
Modelling Oblivious Transfer in EasyCrypt

Mikkel Langtangen Furuberg

Master of Science

Supervisor: Kristian Gjøsteen, IMF

Department of Mathematical Sciences

Submission date: June 2018

Norwegian University of Science and Technology

Preface

This master’s thesis is written during the spring semester of 2018, as the final part of
the master’s programme in Natural Science with Teaching Education at the Norwegian
University of Science and Technology (NTNU, Trondheim). The idea of the project was
brought up by my supervisor as part of doing research of machine-checking proofs in
cryptography, and succeeds the work in EASYCRYPT last semester.

Mikkel Langtangen Furuberg
Trondheim, June 1, 2018

i

Acknowledgments

A special thanks to my supervisor, Kristian Gjøsteen, for insightful and constructive feed-
back on my work. Our weekly meetings have been crucial for the progress of this master’s
thesis.

To my fellow students at Matteland, thank you for all the lunch breaks, quizzes and
table tennis matches. The positive environment has been a huge motivation for showing
up early in the office and staying until late.

I would also like to express my appreciation to all my friends, both in Trondheim and
Oslo, for making me think of other things than mathematics, there are actually some other
entertaining topics to discuss! Especially thanks to Marit for proofreading and making
figures for the thesis, and also for encouraging me throughout the process.

Finally, thanks to my family for being there for me. To my mom for discussions and
for proofreading the thesis, and to my dad for making me interested in mathematics and
computer science. Really wish that you could read the thesis and give me guidance.

iii

Abstract

We describe how to construct an oblivious transfer protocol which security is based on
subset membership problems and smooth projective hash functions. A specific protocol
based on the two-message oblivious transfer protocols of Kalai (2005) and the encryption
schemes presented by Cramer and Shoup (2002) is presented.

In addition, the protocol is modelled in EASYCRYPT and we use the program to prove
the security, which is based on the Decisional Diffie-Hellman assumption. However, we
encountered challenges using the program, which is under development. The stability of
EASYCRYPT was a problem. Axioms that were important for our implementation were
not available, and the necessary information on syntax needed to define new modules and
lemmas was inadequate. We had to rewrite existent- and compose many new lemmas.
We also found a critical error in EASYCRYPT, which was given high priority by the team
behind EASYCRYPT, and has now been corrected. However, our proofs had to surround
the problem and became more complicated. We also concluded that EASYCRYPT is not
developed primarily for doing algebra, resulting in unnecessary complicated codes for the
proof of our protocol.

v

Sammendrag

Vi beskriver hvordan man konstruerer en oblivious transfer-protokoll, hvor sikkerheten er
basert på undergruppeproblemer og glatte projektive hashfunksjoner. Vi presenterer en
1-ut-av-2 oblivious transfer-protokoll basert på Kalai (2005) sin protokoll, og Cramer og
Shoup (2002) sitt krypteringssystem.

I tillegg modellerer vi protokollen i programmet EASYCRYPT, som vi bruker til å
bevise sikkerheten. Sikkerheten er basert på Decicional Diffie-Hellman-antagelsen. Under
modelleringen i EASYCRYPT møtte vi flere utfordringer. Blant annet var stabiliteten til
programmet et problem. I tillegg er ikke rammeverket fullstendig, noe som kompliserte
implementasjonen og vi måtte skrive mange nye, korte lemmaer for å forenkle bevisene.
Vi fant en kritisk feil i EASYCRYPT som ble høyt prioritert av utviklerne av programmet,
og har nå blitt rettet opp i. Likevel førte feilen til at bevisene ble mer kompliserte, som et
resultat av at vi måtte unngå visse områder av EASYCRYPT. Vi konkluderte også med at
programmet ikke er laget primært for å bruke algebra, noe som førte til mye unødvendig
kode og tidsbruk.

vii

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Outline of the Thesis . 2
1.3 Cryptography in School Teaching . 2

2 Introduction to EasyCrypt 5
2.1 How EasyCrypt Works and General Tactics 5
2.2 Group Theory in EasyCrypt . 6
2.3 Formulating Proofs . 8
2.4 Verifying Proofs . 9

2.4.1 Examples . 9

3 Background and Definitions 11
3.1 Attack Games and Advantage . 11
3.2 The Decisional Diffie-Hellman Assumption 12
3.3 Subset Membership Problems . 12

3.3.1 Security Game of Subset Membership Problems 13
3.3.2 Subset Membership Algorithms 14

3.4 Smooth Projective Hash Functions . 15
3.4.1 Hash Families . 15
3.4.2 Projective Hash Families . 15
3.4.3 Smooth Projective Hash Families 16
3.4.4 Security Game of Smooth Projective Hash Functions 16

3.5 Example and Modelling in EasyCrypt 16
3.5.1 Sets and Functions . 17
3.5.2 Encryption . 17
3.5.3 Modelling in EasyCrypt . 18

4 Oblivious Transfer 21
4.1 Definition . 21
4.2 1-out-of-2 oblivious transfer . 22

ix

4.3 Example Using RSA Encryption . 22
4.4 The Basic Idea of an Oblivious Transfer Protocol 23

5 Kalai Oblivious Transfer Protocol 25
5.1 Definitions . 25

5.1.1 Sets and Functions . 25
5.1.2 Encryption . 26

5.2 The Oblivious Transfer Protocol . 27
5.3 Verifying Algorithm . 27
5.4 Modelling in EasyCrypt . 28

6 Security of Oblivious Transfer and the Kalai Protocol in EasyCrypt 33
6.1 Security of Oblivious Transfer . 33

6.1.1 Security of the Receiver . 33
6.1.2 Security of the Sender . 34

6.2 Security of the Kalai Oblivious Transfer Protocol in EasyCrypt 35
6.2.1 Security of the Receiver . 35
6.2.2 Security of the Sender . 39

7 Concluding Remarks 43
7.1 Critical Error . 43
7.2 Stability . 44
7.3 Incomplete Selection of Lemmas and Definitions 44
7.4 Working with Algebra in EasyCrypt . 44
7.5 Syntax . 45
7.6 Usage of EasyCrypt in Cryptographic Proofs 45

Bibliography 47

Appendix A Important Axioms and Lemmas in Group Theory 51

Appendix B Modelling of General Definitions 53

Appendix C Initialization of the Kalai Protocol 55
C.1 Operator Lemmas . 55
C.2 Initialization Module . 55
C.3 Correctness of the Encryption Scheme 56
C.4 Correctness of the Oblivious Transfer Protocol 57

Appendix D Proof of Smoothness 59
D.1 Lemmas for lemma 1 . 59
D.2 Lemmas for lemma 2 . 61
D.3 keqk . 62
D.4 Lemmas for smoothness . 64
D.5 Proof of smoothness . 67

Appendix E Hard Subset Membership Problem Reduction 71

Chapter 1
Introduction

1.1 Background

Cryptography plays a key role in the security of modern communication. As a result, it
is increasingly important to design new cryptographic systems which yield high security
guarantees. For new and complex cryptographic systems, security proofs may be compli-
cated. To cope with the increased vulnerability to errors in manual cryptographic proofs,
computer aided proofs have become more central in cryptography. Programs designed
for cryptographic security proofs can guarantee that the reasoning of a proof is applied
correctly. EASYCRYPT is a program designed for verifying cryptographic proofs.

In cryptography, an oblivious transfer protocol is a type of protocol in which a sender
transfers one of potentially many pieces of information to a receiver, but remains oblivious
as to what piece (if any) has been transferred. An example of how oblivious transfer
strengthen private information retrieval form a database is seen in the case where a receiver
gets exactly one database element from a database, without the sender/database getting to
know which element was queried, and without the receiver knowing anything about the
other elements that were not retrieved.

Further work has revealed oblivious transfer to be a fundamental and important prob-
lem in cryptography. It is considered one of the critical problems in the field, because
of the importance of the applications that can be built based on it. One of the benefits of
oblivious transfer is that the security of a protocol can be proved by different mathematical
assumptions.

This thesis introduces a cryptographic transfer protocol based on 1-out-of-2 oblivious
transfer. We first adapt a general proof for oblivious transfer, presented by Kalai [5], to our
protocol. We then model the cryptographic basis for the proof and the protocol as modules
in EASYCRYPT. Then, we machine-check the security by proving it in EASYCRYPT.

1

Chapter 1. Introduction

1.2 Outline of the Thesis

We will in this thesis look at how a specific protocol can be modelled in EASYCRYPT.
Chapter 2 contains a short introduction to EASYCRYPT. Since we implement a proto-

col where the proof is based on cyclic group theory, we will focus on how group theory
can be expressed in EASYCRYPT. We then explain how EASYCRYPT may be set up to
define and verify proofs.

In Chapter 3, we discuss some security notions that are important for oblivious transfer
and the proof of our protocol. We define the Decisional Diffie-Hellman assumption that
can be used as a basis to prove the security of many cryptographic protocols. Moreover, we
describe the concepts subset membership problems and smooth projective hash functions,
introduced by Cramer and Shoup [2]. Finally, we present a way to model hard subset
membership problems and smooth projective hash functions in EASYCRYPT.

In Chapter 4, oblivious transfer is discussed, and an example of an oblivious transfer
protocol based on the RSA cryptosystem is included. We also present another general
example of a protocol based on the article by Kalai [5].

Chapter 5 includes a presentation of an oblivious transfer protocol based on the proto-
col introduced in [5] and an encryption scheme presented in [2]. The chapter also includes
the implementation of the protocol in EASYCRYPT.

In Chapter 6, we discuss the security of the oblivious protocol presented in Chapter 5,
which allows us to use the theory of Chapter 3. A proof of the security in EASYCRYPT is
presented, and the implementation is discussed.

Finally, in Chapter 7, we discuss the use of EASYCRYPT, with respect to both cryp-
tography in general, and the presented oblivious transfer protocol particularly.

1.3 Cryptography in School Teaching

As this thesis is a part of the master’s programme in Natural Science with Teacher Educa-
tion, we describe the relevance to the teaching profession, and how cryptography can be
embedded and used in school.

Cryptography is a branch of mathematics with many everyday applications in our in-
formation society. It is easy to explain the importance of cryptography in situations from
the daily life of students, such as online banking and communication in social media.
Therefore, teaching simple mathematics with applications within cryptography may in-
spire students to understand the importance of learning mathematics. The most important
ideas of the math used in cryptography is not described in the competence aims set out by
the Norwegian Directorate for Education and Training for secondary- and high schools in
Norway. This means that teaching cryptography in detail on a general basis is not possi-
ble. However, for students that need challenges where they may use parts of the standard
curriculum combined with new ideas, exercises and assignments, use of cryptography may
be inspiring.

Although the mathematics behind cryptography can be advanced, such as group the-
ory, it can be based on calculations with remainders, which is taught in the primary school.
Therefore, cryptography can be presented as a project to pupils who needs extra challenges

2

1.3 Cryptography in School Teaching

in the mathematics class. Over a period, such pupils should be able to learn some sim-
ple cryptographic concepts like Caesar cipher, substitution cipher, Affine cipher and even
encryption schemes like RSA. The fact that some ciphertexts can be decryptet without
knowing the system makes cryptography an excellent way of using problem solving and
research to find the original message. This is also a very practical way to use mathematics
and logic to solve problems that can be exciting for the pupils.

Classic cryptography, like Caesar cipher and Affine cipher, which have an easy math-
ematical solution to decrypt the messages, can also be used in any class as a variation
from the classic exercises. To decrypt a message requires investigation and let the pupils
explore new ways of using mathematics. These systems can be solved both mathemati-
cally, by finding the number of shifts in Caesar cipher or the function in Affine cipher, or
by a brute-force attack. In more advanced terms, other attack forms can be introduced.
For instance, the pulips can perform known-plaintext attacks, (adaptive) chosen-plaintext
attacks or (adaptive) chosen ciphertext attacks.

Another way of doing research with cryptography is to argue for why a form of com-
munication is secure. The easiest way to secure a system is against known ciphertext at-
tacks, which allows the pupils to study how to secure a system against statistical analysis,
such as frequency analysis.

The protocol presented in this thesis will probably be too advanced and complicated for
if based on the mathematical tools learned in school, but will nevertheless be possible to
learn if there some new concepts are introduced. The students will need to learn modulo
computation with multiplication, which is not too difficult as it is based on the simple
concepts of remainders and powers. This could be an extended project for pupils who
reach the competence aims quickly. As mentioned, the field of cryptography can be a
project which starts with classical cryptography and ends with the protocol presented in
this thesis.

3

Chapter 1. Introduction

4

Chapter 2
Introduction to EasyCrypt

We will present a brief introduction to EASYCRYPT, a program used to verify crypto-
graphic proofs. First, we will define some key concepts for this thesis and then explain
how EASYCRYPT may be set up to define and verify proofs. The reason to use such a
program is to guarantee that the reasoning is applied correctly, and to prevent careless
mistakes that may arise in manual proofs. The team behind EASYCRYPT has released a
reference manual [1], which is an incomplete overview of the keywords used in the pro-
gram. Additionally, we have written an introduction to EASYCRYPT, ”An Introduction to
EasyCrypt and the Security of the ElGamal Cryptosystem” [4], which contains a larger
part of how EASYCRYPT works, the logic behind it and a presentation of keywords. This
chapter will be based on the papers mentioned above and we will present some keywords
and tactics used in this thesis. Note that the introduction given in this chapter is not com-
plete, or necessarily conventional, as it is adapted for this thesis.

2.1 How EasyCrypt Works and General Tactics
EASYCRYPT is a framework for evaluating cryptographic proofs on computers. In this
way, the proofs can be verified step-by-step by the computer, which make them more
reliable. The program uses Proof General to check the proofs. Proof General is a proof
assistant, a software tool, which is the base to validate the proofs written in EASYCRYPT.
The mathematical formulas have to be expressed in a formal language, and the proofs
written in EASYCRYPT have to be stringently formulated in order to make the program
useful.

The EASYCRYPT library consists of several files with theories containing axioms,
lemmas and operators. These are the framework for the program. Examples are files
with codes defining how integers, real numbers, functions, distributions and group theory
works. Every operation, distribution etc. are defined, and the properties are either proved,
based on previous proved properties, or stated as axioms.

If one states a lemma, it has to be proved, while an axiom not requires any proof. This
makes lemmas more safe to work with as the system prevents proving wrong statements,

5

Chapter 2. Introduction to EasyCrypt

while this is not guaranteed when using axioms. A wrong formulation of an axiom can
potentially make everything in EASYCRYPT true, so in our approach we will try to avoid
axioms and base the proofs on lemmas.

When declaring a variable or constant in EASYCRYPT, one also has to assign a certain
type to the variable. EASYCRYPT has some built-in types like real, int and bool,
meaning that the declared variable is an integer, a real number or a boolean, respectively.
In addition to the already built-in types, one may also declare types oneself, which can be
abstract:

type plaintext.
type ciphertext.
type K.

Or well defined:

type X = group * group.

where X = G×G, G a group.
Operators are an important feature in EASYCRYPT. Besides well-known operators in

the library such as +, ·, =,ˆand <, one can formulate operators restricted to certain types
and they are very useful as for example functions. An operator is either formulated with
just inputs and outputs:

op (<) : int −> int −> bool.

stating that < takes in two integers and returns a value of true or false. Or an operator can
be more specific:

op one : int = 1.
op raise (x y:int) = xˆy.
op times (x:X) = x.`1*x.`2

The operator times takes an element x of type X , X as defined above, and returns the
product of the first and second element of x.

Note that a commentary in EASYCRYPT begins with ”(*” and ends with ”*)”, i.e.
(* Commentary.. *). Moreover, <> means not equal and 1%r is used when consider-
ing the integer 1 as a real number. The notation x.`1 is used to indicate the first element
in x = (x0, x1, ...), x.`2 to indicate the second element in x and so on.

2.2 Group Theory in EasyCrypt
In this thesis, some files and types are used more frequently than others. As we are going
to implement a protocol based on cyclic group theory, we present some important features
related to this. First, two important types are considered: group and t.

The type defined as group consists of operations and properties to define a multiplica-
tive group and is found in the file CyclicGroup.ec. There are several operators de-
fined for the type group, and the order of the group is q. The operators defined in the
CyclicGroup.ec file are:

6

2.2 Group Theory in EasyCrypt

op g:group. (* the generator *)
op (*): group −> group −> group.
op inv : group −> group.
op (/): group −> group −> group.
op (ˆ): group −> t −> group.
op log : group −> t.
op g1 = g ˆ F.zero. (* identity element *)

Note that g is specified as ”the generator”, and is the only defined generator for such a
group.

The type t is used in exponentiation of group elements. For exponentiation, a group el-
ement is the base and an element of type t is the exponent. We refer to the file PrimeField.ec
for more details. The type t has the following defined operators:

op zero : t. (* zero *)
op one : t. (* one *)

op (*): t −> t −> t.
(* multiplication modulo q *)

op (+): t −> t −> t.
(* addition modulo q *)

op [-]: t −> t.
(* the additive inverse *)

op inv: t −> t.
(* the multiplicative inverse *)

op (-) : t −> t −> t.
(* subtraction modulo q *)

op (/) : t −> t −> t.
(* division modulo q for y <> 0 *)

op (ˆ) : t −> int −> t.
(* exponentiation *)

In addition to the operators, a handful of lemmas and axioms are written. The fre-
quently used axioms and lemmas from the files CyclicGroup.ec and PrimeField.ec,
without proof, are found in the Appendix A.

As there are many elements of for example zeros, depending on what kind of types
we look at, we have to import files to make use of the operators, axioms and lemmas. For
example, G is used as the prefix for the cyclic group file and F for the prime field file.
This means that G.g1 is the way to use the generator g1 from CyclicGroup.ec, while
F.zero is the way to use the zero element from PrimeField.ec.

There is also a distribution of elements of type t. This means that it is possible to draw
an element of type t at random, and the value of t is between 0 and q − 1. This is called
Fistr.dt, so if we want to sample an element m of type t at random, it looks like this:

m <$ FDistr.dt;

7

Chapter 2. Introduction to EasyCrypt

2.3 Formulating Proofs
When proving a statement in EASYCRYPT, lemma is the notation to be used. If a lemma
is proved, then it can be used later and is added to the library of EASYCRYPT. Any lemma
must be proved before it can be reused to prove other lemmas. Thus, a lemma along with
its proof takes the form

lemma name : condition1 => · · · =>
what you want to prove.
proof.

tactic_1
.
.
.
tactic_n

qed.

=> is used as ”and” for every condition until the last =>, then it used as implication.
There are two ways of setting up a lemma. The first one is by formulating the statement

precisely in the lemma. This is used when proving identities and small theories. Examples
of this, excluding the actual proof, are:

lemma exists_m : forall a, exists m, a = G.g ˆ m.

lemma exp_g : G.g ˆ F.one = G.g by smt.

lemma inv_not_one (x y:t) : x<>y =>
y<>F.zero => (x * (inv y)) <> F.one.

lemma aeq1_in_G (a : group) :
log(a) = F.zero <=> a = G.g1.

The other way to set up a proof is by creating one or more modules. A module consists
of procedures and this makes way to simulate a case. This is used in proofs when consid-
ering probability and setting up a sequence of games. The example of sampling an m of
type t have to be done in a module, and will look like this.

module samplex = {
proc main() = {

var m;
m <$ FDistr.dt;
return m;

}
}.

For more theory of modules and procedures, we refer to [4] and [1].
We can for example formulate a proof where we want to prove that the probability of a

random m of type t to equal an other value, say n, is 1
q (&m denotes that we are working in

a memory m, which we have to do when referring to a module. This is not the m sampled
from samplex):

8

2.4 Verifying Proofs

lemma m_to_equal_n &m : forall(n:t),
Pr[M1.main() @ &m : res = n] = 1%r/F.q%r.

Or we can state that if we sample two values, i.e. run the module samplex twice, the
probability of returning n is equal.

lemma samplex_twice &m : forall(n:t),
Pr[M1.main() @ &m : res = n]
= Pr[M1.main() @ &m : res = n].

This is of course trivial, but just an example on how to compare the probability of two
events.

2.4 Verifying Proofs
EASYCRYPT can solve simple problems using axioms and lemmas from the library. This
is done with SMT solvers which are a collection of external provers. SMT is an abbrevi-
ation for Satisfiability Modulo Theories, and such solvers combine background theory to
solve first-order logic problems. The tactic in proofs is to break down the goal to smaller
problems and mainly use the keyword smt to solve the subgoals. The type and complexity
of the problems SMT solvers can solve differ from situation to situation. When a lemma is
proved, EASYCRYPT adds the lemma to the library and it can be used by the SMT solvers
to prove additional lemmas.

To make use of the SMT solvers, we have to break down the problems into smaller
problems where there are lemmas the solvers can use. One way to do this is by the key-
word have, which allows one to divide the problem into subparts, which may be solved
independently in order to reach the goal.

2.4.1 Examples
Using previous written lemmas is a well-used tactic when proving larger lemmas. In order
to prove the lemma samplex_twice from the previous section, we can use have together
with the tactic rewrite, and say that both sides are equal to 1

q as proved in the lemma
m_to_equal_n. We then end up with 1

q = 1
q , which can be solved by smt, and this

completes the proof. In EASYCRYPT the beginning of the proof looks like this:

lemma samplex_twice &m : forall(n:t),
Pr[M1.main() @ &m : res = n]
= Pr[M1.main() @ &m : res = n].
proof.
move => ?. have : Pr[M1.main() @ &m : res = n]
= 1%r/F.q%r. rewrite (m_to_equal_n &m n).

move is a tactic to move the conditions away from the actual proof, this time saying that
we have an n, and this makes n a variable. The state of the proof after have is that we
break down the statement to show that Pr[M1.main() @ &m : res = n] is 1

q . This
can be showed by using the lemma m_to_equal_n together with the memory. Further,

9

Chapter 2. Introduction to EasyCrypt

we can use smt to close that goal. Both sides can be rewritten to 1
q which proves the

lemma correct. The rest of the proof will look like this:

move => ?. rewrite H. smt.
qed.

Where H is the proven statement using have.
We also show how m_to_equal_n is proved in EASYCRYPT. This includes an pro-

cedure that we have to run.

lemma m_to_equal_n &m : forall(n:t),
Pr[M1.main() @ &m : res = n] = 1%r/F.q%r.
proof.
progress. byphoare => //. proc. rnd. auto.
progress. rewrite FDistr.dt1E. smt.
qed.

byphoare is a keyword used in probability, to get into the module, while proc is used
to get into the procedure. rnd is used to do the sampling of m. auto and progress
are collections of other keywords and we refer the reader to [4] for more information.
FDistr.dt1E is an axiom stating that there are q possibilities when sampling an element
of type t.

10

Chapter 3
Background and Definitions

In this chapter, we will present some important concepts and notions on subset membership
problems and projective hash functions which will be the basis for the work described in
Chapters 4, 5 and 6. The concepts from this chapter will be discussed further, together
with oblivious transfer, in a concrete protocol in Chapter 5. The approach in this chapter
will concentrate on the concepts needed for the forthcoming protocol.

In the first section we will look at some notions used in security proofs. Then we
will move on to introduce the Decisional Diffie-Hellman problem, Subset Membership
Problems and Smooth Projective Hash Functions, which all will be used as the basis for
the security analysis in this thesis.

We end the chapter with modelling some of the definitions in EASYCRYPT, and look
at how it can be used to encrypt messages.

3.1 Attack Games and Advantage
First, we present some notion on attack games and advantage, which are used to con-
sider security in cryptography. This is a way to simulate an attack from an adversary and
consider the probability of the adversary to succeed.

After a protocol for secure transmission of messages have been suggested, the security
of the protocol may be defined and proved by using a sequence of attack games [7]. Such
a game is played between some challenger and an adversary. The adversary is the one
carrying out the attack.

Both the challenger and the adversary are probabilistic, so it is possible to model the
game as a probability space. Typically, the security of a cryptosystem is connected to the
probability of some event E, denoted Pr[E].

The goal is often to prove that Pr[E] is negligibly close to some target probability, often
0, 1/2 or the probability Pr[E′], where E′ is some event in another attack game where the
same adversary plays against a different challenger.

To carry out the proof, one defines a sequence of games, from Game 0 to Game n.
Game 0 is the original attack game for the system we want to prove the security of and

11

Chapter 3. Background and Definitions

E0 is the event E mentioned above. For i ∈ {1, ..., n}, the event Ei in game i should be
such that Pr[Ei] is negligibly close to Pr[Ei+1] for i ∈ {1, ..., n−1}. Furthermore, Pr[En]
should be negligibly close to the target probability. Thus, Pr[E] will also be negligibly
close to the target probability. The goal with such games is to combine them and use them
to reduce an idea to one or more well known cryptographic assumptions.

When we look at cryptographic systems, we are interested how good a potential adver-
sary will make it in an attack. To determine this we use the term advantage. The advantage
is a measure of how good an adversary will do in distinguishing two values. We know that
in a distinguishing problem one can always guess, which obviously gives the probability
1
2 . We therefore define the advantage of an adversary, A, against a concept, C, as

AdvC(A) = |SuccC(A)− 1

2
|,

where SuccC(A) is the probability ofA to succeed, which means thatA guesses correctly.

3.2 The Decisional Diffie-Hellman Assumption
One of the assumptions we are going to look at is the the Decisional Diffie-Hellman as-
sumption (DDH). The DDH assumption states that it is hard to distinguish tuples of the
form

(g, ga, gw, gaw
′
)

from DDH tuples of the form
(g, ga, gw, gaw)

where g is a generator for a groupG of order q, and a,w,w′ r←− Zq ,w 6= w′.1 Furthermore,
we define the DDH advantage of an distinguishing algorithm D, which takes as input
quadruples of group elements and output 1 if the quadruple is a DDH tuple, to be

AdvDDH(D) =

|Pr[a,w r←− Zq : D(g, ga, gw, gaw) = 1]−Pr[a,w,w′ r←− Zq : D(g, ga, gw, gaw
′
) = 1]|

The DDH assumption is the assumption that the DDH advantage is negligible for any
efficient algorithm D. We also set up a game with a challenger and an adversaryA, which
is found in Figure 3.1.

3.3 Subset Membership Problems
One of the important concepts we will look at is the subset membership problem. We
will use this in Chapter 6 when we discuss the security of oblivious transfer. The subset
membership problem states that it should be difficult to distinguish between two elements,
one from a given subset and one which is from the relative complement of the subset with
respect to the original set.

1We denote by x
r←− X the action of uniformly choosing an element from the set X .

12

3.3 Subset Membership Problems

Challenger
a,w,w′

r←− Zq

b
r←− {0, 1}

v0 ← (g, ga, gw, gaw
′
)

v1 ← (g, ga, gw, gaw)

A
vb

b′

Figure 3.1: Decisional Diffie-Hellman game.

A subset membership problem M specifies a collection {In}n∈N of distributions. For
every value of n ∈ N, In is a probability distribution of instance descriptions Λ. Each
instance description Λ specifies the following.

• Two finite non-empty sets, X,W ⊆ {0, 1}poly(n)

• A relation R ⊂ X ×W ,

• A non-empty subset L ⊂ X , where L = {x : ∃w s.t. (x,w) ∈ R}

For every x ∈ X and w ∈ W , if (x,w) ∈ R, then we say that w is a witness for x. We
require that the relationR is an NP-relation, i.e. it is not possible to find the corresponding
witness to a given element in X in polynomial time. The role of a witness will become
apparent later in the thesis as we introduce smooth projective hash functions. The notation
Λ[X,W,L,R] indicates that the instance description Λ specifiesX , W , L andR as above.

A subset membership problem is to distinguish two values, x0
r←− L and x1

r←− X\L,
for a specified Λ with security parameter n.

Loosely speaking, this means that it is hard to distinguish between random elements
from L and random elements from X\L.

3.3.1 Security Game of Subset Membership Problems

The security of a subset membership problem is based on that, for an adversary S∗, S∗
should not be able to distinguish between elements in L and elements in X\L. We set up
an attack game for this situation, where S∗ gets two elements and guesses which is in L.

Note that this game differs from the game presented in [7] and Section 3.2, where the
adversary only gets one element. If we make an algorithm D which chooses one of the
elements x0, x1 in our game, and provides this to the adversary, we see that the games are
identical.
Based on this, we define the subset membership problem-advantage to be

AdvSMP (S∗) = |Pr[b = b′]− 1

2
|.

13

Chapter 3. Background and Definitions

Challenger
b

r←− {0, 1}
xb

r←− L
x1−b

r←− X\L
S∗

x0, x1

b′

Figure 3.2: Subset membership problem game.

Challenger
x0, x1

D
β

r←− {0, 1}
β = 0 : x = xb
β = 1 : x = x1−b

x
S∗

β′

Figure 3.3: Relation of the games.

3.3.2 Subset Membership Algorithms

Kalai [5] lists four algorithms needed to verify a usable subset membership problem M =
{In}n∈N to be used in oblivious transfer. If M satisfies these four, it is said to be verifiably
samplable. If a subset membership problem M is verifiably samplable, then it is easy to
to sample uniformly from both L and X\L, and it is easy to verify that for two elements
x0 and x1, either x0 ∈ X\L or x1 ∈ X\L. It will become clear in Chapter 6 why the
last property is important. If the four following algorithms exist, then M is verifiably
samplable:

1. A probabilistic polynomial-time algorithm that samples Λ = [X,W,L,R] on input
1n, according to In.

2. A probabilistic polynomial-time algorithm that on input an instance description Λ =
[X,W,L,R] ∈M, outputs an element x ∈ L and its witness w ∈ W , such that the
distribution of x is statistically close to uniform on L.

3. A probabilistic polynomial-time algorithm that on input an instance description Λ =
[X,W,L,R] and an element x0 ∈ L, outputs an element x1 such that if x0

r←− L

then the distribution of x1 is statistically close to uniform on X\L, and if x0
r←− X

then the distribution of x1 is statistically close to uniform on X .

14

3.4 Smooth Projective Hash Functions

4. A probabilistic polynomial-time algorithm that on input an instance description Λ =
[X,W,L,R] and two elements x0, x1 ∈ X , checks that there exists a bit b such that
xb ∈ X\L. This property should hold for maliciously chosen Λ.

• The algorithm outputs 0 for every Λ and x0, x1 if x0 /∈ X\L and x1 /∈ X\L.

• The algorithm outputs 1 for every Λ and x0, x1 if there exists a bit b such that
xb ∈ X\L.

3.4 Smooth Projective Hash Functions
Smooth projective hash functions will be used as the basis for the main development of
the security of the protocol described in Chapter 5, and are, together with the subset mem-
bership problem, the core concept of the work with security in this thesis.

The notion smooth projective hash functions was presented by Cramer and Shoup in
2002 [2]. It is based on a set or family of hash functions, and is built up on different
concepts, which will be discussed in this section. The idea is further discussed in [5], and
this will be used as the basis for the concept smooth projective hash functions in this thesis.

3.4.1 Hash Families
General hash functions are widely used in computer science to map data of any length
to data of a fixed length. Such functions are also used in cryptography, calling them
cryptographic hash functions, and the properties of these functions are specialized for
cryptographic use. These properties include that the function is a one-way function, de-
terministic, it is infeasible to find to messages that give the same output, and that a small
change in the input gives an output that seems uncorrelated to the first input. First we
define a hash family.

Definition 3.4.1 (Hash family). Let H = {Hhk}hk∈K be a collection of hash functions,
where K is the key space. For every hk ∈ K, Hhk is a hash function from X into G,
where G is a finite non-empty set. We call F = (H,K,X,G) a hash family, where every
Hhk is a hash function.

3.4.2 Projective Hash Families
We expand the definition of a hash family to what is called a projective hash family. Let
F = (H,K,X,G) be a hash family as described above. Let L be a non-empty, proper
subset of X , and let S be a finite, non-empty set. We also define a function α : K → S,
called the projection key.

Definition 3.4.2 (Projective hash family). H = (H,K, S, α,G) is called a projective hash
family for (X,L) if for every x ∈ L, hk ∈ K, the projection key s = α(hk) uniquely
determines Hhk(x).

This projection key s = α(hk) only guarantees to evaluate Hhk(x) for x ∈ L, and
does not guarantee anything for x ∈ X\L. If this is the case for every Λ ∈M, we say that
H is a projective hash family for a subset membership problem M.

15

Chapter 3. Background and Definitions

3.4.3 Smooth Projective Hash Families

We now extend the definition to smooth projective hash families. The smooth condition is
that given a random projection key s = α(hk) and a element x ∈ X\L, the value of the
hash function Hhk(x) is statistically indistinguishable from random. This means that the
projection key reveals (almost) nothing about Hhk(x) when x ∈ X\L, but still uniquely
determines Hhk(x) when x ∈ L.

Definition 3.4.3 (Smooth projective hash family). A projective hash family (H,K, S, α,G)
for a subset membership problem M is smooth if for every, even maliciously chosen, in-
stance description Λ[X,W,L,R] and every x ∈ X\L, the random variables (α(hk), Hhk(x))

and (α(hk), ψ) are statistically indistinguishable, where hk r←− K and ψ r←− G.

We say that Hhk is a smooth projective hash function if Hhk ∈ H, where H is a part
of a smooth projective hash family and hk ∈ K.

3.4.4 Security Game of Smooth Projective Hash Functions

The security of a smooth projective hash function is based on that for an adversaryR∗,R∗
should not be able to distinguish between (α(hk), Hhk(x)) and (α(hk), ψ), for x ∈ X\L,
hk

r←− K and ψ r←− G. We set up an attack game for the situation.

Rachel*

b′

Sam
hk

r←− K
s← α(hk)

b
r←− {0, 1}

b = 0: c← Hhk(x)

b = 1: c r←− G

x

s, c

Figure 3.4: Smooth projective hash function game with x ∈ X\L.

We define the advantage ofR∗ against a smooth projective hash funtion as

AdvSPHF (R∗) = |Pr[b = b′]− 1

2
|.

3.5 Example and Modelling in EasyCrypt

The first thing we will implement in EASYCRYPT is a general definition of subset mem-
bership problems, smooth projective hash functions and an encryption scheme. We will
present some proofs for the properties of subset membership problems and prove the cor-
rectness of the encryption scheme. The objective with this is to get used to the notation in
EASYCRYPT and the logic behind such systems. The code from this section is found in
SMP-SPHF-intro.ec.

16

3.5 Example and Modelling in EasyCrypt

3.5.1 Sets and Functions

The notation and concrete system to be used is this:

• Let L be a proper subset of X .

• Let K be the key space, and hk r←− K

• Let Hhk : X → G be a hash function from X to G.

• Let W be the set of witnesses, and w r←−W .

• Let s← α(hk) be the value of the projective key α(hk).

• Let π(w) = x be the function to get the element x ∈ X from the witness w.

• Let ρ(w, s) = γ, γ ∈ G.

Note that ρ(w, s) = Hhk(π(w)), and that ρ(w, s) is the function which lets one evaluate
the hash function by knowing the witnessw and the value of the projection key s = α(hk).

3.5.2 Encryption

Encryption Phase 1
At first the receiver decides w and x and sends x to the sender.

• w r←−W

• x← π(w)

Key Generation and Encryption Phase 2
The encryption algorithm, outputting a ciphertext c with input a messageM and an x ∈ L,
works as follow:

• hk r←− K

• s← α(hk)

• a← Hhk(x)

• c← (s, a ·M)

Decryption
At last, the receiver uses the decryption algorithm, with input a ciphertext c = (s, v) and
gives a message M , which works like this:

• t← ρ(w, s)

• M ← v/t

17

Chapter 3. Background and Definitions

3.5.3 Modelling in EasyCrypt
We then model it in EASYCRYPT. First, we have to define the sets:

type hkey.
type X.
type G = group.
type W.
type L = X.
type S.

One problem is how to define subgroups in EASYCRYPT. This requires both axioms
and lemmas. This is how we defined that L is a proper subset of X .

axiom Lsubset (s1 : L fset) (s2 : X fset) : s1 < s2.

This was used to prove properties with elements from L and X\L. The first one stating
that x ∈ X\L is equivalent with x ∈ X ∧ x /∈ L.

lemma mem1 (xs:X fset, ls:L fset) : forall (x:X),
x \in (xs `\` ls) <=> (x \in xs) /\ !(x \in ls).
proof. smt. qed.

Then, x ∈ L is equivalent with x /∈ X\L.

lemma mem3 (xs:X fset, ls:L fset) : forall (x:X),
x \in ls <=> !(x \in xs `\` ls) by smt.

And the last one stating that for an element x ∈ X , either x ∈ L or x ∈ X\L.

lemma mem4 (xs:X fset, ls:L fset) : forall (x:X),
x \in ls \/ x \in (xs `\` ls) by smt.

Furthermore, we set up a module to sample elements from X , L, X\L and W at
random.

module Sampling = {
proc fromX(xs : X fset) : X = {
var x;
x <$ MUniform.duniform (elems xs);
return x;

}
proc fromL(ls : X fset) : L = {
var x;
x <$ MUniform.duniform (elems ls);
return x;

}
proc fromXnotL(xs:X fset, ls:L fset) : X = {
var x;
x <$ MUniform.duniform (elems (xs `\` ls));
return x;

}

18

3.5 Example and Modelling in EasyCrypt

proc fromW(ws:W fset) : W = {
var w;
w <$ MUniform.duniform (elems (ws));
return w;

}
}.

To make sure that these procedures output the elements they are supposed to, we stated
lemmas that the elements in fact are in X , L, X\L and W . These lemmas can be found in
the Appendix B, and are named test1, test2, test3, test4.

Moreover we define the functions as operators. These operators, together with axioms
which states the properties of the functions, are used to make the encryption scheme.

module PHF : Scheme = {
proc keygen() : hkey = {
var hk;
hk <$ dhkey;
return hk;

}
proc witness() : W * X = {
var w,x,ws;
w <− Sampling.fromW(ws);
x <− fpi w;
return (w,x);

}
proc encrypt(hk:hkey, M:group, x:X) : S * G = {
var a, s, c;
s <− falpha hk;
a <− fk hk x;
c <− (s, a*M);
return c;

}
proc decrypt(s:S, v:G, w:W) : group option = {
var t, m;
t <− frho w s;
m <− v / t;
return Some m;

}
}.

The proof for the correctness of the scheme, can be found in the Appendix B.
As mentioned, this implementation was made to experiment with notation and logic

in EASYCRYPT. Specially the subgroup property was seen as an challenge and important
feature for the forthcoming protocol.

19

Chapter 3. Background and Definitions

20

Chapter 4
Oblivious Transfer

In this chapter we will define oblivious transfer and present some examples. The security
part of an oblivious transfer protocol will be discussed in Chapter 6.

Oblivious transfer was introduced by Rabin in 1981 [6]. He presented a scheme where
a sender sends a message to a receiver with a probability of 50%. The sender will be
oblivious whether or not the receiver received the message.

An oblivious transfer protocol is a type of a cryptographic protocol which differ from
a normal key exchange or encryption scheme. The security is based on that the persons
interacting which each other not acquire more information than intended. This is the case
for both the sender of the message(s), and the receiver.

4.1 Definition
The idea of oblivious transfer has been developed since Rabin presented his design, and is
now used in for example secure multiparty computations. An oblivious transfer protocol
is a cryptographic protocol between a sender that has a set of messages, and a receiver
who gets to know one or more of the messages. The sender does not know which of
the messages that have been obtained by the receiver, and the receiver does not get to
know anything about the messages not transferred. This is called k-out-of-n oblivious
transfer, where k is the number of messages sent, and n is the number of messages held
by the sender. The most common versions of oblivious transfer is of the type 1-out-of-n
oblivious transfer, and specially 1-out-of-2 oblivious transfer, which this thesis will focus
on. 1-out-of-2 oblivious transfer has been proved to be equal to Rabin’s definition [3].

Oblivious transfer is a general definition of a way to communicate securely and the se-
curity can be based on several different assumptions. In this thesis we will look at a system
which rely on both the Decisional Diffie-Hellman assumption and smooth projective hash
functions. Kalai [5] describes that oblivious transfer is ”considered to be the main bottle-
neck with respect to the amount of computation required by secure multiparty protocols”.
This together with the fact that the security can be based on many different assumptions
makes oblivious transfer a relevant research field in cryptography.

21

Chapter 4. Oblivious Transfer

4.2 1-out-of-2 oblivious transfer

The 1-out-of-2 oblivious transfer is the case where the sender, Sam, has two messages and
transfers one of them to the receiver, Rachel, and Sam does not know which of the two
messages Rachel has received.

This means that Sam starts with two messages, M0 and M1, while Rachel chooses a
bit, b ∈ {0, 1}, at random. Sam sends Mb to Rachel, but does not want to reveal anything
about M1−b. Rachel wants to learn Mb, but does not want Sam to know which of the two
messages M0 and M1 she receives.

We define the input and the output for an 1-out-of-2 oblivious transfer protocol be-
tween a receiver and a sender.

• Input

– Receiver: a bit, b ∈ {0, 1}.

– Sender: two messages, M0,M1.

• Output

– Receiver: Mb.

– Sender: nothing.

As we are going to focus on 1-out-of-2 oblivious transfer, the reader should from now
think of the term oblivious transfer as 1-out-of-2 oblivious transfer.

4.3 Example Using RSA Encryption

An oblivious transfer protocol using RSA encryption is maybe the easiest example of an
oblivious transfer protocol. The sender, Sam, has two messagesM0,M1 and wants to send
one of them to the receiver, Rachel. The protocol works like this:

1. Sam generates an RSA key pair including anN = pq where p and q are large primes,
the public key e and the secret key d, which is the inverse of e modulo N . N and e
are public values. He then generates two random numbers y0, y1

r←− ZN and sends
them to Rachel together with N and e.

2. Rachel picks a bit b at random and a random element r in ZN . She then computes
v = (yb + re) mod N and sends v to Sam.

3. Sam computes two values r0 = (v − y0)d and r1 = (v − y1)d, where rb = r. He
then computes c0 = M0 + r0 and c1 = M1 + r1, and sends both values to Rachel.
M0 and M1 are the two original messages.

4. Rachel obtains the message Mb = cb − r.

22

4.4 The Basic Idea of an Oblivious Transfer Protocol

Rachel Sam
N, e, y0, y1 Generate N = pq and e, d

y0, y1
r←− Znb

r←− {0, 1}
r

r←− Zn v
v = (yb + re) mod N r0 = (v − y0)d

r1 = (v − y1)d

c0, c1 c0 = M0 + r0
Mb = cb − r c1 = M1 + r1

If this protocol is secure, then both the security of the receiver and the sender is pre-
served. This means that

1. Sam cannot tell which of his elements r0 and r1 that equals Rachel’s r, and is there-
fore not able to learn Rachel’s choice b.

2. Rachel cannot obtain the other message, M1−b. The value of c1−b − r will give a
random value and Rachel cannot learn both messages without knowing r1−b.

4.4 The Basic Idea of an Oblivious Transfer Protocol
In our presented protocol in Chapter 5 we will use some different concepts than the RSA
encryption scheme. The protocol will be based on properties presented in [5] and Chapter
3, and we will give a quick overview of how a general version of this oblivious transfer
protocol works. The complete protocol will be presented later.

1. Rachel chooses a set X and a subset L of X and computes a bit b r←− {0, 1}. Then
she samples an element xb

r←− L with a witness wb, and an element x1−b
r←− X\L.

She sends the set X and the elements x0 and x1 to Sam.

2. Sam generates two hash keys at random hk0, hk1
r←− K, where K is the key space.

He computes c0 = M0 ·Hhk0(x0) and c1 = M1 ·Hhk1(x1), whereHhk0 , Hhk1 ∈ H
and H is an collection of hash functions. The clue now is that Sam also computes
two projection keys, α(hk0) and α(hk1), which can be used to compute the values
Hhk0

(x0), Hhk1
(x1) without knowing the hash functions if one have the witness

wb. Sam sends c0, c1, α(hk0) and α(hk1) to Rachel.

3. Rachel can now obtain the value of Hhkb
(xb) by using wb and α(hkb), and then

compute Mb = cb/Hhkb
(xb).

Rachel Sam
Choose X,L
b

r←− {0, 1}
xb

r←− L
wb a witness for xb X,x0, x1
x1−b

r←− X\L hk0, hk1
r←− K

c0, c1, α(hk0), α(hk1) c0 = M0 ·Hhk0(x0)
Hhkb

(xb) = α(hk)w c1 = M1 ·Hhk1
(x1)

Mb = cb/Hhkb
(xb)

23

Chapter 4. Oblivious Transfer

For a protocol like this to be secure, we need to make sure that the security of both the
receiver and the sender is maintained. This means that

1. Sam cannot distinguish the elements x0 and x1 and thereby tell which message
Rachel receives. This will be preserved by the subset membership problem.

2. Rachel cannot get any information about M1−b, and if she tries to obtain this mes-
sage, she will get a random value. This will be preserved by the concept smooth
projective hash functions.

Note that this protocol only needs two interactions between the receiver and the sender,
while the RSA protocol needs three. The RSA protocol also needs the sender to start the
communication. This means that the receiver cannot request a message without the sender
transfer his details first, which is not an optimal way of transferring messages.

24

Chapter 5
Kalai Oblivious Transfer Protocol

We are going to present some cryptographic ideas and a protocol to be implemented in
EASYCRYPT, based on the properties presented in the previous chapters. We are also
going to present a proof of the correctness of an encryption scheme corresponding to the
protocol. Correctness is a verification for the scheme to give the right output, given a
permitted input and a successful execution.

The oblivious transfer protocol is based on the protocol presented by Kalai in [5]. The
idea of this protocol is the same as the one given by Kalai, but differ in the sets used and
the security notion, in which we will use some notions presented in [2].

5.1 Definitions
First, we describe the sets used in Chapter 3 and use this to show encryption and decryption
of messages, as in Section 3.5.

5.1.1 Sets and Functions
• Let G be a cyclic group of order q.

• Let W = Zq be the set of witnesses.

• Let X = G × G be the group with elements on the form (gm0
0 , gm1

1), g0, g1 ∈ G,
m0,m1 ∈ {0, ..., q − 1}.

• Let L be the subset of a groupX , where every element in L is on the form (gw0 , g
w
1).

• Let K = Zq ×Zq be the key space, where a key hk ∈ K is on the form (hk0, hk1).

• Let π(w) = (gw0 , g
w
1) be the function that takes an element in W and (g0, g1), and

creates an element x ∈ L.

• Let Hhk : G×G→ G be the hash function, where Hhk(x) = xhk0
0 · xhk1

1 .

25

Chapter 5. Kalai Oblivious Transfer Protocol

• Let s = α(hk) = ghk0
0 · ghk1

1 be the projection key.

• Let ρ(s, w) = sw be the function which lets one evaluate Hhk(x).

It is easy to see that ρ(s, w) = sw = (ghk0
0 · ghk1

1)w = (gw0)hk0 · (gw1)hk1 = Hhk(π(w))
which makes this a projective hash familiy.

L

W

G
Hhk(x)

π(w)
ρ(s, w)

Figure 5.1: Relation of the hash function and projection key for x ∈ L.

5.1.2 Encryption
Encryption Phase 1
The encryption of a message, M , is done as in Section 3.5, starting with the receiver:

• w r←−W

• x = (gw0 , g
w
1)← π(w)

x is sent to the sender.

Key Generation and Encryption Phase 2
The sender encrypts the message M :

• hk r←− K

• s← ghk0
0 · ghk1

1

• a← xhk0
0 · xhk1

1

• c← (s,M · a)

c = (s, v) is sent to the receiver.

Decryption
The receiver can then decrypt the message:

• t← sw

• M ← v/t

26

5.2 The Oblivious Transfer Protocol

5.2 The Oblivious Transfer Protocol
Now, we are going to use the scheme to set up an oblivious transfer protocol. To do this,
we use the functions and elements described in the previous section. An oblivious transfer
between a receiver, Rachel, and a sender, Sam, is set up like this:

• Rachel and Sam agrees on two elements g0, g1 ∈ G.

• Rachel draws randomly two witnesses w,w′ r←− W , w 6= w′, and a bit b r←− {0, 1}.
Then she makes two elements xb = (gw0 , g

w
1) ∈ L and x1−b = (gw0 , g

w′

1) ∈ X\L.
x0, x1 is sent to Sam.

• Sam makes a pair of hash keys hk = (hk0, hk1), hk
r←− K. He then hashes the

values from Rachel: Hhk(x0) = xhk0
00 · x

hk1
01 and Hhk(x1) = xhk0

10 · x
hk1
11 . These

values are used in the encryption of his two messages M0,M1 ∈ G: c0 = M0 ·
Hhk(x0) and c1 = M1 ·Hhk(x1). Furthermore, he calculate α(hk) = ghk0

0 · ghk0
1 .

Then c0, c1, α(hk) are sent to Rachel.

• Rachel uses α(hk) and w to compute the message Mb: Mb = cb/α(hk)w =
cb/(g

hk0
0 · ghk1

1)w = cb/((g
w
0)hk0 · (gw1)hk1) = cb/Hhk(xb).

This makes Rachel learn one of Sam’s messages. Because of the subset membership prob-
lem, Sam cannot distinguish x0 and x1, and is therefore not able to tell if Rachel will learn
M0 or M1. The smoothness requirement of the projective hash function maintains the
security of Sam, as Rachel will not get any information about M1−b. The security of the
protocol will be discussed in the forthcoming chapter.

Rachel Sam
w,w′

r←−W x0, x1 hk0, hk1
r←− K

b
r←− {0, 1} hk = (hk0, hk1)

xb ← (gw0 , g
w
1) Hhk(x0) = xhk0

00 · x
hk1
01

x1−b ← (gw0 , g
w′

1) Hhk(x1) = xhk0
10 · x

hk1
11

s = α(hk) = ghk0
0 · ghk1

1

s, c0, c1 c0 = M0 ·Hhk(x0)
Mb = cb/α(hk)w c1 = M1 ·Hhk(x1)

5.3 Verifying Algorithm
In Section 3.3.2 we presented a set of conditions for a subset membership problem to be
verifiably samplable. We look at these four algorithms in order of the Kalai oblivious
transfer protocol to make sure that the setup of the protocol is possible and secure.

1. Given G and q, the instance description, Λ, consists of descriptions of g0, g1 ∈ G
and W = Zq .

2. An algorithm to sample a witness w r←− W obviously exists. This produces an
element x0 = (gw0 , g

w
1) ∈ L which is statistically close to uniform on L if w r←−W .

27

Chapter 5. Kalai Oblivious Transfer Protocol

3. The same algorithm can produce a second witness w′ r←−W,w′ 6= w. This, together
with the witness w, produces an element x1 = (gw0 , g

w′

1) ∈ X\L which is statisti-
cally close to uniform on X\L if w,w′ r←− W . If the previous algorithm sampling
w does not work and x0 /∈ L, then x1 will be random in X .

4. To verify that there exists a bit b such that xb ∈ X\L, the only thing to do is to
compare the two entries of each two tuple. An algorithm that takes two elements
(x00, x01), (x10, x11) and checks that x00 = x10 and x01 6= x11 exists.

We conclude that the subset membership problem is verifiably samplable.

5.4 Modelling in EasyCrypt
We will now look at the modelling of the protocol in EASYCRYPT, together with a proof
of correctness. The implementation of the security will be discussed in Chapter 6. The
code is found in the file KalaiProtocol.ec.

As EASYCRYPT has only defined one operator in the CyclicGroup.ec file, we use
this, called G.g, as one of the generators for G. The other one is defined as gm for an m
of type t. This means that the elements (g0, g1) is set as (G.g,G.gm) in EASYCRYPT,
where G.g is the generator found in CyclicGroup.ec.

First, we have to define the sets to be used. They are defined straightforward, with both
the hash key and the witnesses defined as two tuples. Recall that L is not implemented,
and will not be later either. This is because the work with subgroups are difficult and there
is no need to specify for EASYCRYPT how L is defined.

type hkey = F.t * F.t.
type X = group * group.
type G = group.
type W = F.t * F.t.
type S = group.

The functions are defined as operators:

op fkop (x:X) (hk:hkey) = (x.`1ˆhk.`1 * x.`2ˆhk.`2).
op generatorop (m:t) = (G.g, G.gˆm).
op alphaop (x:X) (hk:hkey)

= (x.`1ˆhk.`1 * x.`2ˆhk.`2).
op rhoop (s:S) (w:W) = sˆw.`1.
op piop (x:X) (w:W) = (x.`1ˆw.`1, x.`2ˆw.`1).
op notpiop (x:X) (w:W) = (x.`1ˆw.`1, x.`2ˆw.`2).

The generatorop is an operator that sets the element (g, gm). Moreover, all the opera-
tors have ending ”op” for ”operator”, and fkop is the hash function Hhk. The operator
notpiop is an operator that generates an element (gw, gmw′

) ∈ X\L. To cope with the
operators in the proofs, there are lemmas to rewrite every operator. These lemmas can be
found in the Appendix C.1. We have also defined the functions as a module, which can
be found in the file KalaiProtocol.ec, but they are not important as the operators are
rather used in the upcoming proofs.

28

5.4 Modelling in EasyCrypt

We have constructed a module called Initialize which sets and draws some ele-
ments, such as the witnesses and hash keys. In addition, it also sets elements in L and
X\L. This is the same as some of the operators, and the Initialize module is only
used for the correctness of the encyrption scheme, and can be found in the Appendix C.2.
The first thing we implement is an encryption scheme, which looks like this:

module type Scheme = {
proc encrypt(hk:hkey,x:X,g:X,m:group) : S * G
proc decrypt(s:S,g:G,w:W) : group option

}.

module OT1 : Scheme = {
proc encrypt(hk:hkey,x:X,g:X,m:group) : S * G = {
var s,c,a;
a <− fkop x hk;
s <− alphaop g hk;
c <− (s, a*m);
return c;

}
proc decrypt(s:S, g:G, w:W) : group option= {
var t, m;
t <− rhoop s w;
m <− g / t;
return Some m;

}
}.

To prove the correctness, we had to make a module which takes all the elements and a
message, and encypts and decrypts the message:

module Correctness1 = {
proc main(M:G) = {
var g,w,x0,x1,M',hk,c1,c2;
g <− Initialize.setg();
w <− Initialize.drawW();
x0 <− Initialize.setXinL(g,w);
x1 <− Initialize.setXnotL(g,w);

hk <− Initialize.keygen();

(c1,c2) <− OT1.encrypt(hk,x0,g,M);
M' <− OT1.decrypt(c1,c2,w);

return (M' = Some M);
}

}.

Then we prove that the probability of the module Correctness1 is 1. The proof is found
in the Appendix C.3

29

Chapter 5. Kalai Oblivious Transfer Protocol

lemma OT_correct1 &m m :
Pr[Correctness1.main(m) @ &m : res] = 1%r.

Then we set up the oblivious transfer protocol. First we have a module to set the
elements g0, g1 ∈ G, draw the witnesses and the hash keys. It also contains the encryption
and decryption algorithms, which are the same as in the previous module. We make sure
that the receiver also picks a bit b at random. This bit determines the order of the elements
to be sent, i.e. if the receiver sends x0, x1 or x1, x0.

module ObliviousTransfer = {
proc generator(m:t) : X = {
return generatorop m; }

proc witness() : W = {
var w1,w2;
w1 <$ FDistr.dt;
w2 <$ FDistr.dt;
return (w1,w2);

}
proc setX(x:X, w:W) : bool * (X * X) = {
var x0, x1, b;
x0 <− piop x w;
x1 <− notpiop x w;
b <$ {0,1};
return (b, b ? (x0, x1) : (x1, x0));

}

proc encrypt(hk:hkey,x:X,g:X,M:G) : S * G = {
var s,c,a;
a <− fkop x hk;
s <− alphaop g hk;
c <− (s, a*M);
return c;

}
proc decrypt(s:S, c:G, w:W) : group option = {
var t, M';
t <− rhoop s w;
M <− c / t;
return Some M';

}
}.

Then we have a module for the correctness of the protocol, with detailed commentaries.
The input is the two messages which is in the possession of the sender. This module
describes how the protocol works and in which order, and compares that the message
transferred is the same as the one received. The two messages which is in possession of
the sender is called M0 and M1, while the message obtained by the receiver is called M ′.

module OT_Correctness = {
proc main(M0 M1:G) = {
var m,g,w,x,x1,x2,b,hk,a1,a2,s,M';

30

5.4 Modelling in EasyCrypt

(* They first agree on the element (g0,g1) *)
m <$ FDistr.dt;
g <− ObliviousTransfer.generator(m);

(* The receiver picks two witnesses *)
w <− ObliviousTransfer.witness();

(* And makes two elements,
one in L and one in X\L, in addition
to draw a bit b *)

(b,x) <− ObliviousTransfer.setX(g,w);
(x1,x2) <− x;

(* The sender encrypts the messages with both
elements with a random hash key, s will
give the same value in both cases *)

hk <− Initialize.keygen();
(s,a1) <−

ObliviousTransfer.encrypt(hk, x1, g, M0);
(s,a2) <−

ObliviousTransfer.encrypt(hk, x2, g, M1);

(* The receiver decrypts the chosen message (b)*)
M' <−

ObliviousTransfer.decrypt(s,b ? a1 : a2,w);

return
(M' = (b ? Some M0 : Some M1));

}
}.

The proof of the correctness assures that the probaility of the OT_Correctness module
is 1, which means that the decrypted message is truly one of the sender’s messages. The
proof is found in the Appendix C.4, and the input are two messages M0, M1

lemma ot_correctness &m M0 M1 :
Pr[OT_Correctness.main(M0,M1)
@ &m : res] = 1%r.

This makes sure that the protocol works, and that the receiver gets the chosen message.
The proof does not secure that the receiver only can obtain one message, and that the
sender can not distinguish the two elements. These problems will be taken care of in the
security chapter.

31

Chapter 5. Kalai Oblivious Transfer Protocol

32

Chapter 6
Security of Oblivious Transfer and
the Kalai Protocol in EasyCrypt

In this chapter, we will describe the general proof for oblivious transfer and then adapt this
proof for the protocol described in Chapter 5 in particular, and implement this in EASY-
CRYPT. The proofs are based on the reasoning described in the articles [2] and [5], where
the security of smooth projective hash functions and oblivious transfer are defined. More-
over, as a part of the security of the encryption scheme, it should satisfy the correctness
property. This property is proved in EASYCRYPT in the previous chapter.

6.1 Security of Oblivious Transfer

The security of oblivious transfer includes protection of both the receiver and the sender.
We will split the definition and look at the security of the receiver and the sender separately.
In this section we describe what we mean by security, both for the receiver and the sender.

6.1.1 Security of the Receiver

The security of the receiver is based on indistinguishability. The receiver will see the
message Mb, b ∈ {0, 1}, and the sender should not be able to learn the value of b. This
means that if the receiver picks two random elements, xb and x1−b, the sender’s view in
the case when the receiver tries to obtain Mb is indistinguishable from the case when the
receiver tries to obtain M1−b. To make this secure, the receiver has to pick the bit b at
random to make sure that the sender cannot learn anything about the bit based on previous
transfers. In addition xb and x1−b should be picked from sets which make them difficult
to distinguish.

We look at the advantage of a maliciously sender, S∗. For a receiver, with input b,
interacting with a maliciously sender, outputting b′, the advantage of the sender is

33

Chapter 6. Security of Oblivious Transfer and the Kalai Protocol in EasyCrypt

AdvOT (S∗) = |Pr[b = b′]− 1

2
|

R S∗

b′

b

6.1.2 Security of the Sender

The security of the sender is based on comparison with a trusted third party. The sender
wants the receiver to acquire information of one of the two messages, but the receiver
should not learn anything about the other message. To obtain this we compare it to an
ideal implementation which includes a trusted third party. This trusted third party will
have access to both messages of the sender. When the receiver inquires the message Mb,
she asks the trusted third party. The trusted third party will give her information only about
Mb, and will not tell the value of b to the sender.

In a real implementation of the protocol, without a trusted third party, we require that
the receiver does not learn more than in the ideal implementation. This means that the out-
put of the receiver with and without the ideal implementation should be indistinguishable.
Moreover, in a secure implementation the receiver will not be able to tell if she interacts
with a sender with the messages (M0,M1) or one message and a random value, (Mb, ψ),
ψ

r←− G.
We look at the advantage of a maliciously receiver, R∗. We want to make this a

distinguishing problem for an adversary. To do this, we let the adversary know three
messages that can be sent. The challenger will send two of them, and let the adversary
guess which two of the original three messages she receives. Let us say that the adversary
sends three messages M00,M01,M1, to the challenger. We now describe an algorithm,
called Sim:
The challenger draws two bits, b, β r←− {0, 1}, and chooses two of the three messages in
this way:

• If β = 0:

– M ′0 = M0b

– M ′1 = M1

• If β = 1:

– M ′0 = M1

– M ′1 = M0b

34

6.2 Security of the Kalai Oblivious Transfer Protocol in EasyCrypt

Then M ′0 and M ′1 are hashed and sent, together with α(hk), to R∗. R∗ can obtain one
of the three original messages with α(hk), but will now guess which of the two other
messages she has received. We will illustrate this by R∗ guessing a bit b′, and she wins if
b = b′.

R∗

b′

sim

challenger

M00,M01,M1

M ′0,M
′
1, b

Figure 6.1: The Game with a Maliciously Sender,R∗

AsR∗ will obtain the message M0b one half of the times, she will have no problem in
guessing b if she wants. While the other half, she will receive M1 and make a guess if the
other message is M00 or M01. In addition, we want to avoid the advantage to be negative,
and therefore define the advantage as:

AdvOT (R∗) = max(Pr[b = b′]− 3

4
, 0).

6.2 Security of the Kalai Oblivious Transfer Protocol in
EasyCrypt

The security of the protocol presented in Chapter 5 is based on the Decisional Diffie-
Hellman assumption and the smoothness property of a smooth projective hash function.
We will divide the security presentation here as well, and show the implementation in
EASYCRYPT.

6.2.1 Security of the Receiver

The security of the receiver is based on the subset membership problem. The hardness of a
subset membership problem can be based on different mathematical assumptions. Exam-
ples include factoring and the N ’th residuosity assumption and the quadratic residuosity
assumption. They rely on the fact that it is difficult to decide if an integer x < N is re-
spectively an N ’th power or a square modulo N , where N = nq, n and q are to unknown,
large primes. An other example is the Decisional Diffie-Hellman assumption which the
oblivious transfer protocol presented in this thesis is based on.

35

Chapter 6. Security of Oblivious Transfer and the Kalai Protocol in EasyCrypt

In the protocol, the subset membership problem is defined by the group X . Moreover,
L is the subgroup of X generated by (g, gm), g ∈ G, m ∈ {0, ..., q − 1}. The subset
membership problem states that it is difficult to distinguish between elements in L and
elements in X\L. The hardness of the subset membership problem is implied by the
Decisional Diffie-Hellman assumption, which states that it is hard to distinguish tuples of
the form

(g, gm, gw, gmw′
) (6.1)

from tuples of the form

(g, gm, gw, gmw) (6.2)

where g is a generator for G, and m,w,w′ r←− Zq , w 6= w′.

To show that the hardness of the subset membership problem is based on the DDH
assumption, which is rather obvious from the definition, we are going to set up a game.
The game is between a receiver, Rachel, and a maliciously sender, Sam*. Suppose that
we are feeding Sam* with two elements, xb ∈ L and x1−b ∈ X\L, and he guesses a bit
b′. We set up a game as in Section 3.3.1 for the situation. Recall that xb is on the form
(gw, gmw), while x1−b is on the form (gw, gmw′

).

Rachel
b

r←− {0, 1}
xb

r←− L
x1−b

r←− X\L
Sam*

x0, x1

b′

Figure 6.2: G0: The Actual Game with an Dishonest Sender, Sam*.

We know from Section 3.3.1 that the advantage of Sam* is

AdvSMP (Sam∗) = |Pr[b = b′]− 1

2
|.

Now, we set up another game where Rachel draws a bit at random again, but this time
she sets both x0 and x1 as random elements from X . The game is found in Figure 6.3.

As x0, x1 are randomly chosen from the entire set X , they are not telling anything about
b. So the probability for Sam* to guess b correctly is clearly 1

2 . With this, we can make
the reduction from our subset membership problem to the DDH assumption. Recall the
advantage of an DDH adversary defined in Section 3.2.

36

6.2 Security of the Kalai Oblivious Transfer Protocol in EasyCrypt

Rachel
b

r←− {0, 1}
x0

r←− X
x1

r←− X
Sam*

x0, x1

b′

Figure 6.3: G1: A Game Where x0, x1 Are Completely Random.

AdvSMP (Sam∗) =|Pr[b = b′|G0]− 1

2
|

=|Pr[b = b′|G0]− |Pr[b = b′|G1]

=|Pr[m,w r←− Zq : D(g, gm, gw, gmw) = 1]

− Pr[m,w,w′ r←− Zq : D(g, gm, gw, gmw′
) = 1]|

=AdvDDH(D)

We know that the advantage of DDH is negligible, which means that the advantage of
an adversary against our subset membership problem is negligible. This shows that the
security of the sender is maintained under the Decisional Diffie-Hellman assumption.

In EASYCRYPT we set up the games G0 and G1 as modules and try to reduce it to
the DDH assumption. The complete implementation is found in the file SMP-DDH.ec. G0

looks like this:

module SMP0 (A:Adversary) = {
proc main() : bool = {

var b, m, w1;
m <$ FDistr.dt;
w1 <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ m, G.g ˆ w1, G.g ˆ (m*w1));
return b;

}
}.

while G1 looks like this:

module SMP1 (A:Adversary) = {
proc main() : bool = {

var b, m, w1, w2;

m <$ FDistr.dt;
w1 <$ FDistr.dt;

37

Chapter 6. Security of Oblivious Transfer and the Kalai Protocol in EasyCrypt

w2 <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ m, G.g ˆ w1, G.g ˆ (m*w2));
return b;

}
}.

A file containing the DDH assumption is made by the EASYCRYPT team, but to com-
pare it to G0 and G1 we had to make some modifications. The original DDH games can
be found in the file DiffeHellman.ec, while our DDH games are setup like this:

module DDH0 (A:Adversary) = {
proc main() : bool = {
var b, x, y;
x <$ FDistr.dt;
y <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ x, G.g ˆ y, G.g ˆ (x*y));
return b;

}
}.

module DDH1 (A:Adversary) = {
proc main() : bool = {

var b, x, y, z;

x <$ FDistr.dt;
y <$ FDistr.dt;
z <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ x, G.g ˆ y, G.g ˆ (x*z));
return b;

}
}.

At last, we can compare the difference of SMP0 and SMP1 to the difference of DDH0
and DDH1. The proof and important modules are found in the Appendix E.

lemma adv_DDH_SMP &m :
`| Pr[SMP0(A).main()@ &m : res] -
Pr[SMP1(A).main()@ &m : res] | <=
`| Pr[DDH0(A).main()@ &m : res] -
Pr[DDH1(A).main()@ &m : res] |.

This proves the security of the receiver, as the subset membership problem based on
the DDH assumption, makes sure that the sender cannot distinguish two elements, xb ∈ L
and x1−b ∈ X\L.

38

6.2 Security of the Kalai Oblivious Transfer Protocol in EasyCrypt

6.2.2 Security of the Sender
We consider the security of the sender in terms of the smoothness requirement of a smooth
projective hash function. The variables (α(hk), Hhk(x1−b)) and (α(hk), ψ) are indistin-
guishable for a smooth projective hash function, where hk r←− K and x1−b ∈ X\L. This
implies that the variables (α(hk), Hhk(x1−b) ·M1−b) and (α(hk), ψ) are indistinguish-
able, which again implies that the receiver will not be able to tell if she interacts with a
sender with the messages (M0,M1) or one message and a random value, (Mb, ψ). There-
fore, an oblivious transfer protocol using smooth projective hash functions will be secure
in terms of the sender.

We set up a game like in Section 6.1.2, and we look at the advantage of a maliciously
receiver, Rachel*, when Sam uses a smooth projective hash function, H . The procedure is
the same as described Section 6.1.2, with Sim is defined in the same section.

Rachel*

b′

sim

Sam
hk

r←− K
s← α(hk)
c0 = Hhk(x0) ·M ′0
c1 = Hhk(x1) ·M ′1

M00,M01,M1

M ′0,M
′
1, b

x0, x1

s, c0, c1

Figure 6.4: The Game with a Maliciously Receiver, Rachel*

We look at the probability of Rachel* to guess the bit b, when c1−b will look randomly.

• Given x0 ∈ L, x1 ∈ X\L:
c0 = Hhk(x0) ·M ′0
c1

r←− G

– β = 0 =⇒ Pr[b = b′|β = 0] ≤ 1

– β = 1 =⇒ Pr[b = b′|β = 1] = 1
2

Pr[b = b′] = Pr[b = b′|β = 0] · 1

2
+ Pr[b = b′|β = 1] · 1

2
≤ 1

4
+

1

2
=

3

4

• Given x0 ∈ X\L, x1 ∈ L:
c0

r←− G
c1 = Hhk(x1) ·M ′1

– β = 0 =⇒ Pr[b = b′|β = 0] = 1
2

– β = 1 =⇒ Pr[b = b′|β = 1] ≤ 1

39

Chapter 6. Security of Oblivious Transfer and the Kalai Protocol in EasyCrypt

Pr[b = b′] = Pr[b = b′|β = 0] · 1

2
+ Pr[b = b′|β = 1] · 1

2
≤ 1

2
+

1

4
=

3

4

As Rachel* can guess wrong on purpose, we have Pr[b = b′] ≤ 3
4 .

It now remains to show that the projective hash function actually is smooth. This is the
fact that if the receiver picks an element (x0, x1) ∈ X\L, she will not be able to determine
the hash value from the function ρ(s, w). To see this, we use a second witness, w′, and the
function

π′(x,w,w′) : W → X\L where π′(x,w,w′) = (xw0 , x
w′

1).

The hash function will now give Hhk(x) = (gw0)hk0 · (gw′

1)hk1 , x = (g0, g1), which
cannot be obtained by ρ(s, w), where s = α(hk) = ghk0

0 · ghk1
1 is given.

More formally, the smoothness requirement is:

Pr[Hhk(x) = g | α(hk)] =
1

q
, hk

r←− K, ∀x ∈ X\L, ∀g ∈ G (6.3)

To prove the smoothness requirement in EASYCRYPT, we divide the requirement into
two smaller lemmas. These two lemmas will help us to prove the smoothness requirement.
The first lemma, called Lemma 1, is

∀hk ∀t ∈ G ∃hk′ : α(hk) = α(hk′) ∧Hhk′(x) = t, x ∈ X\L. (6.4)

While the second lemma, called Lemma 2, is

∀hk ∀t ∈ G ∀hk′ :

α(hk) = α(hk′) ∧Hhk(x) = t = Hhk′(x) =⇒ hk = hk′, x ∈ X\L. (6.5)

To prove these two lemmas in EASYCRYPT we had to write a number of other lemmas
to be used in the proof, which also makes the proofs of lemma 1 and lemma 2 short. These
other lemmas can be found in Appendix D.1 for lemma 1 and in Appendix D.2 and D.3
for lemma 2. The proof of lemma 1 in EASYCRYPT looks like this:

(*********** Proof of Lemma 1 ***********)

lemma lemma1 (x nl:X) (hk1:hkey) (t:G) (m:t) (w:W)
: exists hk2, hk1<>hk2 => x = generatorop m =>
nl = notpiop x w => alphaop x hk1 = alphaop x hk2
/\ fkop nl hk2 = t by smt.

Here we set x as the element that generates L, namley (G.g,G.gm) for a m of type t. nl
is an element in X\L, w is a pair of witnesses and t is an element in the domain G. hk1
and hk2 are the two pairs of hash keys. Then we formulate the lemma and conditions as
in (6.4), and with help from the other lemmas found in Appendix D.1 the SMT provers
accept the proof.

The proof of lemma 2 formulated in EASYCRYPT looks like this:

40

6.2 Security of the Kalai Oblivious Transfer Protocol in EasyCrypt

(*********** Proof of Lemma 2 ***********)

lemma lemma2 (hk1 hk2 : hkey) (x nl:X) (w:W) (m:t) :
m<>F.zero => x = generatorop m => nl = notpiop x w =>
alphaop x hk1 = alphaop x hk2 =>
fkop nl hk1 = fkop nl hk2 => w.`1<>F.zero =>
w.`2<>F.zero => w.`1<>w.`2 => hk1=hk2 by smt.

The variables are stated in the same way as in the proof for lemma 1. In addition we have
some extra conditions. To secure that the generating element is not equal to (G.g,G.g1),
in which the lemma is not true, we have the condition that m 6= 0. We also have the
condition that w 6= (0, 0), and that the two witnesses not are equal. These conditions do
strictly spoken apply in lemma 1 as well, but are not formulated in EASYCRYPT as they
make no difference.

Finally, we prove the smoothness requirement as stated in (6.3). The proof uses a
module, as in the proofs for correctness, to implement the variables. As s = α(hk) is
given, the possible pairs of hash keys are limited and both values cannot be independently
random chosen. To handle this, we only draw one of the hash key values randomly and
define the other one so the pair satisfies the given value of s. As we know that s =
ghk0 · (gm)hk1 , we set hk0 = logg(s)− hk1 ·m and samples hk1 randomly from K.

• x1 ← (gw, gmw′
)

• hk1
r←− K

• hk0 ← logg(α)− hk1 · gmw′

The module, with output x ∈ G, looks like this:

module Smoothness = {
proc main(s:G, w1:t, w2:t, m:t) = {
var x1,x2,hk0,hk1,x;
hk1 <$ FDistr.dt;
x1 <− G.g ˆ w1;
x2 <− G.g ˆ m ˆ w2;
hk0 <− log s - hk1*m;
x <− x1ˆhk0*x2ˆhk1;
return x;

}
}.

We then prove that the probability for the output of the module Smoothness to equal
an element n ∈ G is 1

q . The conditions in the proof is that neither m nor the witnesses
w,w′ are zero. This only includes a sketch for the proof. The proof is found in Appendix
D.5, and for the additional lemmas see Appendix D.4.

lemma smoothness &m : forall(n:group), forall(s:G),
forall(w1 w2 m:t), w1<>F.zero => w2<>F.zero =>
m<>F.zero => w1<>w2 =>

41

Chapter 6. Security of Oblivious Transfer and the Kalai Protocol in EasyCrypt

Pr[Smoothness.main(s,w1,w2,m) @ &m : res = n]
= 1%r/F.q%r.

This proves the smoothness requirement, and as we have shown, the security of the
sender is maintained.

42

Chapter 7
Concluding Remarks

EASYCRYPT do provide new opportunities in cryptographic proofs, and computer aided
proofs may be the most secure way to validate protocols. Nevertheless, EASYCRYPT has
some challenges and critical errors. In this chapter we are going to look at some of the
challenges we encountered in EASYCRYPT, with the errors, applications and restrictions
in the program.

7.1 Critical Error
In our work, we found a critical error while trying to prove smoothness. Our goal in
EASYCRYPT was to prove that 1 = inv q, which is obviously not true, however the
SMT solvers proved this correct. We explored the problem by separating the statement in
a new file in order to test if other false statements could be proved, and to secure that we
the SMT provers were not affected by the other lemmas and axioms in the original file. For
example, with some rewrite tactics was it easy to prove the false statement q = 1 from
1 = inv q:

lemma fqeqone : F.q%r = 1%r.
proof.
have : inv F.q%r = 1%r by smt. move => ?.
rewrite -H. smt.
qed.

Furthermore, we proved that q equaled both two and four, and possibly any other number.
The problem was that we could prove inv q to be any number, including q = inv q.

The problem was reported to the team behind EASYCRYPT which made it a high pri-
ority and found out that it was a problem with one of the SMT solvers, called Alt-Ergo. To
cope with this error we had to remove Alt-Ergo from the files which made a lot of extra
work because some of our proofs used Alt-Ergo and had to be proven in an other way, cir-
cumventing Alt-Ergo. This problem has now been fixed in the latest version of Alt-Ergo,
and should not be a problem in EASYCRYPT anymore.

43

Chapter 7. Concluding Remarks

7.2 Stability
The stability of the program was a problem. In some cases, when we turned off the com-
puter, a proof which had been validated did not work when we reopened EASYCRYPT.
In addition, we had a problem with finding imported packages in some cases, however
restarting the program could sometimes fix this problem. We also experienced trouble
with running files on different computers although the versions were corresponding, and
some of the files in the EASYCRYPT package was not possible to run or use. This made
some trust issues due to restarting the computer and even quit EASYCRYPT.

7.3 Incomplete Selection of Lemmas and Definitions
As the EASYCRYPT team has written all the definitions, lemmas and axioms used in the
program there are some challenges using them. The framework does not always provide
the needed definitions and axioms. While lemmas could be written by ourselves, axioms
and definitions are more risky. An axiom could possibly change the hole state of the
program and in the worst case one can introduce an axiom which is wrong, and thereby
falsely make all statements true. Therefore, we have chosen to use a minimum of axioms
during the proofs and rather tried to prove lemmas. Definitions are also challenging to
write as we do not have full information of syntax and how it will influence the state of the
program, and it could possibly be a lot to add.

For example, logarithms are difficult to work with in EASYCRYPT as they are only
defined with the generator, g, as base. This make calculations with the logarithm of random
group elements complicated. Furthermore, inverses are difficult to work with, because in
this case, the SMT solvers does not approve simple expressions. For example, to prove that
the product of a number and the inverse of another number, both non-negative, is non-zero
requires several lines of code:

lemma invxy_not_zero (x y:t) : y<>F.zero => x<>F.zero
=> x * inv y <> F.zero.
proof.
move => ? ?. have : x * inv y * y <> F.zero * y.
rewrite mulC.rewrite mulA. rewrite mulC.
rewrite mulA. rewrite mulfVreverse. smt. smt. smt.
qed.

7.4 Working with Algebra in EasyCrypt
One of the main problems with the protocol we have implemented, is the algebra. EASY-
CRYPT is clearly not made for primary doing algebra as the lemmas and axioms in the
framework and the SMT solvers are not optimal collaborators. A lot of the mathemati-
cal definitions and expressions are defined and proved in a simplified way, only covering
special cases. This has resulted in the need for a lot of rewriting and composing of new
lemmas from our side. In some lemmas, this algebra has been our main challenge in
implementing the proofs.

44

7.5 Syntax

For example, in EASYCRYPT the order of the variables is important as this is the way
the lemmas are written. For two integers m,n this can easily be proved: m*n*1=m*n. For
two group elements a, b, however, it is not that easy to prove a*b*G.g1=a*b in EASY-
CRYPT, where G.g1 is the identity element. This is the proof:

lemma idmult (a b:group) : a*b*G.g1=a*b.
proof.
rewrite mulC. rewrite mulA. smt.
qed.

As the lemma stating multiplication with the identity element is defined as G.g1*x=x,
one gets trouble when G.g1 is not the first element and that G.g1 is multiplied with two
elements, and not one. So the expressions have to be rewritten to prove the statement.
With larger expressions this becomes very tedious and requires unnecessary many lines of
code, which for example can be seen in Appendix D.3.

7.5 Syntax
The syntax of EASYCRYPT is not based on any well-known programming language, which
makes it illogical to learn. One of the biggest challenges was to formulate the proofs and
know which keywords to use. The reference manual [1] has simple examples and is not
finished, so not all tactics are included. The best way to learn the syntax was to look at the
examples and theory files and then figure out ourselves how to transfer the syntax to our
own proofs. Despite being a problem in the beginning, the framework and syntax becomes
more logical as one works with it, but it requires some time to get used to.

7.6 Usage of EasyCrypt in Cryptographic Proofs
The main application of EASYCRYPT is setting up games to do reductions and then use
this to prove security. We have used EASYCRYPT to mainly solve algebra which is incon-
venient. The primary application of EASYCRYPT is setting up sequences of games, and
although the games can be hard to formulate and difficult to prove relations EASYCRYPT
is a good tool in these cases. The module system is built for games, where one can define
adversaries abstractly. This approach is used in Section 6.2.1 when proving the security of
the sender in the Kalai oblivious transfer protocol.

When it comes to algebra, the framework actually looks good enough for a lot of cases,
but one of the problems is how the SMT solvers use them. Many of the definitions make
trouble when applied, such as logarithms and inverses, and adding expressions to each side
of the equal sign. The most tedious example of rewriting algebra is found in the Appendix
D.3. This makes using algebra a very tedious project, also with simple expressions which
are easy to solve by hand.

Nevertheless, using EASYCRYPT in these situations prevents the possibility of doing
careless mistakes and makes proofs more reliable. So smaller parts with algebra will be
acceptable, but we do not recommend using EASYCRYPT for a system based on algebra
only.

45

Chapter 7. Concluding Remarks

The advantages with computer aided proofs are great and they will make proofs more
secure. The team behind EASYCRYPT has developed a good framework, but there are
still problems with the program, syntax and the SMT provers that the program uses, and it
takes time to learn the program to know. There are other programs with equal application
and we recommend to try one of them, although we do not know if they are more usable.

46

Bibliography

[1] Gilles Barthe, Franois Dupressoir, Benjamin Grgoire, Csar Kunz, Alley Stoughton,
and Pierre-Yves Strub. Easycrypt reference manual. https://www.easycrypt.
info/documentation/refman.pdf. [Version 1.x compiled 2018-02-19].

[2] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances
in Cryptology — EUROCRYPT 2002, pages 45–64, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[3] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl
Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages 350–354, Berlin,
Heidelberg, 1988. Springer Berlin Heidelberg.

[4] Mikkel Furuberg and Morten Solberg. An introduction to easycrypt and the security
of the elgamal cryptosystem, 2017.

[5] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, pages 78–95,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[6] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report
TR-81, Aiken Computation Lab, Harvard University, 1981. https://eprint.
iacr.org/2005/187.

[7] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.
org/2004/332.

47

https://www.easycrypt.info/documentation/refman.pdf
https://www.easycrypt.info/documentation/refman.pdf
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

48

Appendices

49

Appendix A
Important Axioms and Lemmas in
Group Theory

(* From CyclicGroup.ec *)

axiom mul_pow g (x y:t):
g ˆ x * g ˆ y = g ˆ (x + y).

axiom pow_pow g (x y:t):
(g ˆ x) ˆ y = g ˆ (x * y).

lemma log_pow (g1:group) x:
log (g1 ˆ x) = log g1 * x.

lemma log_mul (g1 g2:group):
log (g1 * g2) = log g1 + log g2.

lemma mulC (x y: group): x * y = y * x.

lemma mulA (x y z: group):
x * (y * z) = x * y * z.

lemma mul1 x: g1 * x = x.

lemma log_g : log g = F.one.

lemma g_neq0 : g1 <> g.

lemma mulN (x:group): x * inv x = g1.

(* From PrimeField.ec *)

51

axiom addC (x y:t): x + y = y + x.

axiom addfN (x:t): x + -x = zero.

axiom sub_def (x y:t) : x - y = x + -y.

axiom mulC (x y:t): x * y = y * x.

axiom mulA (x y z:t): x * (y * z) = (x * y) * z.

axiom mulf1 (x:t): x * one = x.

axiom mulfV (x:t): x <> zero => (x * (inv x)) = one.

axiom div_def (x y:t): x / y = x * (inv y).

52

Appendix B
Modelling of General Definitions

lemma test1 (ls:L fset, xs:X fset) &m :
phoare[Sampling.fromX : true ==> mem xs res] = 1%r.
proof.
proc. auto. move => &hr h. smt.
qed.

lemma test2 (ls:L fset, xs:X fset) &m :
phoare[Sampling.fromL : true ==> mem xs res] = 1%r.
proof.
proc. auto. smt.
qed.

lemma test3 (ls:L fset, xs:X fset) &m :
phoare[Sampling.fromL : true ==>
!(mem (xs `\` ls) res)] = 1%r.
proof.
proc. auto. smt.
qed.

lemma test4 (ls:L fset, xs:X fset) :
phoare[Sampling.fromXnotL : true ==>
!(mem ls res)] = 1%r.
proof.
proc. auto. smt.
qed.

op dhkey : { hkey distr | is_lossless dhkey /\ is_uniform dhkey } as dhkey_lu.

axiom dhkeylossless : weight dhkey = 1%r.

op dW : { W distr | is_lossless dW /\ is_uniform dW } as dW_lu.

53

axiom dWlossless : weight dW = 1%r.

op hash : hkey −> X −> G.

op fpi : W −> X.

op fk : hkey −> X −> G.

op frho : W −> S −> G.

op falpha : hkey −> S.

axiom prob_pif_eq_rho2 &m (w:W) (s:S) :
frho w s = (fpi w, fk (fpi w)). *)

module Correctness = {
proc main(m:group) : bool = {
var hk, s, c, m', x, w;
hk = PHF.keygen();
(w,x) = PHF.witness();

(s,c) = PHF.encrypt(hk,m,x);
m' = PHF.decrypt(s,c,w);

return (m' = Some m);
}

}.

lemma PHF_correct &m m :
Pr[Correctness.main(m) @ &m : res] = 1%r.

proof.
byphoare => //. proc. inline*. wp. auto.
progress. smt. admit. rewrite mulC.
rewrite (fk_eq_rho v1 (fpi v1) v0 (falpha v0)).
have : fk v0 (fpi v1) / frho v1 (falpha v0) = g1.
rewrite (fk_eq_rho v1 (fpi v1) v0 (falpha v0)).
rewrite divK. smt. move => ?. rewrite -div_def.
rewrite log_mul. smt.

qed.

54

Appendix C
Initialization of the Kalai Protocol

C.1 Operator Lemmas

(* Lemmas used to rewrite the operators
so algebra can be used *)

lemma generatoroplemma (m:t) : generatorop m =
(G.g, G.gˆm) by smt.

lemma pioplemma (x:X) (w:W) : piop x w =
(x.`1ˆw.`1, x.`2ˆw.`1) by smt.

lemma fkoplemma (x:X) (hk:hkey) : fkop x hk =
(x.`1ˆhk.`1 * x.`2ˆhk.`2) by smt.

lemma alphaoplemma (x:X) (hk:hkey) :
alphaop x hk = (x.`1ˆhk.`1 * x.`2ˆhk.`2) by smt.

lemma rhooplemma (s:S) (w:W) : rhoop s w =
sˆw.`1 by smt.

lemma notpioplemma (x:X) (w:W) : notpiop x w =
(x.`1ˆw.`1, x.`2ˆw.`2) by smt.

C.2 Initialization Module

(* An initialized module which can be used,
but has many of the same functions as the
operators, therefore barely used *)

55

module Initialize = {
proc keygen() : hkey = {
var hk1,hk2;
hk1 <$ FDistr.dt;
hk2 <$ FDistr.dt;
return (hk1,hk2);

}
proc setg() : X = {
var a:group;
return (G.g,a);

}
proc drawW() : W = {
var w1,w2;
var d:t;
w1 <$ FDistr.dt;
(* d <> 0;*)
w2 <− w1+d;
return (w1,w2);

}
proc setXinL(g:X,w:W) : X = {
var a,b,x1,x2,w1,w2;
(a,b) = g;
(w1,w2) = w;
x1 = aˆw1;
x2 = bˆw1;
return (x1,x2);

}

proc setXnotL(g:X,w:W) : X = {
var a,b,x1,x2,w1,w2;
(a,b) = g;
(w1,w2) = w;
x1 = aˆw1;
x2 = bˆw2;
return (x1,x2);

}
}.

C.3 Correctness of the Encryption Scheme

lemma OT_correct1 &m M :
Pr[Correctness1.main(M) @ &m : res] = 1%r.

proof.
byphoare => //. proc. inline*. auto. progress. smt.
rewrite fkoplemma. rewrite alphaoplemma.
rewrite rhooplemma. rewrite mulC. rewrite mulA.
have : (G.g ˆ v ˆ v0 * a{hr} ˆ v ˆ v1) /

56

(G.g ˆ v0 * a{hr} ˆ v1)ˆv = G.g1.
have <− : (G.g ˆ v0 * a{hr} ˆ v1)ˆv
= (G.g ˆ v ˆ v0 * a{hr}ˆv ˆ v1). rewrite -pow_mul.
rewrite pow_pow. rewrite pow_pow. rewrite pow_pow.
rewrite pow_pow. smt. rewrite divK. smt. progress.
rewrite -div_def. rewrite log_mul. rewrite log_mul.
have : (log(G.g ˆ v ˆ v0) + log (a{hr} ˆ v ˆ v1)) -
log(G.g ˆ v ˆ v0 * a{hr} ˆ v ˆ v1) = F.zero.
have <− : (log(G.g ˆ v ˆ v0) + log (a{hr} ˆ v ˆ v1)
= log(G.g ˆ v ˆ v0 * a{hr} ˆ v ˆ v1)). smt.
rewrite sub_def. rewrite addfN. smt. smt.
qed.

C.4 Correctness of the Oblivious Transfer Protocol

lemma ot_correctness &m message1 message2 :
Pr[OT_Correctness.main(message1,message2)
@ &m : res] = 1%r.

proof.
byphoare => //. proc. inline*. auto. progress. smt.
smt. auto. case (v2). rewrite fkoplemma.
rewrite pioplemma. rewrite generatoroplemma.
rewrite alphaoplemma. rewrite rhooplemma.
have : (G.g, G.g ˆ v).`1 = G.g by smt. move => ?.
rewrite H17. have : (G.g, G.g ˆ v).`2
= G.gˆv by smt. move => ?. rewrite H18.
have : (v0, v1).`1 = v0 by smt. move => ?.
rewrite H19. have : (v3, v4).`1 = v3 by smt.
move => ?. rewrite H20.
have : (v3, v4).`2 = v4 by smt. move => ?.
rewrite H21. have : (G.g ˆ v0, G.g ˆ v ˆ v0).`1
= G.gˆv0 by smt. move => ?. rewrite H22.
have : (G.g ˆ v0, G.g ˆ v ˆ v0).`2 = G.gˆvˆv0 by smt.
move => ?. rewrite H23. rewrite mulC. rewrite pow_pow
pow_pow pow_pow pow_pow. rewrite mul_pow mul_pow.
have : G.g ˆ (v3 + v * v4) ˆ v0
= G.gˆ(v3*v0 + v*v4*v0) by smt. move => ?.
rewrite H24. have :
G.g ˆ (v0 * v3 + v * (v0 * v4)) /
G.g ˆ (v3 * v0 + v * v4 * v0) = g1 by smt. move => ?.
rewrite mulCD. rewrite H25. rewrite mul1. smt.
rewrite generatoroplemma. rewrite pioplemma.
rewrite fkoplemma. rewrite alphaoplemma.
rewrite rhooplemma.
have : (G.g, G.g ˆ v).`1 = G.g by smt.
have : (G.g, G.g ˆ v).`2 = G.gˆv by smt.
have : (v0, v1).`1 = v0 by smt.

57

have : (v3,v4).`1 = v3 by smt.
have : (v3,v4).`2 = v4 by smt. move => ? ? ? ? ?.
rewrite H17 H18 H19 H20 H21.
have : (G.g ˆ v0, G.g ˆ v ˆ v0).`1 = G.gˆv0 by smt.
have : (G.g ˆ v0, G.g ˆ v ˆ v0).`2 = G.gˆvˆv0 by smt.
move => ? ?. rewrite H22 H23. rewrite mulC.
rewrite pow_pow pow_pow pow_pow pow_pow.
rewrite mul_pow mul_pow.
have : G.g ˆ (v3 + v * v4) ˆ v0
= G.g ˆ (v3*v0 + v*v4*v0) by smt. move => ?.
rewrite H24.
have : G.g ˆ (v0 * v3 + v * (v0 * v4)) /
G.g ˆ (v3 * v0 + v * v4 * v0) = g1 by smt. move => ?.
rewrite mulCD. rewrite H25. rewrite mul1. smt.
qed.

58

Appendix D
Proof of Smoothness

D.1 Lemmas for lemma 1

(* Section for proving lemma 1: For all alpha(hk)
and for all t in G, there exists a hk` s.t.
alpha(hk) = alpha(hk`) AND
H_hk`(x) = t. *)

(* First we prove some lemmas that are
useful for the lemma *)

lemma aeq1_in_G (a : group) : log(a) = F.zero
<=> a = G.g1 by smt.

lemma exists_m : forall a, exists m, a = G.g ˆ m.
proof.
move => ?. exists (log a). smt.
qed.

lemma exists_m2 : forall a, exists m n,
a = (G.gˆm,G.gˆn) by smt.

lemma exp_g : G.g ˆ F.one = G.g by smt.

lemma exists_b (a : group) : exists b,
a <> G.g1 => a ˆ b = G.g.
proof.
cut := exists_m a. progress.
exists (inv (log (G.gˆm))). progress.
rewrite pow_pow. rewrite log_gpow. rewrite mulfV.
smt. rewrite exp_g. smt.
qed.

59

lemma Alpha_exists1 (a:group) (x1 y1 y2:t) :
exists x', x' = x1 + y1 - y2 => y1<>y2 =>
G.gˆx1 * aˆy1 = G.gˆx' * aˆy2 /\ x'<>x1 by smt.

lemma Alpha_exists2 (a b:group) (x1 y1 y2:t) :
y1<>y2 => exists x', x' = x1 + y1 - y2 =>
aˆx1 * bˆy1 = aˆx' * bˆy2 /\ x'<>x1 by smt.

lemma Alpha_exists3 (a:group) (x1 y1 y2:t) :
y1<>y2 => exists x', x' = x1 + (y1-y2)*log a =>
G.gˆx1 * aˆy1 = G.gˆx' * aˆy2 /\ x'<>x1 by smt.

lemma mulfVreverse (x:t) : x<>F.zero =>
((inv x) * x) = F.one by smt.

lemma alpha_existshk (a:group) (hk1:hkey) :
exists hk2, hk1<>hk2 => G.gˆhk1.`1 * aˆhk1.`2
= G.gˆhk2.`1 * aˆhk2.`2 by smt.

lemma alpha_existshk2 (a b:group) (hk1:hkey) :
exists hk2, hk1<>hk2 => aˆhk1.`1 * bˆhk1.`2
= aˆhk2.`1 * bˆhk2.`2 by smt.

lemma alpha_existshk3 (a b:X) (hk1:hkey) :
exists hk2, hk1<>hk2 => alphaop a hk1
= alphaop b hk2 by smt.

lemma alpha_existsfk (a:group) (hk1:hkey)
(t:G) (w:W) : exists hk2, hk1<>hk2 =>
G.gˆhk1.`1 * aˆhk1.`2 = G.gˆhk2.`1 * aˆhk2.`2 /\
G.gˆhk2.`1ˆw.`1 * aˆhk2.`2ˆw.`2 = t by smt.

lemma alpha_existsfk2 (a b:group) (hk1:hkey)
(t:G) (w:W) : exists hk2, hk1<>hk2 =>
aˆhk1.`1 * bˆhk1.`2 = aˆhk2.`1 * bˆhk2.`2 /\
aˆhk2.`1ˆw.`1 * bˆhk2.`2ˆw.`2 = t by smt.

(********* Proof of lemma 1 ************)

lemma lemma1 (x nl:X) (hk1:hkey) (t:G)
(m:t) (w:W) : exists hk2, hk1<>hk2 =>
x = generatorop m => nl = notpiop x w =>
alphaop nl hk1 = alphaop nl hk2 /\
fkop nl hk2 = t by smt.

60

D.2 Lemmas for lemma 2

(* Section for proving lemma 2:
For all alpha(hk), for all t in G,
for all alpha(hk`), IF alpha(hk) = alpha(hk`)
AND H_hk(x) = t = H_hk`(x) THEN hk=hk`. *)

(* First a lot of lemmas to be used later *)

lemma move_right (a b c d:t) : a + b = c + d <=>
a = c + d - b by smt.

lemma erase_both_sides (a b c d e f:t) :
a + b*c - b*d + e*b*f*d = a + e*b*f*c <=>
b*c - b*d + e*b*f*d = e*b*f*c by smt.

lemma mul1f (x:t) : F.one * x = x by smt.

lemma move_right2 (a b c d:t) : a - b + c = d <=>
- b + c = d - a by smt.

lemma mulflD (x y z:t) : x * z + y * z
= (x + y) * z by smt.

lemma negativex (x z:t) : - x * z = (-x) * z
by algebra.

lemma mulflD2 (x y z:t) : -x * z + y * z
= (-x + y) * z by smt.

lemma mulflD3 (a b c d:t) : (-a*b) + c*a*d*b
= ((-a) + c*a*d)*b by algebra.

lemma inv_not_one (x y:t) : x<>y => y<>F.zero =>
(x * (inv y)) <> F.one.
proof.
move => ? ?. have : x * inv y * y <> F.one * y.
rewrite mulC. rewrite mulA. rewrite mulC.
rewrite mulA. rewrite mulfVreverse. smt. smt. smt.
qed.

lemma inv_not_zero (x:t) : x<>F.zero =>
inv x <> F.zero by smt.

lemma invxy_not_zero (x y:t) : y<>F.zero =>
x<>F.zero => x * inv y <> F.zero.
proof.
move => ? ?. have : x * inv y * y <> F.zero * y.

61

rewrite mulC. rewrite mulA. rewrite mulC.
rewrite mulA. rewrite mulfVreverse. smt. smt. smt.
qed.

lemma plusnegative (a b c:t) :
a*(b* inv c) + -a = a*(b*inv c) - a by smt.

(* This lemma uses Alt-Ergo *)
lemma factorininv (a b c:t) :
inv a * (a * (b * inv c) - a)
= inv a * a * (b * inv c) - inv a * a.
proof.
smt prover=[+"Alt-Ergo"].
qed.

lemma zerotimes (a:t) : a * F.zero = F.zero by smt.

lemma m_not_zero (a b c:t) :
a<>F.zero => b<>F.zero => c<>F.zero => b<>c =>
(-a) + a * (b * inv c) <> F.zero.
proof.
move => ? ? ? ?. have : b * inv c <> F.zero. smt.
move => ?. have : (-a) = a * (- F.one). smt.
move => ?. rewrite addC. rewrite plusnegative.
have : inv a * (a * (b * inv c) - a) <>
inv a * F.zero. rewrite factorininv.
rewrite mulfVreverse. smt. rewrite zerotimes.
rewrite mulC. rewrite mulf1.
have : b * inv c - F.one + F.one <> F.zero + F.one.
have : b * inv c <> F.zero + F.one. rewrite addC.
rewrite addf0. smt. move => ?. smt. smt. smt.
qed.

D.3 keqk

(* Proof of if the hash function returns the same
value, the to hash keys have to be the same in a
general way, using algebra. This is the base for the
actual proof!!!! *)

lemma keqk (hk1 hk2 hk3:hkey) (m:t) (w:W) :
G.gˆhk1.`1 * G.g ˆ m ˆhk1.`2 =
G.gˆhk2.`1 * G.gˆmˆhk2.`2 =>
G.gˆhk2.`1 * G.gˆmˆhk2.`2 = G.gˆhk3.`1 * G.gˆmˆhk3.`2
=> (G.gˆw.`1)ˆhk2.`1 * (G.gˆmˆw.`2)ˆhk2.`2 =
(G.gˆw.`1)ˆhk3.`1 * (G.gˆmˆw.`2)ˆhk3.`2 =>
w.`1<>F.zero => w.`2<>F.zero => w.`1<>w.`2 =>

62

m<>F.zero => hk2=hk3.
proof.
move => ? ? ? ? ? ? ?. have : hk2.`1 + m*hk2.`2 =
hk3.`1 + m*hk3.`2. have :
log (G.g ˆ hk2.`1 * G.g ˆ m ˆ hk2.`2)
= log (G.g ˆ hk3.`1 * G.g ˆ m ˆ hk3.`2). smt.
rewrite log_mul. rewrite log_mul. rewrite pow_pow.
rewrite pow_pow. rewrite log_gpow. rewrite log_gpow.
rewrite log_gpow. rewrite log_gpow. smt. move => ?.
have : hk2.`1 = hk3.`1 + m*hk3.`2 - m*hk2.`2. smt.
move => ?. have : hk2.`2 = hk3.`2. have :
G.g ˆ (w.`1 * hk2.`1 + m * w.`2 * hk2.`2)
= G.g ˆ (w.`1 * hk3.`1 + m * w.`2 * hk3.`2). smt.
move => ?. have : w.`1*hk2.`1 + m*w.`2*hk2.`2
= w.`1*hk3.`1 + m*w.`2*hk3.`2. smt. have <− :
w.`1*(hk3.`1 + m*hk3.`2 - m*hk2.`2) + m*w.`2*hk2.`2
= w.`1*hk3.`1 + m*w.`2*hk3.`2. smt. move => ?.
have : w.`1 * (hk3.`1 + m * hk3.`2 - m * hk2.`2)
+ m * w.`2 * hk2.`2
= w.`1*hk3.`1 + m*w.`2*hk3.`2. smt. have :
inv w.`1*(w.`1*(hk3.`1 + m*hk3.`2 - m*hk2.`2)
+ m*w.`2*hk2.`2)
= inv w.`1*(w.`1*hk3.`1 + m*w.`2*hk3.`2). smt.
rewrite -mulfDl. rewrite -mulfDl. move => ?.
have : inv w.`1*w.`1*(hk3.`1 + m*hk3.`2 - m*hk2.`2)
+ inv w.`1*m*w.`2*hk2.`2
= inv w.`1*w.`1*hk3.`1 + inv w.`1*m*w.`2*hk3.`2.
smt. rewrite mulfVreverse. smt. rewrite mulC.
rewrite mulf1. rewrite mul1f. move => ?. have :
m * hk3.`2 - m * hk2.`2 + inv w.`1 * m * w.`2

* hk2.`2 = inv w.`1 * m * w.`2 * hk3.`2. have :
hk3.`1 + m * hk3.`2 - m * hk2.`2 +
inv w.`1 * m * w.`2 * hk2.`2
= hk3.`1 + inv w.`1 * m * w.`2 * hk3.`2.
rewrite erase_both_sides. smt. move => ?. smt.
move => ?.
have : - m * hk2.`2 + inv w.`1 * m * w.`2 * hk2.`2
= - m*hk3.`2 + inv w.`1 * m * w.`2 * hk3.`2.
have : m * hk3.`2 - m * hk2.`2 +
inv w.`1 * m * w.`2 * hk2.`2
= inv w.`1 * m * w.`2 * hk3.`2. smt.
rewrite move_right2. smt. move => ?.
have : ((-m) + inv w.`1*m*w.`2)*hk2.`2
= ((-m) + inv w.`1*m*w.`2)*hk3.`2. have :
(- m * hk2.`2) + inv w.`1 * m * w.`2 * hk2.`2
= (- m * hk3.`2) + inv w.`1 * m * w.`2 * hk3.`2.
smt. rewrite mulflD3. smt. move => ?.
have : inv ((-m) + inv w.`1 * m * w.`2) * ((-m) +
inv w.`1 * m * w.`2) * hk2.`2
= inv ((-m) + inv w.`1 * m * w.`2) * ((-m) +

63

inv w.`1 * m * w.`2) * hk3.`2. smt.
rewrite mulfVreverse. rewrite mulC. rewrite mulA.
rewrite mulC. have : w.`2 * inv w.`1 <> F.one.
have : w.`2 <> w.`1. smt. move => ?. smt.
move => ?. smt. smt. smt.
qed.

D.4 Lemmas for smoothness

(* Section for proving the smoothness
requirement with lemma 1 + 2 *)

module M1 = {
proc main() = {
var x;
x <$ FDistr.dt;
return x;

}
}.

lemma m1 &m : forall(n:t),
Pr[M1.main() @ &m : res = n] = 1%r/F.q%r.
proof.
progress. byphoare => //. proc. rnd. auto. progress.
rewrite FDistr.dt1E. smt.
qed.

lemma m12 &m (n:t) :
Pr[M1.main() @ &m : res = n] = 1%r/F.q%r.
proof.
byphoare => //. proc. rnd. auto. progress.
rewrite FDistr.dt1E. smt.
qed.

module M2 = {
proc main() = {
var x;
x <$ Dgroup.dgroup;
return x;

}
}.

lemma m2 &m : forall(n:Cyclic_group_prime.group),
Pr[M2.main() @ &m : res = n] = 1%r/Prime_field.q%r.
proof.
progress. byphoare => //. proc. rnd. auto.
progress. rewrite mu1_def_in. smt.

64

qed.

module M3 = {
proc main() = {
var x;
x <$ FDistr.dt;
return G.gˆx;

}
}.

lemma m3 &m : forall(n:group),
Pr[M3.main() @ &m : res = n] = 1%r/F.q%r.
proof.
move => n. byphoare => //. proc.
conseq (_:_ ==> x = log n / log G.g). progress.
smt. smt. rnd. auto => />. rewrite FDistr.dt1E. smt.
qed.

module M4 = {
proc main(a:group) = {
var x;
x <$ FDistr.dt;
return aˆx;

}
}.

lemma logone : log G.g1 = F.zero by smt.

lemma m4 &m (a:group) : forall(n:group), a<>g1 =>
Pr[M4.main(a) @ &m : res = n] = 1%r/F.q%r.
proof.
progress. byphoare (_ : arg = a /\ a<>g1 ==> _).
proc. conseq (_:_ ==> x = log n / log a). progress.
rewrite log_pow. rewrite mulC. smt. smt. rnd. auto.
progress. rewrite FDistr.dt1E. smt. smt. smt.
qed.

module M5 = {
proc main(alpha:G, m:t) = {
var u,v,w,b,a,x;
b <$ FDistr.dt;
u <− G.g;
v <− G.g ˆ m;
w <− G.log v;
alpha = G.gˆ(a+b*w);
a <− log alpha - b*w;
x <− uˆa*vˆb;
return x;

65

}
}.

lemma g1g1 (a b:group): a*b*G.g1=a*b.
proof.
rewrite mulC. rewrite mulA.
have : g1 * a = a by smt. smt.
qed.

lemma g1g12 (a b:int) : a*b*1=a*b by smt.

lemma mulf1inv (x:t) : F.one * x = x by smt.

lemma m5 &m (alpha:G) (m:t): forall(n:group),
m<>F.zero =>
Pr[M5.main(alpha,m) @ &m : res = n] = 1%r/F.q%r.
proof.
progress. byphoare
(_ : arg = (alpha, m) /\ m<>F.zero ==> _). proc.
wp. progress. conseq (_: ==> b = (log n-a)/m).
progress. rewrite log_pow log_pow. rewrite log_mul.
rewrite log_pow log_pow log_pow.
have : log G.g = F.one by smt. move => ?.
rewrite H1. rewrite mulf1inv mulf1inv mulf1inv.
smt. smt. rnd. auto. progress. rewrite FDistr.dt1E.
smt. smt. smt.
qed.

module M7 = {
proc main(alpha:G, w1:t, w2:t, m:t) = {
var x1,x2,hk0,hk1,x;
hk1 <$ FDistr.dt;
x1 <− G.g ˆ w1;
x2 <− G.g ˆ m ˆ w2;
alpha = G.gˆ(hk0+hk1*m);
hk0 <− log alpha - hk1*m;
x <− x1ˆhk0*x2ˆhk1;
return x;

}
}.

lemma m7 &m (alpha:G) (w1 w2 m:t) :
forall(n:group), w1<>F.zero => w2<>F.zero =>
m<>F.zero =>
Pr[M7.main(alpha,w1,w2,m) @ &m : res = n]
= 1%r/F.q%r.
proof.
progress. byphoare
(_ : arg = (alpha,w1,w2,m) /\ w1<>F.zero /\

66

w2<>F.zero /\ m<>F.zero ==> _). proc. wp. progress.
conseq (_: ==> hk1 = (log n - w1*hk0)/(m*w2)).
progress. rewrite log_pow. rewrite log_mul.
rewrite log_pow log_pow log_pow log_pow log_pow.
rewrite log_g. rewrite mulf1inv mulf1inv mulf1inv.
have : hk10 * m{hr} - hk10 * m{hr} = F.zero by smt.
move => ?. have : (hk0{hr} + hk10 * m{hr} -
hk10 * m{hr}) = hk0{hr}.
rewrite addC. rewrite sub_def. rewrite addC.
rewrite addA. smt. move => ?. rewrite H6.
have : (w1{hr} * hk0{hr} + m{hr} * w2{hr} *
hk10 - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}) = m{hr} * w2{hr} * hk10 /
(m{hr} * w2{hr}) by smt. smt. rewrite log_pow.
rewrite log_g. have : log (G.g ˆ w1{hr} ˆ
(F.one * (hk0{hr} + (log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}) * m{hr}) -
(log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}) * m{hr}) *
G.g ˆ m{hr} ˆ w2{hr} ˆ ((log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}))) = log n <=>
G.g ˆ w1{hr} ˆ (F.one * (hk0{hr} +
(log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}) * m{hr}) -
(log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}) * m{hr}) *
G.g ˆ m{hr} ˆ w2{hr} ˆ ((log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr})) = n by smt. move => ?. apply H5.
rewrite log_mul. rewrite log_pow log_pow log_pow
log_pow log_pow. rewrite log_g.
have : (F.one * (hk0{hr} +
(log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}) * m{hr})
- (log n - w1{hr} * hk0{hr}) /
(m{hr} * w2{hr}) * m{hr})
= hk0{hr} by smt. move => ?. rewrite H6.
have : F.one * m{hr} * w2{hr} *
((log n - w1{hr} * hk0{hr}) / (m{hr} * w2{hr}))
= log n - w1{hr} * hk0{hr} by smt. move => ?.
rewrite H7. smt. rnd. auto. progress.
rewrite FDistr.dt1E. smt. smt. smt.
qed.

D.5 Proof of smoothness

lemma smoothness &m : forall(n:group), forall(s:G),
forall(w1 w2 m:t), w1<>F.zero => w2<>F.zero =>

67

m<>F.zero => w1<>w2 =>
Pr[Smoothness.main(s,w1,w2,m) @ &m : res = n]
= 1%r/F.q%r.
proof.
progress. byphoare (_ : arg = (s,w1,w2,m) /\
w1<>F.zero /\ w2<>F.zero /\ m<>F.zero /\
w1<>w2==> _). proc. wp. progress.
conseq (_: ==> hk1 = (log n - w1*log s)/(m*w2-m*w1)).
progress. rewrite pow_pow pow_pow pow_pow.
rewrite log_mul. rewrite log_pow log_pow.
rewrite log_g. rewrite mulf1inv mulf1inv.
have : (w1{hr} * (log s{hr} - hk10 * m{hr})) =
w1{hr} * log s{hr} - w1{hr} * hk10 * m{hr}
by algebra. move => ?. rewrite H7.
have : (w1{hr} * log s{hr} - w1{hr} * hk10 * m{hr} +
m{hr} * (w2{hr} * hk10) - w1{hr} * log s{hr})
= - w1{hr} * hk10 * m{hr} + m{hr} * (w2{hr} * hk10)
by algebra. move => ?. rewrite H8. rewrite mulC.
rewrite mulA. rewrite mulC. rewrite addC.
rewrite -sub_def. rewrite mulA. rewrite mulC.
have : (hk10 * (m{hr} * w2{hr}) -
hk10 * (m{hr} * w1{hr})) = hk10 * (m{hr}*w2{hr} -
m{hr}*w1{hr}) by smt. move => ?. rewrite H9. algebra.
smt. rewrite pow_pow pow_pow pow_pow.
have : log (G.g ˆ (w1{hr} * (log s{hr} -
(log n - w1{hr} * log s{hr}) /
(m{hr} * w2{hr} - m{hr} * w1{hr}) * m{hr})) *
G.g ˆ (m{hr} * (w2{hr} *
((log n - w1{hr} * log s{hr}) /
(m{hr} * w2{hr} - m{hr} * w1{hr}))))) = log n <=>
G.g ˆ (w1{hr} * (log s{hr} -
(log n - w1{hr} * log s{hr}) /
(m{hr} * w2{hr} - m{hr} * w1{hr}) * m{hr})) *
G.g ˆ (m{hr} * (w2{hr} *
((log n - w1{hr} * log s{hr})
/ (m{hr} * w2{hr} - m{hr} * w1{hr})))) = n.
have : log (G.g ˆ (w1{hr} * (log s{hr} -
(log n - w1{hr} * log s{hr}) /
(m{hr} * w2{hr} - m{hr} * w1{hr}) * m{hr})) *
G.g ˆ (m{hr} * (w2{hr} *
((log n - w1{hr} * log s{hr}) /
(m{hr} * w2{hr} - m{hr} * w1{hr}))))) = log n.
algebra. rewrite mulC. rewrite mulfDl. smt. smt.
move => ?. apply H7. rewrite log_mul.
rewrite log_pow log_pow. rewrite log_g.
rewrite mulf1inv mulf1inv.
have : (log n - w1{hr} * log s{hr}) /
(m{hr} * w2{hr} - m{hr} * w1{hr}) * m{hr} =
log n / (w2{hr} - w1{hr}) - w1{hr}*log s{hr} /
(w2{hr}-w1{hr}). rewrite mulC. algebra. smt.

68

move => ?. rewrite H8. algebra. smt. rnd. auto.
progress. rewrite FDistr.dt1E. smt. smt. smt.
qed.

69

70

Appendix E
Hard Subset Membership Problem
Reduction

require import AllCore FSet DBool Bool Int
Real Distr.
require (* *) CyclicGroup.

clone export CyclicGroup as G.

require RndExcept.

axiom gt1_q : 1 < F.q.

theory Ad1.

clone import RndExcept as RndE with
type input <− unit,
type t <− F.t,
op d <− fun _ => FDistr.dt,
type out <− bool
proof *.
realize d_ll.
move=> _;apply FDistr.dt_ll. qed.

clone include Adversary1_1 with
op n <− F.q
proof *.

realize gt1_n by apply gt1_q.
realize d_uni by move=> _ x;apply FDistr.dt1E.

end Ad1.

71

theory SMP.

module type Adversary = {
proc guess(g gm gw1 gmw:G.group): bool

}.

module SMP0 (A:Adversary) = {
proc main() : bool = {

var b, m, w1;
m <$ FDistr.dt;
w1 <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ m, G.g ˆ w1, G.g ˆ (m*w1));
return b;

}
}.

module SMP1 (A:Adversary) = {
proc main() : bool = {

var b, m, w1, w2;

m <$ FDistr.dt;
w1 <$ FDistr.dt;
w2 <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ m, G.g ˆ w1, G.g ˆ (m*w2));
return b;

}
}.

module DDH0 (A:Adversary) = {
proc main() : bool = {
var b, x, y;
x <$ FDistr.dt;
y <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ x, G.g ˆ y, G.g ˆ (x*y));
return b;

}
}.

module DDH1 (A:Adversary) = {
proc main() : bool = {
var b, x, y, z;

x <$ FDistr.dt;
y <$ FDistr.dt;
z <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ x, G.g ˆ y, G.g ˆ (x*z));

72

return b;
}

}.

section PROOFS.

declare module A:Adversary.

axiom A_ll : islossless A.guess.

local module Addh0 : Ad1.ADV = {
proc a1 () = { return ((), F.zero); }
proc a2 (x:t) = {

var b, y;
y <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ x, G.g ˆ y, G.g ˆ (x*y));
return b;

}
}.

local module Addh1 = {
proc a1 = Addh0.a1
proc a2 (x:t) = {

var b, y, z;
y <$ FDistr.dt;
z <$ FDistr.dt;
b <− A.guess
(G.g, G.g ˆ x, G.g ˆ y, G.g ˆ (x*z));
return b;

}
}.

local lemma a1_ll : islossless Addh0.a1.
proof. proc;auto. qed.

lemma adv_DDH_SMP &m :
`| Pr[SMP0(A).main()@ &m : res] -
Pr[SMP1(A).main()@ &m : res] | <=
`| Pr[DDH0(A).main()@ &m : res] -
Pr[DDH1(A).main()@ &m : res] |.

proof.
have <− :
Pr[Ad1.Main(Addh0).main() @ &m : res]
= Pr[SMP0(A).main() @ &m : res].
+ by byequiv => //;proc;inline *;sim;auto.
have <− :
Pr[Ad1.Main(Addh1).main() @ &m : res]
= Pr[SMP1(A).main() @ &m : res].
by byequiv => //;proc;inline *;sim;auto.

73

have <− :
Pr[Ad1.Main(Addh0).main() @ &m : res]
= Pr[DDH0(A).main() @ &m : res].
+ by byequiv => //;proc;inline *;sim;auto.
have <− :
Pr[Ad1.Main(Addh1).main() @ &m : res]
= Pr[DDH1(A).main() @ &m : res].
by byequiv => //;proc;inline *;sim;auto. smt.

qed.

end section PROOFS.

74

	Introduction
	Background
	Outline of the Thesis
	Cryptography in School Teaching

	Introduction to EasyCrypt
	How EasyCrypt Works and General Tactics
	Group Theory in EasyCrypt
	Formulating Proofs
	Verifying Proofs
	Examples

	Background and Definitions
	Attack Games and Advantage
	The Decisional Diffie-Hellman Assumption
	Subset Membership Problems
	Security Game of Subset Membership Problems
	Subset Membership Algorithms

	Smooth Projective Hash Functions
	Hash Families
	Projective Hash Families
	Smooth Projective Hash Families
	Security Game of Smooth Projective Hash Functions

	Example and Modelling in EasyCrypt
	Sets and Functions
	Encryption
	Modelling in EasyCrypt

	Oblivious Transfer
	Definition
	1-out-of-2 oblivious transfer
	Example Using RSA Encryption
	The Basic Idea of an Oblivious Transfer Protocol

	Kalai Oblivious Transfer Protocol
	Definitions
	Sets and Functions
	Encryption

	The Oblivious Transfer Protocol
	Verifying Algorithm
	Modelling in EasyCrypt

	Security of Oblivious Transfer and the Kalai Protocol in EasyCrypt
	Security of Oblivious Transfer
	Security of the Receiver
	Security of the Sender

	Security of the Kalai Oblivious Transfer Protocol in EasyCrypt
	Security of the Receiver
	Security of the Sender

	Concluding Remarks
	Critical Error
	Stability
	Incomplete Selection of Lemmas and Definitions
	Working with Algebra in EasyCrypt
	Syntax
	Usage of EasyCrypt in Cryptographic Proofs

	Bibliography
	Appendix Important Axioms and Lemmas in Group Theory
	Appendix Modelling of General Definitions
	Appendix Initialization of the Kalai Protocol
	Operator Lemmas
	Initialization Module
	Correctness of the Encryption Scheme
	Correctness of the Oblivious Transfer Protocol

	Appendix Proof of Smoothness
	Lemmas for lemma 1
	Lemmas for lemma 2
	keqk
	Lemmas for smoothness
	Proof of smoothness

	Appendix Hard Subset Membership Problem Reduction

