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Summary

Short-term iceberg drift forecast is part of the Ice Management framework, which
is a key component of the International Standard, ISO 19906 specifying require-
ments and guidance for the design, construction, transportation, installation and
decommissioning of offshore platforms. Ice Management was developed and suc-
cessfully applied to support operations in ice-infested waters, such as the oil and
gas operations on the East Coast of Canada and the Barents Sea. If an iceberg
approaches a platform, it must be deflected from its path. Physical iceberg man-
agement is an expensive and time-consuming operation. An accurate iceberg drift
forecast reduces the amount of unnecessary towing actions. Consequently, it re-
duces the threat of iceberg interactions and risk of downtime and possible discon-
nection of oil and gas operations. Moreover, it simplifies the decision-making of
platform operators.

A mechanistic dynamic iceberg model was previously developed in the 1980’s.
An operational iceberg drift model was developed at the National Research Coun-
cil of Canada and implemented at the Canadian Ice Service and other agencies.
However, significant uncertainties, especially in the ocean current forecast, along
with the parametrisation of the model, prevent an accurate forecast. Furthermore,
frequent iceberg position measurements, which may be available when the iceberg
approaches an offshore facility, are not included in the conventional forecasts with
the dynamic iceberg drift model. Consequently, important and available informa-
tion is not considered in these drift forecasts.

A common method for platform operators to forecast an iceberg trajectory is
to extrapolate the last two iceberg position measurements linearly. This thesis dis-
cusses different approaches to how frequent iceberg position measurements can be
incorporated in the forecast process to improve the operational short-term iceberg
drift forecast. The developed algorithms are tested on nine iceberg trajectories
from two datasets collected during 2015 and 2016. Moreover, the thesis contains
additional work analysing the ocean current based on the observed iceberg trajec-
tory and deriving a Cramér-Rao bound for discrete-time systems with state con-
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straints. Based on the latter, a Kalman filter for linear state equality constraints is
developed.
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Chapter 1

Introduction

The forecast for weather-driven systems is challenging. This statement is impor-
tant for the interpretation of forecasting results, and it will be repeated throughout
the thesis. The forecast of iceberg drift trajectories is an example of such a chal-
lenging system (Eik 2009).

Icebergs provide a threat to marine navigation and offshore installations. How
dangerous icebergs can be to marine navigation was demonstrated by the collision
of the RMS Titanic with an iceberg in the North-Atlantic on April 14, 1912. Dur-
ing this accident, the Titanic sank, and more than 1500 people died making it one
of the deadliest commercial peacetime maritime disasters. Shortly after the acci-
dent, the International Convention for the Safety of Life at Sea was established.
This included the foundation of the International Ice Patrol, which has since mon-
itored icebergs in the North-Atlantic.

In addition to the increase of safety measures on the sea, the Titanic accident
motivated the study of icebergs, including their physical properties and methods
for their destruction (Barnes 1927). In later years, the idea to destroy icebergs with
explosives was continued with limited success (Barash 1966, Goode and Teller
1971, Mellor and Kovacs 1972). A significant number of air bubbles in the glacier
ice absorbed most of the explosion (C-CORE 2007). Today, the most common
approach for physical iceberg management is iceberg towing (Rudkin et al. 2005).

Due to the advances in safety measures and sensor technologies, for instance,
the marine radar system, icebergs can usually be detected in advance, and colli-
sion avoidance measures can be activated. While this is easy for ships and vessels,
other marine operations, such as station keeping, subjected to drifting icebergs are
less flexible, such as Floating Production-Storage and Offloading (FPSO), semi-
submersibles and spar-platforms. An examples of such oil platforms are the Float-

1
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ing Production-Storage and Offloading (FPSO) vessels SeaRose and Terra Nova
of Canada’s East Coast. The FPSO vessels may move off location. If an iceberg
comes close to a platform and cannot be managed, then production must be sus-
pended. Therefore, a good operational iceberg drift forecast is important to plan
possible countermeasures for icebergs approaching the platform.

A simple mechanistic dynamic iceberg model was developed in the 1980’s
(Sodhi and El-Tahan 1980) and later further improved and tested (Mountain 1980,
EI-Tahan et al. 1983, Smith 1993, Bigg et al. 1996, Eik 2009, C-CORE 2013,
Turnbull et al. 2015). An operational iceberg drift model was developed at the
National Research Council of Canada and implemented at the Canadian Ice Ser-
vice and other agencies (Kubat et al. 2005). The model uses environmental inputs
(winds, waves, and currents) and a detailed description of the iceberg keel geome-
try to simulate iceberg drift. A similar operational model was developed to monitor
ice conditions in the western Arctic zone by the Russian Federation (Kulakov and
Demchev 2015).

Ocean currents are usually identified as the most important driving force for
iceberg drift (Eik 2009, Turnbull et al. 2015, Kubat et al. 2005, Broström et al.
2009). However, ocean current direction and speed are also identified as the most
uncertain iceberg drift model parameters. They introduce significant uncertainties
into the iceberg drift forecast and make an accurate forecast very challenging (Al-
lison et al. 2014). Even though the main drift direction of the operational iceberg
model is claimed to be satisfactory (Mountain 1980, Kubat et al. 2005, Bigg et al.
1997), the modelled and observed iceberg trajectories may deviate from the be-
ginning of the forecast and may even point in opposite directions (EI-Tahan et al.
1983). The process noise (the difference between the modelled and real driving
forces) plays an important role during the forecast and gives the forecaster a feel-
ing that the iceberg drift follows a "chaotic" behaviour.

The mechanistic dynamic iceberg models are used in the Ice Services (e.g.,
CIS) to provide an occupancy grid map with information on how many icebergs
occupy each grid cell. Once an iceberg is discovered by satellite imagery or a
direct sighting by aeroplane or ship, it is included in the occupancy grid map. To-
gether with the sea ice forecast, this provides shipping companies, fisherman, and
insurance companies sufficient information about the risk entering the region.

At the Ice Services, each iceberg trajectory is forecasted with the help of cur-
rent, wind and wave models. The iceberg deterioration is also modelled. The
iceberg is removed from the grid map if the deterioration model suggests with
some conservatism that the iceberg is melted completely.

Available information about icebergs to the Ice Services is often limited. They
must work with infrequent or never updated information about the iceberg position
as well as limited to no initial information about the iceberg shape or initial veloc-
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ity. In such a situation, the only option to forecast the iceberg trajectory is to use the
mechanistic dynamic iceberg model. On the other hand, as the iceberg approaches
an offshore installation, more information about the iceberg becomes available.
The iceberg may even be tracked continuously. In this situation, other approaches
that include past information to forecast an iceberg trajectory are feasible, since an
accurate short-term iceberg drift forecast is required to determine when icebergs
should be managed to avoid potential impact with the platform. Moreover, if the
physical management of the iceberg is not possible or unsuccessful, then the ice-
berg drift forecast determines when production or exploration activities should be
shut-down, personnel evacuated, and platforms moved off-site. Accurate forecasts
can influence management costs, downtime, and risk.

Today, the most common method is to use either the dynamic iceberg model
approach or to linearly extrapolate the last two iceberg position measurements to
predict the future position of an iceberg (Kubat et al. 2005, Rudkin et al. 2005).

The scope of the thesis is to investigate how the operational iceberg forecast
(short-term up to 24 h) can be improved in situations when frequent measurements
about the iceberg trajectories are available.

1.1 Ice Management
Ice Management is an important component in the Arctic offshore design and the
oil and gas operations on the East Coast of Canada (Randell et al. 2009). Ice
management refers to the sum of all activities where the objective is to reduce or
avoid actions from ice features (Eik 2008). Consequently, it reduces the threat of
iceberg interaction and risk of downtime and possible disconnection. Ice Manage-
ment consists of several components, such as ice detection, monitoring, ice threat
analysis, and physical ice management (Fig. 1.1). A key component off the threat
evaluation and decision-making process is the iceberg drift forecast.

The area around a platform is typically divided into several zones (Fig. 1.2).
The observations zone is for monitoring iceberg movements. Closer to the plat-
form is the control zone, in which the iceberg is deflected to prevent it from reach-
ing the alert zone, an even closer area around the platform. The alert zone radius
is dynamic given by the "T"–time, which is the time required to suspend opera-
tions and move, if possible, off location (C-CORE 2007). The "T"–time must be
greater at all times than the time the iceberg needs to reach the facility (Randell
et al. 2009).

If an iceberg is identified as a threat to the platform, then the iceberg must be
deflected. The two most important iceberg managing methods are towing and the
use of water cannons. Water cannons are effective for smaller ice masses, while
a single vessel is usually used to tow an iceberg. For larger icebergs, multi-vessel
tows have also been carried out (Fuglem and Stuckey 2014).
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Data Management 

Forecasting

Detection, Tracking 

and Classification

Iceberg Observed

Physical Management

Threat Evaluation and

Decision Making

Figure 1.1: Ice management framework (Randell et al. 2009).

Iceberg Track

Control Zone

Exclusion Zone

Alert Zone

"T"-Time

Figure 1.2: Ice Management zones around a facility (Randell et al. 2009).

An iceberg management operation is operationally successful if downtime was
avoided. If one or multiple attempts achieve the desired change in the iceberg
course, then the towing operation is seen as technically successful (C-CORE 2002).
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(a) Single vessel towing using the C-
CORE Iceberg net.

(b) Iceberg deflection using a bow-
mounted water cannon.

Figure 1.3: Two iceberg management methods (Randell et al. 2009).

A comprehensive overview of Iceberg management operations on the East Coast
of Canada is given by Rudkin et al. (2005) with an analysis of about 1500 iceberg
management operations. It concludes that about 99.3 % of the iceberg management
operations were operationally successful and 85.4 % were technically successful.
The median time to complete an operation was about 6 h. However, about 10 %
of the operations exceeded 24 h. The median distance an iceberg was deflected is
about 5 nautical miles. For iceberg deflection, at least one vessel must be oper-
ational at all times. Consequently, physical iceberg management is an expensive
and time-consuming operation. An accurate iceberg drift forecast reduces the cost
and risk while easing the decision-making.

1.2 Notations
In this thesis, matrices are denoted by uppercase boldface (e.g., A), linear spaces
are denoted with calligraphic uppercase (e.g., N ), vectors are denoted by lower-
case boldface (e.g., x), and upper- or lowercase may denote scalars (e.g., C, k).
For a matrix A, AT , A−1, and N (A) denote its transpose, inverse, and the null
space, respectively. For a symmetric matrix, P ≥ 0 denotes the fact the matrix is
positive semi-definite.

1.3 Contributions
This thesis is aimed to improve short-term iceberg drift forecasting. It considers
the situation when an iceberg approaches an offshore facility so that frequent up-
dates about the iceberg position become available. The use of this information
improves the iceberg forecast capabilities. This thesis will discuss how this infor-
mation can be incorporated into short-term iceberg drift forecasts.

The main contribution of this thesis is the development of several forecast al-
gorithms using dynamic, kinematic, and statistical iceberg drift models that incor-
porate position measurements of the iceberg trajectory. The developed algorithms
combine iceberg models with system identification, estimation methods or signal
processing methods, such as the moving horizon estimator or the empirical mode
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decomposition. The algorithms are tested, compared, and validated on real iceberg
drift trajectories, some of which were collected during the thesis.

Moreover, a constrained Cramér-Rao Bound for discrete-time systems with
state equality constraints is developed. Based on this, an error covariance for
Kalman filtering with linear state equality constraints is derived. The error co-
variance is compared to other equality constrained Kalman filters, and it is shown
that it results in the smallest error covariance.

1.4 Publications
The following list of publications contributes towards the basis of this thesis, and
are listed by type and sorted by date of publication.

1.4.1 Journal Publications

PAPER A: Andersson et al. (2016a) Leif Erik Andersson, Francesco Scibilia, and
Lars Imsland. An estimation-forecast set-up for iceberg drift predic-
tion. In: Cold Regions Science and Technology, 108:1–9 (2016). ISSN
0165-232X. doi: https://doi.org/10.1016/j.coldregions.
2016.08.001

PAPER B: Andersson et al. (2018a) Leif Erik Andersson, Lars Imsland, Edmund
Førland Brekke and Francesco Scibilia. On Kalman filtering with lin-
ear state equality constraints. In: Automatica, [submitted], (2018).

PAPER C: Andersson et al. (2018c) Leif Erik Andersson, Francesco Scibilia,
Luke Copland, and Lars Imsland. Comparison of statistical iceberg
forecast models. In: Cold Regions Science and Technology, [accepted],
(2018).

PAPER D: Andersson et al. (2018d) Leif Erik Andersson, Francesco Scibilia,
and Lars Imsland. An iceberg forecast approach based on a statisti-
cal ocean current model. In: Cold Regions Science and Technology,
[submitted], (2018).

1.4.2 Conference Publications

PAPER E: Andersson et al. (2016d) Leif Erik Andersson, Francesco Scibilia,
and Lars Imsland. The Moving Horizon Estimator Used in Iceberg
Drift Estimation and Forecast. In: 2016 European Control Confer-
ence (ECC), Ålborg, Denmark, p. 1271–1277 (Jun. 2016). doi:
https://doi.org/10.1109/ECC.2016.7810464

https://doi.org/10.1016/j.coldregions.2016.08.001
https://doi.org/10.1016/j.coldregions.2016.08.001
https://doi.org/10.1109/ECC.2016.7810464
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PAPER F: Andersson et al. (2016b) Leif Erik Andersson, Francesco Scibilia, and
Lars Imsland. Estimation of systems with oscillating input - applied
to iceberg drift forecast. In: 2016 IEEE Conference on Control Appli-
cations (CCA), Buenos Aires, Argentina, pp. 1492–1498 (Sep. 2016).
doi: https://doi.org/10.1109/CCA.2016.7587934

PAPER G: Andersson et al. (2016c) Leif Erik Andersson, Francesco Scibilia,
and Lars Imsland. An Iceberg Drift Prediction Study Offshore New-
foundland. In: 2016 Arctic Technology Conference (ATC), St. John’s,
Canada (Oct. 2016). doi: https://doi.org/10.4043/27472-MS

PAPER H: Andersson et al. (2017c) Leif Erik Andersson, Francesco Scibilia, and
Lars Imsland. A Study on an Iceberg Drift Trajectory. In: ASME
2017 36th International Conference on Ocean, Offshore and Arctic
Engineering (OMAE), Trondheim, Norway (Jun. 2017). doi: http:
//dx.doi.org/10.1115/OMAE2017-62159

PAPER I: Andersson et al. (2017b) Leif Erik Andersson, Edmund Førland Brekke,
Lars Imsland and Francesco Scibilia. Constrained Posterior Cramér-
Rao Bound for Discrete-Time Systems. In: IFAC-PapersOnLine, 50(1):
3768–3773 (2017). ISSN 2405-8963. doi: https://doi.org/10.
1016/j.ifacol.2017.08.479

PAPER J: Andersson et al. (2017a) Leif Erik Andersson, Muhammad Faisal Aftab,
Francesco Scibilia, and Lars Imsland. Forecasting using multivari-
ate empirical mode decomposition – applied to iceberg drift forecast.
In: 2017 IEEE Conference on Control Technology and Applications
(CCTA), Kohala Coast, Hawaii, pp. 1097–1103 (Aug. 2017). doi:
https://doi.org/10.1109/CCTA.2017.8062605

PAPER K: Andersson et al. (2018b) Leif Erik Andersson, Francesco Scibilia,
Luke Copland, Muhammad Faisal Aftab, and Lars Imsland. Analysis
of iceberg drift trajectories using the multivariate empirical mode de-
composition. In: The Twenty-eighth (2018) International Ocean and
Polar Engineering Conference (ISOPE) , Sapporo, Japan, [accepted],
(Jun. 2018)

1.5 Thesis Organization
To a large extent, each chapter corresponds to a publication, where introductory
content common to several articles has been condensed in chapters 2 through 4
in the thesis. Chapters 5 through 15 are based on the publications list (Sec. 1.4),

https://doi.org/10.1109/CCA.2016.7587934
https://doi.org/10.4043/27472-MS
http://dx.doi.org/10.1115/OMAE2017-62159
http://dx.doi.org/10.1115/OMAE2017-62159
https://doi.org/10.1016/j.ifacol.2017.08.479
https://doi.org/10.1016/j.ifacol.2017.08.479
https://doi.org/10.1109/CCTA.2017.8062605
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which are the basis of the thesis.
In Part I, the iceberg datasets to compare the forecast algorithms are presented

in Chapter 4. In Chapter 5, a sensitivity study using the dynamic iceberg model is
discussed, and is based on Andersson et al. (2017c) (Sec. 1.4.2: PAPER H).

In Part II, the hybrid iceberg drift forecast algorithms are discussed. The fore-
cast algorithms comprise the ancillary current forecast scheme in Chapter 6 and the
inertial current forecast scheme in Chapter 7. The former is based on Andersson
et al. (2016a) (Sec. 1.4.1: PAPER A) and the latter on Andersson et al. (2016b)
(Sec. 1.4.2: PAPER F). Chapter 8 discusses how to combine both hybrid forecast
schemes to improve the forecast results further, and is based on Andersson et al.
(2016c) (Sec. 1.4.2: PAPER G).

Part III presents a statistical forecast algorithm in Chapter 9. A statistical cur-
rent model is identified, which is used to forecast the iceberg velocity. The Chapter
is based on Andersson et al. (2018d) (Sec. 1.4.1: PAPER D).

In Part IV, the iceberg velocity is analysed using the multivariate empirical
mode decomposition (Chapter 10), and is based on Andersson et al. (2018b) (Sec.
1.4.2: PAPER K). Chapter 11 presents an idea of how the multivariate empirical
mode decomposition can further be used to forecast the iceberg velocity, and is
based on Andersson et al. (2017a): (Sec. 1.4.2: PAPER J).

Chapter 12 comprises all of Part V where all presented forecast algorithms are
compared on the available iceberg drift datasets, and is based on Andersson et al.
(2018c) (Sec. 1.4.1: PAPER C).

Part VI focuses on constrained parameter and state estimation. In Chapter 13,
it is shown how a hydrodynamic iceberg geometry can be estimated based on mea-
surements close to the iceberg. An iceberg geometry model is derived to reduce
the estimation space and improve the estimation results. The Chapter is based on
Andersson et al. (2017c) (Sec. 1.4.2: PAPER H). Consequently, this article was
separated into Chapters 5 and 13. In Chapter 14, a constrained Cramér-Rao Bound
for discrete-time system is derived and is based on Andersson et al. (2017b) (Sec.
1.4.2: PAPER I). It is also used in Chapter 15 to derive and compare an error
covariance matrix for a constrained Kalman filter with other constrained Kalman
filters. The chapter is based on Andersson et al. (2018a) (Sec. 1.4.1: PAPER B).

Chapter 16 concludes this thesis and states possible future work.



Chapter 2

Iceberg Shape Classification and
Dynamic Iceberg Drift Model

In this chapter, the iceberg shape classification and the dynamic iceberg model
is introduced. The iceberg shape classification introduces common terms related
to the iceberg geometry, which are later used for the description of the iceberg
datasets. The dynamic iceberg drift model plays an important role throughout the
thesis. In all following chapters it will be used, often to compare and evaluate
the performance of the developed iceberg forecast algorithms. At the end of this
chapter, a brief literature review of the dynamic iceberg model and other iceberg
forecast methods is provided.

2.1 Iceberg Geometry
In this section, the common terms related to the iceberg geometry are introduced
(Fig. 2.1). An iceberg can be divided into a portion above the waterline, the sail
or freeboard, and a submerged portion below the waterline, the keel or draft. Con-
sequently, the sail height Ha is the highest point of an iceberg measured from the
waterline. The keel depth Hw represents the same for the keel. The ice thickness
H refers to the total height of the iceberg, which is given by the sum of sail height
and keel depth. The iceberg length L refers to the longest and the iceberg width
W to the smallest horizontal extension of the iceberg at the waterline. The sail and
keel cross-section areas, Aa and Ac, are the vertical cross-section areas of the sail
and keel, which may change depending on the perspective.

9
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Sail height

Waterline length

Keel Depth

Waterline

Figure 2.1: Schematic of iceberg geometry.

2.2 Iceberg Shape
In this thesis, the proposed forecast algorithms are tested on real iceberg trajec-
tories. A common iceberg classification is based on their shape. Moreover, the
shape is a common error source in the dynamic iceberg model. According to
WMO (1970), an iceberg is a massive piece of ice of varying shape protruding
more than five meters above the sea level. Different iceberg shapes are classified
in Table 2.1. Broström et al. (2009) also mentioned a weathered iceberg, which is
an iceberg with an irregular shape due to an advanced stage of ablation.

2.3 The Dynamic Iceberg Model
In this section, the mechanistic dynamic iceberg drift model is introduced. Here-
after, the North-East-Down (NED) coordinate system is used throughout the thesis.
Moreover, the ocean is always assumed to be a plane.

The iceberg model can be described by a set of ordinary differential equations
(ODEs)

ẋ = f (x, u, p), x0 = x(t0), (2.1a)

y = h(x), (2.1b)

where x ∈ IRnx is the vector of differential states, u ∈ IRnu the vector of inputs,
y ∈ IRny the vector of outputs, and p ∈ IRnp vector of parameters. For the iceberg
model, the state x contains the iceberg position and the velocity, the input u con-
tains the environmental driving forces, current, wind, and waves, and the output y
is the observed iceberg position.

More specifically, the mechanistic dynamic iceberg drift model is based on a
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Tabular A tabular iceberg (TAB) has a horizontal flat-
top with length to height ratio is ∼5:1 or
more.

Pinnacle A pinnacle iceberg (PNC) has a large cen-
tral spire or pyramid with one or more spires
dominating the overall shape.

Blocky A blocky iceberg (BLK) has steep precip-
itous sides with a flat top. The length to
height ratio is ∼2.5:1.

Dry-Dock A dry-dock iceberg (DDK) is eroded such
that a large U-shape slot is formed with twin
columns or pinnacles. The slot can extend
under the waterline or close to it.

Tilted Tabular or Wedge A tilted tabular (TT) or wedge (WDG) ice-
berg is a tabular iceberg, but the top is
tilted. Around 25% of the tabular icebergs
are tilted.

Dome or spherical A dome (DOM) or spherical (SPH) iceberg
has a large smooth rounded top.

Table 2.1: Iceberg shapes (McClintock et al. 2002).

momentum equation to calculate the acceleration of the iceberg mass

ma =
∑
i

fi, (2.2)

where m is the iceberg mass, a is the acceleration of the iceberg, and fi are forces
acting on the iceberg. The main differences between the mechanistic dynamic
iceberg drift models proposed in the literature lay in the choice of forces acting on
the icebergs and their representation (Sodhi and El-Tahan 1980, Mountain 1980,
Smith 1993, Bigg et al. 1996; 1997, Johannessen et al. 1999, Kubat et al. 2005,
Eik 2009, Keghouche et al. 2009, Turnbull et al. 2015).

In this thesis, the following forces act on the iceberg (Fig. 2.2)

ma = fcor + fa + fc + fr + fp, (2.3)

where fcor, fa, fc, fr, and fp are the Coriolis force, the air drag force, the water drag
force, the wave radiation force, and pressure gradient term, respectively. The total
mass of the iceberg is m, which consists of the iceberg mass m0 and added mass
madd (m = m0 + madd = m0(1 + Cm)) due to the water field surrounding the
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fr

North
East

vi
fcor

fp

fc

fa

Figure 2.2: Forces acting on an iceberg.

iceberg (Sodhi and El-Tahan 1980).
The Coriolis force is expressed by

fcor = −m0 f k × vi, (2.4)

where f = 2ωsin(φ) is the Coriolis vector, k is the unit vector directed upwards
parallel to the z-axis, and vi is the velocity of the iceberg. The angular velocity of
the earth and the latitude of the position of the iceberg is expressed as ω and φ.
The rotation of the earth causes the Coriolis force. As a result, moving objects are
deflected clockwise on the northern hemisphere.

The air drag force fa is caused by wind acting on the iceberg and is given by

fa =
1

2
ρaCaAa |va − vi |(va − vi), (2.5)

where ρa is the air density, Ca the air drag coefficient, Aa the sail cross-section
of the iceberg, and va the wind velocity. The iceberg velocity vi can be typically
neglected in (2.5).

The water drag force fc is caused by the current acting on the iceberg and is
calculated by

fc =
1

2
ρcCw

∑
k

Ac (k) |vc(k) − vi |(vc(k) − vi), (2.6)

where ρc is the water density, and Cw is the water drag coefficient. The keel cross-
section of the iceberg and the current velocity in an underwater layer k is expressed
as Ac (k) and vc(k). The water column is usually divided into vertical layers of
10-meters in height. In this thesis, we will use a mean current over the keel of the
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iceberg such that the current is the same in every layer.
The wave radiation force is caused by the waves acting on the iceberg and is

calculated as

fr =
1

4
Cr ρcga2L

vr

‖vr‖
, (2.7)

where Cr is the wave drift radiation coefficient, g the gravity, a the wave ampli-
tude, L the characteristic length of the iceberg, and vr/‖vr ‖ the wave direction. This
equation can be used for wind waves and swell. In many situations throughout the
thesis, the wave force is not included into the momentum balance (2.3) because of-
ten the wave force was not measured or information about the waves at the iceberg
position was not available. However, as Smith (1993) points out, waves travelling
in the same direction as the wind can be implicitly considered by a higher value of
the air drag coefficient.

The pressure gradient in the water causes a force on the iceberg (Kubat et al.
2005), which is approximated by

fp = m0

(
d
dt

vmc + f k × vmc

)
, (2.8)

where vmc is the mean current velocity and f is the Coriolis force parameter. The
mass and cross-sectional areas are calculated with the characteristic length L0 of
the iceberg and its width W0

m = L0W0Cf (Hw + Ha)ρIce, (2.9)

where Hw is the keel height, Ha is the sail height. The shape factor Cf for different
iceberg shapes can be found in McClintock et al. (2002).

If not stated otherwise, the air drag Ca, water drag Cw and wave drift coefficient
are selected to be 1.3, 0.9 and 0.6, respectively. Water, air, and ice densities are
fixed to be 1027, 1.225 and 900 kg m−3, respectively. The added mass coefficient
Cm is assumed to be 0.5 (Eik 2009).

2.3.1 Sensitivity of parameters of the dynamic iceberg model

In this section a brief discussion is given about the parameters of interest in the
dynamic iceberg model. This discussion follows the sensitivity study presented in
Allison et al. (2014). The sensitivity study in this article was performed for typical
parameter values of the Grand Banks region. The authors tried to estimate from
the base value a range of values large enough to encompass 95 % of the uncer-
tainty of the parameter. The estimation was based on verification data, but also on
experience of the authors. During the study the authors varied one parameter and
evaluated its influence on the iceberg drift in comparison to the base case. It has
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Table 2.2: Summary of sensitivity analysis by Allison et al. (2014).

Parameter Range Base value percentage of devia-
tion

Iceberg Geometry
Length ±50% 37.5, 90, 160,

350m
2.3%

Added mass 0–1 0.5 0.5%

Driving Forces
Wind direction ±45◦ 225◦ 8.6%

velocity ±30% 10m/s 2.9%

drag coeff. 0.5–2.5 1.9 2.9%

Current direction ±90◦ 135◦ 35.4%

velocity 0–0.8m/s 0.4m/s 19.1%

drag coeff. 0.5–2.5 1.3 5.1%

Wave stress sig. wave height ±50% 1.5m 2.6%

wave coeff. 0–0.3 0.15 4.0%

direction ±45◦ 225◦ 2.6%

period ±50% 6s 0.6%

Swell stress sig. wave height ±50% 1.5m 4.3%

swell coeff. 0–0.3 0.15 4.0%

direction ±30◦ 315◦ 2.3%

period ±25% 8s 0.6%

Init. cond.
position ±5km 0km 0.6%

velocity 0–0.8m/s 0.4m/s 0.6%

direction ±45◦ 0◦ 0.6%

to be pointed out that the importance of a parameter based on this study is highly
dependent on the base case that was chosen, e.g., the variation of the air drag co-
efficient has a higher significance if the wind velocity is high.

The results of the sensitivity study are shown in Table 2.2. The ocean current
direction followed by its velocity and the wind direction are the most influential
parameters. However, one has to keep in mind that the results are dependent on the
base values. The current and wind velocity base values are relatively high. Still,
a similar result, but probably not as distinct, is expected with smaller current and
wind velocities.

Errors in the initial conditions a relatively unimportant for the dynamic iceberg
model. This is expected in this experimental setup since all other parameters are
not influenced by the initial conditions. On the other hand, the initial conditions
are very influential on the statistical iceberg forecast methods presented below.

Dependencies between parameters, e.g. iceberg geometry influences drag co-
efficients, are usually not considered in the dynamic iceberg model and they are
often assumed independent. In fact, in an sensitivity study varying only one pa-
rameter different parameters can have the same effect on the iceberg drift, e.g.
variation of air drag coefficient, sail cross sectional area and absolute wind veloc-
ity or wave drift radiation coefficient, significant wave height and characteristic
iceberg length. An important difference between these parameters is their variance
and appearance in the driving force, e.g. air drag coefficient appears linear while
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Figure 2.3: Example how the ocean current velocity and direction influences the iceberg
drift trajectory in a 24 h period. The direction and varies ±30◦ and the velocity in the
range 0.05 m/s to 0.2 m/s. Each iceberg trajectory is a straight line since the simulation is
initialised in steady state. Each rectangle shows the extreme end positions of the iceberg
trajectory using the parameter values given in the legend.

the absolute velocity quadratic in (2.5).
An example how the ocean current velocity and direction influence the iceberg

drift trajectory is shown in Fig. 2.3. An error in the ocean current velocity or
direction will cause a significant deviation in the end position of the simulated ice-
berg trajectory. The region of uncertainty increases if more uncertain parameters
are included into the simulation. On the other hand, the region can be reduced
if the uncertainty of the parameter can be reduced with, for example, parameter
estimation techniques.

2.4 Literature Review on Iceberg Drift Forecast
The literature about iceberg drift forecasting, or hindcast, is dominated by the
mechanistic dynamic iceberg model. Many authors developed, tested, and eval-
uated this type of models, including EI-Tahan et al. (1983), Smith and Banke
(1981), Bigg et al. (1996), Lichey and Hellmer (2001), Kubat et al. (2005), Eik
(2009), Keghouche (2010), and Turnbull et al. (2015). However, their conclu-
sion may differ depending on the number of iceberg tracks evaluated, the region,
and period the iceberg tracks were observed. For example, Bigg et al. (1996),
Keghouche et al. (2009), and Eik (2009) investigated long-term iceberg drift fore-
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casts over several months, while Sodhi and El-Tahan (1980), Smith (1993), and
Turnbull et al. (2015) investigated short-term to mid-term iceberg drift forecasts of
11 h to 73 h. On the other hand, the articles have strong similarities as they each
investigated the driving forces and parametrisation of a dynamic iceberg model.

The ocean current is usually identified as the most important variable (Kubat
et al. 2005, Broström et al. 2009, Allison et al. 2014). Bigg et al. (1996) found
that nonlinear advection in the ocean current due to the pressure gradient term
becomes important for long-term drift forecasts. Others, investigating short-term
iceberg drift forecasts, found that the term can be neglected (Sodhi and El-Tahan
1980, Smith 1993). Eik (2009) and Broström et al. (2009) investigated the oceano-
graphic data used to forecast the iceberg. They found that in open water and with
some distance to the ice edge the wave force becomes as essential as the current
force. They pointed out that the wave force may be adjusted depending on the size
of the iceberg since small icebergs (20 m to 50 m waterline length) move with the
waves while large icebergs reflect waves.

For similar (long-term) forecast periods, Keghouche et al. (2009) found that
the current, wind, and Coriolis force are most important. They also investigated
the parametrisation of the dynamic iceberg model and found, independent of the
chosen geometry, a common ratio between the drag coefficients. Keghouche et al.
(2009) found that the drag coefficients become more important for longer periods
of one to two months. They suggested adjusting the drag coefficients according to
the observed iceberg trajectory. A similar idea to optimise the drag coefficients for
short-term iceberg drift forecasts was proposed by Smith (1993). However, Smith
(1993) achieved only small improvements in the forecast by tuning the drag coef-
ficients. Similar results were achieved by Gaskill and Rochester (1984) and Kubat
et al. (2005).

Smith (1993) neglected the wave force and pointed out that a higher air drag
coefficient Ca implicitly accounts for waves travelling in wind direction.

An operational iceberg drift model was developed at the Canadian Ice Ser-
vice (Kubat et al. 2005). The model uses environmental inputs such as winds,
waves, and currents along with a detailed description of the iceberg keel geometry
to simulate the iceberg drift. A similar operational model was developed by the
Russian Federation to monitor ice conditions in the western Arctic zone (Kulakov
and Demchev 2015). An empirical iceberg geometry model for pinnacle iceberg
shapes based on the waterline length was developed by Barker et al. (2004). Kubat
et al. (2005) and Turnbull et al. (2015) found that the iceberg geometry and the
iceberg keel geometry are important parameters to model the iceberg drift. At the
same time, they found that a mean current averaged over the keel of the iceberg
yields only a small error compared to a detailed vertical profile of the ocean cur-
rent.
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On the other hand, Smith (1993), Gaskill and Rochester (1984) and EI-Tahan
et al. (1983) stated that the modelled iceberg trajectories are relatively insensitive
to variations in the estimated mass and cross-sectional areas of the iceberg. A pos-
sible explanation of these different observations is that the icebergs, as investigated
by Smith (1993), are driven by near-surface ocean currents and that EI-Tahan et al.
(1983) and Gaskill and Rochester (1984) did not consider a layered ocean current.

A new research effort lead by C-CORE developed and improved iceberg pro-
filing, which may result in new insights about the iceberg keel geometry. It is now
possible to profile the iceberg in a relatively short time (McGuire et al. 2016) and
use these profiles in Iceberg Management systems to prepare towing operations
(Bruce et al. 2016), model iceberg impacts (Stuckey et al. 2016) or evaluate the
risk to sub-sea installations (King et al. 2016, Fuglem et al. 2016). These iceberg
profiles are collected by approaching the iceberg with a ship while others work on
profiling the iceberg sail and keel with underwater vehicles, such as Wang et al.
(2015) and Zhou et al. (2016). However, it is not straightforward to include a de-
tailed 3D iceberg profile into the dynamic iceberg model.

On the one hand, the main drift direction of dynamic iceberg models is claimed
to be satisfactory (Mountain 1980, Bigg et al. 1997, Kubat et al. 2005). On the
other hand, it was observed that the modelled and observed trajectories could de-
viate from the beginning and point in different directions (EI-Tahan et al. 1983,
C-CORE 2007). Eik (2009) found that the dynamic iceberg model provides better
results in situations with strong winds, since the wind may dominate the iceberg
drift as the wind model is less uncertain.

Mountain (1980) found that the error in the iceberg drift modelling is mostly
random. For this reason, Marko et al. (1988) claimed that statistical models have
superior performance for short-term forecasts compared to the dynamic ones. Gar-
rett (1985), De Margerie et al. (1986), and Moore (1987) presented simple statis-
tical methods that use historical and recently observed data about the iceberg drift
to predict iceberg motion, while Gaskill and Rochester (1984) used the dynamic
iceberg model and past iceberg motions to calculate currents required for the past
motions. In a second step, they applied those currents to other icebergs passing
through the same area at a later time.

Even though statistical methods have been proven to be superior for short-term
iceberg drift forecasts (Marko et al. 1988), they were critiqued by authors using
the dynamic iceberg model (Smith 1993). They state that the uncertainty of in the
position is large compared to the net displacement of the most probable iceberg
position (Moore 1987) and if the velocity changes auto-correlation models may
forecast the iceberg trajectory with a wrong velocity causing a large error (Smith
1993). Therefore, statistical models are rarely used.

Some more specific models were not included into the discussion, such as mod-
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els that describe the iceberg drift in sea ice (Yulmetov et al. 2016) or wind-driven
iceberg drift models (Crepon et al. 1988, Wesche and Dierking 2016).

Even though most often the mechanistic dynamic iceberg model is used, the
conclusions and observations are different. Different datasets, regions of interest,
and forecast horizons cause this issue. A benchmark of iceberg trajectories to test
forecast algorithms does not exist.



Chapter 3

Theory and Methods

This chapter introduces theory and methods common to many of the articles, which
are also the basis of the thesis.

3.1 State Estimator
The mechanistic dynamic system from Section 2.3 can be described by the set of
ordinary differential equations (ODEs)

ẋ(t) = f̃ (x(t), u(t)), x0 = x(t0), (3.1a)

y(t) = h(x(t)), (3.1b)

where x ∈ IRnx is the vector of differential states, u ∈ IRnu the vector of inputs, and
y ∈ IRny the vector of outputs. For example, in the iceberg model, the state vector
x may contain the iceberg position and velocity (and possibly the ancillary/inertial
current), the input vector u may contain the ocean current and wind forecast and
the output vector y may contain the iceberg position. Discretizing the continuous
time model yields

xk+1 = f (xk, uk ) + wk, x0 = x(t0), (3.2a)

yk = h(xk ) + vk, (3.2b)

in which the subscript k denotes the samples taken at discrete time tk . The vector
wk ∈ IRnx is an additive process noise, which accounts for unknown disturbances
on the system states. The measurement noise vk ∈ IRny is added to the measured
outputs.

19
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3.1.1 The Moving Horizon Estimator

The Moving Horizon Estimator (MHE) for the above model is the optimisation
problem (Robertson et al. 1996):

min
{xi,wi,vi }

‖x̂M − xM ‖
2
P−1
+

N∑
i=M

‖vi ‖
2
R−1
+

N−1∑
i=M

‖wi ‖
2
Q−1

(3.3a)

s.t . xi+1 = f (xi, ui) + wi ∀i = M, ..., N − 1

yi = h(xi) + vi ∀i = M, ..., N

xi ∈ X, wi ∈ W, vi ∈ V,

(3.3b)

where P ∈ IRnx×nx is the estimated error covariance matrix, R ∈ IRny×ny the mea-
surement noise covariance matrix and Q ∈ IRnx×nx the process noise covariance
matrix. The vector x̂ represents the estimated vector. The matrices Q and R can be
used as tuning parameters. In addition to their statistical interpretation, the matrix
Q can be seen as a measure of confidence in the model equations and the matrix
R as a measure of confidence in the process data (Scibilia and Hovd 2009). The
horizon contains (N−M+1) measurements, taken at times tk=M < ... < tk=N . The
sets X, W, and V are closed and convex, and, usually, they are finite dimensional
polyhedral sets

X = {xi ∈ R
nx |Dxxi ≤ dx },

W = {wi ∈ R
nx |Dwwi ≤ dw },

V = {vi ∈ R
ny |Dvvi ≤ dv },

(3.4)

where Dx ∈ IRnx×nx , Dw ∈ IRnx×nx and Dv ∈ IRny×ny are matrices. The MHE
formulation is a constrained least-squares problem. The optimisation variables are
xi, wi, and vi, which represent the state, the process noise, and the measurement
noise vector, respectively, in the optimisation horizon. Substitution can reduce the
variable space of the optimisation problem to the initial state xM and the process
noise {wi }

N−1
i=M over the optimisation horizon. The arrival cost term is represented

by ‖x̂ − xM ‖
2
P−1

, which summarises past data (t < tk=M ) that is not explicitly part
of the present objective function. The arrival cost is key to the stability of the MHE,
and is derived from dynamic programming arguments, such as Kalman filter based
updates (Kühl et al. 2011). xM denotes the optimal estimate of x̂M . The arrival
cost is updated with the update scheme developed by Tenny and Rawlings (2002).
The MHE is chosen in this work since it provides an improved state estimation and
greater robustness to both poor guesses of the initial state and tuning parameters
compared to the extended Kalman filter (EKF) (Haseltine and Rawlings 2005).
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3.1.2 Extended Kalman Filter

The performance of the MHE is compared below with that of a standard extended
Kalman Filter (EKF). To obtain the state estimates, the EKF linearises the non-
linear system around the last filter estimate and then applies the Kalman filter
(Rawlings and Bakshi 2006). With the following linearisation

Fk =
∂fk
∂x

����x̂+
k

, Hk =
∂hk

∂x

����x̂−
k

, (3.5)

the method can be summarised in a recursion with time update

x̂−k+1 = f (x̂+k , uk ), (3.6a)

P−k+1 = FkP+kFT
k +Q, (3.6b)

where the minus sign represents the a priori time update and the plus sign the
a posteriori measurement update. In a second step, the measurement update is
performed, and the mean and covariance are given by

Kk = P−kHT
k

(
HkP−kHT

k +R
)−1

, (3.7a)

x̂+k = x̂−k +Kk

[
yk − h(x̂−k )

]
(3.7b)

P+k = (I −KkHk ) P−k , (3.7c)

where Q and R are the process and measurement noise covariances.

3.2 Empirical Mode Decomposition
The empirical mode decomposition (EMD) is a fully data-driven adaptive signal
processing method that finds its ways into areas like image and data fusion (Hari-
haran et al. 2006, Mandic et al. 2008), medical applications (Blanco-Velasco et al.
2008) and remote sensing (Chen et al. 2008). The EMD decomposes an input sig-
nal x(t), which is the input to the EMD and not the state xk of (3.2), into amplitude-
or frequency-modulated components called intrinsic mode functions (IMFs) ci (t)
and a bias term r (t), such that

x(t) =
N∑
i=1

ci (t) + r (t). (3.8)

The IMF has symmetric upper and lower envelopes where the number of zero
crossings and extrema differ at most by one (Huang et al. 1998). An iterative pro-
cess that extracts high-frequency modes from slower ones extracts the IMFs (Aftab
et al. 2016). This sifting process is initiated by identifying extrema, calculating the
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local mean m(t) from the envelope constructed by spline fitting of the extrema and
subtracting the local mean from the signal to calculate the detail d(t). The itera-
tion is continued until the detail is considered as zero-mean IMF according to some
stopping criterion. Afterward, the IMF is subtracted from the input signal x(t) and
the sifting process restarted. When it is no longer possible to extract an IMF, the
iteration process is stopped, and the remaining signal is defined as residual r (t)
(Rilling et al. 2003).

3.2.1 Multivariate EMD

The standard EMD performs a decomposition on a univariate signal. Extensions to
bivariate, trivariate, and multivariate signals have been proposed by Rilling et al.
(2007), Ur Rehman and Mandic (2010a), and Ur Rehman and Mandic (2010b).
The main challenges in decomposing multivariate signals are the identification
of the local extrema, generation of envelopes, and calculation of a local mean in
higher dimensions. The problem is overcome by projecting the signal in multiple
directions and averaging over the previously created envelopes (Ur Rehman and
Mandic 2010b).

The Multivariate EMD (MEMD) method can be summarised in the following
algorithm (Aftab et al. 2016):

1. Set up K direction vectors uk with k = 1, . . . , K by choosing uniformly
distributed points on the n-dimensional sphere.

2. Find the projections pk (t) of the input signal x(t) along the direction vectors
uk .

3. Find the time instants tk corresponding to the maxima of the projections
pk (t).

4. Generate the multivariate envelope ek (t) via spline fitting of points
[
tk, x(tk )

]
.

5. Calculate the mean of the envelope curve

m(t) =
1

K

K∑
k=1

ek (t). (3.9)

6. Extract the detail d(t) = x(t) −m(t) as in the EMD.

7. Repeat steps 1-6 until d(t) fulfils the stoppage criterion for a multivariate
IMF.

8. Calculate the residue r(t) = x(t) −d(t), and iterate the same procedure until
all IMFs are extracted from the signal.
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3.2.2 Mode Alignment Property

An appealing consequence of the MEMD is its mode alignment property that
makes it possible to align ’common scales’ present in the multivariate data in the
same indexed IMFs (Ur Rehman and Mandic 2010b). An illustrative example of a
tetra-variate signal with individual components containing four oscillatory modes
( f1, f2, f3, f4) is considered. The signals have common modes among them, but
not all modes are present in each signal. Moreover, a phase lag is added to the
oscillations of some components. The signal composition is given in Table 3.1.
The signals and the resulting IMFs from the MEMD are given in Figure 3.1.

By viewing the IMFs, it is easily detectable that the common oscillation of sig-
nal B and D with frequency f4 is present in IMF#1. IMF#2 captures frequency f3
that is present only in component C. Frequency f2 extracted in IMF#3 is common
to the components B and C, while the last frequency f1 is present in the residue of
components A, B, and D. The MEMD behaves essentially as a sequence of band-
pass filters, which decompose the input signals into different components (IMFs)
with varying frequency bands. The bands are aligned in the IMF’s, and the MEMD
aligns common oscillatory modes. However, the MEMD may also generate spuri-
ous IMFs due to spline fitting issues and leakage effects where one IMF may leak
into another (Aftab et al. 2016, Peng et al. 2005). On the other hand, these IMFs
are nearly orthogonal and poorly correlated with the original signal. Therefore,
the rank correlation between the original signal x(t) and its IMF ci can be used to
detect the significance of each IMF.

Normalised Correlation Coefficient Matrix

The correlation coefficient ρi j is calculated by

ρi j = corr(ct0:tki j , xt0:tk
j ), j = 1, ..., M, i = 1, ..., N, (3.10)

where corr is the rank correlation of the j th input signal xj (t) with its ith IMF
ci j (t). The total number of input signals and IMFs is given by M and N , respec-
tively.

To achieve a common threshold for each signal component j the correlation

Table 3.1 Signal composition of mode alignment example.

f1 f2 f3 f4 Phase lag

A × - - -

B × × - × ∠ f1 = −π/2

C - × × - ∠ f2 = −π/4

D × - - × ∠ f1 = π/3, ∠ f4 = −π/4
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Figure 3.1: Mode alignment example.

coefficient is normalised

λi j =
ρi j

maxi (ρi j )
, j = 1, ..., M, i = 1, ..., N . (3.11)

An N × M matrix Λ is constructed in such a way that each row contains the nor-
malised correlation coefficients of similarly indexed IMFs, just as in the order in
Figure 3.1.

Grouping Algorithm

The grouping technique sets the correlation coefficients in every row of the cor-
relation matrix Λ exceeding a certain threshold η to one while all others to zero:

δi j (λi j ≥ η) = 1, (3.12a)

else δi j = 0. (3.12b)

In this way, components in a row representing the same oscillatory modes are
grouped and significant IMFs of each signal are identified.
The steps of the grouping algorithm are given below (Aftab et al. 2016):
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1. Calculate the matrix Λ with the normalised correlation coefficients.

2. Find δi j with condition (3.12).

3. The row i for which δi j = 1 represents signals with a similar oscillatory
mode.

A threshold of η = 0.5 is used in this work.
To better capture the local behaviour of the signal, one may not use the global

but only a local (moving horizon) signal to construct the correlation matrix

ρ{tl :tk }i j = corr (c{tl :tk }i j x{tl :tk }j ), i = 1, ..., N, j = 1, ..., M, (3.13)

where k−l represents the horizon with 0 < l < k. Considering the local signal may
result in a negative correlation between the input signal and its IMFs. Therefore,
the threshold should be tested against the absolute values ���λi j

��� ≥ η also to find the
signals shifted by about 180◦.

3.3 Model Identification and Granger’s Causality
An important model identification step is to identify causality between input and
output variables of the model. Different methods, like transfer entropy (Yang and
Xiao 2012) or partial directed coherence (Landman et al. 2014), were proposed.
Granger’s causality (G-causality) is used, since it is frequently used, simple to im-
plement, and offers sufficient performance for the scope of this thesis.

A variable u1 is said to G-cause a variable u2 if the past of u1 contains infor-
mation that helps to predict the future of u2 over and above information already in
the past of u2 (Granger 1969).

If we combine this with an estimated Vector-Autoregression model (VAR-
model), which is identified in Chapter 9, then the simplest unconditional G-causality
can be motivated as follows (Barnett and Seth 2014):

Suppose uk can be split into two jointly distributed multivariate processes

uk =

(
u1,k

u2,k

)
. (3.14)

As a VAR formulation, the model of this vector can be denoted as(
u1,k

u2,k

)
=

p∑
i=1

(
A11,i A12,i

A21,i A22,i

) (
u1,k−i

u2,k−i

)
+

(
εεε1,k
εεε2,k

)
(3.15)

moreover, the residual covariance matrix as

Σu1u1 = cov
(
εεε1,k
εεε2,k

)
=

(
Σ11 Σ12

Σ21 Σ22

)
. (3.16)
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The parameters of the VAR-model are fitted by solving an optimisation problem.
The u1-component of the regression (3.15) is

u1,k =

p∑
i=1

(
A11,iu1,k−i +A12,iu2,k−i

)
+ εεε1,k (3.17)

from which we see that the dependency of u1 on the past of u2, given its past, is
encapsulated in the coefficients A12,i. If these coefficients are zero, there is no
conditional dependency on the past of u2. These lead to the reduced regression,
which omits the past of u2

u1,k =

p∑
i=1

A11,iu1,k−i + ε̂̂ε̂ε1,k, (3.18)

so that u1,k is predicted by its past only.
G-causality can be calculated with the two residuals in (3.17) and (3.18) and

their covariance matrices Σ̂11 ≡ cov(ε̂̂ε̂ε1,k ). The G-causality from u2 to u1 is de-
fined to be the log-likelihood ratio

Fu2→u1 ≡ ln
|Σ̂11 |

|Σ11 |
. (3.19)

Thus, G-causality quantifies the reduction in the prediction error when the past of
the process u2 is included in the explanatory variables of the VAR model of u1.

3.3.1 Model Order

The determination of the necessary model order for the VAR current model is
done with the Bayesian Information Criterion (BIC). This is a model selection
method that penalises the maximum likelihood criteria. It has a single component
that quantifies the goodness-of-fit, for example, through maximum likelihood, and
one component that discounts the goodness-of-fit by the degree to which it was
accomplished using a complex model:

BIC = −2 ln f (U|θ̂) + d ln(n), (3.20)

where d refers to the number of free parameters, n refers to sample size, and θ̂

refers to the maximum likelihood estimate. The model with the lowest criteria is
the best.



Part I

Iceberg Dataset and Sensitivity
Study
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Chapter 4

Iceberg Datasets

In this chapter, two iceberg datasets containing eight iceberg tracks used to com-
pare and verify the forecast algorithms are introduced.

4.1 The Newfoundland Iceberg Dataset
During the Offshore Newfoundland Research expedition in Spring 2015 conducted
by Statoil and ArcticNet (ArcticNet 2004-2018), three icebergs were tracked (Fig.
4.2). The Canadian Coast Guard research vessel Amundsen was used during the
expedition (Fig. 4.1), and the author of this thesis participated in this expedition.

The GPS beacons deployed on the iceberg provided at least an hourly position
update. The icebergs names are related to the order of their discovery. Iceberg
3 was excluded from the dataset and not presented here since the sea ice con-
centration around the iceberg was dense. Consequently, its drift may be strongly
influenced by sea ice. A summary of the Newfoundland iceberg data set is given
in Tab. 4.1.

Table 4.1: Newfoundland iceberg data set. The iceberg geometries are from the day of
the GPS beacon deployment.

Iceberg
shape

Horizontal
dimensions
[m]

Freeboard
[m]

Keel depth
[m]

Measurement
frequency
[h]

Drift data
[days]

GPS tracker

Iceberg 1 dry-dock 210 × 150 30 45 – 60 1 8 Canatec

Iceberg 2 rounded 100 × 100 16 75 1 4 Canatec

Iceberg 4 wedged 290 × 100 30 90 – 100 1 37 2 Canatec &
2 (1) Solara

Iceberg 4-3 – – – – 1 52 Solara

29
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Figure 4.1: The Canadian Coast Guard Ship Amundsen is a Pierre Radisson-class ice-
breaker and Arctic research vessel.

4.1.1 Iceberg 1

Iceberg 1 had a dry-dock iceberg shape (Sec. 2.2). The sea ice concentration,
indicated as the ratio of sea area covered by sea ice to the total area (WMO 1970)
was less than 3/10 at the start of the tracking on April 22, 2015. Throughout the
thesis, it is assumed that the sea ice concentration has a minor influence on the
iceberg drift. Therefore, the sea ice force is neglected in all simulations.

The iceberg was discovered close to St. John’s (Fig. 4.3), and a Canatec GPS
tracker was deployed by helicopter onto the iceberg, which has an accuracy of
about 1.8 m. A position measurement was received with a five-minute frequency.
The sail height Ha of about 30 m was estimated from the ship by triangulation.
The length L and width W was estimated to be 210 m and 150 m, respectively. A
ship-mounted SX90 sonar measured the iceberg keel depth to be within 45 m to
60 m.

Iceberg 1 was tracked for about eight days, and it is likely that the iceberg
grounded and rolled close to Ireland’s Eye.

4.1.2 Iceberg 2

Iceberg 2 had a spherical or dome-shaped iceberg shape (Fig. 4.2). The sea ice
concentration was similar to the situation at the initial position of Iceberg 1. In
fact, the Iceberg 2 was initially tracked only 8 km apart from Iceberg 1 on April
22, 2015 (Fig 4.3). A Canatec GPS tracker was deployed by helicopter on the
iceberg, which provided position measurements with a five-minute frequency.

The sail height Ha of Iceberg 2 was estimated from the ship by triangulation
to be about 16.5 m. The length L and width W of the iceberg were estimated to
be about 100 m, and the keel height Hw was estimated by a ship-mounted SX90
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(a) Iceberg 1 on April 22, 2015.
Shape: Dry dock.

(b) Iceberg 2 on April 22, 2015.
Shape: Dome-shape.

(c) Iceberg 4 on April 24, 2015. Shape: Wedged.

Figure 4.2: (a) Iceberg 1 located close to Bonavista on Newfoundland with horizontal
dimensions of about 210×150 m. (b) Iceberg 2 located close to Bonavista on Newfound-
land with horizontal dimensions of about 100×100 m. (c) Iceberg 4 with the horizontal
dimensions of about 290×100 m.

sonar to be about 75 m. The total water depth at the initial iceberg position was
about 200 m.

The iceberg was tracked for nearly four days until the signal was lost close to
Catalina on Newfoundland, where the iceberg probably grounded or rolled.

4.1.3 Iceberg 4

Iceberg 4 has a wedged iceberg shape (Fig. 4.2). On the iceberg, four GPS bea-
cons, two Canatec GPS trackers and two Solara GPS trackers, were deployed by
helicopter. It was possible to land on the iceberg and drill the beacons into the ice-
berg. At first, the Canatec and Solara GPS trackers provided five and one-minute
position updates, respectively. After 24 h to 48 h, the position update frequency
was reduced to 15 min and 1 h, respectively.

The iceberg length L was estimated to be 290 m, width W of 100 m, sail height
Ha of 30 m, which was estimated by triangulation from the ship. The keel depth
was measured by a ship-mounted SX90 sonar to be about 90 m to 100 m. The
smallest extension of the iceberg was in the middle, which gave it a form of
a dumbbell. The iceberg was tracked for about 37 days. However, after about
5.5 days, the iceberg broke into two pieces and likely broke in the middle, where
it had the smallest sail height. Interestingly, three GPS trackers remained on the
iceberg, while one GPS tracker tracked the smaller piece, which is referred as Ice-
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Figure 4.3: Map of iceberg drift trajectories. Icebergs 1 and 2 are close to the shoreline
of Newfoundland while Icebergs 4 and 4-3 drift on the open ocean. The initial positions
of the icebergs are marked with a circle and the location where the Iceberg 4 broke with a
cross. For better orientation the weather station in Bonavista is marked on the map.

berg 4-3.
Iceberg 4-3 was tracked for 52 days. After evaluating the pictures of Iceberg

4, it is assumed that breakage happens at about 2/3 of the waterline length. Mass,
width, draft, and sail are adjusted accordingly of both icebergs in the simulations.
The two remaining icebergs (Iceberg 4 and Iceberg 4-3) are likely more dome-
shaped than wedged.

4.2 The Baffin Bay Iceberg Dataset
The Baffin Bay Iceberg dataset was provided by Luke Copland from the University
of Ottawa. The icebergs were tracked in the northern Baffin Bay from August to
October 2016 (Fig. 4.5) either with a RockSTART M GPS receiver or a MetOcean
CALIB GPS beacon deployed from a helicopter.

Also, for this expedition, the CCGS Amundsen was used as a research vessel.
The icebergs are named after the GPS tracker serial number. The iceberg dataset
contains four icebergs, of which only Iceberg 1040 was not grounded during the
observation period. A summary of the Baffin Bay data set is given in Tab. 4.2.
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(a) Iceberg 1040 on August 9, 2016.
Shape: Tabular.

(b) Iceberg 5450 on August 9, 2016.
Shape: Tabular.

(c) Iceberg 3534 on August 6, 2016.
Shape: Tabular.

(d) Iceberg 3651 on August 6, 2016.
Shape: Tabular.

Figure 4.4: (a) Iceberg 1040 located in the northern Baffin Bay with horizontal dimensions
of about 1000×1000 m and ice thickness of 92 m. (b) Iceberg 5450 located in the northern
Baffin Bay with horizontal dimensions of about 600×400 m and ice thickness of 67 m.
(c) Iceberg 3534 located in the northern Baffin Bay with horizontal dimensions of about
250×200 m and a sail height of about 45 m. (d) Iceberg 3651 located in the northern Baffin
Bay with horizontal dimensions of about 300×300 m and a sail height of about 40 m.

4.2.1 Iceberg 1040

Iceberg 1040 was located in the northern Baffin Bay and tracked with a MetO-
cean CALIB GPS beacon that was deployed on August 9, 2016. The dataset in
the thesis begins on August 17, 2016. The iceberg was a large tabular ice island
with horizontal dimensions of about 1×1 km (Fig. 4.4(a)). The ice thickness was
measured at about 92 m near the centre of the ice island using a 10 MHz ground-
penetrating radar system.

The measurement frequency was 1 h. However, due to a transmission error, the
same position measurement was received every three consecutive hours, reducing
the effective sampling frequency for this iceberg to 3 h. Moreover, the position
measurements between September 22 and October 4, 2016 were removed due to
another transmission error causing the iceberg not to move or "jump." The iceberg
trajectory is, therefore, divided into two parts: Iceberg 1040-1 and Iceberg 1040-2.

Iceberg 1040-1 contains 36 days (August 17 - September 22) of drift data and
Iceberg 1040-2 about 15 days (October 04 - 19) (Fig. 4.5).
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Figure 4.5: Map of iceberg drift trajectories. Iceberg 1040-1, 5450, 3534, and 3651 drift
in the northern part of Baffin Bay. Iceberg 1040-2 drifts southwards towards the Davis
Strait. The initial positions of the icebergs are marked with a circle. Bylot Island and two
other land marks are shown on the map for reference.

4.2.2 Iceberg 5450

Iceberg 5450 was located in the northern Baffin Bay and was also tracked with
a MetOcean CALIB GPS beacon deployed on August 9, 2016. In this thesis the
dataset begins on August 12, 2016, with a measurement frequency of 1 h. Trans-
mission problems were not observed. The iceberg is a large tabular ice island with
horizontal dimensions of about 600×400 m (Fig. 4.4(b)). The ice thickness was
measured at about 67 m with a 10 MHz ground-penetrating radar system.

The iceberg grounded on August 21, 2016, so about 8 days of drift data is avail-
able for this iceberg (Fig. 4.5). On the other hand, it is possible based on the sea
depth to get an estimate about the keel depth of the iceberg. The GEBCO 2014
global bathymetry grid at 30 arc-second intervals suggests a sea depth of about
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Table 4.2: Baffin Bay iceberg data set. The iceberg geometries are from the day of the
GPS beacon deployment.

Iceberg
shape

Horizontal
dimensions
[m]

Freeboard
[m]

Keel depth
[m]

Measurement
frequency
[h]

Drift data
[days]

GPS
tracker

Iceberg 1040-1 tabular 1000 ×

1000
92 – 1 36 MetOcean

CALIB

Iceberg 1040-2 – – – – 1 15 MetOcean
CALIB

Iceberg 5450 tabular 600 × 400 67 – 1 8 MetOcean
CALIB

Iceberg 3534 tabular 250 × 200 – 45 1 15 RockSTARTM

Iceberg 3651 tabular 300 × 300 – 40 1 11 RockSTARTM

100 m to 110 m at the grounding location (GEBCO -).

4.2.3 Iceberg 3534

Iceberg 3534 was tracked with a RockSTARTM GPS receiver deployed on August
6, 2016, and the dataset in this thesis begins on August 8, 2016. The iceberg is
tabular with horizontal dimensions of about 250×200 m (Fig. 4.4(c)). The sail
height was estimated to be about 45 m. The iceberg grounded on August 19, 2016
giving us about 15 days of drift data (Fig. 4.5). The measurement frequency was
1 h, and transmission problems were not observed. The iceberg moved again for a
few days after the first grounding event. However, this period was excluded from
the drift dataset, since it was short and may be influenced by other forces such as
sea ice or interactions with the seabed. The GEBCO 2014 global bathymetry grid
at 30 arc-second intervals suggests a sea depth of about 190 m at the grounding
location (GEBCO -). The final location has a sea depth of about 105 m, which is
more likely in the range of the keel depth of the iceberg. It may be that the first
grounding event is actually done to sea or fast ice, but it may also be just due to a
coarse bathymetry map that the sea depth is overestimated at the location.

4.2.4 Iceberg 3651

Similar to the other icebergs from the Baffin Bay dataset, Iceberg 3651 was lo-
cated in the northern Baffin Bay and tracked with a RockSTARTM GPS receiver
deployed on August 6, 2016. The dataset in this thesis begins on August 8, 2016.
The iceberg was large tabular with horizontal dimensions of about 300×300 m and
a sail height of about 40 m (Fig. 4.4(d)).

The iceberg grounded on August 19, 2016 giving us about 11 days of drift
data. At the grounding location, the GEBCO 2014 global bathymetry grid at 30
arc-second intervals suggests a sea depth of about 100 m. Also, this iceberg starts
moving again for a few days. However, these periods were excluded from the
dataset.





Chapter 5

Sensitivity Study of the Dynamic
Iceberg Drift Model

This chapter is based on PAPER H (Andersson et al. 2017c), which is separated
into two parts to better fit within the thesis organisation. The first part of the paper
is presented in this chapter with the second included in Chapter 13.

The chapter illustrates how extracting iceberg trajectories from the data col-
lected during this PhD study remains challenging to forecast or even hindcast using
dynamic iceberg models, even if the uncertainties in currents, winds, and waves are
reduced by measuring the forces close to the iceberg due to the sensitivity of the
model to its parameters and inputs.

5.1 Introduction
One of the most comprehensive iceberg drift datasets was collected by Smith and
Donaldson (1987), which included current profiles and wind data from twelve
track segments of seven different icebergs. In addition, the mass and cross-sectional
areas were estimated based on sonar profiles and photographs. The dynamic model
reasonably represented the majority of the observed tracks reasonably. However,
drag coefficients were optimised and the wind was corrected for their analysis.
Furthermore, some observed tracks showed considerable deviation from the mod-
elled track.

A new research effort lead by C-CORE developed and improved iceberg pro-
filing. It is now possible to profile the iceberg in a relatively short time (McGuire
et al. 2016) and use these profiles in Iceberg Management systems to prepare tow-
ing (Bruce et al. 2016), model iceberg impacts (Stuckey et al. 2016) or evaluate the
risk to sub-sea installations (King et al. 2016, Fuglem et al. 2016). These iceberg
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profiles are collected by approaching the iceberg with a ship. Profiling the iceberg
sail and keel with underwater vehicles was undertaken by other groups (Wang et al.
2015, Zhou et al. 2016). However, it is not straightforward to include a detailed
3D iceberg profile into the dynamic iceberg model.

In Spring 2015, ArticNet (ArcticNet 2004-2018) and Statoil conducted an Off-
shore Newfoundland Researcher Expedition. During this expedition a dataset of
one iceberg track similar to the one collected by Smith and Donaldson (1987) was
collected. This chapter discusses the sensitivity of the dynamic iceberg model to
different input signals and model parameters.

5.2 Data Collection
The iceberg discussed here was discovered during the Offshore Newfoundland Re-
search Expedition on April 24, 2015, and is labelled Iceberg 4 (Section 4.1.3).

Without a more precise overview of the iceberg, the side-pictures would sug-
gest that it had a width of about 100 m to 190 m. The keel depth was estimated
with the ship-mounted SX90 sonar to be 90 m to 100 m. There are several empiri-
cal formulas available to estimate the iceberg draft. Barker et al. (2004) proposed
the two equations

Hw = 2.91L0.71, (5.1a)

Hw = 0.7L, (5.1b)

while two alternate equations were proposed by C-CORE (2007),

Hw = 3.27L0.68, and (5.2a)

Hw = 3.31L0.56H0.17
a . (5.2b)

These formulas result in an overestimation of the draft of the iceberg with 160m,
197m, 151m, and 140 m, respectively. The dumbbell shape of the iceberg most
likely causes this deviation (Fig. 5.1). It is probable that only one "bell" is re-
sponsible for the keel depth while the other has a smaller keel depth. The larger
"bell" of the iceberg has a length of about 145 m, which results in an iceberg draft
of about 96 m to 101 m using (5.1 - 5.2). This is very close to the actual measured
keel depth. It is also likely that the later observed breakage of the iceberg happens
between the two bells.

Four GPS beacons were deployed on the iceberg at around 15:15 UTC on
August 24, 2015. The iceberg velocity and rotation is shown in Fig. 5.2. The
velocity in the north-south and east-west directions changes only slightly during
the observation. The long axis of the iceberg rotates between ±15◦ from the north
direction, and the period of this oscillation is about 3 h.

Between 14:20 and 21:50 UTC, a wave glider operated close to the iceberg,
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and collected wave, current, and wind data. At the same time, current data was
collected from the icebreaker CCGS Amundsen, which stayed close to the iceberg
(Fig. 5.3).

Wind information was available from the CCGS Amundsen, the wave glider
(5 min frequency), manual observations (1 h frequency) on the CCGS Amundsen,
and from the weather forecast (6 h frequency). The automatic wind measurements
on the CCGS Amundsen were excluded from the analysis since they did not corre-
late with the other wind information sources. Therefore, it was assumed that they
were error-prone and not trustworthy (Fig. 5.4).

The current information was received by the Shipboard Acoustic Doppler Cur-
rent Profiles (SADCP) and measured with a 5 min frequency. The current profiles
important for the iceberg are shown in Fig. 5.5 with the layer size at 8 m and the
centre of the first 8 m height bin at 23.2 m. It is assumed that the surface current is
similar to the current measured in the first bin. Because of the position of the sonar
underneath the ship, it was not possible to measure currents closer to the surface.
The currents are similar in the current layers. Nevertheless, sometimes a direction
change can be detected between the near surface and deeper currents. Between
hours 3 to 4, the current measurements show strong peaks, which are probably
several outliers (due to significant errors in the current measurement). The overall
current velocity is small.

The wave glider measured significant wave height and wave peak direction
with a measurement frequency of 30 min. The waves propagate from southeast-
east to northwest-west. Consequently, waves have a stronger westerly component
and a weaker northerly component (Fig. 5.6). In comparison, the wind blows from
northeast-east to southwest-west. The average difference between wave and wind
directions is 26◦ with the average wave height of 1.56 m and average wind velocity
8.7 m/s.

(a) Iceberg view from one side. (b) Iceberg view from opposite side.

Figure 5.1: View of Iceberg 4 from additional perspectives compared to Fig. 4.2(c).
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Figure 5.2: Iceberg velocity in north-south (dashed) and east-west (dotted) directions and
the rotation of the iceberg (solid).

5.3 Iceberg Drift Simulation
In this section, the iceberg is simulated based on the measured forces on the ice-
berg. While a simulation period of 6.5 hours is short, some conclusions may still
be considered. The iceberg model used in these simulations is described in Section
2.3.

5.3.1 Sensitivity of Iceberg Shape to Different Current Measurements

Three different iceberg keel shapes are considered: rectangular, semi-elliptic, and
triangular (Fig. 5.7). The mass is assumed constant for each keel shapes.

In the first simulation study, the wave force is neglected. The initial iceberg
velocity is calculated with the first two iceberg position measurements. If the
measured SADCP data is used the three iceberg keel shapes behave considerably
differently (Fig. 5.8). The error between simulated and observed iceberg trajec-
tory increases over the observation horizon for all three iceberg keel shapes. The
triangularly shaped iceberg keel shows the smallest and the rectangularly shaped
iceberg keel the largest error. The triangularly shaped iceberg keel is more strongly
influenced by the surface and near-surface currents than the other iceberg shapes.
Therefore, the surface current layer is likely not weighted strong enough during
the simulations with the rectangular and elliptical iceberg keel shape.

If only the surface current layer is used as current for the entire iceberg keel,
then the error between the observed and simulated iceberg trajectories reduces sig-
nificantly compared to the results as shown in Fig. 5.8. For this new configuration,
the elliptic iceberg keel produces the smallest error. The triangular iceberg keel
overestimates the east velocity of the iceberg compared to the other iceberg keel
shapes caused by the strong eastward wind velocity observed by the wave glider
at the end of the observation horizon (Fig. 5.4).

The manual wind observations, on the other hand, show a decrease in wind
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Figure 5.3: Ship, glider, and iceberg positions. Every hour is a mark set into the trajectory.
The position of four GPS beacons on the iceberg is shown. The initial positions of the
trajectories are marked with a cross.

velocity. If the iceberg is simulated using the first current layer and the manu-
ally observed wind velocities, then the rectangularly shaped iceberg keel has the
smallest final position error. This error is even smaller than the final error of the
elliptically shaped iceberg using the wind velocities measured by the wave glider.

So, all three geometries may behave best depending on the combination of in-
put signals used in the simulations.

5.3.2 Sensitivity of Iceberg Model to Different Input Signals and Geometry
Assumptions

To further investigate the influence of different input signals and the iceberg shape
assumptions, every possible combination of the following variables were simu-
lated:

1. Iceberg keel shape: rectangular, triangular, semi-elliptic

2. Current input: mean current, surface current, layered current

3. Wind input: manually observed wind, wave glider wind, wind forecast

4. Wave input: included or excluded

5. Pressure gradient force: yes or no

6. Coriolis force: yes or no
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Figure 5.4: Wind velocity in north-south and east-west directions. Wind direction is
positive if it blows in the north and east directions. The forecast and manual observations
are interpolated to fit the measurement frequency of the wave glider. The marks are only
added for simpler differentiation of the lines in the plot.

Other parameters, such as the drag coefficients, were not changed during the 216
iceberg drift simulations. The root mean square error, final, and a maximum error
of the drift hindcast were analysed, first for each simulation option and afterwards
for different combinations of options.

The smallest root mean square error of 102 m is achieved with the combina-
tion: rectangular iceberg keel shape, surface current, manually observed wind, no
waves, no pressure gradient force, and with the Coriolis force. The second best
hindcast was achieved by switching on the pressure gradient force, which resulted
in a root mean square error of 178 m.

The largest root mean square error was 1741 m from the combination: trian-
gular iceberg shape, surface current, manually observed wind, waves, no pressure
gradient force, and with the Coriolis force. A similar error was achieved with the
pressure gradient force. The difference for the best one is due to the iceberg shape
and the wave force.

In a second step, the results were visualised by fitting the performance indices
into a kernel distribution and plotting the resulting probability density function
(pdf) (interpreting the mean square error from the different experiments as a ran-
dom variable) (Fig. 5.9). It can be seen that the triangularly shaped iceberg has a
larger variance in the root mean square error as well as larger mean compared to
the other iceberg shapes.
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Figure 5.5: Current velocities in different layers. The layer diameter is given in [m]. The
first four layers have solid lines and the second four layers are dashed.

More substantial errors are produced by the triangular iceberg using surface
currents since both pdf’s show a similar right tail. Using the triangular iceberg
shape results, on the one hand, in smaller errors than with the other iceberg shapes,
but on the other hand, it also produces the largest errors.

As seen in Figures 5.9c and 5.9d that it is beneficial to exclude the wave and
Coriolis forces. The problem with the wave force is that the simulated iceberg
overshoots into the north and east directions. If the wave force is excluded the
northerly component is hindcasted well (Fig. 5.8) while the simulated iceberg
does not drift far enough in the east direction.

If the triangularly shaped iceberg keel is excluded from the analysis and only
the rectangular and elliptic shapes are considered, then the right tail of the pdf
is similar for all considered current inputs, while the surface current produces a
smaller mean error.

The pressure gradient force has only a small influence on the root mean square
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Figure 5.7: Schematic of different iceberg keel geometries. The solid line shows a rect-
angular shape, the dashed-dotted line a semi-elliptic shape and the dashed line a triangular
shape.

error, and the pdf’s are nearly on top of each other. If the wave, Coriolis, and pres-
sure gradient forces are excluded, then the resulting pdf of the mean square error
has the smallest mean error and a relatively small variance.

5.4 Conclusion
The chapter showed data taken from one iceberg trajectory. Current, winds, and
waves were measured close to the iceberg. Even though only one iceberg trajec-
tory was studied, this section illustrated how sensitive the dynamic iceberg model
is to changes in the inputs and assumptions about the iceberg keel shape. The root
mean square error varies from 178 m to 1741 m with a mean error of 791 m. The
final distance between simulated and observed iceberg trajectories varies between
180 m to 3376 m, with a mean final error of 1447 m. This variation was achieved
without adjusting the mass or the drag coefficients of the iceberg.

By not using presumably relevant information, such as the wave, Coriolis or
pressure gradient forces, the mean root mean square error and the mean final error
can be reduced to 641 m and 1080 m. Even though the current, wind, and waves
were measured directly at the iceberg position, it is difficult to hindcast the iceberg
trajectory with the measured forces. Furthermore, it is not necessarily advanta-
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Figure 5.8: Iceberg trajectories for different iceberg keel assumptions with SADCP data
and wind measured by the wave glider.

geous to include more forces to the dynamic model, since they do not consistently
improve the hindcast result. Moreover, a simple kinematic model, which consid-
ers only the mean current velocity and a 2 % deflection by the wind, produces a
similar result as the best dynamic model (Fig. 5.10). The root mean square error
of the kinematic model is 140 m and the final error 187 m.

While this may be an exception in this particular case, it shows that variance
in the drift trajectories of the dynamic model is significant, because of the many
uncertain parameters in the model. In addition, it is not straightforward to include
detailed information, for example, about the iceberg shape in the quite simplified
dynamic iceberg model. In contrast, a more detailed and complicated dynamic
model increases the number of parameters and, most likely as a consequence, the
variance of the model.
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Chapter 6

The Ancillary Current Forecast
Scheme

This chapter is based on PAPER A (Andersson et al. 2016a) and introduces the
ancillary current forecast scheme. A property of this forecast scheme is that it
uses the dynamic iceberg model while adapting some of its parameters based on
past observations with a moving horizon estimator. Since it combines the dynamic
iceberg model with statistical methods, it is referred to as a Hybrid Iceberg Drift
Forecast Algorithm.

6.1 Introduction
This chapter focuses on improving short-term iceberg drift predictions with the
help of parameter estimation techniques. Criteria are introduced on how to choose
which parameters to update in processes with large uncertainties. With the help of
those criteria, different options based on the dynamic iceberg model are discussed.
Thereafter, a moving horizon estimator (MHE) is implemented, which estimates
the chosen parameters. A case study on real iceberg trajectories measured offshore
Newfoundland in spring 2015 illustrates how the proposed estimation scheme can
improve short-term iceberg drift predictions.

6.2 The Dynamic Iceberg Drift Model
The dynamic iceberg drift model was presented in Section 2.3. A small adap-

tation of the mass and cross-sectional area was done in the original article (Ander-
sson et al. 2016a). The Cross sectional areas are calculated with the help of L0 and
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W0, the mass is given by

m = L0W0(CHw Hw + CHa Ha)ρIce . (6.1)

The difference between (2.9) and (6.1) is that both sail and keel become indepen-
dent shape factors CHw and CHa . The iceberg is a cuboid if the shape coefficients
are 1.0, whereas the shape coefficients are 0.5 for a triangular shape. Consequently,
the iceberg shape can be adapted with the shape coefficients to represent the ob-
served iceberg more accurately. Nevertheless, accurate iceberg shapes and masses
are not very critical for the later proposed estimation-forecast scheme.

6.3 Choice of Estimated Parameters

6.3.1 Design Criteria

An important task in parameter estimation is to analyse the model structure such
to find physically reasonable parameters which describe the measured output ade-
quately. The main tool for this is sensitivity analysis (Brun et al. 2001).

The parameters to estimate in the iceberg model should fulfil three important
criteria:

1. The model output should be sensitive to changes in the parameters.

2. The estimated parameters should be independent from each other.

3. The parameters should be a physically reasonable representation of the pro-
cess noise (process noise in this context means non-deterministic inputs,
such as modeling errors and external disturbances (Walter and Pronzato
1997)).

The first criterion ensures that errors in the output can easily be adjusted by changes
in the parameters. The second criterion guarantees that the problem is not ill-
conditioned, such that changes in one parameter cannot be compensated by ap-
propriate changes in other parameters. The third criterion ensures that the chosen
parameters have a reasonable physical interpretation, e.g., that the mechanistic
model is not degraded to a black-box model, which just describes the input-output
behaviour of the process.

6.3.2 Design Criteria Applied to the Iceberg Model

The sensitivity of the model to changes in the environmental forces and to changes
in iceberg parameters was investigated earlier by among others Smith and Banke
(1983), Kubat et al. (2005), Allison et al. (2014). The results depend on the en-
vironmental conditions. However, the current was usually identified as the most
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influential force on the iceberg. The investigated parameters were air drag coeffi-
cient Ca, the water drag coefficient Cw , the wave drift radiation coefficient Cr , the
geometric parameters m, L, Aa and Ac as well as the input variables, current, wind
and waves.

Smith (1993) and Turnbull et al. (2015) used the air drag and water drag coeffi-
cients to tune the iceberg model. Both coefficients were selected in a way that the
error between observed and hindcasted iceberg trajectories was minimized. Turn-
bull et al. (2015) interpreted the results further and categorized based on the opti-
mal drag coefficients whether the icebergs were primarily current or wind-driven.
With limited success, Smith (1993) calculated the drag coefficients for one part of
the iceberg trajectory and applied those to the second part in order to improve the
forecast. The given explanation for the limited success was that the iceberg veloc-
ity closely follows the mean water current. For this reason, the water drag force is
usually small and therefore the water drag coefficient has limited influence on the
iceberg drift. Regarding the air drag coefficient, the explanation was that the wind
force is typically of less importance which reflects on the air drag coefficient.

Keghouche (2010) updated both drag coefficients in an ensemble Kalman filter
to identify periods when the forcing field was inaccurate. However, the previously
introduced criteria are violated if those parameters are chosen to tune the iceberg
model. This can be revealed in a simple example.

The air drag force in (2.5) can be written as

fa =
1

2
ρaCaAa |va |

*..
,

vna
vea
0

+//
-
, (6.2)

where V n
a and V e

a are the wind velocities in north-south and east-west direction.
The iceberg velocity is neglected. The (6.2) can be rewritten as

Fa =
1

2
ρaCaAa |va |

2 *..
,

cos(φa)
sin(φa)

0

+//
-
, (6.3)

where φa is the wind direction. This simple conversion shows that the air drag co-
efficient Ca influences only the first part of (6.3) (until brackets) while the second
part (vector in brackets) cannot be influenced. Consequently, the air drag coeffi-
cient Ca accounts for errors in the absolute wind velocity, sail cross section and
air density, but not for errors within the wind direction. Moreover, it should be
noted that errors in the absolute velocity are accounted quadratically while errors
in the cross section area are accounted linearly. Similar observations can be made
for the current, where only the relative velocity between current and iceberg can
be corrected, but not directional errors. The change of a single parameter cannot
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influence the directions. Therefore, both have to be changed to account for di-
rectional error. Consequently, the parameters depend on each other. Moreover, a
physical interpretation of the estimated parameters is not possible and should be
avoided, since wind and drag coefficients have to be adjusted in the same time to
correct, for example, directional errors in the current force.

6.3.3 The Ancillary Current

The design discussed above can be improved by decomposing the drag coefficient.
Considering the current, which has been identified to be the most important driving
force, the water drag force can be rewritten as

fc =
1

2
ρc Ac |vmc − vi |

*..
,

Cn
w (vnmc − vni )

Ce
w (vemc − vei )

0

+//
-
, (6.4)

where Cn
w and Ce

w are the decomposed water drag coefficients and Vmc is the mean
current in the water column over the iceberg keel. A second option is to correct
the current directly with two current coefficients Ce∗

w and Cn∗
w

fc =
1

2
ρc Ac |vmc − vi |

*..
,

(Cn∗
w vnmc − vni )

(Ce∗
w vemc − vei )

0

+//
-
. (6.5)

However, both designs violate the first design criterion. In the first case, the model
becomes insensitive to changes of the water drag coefficients if the iceberg velocity
is close to the current velocity. In the second case, the model becomes insensitive
and even singularities occur if the current velocity in one of the directions becomes
zero. An example of such an estimation process is shown in Fig. 6.1. Large values
and short time excitations of the current coefficients in situations of low current
velocities in one or both directions make this design not suitable for use in short-
term forecasts.

In order to avoid singularities and to be able to account for large uncertainties,
this work proposes to estimate instead an artificial current that we denote ancillary
current. This ancillary current is added to the measured or predicted current in the
model to correct for the observed iceberg drift trajectory. The water drag force is
rewritten as

fc =
1

2
ρc AcCw |(vmc + υ) − vi |

*..
,

(vnmc + υ
n) − vni

(vemc + υ
e) − vei

0

+//
-
, (6.6)

where υ is the ancillary current. The ancillary current can correct directional and
absolute velocity errors in the current force. The process noise, like uncertainties
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Figure 6.1: Estimation of current coefficients.

(a) SVP. (b) SLDMB.

Figure 6.2: The MetOcean SVP and SLDMB buoys.

in environmental driving forces and geometrical uncertainties, are collected and
corrected with the ancillary current. Since the current has the largest uncertainty,
it is beneficial to correct the current with the estimated variable. Thus, this new
design fulfils all three criteria.

6.4 Data Acquisition
The iceberg trajectories used in this case study were measured during the Offshore
Newfoundland Research Expedition conducted by ArcticNet (ArcticNet 2004-2018)
and Statoil in spring 2015. The two icebergs discussed in this chapter are Iceberg
1 and Iceberg 2 (Sec. 4). Only the first 60 h of the drift trajectory is studied in
this Chapter. The limiting factor here is the available current data from the current
drifter deployed close to the icebergs.

Two current drifters deployed close to each icebergs that collected current in-
formation, one MetOcean Iridium surface velocity program buoy (SVP) with a
15 m drogue and one MetOcean Iridium self-locating data marking buoy (SLDMB),
which measured the surface current (Fig. 6.2). Position updates from the SVP were
received with an hourly frequency, while SLDMB position updates were received
with a ten minutes frequency. Both measurements were interpolated in simulations
to fit the time stamp of the position data of the iceberg.

Both current drifters measured similar current velocities at Iceberg 1. At Ice-
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Figure 6.3: Predicted and measured wind velocity in both directions. The location of
Bonavista is shown in Fig. 4.3.

berg 2, the data of the SVP drifter was not received and consequently only the
surface current data of the SLDMB drifter is available for simulations. Thus, dur-
ing simulations and estimations for Iceberg 1, the 15 m current information from
the SVP drifter is used, and for Iceberg 2 the surface current information from
the SLDMB drifter is used. Since deeper currents were not measured, the overall
current force on the iceberg keel is uncertain. Wind and wave information was ob-
tained by a weather forecast provided twice a day by Amec Foster Wheeler. The
forecast time step was 6 h. In order to have values in between the time steps the
wind and wave information was interpolated to fit the data points of the iceberg
position. The weather forecast location and initial iceberg positions are around
110–125 km apart. Additional wind information was received by two weather sta-
tions located in Bonavista and Grates Cove on Newfoundland. They are about
30–60 km apart from the iceberg positions. Predicted wind at the forecast location
and measured wind at the two weather stations are similar with respect to velocity
and direction (Fig. 6.3).

6.5 Simulation and Estimation Set-up
The shape coefficients CHw and CHa are chosen to be 0.6 and 0.15 for Iceberg 1
and 0.8 and 0.8 for Iceberg 2. The dry-dock sail shape factor is taken from Rudkin
et al. (2005), whereas the others are guessed based on the geometry of the iceberg
and the assumed ratio between keel and sail cross-section. Other parameter values
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can be found in Section 2.3.
During the observation of the icebergs, the significant wave height did not ex-

ceed 1.5 m and was most of the time less than 0.5 m. Such small waves can be
neglected, since they have only a minor influence on the iceberg drift. Conse-
quently, the wave radiation force (2.7) is removed from the dynamic iceberg drift
model (2.3).

The states x of the dynamic system are the iceberg position and iceberg veloc-
ity. In addition, the state vector is augmented with the ancillary current. Thus, the
estimation model has six states and four inputs u, which are the current and wind
velocity. The measured output y is the iceberg position.

The initial iceberg velocity is not known and assumed zero. Consequently, the
initial state for the MHE is

x0 = [0, 0, 0, 0, 0, 0]T , (6.7)

where the first two states represent the iceberg position, the next two the iceberg
velocity and the last two the ancillary current. The iceberg position is given in m,
whereas the iceberg velocity and ancillary current is given in m s−1. The iceberg
certainly moved when the GPS was deployed. However, the error introduced by the
assumption of zero initial iceberg velocity is small for simulations longer than 1–
2 h. In addition, the error is corrected by the estimator. The initial error covariance
is chosen to be

P0 = diag(1, 1, 1, 1)2, (6.8)

the measurement noise covariance is

R = diag(20, 20)2, (6.9)

and the process noise covariance is

Q = diag(3 · 10−6, 3 · 10−6, 6 · 10−6, 6 · 10−6, 6 · 10−5, 6 · 10−5)2. (6.10)

The covariances are chosen in a way such that model uncertainties are largely cor-
rected with changes in the ancillary current. The states of the process are estimated
for the first 60 h after the surface drifters were deployed. If not stated otherwise,
the horizon length of the MHE is chosen to be 24 h. The MHE performance in
the iceberg drift case shows little sensitivity to changes in the horizon size. Nev-
ertheless, slight improvements can be detected with increasing horizon size. The
MHE problem is implemented in the Python programming language and solved
by using the open-source software tool CASADI (Andersson et al. 2012). The
software package IPOPT is used as solver for the nonlinear program (Wächter and
Biegler 2006). The computational burden is not a limitation, as the optimization
can be solved on a personal computer in less than a second for the proposed hori-
zon length.
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Figure 6.4: GPS measured (green) and simulated (red) Iceberg 1 trajectories as well as
SLDMB and SVP drifter trajectories. Every 6 h a mark is set in the measured and simu-
lated trajectories. The grey lines show the simulated iceberg trajectories when wind mea-
sured by the weather stations is used.

6.6 Simulation Study
The iceberg trajectories are simulated in the simulation study by using the ice-
berg drift model with constant parameters. The icebergs initial position is the first
measured GPS position and the wind input is taken from the weather forecast.

6.6.1 Iceberg 1

The simulated Iceberg 1 diverges immediately from the measured iceberg trajec-
tory (Fig. 6.4). The real iceberg drifts first towards the west, it follows for a
period of 25 h approximately the underwater contour lines, before it changes drift
direction and drifts towards south-east. The simulated iceberg drifts first south-
westwards, makes a half circle to the east, and drifts afterward the westwards,
towards the coastline. The coastline does not represent an active constraint in
the simulation model; therefore, it is possible that simulated iceberg trajectories
drift on land regions. This can be avoided by grounding the iceberg and stopping
the simulation when the iceberg enters shallow water regions close to the coast-
line. Both measured current and predicted winds are directed approximately to the
west. Consequently, those forces cannot explain the real iceberg trajectory. The
influence of the wind force within the observation horizon is weak because the
wind velocity is relatively small. The simulated iceberg trajectories change only
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Figure 6.5: GPS measured (green) and with SLDMB current simulated (red) Iceberg 2
trajectories and SLDMB drifter trajectories. Every 6 h a mark is set in the measured and
simulated trajectories. The grey lines show the simulated iceberg trajectories when wind
measured by the weather stations is used.

slightly if wind measured at the weather stations is used (Fig. 6.4: grey lines).

6.6.2 Iceberg 2

The simulated iceberg trajectories of Iceberg 2 also diverge immediately from the
measured iceberg trajectory (Fig. 6.5). The divergence is even stronger than for
Iceberg 1. The real iceberg drifts westward, while the simulated iceberg trajec-
tory drifts southwards the first 6 h and south-eastwards the nest 24 h. Thereafter,
it makes a turn and drifts westwards. The mean velocity of the simulated iceberg
is twice as high as of the observed iceberg. Consequently, the overall trajectory of
the simulated iceberg is twice as long as the one of the real iceberg. The use of
measured winds from the weather stations changes only insignificantly the simu-
lated iceberg trajectory compared to the iceberg trajectory where forecasted wind
is used (Fig. 6.5: grey lines).

The simulated trajectory of Iceberg 2 can be improved by the current mea-
surements of the SVP current drifter deployed at Iceberg 1 (Fig. 6.6). The same
observation can be obtained if the data of the SLDMB current drifter deployed at
Iceberg 1 is used. Iceberg 1 and 2 are about 9 km apart from each other at the
beginning of the observations. It is, therefore, reasonable to assume that currents
(15 m or surface current) provide a better proxy for current in the water column at
Iceberg 2 than the surface current measured at Iceberg 2. In addition, the distance
between SVP drifter and Iceberg 2 shortly after initialization is smaller than the
distance between SLDMB drifter deployed at Iceberg 2 and Iceberg 2. In general,
it an be expected that the current drifter closes to the iceberg provides the best
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Figure 6.6: GPS measured (green) and with SV P current simulated (red) Iceberg 2 tra-
jectories as well as SLDMB and SVP drifter trajectories. Every 6 h a mark is set in the
measured and simulated trajectories. Grey lines show simulated iceberg trajectories if
wind measured by the weather stations is used.

estimate of the current at the iceberg position. The overall direction of the iceberg
trajectory is simulated correctly. However, there exists some discrepancy in time
and place between observed and simulated iceberg trajectory. The simulated ice-
berg trajectory describes a half circle at the beginning of the simulation. Such a
behavior cannot be observed for the real trajectory. As a consequence, the simu-
lated iceberg trajectory has a delay of about 6 h to the observed trajectory. At the
end of the observation horizon, a higher simulated iceberg velocity due to upcom-
ing wind balances the delay. For this reason, the simulated and observed iceberg
trajectories are only 860 m apart from each other after 54 h.

6.6.3 Discussion

The simulation study shows that the overall influence of wind measurements is
small. This is a consequence of strong similarities between wind measurements
and forecast, but surely also due to relatively weak winds during the observations.
In contrast, the influence of the measured current is strong in the simulations. The
measured surface or near-surface currents at the two icebergs differ significantly,
even though the initial positions are close to each other. The simulations of the
two icebergs with current measured at both icebergs do not correlate well with the
observed iceberg trajectories. However, the measured currents are surface or near-
surface currents, which are mainly wind driven and do not represent the whole
current in the water column of the iceberg keel. Hence, it can be concluded that
for iceberg drift simulations only surface current information is not enough and
may even lead to erroneous forecasts. An improvement in the simulated trajecto-
ries of Iceberg 2 can be observed if the currents measured at Iceberg 1 are used
in simulations. Consequently, it can be assumed that the current measured at Ice-
berg 1 is a better overall representation of the current at Iceberg 2 than the surface
current measured at Iceberg 2. In order to further improve simulation and predic-
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Figure 6.7: Estimation and forecast procedure with MHE.

tion with the given information it is necessary to update/adjust parameters in the
iceberg model.

6.7 Estimation Study
If the measured and predicted forcing does not agree with the actual iceberg trajec-
tory, it is important to use the available information to correct the forcing within
the operational iceberg model to improve the simulation and forecast results. One
may say that the ideal drifter to estimate the forcing on the iceberg is the iceberg
itself. The estimation-forecast procedure is envisioned as follows (Fig. 6.7): In
an MHE smoothing scheme, the measurements are used to estimate the state vec-
tor of the iceberg model. The state vector contains iceberg position, velocity and
ancillary current. This state vector x0 is given as initial condition to the forecast,
which performs a forward simulation of the iceberg model. During the forecast the
position and velocity of the iceberg changes with time, while the ancillary current
is constant. This procedure is repeated as new measurements are received.

In the analysis it is assumed that the surface current measurements are avail-
able during the forecast. Current measurements are typically unavailable for op-
erational iceberg drift forecasts, therefore current forecasts are used more often
instead. If the time-varying ancillary current were known a priori, it would be pos-
sible to predict almost perfectly the iceberg drift trajectory. However, the ancillary
current is not known a priori, but it is estimated as new measurements are received.

6.7.1 Forecast Performance Indices

In order to quantify the performance of the forecast at a specific time, the square
root of mean squared distance between predicted X̃ and measured X̄ iceberg tra-
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jectory is calculated

ζN (t) =

√√√
1

N

N∑
i=1

X̃(t + i) − X̄(t + i)
2

2
, (6.11)

where N is the length of the forecast period and t is the initial time of the forecast.
The performance index (PI) for the whole observation horizon is the root mean
square of ζN (6.11) with the same forecast horizon N

PI (N ) =

√√√
1

M

M∑
i=1

ζN (ti)2, (6.12)

where M is the number of forecasts performed and ti is the initial time of the fore-
cast.

A discrepancy measurement between modelled and observed iceberg trajecto-
ries is the absolute velocity of the ancillary current. An overall discrepancy index
(DI) is the root mean square of all calculated absolute velocities of ancillary cur-
rents

DI (N ) =

√√√
1

M

M∑
i=1

‖υ(ti)‖22. (6.13)

The most recently estimated ancillary current is used as ancillary current vector
over the whole forecast horizon. The assumption is, therefore, that the ancillary
current does not change during the prediction. As new measurements of the ice-
berg trajectory are received, the estimated ancillary current is updated and a new
forecast is initialized. The overall forecast error is caused by discrepancy in the
forecasted wind and current inputs as well as other model errors. However, the
ancillary current gives a numerical value to the discrepancy in the iceberg model.
Therefore, the difference between a new estimated (actual) ancillary current υ̂ and
the previously assumed (forecasted) ancillary current ῡ indicates the magnitude of
the prediction error. This observation leads directly to the ancillary current per-
formance index (API), which is strongly correlated with the average distance ζN
(6.11)

API (t) =

√√√
1

N

N∑
i=1

‖ῡ(t + i) − υ̂(t + i)‖22. (6.14)

While the average distance ζN gives the outcome of the forecast, the API provides
more an explanation for the error of the prediction. The advantage of evaluating
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Figure 6.8: The ancillary current calculated with an MHE smoothing scheme (coloured)
and the measured SVP current (grey) for Iceberg 1.

the forecast performance with the API, is that the average distance ζN can be di-
rectly influenced by the assumed ancillary current vector ῡ. The assumed ancillary
current ῡ is an input to the forecast model and it is assumed constant during the
forecast in this paper. However, other options like linearly decreasing or clockwise
rotating ancillary currents could be used for forecasting iceberg trajectories. The
API represents a direct measure to evaluate those options.

The root mean square of all APIs is the ancillary current performance predic-
tion index (APPI)

APPI (N ) =

√√√
1

M

M∑
i=1

API (tm)2. (6.15)

The APPI is similar to the PI and gives an overall reason for the discrepancy in
the forecasts.

6.7.2 Iceberg 1

Estimation of Ancillary Current

The ancillary current for Iceberg 1 is shown in Fig. 6.8. Small, consistently chang-
ing oscillations can be observed within the estimated ancillary current. Significant
direction changes are detected around hour 15 and 38. An almost constant ancil-
lary current is observed from the hours 20 to 35. If the ancillary current evolution
was known a priori and used in simulation, the iceberg trajectory of Iceberg 1
could be almost perfectly simulated (Fig. 6.9). The difference between observed
and simulated iceberg trajectory can be further reduced by tuning (selecting other
process and measurement noise parameters). However, doing this may influence
numerical conditioning of the MHE.

Forecast of Iceberg Trajectory with the Help of the Estimated Ancillary Current

In Fig. 6.10, several 12 h iceberg drift predictions with and without the use of
the ancillary current are illustrated. The iceberg trajectories predicted with calcu-



62 The Ancillary Current Forecast Scheme

−40 −30 −20 −10 0
−30

−20

−10

0

10

West - east direction [km]

N
or

th
-s

ou
th

di
re

ct
io

n
[k
m

]

Simulated

Real

Model with a priori ancillary current

Figure 6.9: GPS measured (green) and simulated iceberg trajectory without ancillary cur-
rent (red) as well as with ancillary current known a priori (blue) of Iceberg 1.

lated ancillary current (indicated as closed-loop) are compared with the trajecto-
ries forecasted without using the ancillary current (indicated as open-loop, since
no feedback from estimates is used). The terminology open-loop and closed-loop
is frequently used in process system engineering for control loops with feedback
(closed-loop) and control loops without feedback (open-loop).

In open-loop, the iceberg drift model is reinitialized at the last measured iceberg
position. The results indicate higher prediction performance by using the ancillary
current. The improvement is especially substantial in the first few hours (short
time horizons). For forecasts over longer horizons, the assumption of constant an-
cillary current over the forecast horizon is less correct and prediction performance
decreases. However, significant improvements are noted if the ancillary current is
almost constant over the forecast horizon (hour 20–35).

It should be emphasized that the use of ancillary current allows the prediction
of wind induced direction changes, as it can be seen at the end of the observation
horizon. Strong winds cause a clockwise loop, which is approximately predicted
by the ancillary current set-up (last forecasted trajectory of closed-loop in Fig.
6.10).

The square root of mean squared distance between predicted and measured
iceberg trajectory calculated with (6.11) decreases significantly in the closed-loop
case (Fig. 6.11). Closed-loop predictions show considerably better performance
compared to open-loop prediction in the short time forecasts (∼ 1 h). The predic-
tion error in closed-loop is reduced by 95 %. A reason for the significant improve-
ment is the almost constant ancillary current within a short time period. Conse-
quently, the correction, performed by the ancillary current, remains almost con-
stant and an almost correct current force is applied during the forecast. If the an-
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Figure 6.10: Closed-loop (blue) and open-loop (orange) 12 h predictions in 6 h intervals
of Iceberg 1. The reference trajectories are the simulated iceberg trajectory (dotted) and
the measured iceberg trajectory (solid). The grey line shows the measured iceberg drift for
the first 12 h after the 60 h observation horizon.

cillary current is used for longer time predictions, the square root of mean squared
distance (6.11) can be larger in the closed-loop case than in the open-loop case (∼
hour 12 in Fig. 6.11(b)). Those periods correspond to periods of strong changes
in estimated ancillary current. Hence, the offset between predicted input forces
and real forces, which is adapted with the help of ancillary current, changes. Nev-
ertheless, the overall averaged prediction performance improves significantly in
closed-loop. In addition, the predicted direction of the iceberg drift is correct at
the beginning of each forecast.

In order to obtain the performance of the forecast for a specific horizon, the
PIs (6.12) are calculated for different prediction horizons. In closed-loop, the PI
reduces about 80 % in a six-hour forecast and about 70 % in a twelve-hour fore-
cast. Even in a 24 h-forecast, the PI is reduced about 50 % (Table 6.1).

If improved information about the input forces is used, as for example the
measured wind at the weather stations, the forecast will in general benefit from it.
This applies especially for longer forecasts. For instance, in closed-loop the PI is
for a 12 h forecast with forecasted wind 3315 m. This can be improved to 3060 m

Table 6.1: The PI (6.12) of Iceberg 1 for different prediction horizons N.

Horizon N [h] 1 3 6 12 24

Open-loop [m] 809 2399 4819 9799 20020

Closed-loop [m] 40 308 1026 3315 9723
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Figure 6.11: The square root of mean squared distance ζN (6.11) of closed-loop and
open-loop case of Iceberg 1 are compared for different forecast horizons N . The ancillary
current was calculated with a MHE and an EKF.

by using only measured wind data (during estimation and forecast). However, the
measured wind is not available during forecasts. If, instead, forecasted wind is
used during forecast and measured wind during estimation, the PI decreases to
3643 m. The differences in this example are relative small since the predicted and
measured winds are similar. A change of input information between estimation
and forecast step is not recommended, since it is detrimental to the forecast quality
when estimating the ancillary current. The ancillary current is calculated for a spe-
cific combination of input forces to the model and it corrects for this input set-up.
A change of the input set-up in the forecast will change the process noise, which
is approximately represented by the ancillary current.
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Figure 6.12: The ancillary current calculated with an MHE smoothing scheme and the
measured SLDMB current for Iceberg 2.

6.7.3 Iceberg 2

Estimation of Ancillary Current

Fig. 6.12 shows the ancillary current for Iceberg 2 when the SLDMB surface cur-
rent measurements at Iceberg 2 are used. The northern component experiences a
significant change around hour 42. The eastern component experiences two small
changes around hour 10 and 25 and a large change, similar to Iceberg 1, around
hour 35. As already stated for Iceberg 1, it is expected that the forecast will espe-
cially improve in areas outside of large changes of ancillary current.

Forecast of Iceberg Trajectory with the Help of Estimated Ancillary Current

Fig. 6.13 displays a 12 h prediction in closed-loop and open-loop every 6 h. The
closed-loop set-up prevents the predicted iceberg trajectories from having wrong
directions at the beginning of the prediction, as it happens in the open-loop case.
However, it is not guaranteed to be correct over a longer forecast horizon. It can
happen that after already a relative short period the applied ancillary current is not
correct any more and the predicted trajectory diverges from the observed one. For
longer forecast horizons, this can cause a lower forecast accuracy with ancillary
current than without (Fig. 6.14(c): Hour 42). However, those situations are not
common. Hence, the PI (6.12) of the forecast with ancillary current is superior to
the one without (Tab. 6.2).

The forecast of Iceberg 2 can be significantly improved if the measured SVP
current at Iceberg 1 are used instead of the measured SLDMB surface current at
Iceberg 2, as discussed in Section 6.6.2, cf. Fig. 6.5 and 6.6. The ancillary current
indicates well which input combination is most suitable, since it represents a factor
of discrepancy between modelled and observed iceberg trajectories. Fig. 6.15(a)
shows the ancillary current estimated for Iceberg 2 when the SVP current measure-
ments of Iceberg 1 are used. In addition, the absolute ancillary current of the SVP
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Figure 6.13: Closed-loop (blue) and open-loop (orange) 12 h prediction in 6 h intervals
of Iceberg 2. The reference trajectory is the measured iceberg trajectory (solid). The grey
line shows the measured iceberg drift for the first 12 h after the 60 h observation horizon.

case (dashed red line) and SLDMB case (solid black line) is shown in Fig. 6.15(b).
The absolute ancillary current with SVP current is most of the time lower than the
ancillary current with SLDMB current. The DI (6.13) for the case with SLDMB
current is 0.2936 m s−1 and with SVP current 0.1521 m s−1. This indicates that
the SVP current is superior to the SLDMB current for open-loop simulations of
Iceberg 2. However, the improvement in closed-loop is by far smaller than for the
open-loop case (Tab. 6.3 in comparison to Tab. 6.2). While in open-loop the PI
approximately halves for all prediction horizons, the improvements in closed-loop
for short-term forecasts are small and increase only for longer forecasts (longer
than 6 h).

Again, this observation is connected to the parameter estimation scheme pre-
sented here. It is expected that the estimated ancillary current is able to compensate
for poor quality input for short enough forecasts. Therefore, the prediction of the
iceberg trajectory with the help of the ancillary current will be in a certain range
from the real drift, which is defined by the maximum possible change of ancillary
current within the prediction horizon. This motivated the introduction of the API
(6.14). Fig. 6.16 shows the API for two forecast horizons for both considered in-
put combinations of Iceberg 2. The square root mean squared distance ζN (6.11)

Table 6.2: The PI (6.12) of Iceberg 2 for different prediction horizons N, when
SLDMB current is used in the forecasts.

Horizon N [h] 1 3 6 12 24

Open-loop [m] 606 1801 3589 7104 13801

Closed-loop [m] 36 295 1053 3678 11831
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Figure 6.14: The square root of mean squared distance ζN (6.11) between closed-loop and
open-loop case of Iceberg 2 are compared for different forecast horizons N . The ancillary
current was calculated with a MHE and an EKF, and as current input the SLDMB current
was used.

in Fig. 6.14(c) and the APISLDMB in Fig. 6.16(b) have a similar evolution, since
both values are strongly connected to each other. The API for a 1 h forecast (Fig.
6.16(a)) shows strong oscillations and sudden changes. Both APIs are comparable
in magnitude. The APPI for the one hour forecast is 0.0469 m/s with SLDMB cur-
rent and 0.0462 m/s with SVP current. Both values are similar as expected, since
the PI is also very similar (Tab. 6.2 and 6.3). However, for longer predictions the
APPI is significant lower for the SVP case (12 h: SVP = 0.1298 m s−1, SLDMB =
0.2144 m s−1), which indicates in average a better performance of the SVP case.

However, there are periods where the SLDMB case is superior to the SVP case.
Those periods correlate to periods where the API of the SLDMB case is smaller
than the one of the SVP case.
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(a) The ancillary current when SVP current at Iceberg 1 is used. The grey lines show the measured
current.
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(b) Absolute ancillary current of SVP case (dashed red) and SLDMB case (solid black).

Figure 6.15: Ancillary current calculated with a MHE smoothing scheme for Iceberg 2
with SVP current.

6.7.4 Comparison between chosen Design and Estimation of Air and Water
Drag Coefficient

In order to validate the discussion in Section 6.3, air and water drag coefficients are
estimated with the MHE and EKF instead of the ancillary current. The coefficients
are constrained between [0.01, 2.5], which are physically reasonable values for the
coefficients (Turnbull et al. 2015).

Iceberg 1

The value of the estimated drag coefficients are both at the lower boundary of 0.01
for most of the time (Fig. 6.17). The performance of the forecast decreases sig-
nificantly, even though some improvement compared to the open-loop case can be
observed (Tab. 6.4 and Fig. 6.18). The performance decrease is explained by a
low sensitivity of the model output to changes of the water and air drag coefficients

Table 6.3: The PI (6.12) of Iceberg 2 for different prediction horizons N, when
SV P current is used in the forecasts.

Horizon N [h] 1 3 6 12 24

Open-loop [m] 314 955 2042 4818 10521

Closed-loop [m] 40 302 949 2897 7001
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Figure 6.16: The API (6.14) for prediction of trajectory of Iceberg 2 with SLDMB current
and SVP current for different prediction horizons.
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Figure 6.17: Estimated drag coefficients for Iceberg 1.

(Sec. 6.3.2). Without constraints on the drag coefficients, a similar performance as
with the ancillary current can be achieved in a 1 h forecast. However, the perfor-
mance decreases significantly for longer prediction horizons. In addition, negative
values for the drag coefficients can be obtained, which is non-physical.

Iceberg 2

Fig. 6.19 shows the MHE and EKF results for the drag coefficients of Iceberg
2 when the SVP current of Iceberg 1 is used as current input. Constraints can
be easier and more directly included in the MHE than in the EKF calculations.
Furthermore, when estimating drag coefficients the estimation model is more non-
linear. Nonlinearities can be better handled by the MHE than by the EKF. For
these reasons, the two estimators have larger differences when drag coefficients
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Figure 6.18: Twelve hour forecasts with estimated drag coefficients (blue) and open-loop
(orange). Reference trajectory is the measured iceberg trajectory (solid).

are estimated than in the case when ancillary currents are estimated.
During the 60 h observation, the average values of the MHE calculated air and
water drag coefficients are Ca = 0.41 and Cw = 0.20, while the EKF calculates
average values of Ca = 0.48 and Cw = 0.51. The larger difference between both
estimators in water drag is also caused by larger nonlinearities of the water drag
force compared to the air drag force.

Fig. 6.20 shows the drag coefficients for Iceberg 2 where the SLDMB current
of Iceberg 2 is used. The average air drag is Ca = 1.19 and the average water drag
is Cw = 0.05. The difference between the calculated drag coefficients with SVP
current (Fig. 6.19) and with SLDMB current (Fig. 6.20) is large. However, the
interpretation of the estimated drag coefficients is difficult. They do not reflect a
specific characteristic of the iceberg itself but of the used input forces. The air drag
coefficient is on the upper boundary from hour 16 to hour 38, while the water drag
coefficient is small. This may indicate that during this period the wind force is

Table 6.4: The PI (6.12) in 1, 6 and 12 h forecast with estimated drag coefficients.

Horizon [h] 1 6 12

PI [m] 305 3013 7040

Reference (Tab. 6.1)

PI - Open-loop [m] 809 4819 9799

PI - Closed-loop [m] 40 1026 3315
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Figure 6.19: Estimated drag coefficients using MHE and EKF for Iceberg 2 with SVP
current.
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Figure 6.20: Estimated drag coefficients for Iceberg 2 with SLDMB current.

more strongly prioritised by the prediction scheme to explain the iceberg motion.
Nonetheless, it cannot be concluded that the iceberg is mainly wind-driven, since
the overall wind force on the iceberg is still small. Instead, it can be deduced that
the iceberg is current-driven, but the current input is wrong. As a consequence, it
is beneficial for the optimizer to reduce this wrong force and amplify another to
reduce the error.

6.8 Discussion
In the estimation study, the ancillary current is estimated for two icebergs. The
square root of mean squared distance ζN , represented by the PI, can be reduced
by using the ancillary current for both icebergs compared to the open-loop case.
The ancillary current allows increasing significantly the accuracy of the prediction
of the iceberg trajectory in short forecasts. Moreover, improvements for longer
forecasts can also be observed. However, it should be emphasised that the open-
loop case using only the near surface currents is a low standard against which
to evaluate the closed-loop model. Measured current profiles or current forecasts
from ocean models, the latter is often available during offshore operations, would
probably improve the quality of the used input information, and may reduce the
improvements offered by the closed-loop model.
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It is illustrated that improved input information will ultimately lead to an im-
proved forecast. However, one should use consistent (the same type of) inputs in
the estimation and forecast process, since the estimated ancillary current corrects
errors in the inputs that are used in the estimation process. Furthermore, it is il-
lustrated how the ancillary current can be used to evaluate different input sources.
For example, if two different wind forecasts are available the one with the smallest
absolute ancillary current represents best the real wind situation at the iceberg and
will most probably also generate the best open-loop forecast. However, this cannot
be guaranteed over the whole forecast horizon.

The ancillary current can be a good tool to compare different current inputs.
Furthermore, the ancillary current may be a good starting point for investigating
whether available current information is useful for the iceberg forecast. A large
ancillary current can indicate that the current information is error-prone and that it
should be excluded from the forecast.

The forecast quality by use of ancillary current, on the other hand, is strongly
correlated with the API and the APPI. These indices express on the one hand the
change of discrepancy between simulated and observed iceberg trajectory and on
the other hand they can be used to evaluate directly different options of predicted
ancillary current trajectories used in the forecast.

An important observation for the forecast with ancillary current is that the ancil-
lary current can correct the overall discrepancy between real iceberg and observed
iceberg caused, for example, by erroneous inputs. Such biased inputs are not only
observed when surface drifters are used but also, for example, in current forecasts
from ocean models (Eik 2009). As long as the discrepancy stays the same, the as-
sumption of constant ancillary current is correct and the forecast scheme produces
good quality forecasts.

The approach of estimating an ancillary current is compared to estimation of
drag coefficients, which has been suggested in previous works. The adjustment
of drag coefficients improved the forecast marginally and significantly less than
using ancillary current. Moreover, the physical meaning of the estimated drag
coefficients is lost and interpretations should be done with care.

6.9 Conclusion
This chapter proposed the concept of an estimated ancillary current to correct for
discrepancy between observed and simulated iceberg trajectories. It was discussed
why an added current force is superior to other possible corrections, like correction
of the drag coefficients. A case study was performed and the proposed correction
scheme was tested on two real iceberg trajectories. In both cases, the forcing on
the iceberg and the iceberg geometry were uncertain and produced large discrep-
ancies between predicted and actual iceberg trajectories in simulations. Suitable
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performance indices were introduced to give numerical values for the uncertainties
in the forcing on the iceberg, as well as for the forecast performance.

The ancillary current is a suitable variable to express the process noise and
can correct for discrepancy between simulated and observed iceberg trajectories.
The calculation of the ancillary current was performed by an optimization-based
MHE. It was shown that a similar performance can be achieved with less compli-
cated estimators, like the EKF. However, that is a trade-off between performance
and complexity.

It was shown that the iceberg forecast can be improved with the help of the an-
cillary current. The improvement was especially large in short-term forecast or in
cases when the discrepancy was almost constant. However, the improvement usu-
ally decreased for longer predictions horizons. The relative improvement by using
the ancillary current was large in the two case studies, since the input forces were
to a high degree uncertain and erroneous. It is believed that the improved forecast
performance with the proposed set-up will carry over to other cases, for example,
where measured current profiles or currents from ocean models are used.





Chapter 7

The Inertial Current Forecast
Scheme

This chapter is based on PAPER F (Andersson et al. 2016b).
An input estimation problem to distinguish between an oscillating and a non-

oscillating input is considered. This problem can be encountered in the estimation
of iceberg motions, and a moving horizon estimator is proposed as a solution. In
several simulation examples, it is shown that the moving horizon estimator can
solve the considered estimation problem and is superior to an extended Kalman
filter. In a second part of the chapter, the proposed estimation scheme is success-
fully tested on a real iceberg trajectory with the purpose to capture the forces on the
iceberg correctly and use this to forecast the iceberg drift trajectory. The forecast
results with the proposed scheme are promising since it produces small forecast
errors and avoids including highly uncertain current information, which may be a
disadvantage of the ancillary current forecast scheme (Chapter 6).

The inertial current forecast scheme is also categorised as a hybrid Iceberg
Drift Forecast Algorithm, since it combines the dynamic iceberg drift model with
statistical methods.

7.1 Introduction
This chapter deals with the problem of nonlinear input estimation to distinguish
a non-oscillating from an oscillating part of an indirectly measurable input sig-
nal. The oscillation itself can have non-constant means and changing amplitudes.
Oscillations are present in many processes, from chemical engineering to med-
ical applications and maritime processes (Miao and Seborg 1999, Taylor et al.
1998, De Young and Tang 1990). In the signal processing literature the topic

75
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Figure 7.1: Representation of the considered problem. The process is the grey box.

has received considerable attention with frequency tracking of stationary and non-
stationary signals (Bittanti and Savaresi 2000, Hajimolahoseini et al. 2012, Streit
and Barrett 1990) and oscillation characterisation (Srinivasan et al. 2007). The
correct identification of the oscillation can be vital to processes and increase the
performance of the considered applications (Huang et al. 1998). However, in many
cases, it is assumed that the oscillating signal can be directly measured. When that
is not feasible, the input of the process has to be estimated (Coreless and Tu 1998).
In a control loop, a central role is to reject periodic disturbances (Serrani 2006).
However, knowledge of oscillations can also be used to enable system prediction
(Stone et al. 1996) and, while not detected, oscillations will decrease prediction
performance.

7.2 Problem Formulation
The problem considered in this chapter is a nonlinear input estimation problem
(Fig. 7.1). The problem consists of two inputs and measured output. The input
u1 is non-oscillating and unknown. A signal is characterised as unknown if no
information about the magnitude of the signal is available. Nonetheless, informa-
tion of rate-of-change of the signal may be available, such that the rate-of-change
can be constrained. The input u2 is non-oscillating and uncertain. Uncertain in
this context means that low-frequency information about the input u2 is available,
such that the magnitude of the signal is known within some range. However, the
low-frequency information is not sufficient to successfully calculate the oscillation
z of the process, which is caused by input u2.

The internal state z has a non-zero mean as long as the forcing u2 is present.
However, as the oscillation develops without additional excitation, a zero mean is
approached. The output y1 is frequently measured with relative small measure-
ment noise. The goal of the input estimation process is to estimate u1, u2, and
the internal variable z, while especially important is the distinction between the
non-oscillating part u1 and oscillating part z.

The problem can be formulated as

ẋ = f (x, u) (7.1a)
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y = h(x, u), (7.1b)

where x are the differential states and u is the input. The internal state z can be
represented by

ż = Sz + B(u), (7.2)

where the system is stable and has complex eigenvalues. The frequency of the
oscillation is known and given by f . These kind of problems can frequently be en-
countered in maritime applications. Ocean drifters are directly influenced by wind
and indirectly via wind-induced inertial current. An example of such a process is
iceberg drift.

7.2.1 Motivation for Using the Moving Horizon Estimator

The estimation problem is difficult. Not only is input u1 not known and input u2

uncertain, but the model for the internal state z (7.2) and the overall process model
(7.1) are also uncertain. Key to a successful estimation of the considered problem
is to include as much prior knowledge as possible. The process, measurement, and
state constraints can be easily included into a moving horizon estimator (MHE)
(Kühl et al. 2011). Moreover, it provides improved state estimation and greater
robustness to both poor guesses of the initial state and tuning parameters compared
to the extended Kalman filter (EKF) (Sec. 3.1.2) (Haseltine and Rawlings 2005).
The MHE uses a time series of past data, such that the full influence of the excited
oscillation can be considered. This is believed to be an advantage to distinguish
between the oscillating and non-oscillating parts of the input. Consequently, the
MHE was chosen to approach the estimation problem (Sec. 3.1.1).

7.3 Case Study
Iceberg drift estimation is an example of the problem described in Section 7.2.
An iceberg is influenced by wind, mean current, and wind-induced inertial current
(Fig. 2.2).

Mechanistic dynamic iceberg models are based on a momentum equation to
describe the change of velocity of the iceberg mass

ma = fcor(x) + fa(u) + fc(x, u) + fp(x, u), (7.3)

where m is the iceberg mass, a is the acceleration of the iceberg and fcor, fa, fc,
and fp are the Coriolis force, the air drag force, the water drag force and pressure
gradient term, respectively (Sec. 2.3).

Inertial current represents one part of the current force that drives the iceberg
and is usually initiated by the wind. Afterward, it can be seen as a freely oscillating
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system. The most common source is an abrupt wind change, typically associated
with a passage of a weather front (De Young and Tang 1990).

The inertial current oscillation of the ocean can be approximated by using a
simple model of forces by the wind stress (Pollard and Jr. 1970) as

ż = B(u) + f k × z − cz, (7.4)

where z is the inertial oscillation velocity, B(u) is the wind excitation and c is a
decay factor. For typically observed oscillations in the ocean, the dissipation time
scale is roughly 4-6 days. The wind excitation can be expressed as

B(u) = Cdp3 |u2 |
2

(
cos φa
sin φa

)
, (7.5)

where Cd is a dimensionless drag coefficient, p3 a parameter, φa the wind direc-
tion, and u2 the wind velocity. The drag coefficient is given by Large and Pond
(1981) as

Cd = 1.2 · 10−3, 4m/s ≤ |u2 | < 11m/s (7.6a)

Cd = (0.49 + 0.065|u2 |) · 10−3, 11m/s ≤ |u2 | ≤ 25m/s, (7.6b)

where the wind speed is given at the height of 10 m.

7.3.1 Estimation Model

The model (7.4) has to be slightly adapted before using it for estimation. The
discontinuous drag coefficient (7.6) is approximated by

Cd = (1.2 + 0.065(|u2 | − 11)
1

1 + e−2( |u2 |−11) )10−3, (7.7)

which provides a sufficiently accurate approximation for our objectives. In addi-
tion, it is assumed that the lower boundary for the constant drag coefficient (7.6)
is a wind velocity of 0 m/s. Even though Yelland and Taylor (1996) showed an
increase of the drag coefficient at lower wind velocities, the overall error produced
with the assumption is negligible.

The model is augmented with the mean current u1 and wind velocity u2 to be
able to estimate the inputs. Furthermore, it is assumed that the augmented states
are constant. This assumption is not strictly true, since both mean current and wind
velocity change. However, the measurement frequency is high enough such that
the error introduced by this assumption is small.

The iceberg position (y1) is measured in the process. Furthermore, the approx-
imate magnitude of the wind velocity (u2) is given by the wind forecast, which
is given to the estimator as an additional measurement. Estimated are the iceberg
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Figure 7.2: Eigenvalues of the linearised system matrix (7.9).

position and velocity as well as the mean current (u1), the oscillating inertial cur-
rent (z), and the wind velocity (u2) (Fig. 7.1). The resulting estimation model has
10 states, which include iceberg position (x1, x2), iceberg velocity (x3, x4), mean
current (x5, x6), inertial current (x7, x8), and wind velocity (x9, x10),

ẋ1=x3, (7.8a)

ẋ2=x4, (7.8b)

ẋ3= f (x6+x8−x4)+ 1
m

[
p1
√

(x9−x3)2+(x10−x4)2 (x9−x3)+p2

√
(x5+x7−x3)2+(x6+x8−x4)2 (x5+x7−x3)

]
,

(7.8c)

ẋ4=− f (x5+x7−x3)+ 1
m

[
p1
√

(x9−x3)2+(x10−x4)2 (x10−x4)+p2

√
(x5+x7−x3)2+(x6+x8−x4)2 (x6+x8−x4)

]
,

(7.8d)

ẋ5=0, (7.8e)

ẋ6=0, (7.8f)

ẋ7=

[
1.2+0.065(

√
x29+x

2
10−11) 1

1+e
−2(
√

x2
9
+x2

10
−11)

]

10−3 (x210+x
2
9 ) cos

(
atan2(x10,x9)

)
p3− f x8−cx7,

(7.8g)

ẋ8=

[
1.2+0.065(

√
x29+x

2
10−11) 1

1+e
−2(
√

x2
9
+x2

10
−11)

]

10−3 (x210+x
2
9 ) sin

(
atan2(x10,x9)

)
p3+ f x7−cx8,

(7.8h)

ẋ9=0, (7.8i)

ẋ10=0, (7.8j)

where p1, p2, p3, m, c, and f are model parameters.
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7.3.2 Observability

The estimation model (7.8) is discretized and linearised and the observability of the
linearised system is evaluated at specific points. The linearisation is numerically
conducted by forward sensitivities and the resulting structure of the system matrix
A is

A =

*......
,

∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 0 0 ∗ 0 0 0
0 0 0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 0 0 ∗ 0
0 0 0 0 0 0 0 0 0 ∗

+//////
-

. (7.9)

The linearised system matrix has four complex eigenvalues, which are within the
unit circle and correspond to the iceberg velocity and inertial current. The eigen-
values of all other states are real and on the unit circle (Fig. 7.2).
The system is observable if wind velocity and iceberg position are measured,
which can easily be seen by inspection. With the measured iceberg position, the
iceberg velocity can be calculated. In addition, with the measured wind velocity,
the inertial current can be calculated. This information is sufficient to calculate the
mean current.

The system is not observable if only the iceberg position is measured. Further-
more, the unobservable states are marginally stable, such that detectability cannot
be guaranteed. One may argue that the presented estimation problem is situated
between these two cases of observability.

7.3.3 Estimation Setup

MHE and EKF are set up such that the driving forces, wind velocity, the assumed
slowly-varying mean current, and inertial current are properly represented in the
tuning of the estimators. For both EKF and MHE, the states were constrained to
the set

−[106,106,1,1,1,1,1,1,20,20]T ≤x≤[106,106,1,1,1,1,1,1,20,20]T . (7.10)

In the case of the EKF, the unconstrained estimates are projected onto the con-
strained surface (Simon 2010). In the case of the MHE, the process noise is further
constrained to the set

−[10−6,10−6,10−6,10−6,7·10−7,7·10−7,10−4,10−4,9·10−4,9·10−4]
T
≤

w≤[10−6,10−6,10−6,10−6,7·10−7,7·10−7,10−4,10−4,9·10−4,9·10−4]
T
,

(7.11)

which further enforces that the mean current changes slowly. The EKF cannot
easily take these constraints into account. The horizon size of the MHE is 24 h.
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Figure 7.3: Estimation result of u1 if input u2 is known and u1 constant.

The MHE and EKF problems are implemented in the Python programming lan-
guage and solved using the open-source software tool CASADI (Andersson et al.
2012). The software package IPOPT is used as a solver for the nonlinear program
(Wächter and Biegler 2006). The computational burden is not a limitation, as the
optimisation problem can be solved on a personal computer in less than a second.

7.3.4 Estimation with the Simulated Model

The first results are given based on simulated iceberg trajectories with known
forces, to see the ability of the estimation schemes to estimate the force terms.
Both dimensions are simulated and estimated, but for ease of illustration, only the
results of one dimension are presented here.

Input u1 is not known and constant while u2 is known

The estimator does not know the input u1 and initial conditions of the other states,
as well as the input u2, are known. The goal is to estimate the input u1 correctly.

Both EKF and MHE estimate u1 correctly (Fig. 7.3). However, the error pro-
duced by the MHE is smaller and is also true for the other states of the system.
Moreover, the EKF changes the value of the known input u2 considerably. Nev-
ertheless, both estimators approximate the system states correctly. Furthermore,
uncertainty in the initial condition of the internal state z does not decrease the
performance of the estimators.

Input u1 is not known and time-varying while u2 is known

The overall design stays the same. However, the input u1 is no longer constant,
but describes a ramp function.
The MHE tracks the time-varying signal, while the EKF detects the change de-

layed (Fig. 7.4). The error in variable u1 is smaller compared to example 1 (Sec.
7.3.4), and the overall performance of the MHE is superior to the one of the EKF.
For the EKF, it was only possible to find tunings, which either filters the dynam-
ics of the system strongly, such that the internal state z is not oscillating as all
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Figure 7.4: Estimation result of u1 if input u2 are known and u1 is time varying.
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Figure 7.5: Both dimensions of real input u2 (dashed) and input u2 used during estimation
(solid).

estimates have a delay, or captures the dynamics of the system while introducing
stronger oscillations into the internal state z. The former type of tuning is used in
the presented results in this example.

Input u1 is not known and constant, and u2 is uncertain

Only the approximate magnitude of input u2 is unknown. To produce a realistic
example, measured wind and forecasted wind for the same location are used (Fig.
7.5). The wind is well forecasted. However, significant errors between forecasted
and measured wind in one or both dimensions can be observed from 25 h to 40 h
and 60 h to 70 h. The measured wind is used to simulate the system, while the
forecasted wind is used during the estimation.
Both estimators show relatively poor performance in estimating u1 and u2 (Fig.

7.6). The estimators cannot distinguish well between the non-oscillating inputs u1

and u2. On the other hand, the oscillation of the state z is well captured.

Input u1 is not known and time-varying and u2 is uncertain

The same design as in the previous section (Sec. 7.3.4) is used. However, the input
u1 describes a ramp function as in Section 7.3.4.

The change in input u1 is detected by both estimators (Fig. 7.7). However, the
MHE detects the change faster, while the EKF shows a delayed reaction. Large
errors and substantial changes of the input variable u2 (Fig. 7.5) not captured
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Figure 7.6: Estimation results for input u1 and u2 as well as internal state z, if u2 is
uncertain and u1 constant.

by the forecast causes an error in the MHE estimate of u1. Nevertheless, the error
induced by the strong dynamics in u2 are recovered by the MHE. One the one hand,
the EKF is less influenced by these strong dynamics. On the other hand, the EKF
smooths the dynamics of u1 strongly. Consequently, changes in the system are
detected with delay. Furthermore, the EKF smooths the derivative of the measured
output more strongly than the MHE (Fig. 7.7), which is a disadvantage for the
forecast.

Discussion

The dynamics of the system are better captured by the MHE as tuning is central to
this problem. The advantage of the MHE, besides handling a time series of data,
is the simple incorporation of constraints on states and process noise. For this rea-
son, the MHE avoids oscillations in input u1 and at the same time, captures the
dynamics of the process well. The EKF cannot avoid oscillations in the input u1

without filtering the dynamics of the process strongly. As a result, changes in the
dynamics in u1 are detected with delays.

The estimator cannot completely correct large errors between expected and real
inputs u2. Both distribute detected motion change across all estimated states. Nev-
ertheless, the MHE detects the dynamics of the process well and can distinguish
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Figure 7.7: Estimation results for input u1 and the derivative of the output y1, if u2 is
uncertain and u1 time varying.

between oscillating and non-oscillating input signals. Moreover, less uncertain
input data u2 improves the estimate of all states.

7.3.5 Estimation with Real Data

The proposed estimation scheme, with the same setup as described in the previous
section, was applied to real iceberg drift data, and the results are presented in this
section.

Considerable uncertainty in model parameters, such as the iceberg geometry
and decay factor of the inertial current, make the problem complicated. Further-
more, the iceberg and inertial models are only approximations of the real process.

The iceberg studied in this section is Iceberg 4 (Sec. 4.1.3) specifically cover-
ing the first 72 h of the iceberg drift data after the GPS beacon deployment.

Wind information was obtained by a local weather forecast service (Amec Fos-
ter Wheeler), and the weather forecast location and initial iceberg position were
approximately 80 km apart.

The measurement frequency of the iceberg position was 1 h. To receive the
necessary samples for the wind forecast, which was supplied with a 6 h frequency,
the forecast points were interpolated. The initial state for both estimators was taken
to be x0 = [0, 0, x30, x40, 0, 0, 0, 0, u

n
10
, ue

10
]T , where the iceberg velocity [x30 , x40]T

was calculated from the first two position measurements.

Estimation

The estimated and measured iceberg velocities are shown in Fig. 7.8. Both estima-
tors well compensate existing measurement noise. As already seen in the previous
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Figure 7.8: Iceberg velocity results with MHE (blue) and EKF (red). As reference the
unfiltered measured iceberg velocity (green) is included.

section, the reaction of the EKF with the chosen tuning is delayed. Differences
between MHE and EKF can also be observed in the estimated variables of mean
current, wind velocity, and inertial current (Fig. 7.9). The first 12 h of the MHE
estimates are smoothed meaning that it shows the MHE estimate at 12 h after ini-
tialisation. As a result, only the EKF shows initial oscillation. However, without
smoothing, both estimators would show similar initial phases. This is a conse-
quence of the poor initial guess as well as the poor observability of the problem.
Consequently, time is required to converge.

The EKF smooths the mean current more strongly. However, the reaction of
the EKF compared to the MHE is delayed (Fig. 7.9(a) and Fig. 7.9(b)). Both
estimators can estimate the oscillation of the inertial current. However, the EKF
captures the dynamics of the problem with a delay, which causes a delay in the
iceberg velocity (Fig. 7.8) and inertial current estimation (Fig. 7.9(e)).
MHE follows the wind forecast, while the EKF estimate shows an offset in addi-
tion to a delay (Fig. 7.9(c) and Fig. 7.9(d)). The overall influence of the wind
estimation error is small. Nevertheless, the MHE follows the wind forecast only in
the last point of the horizon, which is the most recent wind estimate. While moving
forward, earlier points on the horizon, which are older wind estimates, are adapted
and depart from the wind forecast to excite the inertial current. As a result, oscil-
lation in the wind velocity within the whole estimation horizon is introduced. This
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Figure 7.9: Estimation results of MHE (blue) with a 24 h horizon size and EKF (red) for
different states. The forecasted wind is also shown (green).

is apparently visible in the first 12 h of the wind estimate of the MHE. The most
recent wind estimate has only a minor influence on the inertial current. Hence, it
can closely follow the measured value. However, to guarantee inertial currents,
abrupt changes in the wind velocity are necessary, which is not provided by the
interpolated forecasted wind inputs. Hence, the MHE introduces those necessary
changes of the wind velocity within the estimation horizon. Furthermore, devia-
tion from the expected oscillation is also balanced with changes of wind estimates
in the horizon, which propagate through the inertial current to the most current
estimate. The EKF cannot calculate the propagation of the wind velocity into the
inertial current over a time horizon.
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Forecast

The overall purpose of the estimation of the iceberg and ocean states is to forecast
the iceberg trajectory. During the forecast, the mean current is assumed constant,
and the inertial current is forecasted with the inertial current model. The initial
state used in the forecast is the main difference between MHE and EKF.

To quantify the performance of forecasts at a specific time, the average distance
between the predicted X̃ and measured X̄ iceberg trajectory is calculated as

ζN (t) =
1

N

N∑
i=1

‖X̃(t + i) − X̄(t + i)‖, (7.12)

where N is the length of the forecast horizon and t is the initial time of the forecast.
The performance index (PI) for the whole observation horizon is the mean of all
average distances ζN (7.12) with the same forecast horizon N

PI (N ) =
1

M

M∑
i=1

ζN (ti), (7.13)

where M is the number of forecasts performed, and ti is the initial time of the
forecast. The performance index PI (7.13) and distance ζN are defined differently
in this section compared to in Sec. 6.7.1.

In Table 7.1, the forecast results for MHE and EKF are shown. Especially
for longer forecast horizons, it is important to estimate the inertial current more
accurately, while for shorter forecast horizons (1 h to 3 h), the distinction between
mean current and inertial current is less important, since the overall current change
is small. For short forecasts, quick detection of changing dynamics are more im-
portant. Therefore, the EKF underperforms for shorter forecasts, while it performs
better for longer forecasts. If the EKF were tuned such that the dynamics are de-
tected faster, and a stronger oscillation is introduced to the mean current estimate,
the the short-term forecast performance would increase, while the longer forecast
performance (24 h) would decrease.

The proposed MHE method for iceberg drift prediction is highly successful for
example iceberg drift data. The maximum error of all forecasts in the observed
72 h is only 10.0 km for a 24 h MHE forecast, and 4.0 km for a 12 h MHE fore-
cast. For the EKF, the maximum forecast error is 12.1 km for 24 h and 6.0 km
for 12h forecasts. In Figure 7.10, several 12 h forecasts in a 6 h hour frequency
of both MHE and EKF are shown. In many instances, the MHE forecast is supe-
rior to the EKF forecast. Moreover, the MHE forecast predicts in some cases the
measured iceberg trajectory very precisely. Two especially successful forecasts are
emphasized in Fig. 7.10 (circle and rectangle scope).
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Table 7.1 PI (7.13) for different forecast horizons N of MHE with horizon size of 24 h
and EKF.

Horizon [h] 1 3 6 12 24

EKF [m] 253 450 830 1525 2654

MHE [m] 64 196 493 1096 2195
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Figure 7.10: MHE (blue) and EKF (red) 12-hour forecast in 6-hour intervals. The mea-
sured iceberg trajectory is the reference line (green).

7.4 Conclusion
A moving horizon estimator and extended Kalman filter were implemented to dis-
tinguish between an oscillating and non-oscillating input signal to use this infor-
mation for forecasting an iceberg trajectory. Significant uncertainties in the current
usually prohibit successful iceberg drift forecasts. The proposed forecast scheme
avoids using current information directly. Instead, this information is estimated
based on the observed iceberg movement and available wind information.

It is shown via simulation that the MHE with a sufficiently long horizon and
well-chosen process noise constraints can estimate the dynamics of the system cor-
rectly as well as distinguish between non-oscillating and oscillating inputs.

The EKF produced more substantial errors within the estimation process. It
was possible to tune the EKF such that it could distinguish the oscillating and non-
oscillating part of the input, but this came at the cost of delays in the detection of
the dynamics of the process. Tuning this allowed for the reduction of these delays,
but reduced the capability of the EKF to distinguish oscillating and non-oscillating
input.

It was shown that a time-varying mean current could be an advantage to dis-
tinguish between the direct influence of the wind and the mean current. Input
information about the wind is necessary to estimate the states and inputs of the
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system successfully. Otherwise, the system is not observable. The estimation re-
sult can be improved with more frequent and less uncertain wind information.

The performance of the MHE compared with the EKF was further evaluated
on real iceberg drift data. The MHE outperformed the EKF, since the dynam-
ics of the process were better captured. The overall performance of the proposed
estimation-forecast scheme for the particular iceberg data considered was excel-
lent. Furthermore, the proposed scheme does not require frequent iceberg position
measurements or current information, which can be significantly advantageous
when working with iceberg surveillance solutions based on satellite or aerial plat-
forms. Future work may investigate how parameter uncertainties in the iceberg
and inertial model affect the estimates. A further interesting question to look into
is if there exist several oscillations, such as tidal and inertial oscillations, then how
can these be simultaneously detected and distinguished.





Chapter 8

Switching Scheme between
Ancillary and Inertial Current
Forecasts

This chapter is based on PAPER G (Andersson et al. 2016c). The two forecast
schemes, the ancillary current (Sec. 6) and the inertial current estimation-forecast
scheme (Sec. 7), are briefly presented. A switching scheme and a simple crite-
rion when to switch are also proposed. The scheme switches between the two
iceberg drift forecasts and is implemented and tested on an iceberg drift trajectory
measured during a research expedition offshore Newfoundland conducted by Arc-
ticNet and Statoil. It is shown that the use of two forecast schemes and a timely
decision on which scheme to use improves the iceberg drift forecast compared to
using only one scheme.

8.1 Introduction
Chapter 6 included a proposal to correct the uncertain current input received from
current measurements or ocean models with an ancillary current. The ancillary
current is an artificial parameter introduced to the iceberg model, which is calcu-
lated with the help of the observed iceberg trajectory. We will refer to this scheme
as the ancillary current estimation-forecast scheme (ACE).

In Chapter 7, we proposed a scheme to estimate currents based on wind in-
formation and the observed iceberg trajectory. These currents are then used in a
second step to forecast the iceberg drift trajectory. We will refer to this scheme as
the inertial current estimation-forecast scheme (ICE).

In this chapter we discuss how we can improve the short-term iceberg drift pre-

91
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dictions with the help of parameter estimation techniques. We will generalise the
theory behind the ancillary current and use both schemes to forecast the iceberg
drift trajectory.

8.2 Statement of Theory and Definitions

8.2.1 Iceberg Drift Model

The mechanistic dynamic iceberg model, which describes the change of velocity
of the iceberg mass, is used

m
dvi

dt
= fcor + fa + fc + fr + fp, (8.1)

where m, vi, vcor, va, vc, vr, and vp are the iceberg mass, velocity, Coriolis force,
air drag force, water drag force, wave radiation force, and pressure gradient term,
respectively (Sec. 2.3).

8.2.2 The Ancillary Current Forecast Scheme

The ancillary current is an artificial correction term introduced into the iceberg
model (Sec. 6.3.3). The purpose of the ancillary current is to adjust the current
information from current measurements or ocean models such that it corresponds
to the observed iceberg movement.

Fig. 8.1 shows the block diagram of the proposed ancillary current setup. The
first block describes the ancillary current function, while the second block is the
iceberg model. The measured or predicted current input u is transformed by a
function g. After the transformation, the current u∗ enters the iceberg model. The
output of the model is the iceberg position y. With the iceberg model, the measured
iceberg position, and the environmental driving forces of winds and waves, it is
possible to estimate the actual current input u∗ as well as the function g.

The generalized ancillary current function can have the form

u∗ = g′(u) + υ, (8.2)

where υ is a parameter and g′ is a function, which depends on the input u. The
function g′ can have a positive or negative time delay.

The proposed ancillary current in Sec. 6.3.3 is a special subclass of the ancil-
lary current function (8.2) and has the form

u∗ = Iu + υ, (8.3)

where g′ is chosen to be I, and the parameter υ is called the ancillary current. The
parameter is updated every time a new iceberg position measurement is available.
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f (x, u∗) yu∗
g(u, a)

a

u

Figure 8.1: Representation of the ancillary current.

Afterward, the parameter is used to forecast the iceberg drift trajectory.
It is not within the scope of this chapter to discuss how to find an optimal

ancillary current function. However, we introduce two criteria, which the function
should fulfil:

• The parameters in the ancillary function (8.2) should be constant (or slightly
changing over time).

• The ancillary function should be as simple as possible.

Both criteria can be tested with a model selection method, such as the penalised
maximum likelihood criteria. The first criteria corresponds to the goodness-of-fit
for the model, which guarantees a reasonable iceberg drift forecast. The second
criteria penalise the goodness-of-fit by the degree to which it was accomplished
using a complex model.

If a simple and constant ancillary current function can be found, the input infor-
mation u is valuable. If the parameter of the ancillary current function significantly
changes over time, then the input information u is faulty. An input signal identified
as faulty should not be used for iceberg drift forecasting. After an input signal u
was identified as faulty, it is possible that after some time the input signal recovers
and the input information is classified as valuable (not faulty) again.

In the situation that the input signal is identified as faulty, several alternatives
exist to forecast the iceberg without current information. For example,

• use as the ancillary current function

u∗ = 0u + υ, (8.4)

and assume a constant υ during the forecast, or

• use the inertial current estimation-forecast scheme, which is presented in the
next section.

In this chapter we will only focus on the second alternative. A suitable criterion to
decide when the iceberg forecast should switch between the ACE and the ICE is



94 Switching Scheme between Ancillary and Inertial Current Forecasts

the ancillary current performance index (API) (6.14). The API penalizes changes
of the ancillary current parameter.

The ACE is used as long the API is within some threshold. When the API
exceeds the threshold then the ICE is used.

8.2.3 The Inertial Current Forecast Scheme

The ICE was presented in Chapter 7. The principle behind the forecast scheme is
that the total current consists of different components of tidal currents, the inertial
current, and mean current.

The tidal current is taken from tidal models, which is assumed to be reason-
able accurate. The mean and inertial currents are estimated with a moving horizon
estimator based on wind information, such as wind measurements or wind fore-
casts, and the iceberg drift trajectory. The inertial current oscillation of the ocean
is approximated using a model of forces from wind stress (Pollard and Jr. 1970,
De Young and Tang 1990)

ż = B(u) + f k × z − cz, (8.5)

where z is the inertial oscillation, B(u) is the wind excitation, f the Coriolis vector,
and c is a decay factor.

8.2.4 Moving Horizon Estimator

The moving horizon estimator (MHE) is used to estimate the ancillary current
parameter in the ACE and the currents and winds in the ICE. The MHE was intro-
duced in Sec. 3.1.1.

8.3 Data Acquisition
The iceberg trajectory used in this case study is the first 72 h of drift observations
for Iceberg 2 (Sec. 4.1.2).

Wind and wave information was obtained by a local weather forecast service
(Amec Foster Wheeler), which was supplied with a 6 h frequency. To receive the
same samples for the wind forecast as for the iceberg position samples, the wind
forecast points were interpolated. The weather forecast location and the initial ice-
berg position were approximately 80 km apart.

A MetOcean Iridium surface velocity program buoy (SVP) (Fig. 6.2) was de-
ployed close to the iceberg to collect current information. The position updates of
the buoy were received with an hourly frequency. The measurements were inter-
polated to fit the time stamp of the position data of the iceberg.
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Figure 8.2: The ancillary current calculated with an MHE.
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Figure 8.3: The API of the iceberg for different forecast horizons. The horizontal line
gives the threshold. The ancillary estimation-forecast scheme is used in the marked inter-
vals. Green areas indicate when the ACE is used, and the white areas for ICE.

8.4 Results
For both forecast schemes, ACE and ICE, the estimation is performed in a 30 min
frequency. The estimated ancillary current of the iceberg calculated with the MHE
is shown in Figure 8.2. Substantial changes of the ancillary current are detected
around 10 h to 20 h and 60 h to 72 h. In these periods, the switch between both
forecast models should be performed.

The API is calculated for a 2 h and 6 h forecast horizon, which is denoted
by API2 and API6 (Fig. 8.3). The threshold is set to 0.06 m/s. Every time the
threshold is violated for two consecutive APIs the forecast scheme is switched
between ACE and ICE. The API checks the change of the ancillary current in the
previous forecast horizons. Therefore, the value of the API at the beginning of the
observation is zero. The API2 receives the first API value after 2 h. This is an
advantage over the API6, which has a larger delay. On the other hand, the API6
evaluates more ancillary current values. Consequently, the API6 graph is smoother
and the system has less forecast model switches.

The forecast performance of the models is evaluated with the root mean square
error ζN between predicted X̃ and measured X̄ iceberg trajectory (6.11).

Figure 8.4 shows the performance of the switching scheme, the ACE, the ICE
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Figure 8.4: The root mean square error ζN (6.11) for a 12 h forecast horizon. The switch-
ing between forecasts is chosen with API2 and API6. Green areas indicate that the ACE
is used, and white areas for the ICE.

and the drift prediction without any correction for a 12 h forecast. In addition,
the two different switching intervals are included in the figures. The switches
between forecast schemes are performed based on the API calculations. In both
cases, API2 and API6, the switches between forecast schemes usually result in a
superior forecast. However, it is apparently visible that in not all cases the switch
is beneficial. For the API2 case, it is not beneficial to switch to the ICE between
36.5 h to 40 h as well as it is not beneficial to switch to the ACE between 60.5 h to
62.5 h. For the API6 case, it is not beneficial to forecast the iceberg drift with the
ICE between 36 h to 46.5 h.

The occurrence of non-beneficial switches was expected since the decisions
of which forecast scheme should be used are based on short-term forecast results
with the assumption having the same tendency for longer forecasts. However, this
cannot be guaranteed for all forecasts. Furthermore, it is not guaranteed that the
ICE performs better than the ACE in cases of large APIs. Nevertheless, the overall
forecast performance increases with the switching scheme. This is evaluated with
the performance index (PI) (6.12).

Table 8.1 shows the PI for the different forecast schemes where a small PI
indicates high performance. The significantly larger PI of the ACE compared
to the ICE is caused by the large forecast errors of the ACE at the end of the
observation horizon.

8.5 Conclusion
The chapter shows the potential of using several iceberg forecast schemes to fore-
cast iceberg drift trajectories. A switching algorithm between two forecast schemes,
the ACE and ICE, is proposed. Switching between these two forecast schemes can
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Tab. 8.1: The PI (6.12) of the Iceberg for a forecast horizon N of 12 h.

Ancillary current [m] 4562

Inertial current [m] 2601

Without correction [m] 6667

Switching with API2 [m] 2401

Switching with API6 [m] 2555

improve the iceberg drift forecast compared to using only a single forecast scheme.
The API is used as an indicator for when to switch between both schemes. It
is shown that short-term forecast information (2 h and 6 h) can be used to com-
pare forecast schemes and decide which to use for longer forecasts. Even though
the presented switching scheme produces a superior forecast to a single forecast
scheme, future work is required to address some issues.

The proposed switching scheme has to be tested on several iceberg trajectories
to evaluate how it behaves for different iceberg geometries and environmental con-
ditions.

At the moment only the ACE is checked with the help of the API, while it is
assumed that the ICE performs well in cases when the ACE does not. This can not
be guaranteed. A general criterion has to be introduced, such that it can be decided
efficiently which forecast scheme to use for iceberg drift predictions.

A further interesting question to investigate is how optimal ancillary functions
for iceberg drift forecast can be found.
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Chapter 9

An iceberg forecast approach
based on a statistical ocean
current model

This chapter is based on PAPER D (Andersson et al. 2018d). The difference
between the statistical iceberg model forecast scheme and the hybrid forecast
schemes (Part II) is that the statistical forecast schemes do not use the dynamic
iceberg model and rely on a statistical model, which is identified by a training set.

This chapter proposes a statistical model for short-term iceberg drift forecasts
by transforming the problem of forecasting the iceberg velocity into a problem to
forecast the ocean current velocity. A Vector-autoregression model is identified
using historical ocean current data as a training set. On four real iceberg drift
tracks the proposed forecast scheme is tested and analysed. Based on these rec-
ommendations about the forecast horizon, the filter horizon and model order are
given. Moreover, it is shown that the statistical forecast approach presented in this
chapter offers superior performance to the conventional dynamic iceberg forecast
model for short-term drift forecasts.

9.1 Introduction
The available information about icebergs to the Ice Services (e.g., CIS) is often
limited. They must work with infrequent or no updated information about iceberg
positions and limited to no initial information about iceberg shape or initial ve-
locities. In such situations the only option to forecast the iceberg trajectory is to
use the mechanistic dynamic iceberg drift model. On the other hand, as an iceberg
approaches an offshore installation, more information about the iceberg becomes

101



102 An iceberg forecast approach based on a statistical ocean current model

available, and the iceberg may even be tracked continuously.
In this situation, other approaches that include past information to forecast an

iceberg trajectory are feasible. A statistical model using historical data and re-
cently observed data about the iceberg drift was proposed (De Margerie et al.
1986). They assumed that predictors of iceberg velocity and position could be writ-
ten as a sum of tidal-, inertial-, wind-driven, and single-term auto-correlation com-
ponents (Marko et al. 1988). Another statistical iceberg prediction model based on
past iceberg trajectory observations was developed by Moore (1987), who used a
mixed auto-regression integrated moving average approach.

Gaskill and Rochester (1984) used the dynamic iceberg model and past iceberg
motions to estimate currents required for the past motions. In a second step, they
applied the currents to other icebergs passing through the same area at a later time.
In Section 6, it is suggested to correct the uncertain current input received from
current measurements or ocean models with an ancillary current, an artificial pa-
rameter introduced to the iceberg model, which is calculated with the help of the
observed iceberg trajectory (Andersson et al. 2016a). In Section 7, a scheme is
designed to estimate currents based on wind information and the observed iceberg
trajectory (Andersson et al. 2016b). These currents are used in a second step to
forecast the iceberg drift trajectory.

In this chapter another approach is proposed, which is motivated in the follow-
ing section.

9.2 Motivation
It was observed that for the short-term forecasts (1 h to 24 h) of iceberg trajectories,
the models that incorporate past observations exhibit superior performance relative
to the mechanistic dynamic models (Andersson et al. 2016a, Marko et al. 1988).
This is not surprising since the models work with more information. The discrete-
time nonlinear system can describe the iceberg drift model

xk+1 = fk (xk,ωk ), (9.1a)

zk = hk (xk, νk ), (9.1b)

where the subscript k is the time index, and xk ∈ R
n and zk ∈ R

y represent the
state and measurement vectors, respectively. The vectorsωk ∈ R

n and νk ∈ Ry are
mutually independent white noise processes and fk and hk are nonlinear functions,
which may depend on the time k. The white noise processes are described by
known probability density functions (pdf) p(ωk ) and p(νk ). Furthermore, it is
assumed that the initial state x0 has a pdf p(x0).

Let the complete state and measurement histories up to the time instant k be
denoted as Xk = [xT0 , x

T
1 , . . . , x

T
k
]T and Zk = [zT0 , z

T
1 , . . . , z

T
k
]T , respectively. The
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joint pdf of state and measurement histories p(Xk,Zk ) may be written as

p(Xk,Zk ) = p(x0)
k∏
i=0

p(zi |xi)
k∏
i=1

p(xi |xi−1) (9.2)

respecting that the stochastic system (9.1) is a Markov process. In (9.2), the first
term on the right-hand side is the prior information, the second represents the mea-
surement model (9.1b), and the third is the process model (9.1a).

Many mechanistic dynamic model approaches to iceberg forecasting use only
the prior and process model to forecast the iceberg trajectory, and they do not cor-
rect their model with measurements due to lack of this information.

Moreover, only limited knowledge exists on how well the simplified mechanis-
tic dynamic iceberg model represents the actual iceberg drift situation. Recently,
a new research effort lead by C-CORE developed an improved iceberg profiling,
which may lead to a better understanding of the iceberg drift (McGuire et al. 2016,
Bruce et al. 2016, Stuckey et al. 2016, King et al. 2016, Fuglem et al. 2016).

An attempt to capture the uncertainty in the dynamic model by describing the
uncertainties of the parameters with several distributions was done by Allison et al.
(2014). Statistical methods often have an error term that may describe the uncer-
tainty (9.2) in the iceberg forecast (Garrett 1985, Moore 1987).

A major issue for the iceberg drift forecast problem is the limited and expen-
sive datasets. Only for a handful of icebergs are the keel shape, drift trajectory, and
current close to the iceberg measured and analysed. Even in such idealistic condi-
tions, it was not always possible to forecast or even hindcast the iceberg trajectory
with the given dataset (Smith and Donaldson 1987, Andersson et al. 2017c).

The actual process model (9.1a) and, especially, the process noise distribution
was not analysed because of the limited dataset. Moreover, we believe that the
process noise distribution will depend on the iceberg location and how well the
currents and winds are represented by the environmental models at a specific lo-
cation. Furthermore, the iceberg trajectories represent a Lagrangian particle flow
where the observer moves with the particle. Consequently, a significant number
of iceberg trajectories passing through the same region has to be available to find
location-specific noise distributions. As of today, this data is not available and not
feasible to receive. New satellite programs from the European, American or other
space agencies may improve the situation in the future.

This chapter chooses another way to overcome the lack of iceberg drift data.
The idea is to use the well-known kinematic relationship between iceberg, ocean
current, and wind velocities

vi = vw + αva, (9.3)
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where vi, vw , and va are the iceberg, ocean current and wind velocity, respectively.
The parameter α is about 0.017 to 0.02 (Smith 1993, Bigg et al. 1997, Garrett et al.
1985). This empirical relationship was also recently derived analytically (Wagner
et al. 2017).

Basic Premise 9.2.1. An iceberg simulation model given by pi (vi
k
|vi

k−1
), where

vi
k

are the states of the iceberg model (9.1) and pi is its pdf, can be approximated
by a current simulation model given by pw (vw

k
|vw

k−1
), where vw

k
are the states of

the current model and pw is its pdf.

Reasoning. Assuming that we want to predict the iceberg model behaviour and we
have given (9.3), we can express the logarithm of the probability density function
of the iceberg model (9.2) by ln pi (vi

k
|vi

k−1
) = ln pw (vw

k
|vw

k−1
) + ln pa (va

k
|va

k−1
),

where va
k

is the state of the wind model and pa is its pdf. Assuming the contribu-
tion of the wind to the model uncertainty is small, we get that the uncertainty of
the iceberg model can be approximated by

pi (vi
k |v

i
k−1) ≈ pc (vc

k |v
c
k−1) (9.4)

�

This approximation has several consequences. It transfers the problem of pre-
dicting the iceberg velocity to a problem of predicting the current velocity at a
specific location. Moreover, the confidence regions and uncertainty bounds can be
approximated by a current prediction model. The advantage of this transmission
is that sufficient current velocity data is available to identify a current model for
short-term predictions. This model can then be used for further analysis.

9.3 Theory and Methods
The theory and methods used in this chapter can be found in Sections 3.2 and 3.3.

9.4 Performance Indices

The performance of the iceberg forecast is measured directly with the mean ζ̂ and
median ζ̃ so that the end position error ζ = | χ̂χχend−χχχend | of all forecasts performed

ζ̂ = 1/N

N∑
i

ζi, (9.5a)

ζ̃ = ζN/2, (9.5b)
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Figure 9.1: Relative performance index. If the end position of the iceberg forecast is
encapsulated in the inner circle is defined as excellent, followed by two rings where the
forecast is defined good and acceptable. If the forecast is not encapsulated by the outer
circle is defined as bad.

where χ̂χχend and χχχend are the end positions of the forecasted and measured iceberg
drift trajectories.

Moreover, a relative performance index is introduced to compare the different
forecast models on different icebergs. It may be that the icebergs drift considerably
differently (for instance, with different drift velocities). These may result in a
larger mean and median error compared to slow icebergs. The relative forecast
error is defined as

|χχχend − χ̂χχend | < κ |χχχend − χχχinit |, (9.6)

where χχχinit is the initial position of the measured iceberg trajectory. The value κ is
a performance index. For this chapter, the following forecast categories are chosen
(Fig. 9.1):

• Bad forecast: κ > 1,

• Acceptable forecast: 1 ≥ κ > 0.75,

• Good forecast: 0.75 ≥ κ > 0.5,

• Excellent forecast: κ < 0.5 .

The relative performance index penalises a wrong drift direction more strongly
than a wrong drift velocity. To achieve an excellent forecast performance, the
drift direction must be correct within ±30◦, and for a good forecast performance,
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it must be within ±48.6◦. While for the former, the velocity must be 75 %, and
for the latter 44 %, of the correct drift velocity. If the drift direction is forecasted
correctly the velocity can be within 50 % to 150 % for the former and 25 % to
175 % for the latter. The relative performance index has a pole if the actual iceberg
trajectory describes a closed loop. In this case, every forecast will be classified as
bad.

9.5 Dataset

9.5.1 Iceberg Data

In this chapter, the iceberg trajectories of Iceberg 1 (Sec. 4.1.1), Iceberg 2 (Sec.
4.1.2) and Iceberg 4 (Sec. 4.1.3) are analysed.

9.5.2 Current Data

The current dataset was received from the E.U. Copernicus Marine Service, and
the Global Ocean 1/12◦ Physics Analysis and Forecast model was used. The Op-
erational Mercator global ocean analysis and forecast system at 1/12◦ provides ten
days of 3D global ocean forecasts that are updated daily. More specifically, in
this chapter the one-hour surface current and daily mean current information are
used. For two different areas, the current was extracted from the global model.
One region is constrained within 49.5◦ to 53◦ latitude and −54.5◦ to −47.5◦ lon-
gitude, and the other is within 48.0◦ to 49◦ latitude and −54◦ to −52◦ longitude.
The first results are within an approximate 400×500 km large grid with 85×43
(Lon×Lat) grid cells and the second within an approximate 110×150 km large grid
with 25×13 grid cells. These are the two regions of interest where the icebergs dis-
cussed in this research were tracked. In both cases, the last year of current data
before the iceberg discovery is used to identify the ocean current model equivalent
to 8760 time points.

Figure 9.2, the iceberg drift directions can be compared with the yearly mean
surface current directions. It is not expected that the iceberg drifts with the mean
current direction, but the mean current can give valuable insights about the local
current regime.

Both the drift direction of Iceberg 1 and Iceberg 2 do not correlate well with
the mean current direction. The drift direction of Iceberg 4, on the other hand, cor-
relates relatively well with the mean current direction. Again, the drift direction
of Iceberg 4-3 does not correlate well with the mean current. It can, however, be
observed that the iceberg drift directions change more often in areas with diverse
current regimes (i.e., it seems more "random" in these regions) (Fig. 9.2).
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(a) Iceberg 1 and Iceberg 2.

(b) Iceberg 4 and Iceberg 4-3.

Figure 9.2: Maps showing the yearly mean surface current. The arrows indicate the direc-
tion of the surface current in each grid cell. In addition, the iceberg drift trajectories and
iceberg drift directions are plotted.

9.5.3 Wind Data

The wind data was also received from the E.U. Copernicus Marine Service. The
blended global ocean mean wind fields are used and are estimated from scatterom-
eter retrievals. They have a horizontal resolution of 0.25◦×0.25◦ and are updated
every 6 h. The wind information is used at the same time and local frame as the
current data. Consequently, the region covered by the grid cell is the same as for
the current grid cell. Since the grid cells are larger, fewer cells are necessary to
cover the region, which results in a 29×15×1460 and 9×5×1460 (Lon×Lat×time)
large grid. Possible empty data points were removed from the dataset. In addition,
the wind data points are linearly interpolated onto the current grid cells.
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Figure 9.3: Example iceberg velocity with a smoothed velocity profile.

9.6 Pre-Analysis

9.6.1 Time Horizon of Kinematic Models

Current Data

An important parameter for the operational iceberg forecast is the time horizon for
which kinematic models are reliable. For this, the auto-correlation of the current-
velocity, current-acceleration, and higher derivatives (also called moments) are
compared to their future values. As the current-data comes from a model (which
contains smoothed data), it can only give an upper bound on how long the deriva-
tive of the position may be correlated.

The joint probability density functions p(xi |xi−t ) are plotted. As long as these
probability density functions contain some structure, a model could exploit the
structure and improve the forecast. In contrast, when no structure can be detected,
the initial information about the moment is completely degraded to Gaussian noise.
If this state is reached, then a kinematic model assuming, for example, constant ve-
locity or constant acceleration is no longer beneficial. In fact, the most likely value
for the considered moment would be zero.

To analyse the correct frequency range, fast frequencies within the aimed fore-
cast horizon th must be removed from the dataset. These frequencies can corrupt
the analysis performed here considerably by adding additional change to the cur-
rent velocity and its derivatives. Therefore, these frequencies (tidal and inertial
frequencies) are removed with the help of the MEMD. The IMFs containing oscil-
lations with a period of less than 30 h were removed (the intention was eliminate
oscillations with a period smaller than 24 h, and we added buffer of 6 h). The re-
maining IMFs and the bias were added up to represent the smoothed dataset (Fig.
9.3).

The example shown here represents one grid cell, but similar observations
were also obtained for the other grid cells. It can be seen that over time the cor-
relation between initial and actual velocity decreases (Fig. 9.4(a)–9.4(d)). On the
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(a) t = 1 h.
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(c) t = 12 h.
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(d) t = 24 h.

Figure 9.4: The Joint probability of one current velocity profile (p=1) for different inter-
vals. The grey shading shows the likelihood.

other hand, it can also be observed that a model assuming constant velocity will
be approximately correct in the first hours (Fig. 9.4(a)). Even though a correlation
after 24 h can still be detected, the variance is significant, introducing a consider-
able uncertainty into the model that only assumes constant velocity.

The auto-correlation of the acceleration is shown in Figure 9.5, which shows
the variance of the joint probability distribution of a 1 h interval is relatively small.
Thus, the uncertainty of a model assuming constant acceleration is also small.
On the other hand, after 6 h the joint probability distribution approaches a Gaus-
sian distribution, and after 12 h the joint probability distribution is Gaussian. The
structure which we would like to exploit during the forecast is vanished. More-
over, after 24 h we can even detect a linear structure opposite to the one observed
for the smaller intervals. Hence, for extreme acceleration values, it is more likely
to change sign than stay constant.

To conclude, it can be seen that the diffusion due to process noise of the accel-
eration is nearly complete after 12 h, and only minimal information remains from
the initial acceleration.

For the higher derivatives, the correlation between initial and future values
decreases further. It is, therefore, unlikely that kinematic models based on higher-
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(c) t = 12 h.

-0.01 0 0.01

Acceleration xk−t

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

A
cc

el
er

at
io

n
x k

(d) t = 24 h.

Figure 9.5: The Joint probability of one current acceleration (p=2) for different intervals.

order derivatives are beneficial, since considering that filtered and unsmoothed
data are used in a real forecast scenario. If a filter horizon t f of 12 h is used, then
the acceleration (p = 2) is Gaussian after about 7 h and the jerk (p = 3) after 5 h.

Iceberg Data

We analysed in the previous subsection the ocean current velocity and its deriva-
tives, and we saw how the process noise quickly degrades the auto-correlation to
Gaussian noise, especially for higher derivatives. To verify our assumption that
a statistical ocean current model can be used to help with the iceberg forecast,
we compare the forecast results of kinematic iceberg models assuming constant
velocity or higher derivatives and integrating them to the iceberg position

*..
,

ẋ1
...

ẋp+1

+//
-
=

*..
,

x2
...

0

+//
-

(9.7)

where x1 represents the velocity and x2 the acceleration. The kinematic model is
assumed to be noise free. Considering the observation made in the previous sec-
tion, the model should be limited to p = 3, if not even p = 2.
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The forecast for different horizons using the simple kinematic model assum-
ing either constant velocity, acceleration or jerk is shown in Figure 9.6. For every
iceberg, the same pattern can be detected. In the first hours, higher-order models
are beneficial. However, the simple constant velocity model has a similar per-
formance. After about 9 h, the model assuming constant jerk performance worse
than the lower-order models. The model assuming constant acceleration performs
worse for Iceberg 1 and Iceberg 4-3 after about 10 h and for Iceberg 2 and Iceberg
4 after about 16 h. The reason for this behaviour was discussed in the previous
subsection.
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Figure 9.6: Mean forecast error ζ̂ of the iceberg drift forecast for different horizons th
using different kinematic models. The solid lines assume constant velocity, dashed lines
constant acceleration and dash-dotted lines constant acceleration change.

9.6.2 Cross-correlation of Variables

In the previous subsection, it was shown that up to a certain order the current ve-
locity derivatives are strongly auto-correlated. A simple auto-correlation model
was proposed and tested on the iceberg dataset. Nevertheless, a statistical current
model may be improved by also considering cross-correlations of the ocean cur-
rent to other variables, such as wind velocities and the orthogonal current-velocity.

A Vector-Autoregression (VAR) model is identified using the MVGC Multi-
variate Granger Causality Toolbox (Barnett and Seth 2014). An important prereq-
uisite for model identification is the analysis of input and output correlations of
the system. For this, Granger’s causality is used. The analysis is performed on the
original data, since pre-filtering may severely degrade Granger-causal inference
and also increase the VAR model order (Barnett and Seth 2014). Causality can be
detected between orthogonal current velocities and the ocean current and wind ve-
locities in the same direction. Hence, it is beneficial to forecast the current velocity
with past information about its velocity, the wind velocity in the same direction,
and the orthogonal ocean current velocity.
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Figure 9.7: Value of Bayesian Information Criteria for model order up to p = 20. Solid
line VAR model for Iceberg 4 and Iceberg 4-3 and dashed for Iceberg 1 and Iceberg 2.

9.6.3 Model Order

As part of the G-causality analysis, a VAR model was fitted into the current data.
Before this, the optimal model order was estimated by the BIC with a maximum
model order restricted to p = 20. In theory, we can identify a VAR model for
each grid cell of the current grid, which improves the local characteristic of the
iceberg drift. However, in this presentation, it was chosen to only identify two
VAR models at the initial position of Iceberg 1 and Iceberg 4. The result of BIC
for the two models is seen in Figure 9.7. The minimum for the BIC for Iceberg
4 is at a model order of p = 17, and p = 15 for Icebergs 1 and 2. However, the
largest relative improvements are achieved within the first few model orders. In
fact, the improvement from a first to a second order model is about 80 % of the
total improvement. An additional increase to a third-order model gives 90 % of
the overall improvement. Even though, the BIC suggests a higher-order model it
is likely that already a low-order model can achieve adequate prediction results.

9.7 Iceberg Forecast
In this section, the forecast of the iceberg trajectories using the identified VAR
ocean current model are discussed. The forecast procedure, assuming that a VAR
model was already identified, is given in Algorithm 1.

The forecast performance of different order VAR models, the influence of the
filter, and the forecast horizon will be closely examined. Moreover, it is tested if
the cross-correlation between north and east velocity directions is beneficial for
the iceberg forecast and if the wind information will improve the forecast. Both
causalities were detected in the analysis and included into the model. However,
the current model is fitted with modelled current and wind data. In the iceberg
forecast case, however, the wind is uncertain. Moreover, the iceberg velocity and,
therefore, the current velocity are corrupted by measurement noise. In addition,
the modelled current is smoothed, so high-frequency changes are excluded from
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Algorithm 1 Iceberg drift forecast

Set χ̂χχ0 = χχχ and k = 0;
while Simulation horizon (ts) ≤ Forecast horizon (th) do

Get iceberg position χ̂χχk ;
Estimate iceberg velocity vi

k
(filter may be necessary);

Estimate current velocity with vc
k

(9.3);
Take VAR model identified for grid cell closest to iceberg position;
Calculate new current velocity v̂c

k+1
with VAR model;

Calculate new iceberg velocity v̂i
k+1

with (9.3);
if Fast frequency components considered important then Add fast frequency

components that were removed using f.e. MEMD;
end if
Integrate to iceberg position χ̂χχk+1;
Set k = k+1;

end while

the modelled data, which is not the case for the iceberg velocity data. Therefore,
the iceberg velocity data is filtered before every forecast step. A moving average
filter is used, which presents a relatively small phase lag in comparison to other
filters tested. Nevertheless, a time lag is present, which degrades the performance
of the forecast. The robustness of the forecast to different window sizes will be
tested.

9.7.1 Model Order

The BIC suggests an optimal model order of p = 15 to p = 17.
The four icebergs were tested on VAR models of different orders. The iceberg

velocity is filtered with a 13 h moving average filter. The mean and median end
position errors, ζ̂ and ζ̃ , of the iceberg drift forecast is shown in Figure 9.8. A
minimum can be detected at a model order p = 3. Larger model orders do not or
only slightly improve the forecast (Iceberg 2). Overall, the VAR model order is
not as sensitive to higher model orders as the simple kinematic model (Fig. 9.6).

The wind influence is small. The most considerable improvement, if including
the wind, is observed for Iceberg 4-3. On the other hand, the forecast of Iceberg 4
improves if wind is excluded.

9.7.2 Moving Horizon Window Length

The moving average filter (or any other filter chosen) plays an important role in
the forecast scheme. How robust the VAR model against different filter lengths t f
is important, which indicates how robust the model is to measurement noise. The
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Figure 9.8: Results of different model orders p with and without wind input. Solid and
dashed lines represent the mean error ζ̂ with wind and without wind.

third-order VAR model is used since it performed well when the different model
orders were compared.

Figure 9.9 shows the mean and median 12 h forecast errors, ζ̂ and ζ̃ , for the
different icebergs including or excluding cross-correlation between orthogonal ve-
locities.

The forecast performance of the VAR model differs between icebergs. While
for Iceberg 2 and Iceberg 4, a minimum mean forecast error of about 3.2 km to
3.5 km can be reached, Iceberg 1 and Iceberg 4-3 have a minimum mean error
at about 6 km to 7 km. If the cross-correlation is included in the model, then the
optimal filter horizon topt

f
is about 7 h to 10 h. If the cross-correlation is excluded,

then longer filter horizons are necessary. The optimum topt
f

is about 13 h to 15 h.
Moreover, if cross-correlation is excluded from the forecast, then it is more sensi-
tive to small filter horizons, while with cross-correlation the performance does not
degrade as much as if the filter horizon is too short.

The drift trajectory of Iceberg 1 and Iceberg 4-3 have several loops. For these
icebergs, it is beneficial to include cross-correlation between the orthogonal ocean
current velocities. While the loops may not be forecasted precisely, every trajec-
tory using this cross-correlation has a clock-wise bend, which reduces the forecast
error ζ if the iceberg trajectory loops clock-wise (which it usually does).

Overall, the mean and median end position errors, ζ̂ and ζ̃ , change only slightly
around the optimal filter horizon topt

f
indicating the models are robust. A conser-

vative approach would be to use a longer filter horizon t f .

9.7.3 Forecast Horizon

The forecast horizon th from which recently measured information can be ex-
ploited to improve the forecast is limited. Figure 9.10 shows the mean and median
end position error, ζ̂ and ζ̃ , of the iceberg drift forecast using different forecast
horizons th. Iceberg 2 was excluded from the figure because of the short dataset.
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Figure 9.9: Forecast results for different filter horizons t f . Solid line: mean error ζ̂ .
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The error change with respect to the forecast horizon is defined as

Γ̂ =
ζ̂T2 − ζ̂T1

T2 − T1
, (9.8)

where T1 and T2 describe the different length of the forecast horizons with T2 > T1.
The same equation can be used for the median error change by replacing ζ̂ with ζ̃ .

The error change Γ has a minimum at T = 12 h. The iceberg drift is influ-
enced by tidal currents, which have an oscillation period T of about 12 h and 24 h.
Consequently, these oscillations introduce the smallest error at multiples of 1/2T .
Therefore, the change of the forecast error is oscillating with the same frequency
(Fig. 9.10). However, it can be detected that the error change Γ increases slightly
over time.

It can be concluded that including measured information is beneficial for fore-
casts up to at least 12 h. Longer forecast may be possible, but will exhibit larger
error growths Γ.

In the case of short forecast horizons th of about 1 h to 6 h, the filter horizon t f
should be in the range of about 1 h to 3 h. Afterward, the filter horizon t f should
be increased to the ranges discussed in the previous section.
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Figure 9.10: Mean ζ̂ and median ζ̃ of the forecast error for different forecast horizons th
and change of the forecast error Γ for the first and third order VAR model.

9.7.4 First-order Model

A first-order model can always be created from the VAR-model with

A =

p∑
i=1

Ai, (9.9)

where Ai contains the regression coefficients. The VAR model reduces to

uk = Auk−1. (9.10)

In this case the wind is negligible, indicating that it mainly influences the ocean
current acceleration. The first-order model is stable with two complex conjugated
eigenvalues close to the unit cycle. The real parts are about 0.997 to 0.9993 while
the complex part is about 0.0005 to 0.005 depending which identified model is
used. As it can be seen from the magnitude of the complex parts, the cross-
correlation becomes small.

The higher-order VAR models produce a slightly better 12 h forecast than the
first-order VAR model (varying from 2 % for Iceberg 4 to 25 % for Iceberg 1).

In comparison to the simple first-order kinematic model, the first-order VAR
model provides a 3 % to 13 % better 12 h forecast. The improvement of the fore-
cast with the first-order VAR model is due to the inclusion of the forecasted wind
effects.
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9.7.5 Dynamic Iceberg Model

For comparison and to indicate the performance of the VAR ocean model, the ice-
bergs are modelled with the dynamic iceberg drift model (Sec. 2.3). The iceberg
length, width, sail height, and keel depth were measured onsite and used in the
model. Since a longer period is examined, a simple deterioration model is imple-
mented assuming a daily 2 % deterioration of the iceberg length, width, draft, and
sail height. This seemed reasonable as it allowed that Iceberg 4 and Iceberg 4-3 to
be observed for such an extended period.

The iceberg mass is approximated using the shape coefficients for spherical,
wedged, and dry-dock icebergs according to the International Ice Patrol (C-CORE
2007). Iceberg 4 breaks apart after about 5.5 days. After evaluating the pictures
of the iceberg, it is assumed that breakage happens at about 2/3 of the waterline
length. Mass, width, draft, and sail are adjusted accordingly in the simulations.
The two remaining icebergs are likely more dome-shaped than wedged. The shape
factor is, therefore, adjusted after the breakage.

The iceberg is simulated using either the hourly surface current or the layered
daily mean current provided by Copernicus Marine. Tidal current from the Tidal
Model Driver (Egbert and Erofeeva 2002) is added to the daily mean current to
approximate the lower frequency components.

Two, one, and four surface drifters were deployed close to Iceberg 1, 2, and 4,
respectively. The measured surface current velocity is compared to the modelled
surface current received from the Copernicus Marine webpage. The model cap-
tures the overall current velocity. However, the mean error in the north and east
directions is about 5 cm s−1 and 1 cm s−1, respectively. The standard deviation in
both directions is about 14 cm s−1. The absolute velocity is under-predicted by
about 6 cm/s. In addition, the measured current direction is more directionally
distributed than the modelled one (Fig 9.4). The Copernicus Marine dataset con-
siders grid cells of about 10×10 km, which smooths the current signal and reduces
the amplitudes of the fast frequency components.

Using a scatter diagram to investigate the modelled and measured current ve-
locities, we find that a possible correction is

ṽc,n = 1.5vc,n, (9.11a)

ṽc,e = vc,e − 0.05, (9.11b)

where the subscripts stand for the north and east directions. This reduces the
mean errors in both directions to zero and improves the directional distribution
(Fig 9.11). However, the error in absolute velocity remains similar. We will con-
tinue using the original ocean current data.

The iceberg keel shape is approximated using either a triangular, semi-elliptic
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(a) Current estimated from iceberg drift.
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(c) Corrected modelled current.

Figure 9.11: Directional distribution of the current from the iceberg drift (a) versus di-
rectional distributions from the Copernicus Marine ocean current model (b) and corrected
modelled current (c).
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Figure 9.12: Forecast error ζ̂ (solid) for different forecast horizons for the dynamic (blue
and yellow), stationary (red) and VAR model (grey).
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or rectangular iceberg shape (Andersson et al. 2017c). The triangular iceberg shape
produces the smallest error ζ for Iceberg 2, 4, and 4-3. For Iceberg 1, the ellip-
tic iceberg keel shape works best. Overall, the performance is similar using the
layered mean plus tidal current or the surface current. Only the error for Iceberg
4-3 reduced considerably using the surface current, which indicates the iceberg is
most likely small and driven by surface currents.

The best mean and median error, ζ̂ and ζ̃ , of all simulations for each iceberg
are shown in Figure 9.12. The stationary model assumes that the iceberg does not
move. The error growth Γ of the dynamic, VAR and stationary models are shown
in Table 9.1.

For Iceberg 1 and Iceberg 2 (Fig. 9.12(a)), the dynamic iceberg model pro-
duces worse results than assuming the icebergs are stationary. For the VAR model,
the border is reached after 15 h (Iceberg 1), which is the only iceberg where the
border is reached within a 24 h forecast. For Iceberg 4 (Fig. 9.12(b)), the dynamic
iceberg model has a similar error change Γ as the stationary model (Tab. 9.1).

For the short-term drift forecasts, the VAR model produces better forecast re-
sults. However, the tendency of the error change Γ for longer forecast horizons
decreases for the dynamic iceberg model while increases for the VAR model indi-
cating that there may be a crossing point in time after which the dynamic iceberg
model performs better.

If the corrected current (9.4) is used, then the forecast of Iceberg 2 and Ice-
berg 4 improves, worsens for Iceberg 4-3, and remains the same for Iceberg 1.
The overall forecast performance improves slightly, but the VAR model forecast
remains superior.

Even though the VAR model is on in average superior, only the dynamic model
can forecast rapid and sudden direction changes. This can be seen in Figure 9.13(a)
where the iceberg makes a sudden "unexpected" (by the VAR model) change of di-
rection. The VAR model was well-adjusted before the change, but was not able to
predict the change. Even though the forecast is not very good, the dynamic iceberg
model predicts a direction change. After the change of direction, the VAR model
adjusts itself again, and its forecast improves.

On the other hand, it can happen that with the dynamic drift model, a direction
change is predicted but not observed in the actual iceberg trajectory (Fig. 9.13(b)).
In this example, the forecast direction is predicted up to 180◦ incorrect by the dy-
namic iceberg model.

The VAR forecast model can approximate curves and sometimes direction
changes (Fig. 9.13(c)) and loops (Fig. 9.13(d)) if the observed dataset indicates
these changes. For this, the cross-correlation term should be included in the model.
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Figure 9.13: Several forecast examples for the VAR and dynamic iceberg models. The
initial and end point of each forecast are denoted with the same markers on the observed
iceberg trajectory.

9.7.6 Relative Performance Index

The relative performance index κ improves a comparison of different icebergs
compared to an absolute performance index, such as the mean or median end po-
sition error, ζ̂ and ζ̃ . The stationary model was already included in the previous
section.

Iceberg 4 shows the best relative performance κ for the VAR model (Fig.
9.14(c)). This correlates with the mean position error ζ̂ . However, the VAR model
has a similar relative performance κ for Iceberg 2 (Fig. 9.14(b)) and Iceberg 4-3
(Fig. 9.14(d)), which was not revealed by the mean forecast error ζ̂ .

The dynamic iceberg model forecasts Iceberg 4-3 best but still considerably
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worse than the VAR model. Moreover, the dynamic forecast model has the worse
relative forecast performance κ for Iceberg 2 followed by Iceberg 1. This was also
not clear considering the absolute error ζ , which had an opposed order.

Another good example where the relative forecast performance κ is more in-
formative is when the yearly mean current is used to forecast the icebergs. If the
forecast error ζ̂ is considered the order, starting with the best, is Iceberg 2, Iceberg
4, Iceberg 4-3, and Iceberg 1. However, the order of the relative forecast perfor-
mance κ is Iceberg 4-3, Iceberg 4, Iceberg 2, and Iceberg 1. The differences are
mainly because for Iceberg 2, the slow velocities are forecasted, but the directions
are wrong. This caused a smaller absolute error ζ .

Overall, the change between forecast performance categories over a changing
forecast horizon is relatively small after the initial phase of a few hours. This may
be a useful property to estimate the performance for longer forecast horizons based
in on a short iceberg drift forecast.

9.8 Conclusion
This chapter proposes a statistical approach to short-term iceberg forecasting. The
basic premise is that the dynamics and uncertainties of the iceberg velocity can
be approximated by the dynamics and uncertainties of the ocean current velocity.
The advantage of this transformation is that sufficient ocean current velocity data
(modelled or measured) is available to identify a statistical ocean current model.
Two interesting effects arise from this transformation are. First, it is possible to
identify a VAR model for each grid cell including local specifics of the iceberg
model. Second, during the identification of the ocean current model, an error term
is identified which may help to compute confidence regions (pdfs (9.2)) of the ice-
berg drift forecast. However, it is recommended to use measured ocean current
data that has fast frequency components like the measured iceberg velocity.

After the identification of a VAR current model, its applicability to iceberg
forecasting was analysed and tested on four real iceberg drift tracks. It was shown
that a model order of p = 3 is sufficient to forecast the iceberg drift. Since the
VAR model is identified with modelled current data, and the iceberg forecast uses
measured iceberg position data, a filter is necessary. If the cross-correlation be-
tween orthogonal current velocities was included in the model, then a shorter filter
horizon of about 7 10h was sufficient. If the cross-correlation was excluded, then a
filter horizon of about 13 15h was necessary. The statistical approach can be used
for a forecast up to at least 12 h where a minimum error change Γ was observed.
Longer forecast horizons th are possible, but usually larger error growth than be-
fore were observed. In comparison with the dynamic iceberg model, this statistical
approach had superior performance for all tested iceberg drift tracks up to a fore-
cast horizon of 24 h. Longer forecast horizons were not compared.
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A relative performance index was introduced that compares the forecast error
to the drift distance within the forecast horizon. It was shown that this performance
index improves the comparison between the forecast performances of different ice-
berg drift tracks.
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Figure 9.14: Relative forecast performance of Iceberg 1, 2, 4, and 4-3. The relative fore-
cast performance is grouped in four categories (Sec. 9.3): bad (red), acceptable (yellow),
good (blue), excellent (green). Each iceberg forecast performed is grouped in one of the
categories. Each vertical bar shows the percentage of each category for a certain method
and forecast horizon. The performance of the VAR model is on the left-hand side and the
right-hand side of a dynamic model.
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Chapter 10

Analysis of Iceberg Drift
Trajectories Using the
Multivariate Empirical Mode
Decomposition

This chapter is based on PAPER K (Andersson et al. 2018b). We show how to de-
tect and extract the tidal and inertial oscillation from iceberg velocity data by using
the multivariate empirical model decomposition. Due to the similar frequencies of
both oscillations in regions subject to drifting icebergs, this is an extremely chal-
lenging filtering problem. The method is tested on two iceberg drift trajectories
from the east coast of Canada, one at about 51◦N and one at about 76.5◦N. The
two icebergs differ in latitudinal location, such that the inertial and tidal oscilla-
tions in the first dataset have a slightly different frequency and in the other they
are approximately the same. For the latter case a second filtering stage has to be
included that uses tidal current information from a tidal current model. Finally we
show how the multivariate empirical model decomposition can be used to analyse
connections between current, wind and iceberg velocities. This information may
help to improve either the ocean current and meteorological models or the iceberg
drift model.

10.1 Introduction
The current direction and current speed are usually identified as most important
for iceberg drift, but also as most uncertain (Kubat et al. 2005, Eik 2009, Broström
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et al. 2009, Allison et al. 2014, Turnbull et al. 2015). The iceberg drift and cur-
rent profile are closely correlated and a simple kinematic relationship between
ocean currents, wind and iceberg velocity was experimentally discovered by Smith
(1993), Garrett et al. (1985), Bigg et al. (1996) and even derived from the opera-
tional iceberg drift model by Wagner et al. (2017). Consequently, the study of
iceberg drift trajectories may reveal information about the local current regime
and may help to improve ocean current models.

In this chapter the empirical mode decomposition (EMD) and its extension to
multivariate signals, the multivariate empirical mode decomposition (MEMD), is
used to analyse iceberg velocity (Sec. 3.2). In addition, the current and wind veloc-
ities are included in the analysis. The EMD decomposes a signal into frequency-
modulated components. This helps to identify, for example, tidal and inertial cur-
rent oscillations in the iceberg velocity. Moreover, it is believed that this method
may improve the understanding of iceberg drift and therefore improve capabilities
to model the iceberg drift.

The gravity field of the moon and sun acting on the elastic earth causes the
tidal current. The tidal current consist of several tidal constituents, sometimes
also called partial tides (Stewart 2005). The most important constituents at the
location under consideration are the principal lunar (M2) and principle solar (S2)
constituents, which have a period of about 12 h. A similar period but a smaller
amplitude at the location of the icebergs have the larger lunar elliptic (N2) and
luni-solar semidiurnal (K2) constituents.

If the water moves only under the influence of the Coriolis force after an im-
pulse that sets the water in motion, the resulting current is called inertial current.
Due to earth’s rotation the inertial current is rotating clockwise in the northern
hemisphere. This motion can be described in its simplest form by a harmonic os-
cillator. Inertial currents can be caused by rapid changes of the wind at the sea
surface and they typically decay in a few days (Stewart 2005).

10.2 The Datasets
This section presents the iceberg drift trajectory datasets used in the analysis. The
supporting datasets, such as local wind and current velocity, are interpolated lin-
early in time and positioned onto the iceberg trajectory.

Iceberg Dataset

In this chapter the trajectory of Iceberg 4 (Sec. 4.1.3) and Iceberg 3651 (Sec. 4.2.4)
is analysed. Both iceberg drift trajectories show loops and wave patterns in parts
of their tracks, which suggests that they are influenced by oscillations (Fig. 10.1).
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Figure 10.1: Map of iceberg drift trajectories.

10.2.1 Current Dataset

In this analysis, current data from the E.U. Copernicus Marine Services is used.
As current source the Global Ocean 1/12◦ Physical Analysis and Forecast model
updated daily is used. This model provides hourly surface current data and daily
layered mean current data. For more information the reader is advised to visit the
E.U. Copernicus Marine Service webpage (EU Copernicus Marine 2006).

10.2.2 Wind Dataset

As wind source, the Global ocean wind L4 near real time 6 hourly observations
wind model from the E.U. Copernicus Marine Services is used. This model pro-
vides six-hourly surface wind data. For more information the reader is advised to
visit the E.U. Copernicus Marine Service webpage (EU Copernicus Marine 2006).

10.2.3 Tidal Current Dataset

The tidal current information was received from the Tidal Model Driver (TMD)
a MATLAB toolbox provided by the Oregon State University (Egbert and Ero-
feeva 2002). The tidal current is predicted. For Iceberg 4 the Global Inverse
Load Tide Model (TPXO7.2) and for Iceberg 3651 the Arctic Ocean 5 km Inverse
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Model (AOTIM-5) is used. For more information the reader is advised to visit the
Earth&Space Research webpage (Earth&Space Research 1995).

10.3 Detection of Tidal and Inertial Current Oscillation in the
Iceberg Drift Velocity

This section provides examples of how the MEMD decomposes the iceberg ve-
locity data. The velocity of the iceberg is calculated based on the hourly position
updates. For reasons of clarity, only selected periods of the whole iceberg velocity
signal available from the iceberg drift track is shown, to illustrate the usefulness of
the decomposition.
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Figure 10.2: IMF#3 of the decomposed velocity signal of Iceberg 4 from May 8, 2015
3:30am to May 11, 2015 7:30pm. In comparison the tidal current using the tidal con-
stituents M2, N2, S2 and K2 is shown.

10.3.1 Iceberg 4

Iceberg 4 was discovered close to Newfoundland at a latitude of about 51◦N. The
rotation rate of the Earth is about Ω = 7.2921 × 10−5 rad s−1. At the iceberg loca-
tion, this results in an inertial oscillation period of about 15.5 h. The tidal currents
at the iceberg location are relatively weak (Padman and Erofeeva 2004). The M2
tidal current constituent with a period of about 12.4 h dominates the tidal current.
In north direction it has an amplitude of about 1.3 cm s−1 and in the east the di-
rection about 3.2 cm s−1. The other tidal current constituents have an amplitude of
about 0.3 cm s−1 and 1 cm s−1 in north and east direction, respectively.
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Figure 10.3: IMF#4 of the decomposed velocity signal of Iceberg 4 in the north and east
direction from May 8, 2015 3:30am to May 11, 2015 7:30pm. This IMF has the same
frequency as the inertial current oscillation.

The 37 days of iceberg velocity data is decomposed into ten IMFs. Of special
interest are IMF#3 and IMF#4. These IMFs have an average period of 12.4 h and
16 h in the east direction and 11 h and 16 h in the north direction. Consequently,
the tidal and inertial current components are detected and extracted in the iceberg
velocity by the MEMD.

Fig. 10.2 shows IMF#3 and the sum of the tidal current constituents with a
period of about 12 h. In east direction, the IMF#3 and the tidal current are very
similar in phase and amplitude. In north direction, the phase is acceptably ex-
tracted but the amplitude is overestimated by the MEMD. Possible reasons are
small errors in the tidal model, for example due to a coarse bathymetry map, the
small amplitude of the tidal current that makes it difficult to extract the oscillation,
and leakage between different numbered IMFs, for example IMF#3 and IMF#4.
Leakage refers to a not perfect separation of two oscillations, which causes an os-
cillation that is present in two IMFs. The stronger amplitude in the north direction
makes the tidal current less directional, such that the oscillation has a more circu-
lar behaviour.

It can be observed that the tidal current in the east direction is better extracted
from the iceberg velocity than in the north direction. The frequencies of IMF#3 and
IMF#4 are similar, which makes it difficult to separate both signals. The IMF#4,
which represents the inertial current oscillation, is shown in Fig. 10.3.

The inertial current oscillation has a larger amplitude than the tidal current
oscillation. In this period, the east direction of IMF#4 has a larger amplitude than
the north direction. Consider a simplified inertial oscillation model

∂u
∂t
− f v = τu, (10.1a)

∂v

∂t
+ f u = τv, (10.1b)

where u and v are the velocity in east and north direction, f is the Coriolis fre-
quency and τ is a forcing term that depends on the wind (De Young and Tang
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Figure 10.4: Polarplot of IMF#4 of Iceberg 4 from May 8, 2015 3:30am to May 11, 2015
7:30pm. The north direction is 0◦ and the east direction 90◦.

1990). If the forcing is neglected the inertial oscillation should describe a circle.
However, it is observed that the extracted inertial current is slightly elliptical (Fig.
10.4). Again, this may be due to a not perfect separation, but also due to the sim-
plified model assumptions.

A new impulse to the inertial current oscillation can be observed at about 50 h.
Here the phase changes and the ellipse is rotated and becomes more circular.

10.3.2 Iceberg 3651

For Iceberg 3651 the differentiation between tidal and inertial current is more chal-
lenging. The iceberg was tracked at a latitude of about 76.5◦N. The period of the
inertial oscillation is about 12.3 h. Consequently, it is almost the same as the pe-
riod of the M2 and S2 tidal current constituents. Moreover, the tidal current is here
stronger than at the location of Iceberg 4. The amplitude of the M2 tidal current
constituent is in the north direction about 10 cm s−1 and in the east direction about
4 cm s−1. The S2 tidal current constituent has an amplitude of about 4 cm s−1 in
the north direction and 1.5 cm s−1 in the east direction. The tidal current describes
an ellipse with the major axis directed to north-north-west.

The MEMD detects two oscillations with an average period of about 12.3 h and
12.5 h in the north and 12.2 h and 12.3 h in the east direction. Again, it is more
challenging to detect correctly the oscillation in the direction with the smaller am-
plitude.

In general wind impulses, for example from a storm event, drive the inertial os-
cillation and cause the rotation of the surface in an entire region. These impulses
may cause phase changes in the oscillation. In addition, both tidal and inertial
oscillations have approximately the same frequency, which make a perfect separa-
tion between the two oscillations very challenging, and leakage can be observed in
the results. Nevertheless, a combination of tidal and inertial current is detected in
IMF#3 and IMF#4 (Fig. 10.5).

It can be seen that the amplitudes of the oscillation of the iceberg velocity is
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Figure 10.5: The sum of IMF#3 and IMF#4 of the decomposed velocity signal of Iceberg
3651 from August 8, 2016 2am to August 19, 2016 3pm. In comparison the tidal current
using the tidal constituents M2, N2, S2 and K2 is shown.
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Figure 10.6: Tidal current substracted from the sum of IMF#3 and IMF#4 of the velocity
of Iceberg 3651 from August 8, 2016 2am to August 19, 2016 3pm.

larger than the tidal current amplitude at the beginning of the signal. Moreover, in
the east direction the oscillations are out of phase for the first about 110 h. In the
second part, the amplitude and phase of tidal current and iceberg velocity oscilla-
tion are similar.

Let us assume that the tidal current predicted by the Tidal Current Driver
is approximately correct. In that case, we can subtract the tidal current from the
iceberg velocity oscillation that contains tidal and inertial current. The resulting
oscillation approximates the inertial current oscillation (Fig. 10.6).

For the first about 105 h we can detect an inertial current oscillation. New
impulses are detected at the end of the observation period. However, it seems that
several wind events are present during that time, which may initialize and change
the inertial current. The polar-plot of the first part of the observation period is
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Figure 10.7: Polarplot of the substraction of the tidal current from the sum of IMF#3 and
IMF#4 of Iceberg 3651 from August 8, 2016 2am to August 12, 2016 11am (105 h). The
north direction is 0◦ and the east direction 90◦.

shown in Fig. 10.7. The inertial current progression is slightly elliptical with the
major axis directed to the northeast.

Let us assume that the amplitudes follow an exponential decay

A(t) = exp(−rt), (10.2)

where 1/r represents the dissipation time scale of the oscillation and t the time. A
curve fitting results in an r of about 1.306 × 10−5 to 2.62 × 10−5 s−1. The detected
dissipation time scale is, therefore, roughly 11 to 22 h. This is a shorter dissipation
time than previously detected (De Young and Tang 1990). However, the dissipation
time extracted here is roughly approximated, since only one event is analysed and
an iceberg with unknown draft is used to estimate the inertial current oscillation.
Nevertheless, it can be seen that by decomposing the signal and extracting the
IMFs it is possible to receive significant information about local tidal and inertial
current oscillations.

10.4 Further Analysis of the Iceberg Velocity using Current and
Wind Data.

This section provides an outlook on how the MEMD can be used to analyse further
current and wind models based on the iceberg velocity data.

10.4.1 Iceberg 3651

In the previous section, it was shown that the MEMD can help to identify the tidal
and inertial current. Moreover, the measurement noise can easily be removed. Be-
sides analysing the inertial and tidal frequencies, it is also possible to analyse IMFs
with lower frequency components. This can be done separately or the IMFs with
lower frequency components can be added up and the sum can be analysed. The
biases may be analysed separately.

An example for Iceberg 3651 is given in Fig. 10.8. The sum of the IMFs
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with lower frequency components and the bias for the iceberg velocity, surface
and mean current and wind velocity is shown.

In north direction the iceberg velocity is well correlated with the surface cur-
rent and wind velocity up to about 170 h (Fig. 10.8(a)). Thereafter, the velocities
point in different directions. Moreover, the large peak at about 225 h is not present
in the surface current and wind velocity. However, it is present in the mean current
component. The mean current is calculated by taking the mean over the current
layers up to a depth of 110 m. This decreases the peak at about 225 h. If only near-
surface layers were considered the peak would be stronger, even though still not as
strong as observed in the iceberg velocity. Nevertheless, it may be concluded that
the iceberg is mostly driven by upper layer currents.

In the north direction, the bias of the iceberg velocity is well correlated with
the bias of mean current (Fig. 10.8(b)). In the east direction, however, neither the
currents nor the winds are positively correlated with the iceberg velocity. In fact,
the correlation is negative. On the other hand, the oscillations of iceberg velocity
and wind velocity are well correlated (Fig. 10.8(c)). If the wind and iceberg ve-
locities are compared, it can be observed that the change of the iceberg velocity
differs about 8 h to 20 h in comparison to the wind velocity changes (115 h, 200 h
and 230 h). The surface and mean current are not well correlated. Especially the
negative velocity change of the iceberg velocity at about 220 h lags about 24 h be-
hind in the current velocities.

The latter illustrates the difficulty in the analysis of iceberg, wind and current
data. In the east direction, the current velocity change lags behind the iceberg
velocity while in the north direction the velocity change is simultaneous. Nev-
ertheless, observing icebergs provides valuable information about the current and
wind models and may help to improve them. The MEMD by decomposing the sig-
nal into different frequency modes eases the analysis and may reveal new features
of the iceberg drift and its connection to current and winds and possibly the other
driving forces.

However, these analyses have to be performed carefully, since the current, wind
and tidal data may be inaccurate. Major uncertainties may corrupt their values in
remote areas which have little direct data to drive or validate the models. More-
over, also in other areas the current, wind and tidal data may be inaccurate, which
makes, for example, iceberg drift forecasting a very challenging problem (Ander-
sson et al. 2016a).

10.5 Conclusion
In this chapter, the MEMD was used to analyse iceberg velocity data. It was shown
that the MEMD can help to detect and extract the tidal and inertial oscillation from
the iceberg velocity data. The method was tested on two real iceberg trajectories.
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Iceberg 4 was located close to Newfoundland where the period of the oscilla-
tions is about 12 h and 15.5 h. Hourly iceberg position updates are sufficient to de-
tect these oscillations. Here the MEMD extracted without further post-processing
the two oscillations. However, slight leakage was detected. This is not surprising
since to separate two oscillations with such similar frequencies is an extremely
challenging filtering problem.

Iceberg 3651 was located in northern Baffin Bay. Here both oscillations have
about the same frequency. Still two oscillations were detected by the MEMD but
the inertial and tidal current were not well separated. Nevertheless, if information
about the local tidal currents are available the inertial current oscillation could still
be detected by subtracting in a second step the tidal oscillation from the extracted
sum of tidal and inertial oscillation.

It was also shown that the MEMD may help to analyse correlations between
current, wind and iceberg velocity. It is easily possible to remove fast frequency
components or focus only on specific frequencies. This may help to improve the
iceberg drift models but also the ocean current and meteorological models.

For future research to improve the separation of tidal and inertial oscillations
one may consider implementing a two stage filtering process, in which the MEMD
is on the first stage and a model based estimator on the second stage.
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Figure 10.8: MEMD of iceberg, wind, surface current and mean current velocity of Ice-
berg 3651 from August 8, 2016 2am to August 19, 2016 3pm. The iceberg drifts at a
latitude of about 76.5◦N and a longitude of about 71.5◦–76.5◦W. The lower numbered
IMFs, which contain noise, tidal and inertial current oscillations, are removed and only
higher numbered IMFs are considered. The wind velocity is scaled to 2 % of its original
velocity.





Chapter 11

Multivariate Empirical Mode
Decomposition Forecast Scheme

This chapter is based on PAPER I. This chapter proposes an adaptive data-driven
forecast algorithm using multivariate empirical mode decomposition (MEMD) to
handle forecast problems. The algorithm identifies the common oscillatory modes
and noise in the velocity of the floating object and its driving forces. After that,
it decides which mode contributes to the movement and how the future movement
of each mode can be predicted best with the available information. The efficacy of
the proposed forecast algorithm is shown on a real iceberg drift dataset.

This MEMD forecast scheme is, in principle, a statistical forecast scheme as
the one presented in Part III. The training set is based on the iceberg drift track
and possible current and wind models. However, it is limited and the algorithm
forgets everything that is not included in the multivariate empirical mode decom-
position. Therefore, it is not able learn. Moreover, an error term is not identified.
The forecast scheme has more similarities with a kinematic forecast model using
components of the iceberg velocity to predict the future movement. Consequently,
it was categorized in Part III.

11.1 Introduction
Oscillations are present in many applications from chemical engineering to medi-
cal applications to maritime processes (Miao and Seborg 1999, Taylor et al. 1998,
De Young and Tang 1990). In the signal processing literature the topic received
considerable attention to frequency tracking of stationary and non-stationary sig-
nals (Bittanti and Savaresi 2000) and oscillation characterisation (Srinivasan et al.
2007). In process control, the correct identification of oscillations can be vital to

139
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the process and increases the performance of the considered application. For ex-
ample, for process plants, oscillations due to nonlinearity, sub-optimal controller
performance or disturbances may significantly affect the profitability and may be
harmful to the plant equipment (Aftab et al. 2016). The correct identification and
grouping of these oscillations improves the search for the root cause of the prob-
lem. Knowledge about oscillations also enables system prediction (Stone et al.
1996).

The empirical mode decomposition (EMD) is a data analysis method for non-
linear and non-stationary time series that adaptively decomposes the series into
a small number of independent intrinsic modes based on scale separation (Zhang
et al. 2008). The multivariate EMD (MEMD) is an extension of the EMD, pro-
posed by Huang et al. (1998), to n-variate signals (Ur Rehman and Mandic 2010b).
In addition to the scale separation, the MEMD aligns modes of the n-variate sig-
nal. Consequently, common oscillatory modes of different signals can be grouped
(Aftab et al. 2016).

The EMD is used in different forecast schemes to predict, for example, oil price
changes (Zhang et al. 2008), the flow of passengers in a metro system (Wei and
Chen 2012) or wind speed (Liu et al. 2012). Some of the forecast schemes connect
the EMD with a learning algorithm based on neural networks (Wei and Chen 2012,
Liu et al. 2012), and these schemes forecast a signal based on its past progression
only.

In this chapter, a forecast scheme is proposed that uses the MEMD to decom-
pose the observed and forecasted output signals together with all known input
signals to detect common frequency modes. Moreover, it is assumed that forecasts
of the input signals are available. However, these forecasts may be uncertain and
error-prone, as is the case in iceberg drift predictions. Together with the MEMD,
this can be used to forecast the output signals by first detecting which modes are
highly correlated with the output signal and, second, checking if causality between
the input and output signals for the separated modes exist.

11.2 Problem Description
The algorithm presented is designed to predict the output signals of a system. The
discretisation of the set of ordinary differential equation of the system yields the
following problem formulation:

xk+1 = Axk + Bkuk + wk, x0 = x(t0), (11.1a)

yk = Hxk + vk, (11.1b)

in which k denotes the samples taken at time tk . The discretised states are repre-
sented by xk ∈ IRnx , the inputs by uk ∈ IRnu , and the measurements by yk ∈ IRny .
The vector wk ∈ IRnx is state noise, which accounts for unknown disturbances
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on the system states due to, for example, model uncertainty or uncertainty in the
inputs uk . The system, input and output matrices are given by A, Bk , and H, re-
spectively. The measurement noise vk ∈ IRny is added to the measured outputs.
At every time point tk measurements y0:k , past and forecasted input signals u0:K

are available from the beginning of the observation to k or K , where K > k (Fig.
6.7).

In addition, some input signals may be available from different sources m.
These inputs u

j,1:m
0:K are all prone to errors and uncertainties, which makes the fore-

cast of the system states extremely challenging.
Usually, several sources for wind and current forecasts are available provid-

ing, among others, a forecast for and at different frequencies. However, wind and
especially, current forecasts are prone to errors and uncertainties. Moreover, the
iceberg shape and drag coefficients are unknown, but required in the typically dy-
namic iceberg model, which introduces further uncertainties and sometimes poor
forecast performance (Turnbull et al. 2015, Allison et al. 2014). If, however, the
past iceberg trajectory is known, the forecast can be improved by estimating some
of the iceberg shape parameters or correcting the current itself (Andersson et al.
2016a, Garrett 1985, Gaskill and Rochester 1984).

The data-driven algorithm proposed here avoids the necessary assumptions
about iceberg parameters when using a dynamic model and forecasts the system
only based on the past iceberg trajectory as well as all information available about
the iceberg driving forces.

11.3 The Forecast Algorithm
In this section, a forecast algorithm is proposed that takes advantage of the align-
ment property of the MEMD (Sec. 3.2). The goal of this algorithm is to forecast
the output

yk+1 = H (Axk + Bkuk + wk ) + vk+1, (11.2)

with the help of the observations y0:k and all information of the input signals u1:m
0:K .

11.3.1 Basic Steps of Forecast Algorithm

1. Perform a 1st MEMD with the output signal y0:k and all available input
signals u1:m

0:k
.

2. Perform the grouping algorithm and identify significant IMFs of the output
signal y.

3. Perform a 2nd MEMD with the input signals u1:m
0:K (up to the forecast time

tK ).
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4. If the amount of IMFs differ in the 1st and 2nd MEMDs, then re-index the
IMFs based on the correlation of the IMFs of the input signals u1:m in both
MEMDs. The re-indexing has to be performed for the significant IMFs of
the first MEMD only. The re-indexing guarantees that both MEMDs have
the same amount of IMFs.

5. Perform the grouping algorithm for the 2nd MEMD and identify significant
IMFs for the input signals u1:m.

6. Connect both results of the grouping algorithm to know which IMFs of the
input signal can be used to forecast the significant IMFs of the output signal.

(a) Forecast the output signal based on its past progression only (self-
forecast).

(b) Use significant IMFs of the input signal to forecast the output signal
(input-forecast).

7. For every significant IMF of the output signal, choose one of the two fore-
casts (forecast decision). Combine all IMF forecasts to the forecast of the
output signal (forecast of the output signal).

11.3.2 Self-forecast

Before the self-forecast, the mean µi and standard deviation σi of the frequency
of each significant IMF ci j of the output signal y are determined. IMFs with more
than three maxima in the local signal (moving horizon) are fitted to a cosine sig-
nal, which gives the following nonlinear least-squares problem that, under mild
conditions, can be reliably solved (Wright and Nocedal 1999)

min
{βi,γi,φi }

k∑
n=k−l

ci j,n − hn(βi, γi, φi)

2

Qn
(11.3a)

s.t . hn(βi, γi, φi) = βi cos(γitn + φi) ∀n = k − l, ..., k,

µi − σi ≤ γi ≤ µi + σi,

− π ≤ φi ≤ π,

ci j,k − hk (βi, γi, φi) = 0,

(11.3b)

where ci j,n is the ith IMF of the j th output signal at time tn and βi, γi, and φi are
the amplitude, frequency, and phase lag of the cosine function, respectively. An
end-point constraint is introduced to avoid large deviation at the initial point of the
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forecast. Moreover, Qn can be used to weight recent times more strongly. Prob-
lems due to non-convexity were not experienced in the numerical experiments for
this or the following optimisation problems.

The IMFs, which have less than three maxima in the local signal, and the
residue are fitted with a third-order polynomial

min
{βi, l0:3 }

k∑
n=k−l


ci j,n −

3∑
l=0

βi,ltln


2

Qn

(11.4a)

s.t . ci j,k −
3∑
l=0

βi,ltlk = 0, (11.4b)

where βi,l are the parameters of the ith IMF/residue and tk is the time index. Dur-
ing the optimisation, the time horizon is scaled such that tk = 1. The identity
matrix was chosen as weighting matrix Qn in both optimisations.

11.3.3 Input-forecast

During the input-forecast, the significant IMFs of the output signal are forecasted
with the significant IMFs of the input signal (δi j = 1) that have the same index as

min
{βi j,θi }

k∑
n=k−l



ci j,n −
M∑

p=1,
p,j

δip βipcip,n + δ̃iN θi



2

Qn

(11.5a)

s.t . 0 ≤ βi j ≤ βmax
ij , (11.5b)

where the parameter βi j are box constrained and δiN is the Kronecker delta

δ̃iN = 1, if i = N (11.6a)

else δ̃iN = 0. (11.6b)

The algorithm can handle several forecast signals of the same system input
u1:m. If the grouping algorithm identifies that n forecast signals of the same system
input can be used to forecast the output signal, then they enter the optimisation
(11.5) as a weighted sum

c∗i j =
n∑
j

λ jci j, (11.7)
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where λ j are the weights with
∑

j λ = 1. The quantity of components M in (11.5)
reduces the amount of different input signal groups P. The identity matrix was
chosen as weighting matrix Qn in the optimisation.

All optimisation problems are solved with MATLAB using YALMIP (Lofberg
2004).

11.3.4 Forecast Decision

In this chapter, the self-forecast is used as the default and replaced if the value
of the objective function of the input-forecast is smaller than the one of the self-
forecast. Moreover, even if the residue is not identified as significant, then it is
always considered and forecasted by the input-forecast.

11.3.5 Forecast of the Output Signal

Finally, the forecasted IMFs are combined to create the forecasted output signal

yj (t) =
N∑
i=1

δi jci j (t), (11.8)

where it is assumed that the j th component is an output.

11.4 Case Study

11.4.1 The Dataset

The studied iceberg in this chapter is Iceberg 4 (Sec. 4.1.3).
Hourly surface current, daily mean current and six-hourly wind data was re-

ceived from the E.U. Copernicus Marine Service (Sec 9.5 (EU Copernicus Marine
2006). Furthermore, a prediction of tidal current was calculated with the Tide
Model Driver (TMD). In addition, measured wind data at a weather station close
to the iceberg location was taken from the Environment Canada homepage. Con-
sequently, the input data used in the case study does not represent a real forecast.
Nevertheless, the case study shows the power of the proposed forecast algorithm.

11.4.2 Forecast Results

Three input groups are considered during the forecast: a tidal (one signal), a cur-
rent (two signals), and a wind group (two signals). A five-days moving horizon
is used in the grouping algorithm. At the beginning of the forecast, the moving
horizon develops until day five of the iceberg drift observations.
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Figure 11.1: Input and output signals. The vertical red lines indicate the initial point of
the forecast. The wind is scaled to 2 % of its magnitude.

Forecast Example

To clarify how the forecast algorithm works the MEMD and the grouping algo-
rithm is shown on one forecast example. To simplify the following presentation,
the components of the north-south direction are shown only. One output signal and
five input signals are considered in the forecast scheme (Fig. 11.1).

The result of the two MEMDs of the forecast algorithm is shown in Figure
11.2. The resulting IMFs in both decompositions are similar. Apparent differences
in IMF#1-#3 are due to the small figure size and different line widths. Leakage ef-
fects between IMF#6 and #7 probably cause the difference in the Wind 1 signal.

Table 11.1 shows the results of the grouping algorithms. Significant IMFs of
each signal are marked with ×. A circle around the IMF index indicates if the
input-forecast is used. The zero, arrow up or downward mark shows if the in-
put group is not considered, amplified or weakened in the input-forecast. The
superscript gives the fraction with which each signal of the same input group is
multiplied.

IMF#1 and IMF#2 represent measurement noise. IMF#3 and IMF#4 repre-
sent tidal (M2 and S2) and inertial current, respectively. The mean period of both
oscillations is well detected. However, leakage between both IMFs occurs. Con-
sequently, the separation between both modes is not perfect. In fact, this was ex-
pected, since the tidal current consists of several oscillations with periods around
12 h and 24 h. Moreover, the wind-driven inertial current is quite inconsistent as
new wind impulses can cause phase shifts. The input-forecast amplifies the tidal
current, weakens the surface current component, which also has tidal current in-
formation, and removes the wind component.

IMF#5 is forecasted by wind inputs only. The self-forecast scheme is used for
IMF#6. This is not surprising since we detected leakage between IMF#6 and #7 of
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Table 11.1 Signal composition of mode alignment in the iceberg forecast example.

#1/#2 #3 #4 #5 #6 #7 #8 Res.

Ic.Vel. - × × × × - × ×

Tidal - ×↑ ×↑ - - - - ×↓

Su.Cur. - ×↓ ×↓ - - - - ×0.45↓

Me.Cur. - - - - ×↑ - ×0 ×0.55↓

Wi. 1 - - - ×0.15↑ ×1.0↑ - ×↑ ×1.0↑

Wi. 2 - ×0 ×0 ×0.85↑ ×0.0↑ - - ×0.0↑

the Wind 1 component. The self-forecast scheme also forecasts IMF#8, showing
that mean current and Wind 1 cannot represent the oscillation accurately.

The input forecast scheme is used by default with all considered input signals
for the residual. The Wind 1 is strongly amplified while other signals are weak-
ened. A constant offset θi = −0.093 m/s is used.

The forecast of the example is shown in Figure 11.3, and the dynamic ice-
berg model is used for comparison (Sec 2.3). The forecast of the dynamic iceberg
model is initialised with the correct iceberg velocity providing the model the same
information as the MEMD forecast scheme. The wave force fr is neglected. In
addition, deterioration of the iceberg is not considered. Consequently, the forecast
is performed with the estimated iceberg shape at the beginning of the observation.
After 12 h, the position error for the presented MEMD forecast scheme is 2 km,
while it is 9.6 km for the dynamic model.

The Overall Forecast Performance

The iceberg forecasts for the first 19 d of the iceberg drift are shown in Figure 11.4.
A single 12 h forecast trajectory is displayed every 24 h. The proposed MEMD
scheme can forecast the iceberg trajectory quite accurately.

The only instances when the dynamic model performs better than the MEMD
forecast scheme is when the iceberg enters the sizeable right-hand bend. Never-
theless, the average end-position errors of the MEMD forecast and of the dynamic
iceberg model are 3.9 km and 6.7 km, respectively. The maximum forecast error
of the MEMD forecast scheme is 6.8 km while it is 16.4 km using the dynamic
iceberg model. Hence, the uncertainty in the iceberg forecast is reduced consider-
ably by the MEMD forecast.
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11.5 Conclusion
A simple and completely adaptive forecast algorithm using MEMD is presented.
The algorithm decomposes each input and output signal into several oscillatory
modes. Based on the correlation of each mode with the original signal, it is then
decided which mode should be forecasted. Moreover, by comparison between two
different forecast strategies of each mode, it is decided if the input signals provide
sufficient information to forecast the output signal. Otherwise, the default self-
forecast is used.

The algorithm can handle information with different time scales and sources of
the same input signal. It automatically chooses which information will most likely
result in a useful forecast.

The algorithm was successfully evaluated on real iceberg drift data. It out-
performed the forecast based on a dynamic model and reduced the uncertainty in
the forecast considerably.
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Figure 11.2: First (blue line) and second MEMD (black line) of the forecast algorithm
input and output signals in the north-south direction. All y-axes have the same scaling.
The wind is scaled to 2 % of its magnitude.
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Figure 11.3: Forecast of the example considered. A forecast of the dynamic iceberg model
is shown for comparison.
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Figure 11.4: Forecast trajectories using the MEMD forecast scheme (green) and the dy-
namic model (black). Red represents the real 12 h trajectory shown, and the end point is
marked. Every 24 h, a 12 h forecast trajectory is displayed.
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Chapter 12

Comparison of Statistical Iceberg
Forecast Models

This chapter is based on PAPER C (Andersson et al. 2018c).
In this thesis, several iceberg forecast algorithms are proposed, which use ice-

berg position measurements to improve the short-term iceberg drift forecast. In
this chapter, these statistical forecast methods and models are briefly reviewed.
An extensive comparison between the statistical models, in addition to a dynamic
iceberg forecast model, is performed on several iceberg drift trajectories. Based on
this comparison a new statistical forecast scheme is proposed that combines some
of the advantages of the other methods.

12.1 Introduction
Within this thesis several methods how to forecast an iceberg trajectory including
past measurements are proposed (Sec. 7, Sec. 6, Sec. 9, Sec. 11). These sections
are based on following articles Andersson et al. (2016d;a;b; 2017a). The proposals
were tested and compared to the mechanistic dynamic model on different iceberg
datasets. They all have in common that they are in average superior to the mecha-
nistic dynamic model for short-term iceberg drift forecasts (up to 24 h). However,
the methods themselves were not compared against each other. Moreover, it is
difficult to conclude which one performs better based on the published articles.

Therefore, this chapter addresses this situation by giving a brief introduction to
the methods and attempting to make a fair comparison between the forecast perfor-
mances. The weaknesses and strengths of the methods are discussed and possible
combinations to improve the forecast performance are suggested.

153
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12.2 Theory and Methods
In this section the methods used in the forecast schemes are briefly presented.

When analyzing a temporal dataset of iceberg positions, the following dis-
cretization of a continuous time model can be used (3.2). In the context of this
paper, the state x is typically the two-dimensional iceberg position and velocity, u
the environmental driving forces, f represents the momentum balance and w the
process noise. The position measurements y is represented by the function h and
the measurement noise v. The process noise w accounts for unknown disturbances
on the system states due to model uncertainty and uncertainty in the inputs u.

Alternatively to the moment balance described in (3.2), this chapter uses a
vector-autoregression model with the following structure

zk =

p∑
i=1

Aizk−i + εεεk, (12.1)

where Ai ∈ IRnz×nz is a real-values matrix containing the regression coefficients
and εεεk ∈ IRnz is the residual, which are independently and identically distributed
and serially uncorrelated (Barnett and Seth 2014). In context of this paper, z ∈ IRnz

is either the two-dimensional iceberg velocity vector or a four-dimensional iceberg
and wind velocity vector. The model (12.1) can be transformed into (3.2).

12.2.1 The Moving Horizon Estimator

The moving horizon estimator is used in several forecast schemes to estimate the
states and parameters of the dynamic iceberg model. The MHE is introduced in
Sec. 3.1.1.

12.2.2 The Extended Kalman Filter

In some of the forecast scheme the MHE can be replaced by the less complex
extended Kalman filter (EKF). This may result in a loss of performance, but makes
the implementation simpler. The EKF is introduced in Sec. 3.1.2.

12.2.3 Vector-Autoregression Model Fitting

The parameters of the Vector-Autoregression model (VAR) (12.1), the coefficients
Ai and the residual covariance matrix ΣΣΣ = cov(εεεk ), are fitted to data by solving an
optimization problem. The first represents the predictable structure of the data and
the later the unpredictable. The VAR-model is introduced in Sec. 3.3.

12.2.4 The Multivariate Empirical Model Decomposition

The multivariate empirical mode decomposition (MEMD) is a fully data-driven
adaptive signal processing method. The MEMD is an extension to multivariate
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signals of the empirical model decomposition (EMD). The EMD decomposes a
signal z(t) into amplitude- and/or frequency modulated components called intrin-
sic mode function (IMFs) cl (t) and a bias term r(t). In the context of this thesis z
represents the iceberg velocity. The MEMD is introduced in Sec. 3.2.

12.3 Iceberg Drift Forecast Schemes
In this section the iceberg drift forecast schemes are briefly introduced. The fore-
cast schemes are categorized in kinematic, statistical and hybrid forecast schemes
similar to those in Marko et al. (1988), and help to connect the forecast schemes
presented here to previously published ideas.

The dynamic forecast model uses the momentum equation, which calculates
the acceleration based on the sum of foreces acting on the iceberg. The kinematic
forecast schemes predict the iceberg drift from superposition of past motions of the
iceberg. The statistical forecast schemes use not only the observed iceberg motion,
but also historical data at the iceberg location. A statistical iceberg model is fit-
ted to the data that has a predictable and unpredictable part. The hybrid forecast
schemes use a dynamic iceberg drift model but correct one or several parameters
with help of the observed iceberg trajectory.

In the following sections it is explained how the forecasts are performed. In
order to keep this review brief the particular methods that are used in a forecast
scheme, like the moving horizon estimator or the empirical mode decomposition,
are not explained in detail. Instead, a reference to the original paper and further ref-
erences, directly explaining the particular methods used, are given in each section.
Tab. 12.1 at the end of the section summarizes the performance of the methods.

12.3.1 Dynamic Forecast scheme

The dynamic forecast scheme (DYM) uses a dynamic iceberg drift model to predict
the future iceberg trajectory (Sec. 2.3).

12.3.2 Statistical Forecast Scheme

The VAR Model Forecast Scheme

The Vector-Autoregression (VAR) model forecast scheme is presented in (Sec. 9).
It uses the established kinematic relationship between iceberg, current and wind
velocity

ν = µ + αω, (12.2)

where ν, µ and ω are the iceberg, ocean current and wind velocity. The parameter
α is about 0.017 to 0.02 (Smith 1993, Garrett et al. 1985, Bigg et al. 1997, Wag-
ner et al. 2017). In addition, a current VAR model is identified based on historical
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ocean current data in the region of interest. It is possible to identify a ocean current
model for each grid cell for which current data is available, but it is also possible
to choose one representative ocean current model for a certain region. The basic
premise of the forecast scheme is that (12.2) holds and the current velocity (speed
and direction) accounts for most of the uncertainty in the iceberg drift. The wind
velocity, on the other hand, has a minor contribution to the uncertainty, since it is
well forecasted by a weather forecast model. In this case the problem of forecast-
ing the iceberg velocity can be transformed to a problem of forecasting the current
velocity.

If wind information is received from a weather model, the following steps are
performed in every forecast step for the VAR model:

1. Use a filter or estimator and the kinematic model (12.2) to obtain an estimate
of the current velocity µ.

2. Forecast the current velocityµ using the identified VAR ocean current model.

3. Use (12.2) and the forecasted current velocity µ to calculate the correspond-
ing iceberg velocity ν.

4. Integrate to the iceberg position.

In the VAR forecast scheme only a value for α has to be chosen. This reduces
considerably the amount of parameters in comparison to the forecast schemes that
use the mechanistic dynamic iceberg model. Moreover, information about the
iceberg geometry are not necessary and the double integration from acceleration
to position is avoided. On the other hand, the training set that is used to identify
the VAR ocean current model influences the forecast performance.

The complexity of the forecast produced with the VAR model is moderate,
since the VAR model is linear and a simple filter, for instance the moving average
filter, can be used to smooth the iceberg position measurements.

12.3.3 Kinematic Forecast Schemes

The constant velocity forecast scheme

This is the simplest forecast model possible. It assumes that the iceberg velocity
stays constant during the forecast periods and uses a simple integrator to calcu-
late the iceberg position. Depending on the frequency in which iceberg position
updates are available a filter is necessary to reduce the influence of measurement
noise and fast frequency components. This forecast scheme is very simple and
easy to implement, and provides a first estimate of the forecasted iceberg trajec-
tory. Moreover, it is related to the theoretical current forecast scheme introduced
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below. Both schemes assume either constant iceberg velocity or constant current
velocity, which has a similar effect in the water drag force.

The MEMD Forecast Scheme

The multivariate empirical mode decomposition (MEMD) forecast scheme is pre-
sented in Sec. 11. It can detect oscillations, such as inertial or tidal oscillations,
in the iceberg velocity signal. Several sources (ocean and weather models) that
forecast current and wind velocities may be included to the scheme. These envi-
ronmental models may forecast for a different time horizon and in different fre-
quencies (daily, hourly etc.). Consequently, they may be more precise for different
frequency bands.

The main idea is, therefore, to decompose the inputs (current and wind ve-
locities) and the output (iceberg velocity) into frequency modulated components.
Afterward, each frequency band is forecasted separately for each direction with
the kinematic relationship

νi =
∑
k

ηikµ
i
k +

∑
k

γikω
i
k, (12.3)

where η and γ are weighting parameters. The superscripts are related to the fre-
quency bands and the subscript to possible multiple inputs from different wind and
ocean current models.

The model (12.3) is similar to the kinematic model (12.2), but also uses a
weighting factor for the current input. Smith (1993) used the same kinematic
model, but he did not decompose the signal into different frequency bands. For
each forecast step and frequency band the weighting parameters are recalculated
based on the observed iceberg trajectory. Then it is evaluated for each frequency
band whether the kinematic model 12.3 can forecast the iceberg velocity. Conse-
quently, prior to each forecast it is assessed if causality between inputs and outputs
exists, which is known as the Granger’s causality principle (Granger 1969). If the
assessment is negative the iceberg velocity of that frequency band is only fore-
casted with the past iceberg velocity.

The decomposition of the input and output signals into their frequency bands
is performed by the MEMD. With the MEMD the data is filtered and oscillations,
such as like tidal and inertial oscillations, are detected. Each frequency band is
forecasted separately. Consequently, it is possible to include several wind and
ocean current models, and choose for each frequency band which of them fit best
to the observed iceberg velocity. On the other hand, this forecast scheme is the
most complex and time consuming of all schemes presented in this article. In ad-
dition, it is necessary to observe the iceberg for some time. It is recommended
to have at least two extrema of the oscillation that one would like to detect in the
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data set. In case of the iceberg drift the inertial and tidal oscillations are the most
important fast oscillations. Therefore, the MEMD needs iceberg drift data of about
one day before it can detect these oscillations. The measurement frequency should
exceed the Nyquist frequency (about 6 h). The MEMD becomes more precise as
more data becomes available. As the MEMD forecast is purely data driven it can
be difficult to pinpoint the cause of a good or bad forecast result (Andersson et al.
2017a).

An important adjustment from the original forecast algorithm presented in Sec.
11.3.1 is that if the 1st and 2nd MEMD result in a different amount of IMFs the
Self-forecast (Sec. 11.3.2) is used without the re-indexing presented in Step 4. of
the algorithm. The re-indexing is removed, since it is difficult and tends to intro-
duce errors.

12.3.4 Hybrid Forecast Schemes

Ancillary current forecast scheme

The ancillary current forecast scheme (ACF) is proposed in Section 6. It was also
used in a switching scheme in Sec. 8. The forecast scheme is a hybrid between
mechanistic dynamic and statistical models, since it uses the mechanistic dynamic
model but corrects some of its parameters based on the observed drift of the ice-
berg.

This forecast scheme was motivated by the idea of Smith (1993) who proposed
to correct the drag coefficients (from air and water) of the dynamic iceberg model
to improve the forecast. The correction of the drag coefficients based on past ob-
servation was also performed by Turnbull et al. (2015). In Section 6 it was shown
if the drag coefficients are used as optimization variables the resulting variables
lose their physical meaning and cannot be considered drag coefficients anymore.
In addition, the estimated drag coefficient and chosen cross-sectional areas of the
iceberg are codependent. If this correction scheme is used in a moving horizon
window, strong changes and peaks of the drag coefficients were observed that de-
grade the forecast performance. The product of cross-sectional area and drag coef-
ficients can only be estimated with a sufficiently long observation horizon (which
guarantees that ocean current and wind inputs are unbiased). Alternatively to
correcting the drag coefficients, the idea of an ancillary current was proposed (Sec.
6). The ancillary current is an artificial corrective current, which is added to the
current input received from an ocean model

µ̃ = µ + µ∗, (12.4)

where µ, µ̃ and µ∗ are the current from the ocean model, the corrected current
and the ancillary current, respectively. The ancillary current is assumed to be
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constant during the forecast and recalculated every time a new iceberg position
measurement becomes available. This is done with a moving horizon estimator
(Sec. 3.1.1). A simpler estimator, like the extended Kalman filter (Sec. 3.1.2),
may also be used. The ancillary current has a smoother progression than the drag
coefficients with less sudden changes and, therefore, improves the forecast perfor-
mance considerably (Andersson et al. 2016a).

The underlying assumption of the ancillary current µ∗ is that the current from
an ocean model µ is biased, and that this bias changes only slowly over time. In
fact, two other variables to correct the current input may also be used, e.g. absolute
current velocity and direction. The desired property of the correction variables is
that they only change slowly during the forecast.

In Andersson et al. (2016a) gives an example of how to predict the forecast per-
formance based on the assumption that the ancillary current changes slowly over
the forecast horizon.

Theoretical Current Forecast Scheme

The ancillary current forecast scheme uses currents from an ocean model (or other
sources) at all times. With the ancillary current the deficiencies of the iceberg drift
model and the data are captured and corrected. The approach corrects the current
input, since this input is the source of the largest uncertainty (error). During the
short-term forecast the ancillary current is assumed constant, since it is assumed
that the bias in the current input varies slowly. Consequently, it is assumed that
the first derivative of the current input µ̇ is approximately correct. If this is not
the case and the ancillary current changes quickly, it may produce large forecast
errors.

If the ancillary current changes quickly it may be beneficial to not use the cur-
rent input µ at all, but estimate the total theoretical current instead (Andersson
et al. 2016c)

µ̂ = 0µ + µ∗, (12.5)

where the 0 indicates that the ocean current input is not used.
The theoretical current µ̂ and it is assumed constant during the forecast. The

theoretical current can be estimated in the same way as the ancillary current.
The theoretical current forecast scheme (TCF) is strongly related to the ancil-

lary forecast scheme, but avoids error propagation from the ocean current model
(or other current sources). On the other hand, a possibly valuable source of in-
formation is excluded from the forecast scheme. In this forecast scheme the main
changes in the iceberg velocity after the transition period are caused by wind and
wave inputs. Consequently, this forecast scheme has similarities with the constant
iceberg velocity forecast scheme, which is a much simpler forecast scheme (Sec.
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12.3.3).

Inertial Current Forecast Scheme

The inertial current forecast scheme (ICF) is presented in Sec. 7. It is also used in
Sec. 8 to switch between the inertial and ancillary current forecast scheme.

The inertial current forecast scheme uses the mechanistic dynamic iceberg
model in combination with a simple ocean current model. Instead of using a cur-
rent input from ocean models or other sources as the ancillary current forecast
scheme does, the inertial current forecast scheme estimates the complete ocean
current. It assumes that the current consists of an oscillatory and slowly varying
component

µ̃ = µ + µ, (12.6)

where µ and µ are the velocities of a inertial oscillation and slowly varying part,
respectively.

The oscillatory part is the wind driven inertial oscillation, which can be approx-
imated by

µ̇ = B(ω) + f k × µ − cµ, (12.7)

where B(ω) is the wind excitation, c is a decay factor, f is the Coriolis frequency
and k is the unit vector directed upwards parallel to the z-axis (De Young and Tang
1990). In the regions studied in this article the inertial oscillation has a period of
about 12 h to 16 h.

The inertial current forecast scheme is more advanced than the theoretical cur-
rent forecast scheme due to an explicit ocean current model. In this study the
tidal currents were neglected in the inertial current forecast scheme. However, it
is possible to extend (12.6) to explicitly consider the tidal currents, which should
improve the method.

During the forecast the slowly varying part of the current is assumed constant
while the oscillatory part is propagated with the model (12.7). Consequently, the
inertial current forecast scheme is "located" between the ancillary and theoretical
forecast schemes. Due to the explicit consideration of the inertial current it is ex-
pected that the slowly varying part is estimated more accurately. The estimation
is challenging and performed with a moving horizon estimator (Andersson et al.
2016b). It is recommended to not use a simpler estimator, like the EKF, since it
may have problems to separate the two current components.

12.4 Dataset
In this section the iceberg, current and wind datasets, which are used in the com-
parison of the methods are introduced.
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Table 12.1: Brief summary of the forecast methods presented in Section 12.3. For each
forecast method the name, abbreviation, classification, requirements and a short descrip-
tion is given. Except of the dynamic model every forecast scheme needs iceberg position
measurements.

Name
(-forecast
scheme)

Abbr. Class. Requirement Description

Dynamic
model

DYM dynamic Current, wind,
(waves) from me-
teorological and
oceanographic
models

Forecast of iceberg trajectory with momentum
balance that calculates the acceleration based
on sum of forces on the iceberg.

VAR
model

VAR statistical Iceberg position
meas.; Wind from
meteorological
model; Historical
ocean current data

Offline identification of an statistical ocean
current model. Estimation of iceberg and cur-
rent velocity with kinematic iceberg model
and a filter. The current velocity is forecasted
with a statistical ocean current model, and the
iceberg velocity is again calculated with kine-
matic iceberg model.

Constant
velocity

CVF kinematic Iceberg position
meas.

Estimation of iceberg velocity with filter.
Constant iceberg velocity in forecast period.

MEMD
model

MEMD kinematic Iceberg position
meas.; Current,
wind, (waves) from
meteorological
and oceanographic
models (can be
several)

Decomposition of inputs (current and wind
vel.) and output (iceberg vel.) into frequency
bands. Decision if causality exists between in-
puts and output for each frequency band. As
a result iceberg vel. is forecasted in each band
by linear combination of inputs or otherwise
by autoregression.

Ancillary
current

ACF hybrid Iceberg position
meas.; Current,
wind, (waves) from
meteorological
and oceanographic
models

Correction of ocean current input of the dyn.
model with estimated ancillary current, which
is assumed constant during the forecast pe-
riod.

Theoretical
current

TCF hybrid Iceberg position
meas.; Wind from
meteorological
model

Estimation of complete (theoretical) ocean
current needed to explain observed iceberg
drift. Does not use current input from ocean
model. Estimated current is assumed constant
in forecast period.

Inertial
current

ICF hybrid Iceberg position
meas.; Wind from
meteorological
model

Estimation of ocean current with simplified
inertial and mean ocean current model. Mean
current is assumed constant and oscillation of
inertial current is propagated by a model in
forecast period.

12.4.1 Iceberg Data

To assess the performance of the models described above, we compared their pre-
dictions with iceberg, current and wind datasets were recorded in 2015 and 2016.
The characteristics of these datasets are described in detail in Sec. 4.
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12.4.2 Current data

The current data set was received from the E.U. Copernicus Marine Service (EU
Copernicus Marine 2006). The Global Ocean 1/12◦ Physical Analysis and Fore-
cast model updated daily was used. The Operational Mercator global ocean anal-
ysis and forecast system at 1/12◦ provides 10 days of 3D global ocean forecasts
updated daily. More specifically in this article the one hour surface current and
daily layered mean current data is used. The depth of the layered current data
is about 110 m. In fact, the current is already corrected by observation. Conse-
quently, the case study presents hindcasts results. However, observation data in
Northern Baffin Bay may be limited, reducing the possibility to correct the ocean
current forecast.

The data assimilation into the model includes for instance drift data from SVP
drifting buoys and sea surface height measurements from GLOSS, BODC and
other sources. For more information the reader is advised to visit the E.U. Coper-
nicus Marine Service webpage (EU Copernicus Marine 2006).

12.4.3 Wind Data

As wind source, the Global ocean wind L4 near real time 6 hourly observations
wind model from the E.U. Copernicus Marine Services is used. The wind fields
are estimated from scatterometer retrievals. They have a horizontal resolution of
0.25◦×0.25◦ and are updated every 6 h. Possible empty data points were removed
from the data set. In addition, the wind data points were linearly interpolated onto
the current grid cells. For more information the reader is advised to visit the E.U.
Copernicus Marine Service webpage (EU Copernicus Marine 2006). The wind
data set does not represent forecasted wind. However, this will not influence the
overall results and conclusions of the study. In fact, the dynamic iceberg drift
model is likely the largest beneficiary.

12.5 Performance Indices

In order the quantify the forecast performance at a specific time, the mean ζ̂ over
all end position forecast errors ζ = | χ̂χχk,end − χχχk,end | is calculated

ζ̂N = 1/K

K∑
k=1

ζk, (12.8)

where χ̂χχk,end and χχχk,end are the end position of the forecast and measured drift
trajectory at time tk , K is the amount of forecasts and N the length of the forecast
period.

An alternative, which considers the whole forecasted trajectory and not just the
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end points, is the square root of the mean squared distance between the forecasted
χ̂χχ and measured χχχ iceberg trajectory

ΞN,k =

√√√
1

N

N∑
i=1

 χ̂χχ(tk + ih) − χχχ(tk + ih)22, (12.9)

where tk is the initial time of the forecast and h is the time between measurements.
The performance index (PI) for the whole observation horizon is the root mean
square of ζN (12.9) with the same forecast horizon N

PIN =

√√√
1

K

K∑
k=1

Ξ2
N,k

. (12.10)

A relative performance index is the forecast error relative to the movement of
the iceberg

|χχχk,end − χ̂χχk,end | < κ |χχχk,end − χχχk,init |, (12.11)

where χχχk,init is the initial position of the measured iceberg trajectory at time tk .
The value κ is a performance index. For this chapter the following forecast cate-
gories are chosen (Fig. 9.1):

• Bad forecast: κ > 1,

• Acceptable forecast: 1 ≥ κ > 0.75,

• Good forecast: 0.75 ≥ κ > 0.5,

• Excellent forecast: κ < 0.5 .

12.6 Comparison Iceberg Drift Forecast
In this section the performance of the iceberg drift forecast methods are discussed.
Each forecast method predicts every hour the iceberg trajectory. These forecasts
are compared to the actual observed iceberg trajectory and the error is calculated
(Section 12.5).

In addition to the short-term forecast schemes presented in Section 12.3, the
static forecast scheme (STAT) is included in the comparison. It is a "pseudo"
forecast, which assumes that the iceberg does not move but remains at the initial
location. It gives an indication of how fast the iceberg moves.

For each forecast method the same tuning was used for all iceberg trajectories
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to show the robustness of the methods. The amount of forecasts of each iceberg
varies due to the varying amount of available data for each iceberg.

Since a longer period is examined, a simple deterioration model is implemented
assuming a daily 2 % deterioration of the iceberg length, width, draft, and sail
height. The results are relatively insensitive to different deterioration rates.

The discussion begins with Iceberg 2, since it is the iceberg with the shortest
observation horizon, which helps to create clear figures. For the other icebergs it is
often unpractical to show, for example, the forecast trajectories. A more detailed
discussion of the forecast performance for the other icebergs is moved to the end
of the chapter 12.A.

12.6.1 Iceberg 2

For Iceberg 2 66 forecasts are performed. The mean end-position error (12.8) and
the standard deviation of every forecast method for different forecast horizons are
given in Tab. 12.2.

The MEMD forecast scheme performs best up to a forecast horizons of 12 h.
However, the MEMD scheme needs more data than the other methods before a
forecast can be performed. Therefore, it begins later than the others. For forecasts
of 12 h to 18 h the TCF scheme performs best. The VAR forecast scheme pro-
duces the smallest error for a forecast horizon of 24 h. Interestingly, the standard
deviation of CVF and STAT forecast scheme are small indicating that the iceberg
velocity experience similar changes over the whole observation horizon. The an-
cillary forecast scheme performs badly. One reason is that the ocean current input
has to be corrected strongly. Moreover, this adaptation also changes constantly.

The end-position error of a 12 h forecast of every method is shown in Fig.
12.1(a). The corresponding iceberg trajectory and the forecast trajectories of the
different methods are shown in Fig. 12.1(b). For reason of clarity the forecast
trajectories are only shown for this iceberg and only every 12 h. Even though the
forecast error is very similar for the statistical methods the end positions of the
12 h forecast trajectories differ considerably. Nevertheless, the forecast direction
is often similar such that the trajectories are in the same sector.

The dynamic forecast model produces always a large forecast error, since the
environmental forcing is not correctly represented for the iceberg. The ocean cur-
rent direction is directed opposed to the drift direction over almost the entire obser-
vation period, which is the main reason for the large forecast error (mean absolute
error about 140◦). The wind direction correlates better with the iceberg drift in the
observation horizon (mean absolute error about 60◦), but at the beginning of the
observation the iceberg drift and wind direction do not correlate well, which also
contributes to the large forecast error in the first hours of the observation. Stronger
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Table 12.2: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 2. The standard deviation is given in brackets and the best forecast is marked bold.
The best PI (12.10) is marked by a star. The static model gives an indication the iceberg
drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.31 (0.18) 1.8 (1.0) 3.5 (1.7) 5.8∗ (2.5) 8.3∗ (3.4)

ACF 0.19 (0.10) 1.9 (1.3) 4.2 (3.5) 6.8 (4.1) 10.9 (5.8)

TCF 0.17 (0.08) 1.6 (1.0) 3.6 (2.6) 5.7 (3.5) 8.8 (5.1)

ICF 0.16 (0.07) 1.8 (0.9) 3.8 (2.6) 5.8 (3.7) 9.1 (5.1)

VAR 0.29 (0.16) 1.8 (0.9) 3.8 (2.3) 5.7 (3.7) 8.0 (4.8)

MEMD 0.10∗ (0.05) 1.6∗ (0.8) 3.6∗ (1.7) 6.2 (3.0) 10.0 (6.2)

DYM 0.52 (0.22) 4.4 (1.9) 9.0 (3.6) 12.9 (5.4) 16.5 (6.6)

STAT 0.46 (0.18) 2.7 (1.0) 5.6 (1.7) 7.8 (1.4) 10.7 (2.3)

winds and better directional correlation are the main reasons for the improvement
of the dynamic iceberg forecast between 40 h to 65 h.

All statistical methods reduce the forecast error compared to the dynamic ice-
berg model considerably. The statistical models produce larger errors when the
iceberg changes direction at 10 h and 45 h. The MEMD performs better than the
other methods in the period 40 h to 50 h. Otherwise, it can be observed that the
statistical methods behave similarly (Fig. 12.1(a)). Only the dynamic model has a
completely different forecast behaviour, because the badly specified environmental
forces are not corrected.

12.6.2 Iceberg 1

For Iceberg 1 160 forecasts are performed. The mean end-position error (12.8) and
the standard deviation of all methods are shown in Tab. 12.3. The considerable
larger forecast errors compared to Iceberg 2 are caused by several loops with a
period of about 18 h to 24 h in the iceberg trajectory that are most likely caused
by the current flows in and out of Conception Bay (between Grates Cove and
Bonavista (Fig. 4.3)). A more detailed discussion can be found in 12.A.1.

12.6.3 Iceberg 4

For Iceberg 4 674 forecasts are performed. It breaks apart after about 5.5 days.
After evaluating the pictures of the iceberg, it is assumed that breakage happens
at about 2/3 of the waterline length. Mass, width, draft, and sail are adjusted
accordingly in the simulations. The two remaining icebergs (Iceberg 4 and Iceberg
4-3) are likely more dome-shaped than wedged. The shape factor is, therefore,
adjusted after the breakage.

The performance of each forecast method is given in Tab. 12.4. The forecast
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(b) Iceberg drift trajectory of Iceberg 2 and the 12 h forecast trajectories of the different
forecast methods. The number marker corresponds to the time t f in the upper figure.

Figure 12.1: Forecast results for Iceberg 2. The forecast error is shown in the upper figure,
while the lower figure shows the corresponding iceberg drift trajectory.

of Iceberg 4 is much better than of Iceberg 1. The dynamic forecast model is
outperformed by all statistical methods for the considered forecast horizons. Large
errors in the statistical forecast (besides the MEMD and CVF) are not observed.
More details can be found in 12.A.2.

12.6.4 Iceberg 4-3

For Iceberg 4-3 1161 forecasts are performed. The performance of each forecast
method is given in Tab. 12.5. It is expected that the iceberg is small since it is a
piece of Iceberg 4. The iceberg moves relative quick and the drift trajectory has
several loops and direction changes. Therefore, the CVF and TCF that assume
constant iceberg or current velocity perform not well. The introduction of the
inertial current model in the ICF helps to detect the fast frequency components and
improves the forecast considerably. Similarly the VAR model is able to forecast
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Table 12.3: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 1. The standard deviation is given in brackets and the best forecast is marked bold.
The best PI (12.10) is marked by a star. The static model gives an indication the iceberg
drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.81 (0.58) 5.2 (3.6) 9.6 (6.3) 15.0 (9.3) 20.6 (11.8)

ACF 0.34 (0.25) 3.4∗ (2.3) 7.3∗ (4.5) 11.8 (6.9) 17.5 (9.1)

TCF 0.38 (0.29) 4.0 (2.8) 8.6 (5.5) 13.0 (7.9) 18.6 (10.2)

ICF 0.33 (0.22) 3.6 (2.0) 7.8 (4.3) 12.0 (6.7) 17.1 (8.5)

VAR 0.72 (0.52) 3.9 (2.7) 6.6 (4.2) 9.6∗ (6.1) 12.8∗ (7.5)

MEMD 0.25∗ (0.21) 4.0 (2.7) 8.5 (5.2) 14.3 (10.4) 22.3 (24.1)

DYM 0.70 (0.46) 5.0 (2.3) 9.5 (4.5) 13.7 (6.2) 17.6 (7.2)

STAT 0.87 (0.58) 4.9 (3.0) 8.5 (5.0) 11.5 (7.1) 14.4 (9.0)

Table 12.4: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 4. The standard deviation is given in brackets and the best forecast is marked bold.
The best PI (12.10) is marked by a star. The static model gives an indication the iceberg
drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.35 (0.19) 1.9 (1.2) 3.5 (2.8) 5.7 (4.5) 8.1 (6.5)

ACF 0.22 (0.13) 2.2 (1.2) 4.2 (2.4) 6.7 (3.8) 9.6 (5.6)

TCF 0.21 (0.12) 2.0 (1.1) 3.9 (2.2) 6.2 (3.7) 9.0 (5.7)

ICF 0.18 (0.11) 1.8∗ (1.0) 3.6 (2.1) 5.8 (3.6) 8.4 (5.4)

VAR 0.33 (0.18) 1.8 (1.0) 3.0∗ (2.2) 4.8∗ (3.6) 7.1∗ (5.2)

MEMD 0.14∗ (0.09) 2.1 (1.2) 4.1 (2.6) 6.7 (4.3) 9.7 (6.5)

DYM 0.38 (0.24) 3.4 (2.0) 7.2 (3.7) 11.1 (5.4) 14.7 (7.0)

STAT 0.68 (0.40) 4.0 (2.3) 7.7 (4.4) 11.5 (6.3) 15.2 (8.2)

some of the fast frequency components if they are present in the training data
set. Hence, the detection of fast frequency components and the ability to forecast
them, improves the forecast compared to methods, like CVF, that are unable to do
it. More details about Iceberg 4-3 can be found in 12.A.3.

12.6.5 Iceberg 1040-1

For Iceberg 1040-1 865 forecasts are performed (Tab. 12.6). The ICF forecast
scheme has the best forecast results since it is able to forecast fast frequency com-
ponents. An additional advantage is that Iceberg 1040-1 is tracked in northern
Baffin Bay where tidal and inertial frequencies are similar. The tidal current is not
explicitly considered in the method, but it will correctly be detected and forecasted
if it dominates the inertial current oscillation. More details about Iceberg 1040-1
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Table 12.5: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 4-3. The standard deviation is given in brackets and the best forecast is marked bold.
The best PI (12.10) is marked by a star. The static model gives an indication the iceberg
drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.74 (0.51) 4.6 (3.4) 8.2 (5.8) 12.9 (8.3) 17.9 (11.4)

ACF 0.31 (0.19) 3.3 (2.1) 6.5 (4.5) 9.3 (6.1) 13.3 (8.5)

TCF 0.33 (0.21) 3.6 (2.4) 7.2 (5.3) 10.0 (6.9) 14.4 (9.4)

ICF 0.26∗ (0.17) 2.7∗ (1.8) 5.7∗ (3.9) 8.2∗ (5.4) 11.5 (7.3)

VAR 0.66 (0.45) 3.6 (2.5) 5.7 (4.0) 8.0 (5.1) 10.5∗ (6.7)

MEMD 0.25∗ (0.18) 4.0 (2.7) 7.9 (5.2) 11.65 (7.2) 15.9 (9.7)

DYM 0.65 (0.44) 3.7 (2.4) 6.7 (4.2) 9.58 (5.9) 12.5 (7.5)

STAT 0.99 (0.55) 5.6 (3.0) 10.3 (5.3) 14.70 (7.4) 18.9 (9.6)

Table 12.6: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 1040-1. The standard deviation is given in brackets and the best forecast is marked
bold. The best PI (12.10) is marked by a star. The static model gives an indication the
iceberg drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.53 (0.33) 2.85 (2.0) 5.8 (4.6) 9.9 (7.5) 14.0 (10.5)

ACF 0.31 (0.27) 2.9 (1.8) 5.3 (3.5) 9.2 (6.4) 12.5 (9.3)

TCF 0.31 (0.27) 2.9 (1.9) 5.2 (3.9) 9.1 (6.9) 12.5 (10.1)

ICF 0.25 (0.24) 2.3∗ (1.5) 4.7∗ (3.5) 8.2∗ (6.5) 11.7∗ (9.6)

VAR 0.51 (0.31) 2.6 (1.8) 5.3 (4.0) 8.8 (6.9) 12.4 (9.8)

MEMD 0.22∗ (0.13) 3.3 (2.0) 6.1 (4.1) 10.9 (7.1) 15.5 (10.5)

DYM 0.57 (0.29) 3.7 (2.0) 7.1 (4.2) 10.6 (6.1) 13.5 (7.8)

STAT 0.80 (0.49) 4.4 (2.8) 8.0 (5.3) 11.7 (7.6) 14.8 (9.8)

can be found in 12.A.4.

12.6.6 Iceberg 1040-2

For Iceberg 1040-2 865 forecasts are performed (Tab. 12.7). The absolute error
only increases slightly compared to the error of Iceberg 1040-1 even though the
iceberg moves much faster as indicated by the static forecast error. The TCF per-
forms best since the mean ocean current dominates the fast frequency components.
Therefore, an explicit consideration of them in the ICF or VAR forecast scheme
does not improve the forecast. More details about Iceberg 1040-2 can be found in
Appendix 12.A.5.
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Table 12.7: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 1040-2. The standard deviation is given in brackets and the best forecast is marked
bold. The best PI (12.10) is marked by a star. The static model gives an indication the
iceberg drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.34 (0.28) 2.4 (1.7) 5.8 (3.8) 9.7 (6.0) 13.7 (8.1)

ACF 0.21 (0.25) 2.4 (1.8) 6.4 (4.7) 11.4 (8.1) 16.5 (11.4)

TCF 0.19 (0.24) 2.0∗ (1.4) 5.2∗ (3.2) 9.0∗ (5.5) 12.9∗ (7.7)

ICF 0.20 (0.24) 2.1 (1.4) 5.3 (3.2) 9.1 (5.4) 13.1 (7.5)

VAR 0.31 (0.27) 2.3 (1.7) 5.8 (3.9) 9.6 (6.2) 13.5 (8.6)

MEMD 0.14∗ (0.14) 2.8 (2.0) 6.9 (4.3) 11.7 (7.5) 17.1 (12.0)

DYM 0.61 (0.55) 5.2 (4.8) 10.7 (9.8) 15.8 (14.5) 20.3 (18.7)

STAT 1.08 (0.50) 6.4 (2.8) 12.8 (5.3) 19.2 (7.7) 25.6 (9.7)

Table 12.8: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 5450. The standard deviation is given in brackets and the best forecast is marked
bold. The best PI (12.10) is marked by a star. The static model gives an indication the
iceberg drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.38 (0.20) 2.0 (1.1) 4.2 (1.8) 7.4 (3.4) 11.1 (4.8)

ACF 0.20 (0.11) 2.1 (1.2) 3.7 (2.2) 6.5 (3.9) 9.5 (5.5)

TCF 0.20 (0.12) 2.1 (1.2) 3.7 (2.1) 6.6 (3.8) 9.7 (5.4)

ICF 0.17 (0.10) 1.8∗ (1.1) 3.7 (2.1) 6.7 (3.7) 10.0 (5.3)

VAR 0.37 (0.20) 2.0 (1.1) 3.6∗ (1.7) 6.4∗ (3.3) 9.4∗ (4.4)

MEMD 0.15∗ (0.08) 2.1 (1.2) 4.6 (2.0) 8.2 (4.0) 12.2 (5.9)

DYM 0.45 (0.25) 3.9 (1.6) 8.6 (2.6) 13.4 (3.9) 18.1 (4.8)

STAT 0.79 (0.40) 4.6 (2.1) 9.1 (3.7) 13.5 (5.4) 17.8 (6.9)

12.6.7 Iceberg 5450

For Iceberg 5450 173 forecasts are performed (Tab. 12.8). The mean error and
standard deviation are similar for the statistical methods. More details about Ice-
berg 5450 can be found in 12.A.6.

12.6.8 Iceberg 3534

For Iceberg 3534 334 forecasts are performed. The mean end-position error (12.8)
for all forecasts is extremely small (Tab. 12.9). The VAR and ICF methods have
a similar performance and outperform the other statistical methods. The iceberg
moves relatively slowly, which explains the small absolute forecast error, which
is the smallest of all icebergs discussed in this article. However, the standard
deviation in comparison to drift forecast of the other icebergs is only superior for
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Table 12.9: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 3534. The standard deviation is given in brackets and the best forecast is marked
bold. The best PI (12.10) is marked by a star. The static model gives an indication the
iceberg drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.42 (0.30) 2.0 (1.5) 3.1 (2.1) 5.2 (3.8) 6.9 (5.2)

ACF 0.29 (0.24) 2.7 (2.0) 3.3 (2.6) 5.9 (4.5) 7.0 (5.5)

TCF 0.29 (0.23) 2.6 (2.0) 3.2 (2.6) 5.7 (4.6) 6.8 (5.7)

ICF 0.20∗ (0.15) 1.8∗ (1.2) 2.4∗ (1.7) 4.2∗ (3.0) 5.2 (4.0)

VAR 0.41 (0.29) 1.8 (1.3) 2.3∗ (1.7) 4.0 (3.0) 5.4∗ (4.1)

MEMD 0.22 (0.16) 2.4 (1.8) 3.2 (2.2) 5.3 (3.0) 6.7 (5.0)

DYM 0.42 (0.30) 2.2 (1.6) 3.6 (2.3) 5.6 (3.7) 7.2 (4.5)

STAT 0.54 (0.39) 2.8 (2.0) 4.7 (3.1) 7.1 (4.6) 9.2 (5.7)

Table 12.10: Mean end-position-error (12.8) [km] for different forecast horizons of Ice-
berg 3651. The standard deviation is given in brackets and the best forecast is marked
bold. The best PI (12.10) is marked by a star. The static model gives an indication the
iceberg drift distance within the forecast horizon.

1h 6h 12h 18h 24h

CVF 0.42 (0.27) 2.1 (1.7) 3.3 (4.0) 6.0 (6.4) 8.3 (9.4)

ACF 0.24 (0.15) 2.5 (1.6) 4.0 (3.4) 7.1 (6.1) 9.5 (9.0)

TCF 0.24 (0.15) 2.4 (1.6) 3.7 (3.4) 6.6 (6.1) 8.8 (9.0)

ICF 0.16∗ (0.12) 1.5∗ (1.4) 3.0 (3.5) 5.4 (6.3) 7.9 (9.4)

VAR 0.40 (0.25) 1.9 (1.4) 2.6∗ (3.1) 4.6∗ (5.1) 6.5∗ (7.0)

MEMD 0.18 (0.10) 2.3 (1.8) 4.2 (4.0) 7.8 (8.7) 11.9 (18.8)

DYM 0.46 (0.31) 2.9 (2.1) 5.2 (4.5) 8.4 (6.5) 11.1 (8.4)

STAT 0.63 (0.42) 3.3 (2.4) 5.9 (4.8) 9.1 (7.0) 11.9 (9.0)

longer forecast horizons. More details can be found in 12.A.7.

12.6.9 Iceberg 3651

For Iceberg 3651 250 forecasts are performed (Tab. 12.10). For shorter forecast
horizons (1 h to 6 h) the ICF scheme performs best, while for longer forecast hori-
zons (12 h to 24 h) the VAR scheme produces the best forecast. All statistical
models outperform the dynamic model. However, the VAR model is by far the
best for longer forecast horizons.

The forecast error for this iceberg is relatively small. Iceberg 3651 moves
quicker than Iceberg 3534, which causes the larger absolute forecast error. The
average velocity of Iceberg 3534 is 12 cm/s and of Iceberg 3651 it is 16 cm/s.
More details can be found in 12.A.8.
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12.6.10 Summary Iceberg Forecast

Fig. 12.2 displays the relative forecast performance of different methods of all
icebergs. Even though the absolute error of Iceberg 3534 and Iceberg 3651 was
smallest, Iceberg 1040-2 was forecasted the best relatively. Considering that the
drift trajectory of Iceberg 1040-2 did not have loops or sudden direction changes,
this is not surprising. The larger absolute error is caused by the considerable faster
drift velocity.

Iceberg 1 was forecasted worse in relative and absolute values. The reason is
the multiple loops in the observation period that are neither within the inertial nor
tidal frequency.

Quantitatively, the difference between the performance indices (12.8) and (12.10)
is relatively small and usually the same method performs best considering both
indices. Therefore, the mean end position error (12.8) was usually used in this
chapter, since the value is intuitive and easy to understand.

In comparison to the statistical methods it can be observed that in general the
MEMD forecast scheme predicts the iceberg trajectory in the first hour very well.
However, it degrades quickly for longer forecast horizons and produces a large ab-
solute error. Considering the relative performance of the MEMD forecast scheme,
which is only slightly worse than the VAR or ICF forecast schemes, one can see
that the MEMD forecast scheme produces large forecasts error in cases when it
produces a bad forecast. This is also indicated by a usually larger standard devia-
tion of the MEMD forecast scheme.

The ICF or the VAR model usually produce the best statistical forecast. In fact,
the ICF model is often better for shorter forecast horizons while the VAR model
for longer. Therefore, a combination of both methods would be preferable.

For many of the iceberg trajectories it can be observed that the relative per-
formance for the 12 h forecast is slightly better than the 6 h forecast. Most likely
this is caused by the tidal current, which is either filtered or approximated. Its
oscillation period correlates with the 12 h forecast. The largest offset is expected
after 6 h. Moreover, it can be observed that the correct detection of the fast oscilla-
tions (inertial and tidal oscillations) improves the forecast, even though the oscil-
lations themselves have only a minor influence on the forecast (especially 12 h and
24 h). However, a correct detection of the oscillations influences how well the non-
oscillating part of the ocean current is estimated. Since the non-oscillating part is
often assumed to be constant (or only changes slightly) in the statistical forecast
schemes, its correct estimation at the beginning of the forecast is important.

An improvement with the statistical models in comparison to the dynamic
model can be observed for all trajectories. However, the relative performance usu-
ally decreases for longer forecast horizons more strongly for the statistical methods
than for the dynamic model. Consequently, for even longer forecast horizons it is
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likely that the dynamic model at some point will produce a less worse forecast
than the statistical methods. An interesting observation is that the standard devia-
tion relative to the mean error is usually larger for the statistical methods than for
the dynamic forecast method, even though both measures are smaller in absolute
values for the statistical methods.

12.7 New Statistical Forecast Schemes
The comparison of the statistical methods in the previous section revealed that
the ICF and VAR forecast schemes performed overall the best. Moreover, it was
determined that the ICF forecast scheme usually performs better for shorter periods
while the VAR forecast scheme is usually better longer forecast horizons.

Two different ways of how to combine the two methods can be thought of:

1. Replacing the moving average filter in the VAR forecast scheme with a
Kalman filter using the identified VAR model as the observer model (VAR
KF).

2. Instead of using a constant current input in the ICF and TCF forecast scheme,
the current may be forecasted with the VAR model forecast (ICF VAR and
TCF VAR).

For the first approach the VAR model is transformed into a state space model.
Since this model is linear a Kalman filter and not a MHE is used. The estimated
of iceberg and ocean current velocity at the beginning of the forecast becomes so
model based. This decreases the time delay in the velocity estimates, which was
introduced when a simple moving average filter was used. Moreover, a more pre-
cise detecting of measurement and process noise is possible. On the other hand,
the filtering becomes more aggressive, meaning the velocity is less smooth com-
pared to the moving average filter (this depends also on the tuning of the Kalman
filter).

The forecast results for this approach for the data sets used in this study are
shown in Tab. 12.11. The forecast of Iceberg 1, 2, 1040-2 and 5450 improves.
Moreover, the 6 h forecast of Iceberg 4 and 4-3 improves. However, not all fore-
casts can be improved. The forecast performance of Iceberg 4-3, 3534 and 3651
decreases quite a bit for longer forecast horizons (12 h to 24 h). For Iceberg 4-3
the new approach increases the errors slightly for each of the peaks in the forecast
performance (Fig. 12.5(a)). This may be reduced by a less aggressive filter with
stronger smoothing. For Iceberg 3534 the overall performance for longer forecast
horizons (12 h to 24 h)) is better with the VAR model. Again, this may be due
to a stronger smoothing. A similar observation can be done for Iceberg 3651. In
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Table 12.11: Mean end-position-error (12.8) [km] for different forecast horizons of VAR
forecast scheme with the Kalman filter. The standard deviation is given in brackets and
bold numbers show an improvement of the forecast in comparison to the previous pro-
posed forecast schemes.

1h 6h 12h 18h 24h

Iceberg 1 0.28 (0.24) 2.5 (1.9) 6.1 (3.7) 9.1 (5.5) 12.6 (6.8)

Iceberg 2 0.14 (0.08) 1.5 (0.7) 4.0 (2.0) 4.9 (2.5) 7.0 (3.4)

Iceberg 4 0.21 (0.12) 1.7 (1.0) 3.3 (2.3) 4.9 (3.6) 7.2 (5.4)

Iceberg 4-3 0.28 (0.19) 2.7 (1.8) 6.5 (4.4) 10.0 (6.6) 14.44 (9.2)

Iceberg 1040-1 0.40 (0.26) 2.4 (1.5) 4.9 (3.2) 8.3 (5.6) 12.0 (7.9)

Iceberg 1040-2 0.20 (0.24) 1.9 (1.5) 4.6 (3.1) 7.7 (4.9) 11.2 (6.8)

Iceberg 5450 0.27 (0.14) 1.9 (1.1) 3.3 (1.9) 5.9 (3.5) 9.1 (4.6)

Iceberg 3534 0.37 (0.24) 2.0 (1.3) 2.7 (2.0) 4.8 (3.4) 6.1 (4.3)

Iceberg 3651 0.29 (0.18) 1.7 (1.1) 2.9 (2.6) 5.4 (4.8) 7.8 (7.0)

fact, the new approach reduces the large error at the end of the observation horizon
but increases it slightly during the other periods (Fig. 12.10(a)). In comparison
to the VAR model forecast the 1 h and 6 h forecast of the new approach is clearly
improved. It has to be kept in mind that the results depend on the tuning of the
process and measurement covariances of the Kalman filter.

The inclusion of the VAR model forecast into the ICF forecast scheme is
shown in Tab. 12.12. In general, it can be observed that the combination ICF
and VAR is better than TCF and VAR. For some of the icebergs the 6 h forecast
improves, however, a strong tendency to large outliers was observed. These have
to be detected and removed from the forecast. A different tuning of the MHE
may improve the situation. Nevertheless, it is not straight forward to improve the
forecast performance by including the VAR forecast into the ICF forecast scheme.

12.8 Conclusion and Future Work
In this chapter different iceberg forecast schemes were compared over a forecast
horizon of 1 h to 24 h. A summary of the average performance of every method
on the presented iceberg tracks is given in Tab. 12.13. As expected the statistical
forecast models generally outperformed the dynamic forecast model. However, it
was also shown that the dynamic model sometimes performs better than the sta-
tistical methods. From the statistical forecast models the ICF and VAR model
performed the best. On the other hand, each of the proposed statistical forecast
models performed for specific icebergs and forecast horizons better than the oth-
ers. The MEMD forecast scheme usually produced the best forecast for forecast
horizons of about 1 h. The ICF forecast scheme performed well for forecast hori-
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Table 12.12: Mean end-position-error (12.8) [km] for different forecast horizons of the
ICF scheme forecasting the current with the VAR model. The standard deviation is given
in brackets and bold numbers show an improvement of the forecast in comparison to the
previous proposed forecast schemes.

1h 6h 12h 18h 24h

Iceberg 1 0.33 (0.22) 2.8 (1.8) 6.7 (4.8) 9.8 (6.6) 13.3 (8.3)

Iceberg 2 0.16 (0.07) 1.5 (0.9) 3.9 (2.2) 5.5 (3.3) 7.9 (4.3)

Iceberg 4 0.18 (0.11) 1.6 (0.9) 3.6 (2.3) 5.8 (3.7) 8.6 (5.5)

Iceberg 4-3 0.26 (0.17) 2.5 (1.9) 6.5 (5.4) 9.3 (7.3) 13.2 (10.5)

Iceberg 1040-1 0.27 (0.24) 2.7 (1.9) 6.7 (5.5) 10.9 (8.7) 15.3 (12.6)

Iceberg 1040-2 0.20 (0.24) 2.3 (3.5) 6.5 (10.4) 10.6 (15.1) 15.04 (21.6)

Iceberg 5450 0.17 (0.10) 1.7 (1.1) 3.7 (2.0) 6.5 (3.3) 9.8 (4.7)

Iceberg 3534 0.20 (0.15) 1.9 (1.4) 3.1 (2.8) 4.8 (4.3) 6.34 (5.8)

Iceberg 3651 0.16 (0.12) 1.5 (1.3) 3.1 (3.2) 5.3 (5.5) 7.8 (8.0)

zons up to 12 h, while the VAR forecast scheme usually performed best for longer
forecast horizons (12 h to 24 h).

The MEMD and ACF forecast scheme generally do not perform well for
longer forecast horizons (12 h to 24 h). In both cases the assumptions seemed
to not hold. For the ACF it seems the assumption that the current model can be
corrected with a constant term is not valid for longer forecast horizons. For the
MEMD forecast scheme the assumption that all identified oscillations continue
with a similar amplitude and frequency introduces a large error for longer forecast
horizons (12 h to 24 h).

It has to be kept in mind, that the end-position errors (12.8) presented in this
article can be influenced by tuning of the filters and estimators. We did not use an
extensive amount of time on tuning. We also used the same tuning for all iceberg
tracks. The results may be improved by improved tuning or individual tuning for
each track. In general it can not be expected that a tuning that worked well on one
track will also work well on another track, since the drift behavior of the icebergs
is quite different. Sometimes a strong filtering of the iceberg velocity improves the
forecast, even though it introduces a delay. In other cases the delay is the cause
of a bad forecast. This two mechanism are the main difference between the VAR
and VAR KF forecast method. It is difficult to tell a priori which tuning is better,
but it was observed that strong filtering improves longer while aggressive filtering
shorter forecasts.

A combination of the VAR and ICF forecast schemes is possible, but doing this
did not combine the benefits from both schemes. Instead, it was better to use a
Kalman filter with the identified model as an observer model in the VAR model
forecast. This combination improved the short-term forecast of the VAR model
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Table 12.13: Mean end-position-error (12.8) [km] for different forecast horizons of all
iceberg for each method considered in the chapter. The standard deviation is given in
brackets and the best forecast is marked bold. The static model gives an indication the
iceberg drift distance within the forecast horizon. The VAR KF and ICF VAR are the two
new forecast methods.

1h 6h 12h 18h 24h

CVF 0.53 (0.41) 3.1 (2.6) 5.8 (4.9) 9.4 (7.5) 13.2 (10.3)

ACF 0.27 (0.21) 2.8 (1.9) 5.3 (3.9) 8.5 (6.1) 12.0 (8.7)

TCF 0.28 (0.22) 2.8 (2.0) 5.3 (4.3) 8.4 (6.3) 11.9 (8.9)

ICF 0.23 (0.19) 2.3 (1.6) 4.6 (3.5) 7.4 (5.7) 10.5 (8.2)

VAR 0.49 (0.37) 2.6 (2.0) 4.6 (3.7) 7.2 (5.6) 9.9 (7.6)

MEMD 0.20 (0.15) 3.1 (2.2) 6.0 (4.5) 9.8 (7.2) 12.9 (11.5)

VAR KF 0.29 (0.22) 2.2 (1.5) 4.7 (3.6) 7.6 (5.7) 10.9 (8.0)

ICF VAR 0.25 (0.20) 2.4 (1.9) 5.2 (5.0) 8.2 (7.4) 11.4 (10.7)

DYM 0.54 (0.38) 3.7 (2.6) 7.1 (5.0) 10.5 (7.3) 13.7 (9.3)

STAT 0.82 (0.51) 4.6 (2.9) 8.6 (5.3) 12.7 (7.5) 16.4 (9.8)

considerably. Nonetheless, it did not perform equally well for all observed iceberg
trajectories and sometimes it even degraded the forecast performance.

A comparison between the forecast performance of different icebergs should be
performed with a relative performance index. This reveals how well the icebergs
are forecasted relative to the velocity of the iceberg. About 70 % to 90 % of all
forecasts performed by the statistical forecast models are classified as acceptable
or better. This means the forecast error is at least in the same range as the drift
distance of the iceberg in the period.

For future work a potential method to improve the iceberg drift forecast is by
changing between different forecast methods, which are specialized for different
forecast horizons. This change has to be performed by using the forecasted ice-
berg velocity from different models. For example, the ICF model is used up to a
forecast horizon of 12 h, and for longer forecasts the position is used to initialize
the VAR model.

Another possible improvement may be achieved by creating a more complex
model for the ICF forecast scheme that not only considers the inertial current but
also includes tidal currents explicitly in the observer model.

A further interesting research question is how well the relative forecast perfor-
mance for longer forecast horizons can be predicted based on a 1 h, 3 h and 6 h
forecast. Is it possible to classify a priori some forecasts as not trustworthy and
how high is the success-rate of this classification?
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12.A Extension to the Comparison of Iceberg Drift Forecasts
This appendix shows the iceberg drift trajectories of each iceberg, and the progres-
sion of the 12 h forecast error for some of the methods presented in the article.

12.A.1 Iceberg 1

In Tab. 12.3 the mean and standard deviation of the forecast methods are shown.
The MEMD forecast scheme produces the best forecast within the first hour. For
six hours the ancillary forecast scheme is the best. For longer forecast horizons the
VAR forecast scheme produces the best results. If the PI (12.10) is considered the
ancillary forecast scheme produces a better result than the VAR forecast scheme
for a 12 h forecast.

Besides the CVF all methods are superior to the dynamic forecast model up to
a forecast period of 12 h. For longer forecast horizons (18 h and 24 h) the TCF,
MEMD and CVF schemes produce a larger average error than the dynamic model.

Interestingly, the standard deviation relative to the mean error is smaller for
the dynamic forecast model compared to the statistical methods indicating that the
statistical methods have a larger spread in the forecast errors.

The end-position error of a 12 h forecast of every method is shown in Fig.
12.3(a). The corresponding iceberg trajectory is shown in Fig. 12.3(b). The large
standard deviation of the statistical methods (Tab. 12.3) are caused by the large
error in the period 60 h to 85 h. This is the period where the iceberg enters the first
large loop. The forecast error is also large when the iceberg exists the loops. These
loops have a period of about 18 h to 24 h. The ocean eddies causing the looping are
most likely provoked by the current flows in and out of Conception Bay (between
Grates Cove and Bonavista (Fig. 4.3)).

The error progressions of the methods, besides the dynamic and static model,
are similar. The static model serves as a reference to the iceberg drift velocity.
The forecast performance is not good since the static model is often better than the
other models (Fig. 12.3(a)). All methods rely on a similar principle, which makes
it difficult to predict strong unexpected changes. Oscillations caused by tidal or
inertial current can be forecasted by the ICF, VAR and MEMD forecast models.

The main advantage of the VAR model compared to the other methods is the
reduction of the error between 70 h to 120 h. In this period the dynamic model
also performs well, since it is able to forecast the second loop. On the other hand,
the exit from the loop is forecasted by neither the dynamic nor statistical models.
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12.A.2 Iceberg 4

In Tab. 12.4 the mean and standard deviation of the forecast methods are shown.
The MEMD forecast scheme performs best in the first hour. Thereafter, the VAR
forecast scheme is best.

The end-position error of a 12 h forecast of the VAR, ICF and dynamic forecast
model is shown in Fig. 12.4(a). The corresponding iceberg trajectory is shown
in Fig. 12.4(b). Larger errors in the statistical models are produced before the
iceberg enters the curves at about 193 h and 289 h. These are not anticipated by
the forecasts.

The statistical models behave similarly. The VAR model is superior to the ICF
model especially in the second part of the observed iceberg trajectory. The forecast
of the iceberg drift of Iceberg 4 with the statistical methods is good, and the error
compared to the dynamic forecast model can be reduced considerably. For only
a few short periods the dynamic model performs better than the statistical model
forecast (Fig. 12.4(a)).

12.A.3 Iceberg 4-3

In Tab. 12.5 the mean and standard deviation of the forecast methods are shown.
The MEMD forecast scheme performs best in the first hour. Thereafter, up to a
forecast horizon of about 12 h the ICF scheme performs best. For longer forecast
horizons up to 24 h the VAR model forecast is the best. The dynamic forecast
model outperforms the CVF, TCF and MEMD scheme already after 12 h.

The end-position error of a 12 h forecast of the VAR, ICF and DYM model
is shown in Fig. 12.5(a). The corresponding iceberg trajectory is shown in Fig.
12.5(b). The rapid changes in iceberg velocity and direction causes the strong os-
cillation in the forecast performance. This is also amplified by the squeezed x-axis.

The dynamic model has a similar performance as the statistical forecast meth-
ods. In the comparison of both approaches it can be observed that at the beginning
(0 h to 250 h) the statistical models perform better, in the middle part (250 h to
500 h) the dynamic model performs better and in the end the statistical models
perform again better.

Iceberg 4-3 is believed to be relatively small, which enables it to move rela-
tively quickly. Consequently, the statistical models do not outperform the dynamic
model by much. A similar observation was already made for the forecast of Ice-
berg 1, which had several unexpected loops in its trajectory.

12.A.4 Iceberg 1040-1

In Tab. 12.6 the mean and standard deviation of the forecast methods are shown.
The MEMD forecast scheme is the best in the first hour, but for longer forecast
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horizons (6 h to 24 h) the ICF scheme is the best. For longer forecast horizons the
dynamic model outperforms the MEMD (18 h to 24 h) and the CVF (24 h) scheme.
All other statistical forecast schemes are better than the dynamic model.

The end-position error of a 12 h forecast of the ACF, ICF and dynamic forecast
model is shown in Fig. 12.6(a). The corresponding iceberg trajectory is shown
in Fig. 12.6(b). The loops at the beginning of the observation and the left-turn
at about 200 h are not well forecasted by the statistical model. The drift to the
south (about 230 h to 370 h), on the other hand, is relatively well forecasted. In
this period the fast frequencies (tidal and inertial current) are less important, since
the overall iceberg velocity is relatively large.

The dynamic iceberg model does not forecast the iceberg track well at the be-
ginning (1 h to 130 h), since both ocean current and wind do not correlate with the
iceberg velocity. In the period 130 h to 180 h the iceberg is mainly wind driven,
since the ocean current velocity is very small (close to zero). The loops observed in
this period correlate with the current velocity, but the amplitude of the oscillation
is damped in the current velocity to about 40 % relative to the amplitude observed
in the iceberg velocity. In the period 300 h to 480 h wind and current velocity cor-
relate well with the iceberg velocity. The left-turn at about 380 h is anticipated by
the input data, but about 6 h time-displaced. In fact, also in the period 480 h to
650 h the wind velocity correlates well with the iceberg velocity. The error in the
forecast is caused by the ocean current. Overall the wind input correlates well with
the iceberg velocity in the period 350 h to 800 h.

Especially in the middle part of the track (200 h to 650 h) the statistical models
perform better than the dynamic model. At the end the dynamic model is slightly
better.

12.A.5 Iceberg 1040-2

In Tab. 12.7 the mean and standard deviation of the forecast methods are shown.
For a one hour forecast the MEMD forecast scheme performs best. For longer
forecast horizons the TCF scheme is the best, closely followed by the ICF scheme.
The MEMD and ACF scheme have a considerably larger forecast errors. Every
statistical forecast method outperforms the dynamic forecast scheme. Indeed, the
dynamic forecast model performs badly for this iceberg trajectory. The reason is a
strong over-prediction of the ocean current velocity in the first 100 h (Fig. 12.7(a)).
Even though, the iceberg moves quickly in this period (average velocity 31 cm/s)
the average velocity difference to the current velocity is about 45 cm/s.
The static model (STAT) indicates that the iceberg moves quickly in the entire ob-
servation period. Thus, the statistical models produce a larger error compared to
some of the other icebergs, even though the iceberg trajectory is smooth without
loops or sudden turns (Fig. 12.7(b)).
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The statistical models behave similar (Fig. 12.7(a)). The dynamic model pro-
duces a very large error in the first 100 h, but in the period between 120 h to 200 h
the dynamic model is slightly better than the statistical models. The two peaks
(about 238 h and 276 h) in the forecast of the statistical models are caused by large
measurement errors, which cause peaks in the iceberg velocity (to about 70 cm/s).
It is due to transmission errors in the position data set of Iceberg 1040. In these two
instances the error was not corrected since it would have needed post-processing,
which was avoided in the comparison.

12.A.6 Iceberg 5450

In Tab. 12.8 the mean and standard deviation of the forecast methods are shown.
For a one hour forecast the MEMD forecast scheme performs best. For a six hour
forecast the ICF scheme is the best followed by the VAR forecast scheme. The
latter also performs best for longer forecast horizons (12 h to 14 h). All statistical
models outperform the dynamic model, which has a similar forecast error as the
static model.

The end-position error of a 12 h forecast of the ICF, VAR and dynamic forecast
model is shown in Fig. 12.8(a). The corresponding iceberg trajectory is shown in
Fig. 12.8(b).

The statistical models predict the movement of Iceberg 5450 well, even though
the iceberg moves relatively quickly (average velocity about 21 cm/s). The dy-
namic forecast model, on the other hand, is not able to forecast the iceberg drift as
well. It is outperformed by the statistical models over almost the entire observation
period.

12.A.7 Iceberg 3534

In Tab. 12.9 the mean and standard deviation of the forecast methods are shown.
The statistical forecast models outperform the dynamic one. Exceptions are the
ACF and MEMD forecast schemes. The VAR and ICF, which perform best for
different forecast horizons, have a similar forecast performance. The other statis-
tical models cannot compete with them.

The end-position error of a 12 h forecast of the ICF, VAR and dynamic forecast
model is shown in Fig. 12.9(a). The corresponding iceberg trajectory is shown in
Fig. 12.9(b).

The statistical models perform for the most part of the observation period better
than the dynamic model. This holds especially for the period 40 h to 130 h. Over-
all the forecast errors of the VAR and ICF model behave similarly, but it can be
observed that the fast oscillations of the error are slightly different. Consequently,
a combination of both forecast scheme would do even better. A similar behavior
was also observed for the other icebergs.
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12.A.8 Iceberg 3651

The end-position error of a 12 h forecast of the ICF, VAR and dynamic forecast
model is shown in Fig. 12.10(a). The corresponding iceberg trajectory is shown in
Fig. 12.10(b). The iceberg velocity increases strongly at the end of the observation
period. This correlates with the forecast error. For this reason the standard devi-
ation (Tab. 12.10) is also considerably larger than for Iceberg 3534 and Iceberg
5450.

The forecast performance of the statistical model is better than of the dynamic
one. In fact, if only the first 200 h of the observation period are considered the
12 h mean forecast error is only about 1.36 km and the 24 h forecast error is about
3.95 km. This is a very small forecast error. The dynamic model also produces
only a 3.3 km and 7.8 km error for a 12 h and 24 h forecast horizon, respectively.
Again, the small absolute error is correlated with a small iceberg velocity during
the period. Nonetheless, the strong oscillation in velocity causing small loops and
a zigzag trajectory at the beginning of the observation does not influence the fore-
cast negatively, since it is in the expected frequency of about 12 h. The loops at
the beginning of the observation period are observed because of the small iceberg
velocity. If the iceberg velocity is larger the inertial and tidal oscillations cannot
be spotted so easily in the iceberg trajectory.

At about 210 h the velocity of the iceberg in both directions changes strongly.
For this reason the forecast error increases strongly. The other large forecast error
is due to the direction change at about 240 h. Obviously these changes are not ex-
plained by the wind and current data, which produces a large error in the dynamic
model. In addition, the statistical models are not prepared for this sudden change,
so they produce a large error.
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(b) Iceberg 2.
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(c) Iceberg 4.
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(d) Iceberg 43.
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(e) Iceberg 1040-1.
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Figure 12.2: Relative forecast performance of the icebergs. The relative forecast perfor-
mance is grouped in four categories (Sec. 12.5): bad (red), acceptable (yellow), good
(blue), excellent (green). Each iceberg forecast performed is grouped in one of the cate-
gories. Each vertical bar shows the percentage of each category for a certain method and
forecast horizon. The best of ACF, TCF or ICF is on the left hand side, followed by the
VAR model and MEMD model. The dynamic model is on the right-hand side.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h for
Iceberg 1.
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(b) Iceberg drift trajectory of Iceberg 1. The number marker corresponds to the time t f in
the upper figure.

Figure 12.3: Forecast results for Iceberg 1. The forecast error is shown in the upper figure,
while the lower figure shows the corresponding iceberg drift trajectory.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h for
Iceberg 4.
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(b) Iceberg drift trajectory of Iceberg 4. The number marker corresponds to the time t f in
the upper figure.

Figure 12.4: Forecast results for Iceberg 4. The forecast error is shown in the upper figure,
while the lower figure shows the corresponding iceberg drift trajectory.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h for
Iceberg 4-3.
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(b) Iceberg drift trajectory of Iceberg 4-3. The number marker corresponds to the time t f
in the upper figure.

Figure 12.5: Forecast results for Iceberg 4-3. The forecast error is shown in the upper
figure, while the lower figure shows the corresponding iceberg drift trajectory. The inset
magnifies the part of the track that contains many loops and direction changes.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h for
Iceberg 1040-1.
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(b) Iceberg drift trajectory of Iceberg 1040-1. The number marker correspond to the time
t f in the upper figure.

Figure 12.6: Forecast results for Iceberg 1040-1. The forecast error is shown in the upper
figure, while the lower figure shows the corresponding iceberg drift trajectory.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h for
Iceberg 1040-2.
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(b) Iceberg drift trajectory of Iceberg 1040-2. The number marker corresponds to the time
t f in the upper figure.

Figure 12.7: Forecast results for Iceberg 1040-2. The forecast error is shown in the upper
figure, while the lower figure shows the corresponding iceberg drift trajectory.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h for
Iceberg 5450.

-50 -40 -30 -20 -10 0 10

-40

-20

0

20

40

1
13

25
37

49

61
7385

97

109

121

133

145

157
169

181

193

West-east direction [km]

N
or

th
-s

ou
th

di
re

ct
io

n
[k

m
]

(b) Iceberg drift trajectory of Iceberg 5450. The number marker corresponds to the time
t f in the upper figure.

Figure 12.8: Forecast results for Iceberg 5450. The forecast error is shown in the upper
figure, while the lower figure shows the corresponding iceberg drift trajectory.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h of
Iceberg 3534.
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(b) Iceberg drift trajectory of Iceberg 3534. The number marker correspond to the time t f
in the upper figure.

Figure 12.9: Forecast results of Iceberg 3534. The forecast error is shown in the upper
figure, while the lower figure shows the corresponding iceberg drift trajectory.
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(a) Forecast error for different forecast schemes with a forecast horizon of 12 h of
Iceberg 3651.
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(b) Iceberg drift trajectory of Iceberg 3651. The number marker corresponds to the time
t f in the upper figure.

Figure 12.10: Forecast results for Iceberg 3651. The forecast error is shown in the upper
figure, while the lower figure shows the corresponding iceberg drift trajectory.
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Chapter 13

Estimation of a Hydrodynamic
Iceberg Geometry

This chapter is based on PAPER H (Andersson et al. 2017c). The sensitivity of the
dynamic iceberg model to different parameters and inputs make the iceberg drift
forecast challenging. Nevertheless, if the uncertainty of the current driving force
on the iceberg is reduced by measuring the current at the iceberg location, it is
possible under specific conditions to estimate the approximate iceberg shape. This
iceberg shape geometry can be used directly in the dynamic iceberg model.

The chapter deals with a nonlinear parameter estimation problem with con-
straints on the parameters. A hydrodynamic iceberg geometry model enforces the
constraints. The theoretical work on constrained estimation in Chapter 14 and 15
was motivated by the study presented here.

13.1 Introduction
In Spring 2015 ArticNet ArcticNet (2004-2018) and Statoil conducted an Off-

shore Newfoundland Researcher Expedition. During this expedition a dataset of
one iceberg track similar to the one collected by Smith and Donaldson (1987) was
collected. This chapter discusses how current data collected close to the iceberg
can be used to improve knowledge about the iceberg shape without profiling the
iceberg keel.

13.2 Data Collection
In this section the first 6.5 h of the trajectory of Iceberg 4 are studied. In this period,
the CCGS Amundsen was in close proximity to the iceberg and wind, wave and
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current information were measured close to the iceberg. The dataset is described
in detail in Sec. 5.2.

13.3 Estimation of the Iceberg Geometry
Even though Sec. 5.3 indicates that the dynamic iceberg drift model does not nec-
essarily result in a good iceberg drift hindcast and is, therefore, outperformed by
a simple kinematic model, it does describe the physics of the process more accu-
rately than the kinematic model. If the current is measured close to the iceberg
for some time, then it should be possible to estimate the scaled hydrodynamic ice-
berg shape. This scaling is introduced by the drag coefficient and is only possible
if some confidence exist that the current input to the dynamic model is approx-
imately correct. If this is not the case, then the current input is more strongly
corrected than the shape and drag coefficients (Sec. 6.3). Such an iceberg shape
estimation can reduce the uncertainty in the shape parameters and reduce forecast
errors in the iceberg prediction.

13.3.1 The Iceberg Geometry Model

Additional information in the form of constraints in the estimation process usually
improves the estimation results, since the parameter space is reduced. Therefore,
an iceberg geometry model is developed that introduces several reasonable con-
straints to the estimation process.

The radii of the iceberg shape are constrained to positive numbers. Moreover,
the change in the radii is constrained so that they must decrease from the middle of
the iceberg height. From several 3D iceberg profiling projects (Younan et al. 2016),
it was shown that icebergs often have a shoulder. Therefore, the first radius was
constrained to be within 75 % to 120 % of the sail length. The radius can decrease,
since the first layer, if Shipboard Acoustic Doppler Current Profiles (SADCP) are
used, is quite deep such that a decrease must be possible. The shoulder, on the
other hand, may cause an increase of the radius.

Based on Archimedes’ law, the overall mass and keel volume Vkeel can be cal-
culated if the sail volume Vsail of the iceberg is known

Vkeel = Vsail
ρice

ρw − ρice
, (13.1a)

m = (Vsail + Vkeel)ρice =
(
1 +

ρw
ρw − ρice

)
Vsail ρice, (13.1b)

where ρw and ρice are the water and iceberg densities, respectively.
The sensitivity of (13.1b) to changes in the iceberg density ρice is high such

that a change of about 1 % in iceberg density causes an 8 % change in the estimated
iceberg mass and keel volume. Nonetheless, the estimated keel volume can be
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Figure 13.1: Cylindrical and elliptical iceberg geometries seen from above.

used with an idealised iceberg geometry assumption to constrain the overall keel
volume. In this chapter, a cylindrical and elliptical iceberg geometry is considered
(Fig. 13.1).

Cylindrical Iceberg Geometry.

The volume of each layer can be calculated with

Vi = πr2i hi, (13.2)

where ri is the radius of the layer and hi is the layer height. The sum of the volumes
must be the same as the estimated keel volume. The cross sections of each layer
can be calculated with

Ai = 2rihi . (13.3)

Elliptical Iceberg Geometry.

The radius of the ellipse changes with the angle of attack by the forces. The radius
can be calculated by

r (θ) =
ab√

(b cos θ)2 + (a sin θ)2
, (13.4)

where θ is the angle between the current direction and alignment of the minor axis
b of the ellipse. Consequently, the alignment of the iceberg must be known. The
volume of each elliptic layer can be calculated by

Vi = πaibihi . (13.5)

For simplicity it was assumed that the ratio between the major and minor axes is
the same in each layer, such that

bi = kai (13.6)
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holds, where k is the fixed ratio. The ratio k can either be estimated together with
the layer radii or fixed based on the sail geometry. If the ratio k is estimated, then
it is constrained to be within 0.3 to 1. Furthermore, it is assumed that the major
and minor axes in each layer are aligned. As a result, the estimation problem for
the elliptically shaped iceberg has the same amount of parameters or one parameter
more compared to the estimation problem for the cylindrically shaped iceberg. The
cross-section area in each layer of the elliptical iceberg geometry can be calculated
by

Ai = 2ri (θ)hi . (13.7)

13.3.2 Estimation Algorithm

A constrained least-squares parameter estimation algorithm estimates the iceberg
geometry. The discretisation of the continuous time model (2.1) yields

xk+1 = f (xk, uk, p), x0 = x(t0), (13.8a)

yk = h(xk ) + vk, (13.8b)

where x ∈ IRnx is the vector of differential states, u ∈ IRnu the vector of inputs, y ∈
IRny the vector of outputs, and p ∈ IRnp vector of parameters. The measurement
noise vk ∈ IRny is added to the measured outputs, and k denotes the samples taken
at time tk . The vector p represents the shape parameters that are estimated.

The following optimisation problem is solved:

min
{xi,vi,p}

N∑
i=0

‖yi − h(xi)‖2R−1 (13.9a)

s.t . xi+1 = f (xi, ui, p) ∀i = 0, ..., N − 1

xi ∈ X,
(13.9b)

where R ∈ IRny×ny is the measurement noise covariance matrix taken as the iden-
tity matrix. The set X is closed and convex, and usually given by a finite dimen-
sional polyhedral set

X = {xi ∈ R
nx |Dx xi ≤ dx }, (13.10)

where Dx ∈ IRnx×nx is a matrix. The optimization problem is a constrained least
squares problem for which standard literature covering parameter estimation exists
(Van Trees and Bell 2013).
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Figure 13.2: Iceberg drift: estimation of iceberg areas with measurement noise on iceberg
position (Gaussian white noise µ = 0, σ = 10).

13.3.3 Identifiability

Several simulation studies were performed to investigate if the parameters can be
identified. The measured current, wind and wave forces were used to simulate the
iceberg trajectory. If the simulated trajectory is used as position measurements
without noise added, then the geometry parameters can be identified. Under these
noise-free conditions, it is not necessary to include constraints to achieve identi-
fication. However, if measurement noise in the position measurements or current
measurements is added, the correct geometry can only be approximated. Problem-
atic is that the iceberg drift trajectories are relatively insensitive to changes in the
iceberg geometry. An example of this is shown in Figure 13.2. Even though the
estimated and measured drift trajectories of the iceberg are almost identical, the
error in the estimate of the cross-section in comparison to the total cross-section
area nearly 35 %. Moreover, without constraints, the estimated iceberg geometry
becomes, under noisy conditions, quickly non-physical, for example, with layers
in the middle of the iceberg keel having a zero cross-sectional area.

Since the sensitivity of the iceberg geometry to the iceberg drift trajectory is
small, it is difficult to estimate the iceberg geometry without additional informa-
tion. Therefore, to reduce the parameter space and improve the estimation results,
it is necessary to introduce a geometry model of the iceberg (Fig. 13.3). In addi-
tion, the parameter identification reaches an acceptable result more quickly, which
is important because the timeframe of a ship or other device measuring the current
regime close to the iceberg is limited.

The Cramér-Rao bound (Van Trees and Bell 2013), a lower bound on the iden-
tification error, depends on the current regime and the noise level. If the current is
similar in every current layer and does not change much during observations, then
the lower bound of the identification error is higher than in cases where the current
regime changes actively. In the first case the information in the observations is low
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iceberg keel.

while in the second case the information is higher which lowers the identification
error.

If the observation horizon is short, then it is usually only possible to estimate
the axis that is perpendicular to the current drift direction, since the current regime
does not change significantly and the iceberg only rotates slightly.

13.3.4 Geometry Estimation

The iceberg keel geometry is estimated for different input signals. Based on the
observation of the iceberg sail, the ratio k is set to be 0.35. Furthermore, it is tested
how sensitive the shape estimation is whether the wave input, pressure gradient,
and Coriolis forces are included. The manually observed wind input is used in
all geometry estimations, and the different combinations result in eight geometry
estimates. Six geometry estimates are shown in Figure 13.4(a) with an example of
a 3D iceberg geometry in Figure 13.4(b). The overall iceberg geometry is similar
even though different forces were included in the model. In almost every esti-
mate, the iceberg layers from −40 m to −87 m do not show changing radii. This is
caused by the volume constraint (13.1b) combined with too little excitation and a
short observation horizon. Consequently, the estimation algorithm cannot distin-
guish between current layers. The deepest layer of all these iceberg geometries is
estimated to be zero. Hence, the keel depth is estimated slightly smaller than what
was measured with the SX90 sonar (Sec. 5.2).

The root mean square error is about 150 m to 200 m if either wave or Coriolis
force is excluded from the model. If both forces are included, the root mean square
error is about 580 m.

The two geometries where wave and Coriolis forces were excluded from the
model are not shown. They resulted in a non-physical iceberg geometry. The radii
of the second and third iceberg layers are in those cases estimated with zero length
while the fourth layer has a large radius of about 250 m. Since the change of the
radii is only constrained from the middle of the iceberg height to the deepest layer,
this non-physical iceberg shape is possible during estimation. Further constraints
may remove this problem.
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Figure 13.4: Examples for estimates of the hydrodynamic iceberg geometry.

An increase of 10 % of the iceberg sail volume also increases the iceberg mass
by 10 %. The radii in the iceberg geometry estimation increases as well, but the
overall geometry stays similar to the original estimate. A similar effect has about
a 1.5 % change of the ice density to which the iceberg mass is very sensitive.

13.4 Conclusion
Despite the problems with the dynamic model (Sec. 5), it is possible to approx-
imate the hydrodynamic iceberg geometry with a simple parameter identification
algorithm. Under the assumption that the dynamic iceberg model approximates
the correct physical behaviour of the process, the hydrodynamic iceberg geometry
can be estimated if the iceberg and current regime around the iceberg are observed
for some time. This estimated hydrodynamic iceberg geometry is adjusted to the
dynamic iceberg model and can afterwards be used efficiently for iceberg drift
forecasts. The hydrodynamic iceberg geometry identification by the algorithm
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presented in this chapter can be improved by collecting more knowledge about
iceberg profiles, which can be transformed into further constraints to incorporate
into the algorithm.



Chapter 14

Constrained Posterior
Cramér-Rao Bound for
Discrete-Time Systems

The chapter is based on PAPER I (Andersson et al. 2017b). It presents a Cramér-
Rao lower bound for the discrete-time filtering problem under linear state con-
straints. A simple recursive algorithm is presented that extends the computation
of the Cramér-Rao lower bound found in previous literature by one additional
step in which the full-rank Fisher Information matrix is projected onto the tan-
gent hyperplane of the constraint set. This makes it possible to compute the con-
strained Cramér-Rao lower bound for the discrete-time filtering problem without
re-parametrisation of the original problem to remove redundancies in the state vec-
tor, which improves insight into the problem. It is shown that, in the case of
a positive-definite Fisher Information Matrix, the presented constrained Cramér-
Rao bound is lower than the unconstrained bound, and it is evaluated through an
example.

The bound presented in this chapter holds for nonlinear systems with linear
constraints. Even though it is likely that also nonlinear constraints will lower the
bound, it is challenging to prove the projection results in a lower bound. Therefore,
the presented lower bound was not used to analyse the estimation of the hydrody-
namic iceberg geometry in Chapter 13.

14.1 Introduction
Discrete-time state estimation arises in adaptive control, identification, and in model-
based control, where it is usually before the control prediction step. In general, it is
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challenging to build an optimal estimator for such systems. Hence, it is necessary
to turn to one of the many suboptimal filter techniques (Galdos 1980).

A common strategy to design such an estimator is to use the Bayesian ap-
proach. Closed form solutions exist only for a few cases, and often it is necessary
to approximate the Bayesian solution numerically. However, filters based on such
approximations lead to estimates that deviate from the ideal solution (Šimandl
et al. 2001). Lower bounds on the mean-square error of an estimate can indicate
performance limitations. Consequently, it can be used to determine whether im-
posed performance requirements are realistic or not (Galdos 1980, Šimandl et al.
2001, Tichavsky et al. 1998). The Cramér-Rao bound (CRB), given as the inverse
of the Fisher information matrix (FIM), presents such a lower bound for dynamic
models. However, in time-varying systems, the estimated parameter vector (the
estimated state vector) must be considered random since it corresponds to an un-
derlying nonlinear, randomly driven model (Tichavsky et al. 1998).

In Van Trees (1968), the CRB was extended for random parameter estima-
tion and was successfully applied in state estimation for discrete-time nonlinear
stochastic dynamic systems in Galdos (1980) and Bobrovsky and Zakai (1975).
The fundamental principle for both bounds is to construct a suitable Gaussian sys-
tem for which the mean square estimation error is a lower bound to that of the
original system. Another approach computing the CRB for filtering problems was
proposed by Tichavsky et al. (1998), which assumes the state history as a random
parameter and obtains the CRB for the state as a lower right block of the CRB
for the complete state history (Šimandl et al. 2001). They referred to the obtained
bound as posterior CRB (PCRB).

In some applications, prior knowledge in the form of linear equality constraints
is available. This information should result in improved estimates and a lower
CRB (Marzetta 1993). One approach finding the CRB under constraints is to re-
parametrise the original problem and remove redundancies in the parameter vector.
However, this may be difficult to implement hindering insights into the original un-
constrained problem (Stoica and Ng 1998). Gorman and Hero (1990) proposed a
convenient way to compute the constrained CRB for static problems where the
bound equals the bound of the original unconstrained problem minus a correction
matrix. The same result with a different proof was presented by Marzetta (1993).
Another constrained CRB, which also holds for singular Fisher Information matri-
ces, was presented by Stoica and Ng (1998). This theory was extended for complex
parameters by Jagannatham and Rao (2004) and biased estimators by Ben-Haim
and Eldar (2009).

This chapter connects the theory about constrained CRB with the PCRB for
discrete-time systems presented by Tichavsky et al. (1998).
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14.2 The CRB for the Nonlinear Filtering Problem
This section follows the posterior CRB presented in Tichavsky et al. (1998), which
was also summarised in Šimandl et al. (2001). Consider the discrete-time nonlinear
filtering problem

xk+1 = fk (xk,wk ) (14.1a)

zk = hk (xk, vk ), (14.1b)

where k is the time index, and xk ∈ R
n and zk ∈ R

y represent the state and mea-
surement vectors, respectively. The vectors wk ∈ R

n and vk ∈ R
y are mutually

independent white noise processes, and fk and hk are nonlinear functions, which
may depend on the time k. The white noise processes are described by known
probability density functions (pdf) p(wk ) and p(vk ). Furthermore, it is assumed
that the initial state x0 has a known pdf p(x0).

Let the complete state and measurement histories up to the time instant k
be denoted as Xk = [xT0 , x

T
1 , . . . , x

T
k
]T and Zk = [zT0 , z

T
1 , . . . , z

T
k
]T , respectively.

The joint pdf of the state and measurement histories p(Xk,Zk ) may be written as
p(Xk,Zk ) = p(Zk |Xk )p(Xk ). Respecting this, the stochastic system (14.1) is a
Markov process, so the logarithm of this pdf can be expressed as

ln p(Xk,Zk ) = ln p(x0) +
k∑
i=0

ln p(zi |xi) +
k∑
i=1

ln p(xi |xi−1). (14.2)

If the expectation and derivatives exist, then the FIM for this system can be com-
puted as

Jk |k (Xk ) = −E
(
∇Xk

[∇Xk
ln p(Xk,Zk )]T

)
, (14.3)

where we know that the inverse of the FIM bounds the mean square error matrix
(MSEM)

Σk |k = E
{
(Xk − X̂k )(Xk − X̂k )T

}
≥ J−1k |k . (14.4)

Following the notation used in Šimandl et al. (2001) and to simplify the derivation
of the filtering estimate let us introduce the following n × n matrices

Kk
k+1 = E{−∇xk

xk
ln p(xk+1 |xk )T ]}, (14.5a)

Kk,k+1
k+1

= E{−∇xk+1
xk

ln p(xk+1 |xk )T ]} = [Kk+1,k
k+1

]T , (14.5b)

Kk+1
k+1 = E{−∇xk+1

xk+1
ln p(xk+1 |xk )T ]}, (14.5c)

Lk
k = E{−∇xk

xk
ln p(yk |xk )]T }, (14.5d)
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where we define

Dk = Lk
k +Kk

k +Kk
i+1. (14.6)

The lower index in (14.5) is the time instant of the state described by the transition
pdf, while the upper index represents the states for which the derivatives of the
transition pdf are performed.

Using (14.2) and the introduced notations (14.5), the FIM (14.4) decomposes
into four blocks

Jk |k (Xk ) =



D0 K0,1
1

K1,0
1

. . .
. . .

. . . Dk−1 Kk−1,k
k

Kk,k−1
k

Lk
k
+Kk

k



=



J1,1
k |k

J1,2
k |k

J2,1
k |k

J2,2
k |k



, (14.7)

where the zero elements have been left empty and for k = 0 it holds J0 |0(x0) =
L0
0 + K0

0. The blocks of the FIM represent the state history decomposed as Xk =

[XT
k−1, x

T
k
]T . Following this notation, we see that the time update can be expressed

as (Šimandl et al. 2001)

Jk+1 |k (Xk+1) =



J1,1
k |k

J1,2
k |k

0

J2,1
k |k

J2,2
k |k
+Kk

k+1
Kk,k+1

k+1

0 Kk+1,k
k+1

Kk+1
k+1


(14.8)

and the measurement update as

Jk |k (Xk ) =


J1,1
k |k−1

J1,2
k |k−1

J2,1
k |k−1

J2,2
k |k−1

+ Lk
k


. (14.9)

The dimension of the FIM (14.8) and (14.9) increase at each iteration. Further-
more, it can be seen that Jk |k−1(Xk ) and Jk |k (Xk ) are equal except for the lower-
right corner block, which is Kk

k
compared to Kk

k
+ Lk

k
.

Applying (14.4) to (14.9), a formulation for the inequality for the MSEM of a
filtering estimate at time k can be obtained

E
{
(xk − x̂k )(xk − x̂k )T

}
≥ Ck |k = [J−1k |k (Xk )]22, (14.10)

where Ck |k is the PCRB of an estimate x̂k |k . Using the matrix inversion lemma
(A.1)-(A.2) and J2,2

k |k−1
= Kk

k
, we obtain

C−1k |k = Lk
k +Kk

k − J2,1
k |k−1

[J1,1
k |k−1

]−1J1,2
k |k−1

(14.11)
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for the measurement update. For the time-update with the same matrix inversion
lemma, the following can be obtained

C−1k+1 |k = Kk+1
k+1 −

(
0 Kk+1,k

k+1

) *
,

J1,1
k |k

J1,2
k |k

J2,1
k |k

J2,2
k |k
+Kk

k+1

+
-

−1 (
0

Kk,k+1
k+1

)
= Kk+1

k+1−

Kk+1,k
k+1

(
J2,2
k |k
+Kk

k+1 − J1,2
k |k

[J1,1
k |k

]−1J2,1
k |k

)−1
Kk,k+1

k+1
.

(14.12)

With (14.11) and J1,1
k |k−1

= J1,1
k |k

, J1,2
k |k−1

= J1,2
k |k

and J2,2
k |k−1

= Kk
k

this can be reduced
to

C−1k+1 |k = Kk+1
k+1 −Kk+1,k

k+1

(
Kk

k+1 + C−1k |k
)−1

Kk,k+1
k+1

. (14.13)

With (14.12), the measurement update can also be reduced to

C−1k |k = C−1k |k−1 + Lk
k, (14.14)

which completes the recursion to compute the CRB for the time and measurement
update.

14.3 Constrained CRB
In this section, the constrained CRB is introduced and will closely follow the
derivation presented in Stoica and Ng (1998). However, the difference between
this chapter is that they assumed a vector of non-random parameters is estimated.
Here, a vector of random parameters X based on a vector of observations Z is
estimated. It is required that the estimate X̂ satisfies l (l < n) continuously differ-
entiable constraints,

f (X̂) = 0. (14.15)

It is further assumed that the set {X| f (X) = 0} is non-empty. The gradient matrix
of the constraints can be defined as

F =
∂f (X)
∂XT

, (14.16)

where it is assumed that (14.16) has a full rank for any X satisfying (14.15). Thus,
there exists an n × (n − l) matrix U such that

FU = 0, UTU = I, (14.17)
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where it is assumed that U is independent of X. While this is restrictive, it always
holds for linear constraints. The likelihood function is given by (14.2) and lets us
denote

∆=∇X ln p(X,Z). (14.18)

In this case, the FIM (14.3) is alternatively given as

J = E(∆∆T ). (14.19)

If the following conditions exist:

1. ∂ p(X,Z)
∂x

j
i

is absolutely integrable with respect to X and Z for i = 0, . . . , k and

j = 0, . . . , n,

2. ∂2 p(X,Z)
∂x

j
i

is absolutely integrable with respect to X and Z for i = 0, . . . , k

and j = 0, . . . , n, and

3. the conditional expectation of the error, given X, is

B(X) =
∫ ∞

−∞

[X̂ −X]p(Z|X)dZ, (14.20)

where B(X) denotes the bias of the estimate, then it is assumed that

lim
x
j
i→∞

B(X)p(X) = 0, for i = 0, . . . , k

lim
x
j
i→−∞

B(X)p(X) = 0, and j = 0, . . . , n
(14.21)

With these conditions, it can be shown that the following holds (Van Trees and
Bell 2013)

E((X̂ −X)∆T ) = I, (14.22)

which is the fact that is required such that

E((X̂ −X)∆T )UUT = UUT . (14.23)

Lemma 14.3.1. If the condition holds, with U defined in (14.17) and in case UTJU
is non-singular, then the constrained CRB is given as

E
{
(X − X̂)(X − X̂)T

}
≥ U(UTJU)−1UT . (14.24)
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Proof. Let W be an arbitrary n × n matrix. Then

E

{
(X−X̂−WUUT∆)(X−X̂−WUUT∆)T

}
=E

{
(X−X̂)(X−X̂)T

}
−WUUT−UUT WT+

WUUT JUUT WT ≥0,

(14.25)

where the equality follows from (14.23) and the fact that U is independent of X.
The inequality is a consequence of the positive semi-definiteness of the covariance
matrix of X − X̂ −WUUT∆. For the rest of the proof the derivation in Stoica and
Ng (1998) may be followed. �

14.4 The Constrained CRB for the Nonlinear Filtering Problem
Theorem 14.4.1. The constrained CRB for the nonlinear filtering problem can be
computed by a time update

C−1k |k−1 = Kk
k −Kk,k−1

k

(
Kk−1

k + C̃−1k−1 |k−1
)−1

Kk−1,k
k

, (14.26)

a measurement update

C−1k |k = C−1k |k−1 + Lk
k, (14.27)

and a constraint update

C̃k |k = Uk (UT
k C−1k |kUk )−1UT

k . (14.28)

Proof. It will be shown that the constrained CRB of the entire system (14.4) results
in the same CRB as given by the recursion (14.26)-(14.28). This will be shown for
the first time step, and afterwards it will be shown that this also holds for every
following time step.

The following 2n × 2n matrix gives the FIM for entire state and measurement
history after the first time step

J1|1 (X1)=*.
,

K0
0+L0

0+K0
1 K0,1

1

K1,0
1 L1

1+K1
1.

+/
-

(14.29)

It is assumed that the constraints (14.15) depend only on the states at each time
step. This gives a 2n × 2(n − l) matrix

U(X1)=*.
,

U(x0) 0

0 U(x1)
+/
-
=

*.
,

U0 0

0 U1,

+/
-

(14.30)
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where the matrix Ui of each state is on the diagonal while all other entries are
zero. Using (14.24), (14.30), and the matrix inversion lemma (A.1) on (14.29) to
compute the constrained CRB for state x1, we obtain

C̃1|1=U1

[
UT

1 (L1
1+K1

1)U1−UT
1 K1,0

1 U0[UT
0 (K0

0+L0
0+K0

1)U0]
−1

UT
0 K0,1

1 U1

]−1
UT

1 .
(14.31)

With the recursion (14.26)-(14.28) the constrained CRB for state x1 is

C̃1|1=U1 ·

[
UT

1

(
L1
1+K1

1−K1,0
1 [J0|0+K0

1]
−1

K0,1
1

)
U1

]−1
UT

1 . (14.32)

Comparing (14.31) and (14.32), the only thing left to prove is

U0[UT
0 (K0

0+L0
0+K0

1)U0]
−1

UT
0 ≡[J0|0+K0

1]
−1 (14.33)

The left-hand side of (14.33) is rewritten slightly, and the binomial inverse theorem
(A.4) applied

U0

[
UT

0

(
K0

0+L0
0

)
U0+UT

0 K0
1U0

]−1
UT

0 = U0

[
(UT

0 (K0
0+L0

0)U0)−1−(UT
0 (K0

0+L0
0)U0)−1UT

0 ·

(
I+K0

1U0(UT
0 (K0

0+L0
0)U0)−1UT

0

)−1
K0

1U0 ·(UT
0 (K0

0+L0
0)U0)−1

]
UT

0 ,

(14.34)

where B = UT
0 , D = K0

1 and C = U0. Given that

[J0|0]
−1=U0(UT

0 (K0
0+L0

0)U0)−1UT
0 , (14.35)

the binomial inverse theorem (A.4) is also applied to the right-hand side of (14.33)

[J0|0+K0
1]
−1
=U0(UT

0 (K0
0+L0

0)U0)−1UT
0 −U0(UT

0 (K0
0+L0

0)U0)−1UT
0 ·

B(I+DCU0(UT
0 (K0

0+L0
0)U0)B)−1DCU0U0(UT

0 (K0
0+L0

0)U0)−1UT
0 ,

(14.36)

where B = I, D = K0
1, and C = I. Comparing (14.34) and (14.36), we see that

(14.33) holds.
For k time steps, it can be obtained similarly as before (14.29) - (14.32) that

Uk−1

[
UT

k−1|0
J1,1
k |k−1

Uk−1|0

]
UT

k−1
≡[Jk−1|k−1+K0

|
]−1. (14.37)

Applying the matrix inversion lemma to the left-hand side plus the fact that the
matrix U is block-diagonal and setting in the recursive equations to the right-hand
side, (14.37) can be reduced to (14.33). �
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14.5 Reduction of the Constrained CRB
In this section, it is established that the unconstrained CRB (14.4) is never smaller
than the constrained CRB (14.24). Consequently, adding information about con-
straints reduces the CRB. This can be shown in the case where Jk |k is positive def-
inite. Here, as shown in Stoica and Ng (1998) and Khatri (1966), the constrained
CRB (14.24) can be written as

U(UTJU)−1UT =
(
I − J−1FT (FJ−1FT )−1F

)
J−1 = QJ−1, (14.38)

where F is given in (14.16) and indices and arguments were omitted for notational
convenience. It can be shown that Q is idempotent, which means

Q = QQ. (14.39)

Furthermore, I − Q is idempotent and J−1 as well as QJ−1 are symmetric. With
these conditions, it can be proven that the constrained CRB reduces in the sense
that the subtraction of the constraint from the unconstrained CRB is non-negative
definite (Gorman and Hero 1990).

QJ−1 = J−1 − (I −Q)J−1

= J−1 − (I −Q)(I −Q)J−1

= J−1 − (I −Q)J−1(I −Q)

≤ J−1

(14.40)

14.6 Computation of the Constrained CRB
The constrained CRB can be computed with the matrices (14.5) and the recursive
equations (14.26) - (14.28). In the case of a positive definite FIM Jk |k, (14.28) can
be exchanged with (14.38), which may reduce the computational burden. Impor-
tant to consider is that the constrained CRB is singular. Consequently, the con-
strained CRB is not invertible, which is not an issue in the recursion, but (14.26)
can only be computed with the help of a matrix inversion lemma such as (A.3).

14.6.1 The Linear Gaussian Case

Let us consider the linear system with additive Gaussian state and measurement
noise with linear equality constraints

xk+1 = Fkxk + wk (14.41a)

zk = Hkxk + vk, (14.41b)

0 = Akxk, (14.41c)
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where Ak is the gradient matrix of the constraints. The process covariance and
measurement covariance is given by the positive definite matrices Qk and Rk ,
respectively. For this special case, the matrices (14.5) have an analytical solution

Kk
k+1 = FT

k Q−1k Fk, (14.42a)

Kk,k+1
k+1

= −FT
k Q−1k = [Kk+1,k

k+1
]T , (14.42b)

Kk+1
k+1 = Q−1k , (14.42c)

Lk
k = HT

k R−1H. (14.42d)

Using the matrix inversion lemma (A.3), the recursive equations (14.26) and (14.27)
can be computed as

Ck |k−1 = Qk + FkC̃k−1 |k−1F
T
k , (14.43a)

Ck |k = Ck |k−1 − Ck |k−1H
T

(
R +HCk |k−1H

T
)−1

HCk |k−1, (14.43b)

which are the Kalman filter time and measurement update equations (Simon 2006).
The constrained update step (14.28) should be computed using the right-hand side
of (14.38)

C̃k |k = Ck |k − Ck |kAT
k

(
AkCk |kAT

k

)−1
AkCk |k, (14.44)

since it avoids the otherwise needed inversion of (14.43b).

14.7 Numerical Example
Simon (2010) presents a four-state navigation problem with equality constraints.
The first two states present the positions and the last two states the velocities in
the north and east directions, respectively. The velocity of the vehicle is in the
direction of θ, which is an angle measured anti-clockwise from the east axis. A
sensor provides a noisy measurement of the vehicle’s north and east positions. The
equations for this system can be written as

xk+1 =

(
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

)
xk +

(
0
0

T sin θ
T cos θ

)
uk + wk, (14.45a)

yk =
(
1 0 0 0
0 1 0 0

)
xk + vk, (14.45b)

where T is the discretisation step size and uk is the acceleration input. The covari-
ance of process and measurement noise are

Q = diag(4, 4, 1, 1), R = diag(900, 900) (14.46)
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and the initial estimation error covariance is

P+0 = diag(900, 900, 4, 4), (14.47)

where it holds

[P+0 ]−1 = L0
0 +K0

0. (14.48)

Since we know that the vehicle is on the road with a heading angle θ, the following
holds

tan θ =
x(1)
x(2)

=
x(3)
x(4)

. (14.49)

The constraints of the system can be expressed in the form Dixk using either

D1 =
(
1 − tan θ 0 0
0 0 1 − tan θ

)
(14.50)

or

D2 = ( 0 0 1 − tan θ ) . (14.51)

Consequently, the system has either one or two equality constraints.
The recursive equations (14.43)-(14.44) are used to compute the constrained

CRB for the system with D1 as the constrained gradient matrix of the system.
The CRB for all states is shown in Figure 14.1. The CRB for the constrained
system reduces since the constrained information is used to compute the bound.
Similarly, the constrained CRB for the system using D2 as the gradient matrix of
the constraints can be computed. Since D1 provides more information about the
constraints on the position while the same information as D2 about the velocities,
the constrained CRB using D1 is lower as the one using D2 for the position esti-
mates (Fig. 14.2(a)) while the same for the velocity estimates (Fig. 14.2(b)).

The computed constrained CRB can be reached with equality if the con-
strained Kalman filter using the system projection method presented by Simon
(2010) is used (Fig. 14.3). In this case, the initial estimation error covariance and
the process noise covariance are projected onto the constrained surface such that
they are consistent with the state constraints. Of all constrained linear estimators
considered in Simon (2010), the Kalman filter using the system projection method
reached the lowest error covariance for the presented problem.

Consider the problem where the sensor has a fault and is only able to provide a
measurement of the vehicle’s north position. It can be easily seen that the uncon-
strained problem becomes unobservable. This is not the case for the constrained
problem using D1. However, the problem is also unobservable if D2 is used since
the constrained CRB of x(2) grows without bounds (Fig. 14.4). The CRB of
x(2) of the unconstrained case grows quickly, while the CRB of x(2) using D2

considerably evolves slower to infinity.
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Figure 14.1: Constrained and unconstrained CRB for the state components of the naviga-
tion example.

14.8 Conclusion
A simple recursive algorithm to compute the CRB for the nonlinear filtering prob-
lem under linear state constraints is presented. The CRB version found in previ-
ous literature is extended by one step that projects the unconstrained CRB onto
the tangent hyperplane of the constrained set. Two different equations are pre-
sented to perform the constraint update, and this update step reduces the CRB
compared to the unconstrained CRB. The constrained CRB is illustrated on a
navigation problem, where the constrained CRB reduces compared to the uncon-
strained one. Moreover, it is shown that a Kalman filter using a system projection
method reaches the constrained CRB for the considered example. In addition, the
constrained CRB can easily be used to investigate observability of a constrained
problem.
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Figure 14.2: Constrained CRB for the state components of the navigation example using
either D1 or D2.
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Figure 14.3: Constrained CRB and error covariance of the constrained Kalman filter
(cKL) using the system projection method. The system is constrained using D1.
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Figure 14.4: CRB for the state components of the position when only x(1) is measured.



Chapter 15

On Kalman Filtering with Linear
State Equality Constraints

The chapter is based on PAPER B (Andersson et al. 2018a). It is concerned
with the state estimation problem for linear systems with linear state equality con-
straints. We re-examine the constrained Kalman filter variations and propose an
alternative derivation to prove that using an oblique state projection gives a smaller
error covariance. A simple example illustrates the performance of the different
Kalman filters.

In this chapter, the constrained Cramér-Rao bound derived in Chapter 14 is
used and, similarly, an error-covariance matrix for a Kalman filter with linear state
equality constraints is derived.

15.1 Introduction
The discrete-time Kalman filter (KF) under linear equality constraints has been
studied in Simon and Chia (2002), Ko and Bitmead (2007), and Teixeira et al.
(2009). The inclusion of the constraint information should result in an improved
estimate and a smaller error-covariance matrix (Marzetta 1993). One way to in-
clude the additional information is to reduce the system model and use the reduced
state and the conventional KF (Simon 2010). However, this approach may be
challenging to implement and may hinder insights into the original unconstrained
problem (Stoica and Ng 1998).

For a conventional linear stochastic model with additive white process noise
and linear equality constraints, the process noise must have a singular covariance
matrix to be consistent with the linear constraints on the state (Ko and Bitmead
2007). This realisation leads to a modification of the initial estimation error co-
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variance and the process noise covariance. After that, the conventional KF can
be used. This approach is called the system projection approach (spKF) (Simon
2010)1.

Another way to include equality constraints into the state estimate was pre-
sented by Simon and Chia (2002) by using the unconstrained KF to project the
results onto the constraints subspace. This approach is called estimate projection
KF (epKF) (Simon 2010).

A generalisation of the epKF was presented by Teixeira et al. (2009), where
they used, in contrast to Simon and Chia (2002), the projected state and error
covariance estimates in the recursion. They called this equality constrained KF
(ecKF).

It was proven that the state error covariance of both projection approaches is
smaller than that of the unconstrained estimate (Simon and Chia 2002, Ko and Bit-
mead 2007). Moreover, it was shown that the spKF has a smaller error covariance
than the epKF (Ko and Bitmead 2007). Teixeira et al. (2009) compared all three
constrained KF numerically, which all produced similar results in the examples
concerning their performance measures. However, the epKF produces less accu-
rate and informative forecasts. The main reason that the two others outperform the
epKF is that the projected state and covariance matrix are not fed back into the
recursion.

The contribution of this chapter is to show an alternative derivation of the ecKF
coming from the Cramér-Rao lower bound. Moreover, it is analytically derived
that using the ecKF results in a smaller error covariance compared to the epKF
and spKF.

15.2 Four Kalman Filter Variants
Consider the discrete time invariant system given by

xk+1 = Axk + Buk + wk, (15.1a)

yk = Cxk + vk, (15.1b)

where k is the time index, and xk ∈ R
n and yk ∈ R

y represent the state and
measurement vectors, respectively. The state xk is known to be constrained such
that

Dxk = 0. (15.2)

The vectors wk ∈ R
n and vk ∈ R

p are mutually independent white noise processes
with the covariances Qc ∈ IRn×n and R ∈ IRp×n. Furthermore, it is assumed that

1In the original paper by Ko and Bitmead (2007) it is called constrained Kalman filter. We,
however, will call it system projection Kalman filter as in Simon (2010) to avoid confusion with the
equality constrained Kalman filter presented later.



15.2. Four Kalman Filter Variants 217

the initial state x0 has a known pdf p(x0).
The matrix D ∈ IRc×n (with c < n) is assumed to have full row rank. Moreover,

it is assumed, without loss of generality, that the rows of D are unit vectors. The
constraint (15.2) implies that xk+1 = Axk + Buk + wk ∈ N (D) (Ko and Bitmead
2007). Furthermore, it is assumed that the state stays within the constraint surface
N (D) as this represents the physical constraints. In practice, this implies that each
component of the state equation is constrained in N (D) (Ko and Bitmead 2007)

(Axk, Buk, wk ) ∈ N (D). (15.3)

15.2.1 The Unconstrained Kalman Filter

For completeness, the equations of the unconstrained Kalman predictor (KF), where
V

u,p,c,e
k

= (CΣ
u,p,c,e
k

CT +R)−1, are2

Ku
k = Σu

kCTVu
k ,

x̂u
k+1 = A(I −Ku

kC)x̂u
k + Buk +AKu

kyk

Σu
k+1 = AΣu

kAT −AΣu
kCTVu

kCΣu
kAT +Qu,

(15.4)

where Qu is the unconstrained process noise covariance matrix.

15.2.2 The Estimate Projection Kalman Filter

The epKF approach to the constrained filtering problem is to project the uncon-
strained estimate x̂u

k
of the KF onto the constraint subspace (Simon and Chia 2002).

The constrained estimate can be found by solving

min
x̃
p
k

(x̃p
k
− x̂u

k )W(x̃p
k
− x̂u

k )T subject to Dx̃
p
k
= 0,

where x̃
p
k

and W are the constrained estimate and a positive-definite matrix, re-
spectively. The solution to this problem is

x̃
p
k
= PW

N (D)x̂
u
k,

where PW
N (D) ≡ I −W−1DT (DW−1DT )−1D, which, in general, is an oblique pro-

jection. The smallest projected error covariance Σ
p
k
= PW

k
Σu
k

(PW
k

)T = PkΣu
k

is
obtained if we set W = (Σu

k
)−1 where Σu

k
is the error covariance matrix of the

unconstrained KF (Simon and Chia 2002, Simon 2010).
The complete epKF is, therefore, (15.4) combined with the projections

x̃
p
k+1
= PW

N (D)x̂
u
k,

Σ
p
k+1
= PW

N (D)Σ
u
k .

(15.5)

2The superscripts denote the unconstrained (u), estimate projection (p), system projection (c),
and equality constrained Kalman filter (e).
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Remark 15.2.1. The epKF neither uses the projected error covariance nor the
projected state in the recursion.

15.2.3 The System Projection Kalman Filter

The spKF approach is based on the observation that the system can be projected
onto the null space of D. Let us denote the orthogonal basis of D by U, which
satisfies

DU = 0, UTU = I. (15.6)

The projected system is (Ko and Bitmead 2007):

xk+1 = PN (D) (Axk + Buk + wk ),

where PN (D) ≡ UTU is the orthogonal projector onto the null space of D. The
difference between the oblique and orthogonal projection is that in the orthogonal
projection onto the subspaceM alongN , the two subspacesM andN are orthog-
onal, while in the oblique projection this is not the case.

An important consequence from (15.3) is that the system matrix A satisfies the
following properties

Axk = PAxk = APxk,

where P is any projection matrix onto the null space of D. Moreover, by taking
a conditional expectation for any given measurement Yk = [yT0 , y

T
1 , . . . , y

T
k

]T , the
following can be obtained (Ko and Bitmead 2007)

PA E {xk |Yk } = AP E {xk |Yk } .

It then follows that

APΣ = PAΣ = AΣ, (15.7a)

APΣPTAT = PAΣATPT = AΣAT , (15.7b)

where Σ is the error covariance matrix.
The spKF is given by (Ko and Bitmead 2007)

Kc
k =Σc

kCTVc
k, (15.8a)

x̃c
k+1 =PN (D)A(I −Kc

kC)x̃c
k + PN (D)Buk + PN (D)AKc

kyk

=A(I −Kc
kC)x̃c

k + Buk +AKc
kyk

(15.8b)
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Σc
k+1 =PN (D)AΣc

kAPN (D) + PN (D)Q
uPN (D)

− PN (D)AΣc
kCTVc

kCΣc
kATPN (D)

=AΣc
kAT +Qc −AΣc

kCTVc
kCΣc

kAT ,

(15.8c)

where Qc = PN (D)Q
uPN (D), which is singular. It is only necessary to modify the

initial estimation error covariance and the process noise covariance. If Qc is the
true process noise covariance, then it follows that this method gives the optimal
state estimate (Simon 2010).

Remark 15.2.2. It was shown in Ko and Bitmead (2007) that the error covariance
matrix of the spKF is less than or equal to that obtained by the epKF. The main
reason is that in the epKF, the projected covariance is not used in the recursion.
Consequently, only information about the constraints in the most recent step of the
epKF is used.

15.2.4 The Equality Constrained Kalman Filter

A third option is to use the projected covariance matrix and state of the epKF
in the recursion (Teixeira et al. 2009), which we will call ecKF. We will provide
an alternative derivation of the covariance of this filter based on the constrained
Cramér-Rao bound in Andersson et al. (2017b).

The proofs of the following Lemmas can be found in Andersson et al. (2017b),
Stoica and Ng (1998), and Khatri (1966).

Lemma 15.2.3. Consider the complete state history Xk = [xT0 , x
T
1 , . . . , x

T
k
]T and

the inverse of the error covariance matrix Σ̃−1 of the state history with Ũ defined
in (15.6). If ŨTΣ−1Ũ is non-singular, then the constrained Cramér-Rao Bound is

E
{
(X − X̂)(X − X̂)T

}
≥ Ũ(ŨT Σ̃−1Ũ)−1ŨT . (15.9)

Remark 15.2.4. Lemma 15.2.3 was derived in Stoica and Ng (1998) for the es-
timation of non-random parameters. In Chapter 14, it was extended to the esti-
mation of random parameters (Andersson et al. 2017b). The right-hand side of
(15.9) is the greatest lower bound, which was obtained by solving a maximisation
problem.

Lemma 15.2.5. If Σ is positive definite, then (15.9) becomes

U(UTΣ−1U)−1UT = PΣ−1

N (D)Σ, (15.10)

where PΣ−1

N (D) = I − ΣDT (DΣDT )−1D.
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The projection of the unconstrained error covariance in (15.10) is the same as in
the estimate projection approach using W = (Σu

k
)−1.

The information matrix Σ−1 can be computed by (Simon 2010)

Σ−1k+1 |k = Q−1 −Q−1A
(
F +K + Σ−1k |k

)−1
ATQ−1, (15.11)

where K = CTR−1C and F = ATQ−1A.

Theorem 15.2.6. The error covariance of the ecKF can be computed by

Σe
k+1 = AΣe

kAT −AΣe
kCTVe

kCΣe
kAT +Qe, (15.12)

where Qe = PΣ−1

N (D)Q(PΣ−1

N (D))
T = PQ−1

N (D)Q(PQ−1

N (D))
T = PQ−1

N (D)Q.

Proof. Since the constraints D are decoupled in time, the matrix Ũ ∈ IRkn×k(n−c) is
block-diagonal with U repeated on the diagonal. The inverse of the unconstrained
error covariance matrix of the entire state history (15.9) is given by (14.8), which
is

Σ−1k+1 |k =


J1,1
k+1 |k

J1,2
k+1 |k

J2,1
k+1 |k

J2,2
k+1 |k



=



K + F + Σ−10 |0 −ATQ−1

−Q−1A
. . .

. . .
. . . K + F +Q−1 −ATQ−1

−Q−1A Q−1



.

(15.13)

We proceed by showing equivalence between (15.12) and the right-hand side of
(15.9) for x1, which by the structure of Σ−1

k+1 |k and Ũ implies that it also hold for
xk .
If we compute (15.9) for x1 using the matrix inversion lemma, then we obtain

Σe
1 = U

[
L −G

{
U

[
UTJ1,1

1 |0
U

]−1
UT

}
GT

]−1
UT (15.14)

where L = UTQ−1U, G = UTQ−1A and J1,1
1 |0
= K + F + Σ−10 |0. Using the binomial

inverse theorem this expression can be transformed to

Σe
1 = U

[
L −G

{( [
Σe
0

]−1
+ F

)−1}
GT

]−1
UT , (15.15)

where Σe
0 = U

(
UT [Σ−10 |0 + K]U

)−1
UT , which is the expression obtained using

(15.12) on the left-hand side of (15.10) with the information matrix (15.11) as the
projection. �
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The proof establishes a direct connection between the error-covariance matrix of
the ecKF to the Fisher Information matrix and the Cramér-Rao lower bound. This
also enables an analytical comparison between spKF and ecKF. Moreover, the
necessity to guarantee numerically positive definiteness of (15.12) is avoided in
the derivation.

Remark 15.2.7. Examining (15.12), only the process noise covariance matrix is
projected. Consequently, the projection can be done a priori as in the system
projection approach. Moreover, PQ−1

N (D) can be used instead of PΣ−1

N (D).

The ecKF is given by

Ke
k =Σe

kCTVe
k,

x̃e
k+1 =A(I −Ke

kC)x̃e
k + Buk +AKe

kyk

Σe
k+1 =AΣe

kAT +Qe −AΣe
kCTVe

kCΣe
kAT ,

(15.16)

where Qe = PΣ−1

N (D)Q. The difference from the spKF is the use of the oblique
projection. In the next section, we show that this results in a smaller covariance.

15.3 Comparison of Constrained Kalman Filters
None of the constrained Kalman filters violates the constraints (Simon 2010, Ko
and Bitmead 2007, Teixeira et al. 2009). Moreover, it was shown in Ko and Bit-
mead (2007) that the error covariance matrix Σc

k
is less than or equal to Σ

p
k

.
To prove that Σc

k
≥ Σe

k
, we need the following lemma about a monotonicity prop-

erty of the Riccati difference equation (Bitmead and Gevers 1991).

Lemma 15.3.1. Consider two Riccati difference equations with the same A, C and
R matrices but possibly different Q1 and Q2. Denote their solution matrices by Σ1

k
and Σ2

k
, respectively. Suppose that Q1 ≥ Q2, and for some k we have Σ1

k
≥ Σ2

k
,

then for all i > 0, we have Σ1
k+1 ≥ Σ

2
k+1

A consequence of this lemma is that we only have to compare Qc and Qe to com-
pare the error covariances of ecKF and spKF.

Lemma 15.3.2. The constrained error covariance Σe is less than or equal to the
unconstrained one.

Proof. Σ and PΣ−1

N (D)Σ are symmetric and PΣ−1

N (D) and I − PΣ−1

N (D) are idempotent.
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Therefore, the following holds (Gorman and Hero 1990):

PΣ−1

N (D)Σ = Σ − (I − PΣ−1

N (D))Σ

= Σ − (I − PΣ−1

N (D))(I − PΣ−1

N (D))Σ

= Σ − (I − PΣ−1

N (D))Σ(I − PΣ−1

N (D)) ≤ Σ

�

Theorem 15.3.3. For the constrained system (15.3), the error covariance sequence
is

Σu
k ≥ Σ

p
k
≥ Σc

k ≥ Σe
k .

Proof. The first inequality was shown in Simon and Chia (2002) and by Lemma
15.3.2. The second inequality was shown in Ko and Bitmead (2007). For the third
inequality, consider

Qc −Qe =UUTQUUT −
(
I −QDT (DQDT )−1D

)
Q

=

(
DQ
−D

)T (
(DQDT )−1 I

I DQDT

) (
DQ
−D

)
≥ 0,

where we use UTU = I − DTD and omitted subscript k for notational simplicity.
Positive semi-definiteness follows since any matrix [ Λ−1 I; I Λ ] is positive semi-
definite (Bernstein 2005), and Σc

k
≥ Σe

k
follows from Lemma 15.3.1. �

15.4 Numerical Example
A simple numerical example is presented to illustrate the performance differences
of the four estimators. The example is used as a benchmark (Simon and Chia
2002, Ko and Bitmead 2007, Simon 2010), and is a navigation problem with the
following linear system and measurement equation

xk+1 =

(
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

)
xk +

(
0
0

T sin θ
T cos θ

)
uk + wk,

yk =
(
1 0 0 0
0 1 0 0

)
xk + vk,

where T is the discretization step size and uk is the acceleration input. The states
are the positions and velocities in north and east directions, respectively. The un-
constrained covariance of process and measurement noise are

Q = diag(4, 4, 2, 1), R = diag(900, 900)
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and the initial estimation error covariance is

P+0 = diag(900, 900, 4, 4).

It is known that the vehicle is on the road with a heading angle θ, which can be
described by the constraint equation

Dxk =
[
1 + tan2 θ

]−1/2 (
0 0 1 − tan θ

)
= 0

This results in the following projected noise covariances

Qc =

(
4 0 0 0
0 4 0 0
0 0 2.6250 1.5155
0 0 1.5155 0.8750

)
≥

(
4 0 0 0
0 4 0 0
0 0 2.4000 1.3856
0 0 1.3856 0.8000

)
= Qe,

and initial error covariance

Σc
0 = Σe

0 =

(
900 0 0 0
0 900 0 0
0 0 3.0000 1.7321
0 0 1.7321 1.0000

)
.

An initial state x
u,p,c,e
0 = ( 0 0 10 tan θ 10 )T , 2 s sampling period and 60◦ heading

angle are used.
The variance of the north position and velocity estimate is shown in Figure

15.1. The ecKF has the lowest variance for all states estimated. In the position
estimate, the spKF performs only slightly worse while the position estimates of
the epKF have a larger variance (Fig. 15.1(a)). This is different for the velocity
estimates, which from the ecKF still have the smallest variance while the variance
of the velocity estimates for the epKF is smaller than the spKF. The latter may seem
to contradict Theorem 15.3.3, but a plot of the two-norm of the error-covariance
matrices reveals that this is not the case.

15.5 Conclusion
In this chapter, linear state estimation with linear equality constraints is revisited.
A simple derivation of the covariance of the constrained Kalman filter is presented.
This filter is compared to the system projection and estimate projection Kalman
filter. It is proven that the oblique projection of the constrained Kalman filter
results in the smallest error covariance.



224 On Kalman Filtering with Linear State Equality Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
0

200

400

600

800

E
rr

or
va

ri
an

ce
[m

2
]

spKF epKF ecKF KF

(a) Position - xk (1).

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

Time step k

E
rr

or
va

ri
an

ce
[m

2
/s

2
]

(b) Velocity - xk (3).

Figure 15.1: Estimation error variance for the systems states.



Chapter 16

Concluding remarks

The thesis presented contributions within different areas of iceberg drift. The pri-
mary focus laid on improves short-term iceberg drift forecasts by including mea-
surement updates about the iceberg trajectory into the forecast. In addition, a re-
sult in the field of estimation under constraints is presented. This chapter aims to
briefly summarise the results and provide overall reflections looking at the com-
plete results from the thesis. It also points out possible topics for future work. The
reader is also referred to the detailed conclusion sections at the end of the chapters.

In Part I of the thesis, the iceberg dataset, which is an important part of the thesis
and influenced it considerably, was presented. The Newfoundland dataset (Sec.
4.1) was collected in Spring 2015 during the Offshore Newfoundland Research
Expedition conducted by Statoil and ArticNet. The author of this thesis joined this
expedition, which was probably one of the most influential events throughout the
work on this thesis. A unique dataset was collected, which helped validate many
of the implemented ideas. During the expedition, the CCGS Amundsen stayed for
a period of about 7 h near one iceberg and obtained measurements with several
sensor platforms, including the environmental forces of winds, waves, and ocean
currents. Even though an almost complete dataset was collected, it was not possi-
ble to hindcast the iceberg drift. Moreover, the variance of drift trajectories from
the dynamic iceberg drift model was significant. The results were expected and
agreed with previous literature and the results in the thesis. It is necessary to cor-
rect the parameter of the dynamic model with help of iceberg drift observations. It
is expected that the observations are similar even if the 3D geometry of the iceberg
is measured.

In practice, the information about the iceberg and the environmental forces is
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more limited resulting in an even larger uncertainty of the future iceberg drift tra-
jectory.

Part II discussed the hybrid forecast approaches, which combined the dynamic
iceberg model with statistical methods. The ancillary and inertial current forecast
schemes were proposed. The ancillary current forecast scheme was developed
with the assumption that the ocean current input to the dynamic iceberg model is
biased. The ancillary current corrects this bias, and it was assumed that the bias
stays constant or, at least similar, during the forecast period. While the ancillary
current forecast scheme was superior to the dynamic iceberg drift model, it inher-
ited the disadvantage that it relied on erroneous current data. The bias that was
assumed to be constant during forecast may change quickly over time such that
the ancillary current forecast scheme produces an erroneous forecast. The disad-
vantage was overcome with the inertial current forecast scheme that estimated the
complete ocean current with the help of a simplistic ocean model and the observed
iceberg trajectory.

Part III formulated a statistical forecast approach. It was observed that in hybrid
forecast schemes, the main objective was to forecast the ocean current correctly.
Other uncertain parameters, for instance, the iceberg geometry or the drag coef-
ficients, were not explicitly considered in the estimation process, but implicitly
corrected by it. Moreover, the dynamic iceberg drift model reaches quasi-steady
state quickly. This raised the question if the dynamic iceberg model is neces-
sary for the short-term forecasts or if the empirical kinematic relationship between
wind, ocean current, and iceberg velocity could be used for reducing the param-
eter space considerably. The explicit objective of the VAR model forecast was to
forecast the ocean current using the iceberg as a drifter to improve the forecast. An
improved forecast of the iceberg trajectory was mainly the result of an improved
ocean current forecast. Moreover, the iceberg drift model was drastically reduced
to its kinematic relationship between wind, ocean current, and iceberg velocity
resulting in only one iceberg drift model parameter. Through several iceberg fore-
cast examples, it was shown that this concept works well. In fact, this approach
was one of the best iceberg drift forecast schemes in the overall comparison of all
proposed schemes (Chapter V).

It is possible to identify one or several statistical ocean current models for ev-
ery location where historical ocean current data is available (possibly for every
grid cell of an ocean current model). This, in turn, can easily be used to identify
unusual ocean currents or unusual iceberg behaviours to issue a warning to the op-
erator.
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Part IV showed how iceberg drift observations could be used to detect tidal and in-
ertial ocean currents. Both oscillations have similar frequencies, and their separa-
tion imposes a challenging filtering problem. The multivariate empirical mode de-
composition was used to solve the problem. In higher latitudinal locations, where
both oscillations have the same frequency, a second filtering stage or more infor-
mation about the oscillations was necessary, for instance, zero-crossing of the tidal
oscillation. The analysis showed that a dynamic iceberg drift model is not strictly
necessary for this filtering problem. In addition, the multivariate empirical mode
decomposition can decompose simultaneously the iceberg velocity, ocean current,
and wind inputs simultaneously into different frequency modulated components,
since it behaves like a band-pass filter. The second chapter in Part IV suggested
how this separation may be used for iceberg drift forecasts. At each forecast in-
stance the inputs and outputs were decomposed into different frequency bands,
and for each band, it was checked separately if the inputs forecast the iceberg ve-
locity in the past. If they were, then the inputs were used to forecast the iceberg
velocity in that frequency band. Otherwise, the iceberg velocity in the frequency
band was forecasted by an auto-regression model. The MEMD forecast scheme
showed very good forecast performance in the first hour showing it is a powerful
filter. However, the performance decreased for longer forecast horizons indicating
the forecast scheme needs improvement.

Part V offered a comparison between every short-term forecast scheme presented
in this thesis. The comparison resulted in new ideas on how to combine the ben-
efits of the forecast schemes. It was shown that it could not be guaranteed that
one forecast scheme behaves better than the other approaches at all times. More-
over, all forecast schemes had at least short periods where they were superior.
This held for the comparison between the newly-developed forecast approaches of
this thesis, but also for the forecast using the conventional dynamic drift forecast
model. However, the inertial current forecast scheme (Chap. 7) and the VAR fore-
cast scheme (Chap. 9) produced, on average, the smallest forecast errors. It was
observed that usually the statistical forecast approaches produced large or small
forecast errors in the same period. Consequently, they have similar forecast prop-
erties.

Finally, Part VI investigated state and parameter estimation under constraints. The
first chapter discussed an idea on how to estimate the hydrodynamic iceberg ge-
ometry if ocean currents, winds, and possibly, waves are measured close to the
iceberg. The resulting geometry is weighted based on the drag coefficients cho-
sen in the dynamic iceberg model. Since the iceberg drift is a slow process and
parameter estimation requires input excitation, the iceberg has to be observed for
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an extended time. To improve the estimation and converge quicker to a solution,
constraints in the form of an iceberg geometry model were developed. This mo-
tivated the development of a Cramér-Rao bound for discrete-time systems under
state constraints in the subsequent chapter. The bound holds for nonlinear systems
under linear constraints. For a nonlinear system under nonlinear constraints, the
projection of the unconstrained Cramér-Rao bound onto the constrained surface
may also result in a reduction of the bound. However, with the approach that was
taken in this thesis, it was not proven that this is a lower bound. In the final chapter,
Kalman filtering with linear state constraints was discussed. In a similar fashion as
in the derivation of the constrained Cramér-Rao bound, an error covariance for the
Kalman filter with linear state constraints was derived. The results, in fact, in the
smallest error covariance matrix, was analytically shown by comparison to other
constrained Kalman filters.

Suggestions for Future Work
The thesis focused on developing short-term iceberg drift models that included
iceberg position measurements. Each of the approaches can be improved (at least
to some degree). In the ancillary current forecast scheme, it was not discussed as
to how ocean current inputs from an ocean model can be combined with the ancil-
lary current, which is estimated with the help of the iceberg track. The ancillary
current will contain fast frequency modes (if the measurement frequency is suffi-
ciently fast), which are not represented in the modelled ocean current. This can be
implicitly handled by the estimator but an explicit consideration, for instance, by
filtering with, e.g., an multivariate empirical mode decomposition, may improve
the forecast. Similarly, the inertial current forecast scheme only considers the in-
ertial current oscillation explicitly. The tidal current is not considered. Therefore,
strong tidal current will most likely corrupt the inertial current estimation. Again,
explicit handling either by extending the ocean current model or by a filtering step
may improve the forecast.

In Part V, it was already shown that a combination of different forecast schemes
could result in an even better drift forecast for specific forecast periods. Other com-
bination may also be tested.

The forecast scheme presented in this thesis do not consider confidence regions
or calculating the risk to a platform to collide with an iceberg. This may be incor-
porated into the forecast schemes. Monte Carlo simulations (in the context of the
iceberg drift literature is often called ensemble forecast) may be implemented. An
explicit representation of the error term is possible with the VAR forecast scheme.
However, measured ocean current should be used in the identification of the ocean
current model. How well this model will forecast the iceberg trajectory remains to
be tested. It may be considered to use the measured ocean current only to identify
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an error term.
In general, the forecast performance depends on a number of factors, for ex-

ample, model error, input uncertainty, measurement errors, characteristics of un-
measured disturbances, forecast period and the forecast method. In terms of the
iceberg forecast problem the forecast error of the dynamic iceberg model was of-
ten analysed by variation of its input and parameter values. However, how well
the dynamic model represents the actual iceberg drift process was not evaluated.
It was often concluded that the error is caused by deficiencies in the ocean current
representation. An indication how important the unpredictable current structures
(on spatial scales of a few to several kilometres) are given in the thesis. Allison
et al. (2014) are the only ones that tried to quantify the parameter and input un-
certainty in a more structured manner. Similar studies for different regions and
base cases have to be performed. A few considered an explicit noise term (Garrett
1985, De Margerie et al. 1986, Moore 1987) which can be better analysed as more
iceberg drift data becomes available due to, e.g. new satellite programs.

Measurements errors are usually neglected since in comparison to other source
the position measurement of an iceberg tracked with a GPS beacon is rather good.
Different forecast methods and model were compared in this thesis. Overall, a
more structured approach to analyse the iceberg forecast problem is recommended.
This can include, for example, also lab experience in an ocean basin to analyse the
errors introduced to the drift due to the geometry simplifications in the dynamic
iceberg model.

Another interesting approach may be to implement a switching scheme for all
presented forecast algorithms similar to the one presented in Chapter 8. A possi-
ble performance measure may be the relative forecast performance. How well the
classification for small forecast horizons is preserved into longer forecast horizons
must be tested.

In general, it is recommended to establish a benchmark for iceberg drift forecast
models. The benchmark should contain several iceberg drift trajectories possibly
from different regions. These regions may be categorised into near coastal regions
(continental shelf) and open ocean. Another category may be based on the diver-
sity of ocean current regimes. For example, it can be expected that the iceberg drift
forecast in a strait with consistent ocean current direction is superior to a forecast
on a shelf with diverse ocean current directions.

The minimum length of the observation period must be discussed as it is rec-
ommended to be at least seven days. For shorter periods, it may be that the iceberg
drift forecast results in either a good or bad forecast for the entire period. The po-
sition measurement frequency should be about one hour. The benchmark should
permit a fair comparison and categorisation (which scheme in which situation)
between different forecast schemes, which presently is challenging.
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Appendices
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Appendix A

Linear Algebra

A.1 Matrix Inversion Lemma
The inverse of a 2 × 2 block matrix is given by(

A B
C D

)−1
=

(
F−1 −A−1BE−1

−D−1CF E

)
, (A.1)

where

E = D − CA−1B,

F = A − BD−1C.
(A.2)

Furthermore, the following holds

(A + BDC)−1 = A−1 −A−1B(D−1 + CA−1B)−1CA−1, (A.3)

provided A−1 exists.

A.2 Binomial inverse theorem
The binomial inverse theorem is a more general formula of (A.3), which also exist
in cases of a singular matrix D (Henderson and Searle 1981)

(A−1 + BDC)−1 = A−1 −A−1B(I +DCA−1B)−1DCA−1. (A.4)
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Appendix B

PAPER E: The Moving Horizon
Estimator Used in Iceberg Drift
Estimation and Forecast.

For completeness of the thesis PAPER E is included. The article presents a subset
of PAPER A presented in Sec. 6.
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