
Hash Proof Based Encryption Schemes in
EasyCrypt

Morten Rotvold Solberg

Master of Science

Supervisor: Kristian Gjøsteen, IMF

Department of Mathematical Sciences

Submission date: May 2018

Norwegian University of Science and Technology



 



Acknowledgements

Before you lies the work concluding my time as a student at NTNU. The project I have
been working on this semester have been both interesting, fun, educational, difficult and
from time to time seemed to be rather overwhelming. I would not have been able to do this
all by my self, and several people deserve my thanks for helping in this project.

First of all I want to thank my supervisor, Kristian Gjøsteen, for valuable feedback and
reflections.

I also want to thank the EASYCRYPT developers, and especially François Dupressoir
for being so very helpful in answering my questions.

Thanks to my family and my girlfriend for believing in me and for all the love and
support and for proofreading my thesis.

Thank you to my fellow students for all the lunch time quizzes, for all the hours in the
table tennis room and generally for making these five years of studying as good as they
could possibly be.

Morten Rotvold Solberg
Trondheim, May 2018

i



ii



Abstract
We describe the basics of the proof-assistant EASYCRYPT and explain how to use EASY-
CRYPT to model encryption schemes and game-based security proofs. Furthermore, we
analyze a generic encryption scheme by Cramer and Shoup, which is based on hash proof
systems and the difficulty of deciding whether or not an element of a finite set X lies in a
certain subset L ⊂ X . We implement this scheme in EASYCRYPT and verify its security
proof. We also present some simplifications of the scheme, making it easier to implement
at the cost of less security. Finally, we concretize the simplified generic scheme using the
Decision Diffie Hellman assumption.

Sammendrag
Vi beskriver de grunnleggende elementene i bevisprogrammet EASYCRYPT, og forklarer
hvordan EASYCRYPT kan brukes til å modellere kryptosystemer og spillbaserte sikkerhets-
bevis. Videre analyserer vi et generisk kryptosystem av Cramer og Shoup, basert på hash
proof-systemer og vanskeligheten av å avgjøre om et element i en endelig mengde X ligger
i en spesiell delmengde L ⊂ X eller ikke. Vi implementerer kryptosystemet i EASYCRYPT
og verifiserer systemets sikkerhetsbevis. Vi beskriver også noen forenklinger av systemet
som gjør det enklere å implementere, men også mindre sikkert. Til slutt konkretiserer vi
det forenklede systemet ved hjelp av Decision Diffie Hellman-antagelsen.
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Chapter 1
Introduction

Cryptography plays a huge role in modern society. We can find cryptography essentially
everywhere, from secure communications and electronic elections to new methods of
payment. As cryptography becomes more and more central in our modern society, we
also demand more and more security. We want to be certain that the systems we use are
secure against different kinds of adversaries. For this purpose, techniques such as game
hopping [8] have been developed. Such techniques handle the complexities of cryptographic
schemes and protocols and allow us to mathematically prove the security of a cryptosystem
under reasonable assumptions.

However, cryptographic schemes and protocols have become so complex that their
security proofs are becoming error prone and difficult to verify even with the use of well
developed proof techniques. It has even been claimed that many proofs in cryptography
have become essentially unverifiable [2]. To deal with this, computer-based proof-assistants
designed for automatic proof-verification have been developed. One such proof assistant is
EASYCRYPT.

EASYCRYPT is a proof-assistant designed for formal verification of probabilistic, game-
based security proofs with unspecified adversarial code. In other words, this proof-assistant
will not produce a proof itself. For any scheme and attack, we must first construct a pen-and-
paper proof. This proof must then be implemented1 in EASYCRYPT for verification. The
scheme we will look at in this thesis is a generic cryptosystem based on subset membership
problems and hash proof systems, proposed by Cramer and Shoup in [3]. We will also look
at a concrete construction based on hash proof systems and the Decision Diffie-Hellman
assumption.

As the scheme we analyze is well-studied and accepted as secure under the appropriate
assumptions, the main goal of this thesis is not to actually find out whether or not the proof
holds. Instead, we want to describe how EASYCRYPT is used for this purpose, and to find
out whether or not EASYCRYPT is a useful tool for verifying the security of the (fairly
simple) scheme in question.

1By ”implementation” we will mean writing the EASYCRYPT code modeling mathematical definitions,
encryption schemes, security proofs and so on.
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Chapter 1. Introduction

The thesis will be organized as follows: in Chapter 2, we provide an introduction to the
basic elements of the EASYCRYPT language; in Chapter 3, we look at the cryptographic
and mathematical theory we will need in the rest of the thesis, as well as a description
of how the definitions we make can be implemented in EASYCRYPT; in Chapter 4 we
look at a generic encryption scheme by Cramer and Shoup [3], which uses hash proof
systems, sketch its security proof, and describe how both scheme and security proof can
be implemented in EASYCRYPT; in Chapter 5 we concretize the generic scheme using
the Decision Diffie Hellman assumption as an underlying subset membership problem;
in Chapter 6, we summarize our work with some concluding remarks, and make a few
suggestions for interesting further work.

Files including the EASYCRYPT implementations of the schemes we work with and all
lemmas we describe in the thesis, along with their EASYCRYPT proofs, can be found on
GitHub.2

2https://github.com/mortensol/EasyCrypt
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Chapter 2
Introductory EasyCrypt

EASYCRYPT is a proof assistant designed for verifying the security of cryptographic
constructions [1]. In EASYCRYPT, both security goals and hardness assumptions are
modeled as probabilistic games. This chapter will serve as an introduction to EASYCRYPT.
We will describe the basic elements of EASYCRYPT as well as the syntax, and we will look
at the different forms of logic used to reason about different types of statements. At the end
of the chapter we will briefly discuss the run time of an adversary attacking a cryptographic
construction. We assume the reader has some basic knowledge of cryptography, such as the
notions of plaintexts and ciphertexts.

We will provide a rather short description of the various elements. More detailed
explanations can be found in [4] and [9].

The first and perhaps one of the most important things to note, is that at the time of
writing, EASYCRYPT is under heavy development. In practice, this means that there is a
possibility that parts of the code we write may not work at a later time due to some update,
even though it worked fine when the thesis was written.

It should also be noted that there exists an EASYCRYPT user manual [9]. However, at
the time of writing, this user manual is also under development, meaning several of the
chapters are either missing or incomplete. It does however include much of the basics of
EASYCRYPT, and several of the examples provided in this chapter will either be inspired
of or taken from the user manual.

As there is no complete user manual, learning EASYCRYPT has to a large extent been
done by reading and trying to understand code examples developed by the EASYCRYPT
team. In addition, there has been a lot of trial, error and experimenting. Lastly, there is
an EASYCRYPT mailing list, where the developers of EASYCRYPT are very helpful in
answering questions.1

1https://lists.gforge.inria.fr/mailman/listinfo/easycrypt-club
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Chapter 2. Introductory EasyCrypt

2.1 The Basics of EasyCrypt
In this section, we will look at the basic elements that make up the EASYCRYPT language.
These elements are types, theories, operators, modules, procedures, module types, axioms
and lemmas.

2.1.1 Types
We can view types as mathematical sets consisting of at least one element. EASYCRYPT
has a few built in types, e.g. bool, int, real and unit.

In addition to the built-in types, we may define our own abstract types. This is done by
simply typing

type plaintext.
type ciphertext.

When defining abstract types, it may also be necessary to provide axioms defining how
these types should behave. We can also use type aliases, if we want to name our types for
example for readability purposes. Say for example we are working with a group G, and we
have plaintexts in G2 and ciphertexts in G4. Then using the type aliases

type plaintext = group * group.
type ciphertext = group * group * group * group.

makes the code both much more readable and a lot easier to work with than constantly
working with the types group * group and group * group * group * group.

2.1.2 Operators
Operators can be viewed as mathematical functions, defined along with input types and
output types. For example, we can define the absolute value operator for integers as

op "`|_|" : int −> int = fun x, (0 <= x) ? x : -x.

meaning both input and output are integers. Here, we have also used EASYCRYPT’s
anonymous function fun, i.e. a function not bound to a variable or constant, and the built
in conditional expression. The conditional expression has the form

b ? t : f

where b is a boolean. If b is true, the expression evaluates to t, and if b is false, it evaluates
to f. Note that this is equivalent to

if b then t else f.

We can also use operators to define distributions or finite sets. As an example, consider
the following distribution of plaintexts and set of ciphertexts.

op dPlain : plaintext distr.
op sCipher : ciphertext fset.
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2.1 The Basics of EasyCrypt

We may add some properties to these distributions and sets. If we want to make sure the
distribution is uniform, we define it as follows:

op dPlain : { plaintext distr | is_uniform dPlain }
as dPlain_uni.

2.1.3 Theories
As mentioned, EASYCRYPT has some built-in types. These built-in types are defined in files
referred to as theories. As an example, basic usage of integers is defined in the theory called
Int.ec. Before we can use the built-in types, we need to load the corresponding theories
into our context. This is done by using the keywords require and import. Loading the
theory into our context by typing

require Int

will allow us to work with integers. For example, writing

const x : int = Int.(+) 10 24

will make x evaluate to 34.
If we in addition to ”requiring” a theory also import it, by

require import Int

we can use the operators defined in the Int theory in a more familiar way and without
specifying which theory we are using. For example, writing

const x : int = 10 + 24

will also make x evaluate to 34.

2.1.4 Modules, Procedures and Module Types
Modules are used to model algorithms like encryption and decryption, as well as cryp-
tographic games. Games will be discussed in greater detail in §3.2. A module consists
of global variables and procedures, and a procedure consists of local variables, random
assignments, regular assignments and calls to other procedures. A global variable may be
used by any procedure inside the module, as long as it is defined prior to the procedure. A
local variable however, can only be used inside the procedure where it is defined. Similarly,
a procedure can make a call to any other procedure, as long as the procedure called is
defined prior to the procedure calling it. We now provide an example of how to define a
module with a few procedures.

module M = {
var x : int
var bnd : int
var b : bool
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Chapter 2. Introductory EasyCrypt

proc init_x() : unit = {
x <$ [-bnd .. bnd];

}

proc get_x() : int = {
init_x();
return x;

}

proc get_b() : bool = {
b <$ {0,1};
return b;

}
}.

module Get_b_from_M = {
proc main() : bool = {

var b : bool;
b <@ M.get_b();
return b;

}
}.

The first module consists of three global variables: the integer x, the integer bnd defining
the interval from which we can sample x, and the boolean b. The first procedure shows
how we can define a procedure that does something without returning anything (i.e. it
has return type unit). The second procedure makes a call to the first procedure and then
returns the sampled value. The third procedure shows how we can perform both those
actions in a single procedure, and samples a boolean before returning it. The second
module has no global variables, but has a procedure consisting of a local variable and a
procedure call to a procedure from a different module. The two procedures M.get_b()
and Get_b_from_M.main() are equivalent.

A module type is similar to a module. In a module type, we also define different
procedures along with their input and output types. However, we do not concretely state
what the procedures should do. This is particularly useful when defining adversaries. In
this way, we can define an abstract adversary, making sure the proof holds for any adversary
with given properties. Concrete examples of this will be given in §3.1.2.

2.1.5 Axioms, Lemmas and SMT Solvers
Lemmas and axioms are statements that are saved and can be used later. The main difference
between a lemma and an axiom is that axioms are trusted by EASYCRYPT, while lemmas
need to be proved before they can be used in other settings. Other than that, axioms and
lemmas are stated equivalently. To exemplify, we look at the fact that for all integers i ≥ 0,
we have i + 1 > 0. In EASYCRYPT, we can state this as an axiom or a lemma in the
following way.
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2.1 The Basics of EasyCrypt

axiom a1 : forall (i:int), 0 <= i => 0 < i + 1.
axiom a2 (i:int) : 0 <= i => 0 < i + 1.

lemma l1 : forall (i:int), 0 <= i => 0 < i + 1.
proof.
· · ·
qed.

The two axioms show two slightly different but equivalent ways of stating an axiom, the
only difference being the notation for telling EASYCRYPT what variables we are using.
These two ways also work for lemmas. Starting a proof will result in a goal. A goal consists
of assumptions and a conclusion. In lemma l1 above, the assumption list would consist of
i : int and 0 <= i and the conclusion (what we want to prove) would be 0 < i + 1.

The proof body of the lemma (i.e. the dots between proof and qed) consists of so
called tactics. Tactics are certain keywords that are used to either transform or break the
conclusion down into simpler logic statements. We will not explain many tactics in detail
in this thesis, but detailed explanations of (almost) all available tactics can be found in [9].
We will also omit the proofs of the lemmas we prove in EASYCRYPT in this text, but as
mentioned, all the proofs can be found in the code files on GitHub2. The reason is that the
proofs tend to be long and spacious and look more like noise than actual proofs. As an
example (from the file CCA-masters-finished.ec), a typical lemma along with a proof
may look as follows:

local equiv CCA_Exp1G0_main :
CCA(Genscheme,A).main ˜ Exp1G0(A).main :
={glob A} ==> ={res}.

proof.
proc; inline*.
call (_: CCA.log{1} = Exp1G0.log{2}

/\ CCA.sk{1} = Exp1G0.sk{2}
/\ CCA.cstar{1} = Exp1G0.cstar{2}).

proc; inline*.
if => //. sp 8 6. if => //. smt.
wp;skip;first smt.
wp;skip;first smt.
wp;skip;first smt.
swap{1} [20..22] -4.
wp. rnd.
call (_: CCA.log{1} = Exp1G0.log{2}

/\ CCA.sk{1} = Exp1G0.sk{2}
/\ CCA.cstar{1} = Exp1G0.cstar{2}).

proc; inline*.
if => //=. sp 8 6. if => //=. smt.
wp. skip. smt. wp. skip. smt. wp; skip. smt.
wp. do 2! rnd. wp. sp. rnd; wp; rnd; skip.
move => ?????; split; first smt.
move => ?; split; first smt.

2https://github.com/mortensol/EasyCrypt
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move => ???. split; first smt.
move => ????. split; first smt.
move => ???. split; first smt.
move => ???. split; first smt.
move => ?. split; first done.
move => ?. split. smt.
move => ??????????. split. by exact/H13.
move => ???????. split. split.
have −> : c_L =

(x0L, e_L, proj_ (pk_L.`2, x0L, e_L, w0L)) by smt.
have −> : c_R =

(x0L, estar_R, hash_ (sk_R.`2, x0L, estar_R)) by smt.
have −> : estar_R = e_L.
have −> : estar_R =

toY (toint (if bL then result_R.`2 else result_R.`1) +
toint (hash (sk_R.`1, x0L))) by smt.

have −> : e_L =
toY (toint (if bL then result_L.`2 else result_L.`1) +
toint (proj (pk_L.`1, x0L, w0L))) by smt.

have −> : sk_R.`1 = sk_L.`1 by smt.
have −> : hash (sk_L.`1, x0L) =

proj (pk_L.`1, x0L, w0L) by smt. smt.
have <− : sk_L.`2 = sk_R.`2 by smt. smt.
split; first smt.
have −> : sk_L = sk_R by smt.
have −> : log_L = log_R by smt.
have −> : cstar_L = cstar_R.
have −> : cstar_L = Some c_L by smt.
have −> : cstar_R = Some c_R by smt.
have −> : c_L =
(x0L, e_L, proj_ (pk_L.`2, x0L, e_L, w0L)) by smt.

have −> : c_R =
(x0L, estar_R, hash_ (sk_R.`2, x0L, estar_R)) by smt.

have −> : estar_R = e_L.
have −> : estar_R =

toY (toint (if bL then result_R.`2 else result_R.`1) +
toint (hash (sk_R.`1, x0L))) by smt.

have −> : e_L =
toY (toint (if bL then result_L.`2 else result_L.`1) +
toint (proj (pk_L.`1, x0L, w0L))) by smt.

have −> : sk_R.`1 = sk_L.`1 by smt.
have : result_R = result_L by smt.
have −> : hash(sk_L.`1, x0L) =

proj (pk_L.`1, x0L, w0L) by smt. smt.
have −> : sk_R.`2 = sk_L.`2 by smt. smt. trivial.
move => ????????.
have −> : result_R0 = result_L0 by smt. trivial.
qed.

Simple logic statements can be verified by EASYCRYPT’s built-in ambient logic, or
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they can be sent to external SMT solvers (carried out by the proof tactic smt). SMT solvers
are external programs, that can take simple lemmas or logic statements as input. After
working on these statements, the SMT solvers either return that the statement was true, or
that they were not able to solve it. In the latter case, this can mean that the statement was
false, but it can also mean that it was true, but too complicated for the SMT solver to solve.

SMT solvers can be very useful, but they are also unpredictable and somewhat error-
prone. We will provide a few examples to illustrate that SMT solvers should be used with
care and that they may not work even if the statement we want to prove is more or less
trivial.

A fellow student, also working with EASYCRYPT, recently found a bug in one of the
SMT solvers used by EASYCRYPT. This student was working on cyclic groups, using the
built-in theory CyclicGroup.ec developed by the EASYCRYPT team. He then found that
for a cyclic group of large prime order q, one of the SMT solvers accepted the following
lemma.

lemma X : 1%r/q%r = 1%r.

It turned out there was a bug in an SMT solver named Alt-Ergo, which had to be
removed from the list of available SMT solvers. The bug was later fixed, but we believe
this shows that SMT solvers should be used with care. We should be very certain that the
statement we send is in fact true, as this shows that there may exist bugs allowing us to
prove lemmas that are in fact false. In fact, it may be wise to try avoiding SMT solvers
altogether, at least as far as possible. Experience has shown that avoiding SMT solvers in
full, may not be possible, or at least very difficult. As can be seen in the proof listed above,
we do use SMT solvers quite often, as we have not found a way to avoid them in this case.

In another case, we were also working with cyclic groups, and wanted to prove the
following relation.

m{hr} * gen0 ˆ w0 ˆ k0 * gen1 ˆ w0 ˆ k10 /
(gen0 ˆ w0 ˆ k0 * gen1 ˆ w0 ˆ k10) = m{hr} * g1.

Here, g1 is the identity element of the group. The SMT solvers used by EASYCRYPT
accepts the assumption

gen0 ˆ w0 ˆ k0 * gen1 ˆ w0 ˆ k10 /
(gen0 ˆ w0 ˆ k0 * gen1 ˆ w0 ˆ k10) = g1

as correct, but for some reason, they are not able to prove the preceding conclusion. This
shows that the SMT solvers may be unpredictable and that they may have trouble proving
even as simple statements as this. In this case, it was possible to prove the conclusion without
the use of SMT solvers, but it required a rather complicated and tedious transformation.

2.2 Hoare Logic and Probability Assignments
The logic and proofs in EASYCRYPT are largely based on Hoare logic [6]. The perhaps
most important notion in Hoare logic is that of the Hoare triple. A Hoare triple consists of
a precondition P , a postcondition R and and a program Q. The pre- and postconditions

9



Chapter 2. Introductory EasyCrypt

are logic statements. The hoare triple P{Q}R informally means that if the precondition is
true before the execution of the program, the postcondition will be true when the program
terminates.

In EASYCRYPT, we make use of three types of Hoare logic: a regular, possibilistic
Hoare logic (HL), a probabilistic Hoare logic (pHL) and a probabilistic relational Hoare
logic (pRHL) [9].

Regular Hoare logic is a regular Hoare triple, checking whether or not the postcondition
is true after the program terminates. Probabilistic Hoare logic analyzes the probability that
the postcondition is true after the program terminates, and probabilistic relational Hoare
logic relates two programs checking whether or not they are equivalent given appropriate
pre- and postconditions.

As a few examples of how to use the three logics in EASYCRYPT, we consider throwing
a pair of dice. We first look at the throw of a six sided die and use HL to prove that the output
will be in {1, ..., 6}. The theories we need to require and import are AllCore, DInterval

and Distr.

module Dice1 = {
proc throw() : bool = {
var x:int;
x <$ [1 .. 6];
return (x \in [1 .. 6]);

}
}.

lemma l1 : hoare[Dice1.throw : true ==> res].

We set up the HL statement by specifying which module and procedure we look at, followed
by the precondition and postcondition. Here, we do not have any particular precondition
which we need for the statement to be true, so we simply write true as the precondition.
Writing res as postcondition is equivalent to writing res = true, i.e. saying that the
value returned by the procedure in question is true.

To consider the concrete probability that the throw of a die results in some value, say 6,
we use pHL. The notation %r following the integers in the example below, means that in
this case, we evaluate 1 and 6 as real numbers rather than integers. The reason is that there
is no division operator for integers.

module Dice2 = {
proc throw() : bool = {
var x:int;
x <$ [1 .. 6];
return (x=6);

}
}.

lemma l2 :
phoare[Dice2.throw : true ==> res] = (1%r/6%r).

Neither here do we need any particular precondition. As an example of a case where we do
need to specify a precondition other than just true, we model the throw of one die with
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n sides and one die with m sides. We then look at the probability of throwing n and m
respectively, and prove that these probabilities are the same provided that n = m.

op n : { int | 0 < n } as gt0_n.
op m : { int | 0 < m } as gt0_m.

module Dice3 = {
proc throw() : bool = {
var x:int;
x <$ [1 .. n];
return (x=n);

}
}.

module Dice4 = {
proc throw() : bool = {
var x:int;
x <$ [1 .. m];
return (x=m);

}
}.

lemma l3 :
equiv[Dice3.throw ˜ Dice4.throw : n = m ==> ={res}].

We can also state lemmas using probability expressions that may seem a bit more
familiar than Hoare logic statements. For example, lemma l2 above can be written using a
probability statement like this:

lemma l2_pr &m :
Pr[Dice2.throw() @ &m : res] = 1%r/6%r.

Note that here we have to specify some memory for which to work in (&m). This is done
automatically when using Hoare logic statements. Also, in many cases, starting up with
a probability statement will require you to transform the goal to a Hoare logic statement
when proving it. Thus, for most practical purposes it is better to use pHL or pRHL when
working with lemmas involving probability. One exception, though, is if we want to prove
a concrete cryptographic reduction, say of the sort

`|Pr[CPAattack.main() @ &m : res] - 1%r/2%r| <=
`|Pr[DDH1.main() @ &m : res] -
Pr[DDH0.main() @ &m : res]|.

Here, it is best to start out using Hoare logic, and then transform the Hoare logic statements
to regular probability statements. We will do exactly that later in the thesis, when proving
the security of the generic Cramer-Shoup scheme based on hash proof systems.

Two tactics we will use extensively in the thesis are byphoare and byequiv. The
first is (among other things) used to prove a probability statement equivalent to an already
proven pHL statement. The second is used to prove a probability statement connecting two
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equivalent procedures. As an example, we can use the pHL based lemma, lemma l2 above
to prove lemma l2_pr. The proof goes as follows:

lemma l2_pr &m :
Pr[Dice2.throw() @ &m : res] = 1%r/6%r
by byphoare l2.

The byequiv tactic is used in exactly the same way, when we want to prove the equality of
two probability expressions.

Note that when the proof is as short as for lemma l2_pr, we can simply use the by
keyword and omit qed.

2.3 Run Time
Usually when working with the security of any cryptographic construction, we take into
consideration how much time an adversary is allowed to spend in attacking the construc-
tion.3 A common technique for proving the security of a cryptographic construction is
to make a reduction from breaking the cryptographic construction to solving some other
problem, say P. This means that if an adversary is able to solve P, he can use this solution
to break the cryptographic construction.

As a concrete example of why the run time is important, we consider the discrete
logarithm problem as described in [7]. The discrete logarithm problem is as follows: given
a generator g for a cyclic group G as well as an element x = ga ∈ G, determine the value
of a. The discrete logarithm problem is considered to be hard in certain groups.

Now assume we are working with a cryptographic construction that the adversary is
able to break, if he is able to compute discrete logarithms. It is evident that any adversary
can solve the discrete logarithm problem by simply trying every possible value of a and
see which value fits. However, for large groups, this will on average take a long time.
Thus, we modify the security assumption by saying that our adversary is able to break the
cryptosystem if he is able to compute discrete logarithms in a reasonable amount of time.
Restated, we can say that for all adversaries A and for all small positive real numbers ε,
there exists a time t such that if the run time of A is less than t, the advantage4 of A in
breaking the cryptographic construction is less than ε.

However, EASYCRYPT is not designed to reason about time complexity. Thus, as far as
EASYCRYPT is concerned, there will always exist an adversary able to compute discrete
logarithms. Therefore, assuming that the advantage of A is less than some number ε will be
equivalent to assuming something false in EASYCRYPT. This means that in EASYCRYPT,
we need to work with problems involving run time differently than we do on paper. Instead
of working with ε, we will simply work with the explicit probability that the adversary is
able to solve certain problems. Concrete examples of this will be given in Chapter 4.

3Adversaries and attacks will be discussed further in the next chapter.
4The advantage is taken to be the probability of some event and will be discussed further in the next chapter
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Chapter 3
Theory

In this chapter we introduce the cryptographic and mathematical theory used throughout
the thesis. We start by describing what a public key encryption scheme is, as well as
two notions of security for such a scheme. We then describe how we can deal with the
complexity of the security of encryption schemes (and other cryptographic constructions)
using sequences of games. Lastly, we look at theory about subset membership problems,
before we define projective, universal and smooth hashing as well as hash proof systems.
Along with each definition we provide a description of how the definitions we make can be
implemented in EASYCRYPT. We make no claims that our implementations are neither the
only nor the best ways to make the implementations.

3.1 Public Key Cryptography

In this section we will look at the definition of a public key cryptosystem, as well as what it
means for such a system to be secure. We will explain how to prove the security by looking
at two notions of security, namely indistinguishability under chosen plaintext and chosen
ciphertext attacks (resp. IND-CPA and IND-CCA attacks).

3.1.1 Definition of a Public Key Encryption System

A public key encryption system consists of three algorithms: a key generation algorithm,
an encryption algorithm and a decryption algorithm [8].

The key generation algorithm KeyGen takes no input and returns a pair of keys, (pk, sk).
Here, pk is the public encryption key, and sk is the decryption key, which should be kept
secret. The encryption algorithm Encrypt takes the public key pk along with a plaintext
m as input and returns a ciphertext c. The decryption algorithm Decrypt takes the secret
key sk and a ciphertext c as input and returns a plaintext m.

In addition to these three algorithms, we also have a correctness requirement. We
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require that for all plaintexts m and all key pairs (pk, sk), we have

Decrypt(sk, Encrypt(pk,m)) = m.

In other words, if we encrypt a message under some public key, decrypting the resulting
ciphertext under the corresponding secret key should result in the original message.

We can implement and prove such a correctness property in EASYCRYPT. For efficient
reuse of code, we can first define an abstract module type and then a general correctness
module.

type pkey, skey, plaintext, ciphertext.

module type Scheme = {
proc keygen() : pkey * skey
proc encrypt(pk:pkey, m:plaintext) : ciphertext
proc decrypt(sk:skey, c:ciphertext) : plaintext

}.

module Correctness(S:Scheme) = {
proc main(m:plaintext) : bool = {
var pk, sk, c, m';
(pk,sk) <− S.keygen();

c <− S.encrypt(pk,m);
m' <− S.decrypt(sk,c);

return (m' = m);
}

}.

Now we have a module Correctness which can take as input any module with type
Scheme. This module has a procedure which takes a plaintext as input, generates a pair of
keys, encrypts the plaintext and decrypts the resulting ciphertext, using the algorithms of
the module given as input. Finally it returns true if the decryption matches the original
plaintext and false otherwise.

For any implemented cryptosystem of type Scheme with name say Testsystem, we
can now prove its correctness by using a Hoare statement.

lemma testcorrect :
hoare[Correctness(Testsystem).main : true ==> res].

Recall that this means that the postcondition is true after executing the procedure
Correctness(Testsystem).main.

3.1.2 Two Types of Attacks
Here, we will define two different attacks against a public key cryptosystem, namely a
chosen plaintext attack (CPA) and a chosen ciphertext attack (CCA). Both attacks will
be defined under the security notion of indistinguishability (IND). This notion of security
considers how difficult it is for an adversary to decide which of two plaintexts was encrypted,
given a ciphertext.
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A chosen plaintext attack can be defined as an attack game between a challenger and
an adversary in the following way. The challenger starts by computing (pk, sk) using the
cryptosystem’s key generation algorithm and sends the public key to the adversary. The
adversary then chooses two plaintexts m0 and m1 from the message space, and sends these
to the challenger. The challenger samples a random bit b (from {0, 1}) and encrypts mb.
The resulting target ciphertext c∗ = E(pk,mb) is sent to the adversary, who outputs a
bit b′ according to which plaintext he believes was encrypted. We define the adversary’s
advantage to be |Pr[b = b′]−1/2|. The cryptosystem is secure if this advantage is negligible,
i.e. the adversary cannot do much better than guessing.

To implement this in EASYCRYPT, we first define a module type which we call
CPAadversary.

module type CPAadversary = {
proc choose(pk:pkey) : plaintext * plaintext
proc guess(c:ciphertext) : bool

}.

Here we have defined an abstract adversary. The only thing we know is that the adversary is
allowed to choose two plaintexts possibly depending on the public key, and to guess which
of the plaintexts was encrypted. Exactly how the adversary does any of this is unknown to
us.

For the possibility of reusing the code, we define a general module modeling a CPA
attack.

module CPA(S:Scheme, A:CPAadversary) = {
proc main() : bool = {
var pk, sk, c, m0, m1, b, b';
(pk, sk) <− S.keygen();
(m0, m1) <− A.choose(pk);

b <$ {0,1};
c <− S.encrypt(pk, b?m1:m0);
b' <− A.guess(c);

return (b = b');
}

}.

Our CPA module takes as input any module of type Scheme and any adversary of type
CPAadversary, and carries out an attack as described above. For any cryptosystem, let
us call it Testsystem, and any adversary A of correct respective types, we can define the
adversary’s advantage in EASYCRYPT as

`|Pr[CPA(Testsystem,A).main() @ &m : res] - 1%r/2%r|.

A more complicated and much stronger attack is the chosen ciphertext attack, which
we split up into five phases as in [3].

• Key generation phase. The challenger generates (pk, sk) and sends pk to the adver-
sary. In addition, pk is sent to an encryption oracle, and sk is sent to a decryption
oracle.
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• Probing phase 1. In this phase, the adversary interacts with the decryption oracle by
sending the oracle a query on which the oracle runs the decryption algorithm and
sends the result back to the adversary. This interaction may be adaptive in the sense
that one query can be chosen dependently of the previous queries.

• Target selection phase. Similar to a chosen plaintext attack. The adversary chooses
two plaintexts m0 and m1 and sends these to the encryption oracle. The encryption
oracle encrypts mb where b is a random bit and sends the resulting ciphertext c∗ to
the adversary.

• Probing phase 2. This phase is almost the same as probing phase 1, with the
difference being that the adversary is not allowed to send the target ciphertext c∗ as
a query to the decryption oracle. Also note that the total number of queries to the
decryption oracle is bounded by some integer Q.

• Guessing phase. Finally the adversary outputs a bit b′ and wins the game if b = b′.
The adversary’s advantage is defined as in a chosen plaintext attack, i.e. |Pr[b =
b′]− 1/2|.

Implementing this attack model in EASYCRYPT is a bit more difficult than implementing
the CPA attack. We first need to define an oracle. In this particular case, the oracle should
have only one procedure, namely a decryption procedure.

module type Oracle = {
proc decrypt(c:ciphertext) : plaintext

}.

We define a CCA adversary almost like the CPA adversary, but in this case we also
need to give the adversary access to the oracle.

module type CCAadversary(O:Oracle) = {
proc choose(pk:pkey) : plaintext * plaintext
{O.decrypt}

proc guess(c:ciphertext) : bool {O.decrypt}
}.

Using bracket notation as above, we give the adversary access to the oracle in both
the choose and the guess procedures. This will make the attack adaptive. Not giving the
adversary access to the oracle in the guess procedure (i.e. replacing {O.decrypt} with {
}) would result in an attack often called CCA1 or non-adaptive CCA. This is a similar,
but weaker attack, where the adversary is not allowed to choose the decryption queries
dependant on each other.

Unlike a CPA module, the CCA module will consist of a few submodules in addition to
the attack itself. We also need to put a bound on how many queries the adversary is allowed
to make to the decryption oracle. We will call this bound qD.

op qD : int.
axiom qDpos : 0 < qD.

module CCA (S:Scheme, A:CCAadversary) = {
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var log : ciphertext list
var cstar : ciphertext option
var sk : skey

module O = {
proc decrypt(c:ciphertext) : plaintext option = {
var m : plaintext option;
if (size log < qD && Some c <> cstar) {
log <− c :: log;
m <− S.decrypt(sk,c)

}
else m <− None;
return m;

}
}

module A = A(O)

proc main () : bool = {
var pk, m0, m1, c, b, b';
log <− [];

cstar <− None;
(pk, sk) <− S.keygen();
(m0, m1) <− A.choose(pk);

b <$ {0,1};
c <− S.encrypt(pk, b?m1:m0);

cstar <− Some c;
b' <− A.guess(c);

return (b = b');
}

}.

We define the variables log, cstar and sk globally, as they are used in both the main
procedure and in the decryption oracle. Defining the module A = A(O) means we give the
adversary access to the oracle during the attack, and each time we make a call to a procedure
of the adversary (i.e. A.choose or A.guess) we must go through the decryption oracle.
The notation c :: log used in the oracle module means that for each ciphertext the oracle
receives, this ciphertext is prepended to the list log.

Similarly as in the CPA attack, we can define an adversary’s CCA advantage against a
cryptosystem named Testsystem as follows.

Pr[CCA(Testsystem, A).main() @ &m : res] - 1%r/2%r.

3.2 Attack Games
The security of a cryptosystem can be defined and proved by using a sequence of attack
games [8]. An attack game G is played between some challenger and an adversary. The
adversary is the one attacking the cryptosystem. The challenger and the adversary are both
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probabilistic algorithms, so an attack game can be modeled as a probability space. Usually,
the security of a cryptosystem is linked to some probability, Pr[E], where E is some event
in the probability space. Typically, the goal is to prove that Pr[E] is negligibly close to
some target probability, often 0, 1/2 or Pr[E′] where E′ is an event in some attack game
where the same adversary plays against a different challenger.

To do this, we define a sequence of games, from G0 to Gn, where n is some constant
natural number and G0 is the original attack game against the cryptosystem. We define
E0 to be the event E mentioned above. The games should be defined such that for
i ∈ {0, ..., n − 1}, each transition from Gi to Gi+1 should change as little as possible,
to make the analysis as easy as possible. In addition, we want Pr[Ei] to be negligibly
close to Pr[Ei+1] for i ∈ {0, ..., n− 1} and we want Pr[En] to be negligibly close to the
target probability. This will result in Pr[E0] = Pr[E] being negligibly close to the target
probability.

A transition between two games is usually one of three types [8]. The first, and simplest,
transition is a bridging step. Here, the difference between two games Gi and Gi+1 is purely
conceptual, and we simply move from Gi to Gi+1 by restating how certain quantities
are computed. In a bridging step, these two ways of computing this quantity should be
completely equivalent, and hence we get Pr[Ei] = Pr[Ei+1]. The reason for using a
bridging step is to prepare for a transition of one of the two next types.

The second type of transition is based on indistinguishability. Here, we have two
games with a small difference which, if detected by the adversary, will imply an efficient
method or algorithm for distinguishing between two distributions (say D1 and D2) that
are indistinguishable. Let Gi and Gi+1 be two games. To prove that |Pr[Ei]− Pr[Ei+1]| is
negligible, we argue that there exists a distinguishing algorithm D, that interpolates between
the two games. We say that D wins if it is able to distinguish between the two distributions.
When given an element from the distribution D1, D wins with probability Pr[Ei] and when
given an element from D2, D wins with probability Pr[Ei+1]. The assumption that D1 and
D2 are indistinguishable then implies that |Pr[Ei]− Pr[Ei+1]| is negligible.

The final transition type is based on failure events. In a transition like this, two games
Gi and Gi+1 will proceed identically unless some failure event F occurs. More formally,
this can be written as Ei ∧ ¬F ⇐⇒ Ei+1 ∧ ¬F . This means that the events Ei ∧ ¬F
and Ei+1 ∧ ¬F are the same, and as long as this is true, the following simple but useful
lemma holds [8].

Lemma 3.1. Let A, B and F be events in some probability space such that A ∧ ¬F ⇐⇒
B ∧ ¬F . Then |Pr[A]− Pr[B]| ≤ Pr[F ].

Proof. First, note that if event A occurs, this will be either in combination with event F
occurring or event F not occurring. Thus, Pr[A] = Pr[A∧F ] + Pr[A∧¬F ]. This is similar
for the event B. Since A ∧ ¬F ⇐⇒ B ∧ ¬F , we have Pr[A ∧ ¬F ] = Pr[B ∧ ¬F ]. Also,
both Pr[A ∧ F ] and Pr[B ∧ F ] are numbers between 0 and Pr[F ]. Thus, we get

|Pr[A]− Pr[B]| = |Pr[A ∧ F ] + Pr[A ∧ ¬F ]− Pr[B ∧ F ]− Pr[B ∧ ¬F ]|
= |Pr[A ∧ F ]− Pr[B ∧ F ]|
≤ Pr[F ].
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Note that for this to be true, A,B and F must be defined on the same underlying
probability space.

Using this lemma, we see that proving that Pr[F ] is negligible implies that Pr[Ei] is
negligibly close to Pr[Ei+1].

3.3 SMP and HPS
In this section we describe some basic preliminaries as well as the concepts of subset
membership problems and hash proof systems. All definitions in this section come from
[3] and [5].

3.3.1 Preliminaries
We first define some basic notation as well as the notion of statistical distance between two
random variables.

We will denote by x← α the action of assigning the value of α to the variable x. We
will denote by x r←− S the action of sampling an element according to the distribution on S.

Let X and Y be two random variables that can take values in a finite set S. We define
the statistical distance between X and Y to be

Dist(X,Y ) = 1
2 ·

∑
s∈S

|Pr[X = s]− Pr[Y = s]|.

We call the two variables X and Y ε-close if Dist(X,Y ) ≤ ε.
This notion of statistical distance is used in [3] and is important in the pen-and-paper

proofs for the security of the schemes we define in Chapter 4. However, there does not
seem to be a good way of defining statistical distance in EASYCRYPT (as far as we have
found). Thus, we need to implement definitions involving statistical distance differently
than we do on paper. Concrete examples of how we do it will be given in Chapter 4.

3.3.2 Subset Membership Problems
We now define the notion of a subset membership problem. A subset membership problem
M specifies a collection of probability distributions I , consisting of so called instance
descriptions, denoted Λ or Λ[X,L,W,R]. Let [I] denote the set of instance descrip-
tions that can be sampled from I with positive probability. An instance description
Λ = Λ[X,L,W,R] specifies three finite sets X,L and W , where L ⊂ X , as well as
a binary relation R ⊂ X ×W . For any x ∈ X,w ∈ W such that (x,w) ∈ R, w will be
called a witness for x.

In addition, a subset membership problem M specifies a couple of algorithms:

• Instance sampling algorithm. This is a probabilistic algorithm which samples an
instance description Λ from I . It is required that the output distribution of this
algorithm is ι-close to I . ι ≥ 0 is some real number called the approximation error
of the algorithm.
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• Subset sampling algorithm. This is a probabilistic algorithm which, on input Λ ∈ [I],
samples a random x ∈ L together with a witness w for x. It is required that the
algorithm always outputs an element in L, and that the output distribution and the
uniform distribution on L are ι′-close. ι′ ≥ 0 is the approximation error of this
algorithm.

We also need to define the notion of a hard subset membership problem. Informally,
this means that given a random element x ∈ X , it is hard to decide whether this element
lies in L or in X \ L. We define this more formally in Definition 3.1 below.

Definition 3.1. Let M be a subset membership problem. We first sample the following:

Λ r←− I, x r←− L, x′ r←− X \ L.

We then define the random variables U(M) = (Λ, x) and V (M) = (Λ, x′). M is called
hard if U(M) and V (M) are hard to distinguish.

The first thing we need to do when implementing this in EASYCRYPT, is to define the
setsX,L andW . To accomplish this, we define operators and use the type constructor fset.
As we are going to sample elements from these sets, we also need to define distributions of
the elements in the sets. Note that we do not explicitly implement the instance sampling
algorithm, but rather work with fixed sets X,L and W .

type X.
op xs : { X fset | is_lossless (duniform (elems xs))

/\ is_full (duniform (elems xs))
/\ is_uniform (duniform (elems xs)) }
as xs_lfu.

The elems operator transforms the set into a list, and the duniform operator transforms
this list into a distribution. The reason we take this detour instead of defining X as a list or
distribution in the first place, is that we have to define L as a subset of X , and subsets seem
to be more developed than sub-lists or sub-distributions. Also, there does not seem to be a
way to transform a finite set to a distribution directly, so we go via a list.

The predicate is_lossless makes sure that sampling from this distribution always
terminates, the predicate is_full means that every single element of type X is in the
distribution, and the predicate is_uniform makes sure that sampling from this distribution
is done uniformly.

Defining the set L is done almost equally to X . However, as L is a proper subset of X ,
we need the elements in L to be of type X as well. Therefore, we cannot define L to be full,
as this in practice would mean L = X . Instead, we use the subset predicate <.

op ls : { X fset | ls < xs
/\ is_lossless (duniform (elems ls))
/\ is_uniform (duniform (elems ls))} as ls_luf.

Experiential, it is good practice to perform certain checks that everything works the
way we want it to work. For example, we can list a few lemmas to check whether a proper
subset in EASYCRYPT behaves the way we would expect it to. A few such lemmas are
listed below.
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lemma sub1 : ls < xs by [].
lemma sub2 : forall(x:X), xs `\` ls <> fset0 by [].
lemma sub3 : forall(x:X), x \in ls
<=> !x \in xs `\` ls by [].

lemma sub4 : ls `&` (xs `\` ls) = fset0 by [].

For clarification: the operator `\` denotes set difference, fset0 denotes the empty set, <>
denotes inequality and `&` denotes set intersection.

When implementing the subset sampling algorithm of our subset membership problem,
we need a way to sample a witness for any x sampled from L. The fact that there exists
a witness for the membership of x in L, can be viewed as the existence of a function
wit : W → L such that for all x ∈ L, there exists w ∈W such that wit(w) = x. In other
words, we want the function to be surjective on L. In EASYCRYPT, we can implement this
as follows.

type W.
op wit : W −> X.
axiom witsur : forall(x:X), x \in ls =>

exists(w:W), wit w = x.

Further, when sampling a witness w for a given x, we must be sure that w is in fact a
witness. For this purpose we define an operator that takes as input an x and for any w ∈W
returns true if wit(w) = x and false otherwise.

op iswit x : fun (w:W) => wit w = x.

This implementation of witnesses will serve as our implementation of the binary relation
R mentioned above.

We are now ready to implement the subset sampling algorithm, which samples an x
from L along with a witness w. Later in this thesis, we will provide a security proof where
we have to sample an element from X \ L, so we will wrap this inside the same module as
the procedure that samples an element from L.

module Sampling = {
proc fromL() : X * W = {
var x, w;
x <$ duniform (elems ls);
w <$ duniform (elems (filter (iswit x) ws));
return (x,w);

}

proc fromXnotL() : X = {
var x;
x <$ duniform (elems (xs `\` ls));
return x;

}
}.

In the sampling procedure Sampling.fromL(), we use the filter operator from the
List.ec theory to make a list consisting of all the elements in ws that are witnesses of x.
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Again we can list some lemmas to check whether the sampling algorithms behave as we
expect them to. One example of such a lemma follows here.

lemma sampletest :
hoare[Sampling.fromL : true ==> res.`1 \in ls].

The notation res.`1 means the first element of the result of running Sampling.fromL

(in this case the result will be the tuple (x,w), so res.`1 is in this case x).

3.3.3 Projective Hashing
We now move on to define the concept of projective hashing.

Let X and Y be two finite sets, X,Y 6= ∅. Let H = {Hk}k∈K be a set of hash
functions indexed by K such that each Hk is a function from X into Y . Let L be a
non-empty proper subset of X and let S be some finite non-empty set. Let α : K → S be a
function and let H = (H,K,X, Y, L, S, α).

Definition 3.2. Let H be defined as above. H is called a projective hash family for (X,L)
if the action of Hk on L is determined by α(k) for all k ∈ K.

In other words, given s = α(k) and x ∈ L, we can easily calculate the hash value of x,
Hk(x), even though we know nothing about the hash key k.

When implementing the projective property in EASYCRYPT, we also include a witness
for x in the projection, as we need that in a later definition. We start by defining the types
we have not yet defined, as well as the function α and abstract operators hash and proj.

type K, S, Y.

op alpha : K −> S.
op hash : (K*X) −> Y.
op proj : (S*X*W) −> Y.

To define the projective property, we use an axiom.

axiom projective : forall (x:X, k:K, w:W),
x \in ls => w \in (filter (iswit x) ws) =>
proj (alpha k, x, w) = hash (k,x).

We now move on to define what it means for a projective hash family to be universal.

Definition 3.3. Let H be a projective hash family as in definition 3.2. Let ε ≥ 0 be a real
number. H is ε-universal if

Pr[Hk(x) = y ∧ α(k) = s] ≤ ε · Pr[α(k) = s],

for all s ∈ S, x ∈ X \ L, y ∈ Y and k r←− K. Further, H is said to be ε-2-universal if

Pr[Hk(x) = y ∧Hk(x′) = y′ ∧ α(k) = s] ≤ ε · Pr[Hk(x′) = y′ ∧ α(k) = s],

for all s ∈ S, x′ ∈ X,x ∈ X \ L ∪ {x′}, y, y′ ∈ Y and where k r←− K.
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In other words, we will say that H is ε-universal if given some x ∈ X \L, we can guess
the hash value of x with probability at most ε. Similarly, a projective hash family H is
ε-2-universal if the value of Hk(x), where x ∈ X \ L, can be guessed with probability at
most ε even if we know the hash value of some other element x′ in X \ L.

We now define what it means for a projective hash family to be smooth. Let H be a
projective hash family as defined in Definition 3.2, and define two random variables U(H)
and V (H) in the following way. We first sample

k
r←− K, x r←− X \ L, y′ r←− Y.

We then set U(H) = (x, s, y′) and V (H) = (x, s, y) where s = α(k) and y = Hk(x).

Definition 3.4. For a real number ε ≥ 0, we say that a projective hash family H is ε-smooth
if U(H) and V (H) are ε-close.

In other words, for x ∈ X \ L, it is hard to distinguish the actual hash value of x from
some random element of Y . Informally, we can say that we know nothing, or at least very
little, of the hash value of x when x is in X \ L.

As mentioned, EASYCRYPT is not designed to reason about run time, and we have not
found a proper way of working with statistical distance. Thus, the universal and smooth
properties need to be implemented differently that described above. This will be further
discussed in Chapter 4.

3.3.4 Hash Proof Systems
In this section, we first define the notion of a hash proof system, before extending it to the
notion of a universal hash proof system.

Let M be a subset membership problem as defined in §3.3.2. For each instance Λ =
Λ[X,L,W,R] of M, a hash proof system P associates Λ with a projective hash family
H = (H,K,X,L, Y, S, α) for (X,L). Furthermore, a hash proof system P also provides
some algorithms:

• A probabilistic algorithm that, on input Λ ∈ I , outputs some k, uniformly distributed
over K.

• A deterministic algorithm that takes as input Λ ∈ I and k ∈ K and outputs s ∈ S
such that α(k) = s.

• The private evaluation algorithm: a deterministic algorithm that, on input Λ ∈ I ,
k ∈ K and x ∈ X , outputs some y ∈ Y such that Hk(x) = y.

• The public evaluation algorithm: a deterministic algorithm which takes as input
Λ ∈ I , s ∈ S such that α(k) = s for some k ∈ K and x ∈ L with a witness w ∈W
and outputs y ∈ Y such that Hk(x) = y.

Before we can implement the hash proof system itself, we must equip our secret key
type K with a full, uniform, lossless distribution.

23



Chapter 3. Theory

op dK = { K distr | is_lossless dK
/\ is_uniform dK /\ is_full dK } as dK_luf.

We are now ready to implement the hash proof system. We will implement all four
algorithms described above.

module HPS = {
proc kg() : K = {
var k;
k <$ dK;
return k;

}

proc seval(k:K) : S = {
var s;
s <− alpha k;
return s;

}

proc priveval(k:K, x:X) : Y = {
var y;
y <− hash(k,x);
return y;

}

proc pubeval(s:S, x:X, w:W) : Y = {
var y;
y <− proj(s,x,w);
return y;

}
}.

As mentioned earlier, in this implementation we let our subset membership instance Λ be
fixed, and thus we do not feed it as input to the algorithms in the hash proof system.

We now define what it means for a hash proof system P to be universal.

Definition 3.5. Let ε be a positive real number. Let M be a subset membership problem as
defined in §3.3.2 and let P be a hash proof system for M. We will call P ε-universal (-2-
universal, -smooth), if there exists a negligible real number δ ≥ 0 such that for all instances
Λ = Λ[X,L,W,R], the projective hash family H that P associates with Λ is δ-close to an
ε-universal (-2-universal, -smooth) projective hash family H∗ = (H∗,K∗, X, L, Y, S, α∗).
The projective hash family H∗ is called the idealization of H.

Cramer and Shoup [3] make this definition as this is necessary to take into consider-
ation when implementing the scheme ”in real life”. When we work with the scheme in
EASYCRYPT, however, we will make the assumption that the hash families we work with
are ideal. In other words, we assume that δ as defined in Definition 3.5 is zero. The reason
is that EASYCRYPT, as mentioned, seems to be inadequate when it comes to working with
quantities such as statistical distances.
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Chapter 4
The Generic Cramer-Shoup Scheme

In this chapter we discuss the generic Cramer-Shoup scheme based on hash proof systems.
We also sketch a proof for the IND-CCA security of this scheme. The definition of the
scheme as well as the proof sketch will follow [3] with a couple of exceptions. EASYCRYPT
is not designed to reason about complexity or statistical distances. Thus, we will assume
that the approximation errors ι and ι′ of the subset membership problem are both zero.
We will also assume that the projective hash families we use are ideal (cf. definition 3.5).
The main simplification, namely removing the extended hash proof system, will make the
scheme IND-CPA secure rather than IND-CCA secure. Removing the extended hash proof
system will not make the scheme itself much less complicated, but the verification of the
security proof in EASYCRYPT will be a whole lot easier. By experience it is wise to start
out as easy as possible when verifying a proof in EASYCRYPT, and build up to the full
proof step by step.

4.1 The Original Scheme
In this section we describe how to construct an IND-CCA secure encryption scheme based
on hash proof systems and subset membership problems.

Let M be a subset membership problem as defined in §3.3.2. We also need an ε-smooth
hash proof system P and a ε̂-2-universal hash proof system P̂ for the subset membership
problem M.

Let Λ = Λ[X,L,W,R] ∈ [I] be a fixed instance description of M. Let H =
(H,K,X, Y, L, S, α) be the projective hash family that P associates with Λ, and let
Ĥ = (Ĥ, K̂,X × Y, Ŷ , L × Y, Ŝ, α̂) be the projective hash family P̂ associates with
Λ. For the construction of the scheme, Y will be the message space.

Key generation. To generate a pair of public and secret keys, we do the following.

• Sample k r←− K, k̂ r←− K̂.
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• Compute s← α(k), ŝ← α̂(k̂).

Set pk = (s, ŝ) and sk = (k, k̂).

Encryption. To encrypt a plaintext m ∈ Y , we do the following.

• Sample x r←− L along with a witness w ∈ W for x, using the subset sampling
algorithm for M.

• Compute y ← Hk(x), using the public evaluation algorithm of P on input (s, x, w).

• Compute e← m+ y.

• Compute ŷ ← Ĥk̂(x, e), using the public evaluation algorithm of P̂ on input
(ŝ, x, e, w).

The ciphertext is c = (x, e, ŷ).

Decryption. To decrypt a ciphertext c = (x, e, ŷ) ∈ X × Y × Ŷ , we do the following.

• Compute ŷ′ ← Ĥk̂(x, e), using the private evaluation algorithm of P̂ on input
(k̂, x, e).

• If ŷ 6= ŷ′:

– Output ”reject” and stop the process.

• Else:

– Compute y′ ← Hk(x), using the private evaluation algorithm of P̂ on input
(k, x).

– Compute m′ ← e− y′ and output the plaintext m′.

Correctness. Recall that for the correctness of the scheme to hold, we demand that
m = m′. It is not difficult to see that this demand will hold if ŷ = ŷ′ and y = y′. Both
of these equalities will hold, since the hash families H and Ĥ are both projective, i.e. we
can compute hash values for x ∈ L using a witness for x and the projection key s = α(k).
Thus, the correctness demand holds for this scheme.

The IND-CCA security of this scheme will be discussed in §4.3.

26



4.2 The Simplified Scheme

4.2 The Simplified Scheme
In this section, we describe the main simplification of the scheme, namely leaving out the
extended hash proof system. This will reduce the security of the scheme from IND-CCA
security to IND-CPA security. By making this simplification, the scheme itself will not
become much less complicated, but the verification of the security proof in EASYCRYPT
will be a whole lot easier. Experience shows that it is best to start out easy in EASYCRYPT,
and hence, we will verify the IND-CPA security of this scheme before showing how to
implement the IND-CCA security proof. We still assume that the approximation errors of
the subset membership problem are zero and that the hash family H is ideal.

4.2.1 Construction
We now describe how we can construct an IND-CPA secure scheme by leaving out the
extended hash proof system.

Let M be a subset membership problem as defined in §3.3.2. M specifies a distribution
I of instance descriptions Λ. Let P be an ε-smooth hash proof system for M. Fix some
Λ ∈ [I], and let H = (H,K,X,L, Y, S, α) be the projective hash family that P associates
with Λ. Let Y be the message space.

Key generation. Generating a pair of keys is done by first sampling k r←− K and then
setting s← α(k). The public encryption key pk is s, and the secret decryption key sk is k.

Encryption. To encrypt some message m ∈ Y , we do the following.

• Sample x ∈ L along with a witness w.

• Compute y = Hk(x) using the public evaluation algorithm of P on inputs s, x, w.

• Compute e← m+ y.

The ciphertext is c = (x, e).

Decryption. To decrypt a ciphertext c = (x, e) ∈ X × Y , we do the following.

• Compute y′ = Hk(x) using the private evaluation algorithm of P on inputs k, x.

• Compute m′ ← e− y′.

Correctness. Recall that for the scheme to be correct, we demand that m = m′. It is not
difficult to see that as long as y = y′, we will have m = m′. As the encryption algorithm
samples x from the subset L, the projective property of H will make sure that it is possible
and easy to calculate the hash value of x, given w and s. Thus, we will have that y = y′.
Hence, the correctness holds for this scheme.

We now describe how we implement the simplified scheme in EASYCRYPT. We will
use the implementations of the subset membership problem and the hash proof system
described in §3.3.2 and §3.3.4, respectively.
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We start by defining the types for the keys, plaintexts and ciphertexts using type aliases.

type pkey = S.
type skey = K.
type plaintext = Y.
type ciphertext = X * Y.

In the encryption and decryption algorithms, we need to add and subtract elements of
type Y. EASYCRYPT however, does not have any built-in addition and subtraction operators
for user defined abstract types, so we need to implement operators taking elements from
type Y to type int and back again. We also list a couple of axioms defining how these
operators should behave.

op toint : Y −> int.
op toY : int −> Y.
axiom y1 : forall (y:Y), toY (toint y) = y.
axiom y2 : forall (y:int), toint (toY y) = y.

We now define a module called Genscheme, which is of type Scheme described in
§3.1.1. This module will model the cryptosystem described above. In this module, we will
use the algorithms of the subset membership problem defined in §3.3.2 and the hash proof
system defined in §3.3.4.

module Genscheme : Scheme = {
proc keygen() : pkey * skey = {
var k, s, pk, sk;
k <− HPS.kg();
s <− HPS.seval(k);
pk <− s; sk <− k;
return (pk, sk);

}

proc encrypt(pk,m) : ciphertext = {
var x, w, e, y, c;
(x,w) <− Sampling.fromL();
y <− HPS.pubeval(pk, x, w);
e <− toY (toint m + toint y);
c <− (x, e);

return c;
}

proc decrypt(sk,c) : plaintext = {
var y, m';
y <− HPS.priveval(sk, c.`1);
m' <− toY (toint c.`2 - toint y);
return m';

}
}.

Proving the correctness of this scheme is straightforward, using the module and lemma
described in §3.1.1.
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4.2.2 Security of the Simplified Scheme
The encryption scheme described in §4.2.1 is secure against a chosen ciphertext attack
under the assumption that M is a hard subset membership problem. We state this more
formally in the following theorem.

Theorem 4.1. Let A be an adversary carrying out an IND-CPA attack against the scheme
described in §4.2.1. Then there exists an adversary B against the subset membership
problem M such that

AdvCPA(A) ≤ AdvSMP(B) + ε,

and the run time of B is the same as the run time of A.

In Theorem 4.1, ε is the statistical distance between the distribution (x, s,Hk(x)) and
the distribution (x, s, y′) where x ∈ X \ L, s = α(k) and y′ is chosen randomly from Y .

We now sketch the proof of Theorem 4.1. Let H be a fixed projective hash family as
described in §4.2.1. We will structure the proof using a sequence of attack games. We let
G0 be the original attack game against our scheme, as defined in §3.1.2. Recall that the
challenger samples a random bit b ∈ {0, 1}, encrypts mb and the adversary outputs a bit
b′, i.e. guessing which message he believes was encrypted. Throughout the proof sketch,
we let Ei denote the event that b = b′ (i.e. the adversary wins) in game Gi. Thus, the
adversary’s advantage in the original attack, G0, is

AdvCPA(A) = |Pr[E0]− 1/2|.

We now describe a simulator playing the CPA game against our adversary. The simulator
takes as input some instance description Λ and some x∗ ∈ X . The simulator uses the key
generation algorithm described in the scheme. When receiving two messages m0 and m1
from the adversary, the simulator samples a random bit b, computes y∗ = Hk(x∗) and
e∗ = mb + y∗. The simulator sends c∗ = (x∗, e∗) to the adversary, who outputs a bit b′.

In G1, the simulator is given (Λ, x∗) with x∗ ∈ L. The transition from G0 to G1 is
just a bridging step, so in G1, the simulator perfectly simulates the original attack. In G2,
the simulator is given (Λ, x∗) with x∗ ∈ X \ L. Distinguishing between G1 and G2 is
essentially the same as deciding whether x is inL orX\L, i.e. solving the underlying subset
membership problem. Thus, we define the advantage in solving the subset membership
problem as

AdvSMP(B) = |Pr[E2]− Pr[E1]|.

InG3, we modify the simulator. Now, instead of computing y∗ = Hk(x∗), the simulator
sets y∗ = y′, where y′ is chosen uniformly at random from Y . Because of the smoothness
property of H, we have

|Pr[E3]− Pr[E2]| ≤ ε.

Also, in G3, the adversary’s output b′ is completely independent of the hidden bit b.
Thus, we have
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Pr[E3] = 1/2.

Combining the above relations, we see that

AdvCPA(A) ≤ AdvSMP(B) + ε,

which is the relation we want to verify in EASYCRYPT.
As mentioned earlier, we cannot use EASYCRYPT to reason about complexity or

statistical distances, meaning we cannot include the inequality

|Pr[E3]− Pr[E2]| ≤ ε

in EASYCRYPT. Instead, we will define a smoothness adversary whose task is to distinguish
between tuples of the form (x, s,Hk(x)) and tuples of the form (x, s, y) where y is chosen
at random from Y . We then replace ε by this adversary’s distinguishing advantage.

Thus, the relation we want to prove in EASYCRYPT is the following.

`|Pr[CPA(Genscheme,A).main() @ &m : res]-1%r/2%r| <=
`|Pr[SMP1(SMPadv(A)).main() @ &m : res] -
Pr[SMP0(SMPadv(A)).main() @ &m : res]| +

`|Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] -
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res]|.

The left hand side of the inequality denotes the adversary’s advantage in the original
CPA attack (which we call G0 in the proof sketch above). The first absolute difference on
the right hand side denotes the distinguishing advantage in the subset membership problem,
and the second absolute difference denotes the smoothness distinguishing advantage.

By defining the advantage in solving the subset membership problem the way we do in
EASYCRYPT, the adversary B trivially gets the same run time as A. The reason for this
is that we simply use the adversary A to construct B, meaning the adversaries attacking
the encryption scheme and solving the subset membership problem will essentially be the
same. The exact construction of the SMP adversary will be discussed below. The same
goes for the smoothness advantage.

We now discuss how we structure and implement the proof in EASYCRYPT. Most
of the modules used to model the games in this proof will be defined inside a section.
The exception is the general module used to define a CPA attack which we have defined
in §3.1.2. This way, we can define an adversary in the beginning of the section and use
this throughout the entire proof. Note that every lemma we list needs to be proved in
EASYCRYPT. As mentioned, these proofs will be omitted in the text. The general security
proof layout will be as follows:

section Security.

declare module A : CPAadversary{CPA}.
axiom Ag_ll : islossless A.guess.
axiom Ac_ll : islossless A.choose.

(* Games, lemmas and proofs *)
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· · ·

end section Security.

We now have an adversary called A of type CPAadversary as defined in §3.1.2.
The axioms Ag_ll and Ac_ll make sure that the guess and choose procedures of the
adversary terminate.

We now define modules modeling the simulator described in the pen-and-paper proof
above. Note that modules (and lemmas) defined inside a section are defined as ”local”.

local module Game1(A:CPAadversary) = {
proc main() : bool = {
var x, w, pk, sk, m0, m1, b, b', y, e, c;
(x, w) <− Sampling.fromL;

(pk, sk) <− Genscheme.keygen();
(m0, m1) <− A.choose(pk);

b <$ {0,1};
y <− HPS.priveval(sk, x);
e <− toY (toint (b?m1:m0) + toint y);
c <− (x,e);
b' <− A.guess(c);

return (b = b');
}

}.

local module Game2(A:CPAadversary) = {
proc main() : bool = {
var x, pk, sk, m0, m1, b, b', y, e, c;

x <− Sampling.fromXnotL;
(pk, sk) <− Genscheme.keygen();
(m0, m1) <− A.choose(pk);

b <$ {0,1};
y <− HPS.priveval(sk, x);
e <− toY (toint (b?m1:m0) + toint y);
c <− (x,e);
b' <− A.guess(c);

return (b = b');
}

}.

As in the pen-and-paper proof, the difference between the two modules Game1 and
Game2, is that x is sampled from L and X \ L, respectively.

As we omit the approximation errors of the sampling algorithms of the subset member-
ship problem, the game Game1 simulates the CPA attack perfectly. Thus, the first thing we
prove is the following equivalence.

local equiv CPA_Game1 :
CPA(Genscheme, A).main ˜ Game1(A).main :
={glob A} ==> ={res}.
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The notation ={glob A} means that the global variables of the adversary (if any) is
the same in both attacks, and thus makes sure the adversary is the same.

After proving this equivalence, it is straightforward to transform the statement to a
regular probability expression:

local lemma CPA_Game1_pr &m :
Pr[CPA(Genscheme,A).main() @ &m : res] =
Pr[Game1(A).main() @ &m : res]
by byequiv(CPA_Game1).

The next relation we prove is that distinguishing between the modules Game1 and
Game2 is equivalent to solving the underlying SMP, i.e. deciding whether x ∈ L or
x ∈ X \ L. For this purpose, we define an SMP adversary guessing that x is either in L or
in X \L. Furthermore, we make a reduction from a CPA attack to an SMP attack. To make
the SMP adversary easier to work with in EASYCRYPT, we split it into two modules.

module type SMPadversary = {
proc guess(x:X) : bool

}.

module SMP1(A:SMPadversary) = {
proc main() : bool = {
var x, w, b;
(x,w) <− Sampling.fromL(); b <− A.guess(x);
return b;

}
}.

module SMP0(A:SMPadversary) = {
proc main() : bool = {
var x, b;
x <− Sampling.fromXnotL(); b <− A.guess(x);
return b;

}
}.

For the reduction, we define a module with a procedure taking an x as input and then
use this x in the attack.

module SMPadv(A:CPAadversary) = {
proc guess(x:X) : bool = {
var b, b', m0, m1, pk, sk, y;
(pk, sk) <− Genscheme.keygen();
(m0, m1) <− A.choose(pk);
y <− hash(sk,x);
b <$ {0,1};
b' <− A.guess(x, toY (toint (b?m1:m0) + toint y));
return (b = b');

}
}.
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We now want to prove that

`|Pr[Game1(A).main() @ &m : res] -
Pr[Game2(A).main() @ &m : res]| =

`|Pr[SMP1(SMPadv(A)).main() @ &m : res] -
Pr[SMP0(SMPadv(A)).main() @ &m : res]|.

We do this by proving the following equivalences.

local equiv Game1_SMP1 :
Game1(A).main ˜ SMP1(SMPadv(A)).main :
={glob A} ==> ={res}.

local equiv Game2_SMP0 :
Game2(A).main ˜ SMP0(SMPadv(A)).main :
={glob A} ==> ={res}.

By transforming these equivalences to probability expressions, the above equality follows
trivially.

We now define the module Game3. Here, instead of computing the value y as hash(k,x),
we sample y uniformly at random from ys. The set ys is defined similarly to the set xs
and contains every element of type Y.

local module Game3(A:CPAadversary) = {
proc main() : bool = {
var x, pk, sk, m0, m1, b, b', y, e, c;

x <− Sampling.fromXnotL;
(pk, sk) <− Genscheme.keygen();
(m0, m1) <− A.choose(pk);

b <$ {0,1};
y <$ duniform (elems ys);
e <− toY (toint (b?m1:m0) + toint y);
c <− (x,e);
b' <− A.guess(c);

return (b = b');
}

}.

The transition between Game2 and Game3 is based on indistinguishability. The idea
is to prove that an adversary’s ability to distinguish between these games is bounded by
his ability to distinguish between tuples of the form (x, s,Hk(x)) and tuples of the form
(x, s, y) where y is chosen randomly and x ∈ X \L. To do this, we give the CPA adversary
access to a smoothness adversary and make a reduction from a CPA attack to a smoothness
attack. We define a smoothness adversary using a module type with a guessing procedure.
This adversary has the ability to guess either (x, s, hash(k,x)) or (x, s, y). We
split this guessing into two modules to make it easier to work with when we prove the
equivalences with Game2 and Game3.
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module type SmoothAdversary = {
proc guess(x:X, s:S, y:Y) : bool

}.

module Smooth1(A:SmoothAdversary) = {
proc main() : bool = {
var b, k, s, x;
x <− Sampling.fromXnotL();
k <− HPS.kg();
s <− HPS.seval(k);
b <− A.guess(x, s, hash(k,x));
return b;

}
}.

module Smooth0(A:SmoothAdversary) = {
proc main() : bool = {
var b, k, s, x, y;
x <− Sampling.fromXnotL();
k <− HPS.kg();
s <− HPS.seval(k);
y <− Sampling.fromY();
b <− A.guess(x, s, y);
return b;

}
}.

For the reduction, we define a module with a procedure taking (x, s, y) as input,
and uses these values in the choose and guess procedures of the attack.

module SmoothAdv(A:CPAadversary) = {
proc guess(x:S, s:S, y:Y) : bool = {
var m0, m1, b, b';
(m0, m1) <− A.choose(s);
b <$ {0,1};
b' <− A.guess(x, toY (toint (b?m0:m1) + toint y));
return (b = b');

}
}.

To prove that distinguishing between Game2 and Game3 is equivalent to distinguishing
between (x, s, hash(k,x)) and (x, s, y), we prove the following two equivalences.

local equiv Game2_Smooth1 :
Game2(A).main ˜ Smooth1(SmoothAdv(A)).main :
={glob A} ==> ={res}.

local equiv Game3_Smooth0 :
Exp2G3(A).main ˜ Smooth0(SmoothAdv(A)).main :
={glob A} ==> ={res}.
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These equivalences can be transformed to probability expressions in the usual way, using
the byequiv tactic.

Finally, we need to prove that when playing against Game3, the adversary wins with
probability 1/2. To do this we first define a module we call Game3indep.

local module Game3indep(A:CPAadversary) = {
proc main() : bool = {
var x, pk, sk, m0, m1, b, b', y, e, c;

x <− Sampling.fromXnotL;
(pk, sk) <− Genscheme.keygen();
(m0, m1) <− A.choose(pk);

y <$ duniform (elems ys);
e <− toY (toint y);
c <− (x,e);
b' <− A.guess(c);
b <$ {0,1};

return (b = b');
}

}.

In this game, it is easy to see that the adversary’s output b' is completely independent
of the bit b, and even that the ciphertext is independent of both m0 and m1. Thus, it is
straightforward to prove the following lemma.

local lemma Game3indep_half :
phoare[Game3indep(A).main : true ==> res] =
(1%r/2%r).

Now, the only thing left is to prove the equivalence between Game3 and Game3indep.

local equiv :
Game3(A).main ˜ Game3indep(A).main :
={glob A} ==> ={res}.

After transforming all the above equivalences to a probability statements, we have the
following probabilities.

(* 1 *)
Pr[CPA(Genscheme, A).main() @ &m : res] =
Pr[Game1(A).main() @ &m : res].

(* 2 *)
Pr[Game1(A).main() @ &m : res] =
Pr[SMP1(SMPadv(A)).main() @ &m : res].

(* 3 *)
Pr[Game2(A).main() @ &m : res] =
Pr[SMP0(SMPadv(A)).main() @ &m : res].

35



Chapter 4. The Generic Cramer-Shoup Scheme

(* 4 *)
Pr[Game2(A).main() @ &m : res] =
Pr[Smooth1(SmoothAdv(A)).main() @ &m : res].

(* 5 *)
Pr[Game3(A).main() @ &m : res] =
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res].

(* 6 *)
Pr[Game3(A).main() @ &m : res] =
Pr[Game3indep(A).main() @ &m : res].

(* 7 *)
Pr[Game3indep(A).main() @ &m : res] = 1%r/2%r.

Using the above relations, as well as the triangle inequality for absolute differences, we
can prove our final lemma.

local lemma secure &m :
`|Pr[CPA(Genscheme,A).main() @ &m : res]-1%r/2%r| <=

`|Pr[SMP1(SMPadv(A)).main() @ &m : res] -
Pr[SMP0(SMPadv(A)).main() @ &m : res]| +

`|Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] -
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res]|.

This proves, as discussed in the beginning of the section, that the adversary’s advantage
in winning in a CPA attack against our scheme, is bounded by the advantage in distin-
guishing between elements from X and elements from X \ L, as well as the advantage in
distinguishing hash values of x from random elements of Y when x /∈ L.

4.3 Security of the Original Scheme
In this section, we discuss the security of the encryption scheme defined in §4.1. This
scheme is secure against an IND-CCA attack under the assumption that M is a hard subset
membership problem. We formalize this in the following theorem.

Theorem 4.2. Let A be an adversary carrying out an IND-CCA attack against the scheme
described in §4.1. Then there exists an adversary B against the subset membership problem
M such that

AdvCCA(A) ≤ AdvSMP(B) + ε+Q · ε̂,

and the run time of B is the same as the run time of A.

In Theorem 4.2, ε comes from the ε-smooth property of H, Q is the maximal allowed
number of queries to the decryption oracle and ε̂ comes from the ε̂-2-universal property of
Ĥ.

We now sketch the proof of Theorem 4.2. The full proof can be found in [3].
Let H and Ĥ be two fixed projective hash families as described in §4.1.
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We structure this proof sketch as a sequence of games, similar to what we did for the
simplified scheme in §4.2.2. We let G0 be the original CCA attack against our scheme, as
defined in §3.1.2. Again, we will let Ei denote the event that the adversary wins (i.e. that
b = b′) in Gi. Thus, the adversary’s advantage in the original attack is

AdvCCA(A) = |Pr[E0]− 1/2|.

We now describe a simulator playing the CCA game against an adversary. The simulator
takes as input some instance description Λ along with some x∗ ∈ X . During the interaction
between the simulator and the adversary, the key generation phase and both probing phases
run as described in §3.1.2, with the simulator running the usual decryption algorithm using
sk.

In the target selection phase, the simulator receives m0 and m1 from the adversary
and samples a random bit b. The simulator then computes y∗ = Hk(x∗) using the private
evaluation algorithm of P, where x∗ is the input given to the simulator. Then, it computes
e∗ = mb + y∗, before computing ŷ∗ = Ĥk̂(x∗, e∗) using the private evaluation algorithm
for P̂. The simulator then sends the target ciphertext c∗ = (x∗, e∗, ŷ∗) to the adversary.

In the guessing phase, the adversary outputs a bit b′.
We let G1 be the game where the simulator is given (Λ, x∗) with x∗ ∈ L. This can be

considered as a bridging step from G0 to G1. In other words, the simulator in this case
perfectly simulates the original attack.

LetG2 be the game where the simulator is given (Λ, x∗) with x ∈ X\L. Distinguishing
betweenG1 andG2 is again essentially the same as solving the subset membership problem
(deciding whether x ∈ L or x ∈ X \ L). We define the advantage in solving the subset
membership problem as

AdvSMP(B) = |Pr[E2]− Pr[E1]|.

We now make a transition from G2 to a game G3, based on a failure event. In G3, we
modify the decryption oracle. Now, in addition to rejecting a ciphertext c = (x, e, ŷ) if
Ĥk̂(x, e) 6= ŷ, the oracle also rejects a ciphertext if x /∈ L. Let F be the event that the
decryption oracle rejects a ciphertext where x /∈ L, but Ĥk̂(x, e) = ŷ. We can prove that

|Pr[E3]− Pr[E2]| ≤ Pr[F ],

and that
Pr[F ] ≤ Q · ε̂,

where Q is the maximal number of queries that the adversary is allowed to make to the
decryption oracle.

We now make a transition from G3 to a game G4, based on indistinguishability. In
G4, we modify the encryption oracle. Instead of computing y∗ = Hk(x∗), the encryption
oracle now sets y∗ = y′, where y′ is sampled at random from Y . Using the fact that the
hash family H is ε-smooth, we can prove that

|Pr[E4]− Pr[E3]| ≤ ε.
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In G4, the adversary’s output b′ is independent of the hidden bit b, so

Pr[E4] = 1/2.

Combining the relations above, we can see that

AdvCCA ≤ AdvSMP(B) + ε+Q · ε̂,

which is the relation we want to prove in EASYCRYPT. As with the simplified scheme,
we will define a smoothness adversary and replace ε by this adversary’s advantage in
distinguishing between correct hash values and random elements in Y . We also replace the
term Q · ε̂ by the explicit probability that the adversary has been able to guess a hash value
of some x /∈ L. Thus, the relation we want to prove in EASYCRYPT is

`|Pr[CCA(Genscheme, A).main() @ &m : res]-1%r/2%r| <=
`|Pr[SMP1(SMPadv(A)).main() @ &m : res] -

Pr[SMP0(SMPadv(A)).main() @ &m : res]| +
`|Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] -
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res]| +

`|Pr[Game3(A).main() @ &m :
exists c, c \in Game3.log => !c.`1 \in ls /\
c.`3 = hash_(Game3.sk.`2, c.`1, c.`2)]|.

As seen above, we make sure that the run time of B is the same as the run time of A by
constructing B from A, as we did in §4.2.2.

Before we discuss how to implement the security proof in EASYCRYPT, we discuss how
to implement the encryption scheme. We will not discuss every detail of this implementation
but rather focus on the main differences between the implementation of this scheme and the
simplified scheme. In addition to the decryption oracle, there are two main differences. The
first is that we need an extended hash proof system in addition to the hash proof system
defined in §3.3.4. The second is that we need to define a failure event where the adversary
guesses the hash value of some x /∈ L. Both of these additions will be discussed in detail
below.

We first implement the extended hash proof system which associates the projective
hash family Ĥ = (Ĥ, K̂,X × Y, L × Y, Ŷ , Ŝ, α̂) with our subset membership problem.
The differences between this hash proof system and the previous one, is that the keys are
sampled from a (possibly) different distribution, the hashing and projection algorithms
take an e ∈ Y as input in addition to x and the output distribution of the hash functions is
(possibly) different. We first define additional types:

type K_, S_, Y_.

We must equip the type K_ with a full, uniform, lossless distribution, which we will call
dK_. This distribution is defined exactly as the distribution dK in §3.3.4. We also need
additional alpha, hash and proj operators to use in the algorithms of the extended hash
proof system.

op alpha_ : K_ −> S_.
op hash_ : (K_ * X * Y) −> Y_.
op proj_ : (S_ * X * Y * W) −> Y_.
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We define the projective property for the extended hash proof system as we did in §3.3.3.
Using the new types, the distribution dK_ and the above operators, we can define our

extended hash proof system in EASYCRYPT.

module HPS_Ext = {
proc kg() : K_ = {
var k;
k <$ dK_;
return k;

}

proc seval(k:K_) : S_ = {
var s;
s <− alpha_ k;
return s;

}

proc priveval(k:K, x:X, e:Y) : Y_ = {
var y;
y <− hash_ (k, x, e);
return y;

}

proc pubeval(s:S, x:X, e:Y, w:W) : Y_ = {
var y;
y <− proj_ (s, x, e, w);
return y;

}
}.

When implementing the encryption scheme itself, we must redefine the types of the
keys, plaintexts and ciphertexts.

type pkey = S * S_. type skey = K * K_.
type plaintext = Y. type ciphertext = X * Y * Y_.

To implement the scheme itself, we again define a module we call Genscheme, which
is of type Scheme.

module Genscheme : Scheme = {
proc keygen() : pkey * skey = {
var k, k_, s, s_, pk, sk;
k <− HPS.kg(); k_ <− HPS_Ext.kg();
s <− HPS.seval(k); s_ <− HPS_Ext.seval(k_);
pk <− (s, s_); sk <− (k, k_);
return (pk, sk);

}

proc encrypt(pk:pkey, m:plaintext) : ciphertext = {
var x, w, y, e, y_, c;
(x, w) <− Sampling.fromL();
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y <− HPS.pubeval(pk.`1, x, w);
e <− toY (toint m + toint y);
y_ <− HPS_Ext.pubeval(pk.`2, x, e, w);
c <− (x, e, y_);

return c;
}

proc decrypt(sk:skey,c:ciphertext) :
plaintext option = {
var y, y_', m;
y_' <− HPS_Ext.priveval(sk.`2, c.`1, c.`2);
if (c.`3 = y_') {
y <− HPS.priveval(sk.`1, c.`1);
m <− Some (toY (toint c.`2 - toint y));

} else {
m <− None;

}
return m;

}
}.

As we see, the main difference between this scheme and the simplified scheme is that
here, we check whether or not a given ciphertext is valid. This is done by checking if the
third element of the ciphertext (c.`3 = y_) equals the hash value of the first two elements
of the ciphertext (c.`1 = x and c.`2 = e) under the secret hash key k_. Proving the
correctness for this scheme is done exactly as for the CPA secure scheme, using the
correctness module defined in §3.1.1.

We now discuss how to implement the security proof for this encryption scheme in
EASYCRYPT. As with the simplified scheme, we place all the games and transitions inside
a section. We start the section by declaring an adversary of type CCAadversary, which is
not allowed to work in the memory space of the module CCA.

declare module A : CCAadversary{CCA}.

We need to make sure that the adversary’s procedures A.choose and A.guess termi-
nate, i.e. we must state axioms saying that these procedures are lossless. In this case, we
must make an addition to these axioms compared to the case of the simplified scheme. Both
adversary procedures have access to the decryption oracle, so we will say both A.choose

and A.guess are lossless, only if the decryption oracle is lossless, i.e. terminates.

axiom Ag_ll : forall (O <: CCAoracle{A}),
islossless O.decrypt => islossless A(O).guess.

axiom Ac_ll : forall (O <: CCAoracle{A}),
islossless O.decrypt => islossless A(O).choose.

The notation forall (O <: CCAoracle{A}) means for all oracles O of the module type
CCAoracle not working in the memory space of A. In other words, we make sure that
the oracle does not have access to the global variables of A and does not know how the
adversary really works.
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We start the proof by defining modules modeling the two experiments as we did in
§4.2.2, with the exception that here, we must also add the decryption oracle.

local module Game1(A:CCAadversary) = {
var log : ciphertext list
var cstar : ciphertext option
var sk : skey

module O = {
proc decrypt(c:ciphertext) : plaintext option = {
var m : plaintext option;
var y, y_';
if (size log < qD && Some c <> cstar) {
log <− c :: log;
y_' <− HPS_Ext.priveval(sk.`2, c.`1, c.`2);
if (y_' = c.`3) {
y <− HPS.priveval(sk.`1, c.`1);
m <− Some (toY (toint c.`2 - toint y));

} else m <− None;
} else m <− None;
return m;

}
}

module A = A(O)

proc main() : bool = {
var xstar, w, m0, m1, b, b';
var ystar, y_', estar, c, pk;
log <− [];
cstar <− None;
(pk, sk) <− Genscheme.keygen();
(xstar, w) <− Sampling.fromL();
(m0, m1) <− A.choose(pk);
b <$ {0,1};
ystar <− HPS.priveval(sk, c.`1);
y_' <− HPS_Ext.priveval(sk.`2, xstar, estar);
c <− (xstar, estar, y_');
cstar <− Some c;
b' <− A.guess(c);
return (b = b');

}
}.

To make sure that the adversary procedures A.choose and A.guess terminate, we can
prove that the decryption oracle is lossless by proving the following lemma.

local lemma Game1_O_ll :
islossless Game1(A).O.decrypt.
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As we still omit the approximation errors of the subset membership problem, this
experiment is equivalent to the original CCA attack. We state this in the following lemma.

local equiv CCA_Game1 :
CCA(Genscheme, A).main ˜ Game1(A).main :
={glob A} ==> ={res}.

The module in which x is sampled from X \ L instead of L is defined exactly as
Game1, with the exception that we replace (xstar, w) <− Sampling.fromL(); with
xstar <− Sampling.fromXnotL(); in the main procedure. This module will be re-
ferred to as Game2.

We can, similarly to the security proof for the simplified scheme, prove that the ad-
vantage in distinguishing between Game1 and Game2 is equivalent to solving the subset
membership problem. We do this by defining SMP modules and make a reduction from a
CCA attack to an SMP attack, similar to what we did in §4.2.2. We then prove that

Pr[Game1(A).main() @ &m : res] =
Pr[SMP1(SMPadv(A)).main() @ &m : res]

and

Pr[Game2(A).main() @ &m : res] =
Pr[SMP0(SMPadv(A)).main() @ &m : res].

The main difference between the proof of the simplified scheme and this scheme, is
that we need a module where we modify the decryption oracle. In this proof, we will call
this module Game3. In G3 in the pen-and-paper proof sketch, we make a change to the
decryption oracle, telling it to reject a ciphertext (x, e, ŷ′) if x /∈ L, in addition to when
ŷ′ 6= Hk(x, e). We will only describe the change in the decryption oracle, as well as the
global variables, as the rest of the module will be (almost) equal to Game2. The definition
of the decryption oracle and the global variables in Game3 is as follows.

module Game3(A:CCAadversary) = {
var log : ciphertext list
var cstar : ciphertext option
var sk : skey
var bad : bool

module O = {
proc decrypt(c:ciphertext) : plaintext option = {
var m : plaintext option;
var y, y_';
if (size log < qD && Some c <> cstar) {
log <− c :: log;
y_' <− HPS_Ext.priveval(sk.`2, c.`1, c.`2);
if (y_' = c.`3) {
y <− HPS.priveval(sk.`1, c.`1);
m <− Some (toY (toint c.`2 - toint y));
if (!c.`1 \in ls
/\ c.`3 = HPS_Ext.priveval(sk.`2, c.`1, c.`2))
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{bad <− true;}
} else m <− None;
} else m <− None;
return m;

}
}

· · · (* Rest of the module, similar to Game2 *)

}.

In the module Game3, we modify the decryption oracle in a different way than in the
pen-and-paper proof sketch. Here, we do not reject a ciphertext (x, e, ŷ′), if x /∈ L. Instead,
we accept any ciphertext as long as ŷ = Hk(x, e), but define a boolean we call bad and set
this to be true if the first component of the ciphertext is not in L. The rest of this module
equals Game2, with the exception that we define bad to be false in the beginning of the
main procedure.

Recall that in the pen-and-paper proof sketch, we proved that the absolute difference
between the adversary’s advantage in G2 and G3 is bounded byQ · ε̂. As we have discussed,
EASYCRYPT is not designed to reason about complexity. Thus, we cannot prove that
any probability is less than this bound in EASYCRYPT. Instead we implicitly include the
ε̂-2-universal property in the security proof by working directly with the probability that
the adversary has been able to guess the hash value of some x /∈ L.

To achieve this, we need to break the statement down into several smaller lemmas and
proceed step by step. We start by proving that if the variable bad remains false, Game2 and
Game3 are equivalent. We first prove that if bad remains false, the decryption oracles are
equivalent, by proving the following lemma.

local equiv Game2_Game3_decrypt_failure :
Game2(A).O.decrypt ˜ Game3(A).O.decrypt :
!Game3.bad{1} /\ Game2.log{1} = Game3.log{2}
/\ Game2.cstar{1} = Game3.cstar{2}
/\ Game2.sk{1} = Game3.sk{2}
/\ Some c{1} = Some c{2} ==>
!Game3.bad{1} => Game2.log{1} = Game3.log{2}
/\ Game2.cstar{1} = Game3.cstar{2}
/\ Game2.sk{1} = Game3.sk{2} /\ ={res}.

Recall that the notation ={res} means that the result is the same after executing both
procedures. In this case it means that for any ciphertext given to the decryption oracle,
the resulting plaintext should be the same in the two games. To make sure this is true, we
need to assume that the global variables of the two modules and the ciphertexts given to
the decryption oracles are the same, as we have done in the above equivalence. After this
equivalence is proved, we can prove that the main procedures also are equivalent, if the
bad variable remains false.

local equiv Game2_Game3_main_bad :
Game2(A).main ˜ Game3(A).main :
={glob A} ==> !Game3.bad{2} => ={res}.
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We are now ready to prove that

`|Pr[Game2(A).main() @ &m : res] -
Pr[Game3(A).main() @ &m : res]|

is bounded above by the probability of the bad event being set to true. We cannot, however,
prove this directly. To make full use of EASYCRYPT’s built-in proof system, we first need
to prove the following lemma.

local lemma Game2_Game3_main_bad_pr &m :
Pr[Game2(A).main() @ &m : res] <=
Pr[Game3(A).main() @ &m : res] +
Pr[Game3(A).main() @ &m : Game3.bad].

The reason that we need this intermediate step is that we want to transform the equivalence
Game2_Game3_main_bad to a probability expression using the byequiv tactic. For this
tactic to work, we cannot have two different procedures on one side of the inequality sign.
After proving this, however, it is straightforward to prove that the difference of the adversary
winning the two games is less than our equal to the bad event being set to true.

local lemma Game2_Game3_main_bad_pr2 &m :
Pr[Game2(A).main() @ &m : res] -
Pr[Game3(A).main() @ &m : res] <=
Pr[Game3(A).main() @ &m : Game3.bad].

Now, we need to prove that the absolute difference between the adversary winning in
Game2 and Game3 is bounded by the probability that the bad event is set to true.

`|Pr[Game2(A).main() @ &m : res] -
Pr[Game3(A).main() @ &m : res]| <=

`|Pr[Game3(A).main() @ &m : Game3.bad]|.

For a pen-and-paper proof of this relation, we can apply Lemma 3.1. However, we are not
able to prove this by following the exact pen-and-paper proof for Lemma 3.1. Instead, the
proof of this will be largely based on a proof of a similar relation, found in a file called
bad_abs.ec on the EASYCRYPT GitHub page.1 By proceeding as in this file, we also
need to prove that the adversary winning and the adversary not winning are complementary
events in both Game2 and Game3. In EASYCRYPT, we state this as follows:

Pr[Game2(A).main() @ &m : res] +
Pr[Game2(A).main() @ &m : !res] = 1%r.

Pr[Game3(A).main() @ &m : res] +
Pr[Game3(A).main() @ &m : !res] = 1%r.

The next step is to put a bound on the bad event itself. We want to prove that the
probability that the bad event is set to true is bounded by the probability that the adversary
has guessed a hash value for some x /∈ L.

1https://github.com/EasyCrypt/easycrypt/blob/1.0/examples/cramer-shoup/
bad_abs.ec
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We start by proving that the existence of a ciphertext c = (x,e,y_') in the ciphertext
log, where

!c.`1 \in ls /\ c.`3 = hash_(sk.`2, c.`1, c.`2)

implies that the bad event will be set to true. Recall that the notation c.`1 means the first
element of the tuple c and so on. This is clearly true because of the way we have defined
the decryption oracle in the module Game3. We define this in EASYCRYPT is as follows:

local equiv bad_bound :
Game3(A).main ˜ Game3(A).main :
={glob A} ==> exists c, c \in Game3.log{2} =>
!c.`1 \in ls /\
c.`3 = hash_(Game3.sk.`2{2}, c.`1, c.`2) =>
Game3.bad{2}.

Using the byequiv proof tactic, the above equivalence can be transformed to a proba-
bility relation.

local lemma bad_bound_pr &m :
Pr[Game3(A).main() @ &m : Game3.bad] <=
Pr[Game3(A).main() @ &m : exists c,
c \in Game3.log => !c.`1 \in ls /\
c.`3 = hash_(Game3.sk.`2, c.`1, c.`2)].

The above inequality as well as the fact that

`|Pr[Game2(A).main() @ &m : res] -
Pr[Game3(A).main() @ &m : res]| <=

`|Pr[Game3(A).main() @ &m : Game3.bad]|

clearly implies that the difference between the adversary winning in Game2 and Game3 is
bounded by the probability that the adversary has been able to guess a hash value for some
x /∈ L. Or in other words,

`|Pr[Game2(A).main() @ &m : res] -
Pr[Game3(A).main() @ &m : res]| <=
Pr[Game3(A).main() @ &m : exists c,
c \in Game3.log => !c.`1 \in ls /\
c.`3 = hash_(Game3.sk.`2, c.`1, c.`2)].

For the next part of the proof, we define a module we will call Game4. This module
will be almost equal to Game3 with the difference that we sample ystar at random from
the set ys instead of computing it as the hash value of xstar. We also need to define a
smoothness adversary who is given (x, s, y) as input, and whose task is to determine if
y = hash(k,x) or if y is chosen at random from the set ys, and make a reduction from a
CCA attack to a smoothness attack. The reduction is done as follows:
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local module SmoothAdv(A:CCAadv) = {
var log : ciphertext list
var cstar : ciphertext option
var bad : bool
var sk : skey
var k : K
var k_ : K_

module O = {
proc decrypt(c:ciphertext) : plaintext option = {

var m : plaintext option;
var y_', y;
if (size log < qD && (Some c <> cstar)) {
log <− c :: log;
y_' <− HPS_Ext.priveval(k_, c.`1, c.`2);
if (y_' = c.`3) {
y <− HPS.priveval(k, c.`1);
m <− Some (toY (toint c.`2 - toint y));
if (!(c.`1 \in ls)
/\ c.`3 = hash_(k_, c.`1, c.`2))
{bad <− true;}

} else m <− None;
}
else m <− None;
return m;

}
}

module A = A(O)

proc guess(x:X, s:S, y:Y) : bool = {
var m0, m1, b, b', s_;

log <− []; cstar <− None; bad <− false;
k_ <− HPS_Ext.kg(); s_ <− HPS_Ext.seval(k_);
sk <− (k, k_);

(m0,m1) <− A.choose(s,s_);
b <$ {0,1};

cstar <− Some (x,
toY (toint (b?m1:m0) + toint y),
hash_(k_, x,
toY (toint (b?m1:m0) + toint y)));
b' <− A.guess(x,
toY (toint (b?m1:m0) + toint y),
hash_(k_, x,
toY (toint (b?m1:m0) + toint y)));

return (b = b');
}

}.
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The smoothness adversary itself, as well as the modules where the adversary returns a
guess that y = hash(k,x) or that y is chosen at random, is defined as follows:

module type SmoothAdversary = {
proc guess(x:X, s:S, y:Y) : bool

}.

local module Smooth1(A:SmoothAdversary) = {
proc main() : bool = {
var b, x;
x <− Sampling.fromXnotL();
SmoothAdv.k <− HPS.kg();
b <− A.guess(x, alpha SmoothAdv.k,

hash(SmoothAdv.k,x));
return b;

}
}.

local module Smooth0(A:SmoothAdversary) = {
proc main() : bool = {
var b, x, y;
x <− Sampling.fromXnotL();
SmoothAdv.k <− HPS.kg();
y <− Sampling.fromY();
b <− A.guess(x, alpha SmoothAdv.k, y);
return b;

}
}.

We now need to prove that

`|Pr[Game3(A).main() @ &m : res] -
Pr[Game4(A).main() @ &m : res]| =

`|Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] -
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res]|.

We do this by proving the following equivalences.

local equiv Game3_Smooth1 :
Game3(A).main ˜ Smooth1(SmoothAdv(A)).main :
={glob A} ==> ={res}.

local equiv Game4_Smooth0 :
Game4(A).main ˜ Smooth0(SmoothAdv(A)).main :
={glob A} ==> ={res}.

Note that in the guessing module, we use the global variable SmoothAdv.k, first
defined in the reduction above, when sampling the secret hash key. The reason is that we
need to give this key to the decryption oracle in the SmoothAdv module, as this is necessary
for EASYCRYPT to accept the proof.
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Finally, we need to prove that the adversary wins with probability 1/2 in Game4. We do
this by defining a module we call Game4indep where the adversary’s output is completely
independent of the hidden bit b (similar to the module Game3indep in §4.2.2). To prove
that the adversary wins with probability 1/2, we prove the following.

local equiv Game4_Game4indep :
Game4(A).main ˜ Game4indep(A).main :
={glob A} ==> ={res}.

local lemma Game4indephalf &m :
Pr[Game4indep(A).main() @ &m : res] = 1%r/2%r.

Using the byequiv tactic to transform all equivalences to probability expressions, we
now have the following relations.

(* 1 *)
Pr[CCA(Genscheme, A).main() @ &m : res] =
Pr[Game1(A).main() @ &m : res].

(* 2 *)
Pr[Game1(A).main() @ &m : res] =
Pr[SMP1(SMPadv(A)).main() @ &m : res].

(* 3 *)
Pr[Game2(A).main() @ &m : res] =
Pr[SMP0(SMPadv(A)).main() @ &m : res].

(* 4 *)
`|Pr[Game2(A).main() @ &m : res] -
Pr[Game3(A).main() @ &m : res]| <=

`|Pr[Game3(A).main() @ &m : exists c,
c \in Game3.log => !c.`1 \in ls /\
c.`3 = hash_(Game3.sk.`2, c.`1, c.`2)]|.

(* 5 *)
Pr[Game3(A).main() @ &m : res] =
Pr[Smooth1(SmoothAdv(A)).main() @ &m : res].

(* 6 *)
Pr[Game4(A).main() @ &m : res] =
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res].

(* 7 *)
Pr[Game4(A).main() @ &m : res] =
Pr[Game4indep(A).main() @ &m : res].

(* 8 *)
Pr[Game4indep(A).main() @ &m : res] = 1%r/2%r.

48
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Using the above relations, we can prove our final lemma.

local lemma secure &m :
`|Pr[CCA(Genscheme, A).main() @ &m : res]-1%r/2%r| <=
`|Pr[SMP1(SMPadv(A)).main() @ &m : res] -

Pr[SMP0(SMPadv(A)).main() @ &m : res]| +
`|Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] -
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res]| +

`|Pr[Game3(A).main() @ &m :
exists c, c \in Game3.log => !c.`1 \in ls /\
c.`3 = hash_(Game3.sk.`2, c.`1, c.`2)]|.

This proves, as discussed in the pen-and-paper proof sketch, that the adversary’s
advantage is bounded by the advantage in deciding whether x ∈ L or x ∈ X \ L, the
advantage in deciding whether y = Hk(x) or y is random when given a tuple (x, s, y)
where s = α(k) and x ∈ X \ L, as well as the probability that the adversary is able to
guess a hash value of some x /∈ L.
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Chapter 5
A Concrete Construction of an
Encryption Scheme

In this chapter, we construct a concrete encryption scheme based on the simplified generic
scheme in §4.2. We will use the Decision Diffie-Hellman (DDH) assumption as a subset
membership problem. As the simplified generic scheme, this scheme will be IND-CPA
secure. The structure of the security proof for this scheme will to a large extent be the same
as for the simplified generic scheme. We will also discuss some difficulties that have arised
when verifying the proof in EASYCRYPT. All definitions in this chapter will follow [3],
except for a few minor differences. For example, we will use multiplicative notation for our
groups rather than additive because the theory for cyclic groups in EASYCRYPT is defined
using multiplicative notation.

It is also possible to use the DDH assumption to derive a concrete IND-CCA encryption
scheme from the generic scheme described in §4.1. However, the interesting aspects of
the DDH based scheme arise when working with smoothness. For this purpose, we do not
need an extended hash proof system. In other words, we leave out unnecessary details to
emphasize that it is the smoothness property we are interested in.

5.1 Construction
In this section we describe how to construct the concrete scheme based on the the DDH
assumption. We also describe how this scheme can be implemented in EASYCRYPT.

We first describe the DDH assumption. Let G be a group of prime order q. Let w
be an element of Zq and let w′ be an element of Zq \ {0}. The DDH assumption is the
assumption that it is hard to distinguish tuples of the form (g0, g1, g

w
0 , g

w
1 ) from tuples of

the form (g0, g1, g
w
0 , g

w+w′

1 ) where g0, g1 ∈ G. Distinguishing two such tuples can serve
as a subset membership problem in the following way.

Recall the sets X,W and L from §3.3.2. Let X = G × G, let W = Zq and let L
be the subgroup of X generated by (g0, g1). A witness for (x0, x1) ∈ L will be w ∈ Zq
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such that (x0, x1) = (gw
0 , g

w
1 ). It is easy to see that we can sample an element from L

by first sampling w from Zq and then computing (x0, x1) = (gw
0 , g

w
1 ). Similarly, we can

sample an element from X \ L by first sampling w from Zq and w′ from Zq \ {0} and
then compute (x0, x1) = (gw

0 , g
w+w′

1 ). It is evident that solving this subset membership
problem is equivalent to breaking the DDH assumption.

We now describe our hash proof system. Recalling the sets K,S and Y from §3.3.3, we
letK = Zq×Zq and S = Y = G. For (k0, k1) ∈ K, we define our set of hash functions to
be H = {Hk0,k1}k0,k1∈K . Each Hk0,k1 : X → Y is defined by Hk0,k1(x0, x1) = xk0

0 xk1
1 .

Define α : K → S by α(k0, k1) = gk0
0 gk1

1 .
We see that given s ∈ S and x ∈ L along with a witness w ∈W , we can calculate

sw = (gk0
0 gk1

1 )w = gwk0
0 gwk1

1 = xk0
0 xk1

1 = Hk0,k1(x0, x1). (5.1)

In other words, the hash family H = (H,K,X, Y, L, S, α) with all sets and α as described
above, is projective.

Also, the projective hash family H is 0-smooth (or, equivalently, 1/q-universal). To see
this, we look at exactly how Hk0,k1(x0, x1) is computed. For notational purposes, we will
now let Hk0,k1(x0, x1) = y.

We first let (g0, g1) = (g0, g
r
0), r ∈ Zq be generators for L. For any x = (x0, x1) we

have (x0, x1) = (gw
0 , g

w+w′

1 ). If w′ = 0 we have (x0, x1) ∈ L and if w′ 6= 0, we have
(x0, x1) /∈ L. For k0, k1 sampled at random from Zq , we compute s = α(k0, k1) as

s = gk0
0 gk1

1 = gk0+rk1
0 = ga

0 ,

with a = k0 + rk1. The hash value y is computed as

y = xk0
0 xk1

1 = gwk0+wrk1+w′rk1 = gaw+bw′

0 = xa
0(gw′

0 )b,

with a = k0 + rk1 and b = rk1. We now see that instead of sampling k0 and k1 and
computing a = k0 + rk1 and b = rk1, we can sample a and b from Zq and compute
k0 = a− b and k1 = b/r. By doing this, we see that for (x0, x1) ∈ L (i.e. when w′ = 0),
we will have

y = xa
0(gw′

0 )b = xa
0 · 1b,

meaning that y will be determined only by s and w. For (x0, x1) /∈ L (i.e. when w′ 6= 0),
however, (gw′

0 )b will be a random group element since b is chosen completely at random.
Thus, the distribution of (gw′

0 )b and hence the distribution of y will be uniform in the group
G. In other words, the hash family H is 1/q- universal, or, equivalently, 0-smooth.

We now describe the encryption scheme. The message space is the group G.

Key Generation. To generate a pair of public and secret keys, we do the following.

• Sample g0, g1
r←− G.

• Sample k0, k1
r←− Zq .

• Compute s← gk0
0 gk1

1 .

Set pk = (g0, g1, s) and sk = (k0, k1).

52



5.1 Construction

Encryption. To encrypt a message m ∈ G under pk = (g0, g1, s), we do the following.

• Sample w r←− Zq .

• Compute x0 ← gw
0 , x1 ← gw

1 , y ← sw, e← m · y.

The ciphertext is c = (x0, x1, e).

Decryption. To decrypt a ciphertext c = (x0, x1, e) under sk = (k0, k1), we do the
following.

• Compute y′ ← xk0
0 xk1

1 ,m′ ← e/y′.

Correctness. Recall that the correctness property demands that m = m′ for a message
encrypted and decrypted under corresponding public and secret keys. In the above scheme
we see that

m′ = e/y′ = (m · y)/y′ = m

if y = y′. Using the projective property described in Equation 5.1, we see that this will
hold.

We now describe how we can implement this scheme in EASYCRYPT. We will not
explicitly implement the sampling algorithms and the hash proof systems as modules on
their own. Instead, we implement everything directly into the algorithms of the encryption
scheme. We first introduce the types we use in this scheme.

type X = group * group. type W = t.
type K = t * t. type S = group. type Y = group.
type pkey = group * group * group.
type skey = K.
type plaintext = group.
type ciphertext = group * group * group.

Saying that an element is of type t in EASYCRYPT means that the element is in Zq , and an
element of type group is in the group G.

When implementing the scheme in EASYCRYPT, we will not sample g0 and g1 directly
from the group as described above. We will use the CyclicGroup.ec theory developed
by the EASYCRYPT team. This theory includes a generator g for the entire group. This
generator will be our g0. For g1, we will sample an r from FDistr.dt (i.e. r r←− Zq) and
compute g' <− gˆr. Now, g' will be our g1 and we will let L be the subgroup of X
generated by (g, g').

We now describe how the algorithms of the scheme can be implemented in EASYCRYPT.
The module we define will be of type Scheme as described in §3.1.1.

module DDHscheme : Scheme = {
proc keygen() : pkey * skey = {
var k0, k1, g', s, r, pk, sk;
r <$ FDistr. dt;
k0 <$ FDistr.dt;
k1 <$ FDistr.dt;
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g' <− gˆr;
s <− gˆk0 * g'ˆk1;
pk <− (g, g', s);
sk <− (k0, k1);
return (pk, sk);

}

proc encrypt(pk:pkey, m:plaintext) : ciphertext = {
var x0, x1, y, e, c, w;
w <$ FDistr.dt;
x0 <− pk.`1ˆw;
x1 <− pk.`2ˆw;
y <− pk.`3ˆw;
e <− m * y;
c <− (x0, x1, e);
return c;

}

proc decrypt(sk:skey, c:ciphertext) : plaintext = {
var m', y;
y <− c.`1ˆsk.`1 * c.`2ˆsk.`2;
m' <− c.`3 / y;
return m';

}
}.

The correctness of this scheme can be proved using the Correctness module described
in §3.1.1.

5.2 Security
In this section, we sketch the proof of the following theorem, and describe how to structure
the proof in EASYCRYPT.

Theorem 5.1. Let A be and adversary carrying out an IND-CPA attack against the
encryption scheme described in §5.1. Then there exists a DDH adversary B, such that

AdvCPA(A) = AdvDDH(B),

and the run time of B is the same as the run time of A.

We now sketch the proof of Theorem §5.1. We use a sequence of games very similar to
the proof of the simplified generic scheme. The details of the games will of course be a bit
different, as we now work with concrete group structures.

As in §4.2.2, we structure the proof using a sequence of games. Again, we let G0 be
the original CPA attack against our scheme. We let Ei be the event that the adversary wins
(i.e. b = b′) in Gi. Thus, the adversary’s advantage in winning G0 is

AdvCPA(A) = |Pr[E0]− 1/2|.
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5.2 Security

We now describe a simulator behaving as in §4.2.2. In the context we work in now,
the simulator will take an instance description Λ and some x = (x0, x1) ∈ X = G ×G
as input. The simulator computes pk = s and sk = (k0, k1) using the key generation
algorithm of the encryption scheme. It then receives (m0,m1) from the adversary, samples
a bit b, encrypts mb and sends the ciphertext to the adversary, who in turn outputs a bit b′.

In the game G1, the simulator is given x ∈ L, i.e. x = (x0, x1) = (gw
0 , g

w
1 ). Here, the

simulator perfectly simulates the original attack.
In G2, the simulator is given x = (x0, x1) = (gw

0 , g
w+w′

1 ) with w ∈ Zq and w′ ∈
Zq \ {0}. We see that distinguishing between G1 and G2 is the same as breaking the DDH
assumption. Thus, we get

|Pr[E2]− Pr[E1]| = AdvDDH(B).

Here, AdvDDH is the advantage in distinguishing between a DDH tuple (g0, g1, g
w
0 , g

w
1 )

and a random tuple (g0, g1, g
w
0 , g

w+w′

1 ).
We now make a transition from G2 to a game G3. Here, we modify the simulator such

that instead of computing y = xk0
0 xk1

1 , the simulator samples y at random from the group.
In this game, the adversary’s output will be independent of the hidden bit b, so

Pr[E3] = 1/2.

Furthermore, the projective hash family H we use in this scheme is 0-smooth, or
equivalently 1/q-universal. Thus, we have

Pr[E3] = Pr[E2].

Summarizing the above relations, we see that

AdvCPA(A) = AdvDDH(B).

In the language of EASYCRYPT, we state the relation we want to prove as follows.

`|Pr[CPA(DDHscheme,A).main() @ &m : res]-1%r/2%r| =
`|Pr[DDH1(DDHadv(A)).main() @ &m : res] -
Pr[DDH0(DDHadv(A)).main() @ &m : res]|.

We implement the two games G1 and G2 in EASYCRYPT as follows:

local module Game1(A:CPAadversary) = {
proc main() : bool = {
var w, pk, sk, m0, m1, b, b', y, e, c, x0, x1;
(pk, sk) <− DDHscheme.keygen();
w <$ FDistr.dt;
x0 <− pk.`1ˆw; x1 <− pk.`2ˆw;
(m0, m1) <− A.choose(pk);
b <$ {0,1};
y <− x0ˆsk.`1 * x1ˆsk.`2;
e <− (b?m1:m0) * y;
c <− (x0, x1, e);
b' <− A.guess(c);
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return (b = b');
}

}.

local module Game2(A:CPAadversary) = {
proc main() : bool = {
var w, w', pk, sk, m0, m1, b, b', y, e, c, x0, x1;
(pk, sk) <− DDHscheme.keygen();
w <$ FDistr.dt; w' <$ FDistr.dt \ (pred1 F.zero);
x0 <− pk.`1ˆw; x1 <− pk.`2ˆ(w + w');
(m0, m1) <− A.choose(pk);
b <$ {0,1};
y <− x0ˆsk.`1 * x1ˆsk.`2;
e <− (b?m1:m0) * y;
c <− (x0, x1, e);
b' <− A.guess(c);
return (b = b');

}
}.

As for the corresponding modules in the simplified generic scheme, the difference
between Game1 and Game2 is that x = (x0, x1) ∈ L and x = (x0, x1) /∈ L, respectively.

We now define DDH modules and a DDH adversary.

module type DDHadversary = {
proc guess(g g' s x0 x1 y : group) : bool

}.

module DDH1(A:DDHadversary) = {
proc main() : bool = {
var r, g', x0, x1, b, w, k0, k1, s, y;
r <$ FDistr.dt; g' <− gˆr;
w <$ FDistr.dt;
k0 <$ FDistr.dt; k1 <$ FDistr.dt;
s <− gˆk0 * g'ˆk1;
x0 <− gˆw; x1 <− g'ˆw;
y <− x0ˆk0 * x1ˆk1;
b <− A.guess(g, g', s, x0, x1, y);
return b;

}
}.

module DDH0(A:DDHadversary) = {
proc main() : bool = {
var r, g', x0, x1, b, w, w', k0, k1, s, y;
r <$ FDistr.dt; g' <− gˆr;
w <$ FDistr.dt; w' <$ FDistr.dt \ (pred1 F.zero);
k0 <$ FDistr.dt; k1 <$ FDistr.dt;
s <− gˆk0 * g'ˆk1;
x0 <− gˆw; x1 <− g'ˆw';
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y <− x0ˆk0 * x1ˆk1;
b <− A.guess(g, g', s, x0, x1, y);
return b;

}
}.

We make a reduction from a CPA adversary to a DDH adversary as follows:

module DDHadv(A:CPAadversary) = {
proc guess(g, g', s, x0, x1, y) : bool = {
var m0, m1, b, b';
(m0, m1) <− A.choose(g, g', s);

b <$ {0,1};
b' <− A.guess(x0, x1, (b?m1:m0) * y);

return (b = b');
}

}.

We can now prove that the DDH problem works as a subset membership problem by
proving the following equivalences.

local equiv Game1_DDH1 :
Game1(A).main ˜ DDH1(DDHadv(A)).main :
={glob A} ==> ={res}.

local equiv Game2_DDH0 :
Game2(A).main ˜ DDH0(DDHadv(A)).main :
={glob A} ==> ={res}.

From these equivalences, it follows trivially that

`|Pr[Game1(A).main() @ &m : res] -
Pr[Game2(A).main() @ &m : res]| =

`|Pr[DDH1(DDHadv(A)).main() @ &m : res] -
Pr[DDH0(DDHadv(A)).main() @ &m : res]|.

As mentioned above, the projective hash family we use is 0-smooth. The first step in
proving this in EASYCRYPT is to define a module which we call Game3.

local module Game3(A:CPAadversary) = {
proc main() : bool = {
var w, w', pk, sk, m0, m1, b, b', y, e, c, x0, x1;
(pk, sk) <− DDHscheme.keygen();
w <$ FDistr.dt; w' <$ FDistr.dt \ (pred1 F.zero);
x0 <− pk.`1ˆw; x1 <− pk.`2ˆ(w + w');
(m0, m1) <− A.choose(pk);
b <$ {0,1};
y <$ dG;
e <− (b?m1:m0) * y;
c <− (x0, x1, e);
b' <− A.guess(c);
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return (b = b');
}

}.

Here, dG is a distribution of group elements, defined as

op dG : { group distr | is_lossless dG /\
is_full dG /\ is_uniform dG } as dG_luf.

The only difference between Game3 and Game2, is that in Game3, we sample y at random
from the group instead of computing y <− x0ˆk0*x1ˆk1. We are able to prove in
EASYCRYPT that the probability that the adversary wins in Game3 is 1/2, by using a
procedure very similar to what we did in §4.2.2.

The next step is to define smoothness modules guessing that y is either computed as
x0ˆk0*x1ˆk1 or chosen at random, as well as constructing a smoothness adversary from
the CPA adversary (very similar to the smoothness adversary defined in §4.2.2).

module type SmoothAdversary = {
proc guess(x0 x1 g g' s y : group) : bool

}.

module Smooth1(A:SmoothAdversary) = {
proc main() : bool = {
var x0, x1, k0, k1, a, g', s, b, w, w', y;
a <$ FDistr.dt; g' <− gˆa;
w <$ FDistr.dt; w' <$ FDistr.dt \ (pred1 F.zero);
x0 <− gˆw; x1 <− g'ˆ(w + w');
k0 <$ FDistr.dt; k1 <$ FDistr.dt;
s <− gˆk0*g'ˆk1;
y <− x0ˆk0*x1ˆk1;
b <− A.guess(x0, x1, g, g', s, y);
return b;

}
}.

module Smooth0(A:SmoothAdversary) = {
proc main() : bool = {
var x0, x1, k0, k1, a, g', s, b, w, w', y;
a <$ FDistr.dt; g' <− gˆa;
w <$ FDistr.dt; w' <$ FDistr.dt \ (pred1 F.zero);
x0 <− gˆw; x1 <− g'ˆ(w + w');
k0 <$ FDistr.dt; k1 <$ FDistr.dt;
s <− gˆk0*g'ˆk1;
y <$ dG;
b <− A.guess(x0, x1, g, g', s, y);
return b;

}
}.
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The reduction from a CPA attack to a smoothness attack is done as follows:

module SmoothAdv(A:CPAadversary) = {
proc guess(x0, x1, g, g', s, y) = {
var m0, m1, b, b';
(m0, m1) <− A.choose(g, g', s);

b <$ {0,1};
b' <− A.guess(x0, x1, (b?m1:m0) * y);

return (b = b');
}

}.

As before, we give x = (x0, x1), pk = (g, g', s) and y as input (where y may
either be randomly chosen, or the hash value of (x0, x1). These values are then used in
the CPA attack.

We are now able to prove that distinguishing between Game2 and Game3 is equivalent to
distinguishing between the two smoothness modules by proving the following equivalences.

local equiv Game2_Smooth1 :
Game2(A).main ˜ Smooth1(SmoothAdv(A)).main :
={glob A} ==> ={res}.

local equiv Game3_Smooth0 :
Game3(A).main ˜ Smooth0(SmoothAdv(A)).main :
={glob A} ==> ={res}.

Transforming the equivalences regarding the DDH assumption and smoothness to probabil-
ity statements, we are able to prove the following lemma, which is quite similar to the final
lemma in the security proof for the IND-CPA secure generic scheme.

local lemma secure &m :
`|Pr[CPA(DDHscheme,A).main() @ &m : res]-1%r/2%r| <=
`|Pr[DDH1(DDHadv(A)).main() @ &m : res] -
Pr[DDH0(DDHadv(A)).main() @ &m : res]| +

`|Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] -
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res]|.

The final step of the proof is to prove the fact that H is 0-smooth, or in other words that

Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] =
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res].

This is a relation we have not been able to fully prove in EASYCRYPT. We have, however,
managed to prove one step towards proving the above relation, namely that xk0

0 xk1
1 is

distributed uniformly in G when (x0, x1) /∈ L. Formally, the statement we want to prove is

Pr[Hk0,k1(x0, x1) = y | s] = 1/q,

for all (x0, x1) /∈ L, y ∈ G and s = α(k0, k1).
To state this in EASYCRYPT, we first need the following module.
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module Ycomp = {
proc main(s:group, w w' r : t) : Y = {
var x0, x1, k0, k1, y;
k1 <$ FDistr.dt;
x0 <− gˆw;
x1 <− gˆrˆ(w+w');
k0 <− log s - k1 * r;
y <− x0ˆk0*x1ˆk1;
return y;

}
}.

Note that to make sure that s = alpha(k0, k1) we do not sample k0 at random, but
instead compute k0 in a suitable manner.

The probability statement above is stated as

lemma Ycomp_pr &m :
forall(y s : group, r w w' : t),
w <> F.zero /\ w' <> F.zero /\ r <> F.zero =>
Pr[Ycomp.main(s, w, w', r) @ &m : res = y] = 1%r/q%r.

Note that we take w, w' and r as input along with s. This seems to be necessary for
the proof to pass, as EASYCRYPT otherwise does not understand which values we are
reasoning about when we try to reason about w, w' and r. We must also assume that all
these values are different from 0, as we end up with a subgoal in EASYCRYPT where we
have to divide by r * w', in which case the product cannot be 0.

However, even though we have proved the fact above, we have not been able to prove
that

Pr[Smooth1(SmoothAdv(A)).main() @ &m : res] =
Pr[Smooth0(SmoothAdv(A)).main() @ &m : res].

The problem seems to arise when comparing the regular assignment

y <− x0ˆk0*x1ˆk1

to the random assignment

y <$ dG.

We have this far not been able to find a proper way of comparing two such assignments.
However, even though we have not been able to show that the advantage of the smoothness
adversary is zero, we have at least been able to prove the fact that the projective hash family
H that we use in this scheme, is 0-smooth.
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Chapter 6
Concluding Remarks

In this masters thesis we have implemented three encryption schemes in EASYCRYPT,
namely the generic encryption scheme proposed in [3], a less secure simplification of
this scheme, and a concretization of the simplified scheme, based on the Decision Diffie
Hellman assumption. We have also verified the IND-CCA security of the generic scheme
and the IND-CPA security of the simplified generic scheme under the assumption that the
underlying subset membership problems are hard.

As for the security of the DDH based scheme, there is still a small gap in our security
proof. We have been able to prove that the DDH assumption is a suitable subset membership
problem and that for any x ∈ X that does not lie in the special subset L ⊂ X , the hash
value of x is uniformly distributed in the group G (which is, in fact all we need as this
proves that the projective hash family H is 0-smooth). We have not, however, been able to
use this fact to prove that the advantage of the smoothness adversary we have defined is
zero. The issue seems to arise when we try to compare a regular assignment and a random
assignment.

As there is no complete user manual, it seems at the moment that the best way of
learning to use EASYCRYPT is by studying code examples developed by others. This means
that learning to use EASYCRYPT is (at least for us) a rather long process involving a lot
of experimenting, patience and trial and error. Here, we must again emphasize that the
EASYCRYPT team is very helpful in answering questions. Also, the bug that was found
which allowed us to prove that an arbitrary prime number q is equal to 1 (discussed in
§2.1.5) shows that EASYCRYPT may be prone to bugs allowing us to prove something
that is in fact false. Certainly, bugs may be an issue that is hard to avoid in any computer
program. However, bugs allowing us to prove false statements are quite critical in programs
whose purpose is to verify proofs. We recommend anyone working with EASYCRYPT and
finding a bug, to report this bug to the EASYCRYPT team so that it may be fixed.

Other than this, EASYCRYPT seems to be a reasonable tool for verifying security
proofs, and the need for such tools seems to become more and more important, as both
cryptographic constructions and their security proofs become more complex.
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Chapter 6. Concluding Remarks

6.1 Further Work
We believe it would be interesting to continue working on the concrete scheme based on the
Decision Diffie-Hellman assumption. Firstly, it would be interesting to continue working on
the CPA-security to hopefully figure out how we compare regular assignments to random
assignments. Secondly, it would be interesting to try and implement the full scheme based
on the DDH assumption (found in [3]) and prove this scheme’s IND-CCA security. Even
though the most interesting part of this scheme is the 0-smoothness property, it would be
a fun exercise to implement the extended hash family used in the IND-CCA secure DDH
scheme, as this involves working with for example finite sums in EASYCRYPT.

62



Bibliography

[1] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt,
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