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Abstract

A prototype solution for continuously determining the current level of dan-
ger in traffic at different locations has been developed, based on event de-
tection on a stream of Cooperative intelligent transport systems (C-ITS)
data. Detection of abrupt braking events from Cooperative awareness
messages (CAMs) was chosen in order to provide a proof-of-concept of the
solution, and an algorithm for the detection of such events has been con-
structed. Datasets were generated in real-life traffic in order to tune and
evaluate the algorithm. This shows potential, but the algorithm suffers
from a lack of larger volumes of data that is needed in order to train it for
higher accuracy.

Abrupt braking events are combined with pre-detected Decentralized
environmental notification message (DENM) events through a system of
relative weighting based on a measure of event severity. The spatial and
temporal characteristics of traffic events have been modeled mathemat-
ically, providing a way to express their effect dynamically on a map in
real-time.

The full solution has been implemented in Python, as a series of mod-
ules that effectively divide the full problem into intuitive subtasks that can
be developed and tested independently. The solution regularly outputs a
list of dangerous locations and their calculated level of danger, which can
be used as an input to other systems. Additionally, a way to visualize the
incoming data, important intermediary results and the final output has
been implemented, which, among other things, allows a human operator
a clear view of the current level of danger in traffic at all times.
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Sammendrag

Det har blitt utviklet en prototypeløsning som kontinuerlig beregner det
gjeldende fareniv̊aet i trafikken p̊a ulike lokasjoner, basert p̊a hendelsesde-
teksjon fra en strøm av data fra Kooperative intelligente transportsystemer
(C-ITS). Detektering av br̊abremsing fra CAM-meldinger ble valgt for å
gi et konseptbevis av løsningen, og en algoritme for deteksjon av slike
hendelser ble konstruert. Data ble generert i ekte trafikksituasjoner for å
kunne justere og evaluere algoritmen. Dette viser potensiale, men algorit-
men lider av en mangel p̊a et større volum av data, som trengs for å trene
den for høyere nøyaktighet.

Detekterte br̊abremsinger kombineres med pre-detekterte DENM-hendelser
gjennom et system for relativ vekting basert p̊a et m̊al av alvorlighetsgrad.
Trafikkhendelsers romlige og tidsmessige egenskaper ble matematisk mod-
ellert, slik at effekten deres kan uttrykkes p̊a et kart i sanntid.

Den komplette løsningen er implementert i Python, som en serie mod-
uler som effektivt deler problemet i mindre, intuitive del-oppgaver som kan
utvikles og testes uavhengig av hverandre. Løsningen produserer jevnlig en
liste over farlige lokasjoner og deres beregnede fareniv̊a, som kan brukes
som inngangsdata til andre systemer. I tillegg har det blitt utviklet en
m̊ate å visualisere den innkommende dataen, viktige mellomresultater og
de endelige resultatene, som blant annet gir en menneskelig operatør full
oversikt over det n̊aværende fareniv̊aet i trafikken til enhver tid.
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1 Introduction

Driving a vehicle is largely about continuously keeping track of the situa-
tion around you, reading the intent of others as best possible and making
quick decisions if something unexpected happens. As our vehicles are now
transforming into highly advanced computers, and over time learning how
to communicate directly with one another and with infrastructure along
the road, both the vehicles, their drivers and external traffic managers will
be enriched with a vast amount of quality data, allowing them to keep a
finger on the pulse of traffic like never before.

With Intelligent transport systems (ITS), the digital revolution will
soon hit the roads for full. Listening to and analyzing the increasing vol-
ume of chatter between vehicles will provide us with an unprecedented
insight into both the long-term evolution of traffic, and enable a continu-
ously updated, real-time overview of the roads. Developing a system that
uses this data in order to continuously determine the current level of dan-
ger at locations on a map is the subject of this thesis. This information
could be valuable to both traffic controllers and emergency dispatchers, or
be fed back to the vehicles themselves, in order to give them a heads-up
about an upcoming critical point in their path.

Digital material, such as generated datasets and the written software,
will be referenced throughout the thesis. This is included in a digital
folder that should come attached, and the file structure of this material is
represented in appendix B.
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2 Background and theory

The entirety of section 2.1 is directly quoted from [1].

2.1 Cooperative Intelligent Transport Systems

ITS is an umbrella term for the digitization of all forms of transport, “in
which information and communication technologies are applied in the field
of transport, including infrastructure, vehicles and users, and in traffic
management, as well as for interfaces with other modes of transport”, as
defined in [2]. At the time of writing, different aspects of ITS are under
active development as ETSI standards in cooperation with the European
Commision, car makers, network operators, electronics vendors and others.
Their work can be followed at [3]. In 2013, the Norwegian government
presented ITS as a focus area in the future of transport [4].

2.1.1 Purpose

Cooperative intelligent transport systems (C-ITS) is the branch of ITS
that aims to connect traffic in a wireless communications network, with
the goal of increasing safety and efficiency through information sharing
and cooperation. Vehicle-to-vehicle (V2V) communication will allow ve-
hicles to broadcast basic variables such as location and speed to all nearby
vehicles, giving everyone a more complete overview of the traffic around
them at all times. Notable events such as accidents, slippery or blocked
roads or traffic congestion can be relayed from vehicle to vehicle, out to
everyone in the relevant area. Emergency vehicles can warn the traffic in
its path in an earlier and more controlled manner.

To begin with, information exchanged through C-ITS will be processed
and presented to the driver through existing interfaces such as icons on
the navigation map and other visual or auditory warnings. As vehicles
become more automated, C-ITS could open the possibility of more com-
plex communication, such as broadcasting of future intent, and vehicles
coordinating their behavior through an intersection instead of relying on
rigid and inefficient rules such as traffic lights.

Vehicle-to-infrastructure (V2I) communication will allow vehicles to
exchange information with infrastructure. This can for instance be used
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for automated tolling and parking, tunnels that can warn entering vehi-
cles about a fire inside, speed limit notifications, weather stations that
can calculate the road’s coefficient of friction and inform passing vehi-
cles, and traffic lights that broadcast the remaining duration of its red or
green lights, such that vehicles can calculate the optimal speed for energy
efficient and comfortable cruising through the intersection.

V2V, V2I and other variants are collectively termed V2X.

2.1.2 Technical specification

ETSI’s C-ITS standards rely on a protocol termed ITS-G5 [5] which spec-
ifies 5.9 GHz as the frequency band for operation. ITS-G5 is based on
the same underlying specifications as wireless communication using WiFi
(namely, the IEEE 802.11 series of standards). Unlike WiFi, ITS-G5 al-
lows communication without the creation of a central access point, and
thus without any authentication/association (“pairing”) between stations.
Messages are broadcasted in an all-to-all/fully connected network topol-
ogy, such that messages can be received by anyone being sufficiently close
to the sender. The range is mandated to be at least 300 m when line of
sight can be established and there is little communication channel conges-
tion [6]. Moreover, important messages can reach even further by being
relayed through a chain of vehicles.

Two different classes of messages are specified for normal traffic:

1. Cooperative awareness message (CAM) [7]: Broadcasted by every
vehicle at a frequency of between 1 and 10 Hz. It contains at the
very least a high-frequency container with the latest data about the
location, speed, acceleration, and heading (direction) of the vehicle,
among other things. Occasionally it will also include a low-frequency
container with information about the vehicle which is static or not
highly dynamic. Additionally, special vehicles such as emergency or
road works vehicles or vehicles doing public transport operations will
include a special vehicle container with relevant information about
their operation.

Received messages can be used to build a detailed, constantly up-
dating map of the surrounding vehicles which can be presented to
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the driver, or which the vehicle can act on directly (for instance to
support the cruise control, or perform emergency braking).

2. Decentralized environmental notification message (DENM) [8]: Gen-
eration is triggered by an event, such as the detection of a road haz-
ard or abnormal traffic conditions. The message contains informa-
tion about the event, as well as its location and time of detection.
The message is sent V2V or V2I (in which case it can be relayed
back to other vehicles, or sent via the internet to for instance a traf-
fic control center or emergency personnel). A received DENM may
be presented to the driver as a visual or auditory warning, or trigger
automatic response by the vehicle.

13



2.2 Theoretical foundation

2.2.1 Vehicle braking, normal and abrupt

For the purposes of detecting an abrupt braking event (to be relevant in
sections 4.2 and 4.5.1), it is useful to formulate what distinguishes such
an event from a normal braking event.

Braking, in general, is the act of applying the brakes of a vehicle
through a foot pedal in order to slow the vehicle down, or decelerate1.
We will use normal braking for a deceleration which is:

Safe, in that it is performed in a controlled, calm and planned manner,
not in haste, and without losing control of the vehicle or the situation
around it. It achieves the goal of decelerating the vehicle to the
target speed in time.

Comfortable, in that the braking event is not unpleasant for the driver
or any passengers.

As comfort is here a stricter criterion than safety, as well as the fact
that one could argue that the driver’s comfort is itself a requirement for
safety, we focus on this last point. One measure of comfort level is the
peak deceleration experienced during the event2. According to [9], a de-
celeration of up to at least 2.0 m/s2 is comfortable, while [10] states 3.4
m/s2 as a ”comfortable deceleration for most drivers”. In [11], measured
data for the comfort at different levels of deceleration are given, which are
reproduced in table 1. As these levels are for average deceleration, they
are certainly lower than the maximum deceleration experienced during
the braking. The literature thus mostly agrees, and seems to indicate that
a change from comfort to discomfort occurs somewhere between 3 and 4
m/s2.

1The term deceleration is used throughout this report both as “the act of slowing
down”, and as the mathematical negative of acceleration.

2In this section, and throughout the thesis, acceleration values will frequently be
given in the unit of m/s2. For humans used to traveling by car, it can be easier to
think in terms of the more complex km/h/s, as for instance an acceleration of 10
km/h/s means “increasing speed by 10 km/h over a period of 1 second”. Appendix C
provides a quick way to convert between the two.
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Table 1: Data from [11] on the comfort at different average deceleration
levels. Decelerations were performed from a speed of 112 km/h to a stand-
still. The tests themselves were done by [13], unfortunately only with eight
test subjects.

Evaluation Average deceleration (m/s2)

Comfortable to passenger, preferred by
driver.

2.6

Undesirable, but not alarming to passenger;
driver would rather not use.

3.4

Severe and uncomfortable to passengers,
slides objects off seats. Driver classes as an
emergency stop.

4.2

Maximum stop, car stays in a 12-foot lane
without skidding. Brakes in best condition.

5.9

The smoothness of the deceleration is raised by [12] as another concern
for comfort, and the minimization of jerk (the rate of change of accelera-
tion) is used to ensure a smooth deceleration.

Based on these observations, an ideal, theoretical braking profile can
be constructed as shown in figure 1. The jerk is here constructed as piece-
wise linear segments, with no discontinuities or “jumps”. This produces
a smoothly varying deceleration profile with a maximum deceleration of
approximately 2.2 m/s2.

Abrupt braking, thus, can be said to be a deceleration that deviates
sufficiently from the ideal profile, in that it is more forceful (higher max-
imum deceleration) and/or less smooth (higher jerk), both of which indi-
cate a suddenness or abruptness of the maneuver.
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Figure 1: An ideal profile for normal braking.
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2.2.2 Event detection

Consider a dataset consisting of a number of measurements of some pro-
cess variable, distributed discretely in time, i.e. a number of samples. If
an event is modeled as being instantaneous, such that it occurs at some
discrete point in time corresponding to the timing of one of the samples,
then the process of detecting events in the dataset entails picking a sub-
set of the samples from the whole, and designating these as representing
events. This process can be automated by designing an event detection
algorithm.

Filtering the raw dataset can be included as a step in this algorithm,
often used in order to reduce noise present in the data. The moving average
is a type of filter that has a smoothing effect on the data, by exchanging
each sample for an average of several samples in its neighborhood. There
are two variants which are relevant here:

Simple moving average: A window with a certain size n is defined stat-
ically, and each sample is swapped with the unweighted mean of all
the samples on its left and right side which lie within the filter,
stretching n/2 number of samples in each direction.

Exponential moving average: Uses a weighted mean, where more re-
cent values are given more weight than distant ones, in an expo-
nentially decreasing fashion. This is implemented using a recursive
formula:

Fn =

{
R0, n = 0

αR0 + (1− α) Fn−1, n > 0
(1)

where Fn is the n’th filtered value, Rn is the n’th raw value, and α
is a smoothing factor that determines how fast the weights decay, as
one moves further away from the most recent sample.

This can thus be better suited than the simple moving average for
filtering a stream of data in real-time, where samples “to the right”
(in the future) are unavailable, and due to the fact that it only
requires a single value Fn to be retained over time.
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Judging the performance of a detection algorithm, which is important
for optimizing it, comparing different ones or building confidence in its
detections, one can use a labeled dataset. This means that there exists a
so-called ground truth designating what samples represent actual events,
which is most often manually constructed by humans. We can then define
the following terms, which are illustrated in figure 2:

Element: Here, each sample is an element, because every sample can
potentially be picked to represent an event.

Relevant/positive elements: These are the samples that represent ac-
tual events, i.e. the ground truth.

Irrelevant/negative elements: The samples that do not represent ac-
tual events. These are implicitly part of the ground truth, by not
being labeled as actual events.

Selected elements: The samples that the detection algorithm picks, i.e.
the algorithm’s best guess for what samples represent events.

True positives: The intersection between the positive elements and the
selected elements, i.e. the subset of the selected events that were
picked correctly.

False positives: The intersection between the negative elements and the
selected ones, i.e. the selected samples that are “wrong”.

False negatives: The actual events that failed to be picked by the de-
tection algorithm.

True negatives: The irrelevant elements that the detection algorithm
correctly did not pick.

As shown in the figure, one can now calculate two metrics in order to
judge the performance of a detection algorithm:

precision =
true positives

selected elements
(2)

recall =
true positives

relevant elements
(3)
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Precision thus indicates to what degree one can trust that the events
picked by the detection algorithm are actual events, while recall tells us
how often an actual event is detected as such by the algorithm, both of
them taking on values between 0 and 1. These can be combined into a
single metric called the F-score

F-score = 2 · precision · recall

precision + recall
(4)

which is thus a single value between 0 and 1 that can be used to judge
the performance of a detection algorithm.

It is advantageous to use separate, labeled datasets for tuning an algo-
rithm, called training, and for testing it. Training a detection algorithm
“too hard” on a dataset may lead to overfitting, in which the algorithm
has adapted to all minor variations in the data, even taking its embedded
noise into account. It will then not perform well for other datasets where
the noise is not exactly equivalent. Conducting training and testing on
separate datasets ensures that such a failure of the algorithm to model the
actual, underlying structure of the data will be spotted.
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Figure 2: Precision and recall. Illustration by Walber, licenced under CC
BY-SA 4.0 [14].
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2.2.3 Calculating distance on Earth

Calculation of the distance between two points on Earth is not as straight-
forward as applying the Pythagorean theorem to calculate a straight-line
Euclidean distance. This is due to the fact that the earth is a sphere,
on which no straight lines exist. To obtain accurate measurements of
distance, one must thus calculate the distance along the surface of the
sphere, i.e. the great-circle distance. There exists several methods to
solve for this distance which yield mathematically exact solutions, given
two points (θ1, γ1) and (θ2, γ2), expressed in the spherical coordinates of
latitude and longitude. One of them is the so-called Law of cosines for
spherical trigonometry :

d = R arccos(sin(θ1)sin(θ2) + cos(θ1)cos(θ2)cos(γ2 − γ1)) (5)

where R is the radius of the Earth and d is the calculated distance.
However, as explained in [15], equation 5 suffers from a drastically in-
creasing requirement for floating-point precision (the number of decimal
digits maintained by the computer performing the computation) as the
distance between the two points becomes small. As γ1 approaches γ2, the
term cos(γ2−γ1) approaches 1 from below, and requires an ever extending
series of decimal 9s to represent accurately. Even for modern computers
using 64-bit floating point numbers, the law of cosines will start behaving
erroneously when distances get down to a few meters [16].

Instead of relying on the law of cosines, one can use the Haversine for-
mula, which is well-behaved even at small distances. A fitting formulation
of the formula is

d = 2R arcsin

√
sin2

(
θ2 − θ1

2

)
+ cos(θ1)cos(θ2)sin2

(
γ2 − γ1

2

)
(6)

Note that both equation 5 and 6 model the Earth as a perfect sphere,
and do not take elevation differences or terrain into account. The mean
radius of Earth is defined by the International Union of Geodesy and
Geophysics (IUGG) as 6, 371, 008.7714 m [17], and is our best choice for
R.
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2.3 Equipment

The hardware and software described in this section have been provided
by Aventi Intelligent Communication.

Figure 3: Kapsch EVK-3300 V2X Evaluation kit. Image from Kapsch
TrafficCom AG [18].

In order to enable real-life data generation, to be detailed in section
4.3, two EVK-3300 V2X Evaluation kits from Kapsch [19] have been used.
One such device is shown in figure 3, without the accompanying GPS
antenna and power cords attached. These have a 5.9 GHz radio transceiver
built-in, and include the full ETSI ITS-G5 protocol stack, thus enabling
quick prototyping of ITS systems that are under development. The device
can track its own position, as well as its current speed and heading. In
addition, it contains an interface that can be connected to a vehicle’s On-
board diagnostics (OBD) port, thus enabling it to read certain parameters
from the vehicle itself. However, the proprietary Kapsch software currently
installed on the devices do not support this functionality, and this has thus
not been used.

One of the devices was configured as an Onboard unit (OBU), to func-
tion as an ITS station mounted in a vehicle, broadcasting data for other
stations to receive. Data is broadcasted at least once a second. The other
was configured as a Roadside unit (RSU), which is meant to be integrated
in traffic infrastructure, exchanging relevant information with the OBUs
installed in vehicles.

The Kapsch devices use 12V power supplies, enabling them to be pow-
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ered from the cigarette lighter socket in a vehicle. A 12V battery was used
in order to power the RSU.

A piece of proprietary Kapsch software called the ITS server can be
run on a computer which is attached to the RSU via an ethernet cable, in
order to display relevant information that the RSU receives from nearby
OBUs.
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3 Problem description

In [1], the original problem description given by Aventi (see appendix A)
is divided into two challenges:

1. Setting up a Big Data analysis system to handle data
from C-ITS and using this to extract relevant data from
a generated dataset.

2. Using e.g. machine learning to classify driving patterns
leading up to traffic accidents, and then warning drivers
in real-time when such a driving pattern is recognized.

The first challenge was the focus of [1], and is considered as solved at
the prototype/proof-of-concept level. The second challenge is the focus of
this thesis. It has been slightly modified in cooperation with Aventi, to
better fit their needs and the present technical possibilities. The formula-
tion of the problem description used for the present work is:

Using RSUs integrated in road infrastructure to listen for CAM and
DENM packages broadcasted by OBUs embedded in vehicles, identify dan-
gerous traffic situations and use this to determine dangerous locations in
real-time.

The objective was thus changed from a single-vehicle focus, where
vehicles would be warned of a potential impending accident, to a fleet
focus, where the sum of data from a fleet of vehicles would be used to
determine the danger in the areas covered by them, in a way that could
benefit the entire fleet.

To facilitate the development of such a solution, this general problem
description was further split into three main goals corresponding with
different levels of functionality:

(a) The ability to detect certain, specific types of dangerous situations
in real-time from listening to vehicle data in the form of CAMs and
DENMs.

(b) Using detected dangerous situations to assess the danger at partic-
ular locations in real-time.
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(c) The ability to visualize these dynamics in the current level of danger
in a way that would be valuable to a traffic control center operator,
a driver or even the vehicles themselves.
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4 Solution

4.1 Method

The solution to the problem description of section 3 will be entirely based
on one simple assumption, which is also implicit in the problem descrip-
tion itself. It can be formulated as follows:

Where there are many accidents and/or near-accidents, generalized as
“dangerous situations” (within a certain period of time), there is a high
probability for an accident in the future.

This assumption makes perfect intuitive sense, as one knows that traf-
fic accidents are not uniformly distributed across all stretches of road, but
rather tend to pile up at critical points. An accident, near-accident or
otherwise dangerous situation can serve as an indicator that a certain lo-
cation is such a critical point, and that the danger associated with this
location is higher than at other places. The assumption is also supported
by research, which shows that, for instance, there are approximately 2.5
times as many accidents involving bodily harm in X-type intersections
than in T-type intersections, and more than double the amount of acci-
dents around the entrance to a tunnel as within it [20]. Furthermore, one
could imagine that the level of danger at certain locations varies dynami-
cally, for instance with the time of day and weather conditions.

In the most general sense, the solution to be made will fit into an ITS
ecosystem as shown in figure 4. RSUs integrated in road infrastructure
would listen to the broadcasted CAM and DENM packages from nearby
vehicles, and transmit relevant extracted information as input to a data
processing and analysis system running at some centralized or decentral-
ized location, i.e. “the cloud”. Designing and implementing a prototype
version of this system is the goal of this work, and the result will be
referred to as “the system” or “the solution”, interchangeably. The sys-
tem will be processing incoming data in real-time, and output some sort of
assessment of the danger at particular locations at irregular time intervals.

Designing this system entails “filling in the blanks” in the data pro-
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Figure 4: The general structure of the ecosystem in which a solution
fitting the problem description of section 3, marked in blue, operates.
The feedback from the traffic control center to the vehicle fleet illustrates
one possible application of the results from the data processing solution.

cessing solution marked in blue in figure 4. Looking at the figure, there
are three main questions to answer:

1. What is the input to the data processing solution?

2. What happens within it?

3. What is its output?

It was shown in [1] that the following variables can be extracted from
each CAM package broadcasted by a vehicle, in the current state of the
C-ITS equipment used (see section 2.3):

• Station ID, the vehicle’s unique ID

• Timestamp, giving the time at which the other variables were cap-
tured

• Position, given as latitude and longitude coordinates
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• Speed

• Heading

These variables contain the most important, highly dynamic informa-
tion concerning a vehicle, and are what we have available to work with for
further data processing. This information will therefore be passed forward
from the RSUs as inputs to the data processing solution, answering part
of question one above.

As explained in section 2.1.2, DENM packages contain information
about events detected by the vehicles themselves, meaning that the detec-
tion part of the problem description (point (a) in section 3) has already
been taken care of in this case. This has the potential of providing the sys-
tem with a lot of valuable information about traffic situations “for free”,
and is thus definitely something one wants to pass forward as inputs to the
data processing solution. Examples of the types of DENM events defined
in [8] are:

• Accident

• Wrong way driving

• Dangerous end of queue

• Collision risk

• Slow vehicle

• Emergency vehicle approaching

• Dangerous situation

• Adverse weather conditions: Visibility

• Hazardous location: Obstacle on the road

ETSI [8] does not concern itself with how these events are detected,
and neither do we. DENMs don’t even necessarily have to originate from
a vehicle, they can in theory be generated by the RSUs themselves. The
important point is that there are laid out containers in the DENM pro-
tocol, which vehicle and equipment manufacturers can use to broadcast
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these kinds of events once their own event detection systems get advanced
enough. The system must therefore be set up to also be able to handle
DENM data as an input.

Question two, concerning the inner workings of the data processing
solution, is naturally the most demanding among the three. It can be
further broken down into three distinct parts:

Detection of different events from the incoming CAM data stream. Events
to be detected must be defined, their characteristics specified, and
an algorithm for detection must be designed and tuned to accurately
filter out an actual event from the surrounding noise. Different de-
tection algorithms should run in parallel in order to be able to detect
different types of events.

Consolidation of the detected events. The system should be designed
with the ability to handle all kinds of events gracefully, whether pre-
detected in a vehicle or RSU and transmitted as a DENM package,
or detected by applying some collection of algorithms to the incom-
ing stream of CAM data. Event types should be weighted differently
according to a relative measure of severity (statically defined or dy-
namically calculated somehow), so that they can be compared and
combined.

Calculation of danger over a map based on detected events, and trigger-
ing of an output when a location is deemed sufficiently dangerous.
This involves expressing each event in space by characterizing how
it affects its surroundings, in time by characterizing how its impact
changes as time goes by, and combining several events in order to
calculate the total danger indicated by them. This process will be
termed clustering.

As mentioned, the system should generate an output when it deter-
mines that a location has a certain level of danger associated with it. This
will be the final output of the system, and can for instance be used to gen-
erate an alarm in a traffic control center, or serve as input to other systems
that can take some automated action. The fact that detection, consoli-
dation and calculation happens continuously in real-time means that a
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location which has previously been regarded as dangerous can go back to
being safe, which, upon detection, should generate an output as well.

Figure 5 illustrates a fitting modularization of the described system.
Partitioning the system into separate modules that each solve smaller
parts of the bigger picture, and having simple data flow between them
(“signals”), means that implementation can focus on and optimize each
module independently. Note, however, that the figure only serves as an
overall guide for further design and implementation, meaning that the
keywords written on the modules and signals will only serve as hints, not
as hard restrictions. Nevertheless, figure 5 serves as a nice specification of
the overall layout of the solution.

The design and implementation to be laid out in the coming sections
will entail fully specifying each module in terms of input and output, as
well as designing and implementing all their inner functions.

Figure 5: The modules that make up the full system, as well as the infor-
mation flow between them, and the system’s initial input and final output.
The modules and signals that are internal parts of the solution are marked
in blue, while the system’s interfaces with the outside environment are
shown as dashed, blue lines.

4.2 Scope

Due to constraints in time, hardware limitations and a lack of large, high-
quality data volumes, it was necessary to constrain the focus of the work,
i.e. to define a proper scope. In particular when it comes to the problem of
event detection, as described in the previous section, clear constraints were
necessary. As C-ITS is a technology still in is infancy, there is not available
any large datasets of different traffic situations, that would be usable in
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designing and tuning event detection and classification algorithms. Such
data therefore had to be generated manually as part of this work (see
section 4.3). To be able to generate enough data for a proof-of-concept
event detection system, a single, specific event type was chosen: Abrupt
braking. This event type was chosen because of the following features:

Ease of data generation: The problem of safely, effectively and eco-
nomically generating a dataset of a sample of dangerous situations
is not straightforward by any means. How do you reliably simu-
late for instance a “near-accident” without risking a real one? How
can one do this over and over to build a dataset, without vast re-
sources? Abrupt braking, on the other hand, can be performed by
a single driver, in a safe and controlled manner without involving
other vehicles.

Reliable danger indicator: Without having to delve into the myriad if
different scenarios that can be considered as dangerous situations,
and having to model complex interactions between different vehi-
cles, infrastructure, pedestrians and so on, one can simply say that
“If someone performs an abrupt braking, something unexpected, po-
tentially dangerous, has happened”. In essence, we measure the
symptom of a dangerous situation instead of the situation itself, re-
ducing many different situations to one. We call abrupt braking a
danger indicator.

Observability: As listed in section 4.1, the current state of the hardware
and software only allows the measurement of a small set of variables.
One of these is speed, which is incidentally the only variable we really
need for detection of abrupt braking. This is thus one of the few
types of events that can be reliably detected at this point.

This allowed a much-needed focus for both the manual generation of
data (section 4.3) and the design and implementation of the detection
module (section 4.5.1).

As support for properly generating DENM data has not been fully
implemented in the equipment used, such data will only be handled at a
superficial level by the system. A skeleton for handling it will be built,
which can later be extended when the need comes.
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4.3 Generating data

Even though we have defined a braking profile for ideal, normal braking
(figure 1), and have declared abrupt braking as any sufficiently large de-
viation from this profile (in the direction of a more powerful maneuver),
there was a need to manually generate real-life data, as explained in the
previous section. The ideal braking profile had to be validated against
genuine data, and be tested to see how it would hold up against noise and
natural variations.

Ideally, one would use a vehicle carrying an OBU, and place battery-
powered RSUs along a road path, such that their receptive fields3 overlap
and cover the path entirely. This will be the ideal case once C-ITS has
become widespread, and such a hypothetical situation is shown in figure 7.
However, time and manpower constraints demanded a simpler operation.

The solution was to use a single vehicle, an ordinary car, carrying an
OBU powered by the cigarette lighter socket. In the vehicle was also an
RSU powered by a 12V battery, which was thus carried along the vehicle’s
route, eliminating the need for multiple, stationary RSUs. This accurately
approximates a situation where RSUs are spread across the route, and
their CAM data aggregated to one dataset. Notes were taken along the
way in the form of a continuously running voice recording. These simplifi-
cation measures enabled a smaller scale, one-man operation for generating
real-life CAM data. In order to capture and save the generated data, the
RSU was connected by an Ethernet cable to a laptop computer. The Kap-
sch ITS server software was modified to continuously write the relevant
variables in a CAM package to a file on the computer. Continuously writ-
ing the data, instead of batch downloading it at the end of the test (as
was done in [1]), was also critical for enabling real-time functionality of
the system that was to be built.

The vehicle was driven around the Trondheim area. Abrupt braking
was performed in a controlled manner, when all other vehicles were at
a safe distance, as to not confuse or potentially endanger anyone. Care
was taken to perform abrupt braking at all speed levels, i.e. from approxi-
mately 80 km/h to 60 km/h, from 50 km/h to 30 km/h, and from 30 km/h
to a standstill. In addition to abrupt braking, ordinary decelerations with

3The region of space from which the RSU can receive messages broadcasted from
OBUs.
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a varying degree of force was of course also performed, as well as some
that can be said to have been in the borderline area between strong/de-
termined and abrupt. Having both samples that are clearly positive, as
well as ones that are negative4, is essential for properly tuning a detection
algorithm.

After driving, the voice recorded notes were used to label the data
at the places which were deemed as abrupt brakings, providing a ground
truth for the detection algorithm. This labeling process was performed
using the tools developed in section 4.4.3.

The result was two separate datasets, originating from two distinct
legs of driving which were performed consecutively on the same day. The
one containing slightly more data was designated as the training set, while
the other was used as a test set. They are placed in the datasets folder in
the attached material, and called training set and test set respectively.
The raw data is in the form of .log files, while .csv files contain the data
after preprocessing (see section 4.4.1), and the labeled data come as .mat
files.

Figure 6: The path traveled by a vehicle with an OBU broadcasting data
to an RSU which the vehicle carries along. The figure is from [1].

4See section 2.2.2 for a definition of these terms.
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Figure 7: A hypothetical situation where the path from figure 6 is entirely
covered by RSUs, shown as antennas. Their receptive fields are shown as
blue circles. The figure is from [1].

4.4 Utility functions

A number of software functions and scripts were written to serve as aids in
processing and visualizing the datasets that were generated. These have
been termed utility functions, and are placed in the utilities folder in the
attached material. Some of them are listed below, in sections 4.4.1-4.4.3,
while some will be presented as part of later sections.

4.4.1 Preprocessing

Such a simple script is called log to csv.py, and is a Python [21] script
that takes the raw dataset (.log) file as input, and converts the data to
a nicely formatted CSV file. It also performs some light preprocessing on
the data, converting all units from proprietary versions to proper ones, i.e.
decimal degrees for latitude and longitude, km/h for speed, and degrees
for heading. Timestamps, which are originally 16-bit numbers wrapped to
65536 (216), meaning that they start over at 0 after 65.535 seconds [7], are
“unwrapped” by making them monotonically increasing5. These measures

5“Not decreasing”
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make later processing simpler and less error-prone.

The script produces a file with the following columns:

• station id

• timestamp

• unwrapped timestamp

• lat

• long

• speed kmph

• heading

Generated CSV files are placed in the same location as the original log
file, i.e. in the datasets folder in the attached material.

4.4.2 DENM generator

A script called denm generator.py was constructed in order to generate
different types of DENM events as input to the system, as this could
not easily be done using the Kapsch equipment. The script is given a
probability p between 0 and 1 as input, designating the probability per
second that an event will be generated. The event’s type is chosen at
random among the available ones (listed in figure 21), the severity is set
between 1 and 5, and the event is placed at a random location on a given
map. A station ID of the vehicle reporting the event is also set randomly.

This effectively replaces the RSU as the origin of the DENM data
stream in figure 5 for testing purposes, allowing us to test the system with
a variety of DENM data. It introduces some degree of randomness, which
will make sure that the implementation is tested for a multitude of different
cases. Generated events are outputted to the file its server denm.log
in the log folder, with the following format:

Received DENM: { ’ts’: 1525447097, ’reporter_id’: 93289, ’type’:

’driving_wrong_way’, ’lat’: 634220000, ’long’: 104140000,

’severity’: 1.40 }
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4.4.3 Replaying and labeling a dataset

Replay for labeling

In order to visualize a generated CAM dataset, as well as assisting in
properly synchronizing the voice recorded notes with the data (which is
needed to label the data with abrupt braking events in the right places), a
script called replay cam.m (in the matlab folder) was written in Matlab
[22]. This script takes a dataset (in the form of a CSV file, see the previous
section) as input, and plays it back in real-time through three visualization
windows:

Map view
The map view (figure 8) visualizes the vehicle’s movement as a path
in 2D space. It can either be plotted on a road map acquired from
the OpenStreetMap (OSM) project [23]6, or just as a path in empty
space (as seen in figure 9). Note that plotting on the OSM map
is very computing power intensive, so it may break the real-time
playback, making it lag behind after a short while. The full path of
the vehicle is plotted as an orange or green line, and the vehicle’s
current position, as the dataset is being played back, is marked as
a blue dot. The view provides interactive control, such as zooming
and panning around.

Speed view
The speed view (figure 10) is a graph of the speed of the vehicle over
time. Again, the full history (past and future) is plotted in green,
and a blue dot marks the vehicle’s current speed.

Heading view
The heading view (figure 11) indicates the current heading of the
vehicle on a familiar circular compass. North (0◦) is at the top,
south (180◦) at the bottom. This view provides extra information
that is of assistance when visualizing the vehicle’s driving pattern.

Note that there is a button in the lower left corner of the speed view
in figure 10. This button can be clicked to place an Abrupt braking event

6A fitting map for the training dataset is included as a .osm file in the datasets
folder in the attached material.
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Figure 8: The map view with an OSM road background. The orange line
shows the full path of the vehicle, while the blue dot marks the its current
position. Abrupt braking events are shown as red dots.

label at the current position in time. Such an event will then appear as
red dots in the speed and map views, as shown. Labeled events are au-
tomatically saved in a Matlab data file (.mat) together with the dataset,
for later use.

This script made it possible to easily listen to the voice-recorded notes
taken while generating a dataset while playing it back in real-time and
labeling the data in the right places.

Replay for testing

A Python script called replay cam.py was constructed in order to easily
provide real-time-like CAM data as input to the detection module. It takes
a generated dataset as input, in the form of lines written to a .log file by
the ITS server, and uses the timestamps of the dataset’s CAM packages
to output them to a new log file (its server cam.log) with proper timing,
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Figure 9: The map view without the OSM background. The green line
shows the full path of the vehicle, while the blue dot marks the its current
position. Abrupt braking events are shown as red dots.
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Figure 10: The speed view, with a blue dot marking the current speed.
Abrupt braking events are shown as red dots.
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Figure 11: The heading view shows the current heading of the vehicle on
a compass.

giving the appearance that the data is collected from a vehicle in real-time.
This replaces the RSU as the origin of the CAM data stream in figure 5
for testing purposes.
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4.5 Module design and implementation

Python [21] was chosen as the programming language for implementation
of the solution, due to its high level of abstraction enabling quick develop-
ment and testing, its wide support across operating systems and its rich
ecosystem of libraries and helpful online communities. The system imple-
mentation can be found in the solution folder in the attached material,
and all the files and folders referenced in this section resides there, unless
otherwise specified. The implementation requires a number of external
libraries to be installed for correct operation. These can be found in the
requirements.txt file, and can be automatically installed using pip [24]:

pip install -r requirements.txt

The program is written such that each of the modules discussed in
section 4.1, and shown in figure 5 are implemented as a separate thread7.
This makes it easier to create an implementation that adequately approx-
imates the design, where each module is independent, with black-boxed8

internal workings, and simple signals between them. These signals are im-
plemented in terms of Python queues, which are First in, first out (FIFO)
pipes that allow threads to pass data between each other in a safe way.

Each module, implemented as a thread, resides in its own .py file. The
main.py file is responsible for starting all the threads, and is the entry
point of the program. Thus, the program can be started by running

python3 main.py

The main.py file also takes care of some real-time visualization func-
tionality, which will be further explained in section 4.5.5.

Each module logs its operation to a separate file in the log folder. A
simple script called monitor logs.sh in the monitoring folder has been

7Having multiple threads allow programs to be split into concurrent processes, that
can run in parallel (either by being executed on a multiprocessor or multi-core system,
or by being run on a single processor that switches between the threads often and fast
enough to emulate parallel execution).

8In dealing with a black box module, one cannot see, or does not care, about its
internal workings. A black box is expressed only in terms of its inputs and outputs.
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written to open each log file in a separate terminal window, displaying
new logs as they appear. This provides useful insight into each module’s
operation, as well as their interaction.

In addition to the main.py file and the files corresponding to each of
the modules from figure 5, there are also a number of classes and helper
modules in separate files, which will be further explained in the com-
ing sections. The constructed software will sometimes be described using
flowcharts that illustrate operation, and sometimes by presenting and de-
scribing the code itself. In such cases, the code may be slightly modified
and irrelevant parts omitted, in order to maximize readability. The full
code is always included in the attached material.

4.5.1 Detection

In a future, further developed system, the detection module will run sev-
eral algorithms in parallel, each trying to detect a separate type of event.
However, as explained in section 4.2, the purpose of the detection module
at this stage will be to detect abrupt braking events only.

As explained in section 2.2.1, the theoretically ideal way to brake a
vehicle is by performing a smooth deceleration with a magnitude of ap-
proximately 3-4m/s2 at maximum. However, a robust detection algorithm
cannot be made on the basis of theoretical considerations alone, but also
(and perhaps mainly) by investigating real-world data, and using such
data for tuning the algorithm.

Investigating the data

The training dataset contains 11 abrupt braking events, as well as approx-
imately 50 normal braking events9. Using Matlab to first investigate the
normal braking events, we get data such as that shown in figure 12. We
can clearly see five such events in the speed graph, two of which are decel-
erations from approximately 50 km/h to a standstill, one from 40 km/h
to 10 km/h, and one from 40 km/h to a standstill by way of two separate
braking events, with a short period of cruising between them. Looking at

9Exact labeling of all the normal braking events is not important, as we are not
designing a detector for normal braking events. Such events will in the end just be
considered as “not abrupt braking”, alongside all the other, non-eventful data.
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the acceleration data, which is the time derivative of the raw speed data,
we see that the deceleration at three of these events peak at between 2
and 3 m/s2, and at up to 4 m/s2 for the two others. Analyzing the rest
of the dataset, it is clear that these values are very typical for normal
braking events, even at other speed levels. For instance, both the braking
from 80 km/h to 70 km/h (at approximately 1120 seconds), and from 80
km/h to an almost standstill (at 1200 seconds) shown in figure 13, have
deceleration peaks of around 2 m/s2. Furthermore, it is evident that some
of the deceleration spikes, particularly the most severe ones, are artifacts
of the act of differentiating a somewhat noisy speed signal, as these do not
correspond with large, persisting drops in the speed graph.
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Figure 12: Five normal braking events at speed levels of approximately 40
to 50 km/h. Two in close succession at around 160 seconds, and then at
200, 235 and 265 seconds.

Filtering

One can use different filtering methods in order to remove or reduce this
noise, and obtain a cleaner, smoother acceleration signal. It is important
to remember that the large speed drops themselves must not be smoothed
out, as these represent the braking events that we want to detect and
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Figure 13: Raw data examples of normal (unmarked) and abrupt (marked
with red dots) braking. Note that as the abrupt braking events are marked
manually using the tools developed in section 4.4.3, the markers are not
necessarily right at the acceleration minima.

classify as normal or abrupt, and their slopes (accelerations) are exactly
the characteristic we need to preserve in order to distinguish between the
two. Furthermore, we can take advantage of the fact that braking events
will differ from noise in that they persist over some time, while noise often
materializes as short-duration spikes. Thus, instead of filtering the speed
data before differentiating, we can rather differentiate the raw speed data,
and then apply a moving average smoothing filter in order to remove the
noise. Using a simple, symmetrical filter ensures that the filtered data will
be aligned with the raw data, instead of being shifted in time, though the
filtering action will lag behind the incoming data stream by a few data
samples (half the filter window size). Even for a real-time solution, this
is okay as long as the filter window size is reasonably small. The filter
window size is chosen as part of optimizing the detection algorithm, as
detailed below. An excerpt of the resulting acceleration data is shown in
figure 14, which can be compared with the raw acceleration data in figure
13.
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Figure 14: An excerpt of the filtered acceleration data, using a filter win-
dow size of 15 data points. The large spikes present in figure 13 are gone.

Detection algorithm

One can see from figure 14 that the normal braking events shown have a
peak (filtered) deceleration of no more than approximately 3 m/s2, while
abrupt braking events have peaks at more than 4 m/s2. This suggests
that a simple deceleration threshold should mostly suffice to detect abrupt
braking events, an approach that has the added benefit of being highly
intuitive and in agreement with the theoretical reflections of section 2.2.1.

In order to detect each event only once, and to use the most severe
moment of the deceleration as its “center”, we first extract all the local
minima of the smoothed acceleration data (the local maxima of the decel-
eration). The minima are then filtered by discarding the ones that do not
pass a threshold value. Finally, as there may be more than one local min-
ima associated with the same braking event, those that are close to each
other in time (less than 2 seconds between them) are regarded as one, by
discarding all but the most severe one. The full algorithm is summarized
in table 2.
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Table 2: The designed algorithm for detecting abrupt braking events

1. Differentiate the raw speed data, to obtain raw acceleration data.

2. Apply a moving average smoothing filter to the raw acceleration
data.

3. Identify the local minima of the smoothed acceleration.

4. Use a static threshold to discard the minima which do not have
sufficiently large magnitudes.

5. Reduce minima that are close together in time to one, by keeping
only the single most severe one.

6. Each remaining minima is a detected event. Use the absolute value
of the acceleration minima as the event’s severity, and the location
and time at which the minima is situated as its center in space and
time.

Tuning the algorithm

This algorithm has two tunable parameters: The window size of the mov-
ing average smoothing filter, and the deceleration threshold10. A Matlab
script called detection algorithm tuning.m, placed in the utilities/-
matlab folder, was made in order to use the training dataset to tune these
parameters through trial and error, the objective being to maximize the
F-score of the detection algorithm, which is calculated according to equa-
tions 2-4. The script iterates over a given range of filter window sizes and
deceleration thresholds, calculating the smoothed acceleration and apply-
ing the detection algorithm for every combination of the given parameters.
Figure 15 shows the output of the script while it is running, illustrating
the iterative trial and error approach to finding the optimal parameter
values.

The script then uses the resulting F-scores to declare the best combi-

10Again, deceleration is used as the negative of acceleration, meaning that a deceler-
ation of e.g. 2 m/s2 is equivalent to an acceleration of -2 m/s2.
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Figure 15: Determining the optimal filter window size and deceleration
through scripted trial and error.

nation(s) of the parameters. The five best-performing parameter combi-
nations and their scores are listed in table 3. As can be seen, a window
size of 15 data samples and a detection threshold at -3.5 m/s2 of accelera-
tion has the best score. Note that this deceleration threshold corresponds
nicely with the theoretical values that were determined in section 2.2.1.

The full performance of the algorithm, tuned and tested on the training
dataset is as follows:

True positives: 9

False positives: 1

False negatives: 2

Precision: 0.900

Recall: 0.818

F-score: 0.857
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Table 3: Detection algorithm performance for different parameter combi-
nations

Filter window size Deceleration threshold F-score

(number of data points) (m/s2)

15 3.5 0.857

9 4.8 0.842

21 2.7 0.818

13 3 0.800

19 2.8 0.783

Figure 16 neatly presents the details of this performance. The actual
events (ground truth) are marked as dots in the speed graph, and color
coded based on whether each event was detected by the algorithm (true
positive) or not (false negative). In the acceleration graph, the detection
threshold at -3.5 m/s2 is displayed as a horizontal, red line, and the de-
tected events are marked with dots, color coded based on whether they
correspond to a real event (true positive) or were wrongly detected (false
positive). A detected event is deemed to be a true positive if there exists
an actual event within two seconds of it, and is otherwise regarded as a
false positive.

Implementation

Figure 17: The input and output of the detection module.

Once designed, the detection algorithm was implemented as a Python
module, as part of the larger system of modules shown in figure 5. The
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Figure 16: Running the detection algorithm on the training dataset, with
color coded events marked as true positives, false negatives or false pos-
itives. The upper speed graph shows the actual events, while the lower
acceleration graph shows the detected events.

input and output of the detection module is further specified in figure 17.
The entry point of the implementation of the detection module is the

detection.py file in the solution folder. It implements a sequence of
operations, described in general terms in figure 18, that is triggered by
the reception of a new CAM package from the ITS server connected to
the RSU.
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Figure 18: A general description of the sequence of operations that con-
stitute the inner workings of the detection module.
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For deeper detail, the code implementing these operations is given be-
low, and then further explained.

42 with open(its_server_log_file, ’rb’) as f:

43 # Set read head at the current end of the file, so only new,

incoming lines are read

44 f.seek(0,2)

45

46 while 1:

47 line = f.readline().decode(’utf-8’)

48

49 try:

50 cam_data = parse_line(line)

51

52 except ValueError:

53 continue

54

55 except EOFError:

56 f.seek(-len(line), 1) # Offset back to start of line

from current file position

57 logger.debug("Line is not a full package, seek

position reset.")

58 time.sleep(0.01)

59 continue

60

61 # Line has been successfully parsed into a package

62

63 logger.debug(cam_data)

64

65 try:

66 v = get_or_create_vehicle(vehicles, cam_data,

detection_threshold, event_duration,

filtering_method, filter_window_size)

67 v.new_data(cam_data)

68 event = v.detect_event()

69

70 if event:

71 logger.info(event)

72 weighting_input_queue.put(event)
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When executed, this code starts listening to incoming CAM packages
in the form of new lines at the end of the its server cam.log file writ-
ten by the ITS server. The CAM packages are received in the following
format:

Received CAM: {’station_id’: 2115950905, ’ts’: 24456, ’lat’:

634045166, ’long’: 104591116, ’speed’: 164, ’heading’: 2983}

At line 50 above, a function parse_line() uses this known format to
parse the line into a Python dictionary, a data structure that is well suited
for storing the data for further processing. The function also checks that
the package is properly formatted and complete, and raises errors that are
handled at lines 52 to 59 if not. Once parsed, on line 66 the station_id

in the CAM packet is used to create a new vehicle object, or return an
existing one if the vehicle with this station_id has already been seen. The
vehicle class which implements such objects is defined in the vehicle.py
file, and contains a set of data structures and methods that are meant
to represent a single observed vehicle in the digital domain. This enables
concurrent tracking of data from multiple vehicles. The most important
contents of the vehicle class are summarized in the UML diagram in figure
19.

Data related to a vehicle is stored persistently as a Pandas [25] dataframe,
which represents data as a time series, allowing operations such as indexing
by timestamp and time differentiation to be performed on it. Configura-
tion variables related to event detection is also stored here, potentially
opening for applying different configurations to different vehicles.

At line 67, the vehicle object is updated with the incoming data
through v.new_data(cam_data), which works as illustrated by figure 20.
As described here, the endpoint problem that arises when the first data
point from a new vehicle is received is solved by simply setting the ac-
celeration to zero at this point. Furthermore, one has to wait until there
exists a number of data points equal to the filter window size before the
filter can be applied, and filtering will then lag by

nlag = ceiling(filter window size/2) (7)
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Figure 19: UML diagram summarizing the most important contents of
the vehicle class. The top section shows the variables that hold the data
related to the vehicle, while the bottom section shows the most important
methods that can be called on a vehicle object.

data points behind the incoming raw data, as explained earlier.11 The
number of data points that have been filtered at any point then follows

nfiltered = nraw − filter window size+ 1 (8)

i.e., for filter window size = 15, when 15 raw data points have been
received, one has been filtered (the 8th data point). The filter is imple-
mented as a simple average over the last filter window size number of
variables:

1 def _moving_average_filter(self, data):

2 data_inside_window = data[-self.filter_window_size:]

3 return sum(data_inside_window)/float(self.filter_window_size)

11The ceiling() function takes a real number as input and outputs the smallest integer
larger than or equal to this number, i.e. it “rounds up” to the nearest integer.
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Figure 20: The inner workings of the Vehicle.new_data() function, which
updates a vehicle object with newly received CAM data.
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After being updated with the latest (filtered) data, the event detection
algorithm is run at line 68, by calling v.detect_event(). This in turn
calls the internal function _detect_abrupt_braking(), which is where the
detection algorithm of table 2 is implemented:

1 def _detect_abrupt_braking(self):

2 if self.history["filtered_acceleration"].count() < 3:

3 return None

4

5 # There are no filtered values for the last _lag_ data points

6

7 lag = -ceil(self.filter_window_size/2)

8 accelerations =

self.history["filtered_acceleration"].values[:lag+1]

9

10 minima_ix, acceleration =

self._detect_recent_local_minima(accelerations)

Here, we make sure that enough filtered acceleration values have been
produced, which follows equation 8, as it is not desirable to run the detec-
tion algorithm on raw acceleration values. At least three such values are
needed in order to run local minima detection:

1 def _detect_recent_local_minima(self, data):

2 # Detects whether the next to last data point was a local minima

3 # Returns the index (always -2) and the value at the detected

minima, or ’None, 0’

4

5 candidate_point = data[-2]

6 left_point = data[-3]

7 right_point = data[-1]

8

9 if (candidate_point < left_point) and (candidate_point <

right_point):

10 # The candidate point is indeed a local minima

11 return -2, candidate_point

12 else:

13 return None, 0
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Returning to _detect_abrupt_braking(), we check whether a found
local minimum is below the threshold value:

11 if acceleration < self.detection_threshold:

12 # Abrupt braking detected

13 severity = abs(acceleration)

In that case, the event’s severity is computed, simply as the absolute
value of the acceleration minimum, as specified in point 6 of the designed
detection algorithm from table 2. The severity is then compared to the
severity of any previously found abrupt braking event which has not yet
been transmitted as an output. This behavior is in line with point 5 of
the algorithm specification, which is implemented by waiting two seconds
before outputting an event, to see if there comes an acceleration minima
that is even more severe. This is implemented as follows:

14 # If there are multiple abrupt decelerations closely spaced in

time, compress them to one event by only picking the worst one

15 if self.waiting_abrupt_braking_event:

16

17 time_since_last = (ts_at_event -

self.waiting_abrupt_braking_event.time).total_seconds()

18

19 if time_since_last < self.event_duration and severity >

self.waiting_abrupt_braking_event.severity:

20 # There was recently an abrupt braking event, but this one

is worse, so replace the last one with this

21

22 self.waiting_abrupt_braking_event =

traffic_event.TrafficEvent(self.station_id,

"abrupt_braking", ts_at_event, lat, lon, speed,

severity=severity)

23 else:

24 # No recent abrupt braking events, so save this one

25

26 self.waiting_abrupt_braking_event =

traffic_event.TrafficEvent(self.station_id,

"abrupt_braking", ts_at_event, lat, lon, speed,

severity=severity)
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As seen here, events are saved as instances of the TrafficEvent class,
which is implemented in the file traffic event.py. This class is described
in figure 21. Lastly, if there exists a waiting event, whether detected now
or previously, we check if enough time has passed since its occurrence in
order for it to be considered a separate event and outputted as such:

27 if self.waiting_abrupt_braking_event:

28 # Use timestamp at the last filtered data point as the current

timestamp

29 current_ts = self.history.index[lag-1].to_pydatetime()

30 time_since_last = (current_ts -

self.waiting_abrupt_braking_event.time).total_seconds()

31

32 if time_since_last > self.event_duration:

33 # Enough time has passed since the waiting event to consider

it a separate event

34

35 # Send to plotting function in main.py for real-time plotting

36 plot_queue.put([None,

[self.waiting_abrupt_braking_event.lat,

self.waiting_abrupt_braking_event.long,

self.waiting_abrupt_braking_event.time,

self.waiting_abrupt_braking_event.severity,

self.waiting_abrupt_braking_event.speed], None])

37

38 event_tmp = self.waiting_abrupt_braking_event

39 self.waiting_abrupt_braking_event = None

40

41 return event_tmp

Note that in addition to returning the event, to be received by detec-
tion.py, information about the event is also sent in a queue to main.py
for real-time visualization12, which will be presented in section 4.5.5. This
concludes the _detect_abrupt_braking() function, and thus the imple-
mentation of the designed detection algorithm of table 2. It consequently
achieves the most important part of point (a) of the problem description
in section 3. Lastly, any detected events are then transmitted in a queue

12The library used for data plotting, Matplotlib [26], does not support plotting from
threads other than the main one, so all data to be plotted must be sent to main.py.

56



from the detection module (in detection.py) to the weighting module:

70 if event:

71 logger.info(event)

72 weighting_input_queue.put(event)

Figure 21: UML diagram showing the contents of the TrafficEvent class.
Having no methods, it is solely a data container. Furthermore, it is
built to provide a skeleton for future development, supporting several
other event types in addition to abrupt braking (corresponding to some
of the DENM events listed in section 4.1), as well as a container for
involved_vehicle_ids, as a general event can conceivably involve several
vehicles in addition to the one which generates the data (the reporter).
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An alternative filtering method

In addition to the filtering method previously described (the simple moving
average), an alternative filtering method, the exponential moving average,
has also been implemented. Their differences are explained in section 2.2.2.
This was done in order to investigate how well this latter method, which
requires less computer resources in its implementation (particularly as the
data volume increases significantly), performs as an approximation to the
former one. The main implementation difference is in the data filtering
itself, swapping the _moving_average_filter() function for an alternative
one:

1 def _exp_moving_average_filter(self, last_data_point,

new_data_point):

2 decay_factor = 0.2

3

4 if pd.isnull(last_data_point):

5 filtered_data_point = new_data_point

6 else:

7 filtered_data_point = decay_factor * new_data_point + (1.0 -

decay_factor) * last_data_point

8 return filtered_data_point

The decay factor has been set to 0.2 as a reasonable approximation
to the filter window size of 15 data samples, as this results in a weight of
(1− 0.2)15 ≈ 0.035 placed on the 15th to last data sample.

There are some additional differences, such as not having to wait for
a specific number of data points before filtering and abrupt event detec-
tion can begin. The exact implementation of this is not further detailed
here, but can be found in the vehicle.py file. The filtering method is
chosen by setting filtering_method = "simple" or filtering_method = "

exponential" in main.py.

4.5.2 DENM handling

As shown in figure 5, there is a second data stream from the RSU to the
weighting module, in parallel with the data passing through the detection
module, namely a stream of DENM data. As detailed in section 4.2,
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such events are already detected by something outside the scope of this
system, and can thus in theory be passed directly to the weighting module
for consolidation with the detected abrupt braking events. However, a
simple, intermediate module had to be implemented in order to parse the
DENM data output of the RSU, which is written by the ITS server as
log lines to a file called its server denm.log, into TrafficEvent objects
that can be passed on to the weighting module. The input log lines are
assumed to be on the following form:

Received DENM: { ’ts’: 1525447101, ’reporter_id’: 84568,

’type’: ’accident’, ’lat’: 634020000, ’long’: 104050000,

’severity’: 0.40 }

Similarly to the operation of the detection module, this DENM parser
module listens to incoming data in the form above, checks for proper for-
matting and completeness, and translates the given attributes into prop-
erties of a new TrafficEvent object. The object is then transmitted to
the weighting module along the same queue as the detected abrupt brak-
ing events. Being able to handle DENM events on the same basis as
events detected from CAM data marks the full achievement of point (a)
of the problem description in section 3. Figure 22 shows the updated
overview of the full system. The DENM parser module is implemented in
the denm parser.py file.

Figure 22: An updated overview of the full system, which includes the
DENM parser module.
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4.5.3 Weighting

Figure 23: The input and output of the weighting module.

The purpose of the weighting module, as specified in section 4.1, is to
perform a differentiation between different types of events, based on the
notion that some types are more dangerous than others. The operation is
illustrated by the input/output specification of the module shown in figure
23. This is implemented as a simple lookup table, which specifies a weight
to be multiplied with an event’s severity based on its type. The currently
utilized weights are based solely on a subjective assessment of the relative
danger between the different kinds of events that are currently supported
by the system. These are listed in table 4. The event’s severity is multi-
plied by the found weight, and the modified event is then transmitted to
the clustering module:

1 try:

2 weight = weight_table[event.type]

3 except KeyError:

4 # Unknown event type

5 weight = weight_table["default"]

6

7 event.severity *= weight

8 clustering_input_queue.put(event)

The reason for implementing this rather simple functionality in its own
module is both to keep the system’s modularization simple and intuitive,
and in order to lay the groundwork for what can be further developed by
adding more complex functionality, for instance as proposed in section 6.2.
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Table 4: The lookup table used for applying a weight to an event’s severity
based on its type.

Event type Severity weighting

Abrupt braking 2

Accident 5

End of queue 1

Limited visibility 2

Near-accident 4

Obstacle on the road 3

Slow vehicle 1

Wrong way driving 4

Default/unknown 1
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4.5.4 Clustering

Figure 24: The input and output of the clustering module.

This module is meant to implement a solution to point (b) of the
problem description in section 3. It will take a stream of weighted events
as input, perform some kind of calculation on them in order to express
their combined effect in space and time (this is termed clustering), and
produce outputs in real-time which express the calculated danger at differ-
ent relevant locations. This input/output operation is illustrated in figure
24. As described in section 4.1, designing this module entails “expressing
each event in space by characterizing how it affects its surroundings, and
in time by characterizing how its impact changes as time goes by”.

Expressing an event in space

Calculating how a traffic event affects its surroundings is certainly a com-
plex task, probably involving about as many variables as one is able to
think of; From the distance to the event, road types and configurations,
to the time of day, number and types of vehicles or pedestrians present
and the current weather conditions. We here opt for a simpler solution:
Exponential decay along the distance vector from the event’s center point,
symmetrical in two dimensions. This expresses an event’s spatial impact
as a number between one and zero, with the highest impact at the center,
and lower impact, converging towards zero, as one gets further away from
it. This is illustrated in figure 25.

An event’s spatial impact id at a certain distance d from its center
can then be calculated as

id = e−λsd (9)
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Figure 25: An event’s spatial impact decays over the distance to the event’s
center. Here the impact is 1, while it converges towards 0 as one gets
sufficiently far away.

The spatial decay rate λs is a design parameter that can more easily
be determined by rearranging the equation:

λs =
ln(id)

d
(10)

so that, for instance, choosing a 50% decay, or equivalently, an impact
id = 0.5, at a distance to the event center of d = 100 m results in a spatial
decay rate of λs = 0.0069. This is the value used for the implementation.

Expressing an event in time

Similarly to how an event is modeled as having a decreasing effect on its
surroundings as one moves away from it, its impact is also modeled as
decreasing over time. To keep the implementation simple and intuitive,
this too will be calculated using an exponential decay, entirely analogous
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to the spatial impact:

it = e−λtt (11)

where it is the temporal impact at time t after the event’s occurrence,
and the temporal decay rate λt can be calculated similarly to the spatial
one:

λt =
ln(it)

t
(12)

Using equation 11, an event’s temporal impact will be 1 at the moment
it occurs, and over time converge towards zero. Figure 26 shows this decay
using it = 0.5 after t = 10 minutes.
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Figure 26: An event’s temporal impact decays as time passes, from 1
at t = 0 seconds after its occurrence, towards 0. Using a decay rate
λt = 0.0012, the event’s impact is almost entirely gone after an hour.

Calculating danger

Having established the concept of an event’s spatial and temporal impact,
the danger De,de,te an event e inflicts on locations at a distance de from
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its center, and a time te after its occurrence can easily be calculated as

De,de,te = se ide ite (13)

where se is the (weighted) severity of the event. The total level of
danger present at a certain location l at a given point in time t is then
calculated as the sum of the danger inflicted on it by all events:

Dl,t =
∑

e ∈ events
De,de,te (14)

A particular location will thus experience a higher level of danger if it
lies between two (or more) events that overlap sufficiently in both space
and time.

Implementation

The implementation of the clustering module resides in the clustering.py
file, and is illustrated by figure 27. As described, the module listens for
events transmitted from the weighting module, and upon reception, adds
the event to a list of events that the module is currently tracking. It then
recalculates the level of danger over all locations in a given map using
equation 14. The distance de from a particular location to a particular
event’s center is calculated using the Haversine formula, as described in
section 2.2.3 and equation 6. The function exp_decay(...), which is used
to calculate both the spatial and the temporal impact (equations 9 and
11), incorporates a mechanism to set the calculated impact to zero when it
is less than a certain threshold (set to 0.05), in order to limit the amount
of negligible data points that have to be retained. The map is given as
a set of boundary points for latitude and longitude, as well as a chosen
granularity, resulting in a list of discrete locations uniformly distributed
within the boundary.

If, during this calculation, it is discovered that the temporal impact
of an event has reached zero (in practice, that it is less than 0.05, as
explained above), the event is removed from the list of tracked events and
effectively deemed to be “over”. This makes sure that only truly relevant
events continue being tracked. The duration threshold for recalculation
seen in figure 27, tr, is determined based on the temporal decay rate λt,
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so that the level of danger on the map will be recalculated more often
when the dynamics are quicker, while computing resources can be spared
if events are slower to evolve. Specifically, it is set to be ten times smaller
than the time it takes for 50% temporal decay.

A location is deemed to be dangerous if its total level of danger is
larger than a threshold value danger_threshold, which at this point is set
quite arbitrarily to 1. When there are dangerous locations present on
the map, an output is generated from the module, which is also the final
output from the system itself, as seen in figure 22. This is on the form of
a JSON object listing the locations and their level of danger, as well as
some additional, relevant data:

1 {
2 "timestamp": "1527597009.254",

3 "highest_danger": "3.26",

4 "average_danger": "0.02",

5 "dangerous_locations": {
6 "63.40700,10.44100": "1.00",

7 "63.40700,10.44200": "1.18",

8 "63.40700,10.44300": "1.28",

9 "63.40700,10.44400": "1.26",

10 ...

11 }
12 }

The average_danger is the mean level of danger across all locations in
the map, and can be interpreted as a danger level for the map as a whole.

Such an output is generated every time the level of danger on the
map is recalculated. A similar output, containing only the timestamp and
an empty list of dangerous_locations, is also generated when the map
becomes entirely danger free, if danger has been present previously. The
output is currently only written to a log file called output.log (in the
log folder), but the widely supported and language-agnostic13 structure
of the JSON object means that it could easily be implemented as the
input to another system, for further processing. This fulfills point (b) of
the problem description in section 3.

13Meaning that it is independent of any particular programming language, even
though it has JavaScript in its name.
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Figure 27: The inner workings of the clustering module.
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4.5.5 Visualization

The developed visualization functionality is not previously shown as a sep-
arate module in figures 5 and 22, but for our purposes it largely replaces
the Traffic control center shown in the figures. A description of its func-
tionality is thus included in this section.

During their operation, the detection and clustering modules transmit
data in a queue back to the main.py file for real-time visualization. Here,
the plotting library Matplotlib [26] is used to display the incoming data
and events, in two different views:

Speed and acceleration view
This view, shown in figure 28, displays a vehicle’s raw speed data at
the top, and both raw and filtered acceleration data at the bottom.
As expected, one can see in the left part of the figure that the first
filtered data point appears half a filter window size after the first
raw one. To the right, it is evident that the incoming filtered data
stream lags half a filter window size behind the raw data, also by
design (see section 4.5.1). The current filter window is shown to lie
symmetrically around the last filtered value. The detection threshold
is also shown in the acceleration view, and events are marked both
on the speed and acceleration graphs as they are being detected, in
real-time.

Map view
The map view, as shown in figure 29, displays relevant elements on
the given map. A vehicle’s path is shown in blue, while event centers
are marked as red dots as they are being detected. In addition, the
current level of danger at all locations on the map is displayed using a
heat map, with the scale shown on the bar to the right. In practice,
this means that event centers are surrounded by circular, colored
areas showing the event’s spatial extent, which slowly fade away
over time as the event’s temporal impact decreases. The highest
current level of danger on the map is marked on the bar in magenta,
while the map’s average level of danger is marked in blue.

These views are analogous to the onces created in section 4.4.3, but
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are now generated in real-time as part of the overall solution. This makes
it possible to easily monitor a continuously updating level of danger across
all locations on a map, calculated from event detection based on C-ITS
data (both CAM and DENM) that is collected in real-time by an RSU.
This achieves point (c) of the problem description in section 3.

Figure 28: The real-time speed and acceleration view, showing raw and
filtered data, as well as the threshold for abrupt braking detection, the
current filter window, and events as they are being detected.
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Figure 29: The real-time map view, showing a continuously updating
overview of all detected events, as well as the current levels of danger
across the map, and the path of the vehicle from which the abrupt braking
events are detected.
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5 Results and discussion

5.1 Modules

5.1.1 Detection

Testing of the detection algorithm (table 2) was performed using the test
dataset, which contains a total of eight abrupt braking events. Using
the algorithm parameters which were tuned to fit the training set yields
the results shown in figure 30, with the total performance summed up as
follows:

True positives: 3

False positives: 0

False negatives: 5

Precision: 1

Recall: 0.375

F-score: 0.54545

The perfect precision combined with the mediocre recall indicates that
the algorithm has been too strict in its discrimination. In essence, it has
filtered out everything but the few events it is “absolutely certain about”,
leading to a large number of false negatives and small number of true and
false positives. The detection algorithm tuning.m script, described
in section 4.5.1, can be used to determine what the optimal algorithm
parameters for the test dataset would be. Those are listed in table 5.

Comparing these values to the ones determined on the basis of the
training set, namely a filter window size of 15 data points and a decelera-
tion threshold of 3.5 m/s2, there must evidently have been a trend where
the abrupt braking examples in the test set were slightly less abrupt than
their counterparts in the training set, leading to a lower optimal threshold
for the same filter window size.

Investigating the table, one can also see that a higher deceleration
threshold can be compensated by a shorter filer window size. This makes
perfect sense, as a shorter filter window size allows more of the highly
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Figure 30: Running the detection algorithm on the test dataset, with
color coded events marked as true positives, false negatives or false pos-
itives. The upper speed graph shows the actual events, while the lower
acceleration graph shows the detected events.

Table 5: The optimal combinations of detection algorithm parameters for
the test dataset, all resulting in an F-score of 0.889

Filter window size Deceleration threshold

(number of data points) (m/s2)

15 2

13 2.1

13 2.2

11 2.4

9 2.6
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dynamic, abrupt behavior in the raw data to get through the filter, such
that the deceleration peaks become higher. This would allow for a higher
deceleration threshold.

It is interesting to see the results if the training and test datasets were
swapped with one another. Keeping the filter window size at 15 data
points and lowering the deceleration threshold to 2 m/s2, as per table 5,
produces the following result for the training data:

True positives: 10

False positives: 12

False negatives: 1

Precision: 0.455

Recall: 0.909

F-score: 0.606

As would be expected, there is now an opposite behavior, with a low
precision but high recall. Almost all the actual events are now detected,
while the number of false positives increases drastically, in comparison to
the algorithm’s performance in section 4.5.1.

The algorithm is well-suited for implementation in a real-time system,
as the amount of data that needs to be retained is static, and equal to
the filter window size. As long as this is kept reasonably short, it is
negligible in comparison to the total amount of received data, as illustrated
in figure 31, where the current filter window is marked in green. However,
the amount of data required to be retained can be reduced even further
by using the alternative filtering method described at the end of section
4.5.1. This could be desirable if one is tracking a large number of vehicles
simultaneously, in which case the algorithm only needs to retain a single
data point per vehicle. Figure 32, which can be compared with figure
31, show that this method of filtering produces approximately the same
results as the original one.

It is evident from comparing the test and training dataset results that
truly accurate abrupt braking detection is not as clear-cut as applying a
simple threshold on the filtered deceleration data, as even the same driver
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Figure 31: A visualization of the detection module in real-time operation.
The filter window, representing the data that needs to be retained in order
for the algorithm to function, is evidently negligible in comparison to the
total data volume.

in the same vehicle on the same day will evidently perform the maneuver
with enough variance to throw the algorithm off. Even so, the designed
algorithm was probably about the best one could do with the small amount
of data that was available.

This lack of a large quality dataset on which to base the development
and tuning of an event detection algorithm is arguably the greatest weak-
ness of this work. The fact that such data had to be generated manually,
and in order for that part of the work to not fully consume all available
hours, made it necessary to settle for the detection of a single, simple type
of event, as explained in section 4.2, using simple methods.

In addition, the implementation serves well as a first proof-of-concept
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Figure 32: The detection module operating with the alternative filtering
method. The operation is almost indistinguishable from figure 31, where
the original filtering method is used.

for the detection module, showing how event detection with basis in CAM
data can be used to supply a larger data processing system with useful
traffic information in real-time.

5.1.2 Clustering

The clustering module was tested for its ability to handle a large amount
of different types of events, using the CAM replay script described in sec-
tion 4.4.3 in combination with the DENM generator described in section
4.4.2, which was set to output an event every second. As shown in fig-
ure 33, it handles all types of events equally, with no differentiation on
whether they originated from CAM or DENM data. The exponential de-
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cay function (equations 9 and 11) serves well as a simple way to express
events in space and time. Figure 34 shows that the danger level increases
at locations where several events overlap. This confirms that the cluster-
ing module functions well as a way to combine the severity of different
types of detected events, and finally produce an assessment of the level
of danger at different locations in a map. This is in line with the simple
assumption stated in section 4.1.

Figure 33: The clustering module in real-time operation, with randomly
generated DENM events sprinkled on top of the detected abrupt braking
events from a vehicle’s CAM data. The highest current level of danger on
the map is marked on the bar in magenta, while the map’s average level
of danger is marked in blue.

The output of dangerous locations functions as intended, printing
JSON objects to a log file as long as there is any danger present on the
map, and finally printing an empty list once all danger is gone:
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1 {
2 "timestamp": "1527773122.941",

3 "highest_danger": "1.05",

4 "average_danger": "0.01",

5 "dangerous_locations": {
6 "63.40900,10.44300": "1.05",

7 "63.40900,10.44400": "1.02"

8 }
9 }

10

11 ...

12

13 {
14 "timestamp": "1527773123.505",

15 "dangerous_locations": {}
16 }

Figure 34: A zoomed view of the map. Several events overlapping increases
the level of danger.

5.1.3 Visualization

The real-time visualization of the system’s operation, as already shown in
figures 31-34 is rudimentary but functional at this stage. The visualization
of the data coming from a specific vehicle is created mostly for testing
purposes; as such it only supports data coming from a single vehicle,
though modification to support several should not be too difficult.
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The map view (figure 33) serves as a visualization of the main goal
of this work as stated in the problem description in section 3, namely to
determine dangerous locations in traffic in real-time. It supports event
data originating from any kind of source, be it different vehicles or RSUs.
It was attempted to incorporate a road map on which the data could be
overlaid, similarly to the OSM map used in figure 8. Unfortunately, this
proved too large of an obstacle for too little gain, and had to be abandoned.

Large amounts of event data inputted over a given timespan causes
the visualization to lag somewhat behind the data processing itself. This
is both due to the inefficient way that the level of danger is calculated over
the map, and due to heavy calculations performed by the plotting library.
It is thus unlikely that it would be able to handle truly massive amounts
of data in real-time without some modification.

5.2 Overall system

Figure 35 shows how data propagates through all modules of the system,
along the paths previously illustrated in figure 22. The data is successfully
handled seamlessly through the system, from input in the form of CAM
and DENM data streams from an RSU, to an output in the form of a
continuously updating stream of current dangerous locations and their
level of danger.

Unfortunately, there was not enough time to perform a test of the
system in true real-time operation. Such a test would involve the same
setup as described in section 4.3, this time with the system being fed CAM
and DENM data in real-time for event detection and subsequent output of
dangerous locations. However, replaying datasets using the functionality
developed in section 4.4.3 proves that this would work as expected, as
there are no differences between this and true real-time operation.
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Figure 35: Logs for each of the modules, showing the data propagation
through the system.
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6 Further work

6.1 Detection

As previously explained, the design of event detection algorithms must be
data-driven, meaning that it is based on empirical data acquired from real-
life observations of the phenomena that are to be detected. As stated in
section 5.1.1, the lack of large amounts of such data represents the greatest
weakness of this work. Consequently, this also represents the greatest
potential for future improvement. As calculated in [1], the accumulated
volumes of CAM and DENM data generated in real-life traffic will quickly
rise to the levels of terabytes, petabytes and exabytes once the C-ITS
technology matures and starts being embedded in actual vehicles on the
road. Such datasets would enable vastly more advanced detection methods
to be used, resulting in more accurate detection of both abrupt braking
and more complex types of events.

Improving the detection of abrupt braking events

The detection of the simple abrupt braking event type can surely be im-
proved by using a larger amount of data to tune and test the developed
algorithm, finding values for the tunable parameters that fit even better.
However, as alluded to in section 5.1.1, it does not seem like this alone
will allow the accuracy of the detection to reach satisfactory levels. Once
in possession of greater volumes of data, one should thus re-do a thorough
analysis of the data, to investigate whether there are other variables and
methods that could be suited for achieving a higher accuracy. For in-
stance, perhaps one would benefit from making the deceleration threshold
dynamic, taking into account e.g. the road type and number of vehi-
cles present nearby, and the speed of the vehicle performing the braking
maneuver.

Detecting other types of events

Abrupt braking events were chosen, among other things, for their ability
to be detected using only the speed variable (see section 4.2). More com-
plex events, such as near-collisions between vehicles, illegal maneuvers or
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reckless driving, depend on a much higher number of variables, with in-
tricate relations between them. Even if one had all the relevant variables
available for measurement, it is unlikely that it is even possible for humans
to analyze and manually configure a detection algorithm for such complex
types of events.

Fortunately, the emergence in later years of increasingly more sophis-
ticated machine learning methods pose a perfect fit for this problem, once
the volume and quality of the available datasets reach sufficient levels.
Where humans quickly lose control when faced with large volumes of
data, computers thrive in such conditions, performing better the more
data they are fed. Machine learning detection methods, such as neural
networks, would be able to handle a large number of different variables,
and identify perhaps unintuitive correlations between them.

6.2 Weighting

As stated in section 4.5.3, the weights currently used to differentiate be-
tween the severity of different types of events are purely based on a subjec-
tive assessment. The first improvement of the weighting module would be
to base these values on empirical observations. Going further, the weight-
ing could be changed from using statically defined values to dynamically
calculated ones. Events could be weighted differently according to the time
of day, road conditions and so on. One could also implement a feedback
from the clustering module, such that, for instance, subsequent events
happing at the same location are given increasingly large weights. All
this, of course, places even higher demands on the availability of empirical
data supporting such adjustments.

6.3 Clustering

There are a number of optimizations that can be performed on the cur-
rent implementation of the clustering module in order to make it more
efficient in its calculations. At present, on recalculation of the level of
danger across a map, an iteration is performed once per event over the
entire map, as such:
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1 for lat in np.arange(lat_min, lat_max, lat_step_size):

2 for lon in np.arange(lon_min, lon_max, lon_step_size):

3 for event in events:

4 # Calculate danger inflicted by event to location (lat,

lon) and add to total danger at location (lat, lon)

5 ...

6 ...

This places limitations, mostly on the granularity of the map, in order
for the calculation to not become too slow. An improvement could be made
in order to reduce unnecessary calculations, for instance by identifying the
boundaries of events, and not calculate the danger inflicted by an event
outside of these boundaries (where it will be zero regardless).

For further development, there is a large amount of potential in using
empirical data to express events more precisely in space and time. Es-
pecially in the way events are modeled with symmetrical spatial decay is
likely to be quite inaccurate in the real world. An improvement would be
to use knowledge of the road infrastructure to extend an event’s impact
along the nearby roads, perhaps only in one particular direction of travel.
For instance, a severe event on a highway can have ramifications along its
entirety, with its impact stretching tens or hundreds of kilometers along
it. At the same time, it might have negligible impact on traffic traveling
in opposite lanes along the same highway.

6.4 Visualization

As previously explained, parts of the visualization solution is built mostly
to be of help during development, debugging and tuning of the entire
system. Future development would demand even better methods of visu-
alization. An obvious extension is to build support for visualizing data
coming from multiple vehicles in parallel. Another is to incorporate the
display of a road map in the map view, on which the data can be overlaid.
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Om Aventi Intelligent Communication AS 
Aventi Group AS holder til i Oslo, og består av de tre selskapene Aventi Technology AS (AT), Aventi 

Installation AS (AI) og Aventi Intelligent Communication AS (AIC). Sistnevnte står for denne 

studentoppgaven.  

 

 

AI jobber med elektroinstallasjoner for veier, tunneler og bruer, mens AT foretar engineering og 

programmering av dette utstyret, og knytter det opp mot Veitrafikksentralene. For eksempel så har alt 

utstyr i tak, vegger og tekniske rom i Strindheimstunnelen i Trondheim blitt installert av Aventi.  

Disse systemene er alt veldig smarte og har blant annet videosystem som gir automatisk alarm dersom 

en bil kjører i feil retning, dersom en person vandrer i tunnelen eller dersom en kasse har falt av en 

lastebil. Men dette er ingenting i forhold til de trafikkstyresystem vi nå ser i horisonten. Om få år vil vi 

se de første autonome bilene i nyttetrafikk på norske veier, og da skal Aventi være klar med løsninger 

for autonome veier. Derfor har Aventi Group opprettet Aventi Intelligent Communication som de neste 

fem årene skal delta sammen med Statens Vegvesen, Sintef, NTNU og mange andre i forsknings- og 

utviklingsprosjekt for Connected Vehicles (CV), Cooperative Intelligent Transport Systems (C-ITS), 

Internet of Things (IoT), Location Based Services (LBS), Big Data, Machine Learning, Cloud Computing 

og Edge Computing. AIC sine forskningsprosjekt vil bli knyttet opp mot de reelle veiprosjektene til AT 

og AI, slik at vi får testet ting under virkelige forhold 

Aventi har gode erfaringer fra tidligere master-oppgaver, og har på den måten funnet både gode 

tekniske løsninger og noen av sine beste medarbeidere. Nå prøver vi igjen, for nå skal vi bygge opp et 

helt nytt selskap. 

A Original problem description
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Om oppgaven 
I et kommuniké fra EU kommisjonen 30.november 2016 bes det om at alle land i Europa, inkludert 

Norge, begynner utrulling av C-ITS for Connected Vehicles og Autonomous Vehicles i 2019: 

http://europa.eu/rapid/press-release_MEMO-16-3933_en.htm 

C-ITS er en standardisert måte for biler av forskjellige typer (Volvo, Audi, Opel) å kommunisere på, der 

de utveksler såkalte CAM pakker hvert sekund. En slik pakke er ca. 350 bytes og inneholder 

posisjonskoordinater, hastighet, retning, data hentet ut fra kjøretøyets OBD-II port og mye mer. I 

tillegg kan bilene og infrastruktur (veikantstasjoner, tunneler, bruer, veiarbeidsområder) utveksle 

såkalte DENM pakker som inneholder trafikkmeldinger. Disse er også ca. 350 bytes, men sendes kun 

ut ved behov. Standardene som beskriver alt dette finner man her: 

https://goo.gl/Mouv8r 

 For å kommunisere brukes ETSI-ITS-G5 radioer. Tanken er at disse vil være innbygd i nye biler fra ca. 

2020. For eldre kjøretøy kan de bli ettermontert. Teknologien er basert på IEEE 802.11, tilsvarende 

vanlige Wi-Fi, men med noen justeringer som illustrert nedenfor. 

 

Aventi har alt jobbet med denne teknologien i flere år både med hands-on programmering og 

deltakelse i forskjellige fora. Her er en YouTube video fra en av våre C-ITS tester: 

https://www.youtube.com/watch?v=Nv7z_Xjkj_k 

Når ETSI-ITS-G5 radioene sender ut og tar imot CAM og DENM pakker, så lagres alle disse i PCAP filer 

som kan åpnes og analyseres i Wireshark. Og det er nettopp det vi ønsker med denne oppgaven. Men 

i stedet for å lete igjennom titusenvis av CAM og DENM pakker manuelt, så ønsker vi å benytte en Big 

Data løsning som for eksempel Hadoop. 
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Første utfordring:  
1. Studenten og noen hjelpere kjører rundt omkring på NTNU campus med biler (eller lekebiler) 

utstyrt med ETSI-ITS-G5 radioer (I tillegg kan det settes opp en radio som veikantstasjon), der 

det genereres CAM og DENM pakker. Se YouTube video ovenfor som viser denne kjøringen. 

2. Etter en god stund med kjøring, så dumpes alle PCAP-filer inn i Hadoop (eventuelt Azure 

Machine Learning e.l.). 

3. Der lages det queries som forsøker å hente ut nyttig data som f.eks.: 

a. Minimum, maksimum og middels hastigheter. 

b. C02 produksjon 

c. Radiosignalstyrke 

d. Antall ulykker og trafikkmeldinger av forskjellige typer (DENM) 

4. Resultatene sammenlignes med håndnotater gjort underveis. 

Andre utfordring:  
1. Studenten og noen hjelpere kjører rundt og rundt i samme mønster om og om igjen. Dersom 

for eksempel den røde bilen kjører vestover på Kolbjørn Hejes vei, mens den blå og den gule 

kjører sørover på O. S. Bragstads Plass, ja så gjentas altså dette kjøremønsteret hundre ganger. 

Bilene vil hele tiden generere CAM pakker som lagres i PCAP-filene. Når den røde og den blå 

bilen møtes i veikrysset, så kolliderer de. Dette indikeres ved at man trykker på DENM for 

Accident på Android nettbrettet (se YouTube videoen). DENM pakkene vil også bli lagret i alle 

kjøretøyenes (og veikantstasjonens) PCAP-filer. 

2. Studenten kan også velge å simulere all denne kjøringen ved å overstyre GPS koordinatene i 

C-koden til radioene (veldig enkelt). Da mistes imidlertid variasjoner i radiostyrke, GPS-signal 

og andre ting som oppstår når man kjører innimellom bygningene, og det kan jo tenkes at 

dette er ting maskinlæringsalgoritmene kunne tatt tak i. 

3. Vel, atter en gang så dumpes alle PCAP filene inn i Hadoop, men denne gangen skal man kjøre 

maskinlæringsalgoritmer som gjenkjenner kjøremønsteret for de tre bilene, og som ledet opp 

til en ulykke i form av en DENM for Accident. 

4. Når studenten føler seg sikker på at algoritmen kan gjenkjenne kjøremønsteret som ledet opp 

til ulykken, så skal det utvikles en live løsning som samler inn CAM og DENM pakker 

fortløpende (og ikke PCAP filer fra de siste par timer). Dette kan gjøres via et JSON interface 

på veikantstasjonen. Når så studenten og hjelperne denne gangen kjører den røde bilen 

vestover på Kolbjørn Hejes vei, og den blå og den gule sørover på O. S. Bragstads Plass, så skal 

systemet varsle om at kollisjon er nært forestående. 
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B File structure of attached digital material

attached material

datasets

test set.csv

test set.log

test set.mat

training set.csv

training set.log

training set.mat

training set map.osm

solution

log

its server cam.log

its server denm.log

monitoring

monitor logs.sh

clustering.py

denm parser.py

detection.py

main.py

requirements.txt

run.sh

traffic event.py

vehicle.py

weighting.py

utilities

matlab

add braking event.m

detection algorithm tuning.m

replay cam.m

denm generator.py

log to csv.py

replay cam.py
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C Acceleration unit conversion

The simple figure below is included in order to provide a quick way of
converting between the two acceleration units m/s2 and km/h/s. The
former is used throughout the thesis, while the latter is easier to relate
to for humans used to traveling by car. For instance, a deceleration of 10
km/h/s means slowing down by 10 km/h over a period of 1 second.
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