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Problem description

The State of Charge is an important state in a lithium ion battery cell, and its determination
remain an active research topic. Researchers have applied various Bayesian Kalman Filters
to this problem, but the Kalman Filter is highly dependent on a set of key assumptions. The
Particle Filter is a less restrictive Bayesian filter that might provide advantages under certain
conditions and assumptions. This thesis will explore the nonlinearities presented by a Lithium
ion battery system and the impact these nonlinearities have on Particle Filters and Nonlinear
Kalman Filters for estimating the state of charge in a lithium ion battery cell.
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Abstract

Lithium-ion batteries are currently being used for a wide variety of applications across different
industries due to their many advantages. However, lithium batteries are also sensitive to their
operating conditions, and present unique challenges with regards to safety. Accurately knowing
the State of Charge of batteries can therefore significantly aid in ensuring safe operation and
optimal usage of stored energy.

Over the course of the last 20 years, different solutions have been proposed for State of
Charge estimation, among them a variety of Nonlinear Kalman Filters. Kalman Filters are
accurate and simple to implement, but require that all likelihood densities in the system can be
approximated to be Gaussian. A slightly different approach is the Particle Filter, which uses
randomly sampled state vectors (particles) to represent likelihood functions. Particle Filters can
theoretically work with any likelihood density provided enough particles.

In this thesis, a nonlinear Kalman Filter and three different Particle Filter variants are com-
pared for use in the Lithium-ion battery State of Charge estimation problem. A current load
curve extracted from a Formula Student electric Race car forms the basis for the test case. The
model is augmented to include the parameters for estimation and the chosen estimators are the
Joint Central Difference Kalman Filter, the Joint Bootstrap Particle Filter, the Joint Imprecise
Bootstrap Particle Filter and the Joint Auxiliary Particle Filter.

A Monte Carlo based system exploration method is suggested and applied to the Joint es-
timation problem to assess the amount of nonlinearity caused by the model. A combination
of Gaussian distributions are passed through the model and the distortion is evaluated by esti-
mating the resulting skew and kurtosis. The nonlinearity of the system is evaluated at different
States of Charge and at different levels of uncertainty. The nonlinear equations of the aug-
mented 2RC cell model is seen to distort the distributions quite significantly for State of Charge
values below 12% and at 85%.

The Particle Filters and the Kalman filter perform very similarly. For State of Charge esti-
mation, all the filters produce average RMS errors of between 0.87% and 1.16%, with the Joint
Bootstrap Filter producing the lowest average error at 0.87% and the Joint Imprecise Bootstrap
Particle Filter producing the highest average error at 1.16%. Particle Filters and Kalman Filter
also perform similarly in voltage prediction, with all the filters producing approximately 10mV
of average RMS voltage error.

The thesis concludes that Particle Filters or other Monte Carlo based methods might have
merit in joint parameter estimation applications, and suggests that this is further investigated in
the future.
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Sammendrag

Litium-ion batterier benyttes til en rekke applikasjoner på tvers av mange industrier verden
over, blant annet på grunn av sine mange gode egenskaper. Desverre er Litium ion-batterier
også svært sensitive for operasjonsbetingelsene de blir utsatt for, og dette medfører en rekke
utfordringer med tanke på å sikre trygg bruk. Dersom man er i stand til å estimere batteriets
prosentvise restkapasitet (SoC) nøyaktig, kan dette være til stor hjelp for å sikre trygg og optimal
utnyttelse av lagret energi.

De siste 20 årene har en rekke løsninger blitt foreslått for å estimere SoC, blandt dem
ulineære Kalmanfilter. Kalmanfiltre er nøyaktige og enkle å implementere, men krever i ut-
gangspunktet at alle sannsynlighetsfordelinger kan antas å være gaussisk fordelt. En noen
annerledes løsning er Partikkelfilteret, som benytter en ansamling av tilfeldig genererte til-
standsvektorer (partikler) for å representere sannsynlighetsfordelinger. I teorien betyr dette at
partikkelfilteret kan tilnærme en hvilken som helst sannsynlighetsfordeling, gitt nok partikler.

I denne masteroppgaven sammnlignes et ulineært kalmanfilter og tre varianter av partikkelfil-
ter til bruk i SoC-estimering. En lastkurve hentet fra en elektrisk Formula Student-bil dan-
ner grunnlaget for testingen. Cellemodellen augmenteres med sine parametre for slik å kunne
brukes til parameterestimering, og de valgte filterene er eit Joint Central Difference kalmanfil-
ter, ett Joint Bootstrap partikkelfilter, ett Joint Imprecise Bootstrap partikkelfilter og ett Joint
Auxiliary partikkelfilter.

En Monte Carlo-basert fremgangsmåte benyttes for å evaluere hvor mye ulinearitet som er
tilstede i cellemodellen. En kombinasjon av ulike gaussiske sannsynlighetsfordelinger projis-
eres gjennom modellen og den resulterende forvrengingen evalueres ved å estimere verdier for
skjevhet og kurtosis. Metodikken benyttes på den augmenterte cellemodellen ved ulike SoC
verdier. Den ulineære systemmodellen gir tydelig forvrengning for noen SoC-tilstander, og da
spesielt for SoC under 12% og i området rundt 85% SoC.

Partikkelfiltrene og Kalmanfiltret presterer meget likt. I SoC-estimering produserer alle
filtrene gjennomsnittlig effektiv feil mellom 0.87% og 1.16%. Bootstrap-filteret har den lavest
gjennomsnittsfeilen, med 0.87% mens Imprecise Bootstrap-filteret har den høyeste på 1.16%.
I spenningsprediksjon har partikkelfiltrene og kalmanfilteret også lignende resultater, med en
gjennomsnittlig effektiv feilverdi på rundt 10mV.

Denne oppgaven konkluderer med at bruk av partikkelfiltre eller andre Monte Carlo-metoder
kan være fordelaktig ved parameterestimering, og anbefaler at dette utforskes videre.
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Preface

I first came into contact with the field of State of Charge estimation as a part of my three-
year participation in the Revolve NTNU Formula Student project. In 2015 I was tasked with
developing a Battery Management System for use in a high-power electric vehicle, and in 2016
I was in charge of the development of the full accumulator. This threw me head-first into a
fascinating and challenging engineering field in which safety, cost and performance is key. In
terms of State of Charge estimation, the team had to settle for simple solutions such as the
well known and much used Coulomb Counting technique, a solution which left much to be
desired. Not being able to compensate for aging or temperature, the chosen solutions were safe
but generally too conservative.

In 2016, Revolve contacted Professor Marta Molinas at NTNU to discuss the possibilities
of writing a masters thesis on the subject. Subsequently, in 2017 Ørjan Gjengedal wrote a
masters thesis in collaboration with Revolve NTNU about using Kalman filters for the purposes
of estimating impedance and State of Charge on-line. I then became involved in the fall of
2017 as an effort to explore the possibility of using the Particle instead of the Kalman Filter.
To this end, I wrote a technical report in the Fall of 2017 on a comparison between a simple
Bootstrap Particle Filter and a Central Difference Kalman Filter. The results from the report
indicated that there might be an advantage to using the Particle Filter in certain situations, and
I therefore chose to extend the work into this Master Thesis. In order to keep the focus towards
the theoretical aspects of the problem, I decided not to collaborate directly with Revolve. Still,
the thesis is written mainly with the race car application in mind. This is particularly reflected
in the use of load profiles extracted from Revolve field data.

My main supporter in this work has been my supervisor Marta Molinas, with whom I have
had monthly meetings throughout the semester. She has given me freedom to control the direc-
tion of my thesis in a way that I have seen fit, and her insights has helped me greatly. I have
also had several discussions with Ørjan Gjengedal which has helped further my understanding
of both the Particle Filter and the Kalman Filter methods. Ørjan has also graciously provided
the data sets that have been used throughout this work. Senior Scientist Dr. Preben Johannes
Svela Vie at the Institute of Energy Technology (IFE) in Lillestrøm has also shown interest in
my work and provided some enlightening discussions.

As a part of this thesis I spent two weeks at IFE where I was given access to a work station
and testing facilities. The original plan was to conduct low-temperature cell tests, but due to
scheduling issues and time constraints I was not able to complete them. This led to a change of
focus where the room-temperature tests conducted by Ørjan became the main test case.

The thesis work has been conducted on computer equipment provided by NTNU, and all
the software has been developed in MATLAB R2017b using a MATLAB Academic Licence
provided by NTNU. All the references given in this thesis were chosen by me.
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Chapter 1

Introduction

Lithium Ion Batteries (LiBs) were first introduced commercially in the early 1990s [1] and have
since become a critical part of many electric power systems. Their popularity can be ascribed to
the many advantages LiBs enjoy compared to previous generations of battery technology such
as Lead-acid and Nickel Manganese Hydrate. Among other things, LiBs have significantly
higher volumetric and gravimetric energy densities, lower internal impedance, no memory ef-
fect and longer life spans than other technologies [1], [2].

However, LiBs also presents unique challenges that must be overcome in order to fully
exploit these advantages. LiBs can be irreversibly damaged and/or become unstable if subjected
to high temperatures or if the voltage of the cells are not kept within safe operating boundaries
[3]. To mitigate the risks, battery systems are typically outfitted with a monitoring circuit, often
referred to as a Battery Management System (BMS). The BMS continuously supervises and
monitors the cells, and can also be responsible for estimating various important metrics of the
cells, such as the State of Charge (SoC)1.

The SoC is the relative remaining charge in an individual battery cell. Since it is relative
to the maximum charge the cell can hold at its present age, it provides an intuitive measure of
remaining charge (i.e. a cell with a SoC of 50% always has half of its maximum charge left
regardless of what its actual capacity is in terms of Ah).

1.1 Motivation

The Formula Student (FS) competition is an international student competition which tasks teams
of students with building and racing a full size race car. A growing interest in electric vehicles
has led to the inclusion of electric vehicles in the competition and currently hundreds of teams
around the world develop electric race cars for the competition. ”Revolve NTNU” is such a

1BMSs can be further subdivided into categories based on the level of autonomy and specific safety functions
provided by the system (such as current shutdown). This will not be discussed in any detail here.

1



1. INTRODUCTION

student team based in Trondheim, Norway. Revolve NTNU has built electric vehicles since
2014, and remain active to date.

Knowing the SoC accurately is important in more or less all applications, but is particularly
critical in a high-performance application where the battery can be expected to be depleted (or
nearly depleted) as a part of its normal operation or in the case of an emergency. This is certainly
the case for the electric vehicles made by Revolve. In this context, accurately estimating the
cell behaviour is critical for maximizing performance and safety. More generally, knowing the
SoC accurately also allow for predictable operation of ships, drones and other electric vessels
and reduces range anxiety in commercial electric cars. Accurate knowledge of the SoC can also
form the basis for an accurate Available Power estimation [4] which can allow applications to
extract the maximum charge left in the cell without overdischarging the cell. Available power
can also be used to calculate the maximum charging current allowed in the case of regenerative
braking.

1.2 Problem description

Unfortunately, there is no direct way to measure the SoC when the cell is electrically loaded.
The only measurements that are realistically available to a BMS are the current, the terminal
voltage and the exterior temperature of the cell. While there is a (more or less fixed) relation-
ship between the at-rest voltage of the battery cell and the SoC, chemical interactions give rise
to parasitic voltages that obscure this relationship both during and after electrical current has
passed through the cell.

Many techniques have been proposed for solving this challenge [5], ranging from the very
simple Coulomb Counting (CC) to model based current interruption observation schemes [6]
to complex nonlinear Kalman Filters with parameter estimation [7]–[12] and Particle Filters
(PFs) [13], [14]. Simple methods such as CC, where the measured current is integration from
an assumed starting SoC, are widely used in the industry. This is due to their simplicity and
predictability, even with the obvious shortcomings. For instance, the CC method can be very
accurate for shorter periods of time, but only under the assumption that it can be initialized
correctly. CC also lacks robustness since it is unable to compensate for bad initializations, and
it cannot discover and handle loss of sensors or sensor bias.

The main focus of this thesis is examining the major differences between using Kalman
Filters and Particle Filters for live estimation of the SoC in a battery under heavy, dynamic load
profiles. The main hypothesis is that the nonlinearities in a battery system is non-negligible
for low SoC. Thus, the assumptions made by the nonlinear Kalman Filters (KFs) restrict the
accuracy in these regions and PF are more suited if higher accuracy is desired in these regions.

Other authors have previously compared the two classes of filters in the context of LiBs but
to the best knowledge of this author, little literature is available that examines and/or verifies the
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assumptions needed. Plett [11] states briefly that the consensus of literature and experience is
that the Gaussian assumption on the noise matrices work well, but provide no citations for this
claim. In a later paper Plett concedes that PFs might be necessary to increase accuracy [10], but
at a high cost in terms of computational complexity. Bhuvana et al [15] presents a direct com-
parison of an Extended Kalman Filter (EKF), an Unscented Kalman Filter (UKF), a Cubature
Kalman Filter (CKF) and a simple Bootstrap Particle Filter (BPF). While the BPF is shown to
be slightly more accurate than the various Kalman Filters (again at a high computational cost),
the causes for this result is not explained to any degree of details.

Available computational power is continuously increasing, and at some point it might be
feasible to consider PFs if the specific application show enough potential gain. For a designer
to select which scheme to ultimately apply to a given problem, it is necessary to have broad
knowledge of the advantages and disadvantages of the available methods. To this end, the
contributions of this thesis is two-fold:

1. An exploration of the nonlinearities present in the typical SoC estimation problem for a
Lithium Battery. The system is explored to more clearly expose for what real-life situ-
ations Sequential Monte Carlo (SMC) methods might be appropriate despite their pre-
sumed high computational cost.

2. An exploration of a selection of SMC methods applied to the SoC estimation problem.
The Joint Bootstrap Particle Filter (JBPF), Joint Auxiliary Particle Filter (JAPF) and Joint
Imprecise Bootstrap Particle Filter (JIBPF) are developed and compared to a Joint Central
Difference Kalman Filter (JCDKF). The estimators are tested on a realistic load cycle
from the Revolve NTNU 2016 car ’Gnist’.

The end goal of this thesis is to determine whether or using the PFs can significantly help in
the estimation of SoC or cell parameters.

1.3 Organization of the thesis

The material is organized as follows. Chapter 1 (Introduction) discusses the historic backdrop,
motivation for the topic and contributions of the thesis. Chapter 2, (Basics of noise description
and distributions) provide a basic review of probability theory and noise description methods.
Methods for discretely representing continuous probability densities and estimating continuous
densities from discrete points are also discussed briefly. Chapter 3, (System modelling) give a
brief background on the behaviour of battery cells and the methods commonly used to model
the behaviour. Chapter 4 (Estimation) discusses the theoretical background of the employed
estimation methods and presents algorithms for each of the methods used later. Chapter 5
(Methods), presents the implemented methods of the thesis. First the cell type, test setup, model
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and algorithms for calculating reference SoC and starting parameters are explained. Secondly
the implemented estimators are presented with tuning settings. Finally the method employed for
exploring the cell model nonlinearity and evaluating the adequacy of the Gaussian assumption
made by the KF is explained in detail. Chapter 6 (Results of the study) chapter presents the
results achieved and Chapter 7 (Discussion) provides an extensive analysis. Finally Chapter 8
suggests future work and Chapter 9 presents the final conclusion to the thesis.
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Chapter 2

Basics of noise description and
distributions

As this thesis is primarily aimed at readers with only a rudimentary understanding of probability
theory, the following section will aim to introduce the necessary fundamentals to appreciate the
later discussions on SMC methods and likelihood distributions.

2.1 Random variables and probability density functions

A random variable is a variable that can potentially take on many different values when it is
assigned. The relative likelihood for the possible values it can take on are specified with a
Probability Density Function (PDF). The relationship between the random variable and its PDF
is described mathematically as

X ∼ p(·) (2.1)

where X is a random variable, p(·) represents an arbitrary PDF possibly dependent on a set
of parameters and ∼ means ”distributed according to”. Random variables are typically dis-
tinguished using upper-case letters. When mathematically manipulating random variables the
output is not a value, but a new random variable distributed according to a different distribution.
Drawing a value from the distribution is called sampling and when a value is sampled from the
distribution, the resulting variable value is a realization of the random variable, often referred
to as a sample. When drawing more than one samples from a PDF, the individual samples are
denoted as [X1, ..., XN ] where N is the total number of samples.

Figure 2.1 shows a plot of a simple normal distribution which will be discussed in more
detail below. The intuition of the distribution representation is simply that the higher the value
on the y-axis the more likely the values along the x-axis are. Thus, when drawing samples from
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2. BASICS OF NOISE DESCRIPTION AND DISTRIBUTIONS

Figure 2.1: Example normal distribution with σ = 0.25, µ = 0

this specific example distribution most of the samples returned will have values close to 0, and
few samples will have values less than −0.5 or greater than 0.5.

2.2 The normal distribution

An important and often used distribution is the Normal distribution, often referred to as the
Gaussian distribution1. The Normal distribution is important because it is often observed in
various natural processes and also has mathematical properties that make it well suited for
many applications (e.g. filtering). The assumption of Gaussian distributed noise is key to the
derivation of the Kalman Filter discussed in Section 4.3.

The Normal distribution is symmetric and is fully specified by just two parameters, the mean

µ and variance σ2. The density function is evaluated as

N (x;µ, σ) =
1√
2πσ

e−
1

2σ2
(x−µ)2 (2.2)

and when specifying a distribution the shorthand version

X ∼ N (µ, σ) (2.3)

implies that X is distributed according to a Normal distribution of µmean and σ2. The mean
determines the center of the distribution, while the variance determines the width. The square
root of the variance is called the standard deviation σ, which is a more intuitive measure of the
width of the distribution due to the so-called ’68-95-99.7’ rule [16]. For the Normal distribution,
approximately 68% of the likelihood is collected in the interval µ±σ. In other words, if samples

1In this thesis, Normal and Gaussian are used interchangeably.
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Figure 2.2: Example normal distributions

If [X1...Xn] are normally distributed random variables with mean µi and variance σ2
i and

Y = a1X1 + a2X2 + ...+ anXn (2.4)

Then the resulting random variable Y has mean:

µY = a1µ1 + a2µ2 + ...+ anµn (2.5)

and variance
σ2
Y = a21σ

2
1 + a22σ

2
2 + +...a2nσ

2
x (2.6)

Table 2.1: The reproductive property of the Normal distribution, Theorem 7.11 of [17]

are taken from a Normal distributionX ∼ N (µ, σ), approx. 68% of the samples will fall within
the so-called 1σ band. Similarly, approx 95% of the samples will fall within the 2σ band and
99.7% within the 3σ band. Two example Normal distributions are shown in Figure 2.2 with
equal µ but different standard deviations.

The Normal distribution exhibits the reproductive property [17, p.221], summarized in Ta-
ble 2.1. This property simply states that linear combinations of Normally distributed random
variables are also Normally distributed.

2.3 Conditional likelihood and Bayes Rule

The notation p(·|·) is used to denote conditional likelihood, that is the distribution p(X|Y ) is
the distribution of X , given some knowledge about Y . Conversely, p(Y |X) is the distribution
of Y given some knowledge about X .
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Bayes rule provides a way to link the conditional likelihoods, and is essential to the formu-
lation of Bayesian inference, which will be discussed in Chapter 4.2. Bayes rule is given in
Equation (2.7)

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(2.7)

2.4 PDF estimation

Frequently, information from a process is only available as discrete samples. When the samples
are realizations of a random process, it might be necessary to form estimates of the underlying
distribution. In some cases it is possible to assume that the samples originate from a specific
distribution and estimating the distribution becomes a matter of determining the parameters of
the distribution. In other cases it is not possible to reliably assume the shape of the distribution,
and then it is necessary to employ some form of nonparametric PDF estimation algorithm. Two
popular methods for this are the Histogram estimator and the Kernel estimator.

Histogram methods

The most popular, and arguably the simplest, method for estimating a likelihood distribution
is the Histogram method [18]. A series of bins are selected, typically of uniform width. The
histogram method then simply counts the number of samples that fall in each of the bins, and
the counts are normalized so that the total area of the distribution curve is 1.

While simple to implement and intuitive, the Histogram method has its flaws. A careful
balance has to be kept between the number of samples used and the size of the bins to avoid
noisy graphs and it can be difficult to spot the most important features (such as bimodality). It
also produces a discontinuous function, which might be undesirable.

Kernel Estimator

To improve the quality of the estimated PDF, a popular method is the Kernel Estimator method
[18], [19]. The bins are replaced by individual Kernels, often chosen to be a Normal distribution.
The final distribution is simply the normalized sum of many such Kernel likelihoods. This
provides a much smoother PDF estimate.

In Figure 2.3, a comparison between the Kernel Estimator and Histogram outputs are shown
for 3000 samples taken from a multimodal Normal distribution. The Histogram bin size is
set to 0.05 and 0.01. The Kernel Estimator and the Histogram reveal the same features, but
note that the smooth curve of the Kernel estimate makes it a much more intuitively appealing
representation.
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(a) Histogram bin size = 0.05 (b) Histogram bin size = 0.01

Figure 2.3: Kernel Estimator and Histogram outputs for a set of N=3000 samples from a multimodal
Normal distribution.

2.5 Skewness and Kurtosis

It might be enlightening to calculate measures of shape of the distribution at hand. Two useful
parameters for this purpose are the skewness γ and the kurtosis κ.

The skewness can be defined in different ways, in this thesis the definition used by Owen
[19] is adopted:

γ =
E((X − E(X))3

E((X − E(X))2)3/2
(2.8)

Similarly, the definition of kurtosis is also borrowed from Owen:

κ =
E((X − E(X))4)

E((X − E(X))2)2
− 3 (2.9)

where E(X) is the expected value of X .

The skewness parameter is a measure of symmetry. If one tail is much longer than the other,
the long side is said to be a heavy tail, and the PDF is said to be skewed. A Normal distribution
will have γ = 0. The kurtosis expresses how narrow a distribution is, compared to a Normal
distribution. If the tails fall faster (making a narrow distribution) than the tails of a normal
distribution, κ < 0, and if the tails fall slower than a Normal distribution, κ > 0. As a result
estimates of these two measures can be used to evaluate aspects of a likelihood distribution,
even if these two parameters alone do not provide a full description of the similarity to a Normal
distribution. In Figure 2.4 an arbitrary distribution is shown together with a Normal distribution
for comparison purposes. For the distribution shown, the skewness and kurtosis are estimated
to be γ̂ = 0.699 and κ̂ = 1.3286, respectively.
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Figure 2.4: Example distribution with skew and kurtosis 6= 0. A normal distribution withN (0.1, 0.2) is
plotted for comparison. γ̂ = 0.699 and κ̂ = 1.3286

2.6 Nonparametric confidence intervals for skewness and
kurtosis - the Bootstrap method

When only discrete samples of an unknown distribution are available (as is the case in the ex-
ample given in Section 2.5), calculation of skew and kurtosis by Equation (2.8)-(2.9) can only
return estimates. In other words the sample set available will directly impact the calculated
value, and even with a very high number of samples the estimated mean is unlikely to match
the exact underlying (true) mean of the distribution from which the samples were drawn. Prac-
tically, this means that naively calculating the parameters directly from the observed data is not
sufficient to make assertions about the true value of the parameters. In fact, it is necessary to
compute confidence intervals of the parameter values in order to assert the degree of trust to
put in the value calculated. While the arithmetic mean follows the Central Limit Theorem [17,
p.234] and thus the error of the mean estimate is approximately Normally distributed for a high
number of observed samples (n ≥ 30), this is not necessarily the case for other parameters such
as the skew and kurtosis.

If no model can reasonably be assumed for the distribution of the parameter of interest, non-

parametric methods can be applied such as the Bootstrap method [20] or empirical likelihood
[19]. For the purposes of this thesis the Bootstrap method (hereafter referred to as simply the
Bootstrap, not to be confused with the Bootstrap Particle Filter) has been employed.

The Bootstrap is a numerical method for evaluating the distribution of some parameter of a
distribution (e.g. the mean, median or skew.), given a limited number of samples from a popu-
lation. The key idea is that the Bootstrap assumes that the samples given are the best possible
representation of the population that can be made available, and simply uses the samples as a
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representative of the distribution [20]. The Bootstrap then samples N times with replacement
from the distribution formed by the samples to form a new set of samples. The parameter in
question is then calculated for the new set of sampled values. This process is repeated Nbs

times, resulting in a set of Nbs values for the parameter. Using PDF estimation on this set (e.g.
the histogram method) yields an approximation of the distribution of the parameter.

MATLAB provides an implementation of the Bootstrap method, called bootstrp(·) for or-
dinary Bootstrap sampling. MATLAB also provides a function bootci(·) for calculating 95%
confidence bounds with the Bootstrap method.

2.7 Monte Carlo approximation to complex PDFs

When handling PDFs that cannot easily or accurately be described using parametric likelihood
functions (e.g. the Normal distribution), analytical computations and estimation might quickly
become unfeasible. One way of handling this is introducing numerical methods for representing
the likelihood distributions. Monte Carlo methods are a powerful set of tools that can be applied
to learn the behaviour of complex systems [21]. Consider a distribution p(·) of an arbitrary
shape. Assuming that the distribution can be directly sampled from2, N samples can be taken
so that X(i) ∼ p(·), for i = 1...N . p(·) can then be approximated as

p̂(·) =
1

N

N∑
i=1

δX(i)(dx) (2.10)

where

δx(A) = 1A(x) =

1 if x ∈ A

0 otherwise
(2.11)

is a Dirac Delta as discussed by Tulsyan et al [21]. In other words, the MC method represents
the likelihood in an interval by the number of equally weighted samples in the interval, divided
by the total number of particles. The likelihood in an interval is determined by the number of
particles present in the interval. In Figure 2.5, two histograms3 of particles representing the
distribution (p(·) = N (0, 0.52)), are shown for N = 10 and N = 1000. It is clear from this
simple example that having more particles will lead to a more accurate result.

2Note that this usually is not the case when the distribution is nontrivial. Special techniques are required to
circumvent this problem, as discussed later

3Note that the histograms shown have been normalized so that the total area of the histogram is equal to 1, for
simple comparison with the generating distribution. The weighting of 1/N in the Monte Carlo (MC) method means
that the area of the likelihood distribution is not necessarily equal to 1.
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(a) Low number of samples (b) Higher number of samples

Figure 2.5: Representing a likelihood using N unweighted samples. In a) the individual samples are
shown as crosses on the x-axis. Both distributions are Normal distributions with µ = 0 and σ = 0.5.

2.8 Cumulative Density Functions and confidence intervals

The Cumulative Density Function (CDF) is the cumulative (integrated or summed) probability
for the density function, defined for the continuous case as [17, p. 85]

CDF (x) = P (X < x) =

∫ x

−∞
p(t)dt (2.12)

The CDF simply expresses the probability that a sample from the distribution is below x.
By evaluating the inverse CDF, one can compute the corresponding confidence intervals. In the
context of state estimation, a confidence interval can be used to express the interval required
for a certain confidence. As an example, an estimator can provide a C% confidence interval by
computing

x̂C%,upper =CDF−1(0.5 +
1

2

C
100

) (2.13)

x̂C%,lower =CDF−1(0.5− 1

2

C
100

) (2.14)

In Figure 2.6 the relationship between the PDF and the CDF is illustrated with the C = 70%

interval marked. If µ = 0 is a state estimate produced by an estimator, the true value of the
process is expected to lie within the C = 70% confidence interval of between -0.829 to 0.829
with a likelihood of 0.7. Consequently, increasing the confidence level will give wider intervals
but also increases the chance that the correct value lies in the specified interval. The method
outlined here implies that all confidence level values are chosen to be symmetric around the
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(a) PDF

(b) CDF

Figure 2.6: PDF and CDF for an example continuous Normal distribution

mean. This does not imply that the confidence intervals must be symmetric however. While
this is the case for the Normal distribution, it is not necessarily true for other distributions.

For the MC case, the CDF can be defined as [21]:

CDF (x) = P (X ≤ x) =
1

N

N∑
i=1

1(− inf,x](X
(i)) (2.15)

in the unweighted case and

CDF (x) = P (X ≤ x) =
1

N

N∑
i=1

w(i)1(− inf,x](X
(i)) (2.16)

in the importance sampling (weighted) case. Importance sampling will be discussed in
more detail in section 4.4. The calculation of confidence intervals is similar to the continuous
case presented above, but note that a strategy must be selected for handling the case when a
confidence level is selected that does not directly correspond to a sample in the MC set. One
possible strategy is to simply linearly interpolate between the samples. In Figure 2.7 an example
CDF constructed from a set of Normally distributed values are shown.
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(a) Stem plot of values with uniform weight

(b) CDF plot

Figure 2.7: Constructing the CDF from a set of N = 10 values distributed according to N (0, 0.5)
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Chapter 3

System Modelling

In this chapter the basic principles of battery cell modelling is briefly presented. First a short
description of LiBss in general will be presented. Emphasis is put on the major effects observed
in cell behaviour under load. Secondly, the Electrochemical and Equivalent Circuit Model
(ECM) cell modelling approaches are discussed. Since the main focus of this thesis is not on
cell modelling, the level of detail is deliberately kept low and emphasis is put on presenting the
main features of current cell modelling difficulties and solutions.

3.1 Lithium Ion Batteries

LiBs are electrochemical energy storage units, consisting of an electrically insulating ion con-
ductor sandwiched between a positive (cathode) and a negative (anode) active material [22].
Li+ ions swing back and forth between the anodes through the ion conductor [23]. The in-
sulating property of the ion conductor mean that while the lithium ions can pass more or less
freely between the electrodes, the electrons are forced to pass through a closed external circuit -
generating an electric current. The overall chemical reaction is shown for the case of a Lithium
Cobalt Oxide (LCO) battery in equation (3.1).

LiCoO2 + 6C↔ Li1−xCoO2 + LixC6 (3.1)

3.2 State of Charge

The State of Charge (SoC) is defined as the remaining charge in the battery cell divided by the
maximum charge available when the cell is fully charged. This can easily be reformulated to a
definition which involves the amount of charge moved in or out of the cell:
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SoC =
Qremaining

Qmax
=
Qstart −Qdischarged

Qmax
(3.2)

where Qstart is the (assumed known) charge in the cell at some starting time t0. Provided perfect
knowledge of the current, the discharged current can be expressed as an integral,

Qdischarged =

∫ t1

t0

I(t) dt (3.3)

which leads to the ideal time-dependent definition of SoC given in equation (3.4)

SoC(t1) = SoC(t0)−
1

Qmax

∫ t1

t0

I(t) dt (3.4)

As discussed by Julien et al. [24], various unwanted side effects give rise to small ineffi-
ciencies, expressed in total as the coloumbic efficiency η, which can be defined as

η =


Qdischarge

Qcharge
Icell < 0

1 otherwise
(3.5)

Including η into the definition from Equation (3.4), we get the alternative SoC definition:

SoC(t1) = SoC(t0)−
1

Qmax

∫ t1

t0

ηI(t) dt (3.6)

In this thesis, current is defined as positive going out of a cell which means η is only active
for charging currents.

3.3 State of Charge - Open Circuit Voltage relationship

The chemical properties of the LiBs give rise to a nonlinear monotonic relationship between
the SoC and the so called Open Circuit Voltage (OCV) that is relatively stationary1. In other
words, there is a direct (but usually nonlinear) relationship between the terminal voltage of the
cell and the SoC. If this SoC-OCV relationship can be established experimentally, it can be
used to characterize the cell and used as a parameter during estimation. Barai et al [27] and
Farmann and Sauer [25] provide insight into the characteristics of the OCV as well as methods
for determining it.

However, crucially, this relationship is only valid for the at-rest output voltage of the cell,
at-rest here implying that the cell is in electrochemical balance and has not had current passing
through it for a long time. The necessary duration of rest will depend on temperature, SoC and

1This relationship is likely influenced by the temperature and age of the battery [25], but is assumed to be
stationary for the purposes of this thesis. Some researchers argue that the SoC-OCV relationship is independent of
temperature and age but instead depends only on the (temperature and age dependent) capacity of the battery [26]
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Figure 3.1: SoC-OCV example relationship

aging of the cell, but can potentially be very long (Huria et. al [28] observed a cell that had not
reached its at-rest voltage after 13 hours).

Since the duration of the open circuit condition is so crucial, the term OCV can be perceived
as somewhat misleading. In some sources the (ideal) at-rest voltage is referred to as the Elec-
tromotive Force (EMF) of the cell [6] to separate it from the immediately available terminal
voltage of the cell. However, since many researchers still use OCV and the term seems to be
more or less exclusively used to refer to the EMF in literature, this thesis will continue this us-
age. OCV is thus implied to refer to the (ideal) EMF of the battery, and ”terminal voltage” or Vt
is used to refer to the instantaneous voltage observed on the cell terminal outputs. An example
SoC-OCV curve is shown in Figure 3.1.

3.4 Polarization voltage and hysteresis

When current starts flowing in the cell, a number of kinetic polarization effects must be consid-
ered [3]:

• activation polarization - related to the charge-transfer process at the interface of the elec-
trodes.

• ohmic polarization - caused by resistance of the cell materials and as contact problems

• concentration polarization - caused by concentration differences interior to the active
material.

The ohmic polarization is instantaneous and disappears when the current of the cell is zero.
However, both activation and concentration polarization can persist for a significant period of
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(a) Current pulse

(b) Voltage response

Figure 3.2: Polarization effects when a current pulse is applied to a cell. The ohmic polarization is
seen as the instantaneous drop and rise of the voltage when the pulse is started and stopped, while the
activation and concentration polarization is seen as the slowly climbing voltage after the current is shut
off.

time (as discussed in Section 3.2). An example of this is shown in Figure 3.2, where a current
pulse is applied momentarily to a battery cell. The end result of these polarizations are that the
observed terminal voltage of the cell is not equal to the OCV but is a sum of the OCV and the
polarization voltages:

Vt = OCV + Vactivation + Vohmic + Vconcentration (3.7)

In addition to the polarization effects, the voltage output can additionally be affected by hys-

teresis. This is seen as a persistent voltage deviation from the expected OCV that is dependent
on the path of the cell current. Barai et al. [27] describe methods for determining hysteresis,
and found hysteresis voltages of up to 38mV for some cells.

3.5 Equivalent Circuit Modelling

When modelling battery cells, two major approaches are currently used. The modelling can
start from first principles, starting with the physical and chemical laws governing the reactions
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−
+VOCV(SoC)

R0

R1

Vt,+

C1

Vt,−

Icell

Figure 3.3: Example ECM model with a SoC-OCV relationship, one ohmic resistance (R0) and one RC
element (R1 and C1)

interior to the cell. This is often referred to as electrochemical modelling. The resulting models
are typically very accurate and can account for most if not all operating conditions of the cells.
When used in state estimation the estimated parameters also reveal important insight into the
status of the cell. The downside is that processing of these models require vast computational
power, making them (currently) unfit for online simulation or real time estimation. This is an
active research area and currently is being invested in finding effective model reductions that
can be used for real time applications and estimation - often in combination with Particle Filters
(see for example [14], [29]–[31]).

A different and popular approach is the use of Equivalent Circuit Models (ECMs). This is
a grey-box behavioural approach where emphasis is placed only on the electrical behaviour of
the cell. The electrical behaviour is approximated through a combination of electrical elements,
such as resistors and capacitors. A typical simple ECM is shown in figure 3.3. The result is
a lightweight, intuitive and potentially very accurate representation of battery cell behaviour.
This method has been and still is very popular due to its low complexity and high accuracy, but
these advantages do not come without a price. Most importantly, while the electrical elements
can be used to model separate parts of the polarization voltages, it is difficult to draw direct
parallels between the parameters of the elements and the actual physical state of the cell.
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Chapter 4

Estimation

In this chapter, statistical filtering in a Bayesian framework is discussed in some detail. First
the so called Bayesian statistical paradigm is presented along with its implications for inference
techniques. It is seen that for the general case, Bayesian inference requires solving intractable
integrals. Thereafter the Kalman Filter and Sequential Monte Carlo methods are introduced
as practical methods that circumvent this difficulty, under specific assumptions. Thereafter, a
more direct comparison of the KF and the SMC methods and their respective assumptions are
presented.

4.1 Hidden Markov Model

To be able to use a cell model in an estimator, it must be formulated in a mathematical frame-
work. One very flexible framework for this is the Hidden Markov Model (HMM) model

X1 ∼ µ(x1) (4.1)

Xn|(Xn−1 = xn−1) ∼ f(xn|xn−1) (4.2)

Yn|(Xn = xn) ∼ g(yn|xn) (4.3)

Where {Xn}n≥1 is a discrete-time Markov process, f(xn|xn−1) is the process transition

likelihood and g(yn|xn) is the measurement likelihood [32]. This can be reformulated to a wide
variety of different subclasses of models. An example of an important special case of the HMM
model is given in Equations (4.4)-(4.5). The Kalman Filter presented later requires that the
system can be formulated on this form.

xn =f(xn−1,un−1) + vn−1 (4.4)

yn =g(xn,un) +wn (4.5)

where wn,wn, i = 1...n are independent additive white noise series.
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4.2 Bayesian Filtering

Bayesian Filtering is concerned with using presently available system information and inputs
to determine (or estimate) the likelihood of the system states in some future. Informally, this
involves having the previous-step state distribution (the prior distribution) available and com-
bining this with the system input to form an estimate of the next-step state distribution (the
posterior distribution) through application of Bayes rule given in Equation (2.7). The poste-
rior distribution of interest is the distribution of the states, given information about the system
outputs:

p(x1:n|y1:n) (4.6)

Applying Bayes rule yields

p(x1:n|y1:n) =
p(x1:n, y1:n)

p(y1:n)
=
p(x1:n)p(y1:n|x1:n)

p(y1:n)
(4.7)

where

p(x1:n) = µ(x0)
n∑
k=1

f(xk|xk−1) (4.8)

p(y1:n|x1:n) =
n∑
k=0

g(yk|xk) (4.9)

p(y1:n) =

∫
p(x1:n)p(y1:n|x1:n) dx1:n (4.10)

with µ(x0), f(xk|xk−1) and g(yk|xk) given by Equations (4.1), (4.2) and (4.3) respectively.
Furthermore, p(x1:n, y1:n) satisfies:

p(x1:n, y1:n) = p(x1:n−1, y1:n−1)f(xn|xn−1)g(yn|xn) (4.11)

It can then be shown that the posterior satisfies the recursion [32]:

p(x1:n|y1:n) = p(x1:n−1|y1:n−1)
f(xn|xn−1)g(yn|xn)

p(yn|y1:n−1)
(4.12)

p(yn|y1:n−1) =

∫
p(xn−1|yn−1)f(xn|xn−1)g(yn|xn) dxn−1:n (4.13)

It is then straightforward to integrate out x1:n−1 in Equation 4.12. The resulting equations,
given in (4.14) and (4.15) are typically presented in literature when Bayesian filtering is dis-
cussed. Equation (4.14) is often referred to as the prediction step, while Equation (4.15) is
referred to as the update step.
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4. ESTIMATION

p(xn|y1:n−1) =

∫
f(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (4.14)

p(xn|y1:n) =
g(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
(4.15)

Unfortunately the prediction step integral in Equation (4.14) is intractable save for a few
special cases, such as for linear models with Gaussian additive noise [33] (in which case the
popular Kalman Filter can be derived). This has led to the development of a wide variety of
techniques for handling the more general case of nonlinear and (possibly) non-Gaussian models.
Among these are SMC methods and various nonlinear Kalman Filters. These will be presented
next.

4.3 Kalman filtering

Kalman Filtering dates back to a paper published by Rudolph Kalman in 1960 [34] and remains
one of the most popular filtering methods used for state estimation problems. While the origi-
nal KF presented by Kalman only applies optimally to linear systems, several extensions have
enabled the filter to be used in a wide variety of applications - including the SoC estimation
problem. However as will be seen, the fundamental assumptions made to derive the KF also
limit the possible accuracy for certain applications. In the following sections a short review of
various Kalman Filters will be presented. Main emphasis will be on the nonlinear variants.

The Linear Kalman Filter

If it is assumed that all noise distributions and the prior distribution are Gaussian distributions,
it can be shown that the resulting posterior distribution is also Gaussian (see Plett [10] for a
proof). Provided that the next step of the algorithm uses the previous posterior as the next prior,
this implies that all future posterior densities are Gaussian. Since a Gaussian distribution is fully
characterized using only its mean and variance values, this removes the need to store discrete
representations of the distributions. If the system additionally is linear, the system equations in
discrete time can be expressed as:

xn+1 =Adxn + Bdun + Qn (4.16)

yn+1 =Cdxn+1 + Ddun+1 + Rn+1 (4.17)

This is another special case of the HMM, and the Linear Kalman Filter (LKF) can be ap-
plied. For completeness, the algorithm for the LKF is given in Appendix A. It can be shown
that for this particular case, it is optimal in a minimum absolute error sense.
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4.3. Kalman filtering

Nonlinear Kalman Filtering

Unfortunately, the algorithm of the LKF is not directly applicable if the system contains non-
linearities. To circumvent this, the system must be linearized in some way. A popular algorithm
for this is the EKF, which simply performs a first-order linearization around the previously esti-
mated state value. However, there are several problems with this. The EKF requires the system
Jacobian to be computed (either analytically or numerically) in order to linearize. More im-
portantly, if the system is very nonlinear, linearizing around the previous working point might
yield an estimate that is far off, causing the next step prediction to miss as well, increasing
the error with each step. This can lead to both inaccurate results and divergence of the filter.
More recently, a new family of nonlinear KFs have emerged that uses a very different approach:
Sigma-Point Kalman Filters (SPKFs). In an SPKF, the linearization is performed by determin-
istically sampling from the previous-step Gaussian posterior distribution, resulting in a set of
so-called ’Sigma Points’ that are propagated through the nonlinear functions of the model. The
Sigma Points typically have weights attached to them. The resulting ’cloud’ of points are as-
sumed to represent a Gaussian distribution, and the updated mean and covariance are estimated
from this cloud.

The two approaches are demonstrated for a single-dimensional case in Figure 4.1(a) and
4.1(b). A Normal Distribution (shown along the bottom of the vertical axis) is transformed
through the function y = f(x) = −10x3 + 2x, and the corresponding distribution for y is
shown on the left of each plot. Figure 4.1(a) show the result of using a 1st order linearization,
while Figure 4.1(b) shows the results of using a Sigma-Point approach. As can clearly be seen,
the true distribution is distinctly nongaussian and hence the nonlinear KFs are by design unable

to correctly estimate the full distribution. This is confirmed by comparison of the estimated
distributions produced. Still, the Sigma-point approach is able to place the arithmetic mean
much more accurately than the 1st order linearization approach. Furthermore, the 1st order
linearization procedure creates a distribution with a much wider coverage than the Sigma-Point
procedure. If the only metrics of interest is the arithmetic mean and variance of the distribution,
the Sigma-Point approach is here seen to be superior to the first order linearization approach.

The Central Difference Kalman Filter (CDKF) algorithm

The most popular variants of the SPKF are the CDKF and the Unscented Kalman Filter (UKF)
algorithms. As noted by Plett [10], the two variants are derived using different approaches,
but vary only in the weighting scheme used for the Sigma Points. The CDKF only has one
tuning parameter (h), while the UKF provides the option of tuning the spread of the Sigma
Points as well as the kurtosis of the assumed distribution. While this does provide an opening
for accounting somewhat for non-gaussian distributions in the UKF, the parameters must either
be fixed or estimated at each step which introduces another complexity. Merwe [35] provide a
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4. ESTIMATION

(a) First order linearization approach

(b) Sigma Point approach

Figure 4.1: Example of linearization, as performed by the a) EKF b) SPKF. Note that the amplitude of
the distributions have been scaled for illustrative purposes.

more thorough discussion of the difference between the UKF and the CDKF, and show that the
differences are more nuanced than what is indicated by Plett. Nonetheless, for the purposes of
this thesis the approach taken by Plett is presented here. For this thesis the CDKF variant was
chosen for its lower complexity (only one tuning parameter). A more thorough discussion on the
CDKF algorithm and its relation to the UKF is provided by Plett [10], and a short review is also
provided by Roaldsnes [36], from which the contracted algorithm in Table 4.1 is reproduced
with some modification. Notably, the version given in [36] calculate sigma points twice per
iteration. The one given in Table 4.1 have been modified to only calculate sigma points once,
for the sake of efficiency. The CDKF algorithm is intuitively pleasing, and avoiding the need
for computing the Jacobian eases the implementation of the system.

24



4.3. Kalman filtering

For n = 0

x0 = E(x) P 0 = E(P 0)

For n ≥ 1
Select sigma points and propagate:

Xn−1 =

[
x̂n−1, x̂n−1 + h

√
P n−1, x̂n−1 − h

√
P n−1

]
X−

n =f(Xn−1)

Construct the a priori state estimate and error covariance:

x̂−n−1 =
2N∑
i=0

ωµi X (i)−
n

P−n =

{ 2N∑
i=0

ωCi (X (i)−
n − x̂(i)−

n−1)(X (i)−
n − x̂−n−1)T

}
+Qn

Propagate new sigma points through the measurement function:

Z−n = h(X−
n ) ẑ−n =

2N∑
i=0

ωµi Z−n

Calculate the measurement covariances and Kalman gain:

(P−zz)n =

{ 2N∑
i=0

ωCi (Z(i)−
n − ẑ−n )(X (i)−

n − x̂−n )T
}

+Rn

(P−xz)n =

{ 2N∑
i=0

ωCi (X (i)−
n − x̂−n )(X (i)−

n − ẑ−n )T
}

Kn =(P−xz)n(P−zz)−1n

Calculate the updated state estimate and covariance matrix estimate:

x̂n = x̂n−1 +Kn(zn − ẑn) P n = P−n −Kn(P−zz)nK
T
n

Table 4.1: CDKF algorithm, adapted from Brown and Hwang [37, p.268-269], Plett [10] and Roaldsnes
[36].
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4. ESTIMATION

4.4 Sequential Monte Carlo Filtering

The Kalman Filter uses the Gaussian assumption on the shape of the posterior to simplify the
calculations. However, as seen from the shape of the distributions in Figure 4.1, this assumption
is not always valid. Even if advanced KFs might be able to estimate the arithmetic mean quite
well despite the nonlinearities, the error bounds can still be unreliable. Sequential Monte Carlo
(SMC) methods (commonly referred to as PFs) are an attractive alternative when the system is
nonlinear, and is used for a variety of applications such as target tracking. The SMC algorithms
are intuitively appealing, and mainly distinguish themselves from the nonlinear KFs in two
ways: 1) SMC methods are not constrained by the Gaussian assumption, allowing the filter to
estimate nontrivial posterior PDFs such as multimodal functions. 2) The model structure of
SMC methods are much less restrictive than that of KFs, allowing SMC methods to apply to a
diverse array of HMM models such as non-standard measurements [38].

Doucet and Johansen [32] and Tulsyan et al [21] each provide comprehensive overviews of
basic and advanced SMC concepts, and the notation used in this thesis is heavily influenced
by these researchers. In the following section the main nomenclature and ideas behind SMC
methods will be reviewed.

The generic SMC algorithm

SMC methods attempt to estimate an evolving series of (ideal) target distributions, denoted π(·)
and defined as:

π(x1:n) =
γn(x1:n)

Zn
(4.18)

where Zn is an (unknown) normalizing constant, defined as∫
γn(x1:n) dx1:n (4.19)

A typical choice for the target distribution is to set π(x1:n) = p(x1:n|y1:n) (the posterior
distribution), but a variety of choices are available. A main point of emphasis of Doucet and
Johansen [32] is the idea that all SMC methods can be designed, described and analyzed within
a common framework - referred to as the generic SMC algorithm. The main elements of the
algorithm is thus similar (or equal) across different variations of the SMC methods irrespective
of the chosen target distribution.

As previously described in Section 2.7, the chosen target distribution can be approximated
as:

π̂n(x1:n) =
1

N

N∑
i=1

δxi1:n(x1:n) (4.20)
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4.4. Sequential Monte Carlo Filtering

This approximation requires that the target distribution can be sampled from, but this is very
rarely the case. In order to circumvent this problem, an importance distribution (sometimes
referred to as a proposal distribution) q(·) with the property:

πn(x1:n) > 0 =⇒ qn(x1:n) > 0 (4.21)

Under this assumption, the target distribution can be rewritten as:

πn(x1:n) =
wn(x1:n)qn(x1:n)

Zn
(4.22)

where:

wn(x1:n) =
γn(x1:n)

qn(x1:n)
(4.23)

is an unnormalized weighting function. This reformulation means that the importance distri-
bution can be chosen among distributions which it is easy to draw samples from, for example
the Normal distribution. The weighting expresses how likely a sample from the importance
distribution is to be classified as a sample from the target distribution [21].

Due to restrictions on computational power and memory it is not practical to compute the
full πn(x1:n) at each time step n. Instead, a recursive form of the importance distribution can be
written as:

qn(x1:n) = qn−1(x1:n−1)qn(xn|x1:n−1) (4.24)

which leads to a recursive formulation of the unnormalized weighting function:

wn(x1:n) = wn−1(x1:n−1) · α(x1:n) (4.25)

where:

αn(x1:n) =
γn(x1:n)

γn−1(x1:n−1)q(xn|x1:n−1)
(4.26)

is the incremental importance weight function.
A problem with sequential importance sampling is that it tends to center all the weight into

a single or very few particles after just a few cycles. As a result, most of the particles are
left useless (degenerate), this is known as the degeneracy phenomena [37, p. 271], [39]. The
degeneracy problem is countered by introducing resampling to redistribute the particles so that
as many particles as possible remain useful.

The idea behind resampling is to redistribute the particles so that most of the particles are
moved to areas of high likelihood. In practice, during resampling the particles with high weights
will be replicated many times, while the particles with low weight will either not be replicated
or replicated only a few times. A number of different resampling schemes exist, among them
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4. ESTIMATION

Step Explanation
1. sample U1 ∼ U(0, 1/N), where U(·) is a Uniform distribution

2. Ui = U1 + i−1
N

, for i = 2, ..., N

3. build cumulative sum series S

S(0) = 0, Si =
{∑j=i

j=1W
(j)
n

}
for i = 1, .., N

4. interpolate in S to select Offspring particles N i
n by satisfying

N i
n =

∣∣∣∣{S(i−1) ≤ Uj ≤ Si
}∣∣∣∣

Table 4.2: Systematic Resampling Algorithm

systematic resampling, residual resampling, multinomial resampling and stratified resampling
[32], [40]. In this thesis the systematic resampling scheme has been applied, the algorithm is
summarized in Table 4.2.

As noted by Doucet and Johansen [32], the process of resampling also introduces some addi-
tional variance into the particle set. Consequently, resampling at every time step will cause high
variance in the posterior estimate. To avoid this problem somewhat, resampling is performed
only when needed. There are several methods of determining when resampling is needed, a
popular one is the Effective Sample Size (ESS) [32], as defined in Equation (4.27).

ESS =
1∑N

i=1(W
i
n)2

(4.27)

The ESS can be interpreted as the number of perfect samples that the current sample set is
approximately equivalent to in terms of estimator variance. In other words, if the number of
particles is 100 and the ESS is 50, using the 100 particles for inference is approximately equal
to having 50 perfect samples with which to perform inference. At each time step, as weight
is gradually centered in a few particles and the variance of the weights increases, the ESS will
drop. A typical choice is to resample the particles when the ESS falls below N/2.

Combining the MC in a recursive formulation with resampling leads to the formulation of
the generic SMC algorithm, which is summarized in Table 4.3. In the formulation chosen in
this thesis, the calculation of state estimates are placed before the resampling. This way, the
state estimate output is less affected by the added sample variance of the resampling procedure.
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4.4. Sequential Monte Carlo Filtering

For n = 0
Sample the initial state distribution and weights.

X i
0 ∼q(x0) w0(X

i
0) =

1

N

For n ≥ 1
Sample from the importance distribution

X i
n ∼ q(xin|X i

1:n−1)

X i
1:n =

{
X i

1:n−1, X
i
n

}
Compute and normalize weights

win =αnwn−1

Wn ∝wn

Calculate state estimate

π̂(xn) =
N∑
i=0

W i
nδXi

n
(xn)

Resample if necessary

if ESS < N/2:

resample to get {W i

n, X
i

n} and set

X i
1:n =

{
X i

1:n−1, X
i

n

}
W i
n = W

i

n =
1

N

Table 4.3: Generic SMC algorithm. Adapted with modifications from Doucet & Johansen [32]
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The Particle Filter

Starting from the generic SMC method in Table 4.3, the simplest and most obvious choice of
target distribution is simply the posterior distribution:

π(x1:n) = p(x1:n|y1n) (4.28)

Considering Equations (4.7) and (4.11) this implies that

γn(x1:n) = p(x1:n, y1:n) = p(x1:n−1, y1:n−1)f(xn|xn−1)g(yn|xn) (4.29)

By inserting this into the definition of αn from Equation (4.26), the following reduction can
be made:

αn(x1:n) =
p(x1:n−1, y1:n−1)

p(x1:n−1, y1:n−1)

f(xn|xn−1)g(yn|xn)

q(xn|xn−1)
=
f(xn|xn−1)g(yn|xn)

q(xn|xn−1)
(4.30)

The full algorithm is given in Table 4.4.
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4.4. Sequential Monte Carlo Filtering

For n = 0
Sample the initial state distribution and weights.

X i
0 ∼ p(x0) w0(X

i
0) =

1

N

For n ≥ 1
Sample from the importance distribution

X i
n ∼ f(xin|X i

1:n−1)

Compute and normalize weights

win =wn−1
f(X i

n|X i
n−1)g(yn|X i

n)

q(X i
n|X i

n−1)

Wn ∝wn

Calculate state estimate

π̂(xn) =
N∑
i=0

W i
nδXi

n
(xn)

Resample if necessary

if ESS < N/2:

resample to get {W i

n, X
i

n} and set

X i
1:n =

{
X i

1:n−1, X
i

n

}
W i
n = W

i

n =
1

N

Table 4.4: Particle Filter algorithm. Partially adapted (with modifications) from Doucet & Johansen [32]
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The Auxiliary Particle Filter (APF)

Compared to the simple PF, the Auxiliary Particle Filter (APF) is a slightly more advanced par-
ticle filter variant. The main difference is that an additional (auxiliary), predictive distribution is
formed to aid in weighting the particles. This can be reinterpreted as running the generic SMC
algorithm with γ(x1:n) set to

γ(x1:n) = p(x1:n, y1:n)p̃(yn+1|xn) (4.31)

where p̃(yn+1|xn) approximates a prediction density p(yn+1|xn) [32]. The incremental weight
function becomes:

αn(x1:n) =
g(yn|xn)f(xn|xn−1)p̃(yn+1|xn)

p̃(yn|xn−1)q(xn|yn, xn−1)
(4.32)

and since the estimator targets a different distribution than the posterior distribution of interest
a separate weight value must be calculated to retrieve the estimate of the state estimate [32]:

w̃n =
g(yn|xn)f(xn|xn−1)
p̃(yn|xn−1)q(xn|xn−1)

(4.33)

p̂(xn|y1:n) =
N∑
i=1

W̃ i
nδXi

1:n
(4.34)

where W̃n ∝ w̃n if resampling was performed the previous iteration and

W̃n = W̃ i
n−1w̃n(X i

n−1:n) (4.35)

if not. The complete APF algorithm is summarized in Table 4.5.
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4.4. Sequential Monte Carlo Filtering

For n = 0
Sample the initial state distribution and weights.

X i
0 ∼ p(x0) w0(X

i
0) =

1

N

For n ≥ 1
Sample from the importance distribution

X i
n ∼ f(xin|X i

1:n−1,y1:n−1
)

Compute and normalize weights

win = wn−1
g(yn|X i

n)f(X i
n|X i

n−1)p̃(yn+1|X i
n)

p̃(yn|X i
n−1)q(X

i
n|yn, X i

n−1)

Wn ∝ wn

Calculate and normalize auxiliary weight

w̃n =
g(yn|X i

n)f(X i
n|X i

n−1)

p̃(yn|X i
n−1)q(X

i
n|X i

n−1)

If resampling previous iteration: W̃n ∝ w̃n

else: W̃n ∝ W̃ i
n−1w̃n(X i

n−1:n)

Calculate state estimate

p̂(xn|y1:n) =
N∑
i=1

W̃ i
nδXi

1:n

Resample if necessary

if ESS < N/2:

resample to get {W i

n, X
i

n} and set

X i
1:n =

{
X i

1:n−1, X
i

n

}
W i
n = W

i

n =
1

N

Table 4.5: APF algorithm. Adapted with modifications from Doucet & Johansen [32]
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Alternative measurement function: Imprecise modelling

In many papers on the subject of SMC methods for SoC estimation, g(yn|xn) is simply selected
to be the default Normal distribution. This is also the case for most of the estimators presented
in this thesis. However, one of the advantages of using SMC methods is the possibility of
employing a wide variety of likelihood functions. As an example, Schwunk et al [13] exchanged
the Normal distribution for the fatter-tailed Cauchy-Laurentz distribution.

As another alternative, imprecise measurement modelling can be used to create an alternative
measurement function g(yn|xn) assuming uncertainty in some of the model parameters. This
approach has been discussed for the general case previously by Ristic [38], [41].

Imprecise measurements are the result of lack of knowledge, resulting in imprecision in the
relationship between the states and the measurements. This is in contrast to the ’precise’ models
used earlier in this thesis where the relationship between measurement and states is assumed to
be known precisely save for some random noise1.

Similarly to the form in Equations (4.4)-(4.5), the imprecise measurement model can be
expressed mathematically as [41]:

xn =f(xn−1,un−1) + wn−1 (4.36)

yn =g(xn,un; [θi]n) + vn (4.37)

where θi is a vector of uncertainty intervals (the subscript i indicates imprecise to distinguish
it from the cell parameter vector θp). Equation (4.37) is a one-to-many mapping and as such is
not a function. However, it can be modelled as a random closed set Σx. Ristic [41], following
the approach of Mahler [42], show that this leads to the generalized likelihood:

gn(y|xin) = Pr
{
yn ∈ Σx

}
(4.38)

In the case where v is assumed to be additive gaussian noise (which is what is assumed for all
models presented in this thesis) gn(y|x) takes the general form used in this thesis, summarized
in Table 4.6

This new form is different from the normal distribution in several ways. Firstly when using
the normal distribution as the update function model uncertainty must be accounted for through
addition of more measurement noise. In the imprecise approach, uncertain parameters can be
accounted for directly in the model formulation and can be asymmetric. Secondly, the imprecise
measurement approach allows the measurement function to be directly and dynamically scaled
or skewed by the inputs to the system.

1Note that imprecision is distinctly separate from randomness [38]
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4.4. Sequential Monte Carlo Filtering

g(y|x)imprecise =

∫ hx

hx

N (h; y,R) (4.39)

= CDF (y;hx, R)− CDF (y;hx, R) (4.40)

where
hx = min{g(x;θi), g(x;θi)}
hx = max{g(x;θi), g(x;θi)}

(4.41)

Table 4.6: The imprecise likelihood model in the case of Gaussian noise.
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Chapter 5

Methods

5.1 Description of battery cell, use case and cell tests

The battery cell used in this thesis is a SLPBB042126 6550mAh 10C Lithium Cobalt Oxide
(LCO) pouch cell from Melasta. The cell is optimized for high gravimetric energy density
and high power output, and this cell and others similar to it is frequently used in weight and
power sensitive applications such as Formula Student race cars. This particular cell is the same
type being used by the Formula Student team ”Revolve NTNU” in the 2016-2018 seasons. An
excerpt of the data sheet is given in Appendix B.

The test performed on the cell was designed and performed by Ørjan Gjengedal in collab-
oration with Senior Researcher Preben Johannes Svela Vie at the Institute of Energy Technol-
ogy in Lillestrøm, Norway. The data sets used in this thesis has previously been presented
by Gjengedal [12] in the context of Impedance Estimation. The test was performed using a
PEC ACT0550 cell tester running LifeTest software. The cells were placed in a Termaks cli-
mate chamber set to an ambient temperature of 25 degrees celsius. Two channels of the PEC
ACT0050 was connected in parallel in order to allow for a max current of ±100 A. The voltage
sense wires were routed separately and connected close to the cell tabs to reduce error from
wire resistance. One PT-100 F2020 temperature sensor was attached to the center of the main
body of the cell. The sensor was covered with a piece of foam to insulate it from the ambient
temperature. An image of the actual cell under test was not available, but an equivalent cell and
test setup is shown in figure 5.1.

The current waveform applied to the cell was designed to imitate the typical use case of a
Formula Student car when running the 22 km long ’Endurance’ race. The race consists of 22
rounds around a 1 km long lap characterized by short straights and tight turns. The 1 km lap
features short straights and tight corners, as a result the cells are frequently subjected to short
bursts of powerful acceleration followed by aggressive braking. After 11 km a mandatory driver
change is performed, resulting in a short break approximately halfway through.
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5.2. Selected discrete time cell model

Figure 5.1: Cell test setup

The current waveform was constructed by extracting the current profile logged by a data
logger installed in Revolve NTNUs 2016 car ’Gnist’ at the Formula Student Austria 2016 En-
durance event. From this two separate sample drive cycles were extracted and repeated to create
the current waveform shown in Figure 5.2(a) [12]. When applied to the cell the voltage response
shown in Figure 5.2(b) was obtained.

5.2 Selected discrete time cell model

The cell model selected is a simple 2RC ECM. Two RC-elements (R1/C1, R2/C2) are used
to approximate the combined effects of activation and concentration polarization voltage. One
resistance (R0) approximates the effect of ohmic polarization. The SoC-OCV relationship is
modelled as a SoC-controlled ideal voltage supply with the SoC defined as in Equation (3.4). η
is assumed to have little impact on the SoC estimate, and is therefore left out of the SoC model.
Hysteresis is not modelled, since previous research by Hu et al. [43] indicate that including
hysteresis does not necessarily increase accuracy. The continuous ECM is shown schematically
in Figure 5.3.

Using straightforward circuit analysis techniques the resulting continuous model is arrived
at:
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(a) Current waveform for test

(b) Voltage response

Figure 5.2: Current waveform and voltage response
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+VOCV(SoC)
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Figure 5.3: Selected cell model - continuous time ECM cell model with 2RC blocks.
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5.3. Augmented cell model

ẋ =


˙SoC

İ1

İ2

 =


Icell
Qmax

1
R1C1

+ 1
R1C1

Icell

1
R2C2

+ 1
R2C2

Icell

 (5.1)

y = OCV (SoC)−R0Icell −R1I1 −R2I2 (5.2)

where T is the fixed time step of the discrete system.
Note that all three states are independent and thus can be discretized separately. Applying

Eulers method for the SoC state and assuming the current input to be fixed between time steps
for the current states I1, I2, the system can be linearized as follows [44, p.109-110]:

xn = fc(xn−1,un−1) =


SoCn

I1,n

I2,n

 =


SoCn−1 − T

3600CapIcell,n−1

I1,n−1e
− T
R1C1 + (1− e−

T
R1C1 )Icell,n−1

I2,n−1e
− T
R2C2 + (1− e−

T
R2C2 )Icell,n−1

 (5.3)

yn = hc(xn,un) = OCV (SoCn)−R0Icell,n −R1I1,n −R2I2,n (5.4)

where T is the sampling period of the system and the subscript c indicates that the fc(·) and
hc(·) are the cell model functions.

5.3 Augmented cell model

The values of the cell parameters (such as the resistance and capacitance values) of an ECM
tends to change with temperature and SoC [45]. A consequence of this is that a model with
fixed parameters might be unable to describe the cell throughout a full discharge profile. To
counteract this it is possible to create look-up tables for various conditions (such as different
temperatures and states of aging) and then optimize the parameters for the various conditions.
The problem with this approach is that the system essentially becomes unable to adapt to sit-
uations it has not been trained for. Another, alternative approach is to allow the estimator to
adapt the cell parameters on-line. In the context of KFs and SMC this is typically done by
adding the parameters to the state vector (known as augmenting the state vector). This is often
referred to as joint estimation [9], owing to the fact that the estimator jointly estimates states
and parameters.

In this work, the state vector is augmented to include important cell parameters (i.e. ca-
pacitance and resistance in RC blocks and the cell capacity) to allow the estimator to adapt
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the parameters of the model during operation. In addition to increasing the adaptability of the
estimator, this also represents a more realistic use case. The state vector is augmented so that:

xa =

xs
θp

 (5.5)

with the states xs and the parameters θp defined to be

xs =

[
SoC I1 I2

]T
(5.6)

θp =

[
R0 R1 R2 C1 C2 Cap

]T
(5.7)

The parameters are modelled as integrated white noise, giving the parameter model:

θp,n = θp,n−1 +N (0, σθ) (5.8)

The parameters are assumed to be constant for a single time step, so the state update function
is not changed and the parameters are only actuated by white gaussian noise. By combining
Equation (5.3) and (5.4) with Equations (5.6)-(5.8) the cell model used in the estimators is
given as:

xa,n = fa(xa,n−1,un−1) =



SoCn−1 − T
3600Capn−1

Icell,n−1

I1,n−1e
− T
R1,n−1C1,n−1 + (1− e−

T
R1,n−1C1,n−1 )Icell,n−1

I2,n−1e
− T
R2,n−1C2,n−1 + (1− e−

T
R2,n−1C2,n−1 )Icell,n−1

R0,n−1

R1,n−1

R2,n−1

C1,n−1

C2,n−1

Capn−1



(5.9)

ha(xn,un) = OCV (SoCn)−R0,nIcell,n −R1,nI1,n −R2,nI2,n (5.10)

Where the subscript a indicates the augmented model. Note that the explicit state names
are used above, for greater clarity of presentation. In actual implementation the state names are
replaced with their state vector value.
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5.4. Determining the SoC-OCV relationship

5.4 Determining the SoC-OCV relationship

The SoC-OCV relationship was determined by first charging the cell to full capacity using
Constant Current / Constant Voltage (CC/CV) charging, and then fully discharged at a constant
rate of C/30 A1.

After full discharge, the cell was recharged at a constant current of C/30 ampere. The SoC-
OCV relationship was then extracted as the average of these two curves. The resulting curve
is shown in Figure 6.1. The SoC-OCV relationship was implemented as a lookup-table with
linear interpolation and linear extrapolation in MATLAB.

5.5 Determining the reference SoC

The true SoC was established by first assuming that the cell was fully charged at the start of
the test Qstart = Qmax, and thus SoC is 1. The discharge capacity was taken to be the integrated
current of the discharge part of the SoC-OCV test from Section 5.4. The charge capacity was
taken to be the integrated current of the charge part of the SoC-OCV test from Section 5.4.

A discrete integration with a triangular approach was selected. For the reference SoC, the
SoC model with η included (given in Equation (3.6) ) was selected for maximum accuracy. The
full method is summarized in Table 5.1

for n = 1:

SoCn = 1;

for n ≥ 2:

if I > 0

SoCn = SoCn−1 −
T

3600Cap
In−1 + In

2

else
SoCn = SoCn−1 −

ηT

3600Cap
In−1 + In

2

Where Cap is the discharge capacity given in A h, η is calculated from Equation (3.5), T is
the time step of the system and I is the cell current.

Table 5.1: Method for determining reference SoC

11C is equal to the current required to empty the cell in one hour. For a cell with a capacity of 6.55Ah, 1C =
6.55A, C/2 = 3.275A etc.
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Parameter settings

Parameter starting value Upper bound Lower bound
R0[mΩ] 2.1 10 1
R1[mΩ] 2.5 10 1
R2[mΩ] 0.797 10 1
C1[F] 11500 106 103

C2[F] 2821 108 103

Capacity [A h] 6.86 7.3 6.5
Solver settings

Algorithm Trust-region-reflective

x0

[
SoC I1 I2

]T
=
[

1 0 0
]T

Function tolerance 10−6 (default)

Table 5.2: Settings for the lsqcurvefit(·) matlab function used to fit cell parameters to cell data.

5.6 Determining starting parameters for cell model

Since the main emphasis of this thesis is not on parameter estimation, the estimators were
supplied with reasonable starting estimator values. To determine these values, the 2RC cell
model was run in a Least Squares curve-fitting algorithm to solve for the optimal parameter
settings. The MATLAB-provided curve-fitting function lsqcurvefit(·) was used with the settings
given in Table 5.2. The resulting open-loop voltage output is plotted in Figure 6.2.
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5.7 Implemented Estimators

In this section the implementation and tuning settings of the implemented estimators are dis-
cussed in detail.

The Joint Central Difference Kalman Filter (JCDKF)

The JCDKF follows the implementation given in Table 4.1, and is given the settings shown in
Table 5.3.

System functions

f(xn) =fa(xn−1,un−1)

h(xn) =ha(xn,un)

Estimator tuning variable settings

x0 =



0
0
0

2.1 · 10−3

2.7 · 10−3

5.3. · 10−4

7.2 · 103

2.85 · 103

6.85


√
P 0 = diag





1
10−4

10−4

1.2 · 10−4

10−4

10−4

10
1

10−3





√
Qn = diag





10−4

10−3

10−6

10−9

10−10

10−10

10−1

2 · 10−7

10−11




Where diag{} is a function that creates an n × n matrix from the n × 1 input vector. The
vector elements are placed along the diagonal of the matrix, and all other elements are set to
zero. The noise matrix elements are given as standard deviation for simpler comparison with
the PFs.

√
Rn = 0.2 h =

√
3

wµ0 = wC0 =
h2 − L
h2

wµi = wCi =
1

2h2

Where L is the number of elements in xa and i = 1...2L.

Table 5.3: Joint Central Difference Kalman Filter (JCDKF) estimator settings
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The Joint Bootstrap Particle Filter (JBPF)

If the proposal density in the Particle Filter is chosen to be equal to the process likelihood so
that

q(xn|xn−1) = f(xn|xn−1) (5.11)

then the weight update function is reduced to a very simple form:

win = wn−1
f(X i

n|X i
n−1)g(yn|X i

n)

q(X i
n|X i

n−1)
= wn−1 g(yn|X i

n) (5.12)

The resulting filter is known as the Bootstrap Particle Filter (BPF) [37, p.271]. Using the
BPF with the augmented model given in Section 5.3 yields the JBPF. The JBPF implemented
here is simple and straightforward, using the same model and initialization distributions as the
Kalman Filter. In practice, this means that all likelihood distributions are selected to be Normal
distributions. The process equation was selected as the linear combination of the augmented
cell model given in Section 5.3 and discrete draws from a normal Gaussian noise of variance
σp to jitter the particles and provide sample diversity.

The measurement likelihood model was selected as a propagation of particles through the
measurement function and evaluation by a normal distribution. The initial state distribution
likelihood was selected as a Normal distribution for all the states. The settings selected for the
JBPF are summarized in Table 5.4.
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5.7. Implemented Estimators

Likelihood functions

p(x0) =N (x0,σ0)

f(xn|xn−1) =fa(xn−1,un−1) +N (0,σp)

g(yn|xn) =N (ha(xn,un) ;Vmeas,n, σm)

q(xn|xn−1) =f(xn|xn−1)

Estimator tuning variable settings

x0 =



0
0
0

2.1 · 10−3

2.7 · 10−3

5.3. · 10−4

7.2 · 103

2.85 · 103

6.85


σ0 =



1
10−3

10−3

10−4

10−4

10−4

100
100
10−3


σp =



2 · 10−4

10−3

10−3

10−8

10−8

10−6

10−8

10−6

10−6


σm = 0.2

The number of particles N = 100.

Table 5.4: Joint Bootstrap Particle Filter (JBPF) estimator settings
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The Joint Imprecise Bootstrap Particle Filter (JIBPF)

The JIBPF uses the same setup as the JBPF but exchanges the Gaussian measurement function
for the imprecise likelihood function given in Equation (4.40). The measurement function is
adapted to fit three imprecision parameters, one for each resistor. This is intended to reflect
the fact that there might be an imprecision in the way the resistors affect the voltage output.
Additionally, adding the imprecision to the resistor means that when the cell is at rest and
Icell = I1 = I2 = 0, the voltage imprecision will effectively go to zero. This plays into the ideal
situation when the cell is at complete rest and only the SoC-OCV relationship is important2.
The settings and equations used are given in Table 5.5.

2This is of course only true if one can ignore any hysteresis effects, which is assumed here.
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5.7. Implemented Estimators

Likelihood functions

p(x0) =N (x0,σ0)

f(xn|xn−1) =fa(xn−1,un−1) +N (0,σp)

g(yn|xn) =CDF (Vmeas,n;hx, R)− CDF (y;hx, R)

q(xn|xn−1) =f(xn|xn−1)

Where hx and hx are defined as in Equation 4.41, and g(x;θi) is defined as

g(xn,un;θi) = OCV (SoCn)− (R0 + θi,1)Icell,n − (R1 + θi,2)I1,n − (R2 + θi,3)I2,n

Estimator tuning variable settings

x0 =



0
0
0

2.1 · 10−3

2.7 · 10−3

5.3. · 10−4

7.2 · 103

2.85 · 103

6.85


σ0 =



1
10−3

10−3

10−4

10−4

10−4

100
100
10−3


σp =



2 · 10−4

10−3

10−3

10−8

10−8

10−6

10−8

10−6

10−6


σm = 0.2

θ =

−5 · 10−4
−1 · 10−4

−1 · 10−4

 θ =

5 · 10−4
1 · 10−4

1 · 10−4

 R = 0.2

The number of particles N = 100.

Table 5.5: Joint Imprecise Bootstrap Particle Filter (JIBPF) estimator settings
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The JAPF

When using the APF with the augmented model from Section 5.3, the resulting estimator is the
JAPF. The JAPF implemented here shares the basic densities with the JBPF, specifically it uses
the same definitions for q(x0), f(xn|xn−1), g(yn|xn) and q(xn|xn−1) as the JBPF. This leaves
the predictive densities p̃(yn+1|xn) to be chosen. A variety of strategies exist for constructing
these densities (see for example [32], [39], [46]). Under the assumption that the estimator can
be delayed by one time step3, the following method has been applied here.

To evaluate p̃(yn+1|X i
n), first project the particlesX i

n through the process likelihood function
f̃(xn+1|X i

n). f̃(xn+1|X i
n) is equal to the usual process likelihood function, but does not add

noise to the particles. Secondly, apply weighting based on the modified measurement likelihood
function g̃(yn+1|X̃(i)). g̃(yn|xn) is a direct application of the Cauchy Lorentz (CL) distribution.
The CL distribution is symmetrical, but has fatter tails than the Normal distribution, meaning
it spreads out farther from the mean than the Normal distribution. Using it here helps prevent
a situation where an outlier particle is given a weight of zero, which could trigger numerical
issues. Its use here is inspired by Schwunk et al [13].

In summary, the modified process and measurement likelihood distributions are written as

X̃(i)
n = p̃(xn|X i

n−1) =fa(xn−1,un−1) (5.13)

g̃(yn+1|X i
n) =CL(ha(X̃

i
n,un);µ, s) (5.14)

where

CL(x;µ, s) =
1

π

s

s2 + (x− µ)2
(5.15)

is the evaluation of the Cauchy Lorentz likelihood function.
The JAPF is then implemented according to the algorithm given in Table 4.5, with the like-

lihood distributions and settings given in Table 5.6.

3Given the high update frequency of 10 Hz and comparatively slow change of SoC (SoC changes from 1 to
zero in approximately 30 minutes), a single time step delay is seen as inconsequential. Note however that this need
not be the case for all applications.

48



5.7. Implemented Estimators

Likelihood functions

p(x0) =N (x0,σ0)

f(xn|xn−1) =fa(xn−1,un−1) +N (0,σp)

g(yn|xn) =N (ha(xn,un);Vmeas,n, σm)

q(xn|xn−1) =f(xn|xn−1)

p̃(xn|xin−1) =fa(xn−1,un−1)

X̃(i)
n =p̃(xn|xin−1)

g̃(yn+1|X i
n) =CL(ha(X̃

i
n,un);Vmeas,n, sCL)

Estimator tuning variable settings

x0 =



0
0
0

2.1 · 10−3

2.7 · 10−3

5.3. · 10−4

7.2 · 103

2.85 · 103

6.85


σ0 =



1
10−3

10−3

10−4

10−4

10−4

100
100
10−3


σp =



2 · 10−4

10−3

10−3

10−8

10−8

10−6

10−8

10−6

10−6


σmsCL = 0.2

The number of particles N = 100.

Table 5.6: Joint Auxiliary Particle Filter (JAPF) estimator settings
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5.8 Estimating Confidence bounds in the filters

Section 2.8 discusses briefly how to construct confidence intervals from the estimators. The
algorithms for establishing the confidence bounds of the state estimates are given in Table 5.7
and 5.8

1. Sort particles by value along the dimension of interest (e.g. SoC or I1 or R0 etc).
Implemented using the sort(·) function in MATLAB.

2. Calculate the cumulative sum of the weights along the dimension of interest. Imple-
mented using the cumsum(·) function in MATLAB.

3. Evaluate the inverse cumulative sum of the weights at the confidence bounds of inter-
est. Implemented using the interp1(·) function in MATLAB. When a requested value
falls between two values in the cumulative sum, linear interpolation is used.

Note that for the APF, the weights w̃ must be used.

Table 5.7: Evaluating the confidence bounds for the Particle Filter

1. Let i be the number of the state of interest (e.g. SoC, I1 etc)

2. Evaluate the normal inverse cumulative density function with µ = x̂i and σ =
√
P̂i,i

at confidence bounds of interest. Implemented using the norminv(·) function in MAT-
LAB.

Table 5.8: Evaluating the confidence bounds for the Kalman Filter
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5.9 Determining the effect of the system nonlinearity

As previously discussed, a fundamental result underlying the KF is that linear transformations
of Gaussian distributions are also Gaussian distributed, per the reproductive property given in
Table 2.1. This is the fundamental property that allows the KF to simply propagate means and
variances. However if parts of the system is not linear, as is the case in the LiBs, this is no
longer strictly valid. Thus, when evaluating the estimator schemes presented in this thesis, a
point of particular interest is the ability of each estimator to handle the nonlinearities presented
by this particular use case, the battery cell model.

In order to evaluate the nonlinearities present in the system, several approaches are possible.
If an analytic expression is available for the transformations, an attempt can be made to derive
analytic expressions for the transformed variables. Alternatively, a Monte Carlo style method
can be applied to explore the system behaviour. This is the approach chosen in this thesis as it
is very straightforward to implement.

The method proceeds as follows. Nmc state vectors are constructed by drawing Nmc ran-
dom numbers for each of the states and parameters. Each state and parameter has a separate
distribution from which its random values are drawn. To facilitate easy comparison with the
CDKF way of calculating the distribution, the Normal distribution is selected as the starting
distribution. The Nmc state vectors are then propagated once through the process equation and
once through the measurement equation of the system. The output of this is Nmc voltage val-
ues, which can be used to estimate a PDF of the voltage state given the (Normally distributed)
starting state vector. Knowing the ’true’ distribution, the distribution metrics can be calculated,
and equivalent estimates can be generated from all the estimators presented in this thesis. The
algorithm is summarized in Table 5.9.
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1. Draw Nmc state vectors from the Normal distribution. Each of the states of the state
vector have separate settings for their mean µ and variance σ2, given in Table 5.10.

2. Propagate the Nmc vectors through the process and measurement functions and obtain
Nmc voltage values.

3. Form an estimate of the PDF of the measurement from the Nmc using the Kernel esti-
mate method. Implemented using the ksdensity(·) function in MATLAB.

4. Calculate the properties of the resulting PDF

a) Calculate skew and kurtosis by applying formula (2.9)-(2.8). E(x) is calculated
with the mean(·) function in MATLAB.

b) Calculate confidence bounds for the skew and kurtosis using the pre-made MAT-
LAB bootci(·) function with the settings given in Table 5.10

5. run a CDKF for one iteration starting with P 0 = diag(σ0), R = 0, Q =
[
0
]

and x0

given in Table 5.10 and obtain ŷ, Py.

6. Plot the Normal distribution estimated by the CDKF (defined byN (ŷ,
√
Py) alongside

the Kernel density estimate of the true distribution.

Table 5.9: Nonlinearity analysis description

Estimator tuning variable settings

x0 =



SoCstart

0
0

0.0021
0.0025

7.97 · 10−4

1.15 · 104

2.8 · 103

6.86


σ0 =



0.01 or 0.03
100

100

10−4

10−4

10−4

100
100
10−1


Icell = 0

where
SoCstart = 0.01, 0.02, ...1

The number of particles Npar = 15000, and the number of bootstrap resamplings were set to
Nboot = 2000.

Table 5.10: Nonlinearity analysis settings
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Chapter 6

Results of the study

6.1 Main findings

The nonlinearity analysis conducted in this thesis show that the SoC-OCV relationship of the
tested cell introduces a nonlinearity that might have a noticeable impact on the SoC-estimate at
SoCs below approximately 12%. However, applying various PFs and a CDKF to a real current
and voltage waveform, the practical difference between the two approaches is not obvious. The
JCDKF, JBPF, JIBPF and the JAPF all have similar performance in all ranges of SoC. It is
even observed that the CDKF seems to outperform the PFs. Furthermore, the parameters of the
cell is seen to behave erratically and randomly, as if the feedback from the measurement of the
cell is weak when estimated using Joint Particle Filters. The problem might be few particles
or some other issue. On the other hand it is also observed that the likelihood distributions for
the parameters seem to be distinctly non-symmetric which might indicate that the PF approach
might be useful for parameter estimation if the feedback issue can be solved.
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6.2 SoC-OCV relationship found

The method outlined in Section 5.4 was used to determine the SoC-OCV relationship at 25 ◦C

The resulting curve is given in 6.1.

Figure 6.1: SoC-OCV relationship found for the tested cell

6.3 Cell model open loop response

The cell model was excited in open loop using the current profile given in Figure 5.2(a). The
main purpose of this is to evaluate whether or not the cell model is able to approximate the
actual voltage response of the cell. In Figure 6.2, the voltage response is given both as the full
waveform and with zoom on specific regions.
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6.3. Cell model open loop response

(a) Full waveform

(b) Zoom on middle period

(c) Zoom on late period

Figure 6.2: Open loop voltage response of cell model compared to true cell voltage
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6.4 Results of model nonlinearity analysis

The Nonlinearity analysis was applied to the fully augmented 9-state model with the settings
given in Table 5.10. At each value of SoCstart, estimates and confidence bounds of the skew
and kurtosis was calculated and the results plotted with SoCstart on the horisontal axis and the
respective estimates and confidence bounds on the vertical axis in for 3% standard deviation on
the SoC state in Figure 6.4 and 1% standard deviation on the SoC state in Figure 6.4.

Furthermore, as a reference and for direct comparison, the CDKF method was used to per-
form an equivalent estimate of the voltage distribution, as described in Table 5.9. The corre-
sponding skew and kurtosis estimates and confidence bounds were computed using the Boot-
strap method of 2.6 In the interest of compactness, the resulting likelihood distributions are
plotted only for SoCstart = {0.1, 0.5, 0.85}. Figure 6.6 show the results for a SoC standard
deviation of 3%, while Figure 6.5 shows the results for a SoC standard deviation of 1%.
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6.4. Results of model nonlinearity analysis

(a) Skew plotted against SoC

(b) Skew plotted against SoC, zoom on SoC > 0.10

(c) Kurtosis plotted against SoC

(d) Kurtosis plotted against SoC, zoom on SoC > 0.10

Figure 6.3: Skew and kurtosis from nonlinearity nonlinearity analysis with 0.01 standard deviation in
the SoC
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(a) Skew plotted against SoC

(b) Skew plotted against SoC, zoom on SoC > 0.10

(c) Kurtosis plotted against SoC

(d) Kurtosis plotted against SoC, zoom on SoC > 0.10

Figure 6.4: Skew and kurtosis from nonlinearity nonlinearity analysis with 0.03 standard deviation in
the SoC
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6.4. Results of model nonlinearity analysis

(a) SoC = 0.1, distribution (b) SoC = 0.1, kurtosis and skew estimates

(c) SoC = 0.5, distribution (d) SoC = 0.5, kurtosis and skew

(e) SoC = 0.85, distribution (f) SoC = 0.85, kurtosis and skew

Figure 6.5: Distribution comparisons between ’true’ distribution and CDKF estimated distribution.SoC
standard deviation of 1%
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(a) SoC = 0.1, distribution (b) SoC = 0.1, kurtosis and skew estimates

(c) SoC = 0.5, distribution (d) SoC = 0.5, kurtosis and skew

(e) SoC = 0.85, distribution (f) SoC = 0.85, kurtosis and skew

Figure 6.6: Distribution comparisons between estimated true distribution and CDKF estimated distribu-
tion. SoC standard deviation of 3%
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6.5 Estimator single run behaviour

The estimators were run once and the estimated values and their 95% error bounds were cal-
culated according to the algorithms given in Table 5.7 and 5.8 for all states and parameters.
The full state output is given in Appendix C. To emphasize the performance in terms of SoC
estimation, the SoC output and error is given for each of the filters in Figure 6.7 and 6.8. The
corresponding confidence bounds are given to illustrate how the error bound are related to the
error.

(a) JBPF SoC estimate (b) JBPF error

(c) JIBPF SoC estimate (d) JIBPF error

Figure 6.7: State of charge estimate and error with 95% error bounds, JBPF and JIBPF
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(a) JAPF SoC estimate (b) JAPF error

(c) JCDKFSoC estimate (d) JCDKF error

Figure 6.8: State of charge estimate with 95% error bounds
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6.6 Estimators multiple run behaviour

Due to the random nature of the MC method, the estimators are expected to perform differently
when run multiple times. To explore this effect, the three PFs were run a total of 50 times. In
Appendix D, the state outputs are shown for 20 of these runs (only 20 runs are plotted in order
to preserve clarity). In Figure 6.9 however, the full 50 runs are shown for the SoC state in all
the PFs.

(a) JBPF

(b) JIBPF

(c) JAPF

Figure 6.9: Plot of 50 different trajectories of the PFs
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RMS error histogram

The SoC RMS error of the individual filters were calculated, and are shown in a histogram in
6.10.

(a) JBPF

(b) JIBPF

(c) JAPF

Figure 6.10: Histogram of RMS Error for 50 runs of the PFs
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6.6. Estimators multiple run behaviour

Error bounds correctness histogram

For each run of the estimators the true SoC was compared to the estimated error bounds. The
percentage of time that the error bounds contained the true SoC was calculated. A percentage
of 90% indicates that the error bounds contained the true SoC for 90% of the time. In Figure
6.11 the results of this calculation is shown as a histogram for each of the estimators evaluated.

(a) JBPF

(b) JIBPF

(c) JAPF

Figure 6.11: Histograms of error percentage for the implemented SMC methods
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6. RESULTS OF THE STUDY

6.7 Voltage prediction performance

The estimated voltage was extracted from the filters, and the voltage and error plot is shown in
Figures 6.12 and 6.13.

(a) JBPF (b) JBPF voltage error

(c) JIBPF (d) JIBPF voltage error

Figure 6.12: Example voltage prediction output for JBPF and JIBPF
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6.7. Voltage prediction performance

(a) JAPF (b) JAPF voltage error

(c) JCDKF (d) JCDKF voltage error

Figure 6.13: Example voltage prediction output for JAPF and JCDKF
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6. RESULTS OF THE STUDY

6.8 Summarized performance all filters

Table 6.1 show the calculated average errors from running all filters 50 times and calculating
the max, min and mean of the RMS error of SoC and RMS error of the predicted voltage. The
JCDKF is only run once due to its deterministic behaviour.

Error statistic JCDKF JBPF JIBPF JAPF

max RMS error SoC 0.88 1.864 3.25 3.25

mean RMS error SoC 0.88 0.87 1.16 0.97

min RMS error SoC 0.88 0.49 0.56 0.52

Max RMS error Vpred [mV] 11.07 16.60 28.88 32.22

Mean RMS error Vpred [mV] 11.07 9.98 11.91 10.49

Min RMS error Vpred [mV] 11.07 8.29 8.23 8.322

Max % in 95% error bounds 94.53 96.84 96.22 95.46

Mean % in 95% error bounds 94.53 89.62 84.66 87.84

Min % in 95% error bounds 94.53 68.63 57.90 64.81

Table 6.1: Performance summary for the estimators summarized
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Chapter 7

Discussion

It is clear from the contents of Chapter 4 that while the nonlinear KF and the SMC/PF both solve
the same problem, they go about it in very different ways. While the KF assumes Gaussian dis-
tributions and thereby greatly simplifies the problem, the SMC methods use random sampling
techniques to essentially allow any distribution to be used. Additionally, the SMC methods open
up a wide variety of options for models to be used, as opposed to the KF which in comparison
is much more restrictive. Consequently, for a given application the central question is: Is it
necessary or beneficial to describe non-Gaussian distributions?

The answers to this questions will heavily depend on the specific application being dis-
cussed. In this Chapter, this is discussed on the basis of the SoC estimation problem, and the
results presented in Chapter 6.

7.1 Impact of nonlinearity in the battery cell model

The properties of the system transfer and measurement likelihood functions will be of crucial
importance when evaluating the impact of the nonlinearity. This is clearly seen in the example
given in Figure 4.1, and is also reflected in the skew and kurtosis calculation presented in Figures
6.3 and 6.4. When comparing the skew and kurtosis plots to the SoC-OCV curve found in Figure
6.1, there is a clear connection between the smoothness of the curve and the amount of skew
and kurtosis present. In particular, the SoC-OCV curve has a minor bump around SoC=85%,
and a major bump around SoC=10%. These bumps correspond well with the peaks of the skew
and kurtosis estimates.

From this observation, it seems apparent that the dominating nonlinearity in this application
is the relationship between the SoC and the OCV. The nonlinearities from the parameters does
not seem to affect the output voltage much, although a more specific study might be necessary
to more firmly establish this.

It is also observed that the width of the distribution being propagated through the system has
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7. DISCUSSION

a major impact on the distortion caused. This is clearly seen when comparing the nonlinearity
analysis outputs in Figure 6.3 and 6.4, as well as comparing the plot for SoCstart = 10% in Figure
6.5 and 6.6. The peaks of the kurtosis and skew estimates are far more pronounced for higher
values of SoC variance. In other words, for the same system the Gaussian assumption might
be valid if the standard deviation of the important states can be assumed to be small enough
but not valid if the standard deviations are likely to be significant. Of course, in this context it
is the relative relation between ’how much’ nonlinearity is present and the distributions that is
important.

7.2 Weaknesses and strengths of the nonlinearity analysis
approach

In the case of the analysis of nonlinearity, a major potential difficulty is the use of the MC
approach for exploring the system behaviour. While this is a powerful method it relies heavily
on random sampling. If the number of samples is insufficient, the results retrieved might not
accurately reflect the true behaviour of the system. This is one of the reasons why the use of the
Bootstrap method for determining confidence intervals was included in the analysis. However,
the Bootstrap method itself also relies on random sampling and thus the fundamental problem
persists: Since the Bootstrap assumes that the available set is the best one that can be had, it
is also effectively limited by the (random) dataset. Given the relatively high dimensionality
of the problem (9 states including states and parameters), it is likely that a very high number
of particles is required to fully describe the resulting voltage distribution. This can quickly
increase the computational demand. The number of particles chosen for the analysis reflects a
tradeoff between computational time and assumed accuracy, but a higher number of particles
might still be desirable.

Another fundamental issue is that even if given perfect knowledge of parameters such as the
skew and kurtosis it is difficult to get a real sense of how much the values actually impact the
performance of the estimator. In other words, at what threshold does the skew and kurtosis de-
viations become significant? While the method is able to give an intuitive and visual indication
of the nonlinearity, it is still difficult to quantify the impact nonlinearity.

The present method of analysis only compares the output of a CDKF to the estimated true
distribution, but does not show how a practical PF compares. It is not immediately clear that a
practical PF with a limited number of particles will be able to perform better than a comparable
KF. It is worth noting at this point that a limited number of particles might turn out to be a
genuine problem in the relatively high-dimensional Joint PFs presented here. Furthermore, the
analysis only shows how the KF assumption fares in light of the model, but cannot account for
how this affects the feedback mechanisms in the KF (or the PF for that matter). Thus based
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7.3. Comparison of the KF and the PF

on the present analysis, it is difficult to conclude that the PF necessarily must outperform the
KF in a Joint estimating setting. This is further complicated by the fact that the results from
the various PFs does not seem to indicate any significant performance gains for SoC estimation
when compared to the KF. In fact, as seen in Section 6.5 and 6.6 and Table 6.1, the presented
JCDKF is seen to perform at least as well as all presented variations of the PF for both voltage
prediction and SoC estimation.

Even so, the method as presented has power as a tool for visualization of model nonlinearity.
The visually apparent distorting of the Normal distribution is an intuitively appealing indicator
of nonlinearity. As such it might be a significant aid in gaining an intuitive grasp on the problem
of nonlinearities. The method might also be able to effectively point to candidate areas of the
model in which one would expect to see error being introduced.

7.3 Comparison of the KF and the PF

The single run outputs of the KF and PFs are very similar, particularly if one only considers
the states of SoC and currents I1, I2. In terms of the states however (seen in Appendix C),
the parameter estimates are quite dissimilar. Note also that the parameters vary wildly between
separate runs of the same PFs, as clearly seen in Appendix D. Ignoring the intra-run variations
of the PFs, The JCDKF outputs are still much smoother and less twitchy than the ones produced
by the PFs. This might be a tuning issue, but the PF implementations have generally been
observed to produce less smooth confidence bounds than the KF.

In general, both the PFs and KF have been observed to be very sensitive to the tuning
parameters, and tuning of the PFs has turned out to be very challenging. A major reason for this
is the randomized behaviour of the estimator. When tuning, a single run of the estimator is not
sufficient to comment on the behaviour of the estimator in general. The estimator must be run
multiple times for each tuning setup, which has made tuning very time consuming and difficult.
Ideally, the PFs RMS error outputs should also be subjected to hypothesis testing in order to
establish whether the estimated mean values are significant. This has not been performed in this
thesis, but is suggested as an improvement for later work.

The confidence bounds of the SoC state is generally seen to be approximately symmetric,
which gives some credit to the notion of assuming Gaussian noise. However, it is interesting
to note that the 95% confidence bounds on the parameter values are generally non-symmetric.
This indicates that the estimated distributions of the parameters are non-Gaussian. This is in-
teresting because it suggests that non-Gaussian methods might have extra merit when doing
parameter estimation.

In terms of average results the KF and the PFs have similar performance. As seen in Table
6.1, the JBPF has the lowest average SoC error, with the KF at a very similar error value. Similar
comments apply for the voltage prediction, although the JCDKF har slightly more error in this
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case. However, when considering the best and worst cases of the PFs, the situation is more
nuanced. While all the PFs have minimimum RMS errors below the error of the JCDKF, they
all have worst case error higher than the JCDKF. This is important, because it demonstrates that
the PFs are less reliable, in the sense that the random factor in the algorithm leads to a lot of
noise. Since the estimators are tested with the same waveform each time, the only source of this
error is in the estimator itself.

7.4 Comment on the tuning variable settings

It is important to note that the tunings used by the estimators in this thesis are conservative, in
the sense that the process noise on the SoC state is quite low. This implies that the SoC model
is highly trusted, and it will only weakly be corrected from the measurement. This leaves the
system less adaptable to a difference between the observed and estimated voltage, and also
leaves the system less able to correct its output voltage. In other words, the estimator tunings
emphasize preserving the SoC state model over matching the voltage output. This is the case
for both the presented KF and PFs, and is particularly visible in the voltage outputs in Section
6.7 in the final parts of the discharge cycle. The voltage error increases noticeably in the final
100 seconds for all the estimators. It is likely that the true parameters of the real cell change
very quickly towards the end, a change that the estimator is unable to follow correctly. To
compensate, it is possible to increase process noise on the SoC state, but this invariably makes
the estimators overcompensate on the SoC state. Another subtlety of the conservative tuning is
that this leaves little room for state space exploration in the estimators. This in turn reduces the
estimator ability to adapt the parameters.

There could be a variety of reasons for this problem. The 2RC ECM model might not be
the best fit for this test cast, or it could be that the SoC-OCV model used is not correct enough.
The cell temperature has been assumed to be constant, but in fact it rises 10-15 degrees during
the test. This might impact the SoC-OCV relationship. In Figure 6.2(b), one can see a small
but still significant stationary offset between the model output voltage and the true voltage.
This could be the result of incorrectly modelled polarization voltage, but it might also be the
result of modelling elements that are entirely missing. An obvious candidate is hysteresis,
mentioned briefly in Section 3.4. A rudimentary model of hysteresis was implemented in the
preliminary work on this thesis. This was ultimately rejected because the model used was not
able to increase the accuracy over the simpler 2RC model. This could indicate that a different
model is required for the cell altogether to achieve better prediction performance.

Increasing noise on the SoC state also tends to lead to very noisy SoC estimates in the PFs.
This might be caused by the choice of the proposal density q(xn|xn−1), which is simply the
previous state with added random noise. Increasing this noise makes the particles jump around,
creating the noisy SoC. Other ways of formulating q(xn|xn−1) might be desirable to handle this
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problem. One such approach is the Unscented Particle Filter, which uses several parallel KFs to
generate the proposal density. A variant of the Unscented Particle Filter was implemented early
in the course of this work but was not included here as it was very computationally demanding
and did not appear to provide any significant benefit. However, it was only applied to a state
vector without the augmented parameters. The benefit might have been bigger in the higher-
dimensional augmented system.

7.5 Evaluation of the parameter estimation approach

The main focus of this thesis has been on the behaviour of the PF when compared to the non-
linear KF when used for SoC estimation. Parameter estimation was included mainly to provide
a more realistic case for comparison. The major weakness with the approach is the lack of any
knowledge of what the ’true value’ of the parameters should optimally be. As noted in Section
3.5, it can be difficult to draw parallels between the parameters and the real condition of the cell,
so the ’true values’ might instead be gathered by looking at the behaviour of the cell in short
windows of SoC. Determining the parameter values would require extensive testing, which un-
fortunately was not possible during the course of this thesis work. Thus, the specific estimated
value of the parameters are of much less interest than the overall behaviour of the KFs.

7.6 Evaluation of the imprecise modelling approach

The inclusion of the JIBPF in this thesis was motivated by a desire to illustrate a different
approach to measurement modelling than what has traditionally been used in PFs for SoC esti-
mation. In practice, the JIBPF is seen to perform worse than the JBPF when the process noise
is tuned identically. Again tuning is key to the performance of the estimators and a major weak-
ness of the imprecise modelling approach in this context is that it adds another set of tuning
variables that must be carefully considered. Given the lack of added performance, it is difficult
to directly recommend this approach in the SoC estimation problem, but it might prove to be
far more useful in other applications.
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Chapter 8

Further work

This work has focused on comparing the Particle Filter and the Kalman Filter for a compara-
tively simple use case: SoC estimation with an electrical Equivalent Circuit Model. Augmenta-
tion of the state vector was added to increase the realism of the use case, but the scope has been
deliberately kept simple. As such, there are numerous other avenues that can be considered.

One alternative is to further explore (joint) parameter estimation with PFs. Such work could
also emphasize cell modelling and might involve using more advanced models such as the one
proposed by Ørjan Gjengedal [12] using either complex or simple variants of PFs. Using MC
methods to estimate the true distribution of parameters might also reveal whether or not the KF
approach has merit for parameter estimation.

It could also be interesting to investigate Particle Markov chain Monte Carlo (pMCMC)
methods for parameter estimation. pMCMC is a relatively new MC method proposed by An-
drieu, Doucet and Holenstein [47] that combines Markov Chain Monte Carlo (MCMC) and
SMC. It might be more suited for high-dimensional problems than pure SMC.

Note also that temperature and current dependence of the resistance elements at lower tem-
peratures remain unexplored in this work. This still provides an interesting test case for a
comparison between a PF and a KF if the proper testing can be performed.

More advanced approaches such as the one proposed by Tulsyan et. al [30] can also be
explored. This involves applying the PF directly to a reduced-order electrochemical cell model.
While potenetially very accurate, this requires a fairly deep exploration of electrochemical mod-
elling of battery cells.
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Chapter 9

Conclusion

In this thesis, the problem of estimating SoC in a LiBs under a highly dynamic current load
has been examined. The basics of battery cell chemistry and cell modelling techniques were
reviewed, and a simple 2RC ECM was developed for use in an estimator. After a review of
Bayesian estimation, the fundamentals of the nonlinear KF and SMC methods was presented
and contrasted. An imprecise modelling technique was also reviewed in some detail.

The Lithium Ion battery system exhibit varying amounts of nonlinearity, depending on how
much uncertainty is used when propagating the particles. The nonlinearities are most pro-
nounced for state vectors with SoC values below approximately 12%. Based on the nonlinear-
ities observed, the JCDKF was expected to perform worse than the PFs, but in testing the KF
performed similarly to the PFs. This might be attributed to tuning issues, and testing with a
more advanced model could still reveal greater differences.

The augmented state and parameter JBPF, JIBPF, JAPF and JCDKF was tested on a current
and voltage waveform imitating a real-life use case from a Formula Student race car. While all
the PFs have single runs with higher accuracy than the JCDKF, on average the JCDKF performs
similarly to the PF variants. The JIBPF is less accurate than the simpler JBPF in terms of both
SoC estimation and voltage prediction. The difference can partially be attributed to tuning but it
still indicates that there might not be much to gain from introducing non-standard measurement
models in the SoC estimation problem. The tunings presented may be too conservative, and a
more accurate model might be required to further compare the methods.

The parameter estimates of the implemented PFs are seen to act randomly. One possible
reason for this could be that the estimators are run with a relatively low number of particles.
This might be too few particles to be able to accurately represent the likelihoods of all 9 states
in the augmented state vector. Due to the distinctly nonsymmetric parameter confidence bounds
produced by the PFs, it is hypothesized that the Monte Carlo approach might be better suited
for parameter estimation than the KF. However, this might require a different approach than the
one taken in this thesis.
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Appendix A

Linear Kalman Filter algorithm

For k = 0

x̂−0 = E(x) P−0 = E(P0)

For k ≥ 1

Compute Kalman Gain

Kk = P−kC
T
d,k(Cd,kP

−
kC

T
d,k + Rk)

−1

Update estimate with measurement

x̂k = x̂−k + Kk(zk −Cd,kx̂
−
k )

Compute error covariance for updated estimate

Pk = (I−KkCd,k)P
−
k

Predict ahead

x̂−k+1 =Adx

P−k+1 =AdPkA
T
d + Qk

Table A.1: LKF algorithm, adapted from Brown & Hwang [37, p.147].
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Appendix B

Cell data sheet excerpt
深圳市风云电池有限公司                        SHENZHEN MELASTA BATTERY CO., LTD 

产品规格书（Product Specification）               型号（Model No.）SLPBB042126 6550mAh 10C 3.7V 

 

制造商保留在没有预先通知的情况下改变和修正设计及规格说明书的权力     
 Melasta reserves the right to alter or amend the design, model and specification without prior notice                                                                                                                   

3 

 

1. 序言 PREFACE 

此规格书适用于深圳市风云电池有限公司的锂聚合物可充电电池产品 

The specification is suitable for the performance of Lithium-Polymer (LIP) rechargeable battery produced by 

the SHENZHEN MELASTA BATTERY CO., LTD. 

2. 型号 MODEL 

SLPBB042126 6550mAh 10C 3.7V  

3. 产品规格 SPECIFICATION 

单颗电池规格 Specifications of single cell                

◆标称容量 Typical Capacity①  6.55Ah 

◆标称电压 Nominal Voltage 3.7V 

◆ 充电条件 

Charge Condition 

最大电流 

Max. Continuous 
charge Current 

13.1A 

峰值充电 

Peak charge current 
26.2A(≤1sec) 

电压 Voltage 4.2V±0.03V 

◆ 放电条件 

Discharge 
Condition 

Max Continuous 
Discharge Current 

65.5A 

Peak Discharge 
Current 

 98.25A 

Cut-off Voltage 3.0V 

◆交流内阻 AC Impedance(mOHM) <3.0 

◆循环寿命【充电:1.0C,放电:10C】 

Cycle Life【CHA:1.0C,DCH:10C】 
>100cycles 

◆使用温度 

Operating Temp.  
充电 Charge 0℃~45℃ 

放电 Discharge -20℃~60℃ 

 

◆ 电芯尺寸 

Cell Dimensions 

厚度 Thickness(T) 10.7±0.3mm 

宽度 Width(W) 42±0.5mm 

长度 Length(L) 127.5±0.5mm 

极耳间距 

Distance between 2 
tabs 

21±1mm 

◆ 极耳尺寸 

Dimensions of 
Cell tabs 

极耳宽度 

Tab Width 
12mm 

极耳厚度  

Tab Thickness 
0.2mm 

极耳长度  

Tab Length 
Max 30mm 

◆重量 Weight(g) 128.5±3.0 

①标称容量：0.5CmA,4.2V~3.0V@23℃±2℃ 

Typical Capacity:0.5CmA,4.2V~3.0V@23℃±2℃ 

W

L

T

2
±

1

22±1
12±0.2

6
±

1

Tab width 

Distance between 2 tabs 
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Appendix C

Estimator single run results, all states
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C. ESTIMATOR SINGLE RUN RESULTS, ALL STATES

C.1 JBPF single run results

(a) SoC

(b) I1

(c) I1

Figure C.1: JBPF single run state results with 95% error bounds on each state
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C.1. JBPF single run results

(a) R0 (b) R1

(c) R2 (d) C1

(e) C2 (f) Capacity

Figure C.2: JBPF single run parameter results with 95% error bounds on each state
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C. ESTIMATOR SINGLE RUN RESULTS, ALL STATES

C.2 JIBPF single run results

(a) SoC

(b) I1

(c) I1

Figure C.3: JIBPF single run state results with 95% error bounds on each state
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C.2. JIBPF single run results

(a) R0 (b) R1

(c) R2 (d) C1

(e) C2 (f) Capacity

Figure C.4: JIBPF single run parameter results with 95% error bounds on each state
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C. ESTIMATOR SINGLE RUN RESULTS, ALL STATES

C.3 JAPF single run results

(a) SoC

(b) I1

(c) I1

Figure C.5: JAPF single run state results with 95% error bounds on each state
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C.3. JAPF single run results

(a) R0 (b) R1

(c) R2 (d) C1

(e) C2 (f) Capacity

Figure C.6: JAPF single run parameter results with 95% error bounds on each state
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C. ESTIMATOR SINGLE RUN RESULTS, ALL STATES

C.4 CDKF single run results

(a) SoC

(b) I1

(c) I1

Figure C.7: CDKF single run state results with 95% error bounds on each state
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C.4. CDKF single run results

(a) R0 (b) R1

(c) R2 (d) C1

(e) C2 (f) Capacity

Figure C.8: CDKF single run parameter results with 95% error bounds on each state
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Appendix D

Estimator multiple run results, all
states
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D.1. JBPF multiple run state and parameter outputs

D.1 JBPF multiple run state and parameter outputs

(a) SoC

(b) I1

(c) I1

Figure D.1: JBPF 20 runs state results
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D. ESTIMATOR MULTIPLE RUN RESULTS, ALL STATES

(a) R0 (b) R1

(c) R2 (d) C1

(e) C2 (f) Capacity

Figure D.2: JBPF 20 runs parameter results
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D.2. JIBPF multiple run state and parameter outputs

D.2 JIBPF multiple run state and parameter outputs

(a) SoC

(b) I1

(c) I1

Figure D.3: JIBPF single run state results

95



D. ESTIMATOR MULTIPLE RUN RESULTS, ALL STATES

(a) R0 (b) R1

(c) R2 (d) C1

(e) C2 (f) Capacity

Figure D.4: JIBPF 20 runs parameter results
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D.3. JAPF multiple run state and parameter outputs

D.3 JAPF multiple run state and parameter outputs

(a) SoC

(b) I1

(c) I1

Figure D.5: JAPF 20 runs state results
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D. ESTIMATOR MULTIPLE RUN RESULTS, ALL STATES

(a) R0 (b) R1

(c) R2 (d) C1

(e) C2 (f) Capacity

Figure D.6: JAPF 20 runs parameter results
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