulations can be seen in figure B.4.

p

The pressure field is initiated based on this file. As can be seen in figure B.5, the walls and

inlet take von Neumann zero gradient boundary conditions, while the outlet takes a Dirichlet
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condition, set to zero.

k

The kinetic energy field is read from this file shown in figure B.6. A wall function based

on the equations found in section 2.6.2 is applied at the walls. The inlet takes a Dirichlet

condition with a fixed value, while the outlet uses the same inletOutlet condition as U.

epsilon

Here, the dissipation rate is set. A wall function is used for the walls, while the inlet and

outlet gets a Dirichlet and von Neumann boundary condition, respectively. The file can be

seen in figure B.7.

nut

Here, the boundary field for the turbulent viscosity is set. An important point is that if

one uses a wall function for νt, as is done here, it should also be done in the k, epsilon and

R files. At the inlet, the field is set based on k and epsilon with a boundary condition named

calculated, see equation 2.51. The outlet is assigned a zero gradient boundary condition.

The file can be seen in figure B.8.

4.3.3 The constant folder

The contents of this file are not subject to much change during solving, hence the name. The

polyMesh folder and its contents are aptly explained in previous sections. That leaves two

files; transportProperties and turbulenceProperties.

turbulenceProperties

This file lets the user decide how and if turbulence is modelled. The entry simulationType

governs if the simulation should use a laminar, RANS or LES model. The file used for the

simulations is shown in figure B.9.
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transportProperties

The type of fluid that is being simulated is defined here. As the fluid here is water at room

temperature, the viscosity, under the nu entry, is set to 10−6 m2/s. The file can be seen in

figure B.10.

4.4 Post processing

Having reached a converged simulation, the question is what to do with it. Pure field data

is hard to interpret, so some manipulation or data extraction is necessary. OpenFOAM

comes with a lot of post-processing tools, available through both command line arguments

and for use in dictionaries. An overview can be found under ”Post-Processing CLI” at CFD

Direct [2018]. The upside to this, versus importing the whole case into ParaView, is the

comparatively minute data volume necessary to process. A large case with several million

cells is very heavy to compute on, and requires much more memory than single surface files

or text files.

4.4.1 Sampling

Sampling is done through the command line interface by invoking -func sampleDict to

the post-processing command, or by adding the function to the controlDict file. The layout

of the necessary dictionary is similar, the difference being the header. It is included in the

controlDict, as seen in figure 4.3. The file referenced by #include sample is shown in figure

B.11. Choices to be made in this dictionary are summarized in the following:

• interpolationScheme: Decides whether cell centre data is used, or if some interpola-

tion method taking face values into account is employed.

• setFormat: The output format of the data. Gnuplot is used here, as it formats the

data nicely for plotting afterwards.

• fields: Choose which fields to sample.

• writeControl: When to write the data.



CHAPTER 4. OPENFOAM 48

• type: How the sampling points are decided. The alternative uniform coupled with

a number of points samples uniformly along a line. midPoint is used here, sampling

each time it reaches the halfway point between two faces.

The end result of the sampling as prescribed by figure B.11 is a tab separated files con-

taining z and U values, with a header designed for gnuplot.

4.4.2 Volume field value samples

In addition to sampling along lines or curves, the average, peak or minimum values of volume

fields can be sampled in three-dimensional areas. The way it is done here is by defining cell

zones in snappyHexMesh, and then using the fieldValueDelta function to work on the values

during runtime. The functions are defined in the file referenced by #include headLoss in

figure 4.3. A part of it can be seen in figure B.12. The entries of interest are:

• operation: Which operation the fields should be subjected to. Includes addition,

subtraction and averaging.

• regionType: Whether the object specified by name is a zone, face or something else.

The fields chosen are then specified further within the next brackets, named region. An

example can be seen in figure B.12, where the volume average of total pressure in two regions

is taken.

4.4.3 Streamlines

To visualize how the water flows through the tunnel, streamlines are a great tool. The file

is referenced with #include streamlines in figure 4.3, and can be seen in its entirety in

figure B.13. The entries include:

• lifeTime: Along how many steps the particles should be traced.

• nSubCycle: Number of steps per cell.

The output used here is VTK, which is easy to use with ParaView.
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4.4.4 Cutting planes

Included by #include cuttingPlane in the controlDict file shown in figure 4.3, the cutting

plane dictionary is shown in figure B.14. The only new entry here is the pointAndNormal-

Dict, which tells the user a point inside the plane and the plane normal. The resulting planes

are written in VTK format, and can be studied in ParaView.

4.4.5 Making plots

To visualize the sampled data from section 4.4.1, gnuplot is a great tool. Taking a file like

the one in B.15 as input, it comes with great customizeability. All plots used in this thesis

are made with gnuplot, unless otherwise stated.
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Mesh convergence study

The numerical method used here was shown to replicate laboratory results in my project

work (Mølmann [2017]). The results are shown in figure 5.1, where laboratory and numerical

head losses are compared over a wide range of flow rates.
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Figure 5.1: Results from the project work, showing numerical and laboratory mea-
surements of head loss.

To test the mesh dependency of the type of problems that are to be tackled, a mesh

convergence study is performed.

50
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5.1 Geometry and mesh

For the mesh convergence study, the flow in a 45 cm long tunnel with two strips was solved

with simpleFoam. Both strips were 5 mm high (into the flow) and 1 cm long (in the direction

of the flow). The model can be seen in figure 5.2. Head loss between the inlet and outlet was

Figure 5.2: Geometry used in mesh convergence study. A=0.0208 m2.

measured, as well as a velocity profile along the z-axis at x=33.075 cm. It is best practice

when doing mesh convergence studies to start with the finest mesh, and then coarsen it by

removing every second grid point to arrive at the other ones. This works well for structured

grids, but lacks the flexibility needed when doing local refinement (Oberkampf and Roy

[2010]). As the near field of the wall and strip needs to be refined in order to put y+ within

the log region, each mesh is made separately. For the two coarsest cases, the wall and the

first 5 mm above it is refined up to the level of the second finest mesh, 2.5 mm. For the three

coarsest meshes, the strips and the 5 mm above them were additionally refined to 1.25 mm

to have a minimum resolution of the flow there. The finest mesh had no refinement.
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Cell size Number of cells

1 cm 164173
5 mm 361055
2.5 mm 698786
1.25 mm 4794371

Table 5.1: Base cell size and total number of cells for the four meshes

Variable Internal Inlet Outlet Walls

U [m/s] 2.0 fixedValue inletOutlet noSlip
k [kgm2/s] 5.0× 10−3 fixedValue inletOutlet kqRWallFunction
ε [m2/s3] 9.7× 10−2 fixedValue zeroGradient epsilonWallFunction
nut [m2/s] 2.3× 10−5 calculated zeroGradient nutkWallFunction
p [m2/s2] 0.0 zeroGradient fixedValue zeroGradient

Table 5.2: Boundary and initial conditions used for the mesh convergence study

5.1.1 Flow arrangement and boundary conditions

The boundary conditions used are shown in table 5.2. The fixedValue entries bear the values

of the internal field. Using the hydraulic diameter of the tunnel as a length scale, the Reynolds

number for the mesh convergence study is 3× 105.

5.1.2 Velocity profile

All the meshes produced a similar profile, as seen in figure 5.3. There is some recirculation

behind the strip, caught by the three finest meshes due to the refinement near the walls. In

the main flow, the coarsest mesh differs substantially from the rest. The three finest meshes

look very alike except some deviations by the 5 mm one.

5.1.3 Head loss

Head loss varied between the meshes, as seen in figure 5.4. The exact values are given in table

5.3. To understand the drastic jump in head loss between 5 and 2.5 mm, the size of the strip

must be taken into account. Being 1 cm long in the streamwise direction, the acceleration of

the flow is not captured adequately by the 5mm mesh, as only two cells cover the strip in the

x-direction. The increase of cells from two to four is enough to capture this effect, increasing
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Figure 5.3: Vertical velocity profiles taken 0.75 mm behind the strip.

Cell size [mm] Head loss [mH2O] Change from previous mesh [%]

10 0.06197 -
5 0.06186 -0.2
2.5 0.06582 +6.4
1.25 0.06563 -0.3

Table 5.3: Head losses for the different meshes.

the roughness introduced by the strip drastically. Between 2.5 and 1.25 mm the change is

small enough that the 2.5 mm one is considered adequate.
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Figure 5.4: Head loss between in- and outlet for the different meshes.



Chapter 6

Shape test

To test the influence of shape on development and head loss, four different geometries are

constructed. The geometries are named Circle, Normal tunnel, Birkeland and Square, and can

be seen in figure 6.1. To make the size of the computational domain somewhat manageable

while allowing the mesh resolution to be as fine as necessary to study the relevant phenomena,

the geometries are made rather small, while still allowing fully turbulent flow to be developed.

Based on estimates discussed in 2.7, Lmax = 30D gives an upper limit for the length that is

expected for development. This ends up being 3 meters for all the geometries, and a total

length of 3.5 meters is chosen to ensure that we get development in each case. Each geometry

is equipped with strip spacings of 10, 15 and 20 centimetres, leaving 12 meshes in total. Flow

velocities of 1, 2 and 4 m/s are tested for a total of 36 runs. Reynolds numbers calculated

using the hydraulic diameter are 1× 105, 2× 105 and 4× 105 for the three velocities tested

across all geometries.
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Figure 6.1: Inlet grids for the geometries used. All grids have primarily hexahedral cells
with base cell size 2.5 mm. From the top left: ”Circle”, ”Normal tunnel”, ”Birkeland”
and ”Square”.
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6.1 Geometries and boundary conditions

The parameter chosen for scaling is the hydraulic radius, as it is what Birkeland [2008] uses

for his formula. All four of the geometries thus have the same hydraulic radius of 0.025

meters. The exact geometries are described in tables B.1 through B.4. In line with the

results from section 5.1, a mesh with a base size of 2.5 mm was created with snappyHexMesh

for each of the geometries. The total amount of cells, along with mesh quality stats, are

shown in table 6.1.

Geometry Strip spacing NC MAR MS ANO

Circle 10 cm 8.79× 106 4.74 1.95 7.32
15 cm 5.52× 106 3.48 1.90 6.36
20 cm 7.27× 106 5.27 1.98 6.92

Birkeland 10 cm 10.27× 106 5.29 2.52 6.91
15 cm 6.29× 106 3.51 1.88 5.99
20 cm 8.29× 106 5.29 2.51 6.52

Normal tunnel 10 cm 10.38× 106 4.75 1.95 6.62
15 cm 6.39× 106 3.47 1.90 5.63
20 cm 8.39× 106 4.73 1.95 6.22

Square 10 cm 11.74× 106 1.97 0.42 6.01
15 cm 7.26× 106 2.02 0.35 5.02
20 cm 9.53× 106 1.96 0.42 5.62

Table 6.1: Stats for the meshes used. Shown are number of cells (NC), max aspect
ratio (MAR), max skewness (MS) and average non-orthogonality (ANO). See section
4.2.2 for definitions used.

The boundary conditions are similar to those used in section 5.1, and are summarized

in tables 6.2 and 6.3. All the runs were done on Fram, utilizing simpleFoam on 128 cores.

Convergence was defined as the residuals reaching 10−8 for the velocity field and 10−6 for the

pressure and turbulence fields.

Variable Inlet Outlet Walls

U [m/s] fixedValue inletOutlet noSlip
k [kgm2/s] fixedValue inletOutlet kqRWallFunction
ε [m2/s3] fixedValue zeroGradient epsilonWallFunction
nut [m2/s] calculated zeroGradient nutkWallFunction
p [m2/s2] zeroGradient fixedValue zeroGradient

Table 6.2: Boundary conditions used for the shape test runs. The fixedValue entries
take the value of the internal fields, shown in table 6.3.
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1 m/s 2 m/s 4 m/s

U [m/s] 1.0 2.0 4.0
k [kgm2/s] 1.25× 10−3 5.0× 10−3 2.0× 10−2

ε [m2/s3] 5.81× 10−2 1.16× 10−1 2.32× 10−1

nut [m2/s] 2.42× 10−6 1.94× 10−5 1.55× 10−4

p [m2/s2] 0.0 0.0 0.0

Table 6.3: Internal field values used for the shape tests.

6.2 Head loss and friction factor

The goal of the Birkeland equation is to predict head loss through a friction factor, λ. Using

his equation, found in 1.4, to predict the rough friction of the geometries give the results

shown in table 6.4. The smooth friction factors are found using Moodys diagram with

Re = 105 and a smooth pipe.

λsmooth λrough λtotal

All 10 cm 15 cm 20 cm 10 cm 15 cm 20 cm
Circle 0.018 0.202 0.142 0.112 0.220 0.160 0.130
Square 0.018 0.258 0.181 0.142 0.276 0.199 0.160
Birkeland 0.018 0.227 0.159 0.125 0.245 0.177 0.143
Normal tunnel 0.018 0.230 0.162 0.127 0.248 0.180 0.145

Table 6.4: Friction factors λ, calculated using Birkelands equation. Smooth friction is
from Moodys diagram, using Re = 105 and a smooth pipe.

To have an even comparison between geometries, measurements are made after the flow is

developed. See section 6.3 for these lengths. Total pressure is measured as a volume average

at two points, both centered between strips. The smallest even factor of the strip spacings (10,

15 and 20) is 60, and the points were thus picked out to be 0.6 meters apart. Using equation

1.3, the resulting head loss values are turned into friction factors. The friction factors are

shown in figure 6.2, while all head loss data are shown in table B.6 in the appendix.
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Figure 6.2: Measured friction factor λ for all geometries and velocities. For each unique
geometry, the velocities are plotted in this order: 1 m/s, 2 m/s and 4 m/s.

Looking at the results for CC=10 cm, the ”Circle” and ”Birkeland” geometries stand

out. Their calculated friction factors for U=4 m/s are quite a bit higher than those for U=1

m/s and U=2 m/s. This will be investigated in section 6.5. For the ”Circle” and ”Square”

geometries with CC=15 cm, the results for U=1 m/s are higher than those for the higher

velocities. No further enquiry has been made here.

The results differ substantially from those calculated with the Birkeland equation. Table

6.5 shows the differences in percentages. Using the closest value of the average and maximum

friction factor for all geometries, the calculated values are off by between 8 and 41 percent,

with an average of 24 percent.
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Birkeland equation Mean value Difference Maximum value Difference

10 cm Circle 0.220 0.184 16% 0.186 15%
Birkeland 0.245 0.177 28% 0.178 27%
Normal tunnel 0.248 0.173 30% 0.173 30%
Square 0.276 0.163 41% 0.163 41%

15 cm Circle 0.160 0.141 12% 0.143 11%
Birkeland 0.177 0.140 21% 0.140 21%
Normal tunnel 0.180 0.136 24% 0.137 24%
Square 0.199 0.127 37% 0.131 34%

20 cm Circle 0.130 0.119 8% 0.120 8%
Birkeland 0.143 0.115 19% 0.116 19%
Normal tunnel 0.145 0.112 22% 0.112 22%
Square 0.160 0.107 33% 0.107 33%

Table 6.5: Calculated friction values with the Birkeland equation and the simulation
results. Percentage difference is given as fraction of the result from the Birkeland
equation. Mean values are averages of the three velocities used for each geometry.

6.3 Head loss development

To see when the head loss stabilizes, the total pressure is recorded at the midpoint between

each strip. This gives a resolution of the results equalling the strip distance. The percentage

change between head losses over strips is calculated, and a stable value under ±0.25% is the

criteria chosen for a fully developed flow. Graphs detailing the development for each case are

shown in appendix B.2.

Figure 6.3 shows the results. Keep in mind the resolution; a difference of 20 cm in the

latter graph can be really minute, as it is the lowest possible value it can take in the case of

CC=20 cm. A closer look at the graphs in the appendix is necessary in those cases.
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Figure 6.3: Length to development for all geometries. Distance is downstream of inlet,
normalized by D = 4×Rhydraulic.

Some general observations can be made right away. The head loss becomes uniform

fastest in the ”Circle” geometry in every single case. The other three are more variable; for

10 and 15 cm strip distance, development is slower in the ”Square” geometry than named

”Birkeland” and ”Normal tunnel”. For 20 cm, however, the ”Normal tunnel” is slower than

the two others. In general, the difference between the shapes becomes more accentuated with

greater strip distance and velocity.
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The results seem to map quite neatly on the friction factor results, with higher friction

geometries developing faster. One exception is the ”Circle” geometry, which develops quicker

with 20 cm strip spacing. The explanation can be found in figures B.22 and B.23 in the

appendix. Although considered developed by the criteria chosen, the values still oscillate

somewhat for another meter or so downstream, barely staying within the marked area.

The theory in 2.7 presents the correlation L/D ≈ C/λ. This C is plotted in figure 6.4.

The spread is extremely tight for CC 10 cm, but widens out significantly for the larger strip

spacings. This is again a result of the resolution; a 20 cm difference in development length

is really minute for the largest strip distance, but puts a large dent in the calculated C.
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Figure 6.4: Development constant C = λL/D for all geometries, plotted in order of
increasing velocity for each. D = 4 × Rhydraulic, λ is the total friction factor and L is
length to development in meters. Note that λ is measured after the flow is developed,
and is thus a function of the geometry, not the processes guiding flow development.

The inlet profiles are all uniform, which may impact development length depending on

how different the resulting profile turns out to be. Figure 6.5 show velocity profiles taken

between the strips for CC = 20 cm with U = 4 m/s for all cross section shapes.
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Figure 6.5: Shown are velocities, normalized by Umean = 4 m/s, right after the inlet for
the CC = 20 cm cases. Downstream distance is normalized by D = 4×Rhydraulic.
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The only visible difference is a slower development of the velocity profile belonging to

the ”Square” geometry, the rest behave very similarly. It is however clear why the head loss

appears strange over the first few strips, as the velocity profiles are rather artificial in this

part of the domain.

6.4 Secondary currents

The difference in length to development seems to correlate strongly with the head loss, as

discussed above. Another factor which is a priori known to be different between cross section

shapes, and that affects the head loss, is secondary currents.

Secondary currents take energy away from the mean flow, see section 2.8. In a smooth

pipe, a streamwise increase in the magnitude of the secondary currents is expected to be

accompanied by a greater pressure loss, which in turn leads to quicker development. In

rough pipes, and in this case ones with discrete roughness elements, there are additional

effects at play. The strips interfere with the secondary currents and the turbulence field,

possibly erasing the effect of the secondary currents alone.

To measure the strength of the secondary currents, the magnitude of all velocity compo-

nents is sampled. A higher value of |Uy |+|Uz |
|Ux| indicates stronger secondary currents.

With secondary flows often being referred to as ”corner flows” in the literature, the not so

surprising leader of the pack is the ”Square” geometry. The two tunnel shapes, ”Birkeland”

and ”Normal tunnel” follow suit, while the ”Circle” geometry has the weakest secondary

currents.
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D = 4×Rhydraulic.
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6.5 Streamlines and velocity profiles

To get an idea about why the head loss and thus the friction factor is higher than expected

for the case of U = 4 m/s in some geometries, streamlines are extracted. Using the ”Circle”

geometry with CC = 10 cm, a line is seeded some millimeters above a strip at x = 3.095 m,

well into the developed region. Using a backdrop of the velocities in the x-direction, figure

6.7 shows the result. Recirculation and stagnation zones can be seen as dark blue.

Figure 6.7: Shown here are the normalized velocity fields and streamlines over the
strips at x=3.095 m and x=3.195 m for the geometry ”Circle” with strip CC = 10 cm.
From top to bottom: U = 1 m/s, 2 m/s and 4 m/s. Only the lower 2 centimeters of
the geometry is shown.

All the streamlines look similar. A suspect for causing the extra friction was an excessive

bending of the streamlines close to the strips at the higher velocities, but this seems not to be

the case. The recirculation zones are also of similar size. When normalized by mean velocity,

it becomes obvious that the flow fields behave the same. A closer look at the velocity profiles

is given below. These span one strip CC distance from a few millimeters after one strip to a

few millimeter in front of the next.
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Figure 6.8: Velocity profiles, taken along the stretch marked by streamlines in figure
6.7. The strips span x = 3.09-3.10 m and x = 3.19-3.20 m. Z-values are normalized
by total height, and velocities are normalized by mean velocity.
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The velocity profiles seen in figure 6.8 map onto each other neatly when normalized by

mean velocity. No clear indication of different effects for the highest velocity can be seen.



Chapter 7

Discussion

The Birkeland formula overestimates the friction factor for all tested geometries. As all

measurements done by Birkeland [2008] were taken well inside what was found as the unde-

veloped region, a certain error is to be expected. Which side this errors leans to is however

not given a priori; head loss values were both higher and lower before they stabilized across

the geometries and velocities tested.

Among the variables tested, length to development had the starkest difference between

the geometries. Far from all laboratory tunnels using strip roughness are as long as the

development length, and many will not experience uniform head loss across strips in their

models before the outlet. Looking at the secondary currents, the Birkeland equation missed

by the most for the geometries where secondary currents were at their strongest. If this

is a direct correlation is not known. The secondary currents may alter the impact of the

strips on the velocity and pressure field, but in what way this would change head loss is hard

to see from the formulas alone. Without any further parameters being analyzed, nothing

can be concluded about the impact of the secondary currents. A relation between velocity

and size of the recirculation zone was not evident in these results. Larger strips or higher

velocities might be necessary to lengthen the zone enough that the wake of one strip goes as

far downstream as 10 cm. The assumption of isolated roughness flow, introduced by Morris

[1963], seems to hold true here.

When it comes to the accuracy of the numerical method, a few factors must be mentioned.

The wall modelling employed is questionable. Its domain of accuracy, flat plane boundary

layers at high Reynolds numbers, is at best approximated in parts of the wall with strip CC

set at 20 cm. For the remainder of the domain, high pressure gradients and mean streamline
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curvature are likely to hinder the accuracy of the wall modelling. The separation induced

by the strips also leads to the failure of the assumptions behind the wall laws (Pope [2000]).

Even if the logarithmic law were to hold for all parts of the wall, the largest y+-values found

in table B.5 are outside of the logarithmic area (30 < y+ < 200). How this impacts the

results is hard to ascertain. The boundary conditions are also an issue. As discussed at the

end of section 6.3, the velocity profiles are not as expected of a physical system at the start

of the domain. It does however seem like the length to development receives a fair treatment

by letting all the profiles start out equal. An alternative would be to map them from either

a point downstream or from a previous case. This has the advantage of shortening the part

of the domain which can not be used for study, but with the downside of leaving the impact

of the inlet conditions very hard to quantify.

As for the equation and its merits, it must be made clear that no factor outside of the

friction investigated in this thesis was meant to be resolved by Birkeland. His equation serves

as a tool for first estimation of friction, not as an alternative to pressure measurements in

the laboratory. The burden is on the user to be aware of the equations limitations, especially

when straying too far from the conditions present at its inception.



Chapter 8

Conclusions

Through numerical simulation of four different cross sections, different aspects of the Birke-

land equation for estimating friction have been tested. Across the 36 total tests, the fric-

tion factors were overestimated by an average of 24%. Length to development was also

investigated: Starting out with a uniform velocity profile gave values between 2 and 3.5 of

C = λL/D, with L being length to development and D being four times the hydraulic radius,

for most geometries and flow velocities. Looking at the strength of secondary flows, a not

significant correlation to both head loss and length to development was found. No evidence

was found for failure of the assumption that the flow of the cases was in the isolated roughness

regime.

8.1 Further work

Several factors mentioned in section 1.3 are not tested in this thesis. Especially interesting are

the effect of accelerating inflow and multiphase flow on the head loss induced by the strips.

As hydropower tunnels are running well under full capacity a lot of the time, an accurate

model for friction in the case of an air-water mixture could be helpful in the laboratory. As for

techniques not used in this thesis, utilizing particle image velocimetry (PIV) in conjunction

with DES modelling of the flow around the strips can deepen the knowledge of their effect

on the flow field while also serve to tune the DES models employed.
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Appendix A

Second order RANS turbulence

modelling

A.1 Limitations of first order closure

The Boussinesq hypothesis is presented in section 2.6.1. The pros of models based on it

include easy implementation, few differential equations to solve and a wide base of knowledge

about their performance in various situations. It is however based on two assumptions, which

are not always correct.

An example where the first one, named the intrinsic assumption, fails, is given by Pope

[2000]. Two experiments by Tucker and Reynolds [1968] and Warhaft [1980] are compiled

into one figure, shown below. The first picture in figure A.1 shows the experimental setup

annotated with the strain rates:

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (A.1)

In the first straight section, the mean axial velocity (U1) is ideally uniform, leading to a zero

mean strain rate. The following contraction is designed to enforce a uniform axial strain rate,

S11 = ∂U1

∂x
= Sλ, with the lateral strain rates S33 and S33 being −1

2
Sλ. Back in the second

straight section, with the same simplifications as for the first, the mean strain rate is back

to zero.

Beneath it are measured anisotropies, here defined as bij ≡ 1
2k
aij, on two different

timescales. Recall that aij ≡ <u′iu
′
j> − 2

3
kδij. Sλt is the flight time after the contrac-
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Figure A.1: Example of failure of the Boussinesq hypothesis, taken from Pope [2000].

tion starts normalized by the mean strain rate, giving a dimensionless quantity. tε/k is flight

time after the straight section starts, this time made dimensionless by the turbulent timescale

k/ε.

The intrinsic assumption states that the anisotropies scale with the local mean flow gra-

dients, represented by the strain rate, see equation 2.50. This is visibly wrong here, as the

anisotropies go to zero much slower than strain rate after the contraction ends. They exist

in the straight section, not because of local gradients, but as a result of history effects on

the flow. This history effect is neglected when using the Boussinesq hypothesis, as only local

strain is accounted for. To remedy this, transport equations for the Reynolds stresses need

to be added.

A rule of thumb given by Durbin and Reif [2011] states that the Boussinesq hypothesis

performs well when the ratio P/ε is close to unity. For the experiment in figure A.1 the ratio

is high (O(10)) in the contraction and zero in the straight section, explaining some of the

unfavorable approximations made by the hypothesis.
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A.2 Second order closure

Also known as Reynolds stress transport models, this category of models is available if one

wants to avoid the pitfalls of the Boussinesq hypothesis. One extra level of closure is added by

solving the Reynolds stress transport equations, 2.39. Going to second order closure makes

the production tensor closed, as it contains only the dependent variable <u′iu
′
j>. This leaves

εij, Tijk and Rij to be modelled.

The dissipation tensor is modelled as εij = 2
3
εδij, based on observations of it turning

isotropic in high Reynolds number flow (Spalart [1988]). Special treatment is needed close

to walls, as the local Reynolds number here is lower and the dissipation tensor anisotropy

increases.

For the turbulent transport, it is convenient to split it into three parts:

Tkij = u′iu
′
ju
′
k︸ ︷︷ ︸

T (u)
kij

+ p′u′jδik + p′u′iδjk︸ ︷︷ ︸
T (p)
kij

−ν
∂u′iu

′
j

∂xk
. (A.2)

T (u)
kij is a triple correlation term, and is shown in experiments to dominate the turbulent

transport (Bell and Mehta [1990]). T (p)
kij is the transport done by the pressure. The last

term is closed. Details of the modelling of the two first terms are different between different

models, but a common method is to lump them together and use a gradient diffusion model

(Durbin and Reif [2011]).

Lastly and most importantly, Rij must be modelled. This term has a zero trace, and does

therefore not contribute to the turbulent kinetic energy. It is only of redistributive character,

taking energy from one velocity component to another through pressure fluctuations. To

model it, the pressure is split into a harmonic, a rapid and a slow part (Pope [2000]):

∇2p(harmonic) = 0 (A.3)

∇2p(rapid) = −2ρ
∂<ui>

∂xj

∂u′j
∂xi

(A.4)

∇2p(slow) = −ρ ∂2

∂xi∂xj
(uiuj −<u′iu′j>) (A.5)
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These are then put in for p′ in the equation for Rij, 2.42, leading to:

Rij = R
(h)
ij +R

(r)
ij +R

(s)
ij (A.6)

How these three terms are modelled makes up the main differences between different Reynolds

stress transport models.

A.2.1 The Launder, Reece and Rodi (LRR) model

As mentioned above, the modeling of the pressure strain correlation is the central issue in

Reynolds stress transport models. The basis of most models for this comes from Rotta [1951],

and one of the earliest models to come out of it was made by Launder et al. [1975]. Only the

central equations are presented here, with more thorough explanations given in chapter 7.1

of Durbin and Reif [2011] and chapter 11 of Pope [2000]. The pressure-strain tensor 2.42 is

rewritten to a redistribution tensor:

Πij = Rij −
1

3
Rkkδij (A.7)

The advantage of this formulation is that it disappears at no-slip walls. LRR then models it

as:

Πij =− C1εbij

+ 0.8kSij

+
18C ′2 + 12

11
k(bikSjk + bjkSik −

2

3
bmnSmnδij)

+
20− 14C ′2

11
k(bikWjk + bjkWik)

(A.8)

The only new term here is:

Wij ≡
ui,j − uj,i

2
(A.9)

Dissipation is modelled almost identically as in the k-epsilon model 2.55. Production is

evaluated directly, with all the variables being given. The diffusion term is allowed to be

anisotropic, as it is when approaching walls (Pope [2000]. Its differential equation reads:

Dε

Dt
=

∂

∂xi
(Cε

k

ε
<u′iu

′
j>

∂ε

∂xj
) + Cε1

Pε
k
− Cε2

ε2

k
. (A.10)

In addition to this, some extra care is taken close to the walls. More about that in section

2.6.2. The constants have gone through some change over time. Launder et al. [1975] sets
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C ′2 = 0.4, Shabbir and Shih [1992] uses 0.55 while OpenCFD [2018a] uses 0.6. Similar stories

go for C1. The full list of constants used by OpenCFD [2018a] is:

Cµ = 0.09 Cε1 = 1.44 Cε2 = 1.92 C1 =3.6

C ′2 = 0.6 Cs = 0.25 Cε = 0.15 Cref1 =0.5 (A.11)

Cref2 = 0.3

The LRR model is the most general model based on the constraints of Rotta [1951] (Shab-

bir and Shih [1992]). Other models, like SSG and LRR-QI, have more involved differential

equations tuned for special phenomenons. This does, however, not always lead to better re-

sults. Shabbir and Shih [1992] found better performance by LRR than the SSG and LRR-IP

model in thirteen flow configurations. Some hybrid models are also available, drawing from

the positives of both the LRR and the SSG models Dudek and Carlson [2017].

A.2.2 The LRR model in OpenFOAM

OpenFOAM has two second order RANS models available; Speziale, Sarkar and Gaski (SSG)

and the aforementioned LRR model. The latter is simpler to implement and make converge

in OpenFOAM (Karvinen and Ahlstedt [2008]).

Using the LRR model in OpenFOAM requires setting the keyword RASModel to LRR. In

addition to the files used by the k-epsilon model, an initial guess of the Reynolds stress field is

necessary. This can be accomplished by running the command line argument postProcess

-func R on an earlier case, which makes a file named R in all the time folders. Both the

flux of the Reynolds stress and the stress itself needs an entry in the fvSchemes file.

Attempts at using the LRR model

It was planned to do additional tests of how accelerated and decelerated flow entering a lab

tunnel affects head loss, due to the connecting pipe being either larger of smaller than the

tunnel itself. To get as accurate results as possible it was desirable to use a Reynolds stress

transport model, for the reasons depicted in section A.1. Getting the model to converge

proved to be problematic. To prove its accuracy, it was attempted to remake the head

loss and velocity profile data from Garcia [2017], as was done in Mølmann [2017] for the

k-epsilon model. Using the refineHexMesh utility of OpenFOAM on the mesh used for the
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k-epsilon models, a base size of 1.25 mm for the whole mesh was reached, including additional

refinements at the walls. After mapping the converged k-epsilon results using mapFields and

calculating the Reynolds stress fields, it was tried to run simpleFoam with the LRR model.

It promptly exploded. Changing the schemes used for Reynolds stress and its flux to the

linear and upwind scheme respectively made the residuals stabilize at 10-4, after which the

solution started to oscillate. Further changing the scheme for the velocity flux to a first order

upwind scheme removed the oscillations and made the solution converge. In the process, the

underrelaxation factor was set to 0.2 for both the pressure and Reynolds stress fields, making

the convergence gruelingly slow.

Being both time consuming and hard to stabilize, it was decided to not go further in the

pursuit of using the LRR model. When the original goal of increased precision could only be

met by decreasing the accuracy of the schemes used, the endevour seemed to defeat its own

purpose.



Appendix B

Additional figures and tables

B.1 OpenFOAM files
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Figure B.1: snappyHexMeshDict file used for the meshing of all shape test geometries.
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Figure B.2: Example output from checkMesh.
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Figure B.3: fvSolution file used for my k-epsilon simulations.
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Figure B.4: U file used for my simulations.

Figure B.5: p file used for my simulations.
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Figure B.6: k file used for my simulations.

Figure B.7: epsilon file used for my simulations.
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Figure B.8: nut file used for my simulations.

Figure B.9: turbulenceProperties file used for my simulations.

Figure B.10: transportProperties file used for my simulations.



APPENDIX B. ADDITIONAL FIGURES AND TABLES 91

Figure B.11: The file controlling sampling of velocity profiles.

Figure B.12: The fieldValueDelta file, measuring head loss between two cell zones.
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Figure B.13: The file seeding particles for streamlines.

Figure B.14: The file guiding the creation of cutting planes.
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Figure B.15: The gnuplot script used to make figure B.16.
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B.2 Shape test

Geometries

Radius 0.05 m
Circumference 0.3142 m
Area 0.0079 m2

Hydraulic radius 0.025 m

Table B.1: Circle geometry.

Radius (R) 0.06 m
Theta (Θ) 2.23◦

Height (h) 0.0329 m
Width (c) 0.107 m
Area 0.0088 m2

Circumference 0.352 m
Hydraulic radius 0.025 m

Table B.2: Birkeland geometry. Made by cutting of a circle; Θ is the angle of the cut
to the horizontal.

Height 0.05 m
Width 0.1 m
Area 0.0089 m2

Circumference 0.357 m
Hydraulic radius 0.025 m

Table B.3: Normal tunnel geometry. Made by adding a half circle with radius equalling
half the width to a rectangle.

Height and width 0.1 m
Area 0.01 m2

Circumference 0.4 m
Hydraulic radius 0.025 m

Table B.4: Square geometry.

Head loss

The grey area in the development graphs indicates where the flow is considered developed.
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Strip CC Velocity Geometry y+

Strip Walls
Min Max Mean Min Max Mean

10 cm 1 m/s Circle 1 68 21 1 73 26
Square 1 54 23 1 63 29
Birkeland 1 68 22 1 82 27
Normal tunnel 1 69 22 1 72 28

2 m/s Circle 6 136 41 2 145 51
Square 2 107 46 3 126 58
Birkeland 5 136 43 2 164 53
Normal tunnel 4 137 44 2 142 55

4 m/s Circle 9 275 83 2 292 101
Square 9 215 91 9 264 116
Birkeland 10 271 87 3 324 106
Normal tunnel 9 274 88 2 282 109

15 cm 1 m/s Circle - - - 3 118 31
Square - - - 7 93 35
Birkeland - - - 2 120 33
Normal tunnel - - - 2 117 34

2 m/s Circle - - - 6 237 63
Square - - - 10 183 69
Birkeland - - - 6 233 66
Normal tunnel - - - 6 237 67

4 m/s Circle - - - 11 476 125
Square - - - 18 368 137
Birkeland - - - 10 465 130
Normal tunnel - - - 9 450 128

20 cm 1 m/s Circle 1 62 20 1 66 26
Square 1 48 23 1 61 29
Birkeland 1 62 22 1 79 27
Normal tunnel 1 62 22 1 65 27

2 m/s Circle 6 123 40 2 132 51
Square 7 97 45 7 113 58
Birkeland 6 124 43 1 159 53
Normal tunnel 6 124 43 1 130 55

4 m/s Circle 10 251 81 2 266 101
Square 10 194 90 10 226 114
Birkeland 10 249 85 2 313 106
Normal tunnel 9 200 87 3 296 105

Table B.5: y+-values for all meshes and velocities. Note that the strip and wall patches
were fused for the 15 cm geometries, thus coming out as one.
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Table B.6: Head loss over 60 cm with computed friction factors for all geometries.

Strip CC U Geometry Head loss [mH2O] Friction factor

10 cm 1 m/s Circle 0.056 0.183
Birkeland 0.054 0.176
Tunnel 0.053 0.173
Square 0.050 0.163

2 m/s Circle 0.224 0.183
Birkeland 0.215 0.176
Tunnel 0.211 0.173
Square 0.200 0.163

4 m/s Circle 0.912 0.186
Birkeland 0.873 0.178
Tunnel 0.845 0.173
Square 0.799 0.163

15 cm 1 m/s Circle 0.044 0.143
Birkeland 0.043 0.140
Tunnel 0.042 0.137
Square 0.040 0.131

2 m/s Circle 0.171 0.140
Birkeland 0.171 0.140
Tunnel 0.166 0.136
Square 0.153 0.125

4 m/s Circle 0.685 0.140
Birkeland 0.686 0.140
Tunnel 0.666 0.136
Square 0.607 0.124

20 cm 1 m/s Circle 0.036 0.119
Birkeland 0.035 0.115
Tunnel 0.034 0.112
Square 0.033 0.107

2 m/s Circle 0.145 0.119
Birkeland 0.141 0.115
Tunnel 0.137 0.112
Square 0.131 0.107

4 m/s Circle 0.586 0.120
Birkeland 0.566 0.116
Tunnel 0.549 0.112
Square 0.523 0.107
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Figure B.16: Head loss change between strips for CC 10 cm, 1 m/s.

-2%

-1.5%

-1%

-0.5%

0%

0.5%

1%

1.5%

2%

 0  0.5  1  1.5  2  2.5  3  3.5

C
h
a
n
g
e
 i
n
 h

e
a
d
 l
o
s
s
 o

v
e
r 

s
tr

ip

x [m]

U = 2 m/s

Circle
Normal tunnel
Birkeland
Square

Figure B.17: Head loss change between strips for CC 10 cm, 2 m/s.
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Figure B.18: Head loss change between strips for CC 10 cm, 4 m/s.
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Figure B.19: Head loss change between strips for CC 15 cm, 1 m/s.
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Figure B.20: Head loss change between strips for CC 15 cm, 2 m/s.
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Figure B.21: Head loss change between strips for CC 15 cm, 4 m/s.
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Figure B.22: Head loss change between strips for CC 20 cm, 1 m/s.

-2%

-1.5%

-1%

-0.5%

0%

0.5%

1%

1.5%

2%

 0  0.5  1  1.5  2  2.5  3  3.5

C
h
a
n
g
e
 i
n
 h

e
a
d
 l
o
s
s
 o

v
e
r 

s
tr

ip

x [m]

U = 2 m/s

Circle
Normal tunnel
Birkeland
Square

Figure B.23: Head loss change between strips for CC 20 cm, 2 m/s.
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Figure B.24: Head loss change between strips for CC 20 cm, 4 m/s.
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