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Abstract

This thesis delves into the two fields of signal analysis and small-signal stability of power
systems. Due to the extensive deployment of PMUs in today’s Smart Grid, new possibilities
arise to assess the small-signal stability by measurement based techniques. The benefits of this
approach are many, the most compelling being that the power system has become too complex
to be accurately modelled with a component-based approach. A whole range of methods
are available for the purpose of signal analysis in power systems, all with various assumptions,
strengths and weaknesses. Insight into the analysis methods and the measurement data in itself
is important for choosing the appropriate techniques for a given signal. The methods described
in this thesis are: Prony’s method, Robust Recursive Least Squares (RRLS) and the
FFT based Welch’s method. Prony’s method is known as a ringdown (post-disturbance
transient) analyzer, while the two latter are known as ambient analyzers.

To improve estimation robustness and accuracy, pre-filtering is implemented with the Empiri-
cal Mode Decomposition (EMD). This technique works as a non-linear and non-stationary
band-pass filter, effectively extracting the desired frequency spectrum in the electro-mechanical
range. This is validated using Welch’s method, which reveals negligible change in the power
spectral density of the investigated frequency range.

Both Prony’s method and RRLS assume an underlying parametric model, and require specify-
ing a model order. This issue is transformed into a benefit, extracting the consistent informa-
tion from multiple analyses with varying model order. Clustering is used as post-processing
intelligence to identify the dominant modes of the estimation. The third technique, Welch’s
method, is used for validation purposes.

The methods and data are contextualized; subsequently, the techniques are described with
relevant theory, and thoroughly tested for both simulated and real-world data. The estimation
from ringdown data is compared to the estimation from ambient data, which in real-time
scenario often is the only option for evaluation. The three analyzers contribute to mutual
validation of the modal content, improving the credibility of the estimates. For simulated
data, the measurement based estimation is also evaluated against eigenvalue inspection of the
linearized power system model.

This thesis is based in part on a conference paper to be published at SPEEDAM 2018. This
article describes theory of Prony’s method, as well as the EMD and Clustering technique. Since
then, the thesis has evolved in scope and depth.

The results from detailed testing show that the investigated combination of methods performs
well on real-world PMU-measurements. Prony’s method identifies the modes of ringdown data
and the RRLS method identifies the modal content in the ambient data. The damping ratio is
in general slightly underestimated in the ambient data compared to ringdown data. However,
both give a good indication of the modal content.

A comprehensive toolbox of the methods mentioned above has been indigenously created (in
Python) as a part of thesis work; the toolbox utilizes weaknesses of some methods, e.g. the
model order selection problem in Prony’s method and RRLS, as input to other methods, such
as the clustering technique. The result is an autonomous algorithm, taking care of each sub-
method’s deficiency.



Sammendrag

Denne masteroppgaven g̊ar i dybden i feltene signalanalyse og transiente stabilitet i elektriske
kraftsystemer. Takket være den utstrakte etableringen av Phasor Measurement Units (PMUs)
i dagens Smart Grid, åpnes det for nye muligheter til å analysere den transiente stabiliteten
med målebaserte metoder. Det er mange fordeler med denne tilnærmingen - og dens betydning
øker grunnet et kraftsystem som blir for komplekst for komponentbaserte metoder. Det finnes
et vidt spekter av metoder for signalanalyse i elektriske kraftsystemer, som alle har forskjellige
antakelser, styrker og svakheter. Innsikt i flere metoder, og m̊alingenes opphav, er viktig for å
velge de riktige teknikkene for et gitt signal. Metodene som er beskrevet i denne oppgaven er
som følger: Prony’s metode, Robust Recursive Least Squares (RRLS), p̊a norsk Robust
Rekursiv Minstekvadraters Løsning, og FFT-baserte Welch’s metode. Prony’s metode er
kjent som en ringdown-analyse, alts̊a en metode som analyserer det transiente forløpet etter
en forstyrrelse, mens Welch’s metode og RRLS kategoriseres som ambient-analyse.

For å forbedre nøyaktigheten og robustheten til metodene, er prefiltrering implementert med
Empirical Mode Decomposition (EMD). Denne teknikken fungerer som et ulineært, ikke-
stasjonært b̊andpassfilter, som effektivt henter ut det ønskede frekvensspekteret, som her ligger
i det elektromekaniske omr̊adet fra 0.2-2 Hz. EMD-filteret er validert med Welch’s metode, som
viser at filteret gjør neglisjerbare endringer p̊a det ønskede frekvensspekteret.

B̊ade Prony’s metode og RRLS antar en underliggende, parametrisk modell, som betyr at en
bruker må spesifisere ordenen til modellen. Dette - som vanligvis er sett p̊a som et prob-
lem - brukes til estimeringens fordel, ved å ta vare p̊a kun den informasjonen som holder seg
relativt konstant for flere estimat med varierende orden. Clustering brukes som en post-
filtreringsalgoritme for å identifisere estimatets dominerende modi. Den tredje teknikken,
Welch’s metode, er brukt for valideringsformål.

Metodene og målingene er satt i kontekst; deretter er teknikkene beskrevet med relevant teori,
og testet for b̊ade simulerte og ekte data. Estimat fra ringdowns er sammenliknet med estimat
fra ambient data, som ofte er den eneste valideringsmåten for virkelige målinger. De tre
analysemetodene bidrar til felles validering av modalinnholdet, som forbedrer p̊aliteligheten
til estimatene. For simulerte data er målingene - i tillegg til de ovennevnte - vurdert mot
egenverdianalyse fra lineariseringen av den simulerte modellen.

Denne oppgaven er delvis basert p̊a en konferanseartikkel som skal publiseres p̊a SPEEDAM
2018. Artikkelen beskriver teorien bak Prony’s metode, i tillegg til EMD og Clustering. Siden
den ble levert, har oppgaven utviklet seg i b̊ade omfang og dybde.

Resultatene fra den detaljerte testingen viser at den beskrevne kombinasjonen av metoder klarer
seg bra p̊a virkelige PMU målinger. Prony’s metode identifiserer modiene i ringdown data, og
RRLS identifiserer modiene i ambient data. Dempingsfaktoren er som regel litt underestimert
i ambient data sammenliknet med ringdown data. Allikevel gir begge en god indikasjon p̊a
modalinnholdet i signalet.

En omfattende verktøykasse for signalanalyseteknikker har blitt laget (i Python) som del av
masteroppgaven.
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1.0 1 INTRODUCTION

1 Introduction

Signal analysis is a general tool used in a variety of fields. Digitally recorded music, heart mon-
itoring and identification of brain activity are just some of the possible applications. Common
for all is that insight into the investigated signal is required, so that applied methods can be
refined to the signal content.

In this thesis, signal analysis is used as a tool to identify slowly oscillating electro-mechanical
modes from measurements in the power system. A simple analogy will be used to get the
reader in the right mindset:

Picture the power system as a multiple tandem bicycle, and each cyclist a generator. The
bicycle has to run at a certain speed, and everyone contributes to keeping this exact speed.

Suddenly, one cyclist falls off, and consequently the speed drops. The remaining cyclists will
need to work harder to speed up again, yet as they all push harder, the bicycle speed goes too
high. Subsequently, they all relax a bit, and as the speed reduces, suddenly they go too slow.
This process repeats until they finally stabilize around the desired speed, that is, the swing

motion damps out, provided that the bicycle system is stable. The alternative scenario is that
each cyclist moves further and further away from the equilibrium speed, eventually falling off

one by one.

As any analogy, it is not completely descriptive of the dynamics and complexity of what it tries
to explain. However, it tells the most important - this thesis is about swing motions, sine waves
and damping. In power systems, these swings appear continuously in everyday operation. As
small disturbances happen from second to second, the generators (as well as other rotating
mass) strive to maintain stability. This is the field of small-signal stability. If left untreated,
the oscillations can prove fatal, thus they should be identified with certainty and accuracy. In
worst-case scenario, breakups similar to that in the western North American power system on
August 6th 1996 may occur [1]. During the breakup, cascading events left 7.5 million people
without power in a period up to 6 hours.

However, operators today are good at keeping the system well within the stability limits. The
challenge is mainly to operate the grid efficiently in an economic sense, and keep investment
costs as low as possible by reducing the necessary margins for maintaining stability. Increased
awareness and real-time monitoring of system damping is a key factor for full utilization of the
existing grid, and a decisive step towards the Smart Grid. Including small-signal stability for
determining line flow limits, gives a more accurate estimation of the optimal power flow, as
described in [2].

Phasor Measurement Unit (PMU) is a relatively new tool for high-resolution measurements,
and provides better opportunities for monitoring small-signal stability. For this purpose, mea-
surements are generally classified as either ringdown data, ambient data or probing data. A
wide variety of signal analysis methods exists for each data type. This thesis does not pur-
sue probing data, but focuses on three different methods suited for analysis of ringdown and
ambient data, as well as pre- and post-processing techniques.
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The objectives for analyzing these data are manifold, and not all are discovered yet. A well-
known issue is to estimate damping ratio of inter-area oscillations, which are considered to be
the most difficult electro-mechanical oscillations to control. Damping ratio is a term widely
used as a stability criterion in small-signal oscillations. It is a dimensionless measure which
describes the rate of decay in oscillatory modes. In power systems, the damping ratio of a
mode is considered to be satisfactory if it is above 5 % [3, p. 194].

Another objective is to monitor system changes through the identified modal content. For this
purpose, mode-tracking is defined as monitoring of the constantly changing modal content in
the power system. It is either used for comparison of ambient and ringdown data, or just as
an approach for supervision of change between timesteps in ambient data.

The thesis has three main parts: theory, implementation and testing.

• The theory is split into several parts, and most are dedicated to one particular technique.
The techniques described in detail are: Prony Original, Robust Recursive Least Squares,
Welch’s method, Empirical Mode Decomposition and Clustering. Additionally, some
sections will describe important aspects of signal processing in general. All sections
include a self-contained intuitive description, and some are followed by a walk-through
of the theoretical foundation for the given topic.

• Implementation presents a more practical approach to the theoretical methods. Here, the
techniques will be illustrated with figures and important choice of parameters highlighted.

• The testing is divided into two sections. The first incorporates a simulated power system
model, and analyses of its time-domain “measurements”. The second encompasses analy-
ses of real-world PMU measurements from the Nordic Grid. The multitude of test-cases
are to illustrate different aspects of the algorithms.

For the reader with little experience with signal analysis in power systems, the intuitive sections
- along with skimming of the testing sections - will provide a first impression of the field.
The proceeding walk-through will facilitate thorough understanding of the seemingly complex
theoretical foundation.

The method chosen for extracting modal information from ringdown data, is Prony’s method.
This models the signal as a sum of damped, complex exponentials - or equivalently - decaying
sinusoidals. The goal is to determine the frequency, damping, phase and amplitude of these
components [4]. This method has been by far the most used and researched ringdown analyzer
in power systems. Also, the authors have had a look at the subspace method ESPRIT (Esti-
mation of Signal Parameters via Rotational Invariance Techniques) [5]. ESPRIT has not been
extensively used for power system purposes, and although perhaps a potential candidate, it is
not pursued in this thesis.

For extracting modal information in ambient data, a recursive method is used: the Robust
Recursive Least Squares (RRLS) method. With a Newton-Raphson type approach, gradually
improving the estimation accuracy, frequency and damping is estimated in each timestep [6].

Applied methods are not yet perfected and are thus subject to continued investigations in order
to find improvements. The main contributions in this thesis relate to the:

1. application of Empirical Mode Decomposition (EMD) as a pre-processing filter technique
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2. post-processing of the results by the use of machine learning, improving the performance
and robustness of applied methods

In addition to applied identification methods, Welch’s method is implemented as a validation
technique of the results.

All methods described in this thesis are programmed by the authors in Python, based on the
described theory. The exception is the core part of Empirical Mode Decomposition, Welch’s
method and the clustering method applied, all of which are open source code. However, these
are redefined to form seamless and well-functioning algorithms.

It is emphasized that this thesis has a heuristic approach to the mode identification problem.
Some of the applied techniques lack thorough mathematical justification, due to the complex
features of measured signals. Rather, the methods are presented with focus on validation
by testing and observation. Thus, one should keep in mind that the results are subject to the
particular tested cases (although those shown here only represent a fraction), and extrapolation
of traits and characteristics is not necessarily valid. Further testing, particularly on real-world
PMU measurements, should be undertaken for exploring and solving more issues and traits
with the applied methods.

Shortly after this thesis is delivered, the conference article in appendix A, which is a result
of research presented here, will be made available in the IEEE-database. The paper presents
two Prony variations, with EMD as pre-filter and clustering as post-processing intelligence.
Ever since the paper was delivered, the thesis has evolved into a more comprehensive study of
measurement based small-signal analysis. Note that the authors altered the theoretical notation
in the thesis, to highlight the similarities of RRLS and Prony. The poster in appendix B gives
a motivational introduction to the concepts in the paper, as well as providing the context. The
poster will be presented at the conference SPEEDAM 2018 in Amalfi, June 2018.
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2 Theory

2.1 Context of applied methods and measurement data

Signal analysis is applicable in many fields, and knowledge related to a method in itself holds
academic value. Yet in each application the measurements have their distinct features, and

practical use awaits the understanding of how this data should be approached. Will the
assumptions of a certain method hold true? Which behaviour is expected, and which is

observed from the measurements? To know the data and available methods is essential for
choosing the appropriate signal analysis toolbox.

Phasor Measurement Units provide high resolution, time-stamped data of voltages and currents
in large power systems. For small-signal stability purposes these data are generally classified
as either ambient, ringdown or probing data. The following will clarify the differences between
them.

Ambient: normal operating state. In a large power system, currents, voltages and power flows
(amongst others variables) vary as a consequence of millions of customers turning their electric
equipment ON and OFF. Aggregated, these changes are assumed to behave like continuous
small-amplitude, random disturbances. The system response to these variations is described
as ambient data, and contains distorted information of the system’s oscillatory behavior. The
characteristics of ambient data are certainly an area of research interest, as the complexity of
the dynamics is high and the justification for the current assumption is thin.

Ringdown (transient): damped, oscillatory behaviour following a disturbance, such as line
tripping or production outage. These disturbances happen from time to time, and causes
motions much greater (larger amplitude) than the small switching that produces ambient data.
Ringdown portions typically contain much richer information than ambient data, and are much
easier to evaluate by visual inspection. However, disturbances do not happen often, and the
resulting ringdowns are not always suitable for the relevant methods. Installed equipment can
be used to induce ringdowns for analysis purposes, e.g. the Chief Joseph 1400 MW braking
resistor in Washington [7].

Probing: insertion of known input fluctuations, e.g. pseudo-noise. For ambient conditions, the
fluctuations are considered to be hidden, or unknown, which means they cannot be used for
improving the power system modelling. Probing signals can be used to evaluate how known
inputs affect the system response, and dedicated methods estimate observable modes better
than can be extracted from ambient data.

In Figure 2.1, both ambient and ringdown data are shown for a short time-period. The mea-
surements originate from a PMU in the Nordic grid, a generation outage occurring at 42
seconds.
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Figure 2.1: Ambient and ringdown data from the Nordic grid

This thesis will focus on ambient and ringdown conditions. Probing conditions are certainly
of interest, but relevant data is not available in the Nordic grid. The reader is referred to
[7] for an introduction to probing methods. For ringdown and ambient conditions, a wide
range of analysis techniques exists. In addition to most methods being confined to one of the
aforementioned data types, they can be classified by the following criteria:

- Linear/Non-linear: Linear methods, like Prony analysis, assume the response to originate
from a linear model. Do not confuse this with a linear graph like y = ax+ b; although related,
it is the linearity of the governing differential equations that is referred to. The power system
is highly non-linear, and not all measurements should be analyzed with linear methods. Yet
often the power system behaviour is linear, and these linear characteristics are of importance
to operating personnel.

- Parametric/Non-parametric: Parametric methods assume a parametric model for the oscil-
lating behaviour. In this approach lies a priori knowledge of the data - the signal is assumed
to behave in a particular way. These methods in practice try to fit the signal to the model,
and if the assumption is flawed, so is the result. Contrarily, non-parametric methods do not fit
the signal to a model, and the methods are related to the signal only. The few assumptions are
often related to the periodical behaviour of the signal, e.g. for Fourier based methods. Non-
parametric methods are generally considered more robust for estimating frequency content,
yet do not perform modal decomposition, and are usually not suitable for estimating damping
coefficients.

- Recursive/Non-recursive (block-processing): Non-Recursive, or Block-Processing methods uti-
lize a single time window for analysis. These methods have clear purpose in off-line applications,
e.g. first evaluating the start and end of a ringdown signal, and then applying a ringdown ana-
lyzer on this window. These methods can also be used for real-time applications, by sliding the
window as new data is streamed to the algorithm. Recursive methods perform online analysis
perhaps more elegantly, by utilizing information from the previous time-steps to update the
current, facilitating faster processing and better robustness.

In Figure 2.2, the classification is illustrated. This is a reduced version of the tree made in [8].
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The methods explained in this paper are in bold.

Signal analysis of electro-mechanical modes

Ambient Data

Without Probing

Parametric

Recursive:
- RRLS
- R3LS

Non-Recursive:
- AR
- ARMA
- N4SID

Non-Parametric:
- Welch
- FFT

With Probing:
- R3LS

Ringdown Data:

Linear:
- Prony
- MP
- ERA
- ESPRIT

Non-linear
- Wavelet
- HHT

Figure 2.2: Classification of methods

The thesis centers on two parametric methods, Prony and Robust Recursive Least Squares
(RRLS). Welch’s method is primarily used for validation purposes, and is not investigated in
detail. Prony and RRLS have different purposes, but the similarities in their parametric models
are noteworthy. Hence, the following chapter will describe the modelling of power systems for
small-signal stability, from a measurement based perspective.

2.2 Parametric Modelling

Parametric modelling bears strong resemblance to component-based small-signal analysis, where
the dynamics are linearized around an operating point. For the measurement based parametric
approach, the signal is assumed to behave linear. These similarities become evident through
inspection of the theoretic foundation.

As such, the starting point is to model the power system as Linear and Time-Invariant (LTI).
The Time-Invariant part is related to the system, not the measured signal, yet allows for
extracting ”permanent” knowledge from the measurements; if the initial state and input are
the same, no matter at what time they are applied, the output waveform will always be the
same [9]. The Linear part, as mentioned in section 2.1, applies to the governing differential
equations. The concepts of LTI systems are mathematically described in [10], yet fathoming
the full impact of these concepts comes after practical experience, rather than through mere
vigorous study of the mathematics. An example of a time-continuous LTI model is given in
equation (2.1).

c2
δ2y(t)
δt2

+ c1
δy(t)
δt

= d2
δ2x(t)
δt2

+ d1
δx(t)
δt

+ d0x(t) (2.1)

where y(t) = response (output), x(t) = excitation (input) and c, d = constant coefficients.
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It must be stressed that this model does not describe the whole system. As a PMU only
captures the observable modes in its location, the results are confined to a small part of the
complete system small-signal dynamics. Observability is defined as the possibility to observe
the ith modal variable in the kth state variable [11]. In this thesis, observability of modal
components are investigated for power-flow measurements in the power system.

The system described in (2.1) represents a time-continuous model. However, the measurement
values are obtained as samples at discrete time points. Thus, the model must be described with
finite differences, that is, with discrete equations. This conversion is of course not necessary if
the physical phenomena actually is discrete. However, as many models are time-continuous, the
following theory serves as a connection between the time-continuous model, and the sinusoidal
information obtained through the discrete analysis methods.

y(t) = y[n]
δpy(t)
δtp

= Opy[n]
hp

+O(h) (2.2)

where O(h) is leading error of order h and
Opy[n]
hp

∝ y[n]− y[n− 1]− ...− y[n− p]

where (2.2) shows the relationship between derivatives and backward finite differences [12].
Rewriting (2.1) as an approximated discrete system yields:

a0y[n] + a1y[n− 1] + a2y[n− 2] = b0x[n] + b1x[n− 1] + b2x[n− 2] (2.3)

where a and b are coefficients different from - but related to - c and d in (2.1).

Rearranging, and generalizing to p previous values for y, and q previous values for x gives the
general difference equation shown in (2.4).

y[n] = −
p∑
i=1

aiy[n− i] +
q∑
i=0

bix[n− i] (2.4)

The estimation of ai and bi is the desired information for deriving the modal decomposition of
the signal. Equation (2.4) lays the foundation for Prony Analysis (including Prony Filter as
described in appendix A) for ringdown data, as well as RRLS for ambient data. Note that p
is the AR (Auto-Regressive) model order, which is directly related to the number of estimated
modes. q is the MA (Moving-Average) order, and is not pursued here.

2.3 Original Prony

Prony Original (PAO) dates back to the 18th century, discovered by count Gaspard de Prony
[13]. Its use was not fully uncovered before the arrival of the digital computer, as several of the
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2.3 2 THEORY

involved processes are computationally demanding. The pioneering work by Hauer et al. [4]
applied the method to power system ringdown measurements in 1990. Since then the method
has matured, and is used extensively by power system operators and researchers, although
some challenges persist to date.

Prony analysis is still limited to ringdown measurements, and has for a long time been classified
as a block-processing method. However, Zhou et al. [14] utilized the similarities between two
neighbouring blocks to formulate a recursive Prony algorithm. A recursive solution is more
beneficial to ambient methods than for ringdown analyzers, and in this thesis, Prony’s method
is described in non-recursive form. It is used to perform modal decomposition on a damped,
oscillating signal. In other words, the signal is approximated to a sum of damped sinusoidals:

ŷ(t) =
N∑
i=1

Aie
σit cos(2πfit+ φi) (2.5)

Where:

Ai = Amplitude of the ith component
σi = Damping coefficient of the ith component
φi = Phase of the ith component
fi = Frequency of the ith component
N = Total number of damped exponentials

The user is left to specify the model order p, which roughly results in p/2 estimated sinusoidals
(or modes) depending on odd or even choice of p.

Figure 2.3: Demonstration of Prony Analysis

The method is demonstrated in Figure 2.3. This describes the method from a user’s perspective,
i.e. the typical input/output from a Prony program. A signal y is given to the algorithm,
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suspected to have observable, sinusoidal features. In this case this certainly holds true; it is a
summation of two pure sine functions of time. A model order is also required, here p = 20 is
passed to the algorithm. Prony will then return the best fit of p/2 sine waves to the signal.
Consider the results in Figure 2.3: the two sine waves are more or less exactly identified. The
remaining 8 modes have a completely negligible amplitude, and can be discarded with little
need for intelligent post-processing.
Typically, the method is extremely precise for synthetic signal with clear, sinusoidal features.
Determining the model order and which of the resulting modes that can be assumed to be
responsible for the signal behaviour, are trivial tasks for such signals. However, when the
signal is distorted by noise, unknown inputs and/or non-linearities, they must be addressed
properly. This concept is pursued further in section 2.8.

Theoretical walk-trough

The following theory is based on a proceeding specialization project work and the paper shown
in appendix A.

Equation 2.5 should be view as the end result of PAO; the amplitude, phase, frequency and
damping of the sinusoidal components. However, back tracing is not a suitable presentation of
the theory; instead, remember the general difference equation in 2.4. PAO assumes zero input
to the system which eliminates the bi-terms, and the resulting difference equation represents a
Linear Prediction Model (LPM). Having N number of samples, and choosing a model order p,
the LPM can be extended to (2.6) by stating that the difference equation should be satisfied
for the previous (N − p) measurements:

−


ŷ[p]

...
y[N − 2]
y[N − 1]


︸ ︷︷ ︸

= Ψ

=


y[p− 1]

...
y[N − 3]
y[N − 2]

y[p− 2]

...
y[N − 4]
y[N − 3]

· · ·

. . .
· · ·
· · ·

y[0]

...
y[N − p− 2]
y[N − p− 1]


︸ ︷︷ ︸

= A

·


ap

...
a1


︸ ︷︷ ︸
= α

(2.6)

The reader is encouraged to verify equation (2.6), as this gives valuable insight in the use
of measurements, as well as implementation concepts related to indexing. This is an over-
determined system for N > 2p, with (N − p) rows and p columns. For solving this system, the
linear least-square approximation method is used, yielding an estimation of α that will describe
a model close to the measured values. This method is intuitively described in [15, Ch. 4.3],
but the mathematical representation in compact form is given below for completeness.

α̂ = (ATA)−1ATΨ (2.7)
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where:

A = difference equation matrix from eq. 2.6
AT = transpose of A
Ψ = measurement vector from eq. (2.6)
α̂ = a-coefficient vector

The next step is to connect these predictor coefficients to the modal decomposition. This is
done through the Z-transform. It is shown in [16] that they form the characteristic equation
in (2.8):

1 + a1z
−1 + . . .+ apz

−p = 0 (2.8)

The polynomial is factorized in equation (2.9) in order to obtain the roots of the polynomial
(e.g. by using the freely available numpy.roots in python).

(z−1 + ζ1)(z−1 + ζ2) . . . (z−1 + ζp) = 0 (2.9)

These roots are closely linked to the eigenvalues, λ, of the modal decomposition in the following
manner:

λn = fsamp ln ζn (2.10)

where fsamp is the sampling frequency of the input signal and ζn is the corresponding polynomial
root. The resulting eigenvalues appear in complex conjugate pairs, for all but the strictly real
and non-oscillatory modes. From the eigenvalues, the frequencies f and damping ratios η are
found.

fn = |Im(λn)|
2 · π ηn = Re(λn)

|λn|
(2.11)

For relating (2.5) to the identified modes, it must be written in complex form. Using Euler’s
Formula on the cosine term results in equation (2.12).

Department of Electric Power Engineering, NTNU 10



2.5 2 THEORY

ŷ(t) =
N∑
i=1

Aie
σit

(
ej2πfitejφi

2 + e−j2πfite−jφi

2

)

=
N∑
i=1

1
2Aie

±jφieλit (2.12)

where the eigenvalue is: λi = σi ± j2πfi

The amplitude and phase of the modal components are estimated by another least-squares
approximation. Extending equation (2.13) to all measurement values, results in equation (2.14),
as stated in [17] with C as the residual.

y[k] =
p∑
i=1

Ciζ
k
i , k = 0, 1, ..., N − 1 (2.13)

where Ci = 1
2Aie

±jφi


y[N − 1]

...
y[1]
y[0]

=


ζN−1

1

...
ζ1

1

ζ0
1

· · ·

. . .
· · ·
· · ·

ζN−1
P

...
ζ1
p

ζ0
p

 ·

Cp

...
C2

C1


︸ ︷︷ ︸
= C

(2.14)

where the ith amplitude and phase are identified as the absolute value and angle of Ci, respec-
tively.

2.4 Prony filter

In this Prony variation, the perspective is slightly different although the starting and finishing
points are the same. The main difference between PAO and Prony Filter (PAF ) is that the
former assumes all input to be zero - eliminating the bi-terms from the difference equation. In
PAF on the other hand, all input is zero except x[0] which is equal to 1, and the system is
modeled as a transfer function from an input pulse to output response. This difference does
however not change the fact that both methods perform similarly, as discovered in the paper
shown in appendix A. The reader is referred to work done in the appended paper for further
insight into similarities/differences between the two methods, including detailed testing.
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2.5 Robust Recursive Least Square

Robust Recursive Least Square (RRLS) was first proposed for speech analysis in 1995 by
Kovačević, Milosavljević and Veinović [18] as an improvement to conventional recursive least
square methods. Although introduced in 1995, its beneficial aspects were first identified in
power system implementation by Zhou et al. [6] in 2007. The method is of similar character as
the recursive least square method given in detail in [19, ch.7.4], although without the robustness
of a loss-function defined in RRLS.

Unlike PAO, RRLS is a recursive method, estimating eigenvalues in the signal from a stream
of input measurements. RRLS iterates along a timewindow defined by the model order, p. In
each step, p measured values are used to estimate the next before moving the timewindow as
seen in Figure 2.4. In an iterative approach such as this, convergence is not certain for the
first parts of the measured data. For this reason, it can not be used as a dedicated ringdown
analyzer, yet the accuracy is reported in [6] to improve if ringdowns are included in the time
window or data stream.

In a continuous stream of data, the recursive method can add the latest measurement to the
estimation while forgetting the earliest measurement, all the while requiring fixed storage and
calculation time in each iteration. The main principle of RRLS is demonstrated with the
following equation:

Modal content[k] = Modal content[k − 1] + weighting factor ∗ prediction error (2.15)

This is demonstrated in Figure 2.4.

Figure 2.4: Demonstration of moving timewindow estimation in RRLS
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From the eigenvalues calculated for each new input measurement, frequency and damping
of modal components in the signal can be found. Small signal stability can be assessed by
monitoring changes in frequency and damping found in each timestep. Understanding this
principle should be sufficient for using the method. The main purpose of delving into the
following theory, is to see how the weighting factor is determined, and how this is related to an
important parameter called the forgetting factor, µ. To understand why the weighting factor
is calculated as it is, the reader is referred to [18].

Theoretical walk-through

Similar to PAO, RRLS assumes a parametric model, with zero input to the system in the
general difference equation shown in (2.4). This is known as AR (Auto-Regressive) modelling,
and like PAO, the bi-terms are eliminated to form the Linear Prediction Model. However, in
this recursive version, the equation system in 2.6 is not formed. The LPM is used for its most
obvious purpose; to predict the next sample, based on Ψ and α. This is shown in equation
(2.16) with model order p.

ŷ
[
k|α̂[k − 1]

]
= −a1[k − 1]y[k − 1]− a2[k − 1]y[k − 2]− . . .− ap[k − 1]y[k − p]

=
[
− y[k − 1], . . . ,−y[k − p]

]
·
[
a1[k − 1], . . . , ap[k − 1]

]T
= ψT [k] · α̂[k − 1] (2.16)

ψ[k] =
[
− y[k − 1], . . . ,−y[k − p]

]T
α̂[k − 1] =

[
a1[k − 1], . . . , ap[k − 1]

]T

where k is the next value and must be greater than p, i.e. it needs p values for the initial
prediction. In a data stream, k corresponds to the newest sample.

Equation (2.17) through (2.20) are characterized as the core part of the RRLS algorithm
derived in [18]. This is done with a Newthon-Raphson-type approach for the least-squares
problem, using IMML to avoid matrix inversion and thus reducing computational burden be-
tween timesteps. Explaining the full mathematical derivation would be too lengthy, and only
the practical consequences will be presented. First the α̂-estimate for the current timestep is
updated as shown in (2.18), by use of the estimation error ε calculated in (2.17).

ε
[
k|α̂[k − 1]

]
= y[k]− ŷ

[
k|α̂[k − 1]

]
(2.17)
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α̂[k] = α̂[k − 1] +L[k] · ρ′
[
ε
[
k|α̂[k − 1]

]]
(2.18)

α̂ is related to the frequencies and damping coefficients, similar to PAO:

• the general difference equation gives the characteristic polynomial given in (2.8), which
is defined in each timestep

• the eigenvalues, and thus frequency and damping, can be found from the roots of α̂ as
shown in (2.9), (2.10) and (2.11)

In equation (2.18) (elaborated in [18]), L[k] is a p x 1 intermediate vector, used to simplify the
notation. It is calculated using equation (2.19).

L[k] = P [k − 1] ·ψ[k]

µ[k] + ρ′′

[
ε
[
k|α̂[k − 1]

]]
·ψT [k] · P [k − 1] ·ψ[k]

(2.19)

µ[k] is the forgetting factor of the current timestep, providing an exponential weighting of
past errors. This is implemented so that the importance of previous estimation decreases
with increasing distance from the current timestep. P (k) is a p x p state matrix updated in
each timestep using (2.20). It is used as a function to ensure continuity in the estimation,
remembering the calculations from the previous timestep when estimating the next. Instead
of introducing the current timestep as a function of all previous timesteps, P (k) is written
as a function of only the previous timestep with the forgetting factor in addition to the latest
estimation update as given in [19, ch.7.4]. The result is a recursive method, taking into account
all previous estimations through the latest. Equation (2.20) is found using IMML on the
exponential weighted sample spectral matrix given in [19, p. 756].

P [k] =
P [k − 1]−L[k] ·ψT [k] · P [k − 1] · ρ′′

[
ε
[
k|α̂[k − 1]

]]
µ[k] (2.20)

ρ
′ [ε] and ρ

′′ [ε] are the first and second derivatives of the “hard” defined loss-function ρ[ε]
defined in (2.21). The loss-function is the robustness part of the method, weighing robustness
and efficiency. σ is the standard deviation of ε, defined in (2.22).
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ρ[ε] =


1
2ε

2 if |ε| ≤ 3σ
3
2σ

2 if |ε| > 3σ
(2.21)

σ =
median

(∣∣∣E −median(E)
∣∣∣)

0, 6745 (2.22)

where E in (2.22) is a vector containing all calculated values of ε including the latest timestep
k.

Equation (2.21) gives the derivatives shown in (2.23) and (2.24).

ρ
′ [ε] =

ε if |ε| ≤ 3σ
0 if |ε| > 3σ

(2.23)

ρ
′′ [ε] =

1 if |ε| ≤ 3σ
0 if |ε| > 3σ

(2.24)

Each timestep is dependent on α̂ and P from the previous timestep, in addition to all previous
values of ε. Ones all of these values are updated, k can be increased by 1 and the process can
be repeated from (2.16).

2.6 Welch’s method for frequency estimation

As discussed in section 2.1, the appropriate approach to analyze PMU data is with a toolbox of
methods. Prony and RRLS are parametric methods, and although with some differences, they
both assume an underlying parametric model. As an additional verification, a non-parametric
method gives a different perspective of the measured signal. In 1967, Welch [20] proposed a Fast
Fourier Transform (FFT) based, non-parametric method for estimation of power spectra, today
known as Welch’s method. By transforming block segments of the time domain signal to the
frequency domain and estimating the periodogram, it can visualize the power spectral density
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of the signal by averaging the periodograms calculated in each segment of time. The resulting
power spectral density of a measured signal is shown in Figure 2.5, where the estimated power
spectral density gives a clear indication that there is a mode with a frequency around 0.485 Hz
present. The power spectral density is given in [Watt/Hz].

Figure 2.5: Welch power spectrum of a measured signal

As this method is used as a simple validation, its theory is not discussed in detail in this thesis.
A basic overview of its concepts is provided, while in-depth fundamentals can be found in [20].
The black-box algorithm used for testing is the “welch”-method from the open source Python
library SciPy [21].

2.7 Empirical Mode Decomposition as band-pass filter

All methods implemented in this thesis require pre-treating of the input signal, either to re-
move high frequency noise, signal trend or both. For PA, a variety of solutions to improve its
robustness under noisy conditions are proposed. Kumaresan and Feng [22] proposed two dif-
ferent pre-filtering methods to improve PA, one based on a predefined FIR filter and another
defining the pre-filter iteratively from the measured data. Pre-filtering using the Empirical
Mode Decomposition is also proposed in [23]. For the RRLS method, a weighted adaptive
algorithm has been proposed for detrending [6].

In this thesis, Empirical Mode Decomposition (EMD) is used as a band pass filter, removing
high frequency noise and signal trend. EMD is a method for non-linear, non-stationary signal
processing that decomposes the signal into a set of Intrinsic Mode Functions (IMFs) [24] as
seen in Figure 2.6 and 2.7. An IMF is an oscillatory mode function where the mean value
of its upper and lower envelope is zero. The described oscillatory mode may be of non-linear
behaviour and thus contains variable frequency. An example of this is IMF 3 in Figure 2.6,
which has a clearly fluctuating frequency.

The IMFs are extracted one at a time - starting with the highest frequency - and contain
information on a modal component in the signal. Figure 2.6 shows the decomposition of PMU-
data from a ringdown into IMFs. Even though the signal looks quite smooth, the high frequency
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noise is present. By selecting the IMFs with an average frequency in the desired range, one
may rebuild the denoised signal.

Figure 2.7 shows a longer timewindow of ambient data. The presence of high frequency noise is
greater compared to the ringdown signal. In addition, due to an increase in time span, the low
frequency modes of the last IMFs must be treated before application of an ambient analyzer.

1.0
1.5

Signal
1e8

−2.5
0.0
2.5

Denoised
1e7

−0.5
0.0
0.5IMF 1

1e6

−2.5
0.0
2.5IMF 2

1e5

−2.5
0.0
2.5

IMF 3
1e5

−0.5
0.0IMF 4

1e8

0.0

2.5IMF 5
1e7

1 2 3 4 5 6 7 8 9
Time [S]

1.25
1.50

Trend
1e8

Figure 2.6: Decomposing ringdown PMU-data into IMFs
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Figure 2.7: Decomposing ambient PMU-data into IMFs
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Theoretical walk-through

To separate the IMFs using the EMD technique, there are certain conditions that must be
met. Each IMF must have a mean value of zero, and a number of extremas that equals the
number of zero-crossings (or at most differs by one). The stepwise process to identify IMFs in
a measured signal y(t) is:

1. Start with signal y(t) as input
2. Identify extremas
3. Calculate the upper and lower envelope of the signal (eup, edown)
4. Find the mean value (m(t)) of the upper and lower envelope
5. Extract the difference from the signal: d(t) = y(t) - m(t)
6. Repeat steps 2-5 with d(t) as input, until it satisfies the conditions of an IMF
7. Set d(t) as an IMF, and subtract it from the input signal. Repeat the process with the

residue r(t) as input signal (r(t) = y(t) - d(t))
8. Continue until there are no more extrema present in signal

The EMD output extracts modal components starting with the highest frequency and ending
with the residual “trend” of the signal. The hierarchy in the decomposed modes gives the EMD
characteristics similar to those of a dyadic filter bank [25]. The average frequency of each IMF
gives a rough criterion for choosing which IMF to include in the filtered signal. By merging
the IMFs with an average frequency in the electro-mechanical range (oscillating frequency from
0.2 to 2 Hz), the high frequency components and the signal trend (given by the residual) is
excluded, and a filter has been implemented. Examples of high frequency components that must
be removed are torsional modes typically occurring in the range of 10-46 Hz and measurement
noise.

In this thesis, the EMD implemented is based on the work by Deshpande [26].

One challenge when using the EMD is that modes with closely spaced frequencies may be
mixed together. This makes the basic version of EMD more challenging for identification of
electro-mechanical modes unless special strategies are used for intermittent or closely-spaced
tones as described by Fosso and Molinas [27]. For high frequency filtering on the other hand,
its characteristics are well suited, as it elegantly extracts high frequency components without
altering the remaining signal components.

Implementing the EMD for online purposes on ambient data is a challenge. The EMD al-
gorithm’s timeconsumption increases with signal length, due to an increase in the number of
extrema. In addition, the more slowly varying modes that were incorporated in the signal
trend for the shorter timewindows are decomposed into additional IMFs. For these reasons, a
recursive implementation of the EMD-technique is certainly of interest.

2.8 Clustering as post-processing intelligence

All linear, parametric methods have particular concerns that must be addressed. Each one has
its particularities, yet most have the following in common:
- Defining model order(s)1

1Some models require several model orders to be specified, e.g. ARMA (2, both for poles and zeroes)
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- Selecting resulting modes
- Validity and robustness of the model for given signal

In this thesis, these concerns are addressed by running the relevant parametric method in a
range of model orders. It is hypothesized that the true modes and their shapes will remain
close to constant. True modes are those that are responsible for actual linear behaviour in the
system. Subsequently, the trivial modes (identified by their frequency, damping and amplitude)
will change significantly. Trivial modes are those that fit the noise and non-linear behaviour.
For ringdown analysis, the purpose of the method is to separate the true from the trivial modes,
without excluding those that are less observable. For ambient, online analysis, this method
offers the possibility of automatic tracing of changes in the modal content in the power system.
Furthermore, if no clusters are found, this is an indicator that the signal is not suitable for the
analysis method.

Other solutions to this challenge are not as of yet well documented, and are subject to investiga-
tion. For PA, singular value decomposition is commonly used to identify an ideal model order.
This is a sound approach for pure, sinusoidal signals, yet is not ideal when the signal is distorted
by noise, inputs or non-linearities. A different approach is validation through a non-parametric
method - Welch’s being the most used - which investigates the power of a signal for different
frequencies. In doing so, the dominant modal components is identified by their frequency, and
their remaining modal information extracted from the parametric decomposition.

Figure 2.8 shows the modal decomposition of a noisy signal for two different model orders.
This signal actually contains three different modal components, with frequencies of 0.28 Hz,
0.75 Hz and 1.5 Hz. The objective is to separate these from the trivial modes.
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Figure 2.8: Example decomposition for different model orders

For ringdown analysis using PA, the frequency, damping, amplitude and phase are available for
identification of true modes. For clustering purposes, a three-dimensional data-input improves
predictability, and frequency, damping and amplitude are given as input. For ambient analysis
using the RRLS method, only the frequency and damping are available, resulting in two-
dimensional clustering.

By utilizing the modal decomposition in a range of model orders, a base for clustering is
achieved. Figure 2.9 shows the three-dimensional clustering of multiple model orders from the
same case as in Figure 2.8. It can be noted that all true modes are identified among the trivial
noise.
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Figure 2.9: Clustering of noisy, synthetic signal

Theoretical walk-through

The range of model orders selected differs between the methods. For PA, a lower limit of
p = 10 and an upper limit of p = N/2 is chosen for the model order range to ensure a good
basis for clustering. The lower limit is defined as 10 to mitigate simulations where the number
of observable modes is larger than the model order. For RRLS, a predefined range of model
orders is selected, giving predictability of the computational burden. A lower limit of p = 20
and an upper limit of p = 39 are chosen. A “hard” limit is possible, due to the small difference
between the higher model orders.

The clustering method used in this thesis is a density-based algorithm named “Density-based
spatial clustering of applications with noise” (DBSCAN). This method was first proposed by
Ester et al. [28], to make clustering more versatile. Density-based algorithms are not limited
to finding spherical clusters of a predefined size. It can on the other hand, by considering
the density of an area, find clusters of arbitrary shapes. It works as an unsupervised learning
mechanism, labelling data in clusters and assigning the rest as noise [29].

The DBSCAN algorithm depends on two input parameters: epsilon (ε) and minimum cluster
size (minClu). It labels each datapoint into three categories: either it is a core point, a border
point or noise. By first assuming that none of the input-data belongs to a cluster, DBSCAN
chooses one of the unassigned objects as a starting point. From this point each object within
a distance of ε is considered as a neighbour. If the point is found to be a core point [28], it
finds all objects in its area using ε and minClu. All these objects are then assigned to the
same cluster. If it is not considered as a core object, and is not present in another cluster, it is
labelled as noise. The clustering is completed once every object is either assigned to a cluster
or labelled as noise.

As previously stated, the input data from PA to DBSCAN is three-dimensional. Frequency,
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damping and amplitude of all identified modes from all model order simulations of PA are
utilized. RRLS on the other hand uses only frequency and damping. For weighting purposes,
the algorithm is altered so that only a small deviation in frequency is allowed. For amplitude
and damping, some deviation is accepted in each cluster. Combined with the choice of ε, this
defines the degree variation accepted.

2.9 Additional concepts

Concepts introduced in this section are based on a proceeding specialization project.

2.9.1 Signal to noise ratio

To determine the quality of the rebuilt signal in ringdown analysis, signal-to-noise ratio (SNR)
is used [17]. SNR is calculated in decibels using the root-sum-of-squares of the error and the
measured value. This value is an indicator of the ratio between signal and noise power. If
the ratio is greater than 1 (0 dB), it indicates more signal than noise in the estimate. SNR
implicitly assumes that noise and signal are uncorrelated and come from different sources [30].

SNR = −20 log10


√∑N

i=1(ŷ[i]− y[i])2√∑N
i=1(y[i])2

 (2.25)

Where:

SNR = the signal-to-noise ratio in decibels
ŷ[i] = the ith estimated amplitude
y[i] = the ith measured amplitude

2.9.2 Aliasing

A high sampling frequency when applying least square techniques, results in bad approxima-
tion of low-frequency modes in addition to a high computational burden. For instance, PA
struggles with identification of electro-mechanical modes when the number of samples per cy-
cle is too high [17]. For online ambient analysis, a high sampling frequency would increase the
computational burden, making it less practical to implement. Reducing the number of samples
to an appropriate level is necessary.

A common problem when reducing the number of samples in a measured impulse response,
is that valuable information regarding the signal is lost. According to the Nyquist-Shannon
sampling theorem [31], the sampling frequency needed when digitising an analogue signal must
be twice that of the highest frequency in the signal. This frequency is commonly called the
Nyquist frequency [32, p. 269].

Say that the sampling frequency of a composite signal containing multiple modes is reduced so
that the sampling frequency is below twice that of the highest frequency in the composite signal.
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The mode with that frequency would not be possible to replicate with its original frequency
since information is lost. An alias of that original mode will instead be made within the new
frequency range. This means that a high frequency mode will be seen as a low frequency version
of itself as observed in figure 2.10. This phenomenon is known as aliasing [33, p. 130]. In fact,
any frequency outside the sampling range will alias to a frequency within. An unfortunate
result is that the estimate can yield additional frequencies in the range of interest. When the
aliasing occurs, the high frequency component in the signal will be folded back over the low
frequency components, thus modifying them as described in [34].
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Figure 2.10: Aliased high frequency signal

To avoid this problem, the input signal should be pre-filtered so that all frequencies above the
range of interest are removed. This is known as anti-aliasing, and is accommodated by EMD
in this thesis.
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3 Remarks on implementation

The modes of interest in this thesis lie in the electro-mechanical range. In accordance with the
Nyquist-Shannon sampling theorem discussed in section 2.9.2, the sampling frequency must be
at least 4 Hz to contain information of the modes at 2 Hz. In this thesis the sampling frequency
is set to 6 Hz, well above the minimum limit, to avoid loss of modal information. For data
sampled at higher frequencies, approximately 6 Hz is achieved through downsampling. The
sampling theorem applies to the high frequency noise as well. When the sampling frequency
is below twice the noise frequency, information is lost and signal aliasing occurs as previously
illustrated. To assure that this problem is handled, the signal is filtered for high frequency
noise by using the EMD-technique, without altering the components in the electromechanical
range.

For higher model orders, many of the modes found by PA have insignificant amplitudes, or very
high damping ratios. These are discarded before feeding the clustering algorithm, as they do
not influence the signal dynamics. Choosing a hard limit on mode amplitude (1/30 relative to
the highest amplitude), and excluding modes with damping ratio above 50%, is a brute way of
post-filtering the results. A more sophisticated evaluation method is presented by Zhou, Pierre
and Trudnowski [35]. However, the hard limit is sufficient for this method, with the purpose
of removing the obvious trivial modes. The clustering algorithm is responsible for classifying
the rest. For the RRLS-method, amplitude is not a logical parameter, thus excluding the
same option for a brute amplitude post-filter. However, both methods find complex conjugate
pairs of modes due to the properties of the prediction model and characteristic equation. For
analysis, only the positive modal component is taken into account. In PAO each complex
modal pair has an equal amplitude contribution. This is handled before removing the negative
component.

To identify the true modes in the signal, clustering is proposed for both methods as a type
of post-processing intelligence. Although the implementation is slightly different, the principle
for clustering is the same in both methods.

For explanatory purposes, timestep is defined in this thesis as a single measurement at a
given time. As seen in Figure 2.2, there are numerous methods for analysis of power system
measurements. Considering that no method is perfect for all measurement types, the term
timewindow is defined in this thesis as a part of a measured signal which is under investigation.
Figure 2.1 shows how a measured signal is divided into three sections of interest. The first
and last section contain ambient data, where a timewindow is defined as a smaller part used
for analysis and prediction of the following timestep. Sliding this timewindow along the entire
section of ambient data results in a continuous evaluation of modal content. The shorter part in
the middle shows a ringdown, where all measurements are used in one analysis; the timewindow
is then defined as the entire section.

In this thesis, reconstruction is used as a term for recreating the signal based on identified
modal components.
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3.1 Proposed method for ringdown analysis

• Pre-Filtering using EMD

– Identify signal IMFs
– Extract IMFs in the electro-

mechanical range
– Rebuild signal without high fre-

quency noise and signal trend

• Downsample signal to 6 Hz

• Define range of model orders to be in-
vestigated

• Do PAO for all p orders in defined
range:

– Build LPM in (2.6)
– Estimate α using least-squares
– Find roots of characteristic poly-

nomial in (2.8)
– Calculate eigenvalues from roots

with (2.10)
– Establish equation system shown

in (2.14)
– Solve the equation system for

residual C
– Calculate frequency and damping

from each eigenvalue
– Calculate amplitude and phase

from each residual
– Post-filter the insignificant modes

• Cluster the remaining modes
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Figure 3.1: Decomposing ringdown PMU-data
into IMFs
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Figure 3.2: Downsampling

Figure 3.3: Cluster identification using PAO

3.2 Proposed method for ambient analysis

In this thesis, the input data given is of a predefined size. This allows for an offline pre-filtering
method using the EMD-method. For further work, this method should be extended to an online
implementation, which combined with the already online RRLS and clustering would give a
complete method for mode-tracking. Here, the entire signals is filtered with the EMD. RRLS
and clustering run in timewindows of the filtered signal, simulating an online implementation
where timesteps are provided one at a time.

The RRLS-method requires an initial guess of two parameters, P and α̂ in addition to the
forgetting factor µ. The selection affects the time it takes for the method to converge. By test-
ing, it was discovered that P converged with values in the matrix around 10−2 for normalized
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input data. The initial guess for P was then set to 10−2 times I, where I is the identity matrix
with dimensions p x p. α̂ is on the other hand defined for cold start, where all values in the
p x 1 vector are set to zero. Lastly, the forgetting factor, µ, is initially set to 0.9 in the first
5 % of the measured signal, allowing fast convergence before it is gradually increased to 0.999
after 15 % as illustrated in Figure 3.7. This factor is a compromise between variance and bias.
As documented in [18], µ is recommended to be set in the range of 0.95 to 0.99. Zhou, Pierre,
Trudnowski and Guttromson found in [6] that for abrupt changes in the system, µ should be
set low so that the bias decreases and convergence is reached faster. For normal operating, µ
should be restored to 0.999 to reduce the variance. In this thesis, the implemented method is
tested for ambient data only, without abrupt changes, thus setting µ closer to 1 and keeping
almost all previous estimations in memory.

• Pre-Filtering using EMD

– Identify signal IMFs
– Extract IMFs in the electro-

mechanical range
– Rebuild signal without high fre-

quency noise and signal trend

• Downsample signal to 6 Hz

• Define range of model orders, p (20 to
39 in this thesis)

• Set initial values for P , α̂ and µ.

• Do RRLS and clustering in each
timestep, k:

– Simulations for all model orders in
the defined range are conducted in
each timestep, using values from
the same model order in the pre-
vious timestep

– Calculate the amplitude estimate
of current timestep using equation
(2.16)

– Calculate the estimation-error in
equation (2.17)

– Update α̂ for each model order in
equation (2.18)

– Cluster the results from all model
orders in the current timestep, ex-
tracting the identified modes

• Plot identified modes from each
timestep as a function of time to iden-
tify changes in the modal components.
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Figure 3.5: Clustering of results in each
timestep, k
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Figure 3.7: Variation of the forgetting factor

3.3 Simulation study

In this thesis, the methods are verified using DIgSILENT’s power system modelling tool
PowerFactory (PF). In contrast to the measurement based methods discussed so far, PF
relies on a component-based approach to estimate system eigenvalues.

By linearizing the power system around an operating point, the assumption is that its motions
can be described by a set of ordinary differential equations [36] as shown in equation (3.1).

ẋ(t) = Ax(t) +BLq(t) +BEuE(t) (3.1)
y(t) = Cx(t) +DLq(t) +DEuE(t)

where x contains all states of the system, A is the system-matrix describing all aspects of the
system related to its states, q is a random vector added as noise to perturb the system, while
uE is the system input vector. y is on the other hand the system output.

The A-matrix contains information of the entire linearized system, where all eigenvalues, λ,
in the stationary case can be found using (3.2). It is emphasized that the A-matrix in a
component-based approach is not the same as the A-matrix seen in the measurement based
approach in section 2.3. While the measurement based A-matrix only contains measurement
information which leads to the identification of excited modes, the component-based A-matrix
contains the modal information of all modes in the model.
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det(A− λiI) = 0 (3.2)

The power system model used is the Kundur Two Area Model [37, p. 813] as shown in Figure
3.8. The model is a two area, eleven bus system with four generators and two loads.

G1

G2
G4

G3

L1 L2

1 5 6 7 8 9 10 11 3

42

Area 1 Area 2

Figure 3.8: Kundur Two Area System

Ambient data is added to the model to increase the similarity with the real world power
system. Using dynamic loads to simulate ambient data revealed power measurements similar
to those seen in the power grid. As far as the authors of this thesis are concerned, the general
assumption is that dynamic loads can be modelled using white Gaussian noise. This has been,
and will continue to be an area of research as the validity of the assumption is not yet proven.

The ambient data generated in this thesis is a combination of both fast and slowly varying noise.
The former is created by adding small amplitude noise in each timestep with zero mean and
finite variance in the given timewindow similar to white Gaussian noise. The noise simulates
50 Hz changes in the power system, and is a combination of measurement noise, small load
changes, etc. The latter is larger, slowly-varying load changes. These are simulated as three
step-changes occurring repeatedly in periods defined by frequencies in the electro-mechanical
range. Concretely, the changes occur in steps defined by the three frequencies 0.2 Hz, 0.8 Hz and
1.3 Hz with variable magnitude. As the load vary randomly and the data streams investigated
in PF are no longer than 20 minutes, the load changes may or may not not have a zero mean.
The combination of fast and slowly varying load changes result in a system response similar to
that which can be seen in a real power system.

The ambient data is added to the base real power demand of 967 MW and 1767 MW at loads
L1 and L2 respectively. Figure 3.9 shows the varying power transfer in the lines between buses
9 and 10, and buses 5 and 6. With a constant load in the system, the power transfer would
also be constant in these time-windows.
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Figure 3.9: 50 seconds of ambient data

Using the built-in modal analysis tool in PF, the frequency and damping of the modal com-
ponents present in the system are found. It must be kept in mind that it will find all modes,
and not just those that are excited by a given fault. In addition, PF calculates the modal
components present based on steady-state snapshot of the power system. With dynamic loads
in the system, the modal components will change slightly in each time-step. This is also the
case if a line is disconnected or other changes happens to the system. For the initial case, the
oscillatory modes identified by PF are:

Table 3.1: Modes identified by PF for base case

Mode Freq. [Hz] Damp. Ratio η
1 0.470 0.028
2 0.696 0.052
3 0.976 0.102

To illustrate the changing modal components, the loads are varied in steps of 100 MW total.
Figure 3.10 shows the modal components as the system loading gradually increases. It can be
seen that the changes in frequency are relatively small, with the largest change being 0.025 Hz
for the 0.975 Hz mode. This example is is shown with an identical increase in both loads. If
the loads vary independently, it may lead to a different result. However, this still serves as an
illustrative example of the problem when estimating modal components in a dynamic system.

0.4525 0.4550 0.4575 0.4600 0.4625 0.4650 0.4675 0.4700
Frequency [Hz]

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

Da
m
pi
ng

 R
at
io

(a) 0.470 Hz mode

0.6954 0.6956 0.6958 0.6960 0.6962 0.6964
Frequency [Hz]

0.05075

0.05100

0.05125

0.05150

0.05175

0.05200

0.05225

0.05250

0.05275

Da
m
pi
ng

 R
at
io

(b) 0.696 Hz mode

0.950 0.955 0.960 0.965 0.970 0.975
Frequency [Hz]

0.100

0.105

0.110

0.115

0.120

0.125

0.130

0.135

Da
m
pi
ng

 R
at
io

(c) 0.976 Hz mode

Figure 3.10: Change in modal components with change in system loading

On the other hand, if a line is disconnected, the change is more visible. From Table 3.2 the
results with a loss of one of the lines between buses 8 and 9 are shown. This is one of the least
drastic line outages possible, and where the system still operates within its limits. The changes
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to the modal components are more significant than for the case with variable load. The most
drastic change is in the 0.470 Hz mode, which has been reduced to 0.415 Hz. Inter-area modes
are closely connected to the power transfer in lines between areas. A loss of line between the
two areas should then result in change in the inter-area modes, thus revealing that the 0.470 Hz
mode is an inter-area mode.

Table 3.2: Modes identified by PF with one line between buses 8 and 9 disconnected

Mode Freq. [Hz] Damp. Ratio η
1 0.415 0.017
2 0.698 0.052
3 0.992 0.111

In conclusion, it can be noted that there are many possible reasons for the modal content in the
power system to change. Changes in load and line outages are just some of them. In a dynamic,
ever-changing power system, this makes the modal estimation not so trivial. For analysis of
ambient data, real time tracking of these changes gives an indication of power system stability.

3.3.1 Ringdown analysis

To simulate a larger fault and create a ringdown signal, the line between buses 6 and 7 is
disconnected and reconnected 0.05 s later. Power flow measurements between buses 5 and 6,
and buses 9 and 10, are then analyzed to identify modes.

Figure 3.11 shows the immediate system response after the fault, comparing the signal with and
without variable load. Looking back at Figure 3.9, it can be noted that the ambient variations
barely affect the ringdown signal in the first few seconds. The main difference between the
constant and variable load plots may just be a small difference in loading, and thus a small
difference in the modal content.
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Figure 3.11: Comparing measured signal for same fault with and without load variation

As time passes, and the ringdown is damped out, the ambient noise becomes more present
in the signal. This is clear when looking at Figure 3.11b at time after approximately eight
seconds; the noise is more constant, and the signal is no longer as smooth as it was initially.
Extending the signal, this trend becomes more clear as seen in Figure 3.12. Approximately
20 seconds after the fault, the signal is no longer recognizable when compared to the constant
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load case. The ambient data has completely distorted the ringdown signal, with a continuous
excitation of the power system, changing the signal amplitude and phase.
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Figure 3.12: Comparing measured signal for same fault with and without load variation

The continuous change in the system makes the comparison of the modal estimation to the
PF modes in Table 3.1 less trivial, as the modes change in each time-step. For analysis of the
ringdown signal, it is clear that a short timewindow of a few seconds is needed. For analysis
of the ringdown signal, the assumption is then that linear behaviour dominates this short
window.

Department of Electric Power Engineering, NTNU 30



4.1 4 TESTING AND VALIDATION ON SIMULATED DATA

4 Testing and validation on simulated data

This section covers the testing on the Kundur Two Area model shown in section 3.3. The
modal analysis tool in PF is used as a validation technique in all cases. However, this is based
on a stationary and linearized version of the power system, neglecting the dynamic changes.
To get a notion of how the modes vary, the modal estimation is computed at three different
timesteps. The first estimation is one second prior to the fault, the next is ten seconds after
the fault and the last at the very end of the measured signal.

All power system measurements in this section are from the lines between buses 5 and 6, and
buses 9 and 10 in Figure 3.8. This differs from what is shown in the paper in appendix A,
where the line between buses 10 and 11 is used instead of the line between buses 9 and 10. A
line between buses i and j is hereby denoted simply as line i-j, where i and j are two arbitrary
buses.

4.1 Case 1 - Line outage and reconnection

The first case covers the fault shown in section 3.3.1, where the line 6-7 is disconnected and
reconnected within a time span of 0.05 s. Figure 4.1 shows the resulting signal, with a ringdown
recorded after 600 seconds.

(a) Line 9-10 (b) Line 5-6

Figure 4.1: Simulation data from PF in case 1

4.1.1 Constant load test

To create a comparative foundation between power system changes, the results from the con-
stant load simulation are included. The simulations are based on the constant load signal
shown in Figure 3.11. As there is no ambient data in this test, the only method tested is the
PAO. The identified modal components in the constant load system are shown in Table 3.1.
Without ambient data, there is no noise in the PF results. As as consequence, the EMD-filter
is not tested for this signal. The first step is to remove the offset prior to Prony analysis and
subsequent clustering. For this test, a timewindow of 14 seconds starting after the fault was
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selected, yielding a model order range from p = 10 to p = 40. The resulting clustering for the
31 runs are shown in Figure 4.2.

(a) Line 9-10 (b) Line 5-6

Figure 4.2: Cluster plot from both estimations

Clustering indicates, in addition to modes present in the system, the validity and reliability of
the results through the number of occurrences in each cluster. For line 9-10, the cluster plot is
shown in Figure 4.2a, where only one of the three modes from Table 3.1 is observable. With an
occurrence of 31 modes in the cluster, the mode is without doubt present in the signal. Note
that in the paper shown in appendix A, the measured signal in line 10-11 was used instead of
line 9-10, and all three modes were successfully identified.

For line 5-6, the cluster plot in Figure 4.2b shows three different modal components. With an
occurrence of 31 modes in 31 different model orders, the modal components with a frequency
of 0.470 Hz and 0.696 Hz are both highly distinct. In addition, both these clusters vary little
and have a large amplitude. The last cluster - with an average frequency of 0.94 Hz - has a
smaller amplitude and is not as closely spaced. The number of occurrences is still 28 out of
31 possible, strongly indicating the presence of this mode in the signal. From an obervability
point of view, the two modes with highest amplitude are clear and observable in the signal and
thus clear in the cluster plot. The 0.94 Hz mode, are on the other hand barely observable in
this line.

Table 4.1: Consistent modes for multiple model orders in constant load test

Results on line 9-10 Results on line 5-6
Freq. η Amp. Phase Freq. η Amp. Phase
[Hz] [rad] [Hz] [rad]
0.470 0.028 84.65 -0.49π 0.940 0.028 1.12 0.02π

0.470 0.028 14.60 0.59π
0.696 0.053 19.23 0.00π

The results in Table 4.1 show that there is one distinct inter-area mode in the system. The
0.470 Hz mode oscillates between the two areas, with an approximate 180◦ phase shift. A com-
parison with the results from the component-based approach in Table 3.1, reveals an accurate
match of the 0.470 Hz mode in both lines. For line 5-6, the 0.696 Hz mode marginally misses by
0.002 Hz and 0.001 on the frequency and damping ratio, respectively. However, the 0.940 Hz
mode misses with 0.052 Hz. This can be a result of the low observability of this mode in the
measurement compared to the other two modes.
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Figure 4.3: Comparing reconstructed signal to original signal without offset

A reconstruction of the estimated signal can be compared to the measurements if the offset is
removed. This gives a good indication of estimation accuracy, as seen in Figure 4.3.

Summarized Observations

• The accuracy of the clustering technique can be measured using the number of occurrences
of each mode. All but one of the identified modes occur in 31 out of 31 possible model
order simulations.

• For a constant load simulation, the identified modes are clearly present with small devi-
ation in each cluster, yielding almost perfect results.

• The fault clearly excites the inter-area mode of 0.470 Hz.

• The reconstructed oscillatory signal fits the measured signal with only small errors. The
resulting signal-to-noise ratio for lines 9-10 and 5-6 are 45.1 dB and 42.9 dB, respectively.

4.1.2 Variable load - Ringdown analysis

In this section, the PAO method is tested on the signal given in both Figure 3.11, presented
as the variable load, and Figure 4.1, presented as the ringdown portion.

With a variable load, the modal content changes slightly (Table 4.2). Although a more accurate
estimation of the timestep is achieved in PF, it is not representative for the entire timewindow.
Thus, the modal component estimation from time-domain measurements are expected to differ
slightly from the PF linearization.

Table 4.2: Modes identified by PF during ringdown in case 1

Mode Freq. [Hz] Damp. Ratio η
1 0.490 0.026
2 0.704 0.053
3 1.016 0.107

The first step is to filter the high-frequency noise using the EMD-filter as seen in Figure 4.4.
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Figure 4.4: IMF plots from EMD-filter

By removing IMF 1 and 2 in both signals, the high frequency components are filtered out of
the signal. The denoised signal in red shows the reconstructed signal without IMF 1, IMF
2 and the trend (Figure 4.4). As a result of the filtering method, the signal is significantly
smoother. To deal with the known EMD-issue regarding end effects, the first and last seconds
of the signal are removed.

With the first and last second of the ringdown signals removed, a reduction in the previously
selected model order range is required. This process is automatic and depends on the available
number of samples. The new model order range is from p = 10 to p = 31, with a maximum
number of occurrences equal to 22. The resulting cluster plots are shown in Figure 4.5.

(a) Line 9-10 (b) Line 5-6

Figure 4.5: Cluster plot from both estimations on ringdown signal

Although the clusters in Figure 4.5 are not as closely spaced as for the constant load case in
Figure 4.2, all clusters have 22 occurrences. It can be observed that there are several trivial
modes present in both cluster plots, thus supporting the use of a clustering method.

Similar to the constant load case, line 9-10 has only one identified mode as seen in Figure 4.5a.
For line 5-6, as seen in Figure 4.5b, only the two most observable modes from the previous
case remain. This is expected, as the last mode would disappear among the ambient noise.
By extracting the modal components from the cluster plot and averaging the results, modes in
Table 4.3 are obtained.
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Table 4.3: Consistent modes for multiple model orders in ringdown variable load test

Results on line 9-10 Results on line 5-6
Freq. η Amp. Phase Freq. η Amp. Phase
[Hz] [rad] [Hz] [rad]
0.490 0.030 104.94 -0.65π 0.484 0.032 16.74 0.53π

0.710 0.056 20.61 -0.16π

As expected when comparing Tables 4.3 and 4.2, the deviations are larger than for the constant
load case. Regardless of this, the results give a good indication of modes present in the signal
with both frequency and damping close to those identified by PF. The difference is less than the
0.470 Hz mode from section 3.3 that changed almost 0.02 Hz in frequency and 0.015 in damping
with a variation in load. It can be noted that the frequency and the damping estimate in line
5-6 deviate a little more than for line 9-10. Seeing as this line is more affected by ambient
variations as seen in Figure 3.12, this is as would be expected. The phase shift between the
now approximately 0.49 Hz mode in the two areas is still about 180◦.
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Figure 4.6: Comparing reconstructed signal to post EMD-filtered signal

By reconstructing the signals, taking into account the one second cut in the beginning due to
EMD-filtering, the plots in Figure 4.6 are obtained. The reconstructed signal is compared to the
post EMD-filtered signal. The estimation for line 9-10 post-filtered measurements in Figure 4.6a
is good, even though ambient noise is included. The deviation in damping is barely noticeable,
and the reconstructed signal has a signal-to-noise ratio of 31.8 dB with most of the error located
early in the estimation. Line 5-6, as seen in Figure 4.6b, gives an approximation error slightly
smaller than that in line 9-10. The estimated modal components are still dominating the signal,
with a signal-to-noise ratio of the reconstructed signal equal to 34.6 dB.

Summarized Observations

• All the identified modal clusters contain 22 modes out of 22 possible.

• The clusters are distinct even though the conditions are noisy, supporting the hypothesis
of only small variations in true modes.

• Signal reconstruction substantiates the clustered result from PAO.
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4.1.3 Variable load - Ambient analysis prior to ringdown

The next step is to analyze the ambient data prior to the ringdown. The analysis is based on
the first 600 seconds shown in Figure 4.1, using the RRLS method discussed in section 3.2.
The rationale is that there is continuous excitation of modes in the system due to ambient
changes, making it possible to detect them. Figure 4.7 illustrates 35 seconds of ambient data
from the two lines investigated.

(a) Line 9-10 (b) Line 5-6

Figure 4.7: Part of the ambient data analyzed

It can be seen that the measurement in line 9-10 has a clear trend with small frequency
variations (Figure 4.7). The measurement in line line 5-6 is not as distinct, with lower power
transfer, and higher frequency and amplitude fluctuations.

Using the modal identification tool PF, modal content shown in Table 4.4 is identified one
second prior to the ringdown.

Table 4.4: Modes identified by PF in ambient data prior to ringdown in case 1

Mode Freq. [Hz] Damp. Ratio η
1 0.485 0.025
2 0.702 0.053
3 1.009 0.110

Before modal estimation can begin, the signal must be pre-filtered as shown in Figure 4.8 and
4.9.
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Figure 4.9: IMF plots from EMD-filter in line 5-6

Using the EMD-method, the ambient input signal is band-pass filtered, removing all IMFs
with a frequency above the electro-mechanical range in addition to all IMFs with a distinct
frequency less than 0.01 Hz. For both measured signals shown in Figures 4.8 and 4.9, IMF 5
through 9 were used in the denoised signal.

Feeding the described method with the filtered signal as a stream of data, clustering is done in
each timestep. As an illustration, a cluster plot after convergence is shown in Figure 4.10.
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(a) Line 9-10 (b) Line 5-6

Figure 4.10: Cluster plot from both estimations in ambient signal

Both line measurements result in a low damped mode cluster with a frequency just below
0.5 Hz. Figure 4.10b shows, in addition to 0.5 Hz mode, a cluster that is not as compact with
a modal frequency of approximately 0.6 Hz. With a lower density, higher damping and closer
proximity to the remaining noise, this mode can be weighed less in the tracking of critical
modes.

Extracting the identified modal components in each timestep, the automated modal tracking
shown in Figure 4.11 is obtained.

(a) Line 9-10 (b) Line 5-6

Figure 4.11: Mode-tracking of identified modes

Remembering that this is a Newton-Raphson-type method, it can be seen that the first 180
seconds are spent before convergence is reached. This period is defined with a high variance in
the resulting frequencies along with outliers that are not present for a longer period of time.
The extracted modal information at the end of estimation is shown in Table 4.5.

Table 4.5: Modal information at end of ambient data prior to fault

Results on line 9-10 Results on line 5-6
Freq. [Hz] η Freq. [Hz] η

0.485 0.02 0.485 0.035
0.645 0.085

Comparing Tables 4.5 and 4.4 shows that estimates from both lines identify the exact frequency
of the 0.485 Hz mode. For the damping ratio, line 9-10 underestimates it by 0.005, while line
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5-6 estimates it to be 0.01 above its actual value. In line 5-6, an additional mode is found.
This mode is closest to the 0.7 Hz mode, with some deviation in both frequency and damping.
As this is not as distinct as the 0.485 Hz mode in the cluster plot and that the damping ratio
is above 5 %, the 0.7 Hz mode is not pursued further. The variation in frequency and damping
of the 0.485 Hz mode on both lines can be seen in Figures 4.12 and 4.13, respectively.

(a) Line 9-10 (b) Line 5-6

Figure 4.12: Mode-tracking of most critical mode

After the first 180 seconds of tuning, the forgetting factor is increased to 0.999. This decreases
the variation in the estimation, and the next 200 seconds are spent with slow variations until
a more constant mode is found after about 400 seconds.

It can be noted that for mode-tracking in Figure 4.13, the damping ratio is used instead of
damping as shown in Figure 4.10.

(a) Line 9-10 (b) Line 5-6

Figure 4.13: Mode-tracking of damping ratio for mode in Figure 4.12

As seen in Figure 4.13, the damping ratio is estimated differently in the two lines. It can
however be seen that the development of each estimation shows the same tendencies, both
having the same decrease in damping ratio at about 450 seconds.

As a way of verification, the ambient data is used as input to the non-parametric Welch’s
method. Filtering and down-sampling the data to 6 Hz before applying the method gives the
detailed spectrum of low-frequency oscillation in Figure 4.14.
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(a) Line 9-10 (b) Line 5-6

Figure 4.14: Welch’s power spectrum of measured signal

Both lines give a clear peak of the spectral density around the 0.485 Hz mode. Line 5-6 gives
some additional peaks in the area of the 0.64 Hz mode, though it is not as clear as the 0.485 Hz
mode. Using 50 Hz data as input, the same conclusion is achieved.

Summarized Observations

• RRLS requires a long timewindow of data to converge when cold start is applied. To
shorten this window, an initially lower forgetting factor is required. This should be
increased to avoid large variations in the result.

• Clustering in an arbitrary timestep after convergence is met, shows a clear differentiation
of the identified modes compared to the remaining noise.

• The mode-tracking method gives an accurate estimation of frequency compared to PF
results, while there are some deviations in the damping.

• A comparison between identified modal components using RRLS and Welch’s power
spectrum verifies the presence of the 0.485 Hz mode.

4.1.4 Variable load - Ambient analysis after ringdown

In this case, the power system is of similar character before and after the fault. As no changes
have occurred in the physical system, the identified modal components post and prior to the
fault should ideally be the same. Using PF, modal components at the end of the measured
signal in Figure 4.1 were identified as shown in Table 4.6.

Table 4.6: Modes identified by PF in ambient data after ringdown in case 1

Mode Freq. [Hz] Damp. Ratio η
1 0.486 0.025
2 0.702 0.053
3 1.010 0.109

The modes in Table 4.6 deviates only slightly from Table 4.4. The small changes originate from
a different set point in the variable loads. The analysis is based on the ambient data after the
ringdown as shown in Figure 4.1.
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When initializing the RRLS method, one possible option is to base the starting guess on the
last estimation prior to the fault. This is not always a good option, as the modal content might
have changed during the fault. Applying the method using cold start, the mode-tracking results
shown in Figure 4.15 were obtained.

(a) Line 9-10 (b) Line 5-6

Figure 4.15: Mode-tracking of identified modes

Line 9-10 estimations yield, similar to the results prior to the fault, just one mode at the
approximate frequency of 0.48 Hz. Line 5-6 estimations in Figure 4.15b yields, in addition to
the estimated 0.48 Hz and 0.67 Hz modes found prior to the ringdown, a mode with a frequency
of approximately 0.28 Hz. Note that the same mode is present initially in the mode-tracking
shown in Figure 4.11b.

As the results from line 5-6 are s inconclusive, the cluster results and frequency variation of
the mode believed to be the most dominant are shown in Figure 4.16.

(a) Cluster plot from last timestep (b) Enlarging the 0.48 Hz mode

Figure 4.16: Mode estimation results from line 5-6

Looking closer at the clustering results shown from line 5-6, it can be seen that all clusters are
closely spaced for the converged case in Figure 4.16a; however, the consistency differs between
them. The cluster connected to the inter-area mode at 0.48 Hz contains 20 modes out of the 20
possible model orders tested. The 0.67 Hz and 0.28 Hz clusters contain only 14 and 12 modes
respectively, making them less consistent and thus less reliable. This may explain why the
0.28 Hz mode was not identified prior to the ringdown.

To get a better perspective when tracking the 0.48 Hz mode in line 5-6, the results are enlarged
as shown in Figure 4.16b. Comparing this with the similar results of the same mode in Figure
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4.15a, the same trend can be observed. After initial variations, the frequency gradually de-
creases in the time period from 800 to 900 seconds, before increasing slightly towards the end
of the measurements. A study of these tendencies may give insight into changes in the power
system load/generator variations.

The time varying damping ratio for the approximately 0.48 Hz mode is shown in Figure 4.17.
It can be observed that similar to previous tests, the damping ratio estimate is consistently
smaller in line 9-10 than in line 5-6.

(a) Line 9-10 (b) Line 5-6

Figure 4.17: Mode-tracking of damping on modes in Figure 4.15a and 4.16b

The end result of mode-tracking in each line is shown in Table 4.7. Looking at the damping
ratio, it is clear that the only critical mode is the 0.48 Hz. The last two modes in line 5-6 has a
damping ratio above the minimum. Especially the 0.285 Hz mode, which has a damping ratio
of more than 16 %. This mode is of special interest, since it was not discovered by PF and not
found in the ringdown, raising question of the validity of the method used.

Table 4.7: Modal information at end of ambient data post fault

Results on line 9-10 Results on line 5-6
Freq. [Hz] η Freq. [Hz] η

0.484 0.014 0.482 0.027
0.673 0.063
0.285 0.162

To evaluate the results, the EMD-filtered and downsampled signal is analyzed using Welch’s
method. The resulting power spectrum is shown in Figure 4.18. Both lines gives a clear peak
at 0.484 Hz. From Figure 4.18b it can be seen that line 5-6 has additional elevations in power
for 0.3 Hz and 0.68 Hz together with some other small peaks in power density. As the identified
modes in line 5-6 have frequencies identified by Welch’s method, it can be concluded that the
potential error is not caused by the RRLS method.
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(a) Line 9-10 (b) Line 5-6

Figure 4.18: Welch’s power spectrum of measured signal

Since the estimate of the filtered signal matches the result from Welch’s method, the next
source of error might be the filtering method creating additional modes. Knowing that the
EMD-method has its challenges, the post-filter power spectrum of line 5-6 can be compared to
the power spectrum estimated directly from the 50 Hz measurement. The spectrum shown in
Figure 4.19 is the pre-filtered power spectrum, where the electro-mechanical frequency range
is in focus.

Figure 4.19: Welch’s power spectrum of measured signal in line 5-6 prior to EMD-filtering

Apart from a small change of 0.001 Hz in the mode estimated to 0.484 Hz, it can be observed
that there is a clear change in power spectrum density for frequencies closer to zero in the post-
filtered spectrum. This shows that the EMD successfully removes low-frequency oscillations.
As the pre-filtered Welch spectrum identifies the same frequencies, they appear to be present
in the measured signal, thus supporting the presence of the identified modes.

Summarized Observations

• Analysis of the measurements on line 5-6 reveals an additional mode, not identified by
PF. This is however a mode that is only present in 12 out of 20 different model orders,
in addition to a high damping ratio of 16 %.

• The estimation of the most critical mode at approximately 0.48 Hz shows only small
deviation in frequency, while damping is lower than PF in line 9-10 and a little higher
than PF in line 5-6. This is consistent with the estimate prior to the ringdown.
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• The power spectrum is used to validate the frequency estimation, revealing that the EMD-
filtering and down-sampling left frequency in the electro-mechanical range unchanged. In
addition, the effect of high-pass filtering using EMD is noticeable in the spectrum.

Case 1 summary

From theory, it is clear that both ambient and ringdown analysis methods investigated in this
thesis are based on the same principles of a general difference equation and linear prediction
model. Although their principles are similar, the area of application differs, yet both arrive at
the same conclusion. The frequency estimation of the most critically low-damped mode (the
0.49 Hz mode), is close to perfect in all cases of ambient and ringdown analyses. The small
differences may simply be a result of load variations, changing the modal components slightly.

The estimation in damping does however differs a bit more. For the ringdown analysis, estima-
tion in both lines results in a close but slightly overestimated damping. For ambient analysis,
the damping results are not as conclusive, with a trend showing that the damping is underesti-
mated in line 9-10 and overestimated in line 5-6. However, both arrive at the same conclusion;
the mode damping is below the critical limit, similar to the result of the ringdown analysis.
The other two modes found in line 5-6 are not accurately estimated, with neither frequency
nor damping matching PF results.

With each cluster identifying a modal component, its presence and clarity in the signal is
indicated by the number of modal occurrences. A densely spaced cluster, composed of modes
from each investigated model order, indicates the clear presence of a linear mode. A more
spacious cluster consisting of slightly varying modes, with a number of occurrences below
that of the range investigated, indicates a multitude of possibilities; either the mode is barely
present in the signal, an error has occurred during filtering, the selected time-window captures
non-linear parts of the signal, or the sampling frequency selected is not appropriate.

It can be argued that clusters not containing modes from all model orders are to be neglected.
However, in doing so, valuable information on system behaviour in the presence of noise is
discarded. Even though the identified modes are not present in all cases, they still provide
information on power system behaviour and indicate quality of the measured signal.

For this case, it can be concluded that analysis of both ambient and ringdown data gives a
good indication of the most critical mode in the system, while remaining modes are difficult
to separate in ambient data. Ringdown analysis does however give a clearer signal, and the
resulting frequency and damping estimation is in general better for all modal components.

4.2 Case 2 - Line outage and disconnection

The second case is from a test with an outage of one of the two lines between buses 8 and
9 in Figure 3.8. This case will be presented in a similar manner as case 1. The acquired
measurements, including a fault after 600 seconds, are shown in Figure 4.20.
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(a) Line 9-10 (b) Line 5-6

Figure 4.20: Simulation data from PF in case 2

From the measurement on line 5-6 shown in Figure 4.20b, it can be noted that the power
transfer drops drastically at the moment of fault. Subsequently, the power transfer recovers
gradually to the initial value prior to the fault. For line 9-10 in Figure 4.20a, the oscillations
occur around the original operating point, which means the signal contains little low-frequency
variation.

4.2.1 Variable load - Ringdown analysis

The identified modes during ringdown in the variable load test are shown in Table 4.8, where a
large drop in frequency of the inter-are mode can be observed when compared to the previous
case shown in Table 4.2.

Table 4.8: Modes identified by PF during ringdown in case 2

Mode Freq. [Hz] Damp. Ratio η
1 0.421 0.020
2 0.702 0.053
3 0.998 0.107

Figures 4.21 and 4.22 show the EMD-filtering of the ringdown signal.
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Figure 4.21: IMF plots from EMD-filter results on line 9-10
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Figure 4.22: IMF plots from EMD-filter results on line 5-6

It can be noted that the EMD struggles slightly with the measurements from line 5-6 as shown
in Figure 4.22. Due to the increasing power transfer, the magnitudes of oscillation and thus
extrema in the signal are distorted. This makes the IMF-decomposition not as clear. Although
combining IMF 3 through 6 gives results in a denoised signal without the trend, it has no clear
linear tendencies needed for analysis. As seen in Figure 4.21, the signal has clear and distinct
oscillations. Applying PAO on the resulting signal illustrates the problems with the increasing
power transfer during ringdown as seen from the clustering results in Figure 4.23.
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(a) Line 9-10 (b) Line 5-6

Figure 4.23: Cluster plot from both estimations on ringdown signal

As seen in Figure 4.23, the estimation in line 9-10 with its clear oscillatory tendencies is without
a doubt conclusive. There is one mode in this signal with one dense cluster giving an average
frequency of 0.418 Hz. Similarly to case 1, the cluster contains 22 out of 22 possible modes.
The estimate in line 5-6 is not as conclusive with its three identified modal components, where
the corresponding clusters are without a clear center. The number of modal components in
each cluster is 22, 13 and 11 out of 22 for the 0.422 Hz, 0.678 Hz and 0.840 Hz, respectively.
The extracted modal information of each cluster is shown in Table 4.9.

Table 4.9: Consistent modes for multiple model orders in ringdown variable load test

Results on line 9-10 Results on line 5-6
Freq. η Amp. Phase Freq. η Amp. Phase
[Hz] [rad] [Hz] [rad]
0.418 0.017 112.14 -1.21π 0.840 0.032 2.15 -1.51π

0.422 0.052 6.85 -0.19π
0.678 0.076 9.37 -0.48π

When comparing the results in Table 4.9 to the PF estimation in Table 4.8, it is clear that
line 9-10 gives a good approximation of the inter-area mode. One of the modes identified in
line 5-6 has a frequency of 0.840 Hz and a damping ratio below the critical limit. Even though
this mode is only present in 11 out of 22 model order estimations and has a low amplitude,
it should still be considered, the problem being that it is not identified by PF. In addition to
this, the damping ratio of inter-area mode is estimated well above its actual value. Lastly, it
is observed that changing the timewindow of analysis has a great impact on the 0.678 Hz and
0.840 Hz modes. The 0.422 Hz mode remains clear in all tests, although still with a damping
ratio estimated at approximately 5 %. The reconstructed signals are shown in Figure 4.24.
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(b) Line 5-6

Figure 4.24: Comparing reconstructed signal to post EMD-filtered signal

Reconstructing the signal proves the estimation error in line 5-6, where the signal-to-noise ratio
of the reconstructed signal compared with the post EMD-filtered signal is only 9.5 dB. The
reconstructed signal in line 9-10 has a signal-to-noise ratio of 54.2 dB.

Summarized Observations

• Estimation of ringdown signals during an increase in power transfer yields bad approxi-
mations compared to estimations of oscillations around an operating point.

• Accuracy of estimation of ringdown signals is dependent on where in the system the
measurements originate.

4.2.2 Variable load - Ambient analysis prior to ringdown

When analyzing the same ambient data for the first 600 seconds of the signal in Figure 4.20,
the result is similar to that shown in section 4.1.3. These details will thus not be repeated for
case 2.

4.2.3 Variable load - Ambient analysis after ringdown

The next step in testing the method is to check whether or not the ambient data after the line
outage contains the same modal information as in the ringdown. Ambient data after the fault
seen in Figure 4.20 is used as a basis to test the RRLS method. The resulting estimation is
then compared to the identified modal components shown in Table 4.10. It can be seen that
the frequency of the inter-area mode has dropped further after the ringdown to 0.414 Hz in
addition to its damping decreasing to 1.7 %.

Table 4.10: Modes identified by PF in ambient data after ringdown in case 2

Mode Freq. [Hz] Damp. Ratio η
1 0.414 0.017
2 0.697 0.052
3 0.988 0.111
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The results of the RRLS method can be seen in Figure 4.25.

(a) Line 9-10 (b) Line 5-6

Figure 4.25: Mode-tracking of identified modes

Analysis of measurements in line 9-10 reveals only one mode, with a frequency after convergence
of 0.412 Hz. This is close to the 0.414 Hz mode that is given by PF, where the difference can
be explained simply by the fact that PF results are for a steady-state version of the dynamic
system.

The results for line 5-6 differ from what is expected. The previously known inter-area mode
at the frequency (from PF) of 0.414 Hz is not present. Instead, three modes are found at the
frequency of 0.66 Hz, 0.28 Hz and 0.12 Hz. The results of clustering indicates that this result is
not to be trusted completely. The 0.66 Hz mode is found in all of the 20 possible model orders.
The last two modes of 0.28 Hz and 0.12 Hz are on the other hand barely identified in 12 and
14 instances, respectively.

Extracting the damping ratio of the 0.412 Hz mode in line 9-10 and the 0.66 Hz mode in line
5-6 gives the relation in Figure 4.26. It can be seen that the damping of both modes converge,
although only the 0.412 Hz mode in line 9-10 is critically damped.

(a) 0.412 Hz mode in line 9-10 (b) 0.66 Hz mode in line 5-6

Figure 4.26: Damping of modes in Figure 4.25

Table 4.11 shows the estimated modal content in each signal. It can be observed that only
the 0.412 Hz is critically damped and should be carefully monitored. All the modes in line 5-6
have a damping above the critical limit. What should be kept in mind is whether or not this
result can be trusted. It is observed that this line is noisy, with no clear modal components
that could be seen by visual inspection.
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Table 4.11: Modal information at end of ambient data post fault

Results on line 9-10 Results on line 5-6
Freq. [Hz] η Freq. [Hz] η

0.412 0.009 0.66 0.067
0.28 0.19
0.12 0.225

To investigate the validity of the results, the signal is analyzed using Welch’s method as seen in
Figure 4.27. The post-filtered signal for line 9-10 give one distinct mode at 0.412 Hz, supporting
the frequency found by the RRLS method. The spectrum shown in Figure 4.27 does however
not indicate any clear modal components. To verify if this is a result of poor filtering, the
spectrum is found for the 50 Hz pre-filtered signal as seen in Figure 4.28. Apart from the low-
frequency components below 0.1 Hz, the spectrum arrives at the same conclusion that there
are no clear frequencies in this signal.

(a) Line 9-10 (b) Line 5-6

Figure 4.27: Welch power spectrum of measured signal

Figure 4.28: Welch power spectrum of measured signal in line 5-6 prior to EMD-filtering

Summarized Observations

• The quality of estimation is dependent of the quality of the signal which, in turn depends
on where the measurement origins in the power system.

• Line 9-10 has distinct oscillatory tendencies that can easily be identified, while line 5-6
does not.
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Case 2 summary

By comparing the results in line 9-10, it can be seen that the modal content changes after
the fault. This results in the modal identification in ringdown analysis matching the results
of ambient analysis after the fault. The ambient analysis prior to the fault does however not
match, as the system topology has changed. The damping ratio in the ringdown is closer to
the actual value, while the ambient analysis tends to underestimate it.

For line 5-6, it is concluded that the measurements are not good for estimation. With a signal
without any distinct linear tendencies, the methods used struggle to identify modal components
during and after the fault. This shows that the placement of PMUs should not be arbitrary.

4.3 Case 3 - Analysis of voltage angle for line disconnection

As discovered in the previous case, not all measurements are suitable for analysis. The power
transfer in certain lines may be contaminated with noise and outliers, giving no clear linear
behaviour that the methods in this thesis can utilize. To investigate other possibilities in
frequency and damping estimation, the voltage angle at the connected bus terminals is inves-
tigated. The reason for choosing the voltage angle is its close relationship with active power in
power system analysis. The objective of this case is to analyze the same fault as in case 2, the
only difference being that the voltage angle at the connected terminal is measured instead of
the active power transfer. This will render the amplitude (and phase) less indicative, although
they are still used for clustering purposes.

(a) Line 9-10 (b) Line 5-6

Figure 4.29: Simulation data from PF in case 3

4.3.1 Variable load - Ringdown analysis

The extracted voltage angles shown in Figure 4.29 display a clear ringdown for both lines. This
is ascertained in the EMD-filtering results in Figure 4.30. There is barely any noise present,
and both have clear linear oscillatory tendencies.
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Figure 4.30: IMF plots from EMD-filter

Testing PAO on this signal results in the cluster plots in Figure 4.31.

(a) Line 9-10 (b) Line 5-6

Figure 4.31: Cluster plot from both estimations on ringdown signal

It can be seen that for line 9-10, one cluster is identified for all 22 possible model orders, similar
to the case with analysis of active power transfer. For line 5-6 there are two clusters identified,
where one has a much lower amplitude and a higher damping than the other. The cluster with
the highest amplitude has 22 out of 22 occurrences, while the other has only 11. The modal
components estimated are shown in Table 4.12.

Table 4.12: Consistent modes for multiple model orders in ringdown variable load test

Results on line 9-10 Results on line 5-6
Freq. [Hz] η Freq. [Hz] η

0.419 0.019 0.418 0.018
0.288 0.146

Both lines identify the inter-area mode at approximately 0.42 Hz with a damping ratio of just
under 2 %. For line 5-6, a second mode is identified. This mode has a large damping ratio in
addition to only being present in half of the possible model orders tested. Using the estimated
modal information, the reconstructed signal reveals an almost perfect match as seen in Figure
4.32.
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(b) Line 5-6

Figure 4.32: Comparing reconstructed signal to post EMD-filtered signal

Even though the amplitude only indicates angle variations, the reconstruction gives an overview
of model fit. Comparison to the post-filtered signal in line 9-10 gave a signal-to-noise ratio of
50.4 dB, while line 5-6 gave 60.3 dB, which is far greater than the result for case 2.

Summarized Observations

• Using the voltage angle gives good approximation of the inter-area oscillatory modes

• Voltage angle measurements contain less noise and non-linearities than active power
transfer measurements

• Voltage angle is a good indicator of small signal stability

4.3.2 Variable load - Ambient analysis prior to ringdown

Even though the ringdown signal contained little noise, the ambient data shows a clear need for
filtering. As seen in Figures 4.33 and 4.34, there is both high-frequency noise and low-frequency
components that must be removed.
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Figure 4.33: IMF plots from EMD-filter results on line 9-10 utilizing IMF 4-9
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Figure 4.34: IMF plots from EMD-filter results on line 5-6 utilizing IMF 3-8

Test results show that the inter-area mode is present in both lines when tracking modal compo-
nents. From the analysis of line 5-6, one additional low frequency mode of 0.11 Hz is identified
as seen in Figure 4.35.
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(a) Line 9-10 (b) Line 5-6

Figure 4.35: Mode-tracking of identified modes

The damping ratio of the 0.11 Hz mode is 36 %, and appears only in 12 out of 20 model order
simulation. Therefore, it is excluded from further study. The inter-area mode is present in all
of the 20 model order simulations, with a damping ratio shown in Figure 4.36. The damping
ratio is slightly lower in line 9-10 compared with line 5-6, although both are underestimated
when compared to the 2.5 % damping estimated by PF.

(a) Line 9-10 (b) Line 5-6

Figure 4.36: Mode-tracking of damping on inter-area mode in Figure 4.35

The exact result of estimation is shown in Table 4.13, where a comparison with PF confirms
that the measurement analysis gives a good estimation of the inter-area mode.

Table 4.13: Modal information at the end of ambient data prior to fault

Results on line 9-10 Results on line 5-6
Freq. [Hz] η Freq. [Hz] η

0.486 0.017 0.485 0.022
0.11 0.36

For a final validation of the identified modes, the signal is analyzed using Welch’s method as
seen in Figure 4.37. Both measured signals show a clear peak at 0.485 Hz, confirming that the
inter-area mode is dominant in the voltage angle measurement.
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(a) Line 9-10 (b) Line 5-6

Figure 4.37: Welch power spectrum of measured signal

Summarized Observations

• Voltage angle measurements give a good indication on the most dominant mode in the
signal.

• Analyses show that ambient data gives a perfect estimation of frequency, while it tends
to underestimate the damping ratio.

• Power spectrum analysis corroborates the method used by arriving at the same conclusion
as in both RRLS and PF.

4.3.3 Variable load - Ambient analysis after ringdown

From section 4.2.3, the analysis of ambient data after the ringdown was inconclusive. This
was a result of bad approximation in the reconstructed signal in line 5-6, in addition to the
absence of the expected inter-area mode in the same line. The results in this test are of
particular interest, as they may corroborate the hypothesis that the use of voltage angle in
modal estimation gives a better approximation.

Decomposition of the measured signals are shown in Figures 4.38 and 4.39, where the results
of detrending are clearly seen in the denoised signals.
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Figure 4.38: IMF plots from EMD-filter results on line 9-10 utilizing IMF 4-9
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Figure 4.39: IMF plots from EMD-filter results on line 5-6 utilizing IMF 3-6

Analyzing the denoised signal using the RRLS method combined with clustering, results in the
identified frequencies shown in Figure 4.40.
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(a) Line 9-10 (b) Line 5-6

Figure 4.40: Mode-tracking of identified modes

From the frequency plot, it is clear that there are major differences compared with case 2 in
section 4.2.3. Line 9-10 finds one clear frequency converging at 0.412 Hz. In addition, a second
mode is initially found, although it is quickly ruled out by the clustering method as convergence
approaches. Line 5-6 does in this case find two modes, instead of three for the previous case. Of
the two modes, one is the inter-area at 0.412 Hz, not identified in the previous case. This mode
shows the same development as the identified mode in line 9-10. The second mode identified
is at the frequency of 0.249 Hz, although it is not consistent throughout the measured time
period. The damping ratios of the inter-area mode identified are shown in Figure 4.41.

(a) 0.412 Hz mode in line 9-10 (b) 0.412 Hz mode in line 5-6

Figure 4.41: Damping of modes in Figure 4.40

Similar to the frequency estimation, damping ratio in the two lines show the same character-
istics, both converging at approximately 0.8 %, which is below the critical limit at 5 %. The
extracted information of all identified modes are shown in Table 4.14.

Table 4.14: Modal information at end of ambient data post fault

Results on line 9-10 Results on line 5-6
Freq. [Hz] η Freq. [Hz] η

0.412 0.008 0.412 0.008
0.249 0.29

The 0.249 Hz mode, identified in line 5-6, shows a damping of more that 29 %. A damping
ratio of this magnitude is too high to be of interest, and the mode is neglected.
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The result of modal estimation in both lines give a good approximation of frequency in the
0.412 Hz mode when compared to the modes estimated by PF in Table 4.10. With both lines
estimating the frequency at 0.412 Hz and PF identifying it at 0.414 Hz, the estimation error
is approximately zero. The damping ratio is however underestimated in both lines. With the
voltage angle as a variable, the lines give the same damping ratio of 0.8 %, which is close to the
estimate from line 9-10 in case 2. From this, it is observed that estimates based on the voltage
angle in all lines give the same result as the estimates based on lines with a single oscillatory
mode in the measurement of active power transfer. Remembering that only the dominant,
inter-area mode is identified, it may not always be the best solution as local modes are not
identified.

Even though the results seem valid, Welch’s method is applied as seen in Figure 4.42.

(a) Line 9-10 (b) Line 5-6

Figure 4.42: Welch’s power spectrum of measured signal

Both signals show one clear peak, although with a small difference between them of 0.001 Hz.
As Welch’s method only gives an indication of frequencies in a certain range, the exact peak
is not always the true frequency. The conclusion is the same nevertheless, with both signals
having one clear mode.

Summarized Observations

• Voltage angle results show a similar modal estimation in all measured signals.

• All measured lines find the approximately 0.41 Hz inter-area mode and none of the re-
maining modes.

• Damping ratio is slightly underestimated in estimations based on voltage angle.

Case 3 summary

A comparison of the ambient and ringdown results shows that the system changes during the
fault. The modal content prior to the fault does not match that during ringdown or that of
the ambient data after the fault. The results show that the system during ringdown is in a
transition state, although closer to that in the ambient signal after. During the ringdown, the
modes change from a pre-fault state to a post-fault state. The frequency and damping gives a
good indication of the state the system moves towards.
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The damping ratios from the ambient data are in general estimated below its actual value.
When the signal has a clear, oscillatory tendency, it is expected to appear with a lower damping
ratio than it actually has. Since the modal components are under constant excitation, they will
appear with a generally lower damping ratio. Although difficult to approximate accurately, it
gives a good indication of small signal stability.
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5 Testing and validation on PMU data

The advantage of simulated data is that validation methods are often readily available. A
disadvantage is that the dynamics may not reflect the measurements from real world PMUs.
There are several reasons for this:

• Assumptions of system input (random load variations, etc.)

• Measurement noise

• Unforeseen dynamics in the complex power system

This section contains analysis of different measurements from PMUs in the Nordic grid. Some
of them include incidents, like small disturbances to induce ringdowns of various quality, which
may or may not represent the true modal characteristics of the system. Others only comprise
ambient data, electro-mechanical oscillations mixed with noise, trends and non-linear, slow
dynamics. The origin of these dynamics is not known to the authors of this thesis, as no
a priori knowledge of the signal content is available. Hence the only evaluation alternative
is to compare them against each other, and attempt to extract valuable information of the
underlying dynamics.

5.1 Case 1 - 10 Hz

The first case involves one hour of power flow measurements before, during and after a large
disturbance in the Nordic Grid.

(a) Ringdown and ambient data from the Nordic
Grid

(b) Non-linear and linear portions of ringdown

Figure 5.1: Measurements from a large disturbance in the Nordic Grid, with ringdown portion
expanded.

The PMU that captured this incident provides only 10 Hz measurements, which has various
consequences. No pre-filtering of high frequency noise will be possible, so the purpose of EMD
is reduced to removal of trend and low-frequency, non-linear variations (below approximately
0.2 Hz). Downsampling is not performed, as a lot of information is lost with the already low
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sampling rate, and 10 Hz is not too high for identification of electro-mechanical modes with
neither Prony nor RRLS.

At t = 1872 seconds, the power flow drops to below half of its pre-disturbance state. The
following ringdown can, with visual inspection, be determined to have clear, sinusoidal features.
However, the first portion of the ringdown contains non-linear characteristics, and is unusable
for the linear analysis of Prony. This concept will be demonstrated further in this case study.
For now, Prony analysis will be applied to the linear portion, which will give a good indication
of the true modal characteristics of the system.

5.1.1 Linear portion of ringdown signal

(a) Cluster plot of ringdown
(b) Cluster plot, showing variation in damping
estimate

Figure 5.2: Cluster plots of ringdown signal

The (average) results from Figure 5.2 are presented in Table 5.1.

Table 5.1: Ringdown: dominant mode(s)

Freq. Damp. Amp. Phase # occurrences
[Hz] Ratio [rad]
0.970 0.037 2.45 -1.65π 27/27

Figure 5.2 shows that the modes are moving very little for varying model order, which indicates
strong influence on signal dynamics. This is supported by 100% occurrences of this mode, i.e.
the mode is found for all model orders. Additionally, all trivial modes are of low-amplitude, so
the fit should be good as well. This is verified in the reconstruction.
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Figure 5.3: Reconstruction of modes, in this case one decaying sine wave

5.1.2 Including non-linear portion in linear ringdown analysis

This section is dedicated to show the importance of choosing the correct signal and time
window for Prony analysis. After a large disturbance, small-signal stability is not sufficient
for describing the observed phenomena. The relevant field is called large-signal stability, and
includes non-linear, sub-transient behaviour. However, it is not trivial to determine where the
non-linear effects terminate and linear models are applicable. This highlights one benefit of
the applied method: only the modes with clear impact on the signal will be extracted. The
cluster plot in Figure 5.4 contains more valuable information - Prony uses trivial modes close
in frequency, with high amplitude and damping, for fitting of the sub-transient portion.

(a) Cluster plot focusing on frequency and ampli-
tude

(b) Cluster plot, showing variation in damping
estimate and amplitude

Figure 5.4: Cluster plots of non-linear ringdown signal

The (average) results from Figure 5.2 are presented in Table 5.2.

Table 5.2: Ringdown: dominant mode(s)

Freq. Damp. Amp. Phase # occurrences
[Hz] Ratio [rad]
0.966 0.047 7.36 0.21π 43/49
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Comparing Table 5.2 with Table 5.1 shows that the dominant mode is extracted even with the
non-linear portion. The damping ratio is off with 1%, which is not unacceptable - bot still not
as accurate as it could be. The amplitude and phase have changed greatly, which is expected
as the analysis starts at an earlier time. It can be observed that the cluster is slightly more
spread out, and the number of occurrences is less than 100 %.

Figure 5.5: Reconstruction of transient behaviour including nonlinear portion

The reconstruction reveals a trade-off between estimating the non-linear and linear portion (in
the least-squares sense), and consequently the estimation of the linear characteristics suffers,
although not dramatically.

Summarized Observations

• Clear ringdowns are indeed obtainable from a real grid.

• For 10 Hz sampling, EMD-filter acts as a high-pass filter.

• Selecting the appropriate time-window yields decisive results.

• Including non-linear portions will corrupt the estimation, yet Prony may still yield usable
results.

5.1.3 Ambient data prior to ringdown

Around half an hour of data is available for ambient analysis before the disturbance. Only one
mode was observable in the ringdown portion, and although that was after the disturbance,
the ambient analysis should reveal a mode in the same frequency range. As the ringdown
response is the impulse response of the system, this is indeed the only mode that should be
observable at the location, for the given operating state. Due to limited research in the area, it
cannot be directly deduced that this will be the only mode observable in the measured ambient
data. Indeed, it will be shown that the ambient data before the disturbance contains additional
frequency content in the electro-mechanical range.
As before, the ambient data is pre-filtered with the Empirical Mode Decomposition.
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Figure 5.6: IMF plot of EMD result, extracting IMF 1-5

Before proceeding with RRLS, a small consideration of the filtering is presented. As the EMD
extracts IMFs from a frequency range, the number of IMFs has a great impact on the resulting
frequency spectrum.

(a) Using IMF 1-5 (b) Using IMF 1-7

Figure 5.7: Comparison of Welch’s power spectra of measured signal with varying IMF composition

In Figure 5.7, the frequency spectra are shown for the extraction of IMF 1-5 and IMF 1-7.
Observe that excluding IMF 6 - 12 and the trend does not alter the frequency range of interest.
This goes a long way in verifying EMD as a high-pass filter. Additionally, no changes are made
to the high-frequency spectrum, as the first IMF extracted is IMF 1. From both spectra, a
clear spike is visible at 1 Hz, and another around 0.25 Hz. A flatter peak can be seen around
0.8 Hz.

Continuing with IMF 1-5, RRLS is applied to the whole data set.
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Figure 5.8: Mode-tracking of identified modes in PMU signal

Figure 5.8 shows that RRLS finds all three frequencies, although with different degrees of
certainty. This is seen in Figure 5.9, presenting the cluster plot at a timestep around 1700
seconds - the cluster at 1 Hz is much more compact than the other two. The averaged values
for this cluster plot are shown in Table 5.3.

Figure 5.9: Mode-tracking of identified modes in PMU signal

Table 5.3: Modes identified prior to ringdown

Mode Freq. [Hz] Damp. Ratio η # occurrences
1 0.994 0.029 20 / 20
2 0.756 0.068 12 / 20
3 0.235 0.26 18 / 20

The 0.25 Hz mode has a very high damping, which makes it less interesting than the two others.
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The 1 Hz mode is identified relatively accurately, considering that the frequency should not be
expected to be fixed for the volatile ambient data. RRLS has not identified the 0.75 Hz mode
in the middle part. It looks like it should converge around 250 seconds, yet the results are not
decisive enough for the clustering algorithm until 800 seconds. The damping plots of the two
higher frequencies are shown in Figure 5.10.

(a) Damping ratio of the 1 Hz mode (b) Damping ratio of the 0.75 Hz mode

Figure 5.10: Damping ratio of the two most critical modes

When RRLS finds the 0.75 Hz mode, it determines the damping to be 6%. This is quite low,
and could easily be confused for a system mode. If the ambient analyzer identifies low-damped
electro-mechanical oscillations that are not related to the system dynamics, false alarms can
be tripped. Nonetheless, the low consistency of the mode estimate indicates limited trustwor-
thiness. Further investigation of ambient data and behaviour of load variations could facilitate
further improvement of the ambient analyzers.

Summarized Observations

• The 1 Hz mode identified in the ringdown is indisputably distinguishable in the ambient
data.

• Additional modes are observed in the ambient data. Their presence in the signal is
indicated by both Welch’s method and RRLS, which increases their credibility. However,
they are probably not related to the system modes, as they are not observable in the
ringdown.

5.1.4 Ambient data after ringdown

As the ringdown fades out, the measurements return to their common, ambient state. The
same analysis procedure is followed: EMD, Welch and RRLS with Clustering.
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Figure 5.11: IMF plot of EMD result, extracting IMF 1-6

Figure 5.12: Comparison of Welch’s power spectrum in measured signal with and without EMD-
filtering

The sharp spike at 1 Hz is now gone, and a rounder peak has taken its place. It is still
distinguishable, yet not as pure as before, and may indicate that this frequency is somewhat
varying. Around 0.4 Hz, there is a smaller bump, but not large enough to be decisive. The
following shows the results from RRLS.
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(a) Identified modal components (b) Closer inspection of the 1 Hz mode

Figure 5.13: Tracking of frequency of estimated modes

Figure 5.14: Damping of 0.96 Hz mode

Figure 5.15: Clustering result after convergence
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Table 5.4: Modes identified after ringdown

Mode Freq. [Hz] Damp. Ratio η # occurrences
1 0.963 0.062 18 / 20

RRLS successfully identifies the 1 Hz mode in the complete time window. Its damping is
actually increased to around 6 %, from the ringdown estimate of 3.7 %. This is a strange
phenomenon, as both these values should describe the same system, provided no other changes
or control actions have occurred. Unfortunately, no knowledge of the system itself is available,
so the evaluation of whether this is due to system changes or limitations of the method is
difficult. The forgetting factor µ has a high impact on the results, and bad tuning of this could
certainly yield misleading results. The implemented linear increase in µ may be unsuitable
since its effect is closer to logarithmic than linear. Time-varying forgetting factor is indeed
a complicating matter [18] [38], and the approach with clustering may further complicate the
choice of this parameter. However, if the algorithm is unable to identify clusters, this means
that the regular RLS approach (i.e. one model order and no clustering) would be very sensitive
to the choice of model order.

Summarized Observations

• Only the 1 Hz mode is identified in ambient measurements after the ringdown.

• The damping is higher than in the ringdown. This could be due to control effects, or
badly tuned forgetting factor.

Case 1 summary

Real-world signals introduce new challenges, which are not experienced to the same extent in
simulated data. Apparently, the ambient data has richer frequency content than observed in
the ringdown. The additional signal mode at 0.75 Hz could easily be mistaken for real system
dynamics if no transient information was available. All three portions clearly identified the
presence of the low-damped 1 Hz mode, which strongly suggests that this is a system electro-
mechanical mode with critical damping. The other two could not be identified in the ringdown,
and should not be mistaken for system modes. They do however indicate that ambient mea-
surements contain frequencies in the electro-mechanical range that may not originate from
system dynamics. Additionally, the issue of forgetting factor could be very important for cor-
rect identification of modal information, in particular damping. Further investigation on this
issue is advised to reduce the sensitivity of parameter choice.

5.2 Case 2

The signal analyzed in this case is the same that which was shown in Figure 2.1. The same
is shown in Figure 5.16, where all ambient data prior to and after the ringdown provided by
Statnett is included.
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(a) Ringdown and ambient data from the Nordic
Grid

(b) Ringdown-portion of signal

Figure 5.16: Measurements from a disturbance in the Nordic Grid, with ringdown portion expanded.

The PMU data from this incident is sampled at 50 Hz, providing the possibility of pre-filtering
high frequency noise. The ringdown signal is unfortunately not as distinct as that shown in
Section 5.1, although it serves its purpose on aspects in the methods not yet illustrated.

Of important note is the value of data quality. Not only the placement of the PMU, but how it
is measured is vital. When analyzing ambient signals, a long enough data stream is important
to ensure that convergence is obtained. In the provided data, generation outage occurs after
only 81 seconds.

5.2.1 Ringdown analysis

The ringdown portion of the signal is the same that was analyzed in the paper in appendix A.

Figure 5.17: Cluster plot of ringdown signal

Based on analysis using PAO and resulting clustering shown in Figure 5.17, the mode in Table
5.5 is obtained.
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Table 5.5: Ringdown: dominant mode(s)

Freq. Damp. Amp. Phase # occurrences
[Hz] Ratio [rad]
0.476 0.116 48.08 0.45π 21/30

The cluster plot in Figure 5.17 shows a signal full of noise and non-linearities, where the
identified cluster differs both in damping and amplitude for varying model orders. In addition,
the presence of high amplitude noise modes, although well damped, indicates that the signal
is affected by non-linearities. For the clear signals tested earlier, the identified mode is present
in all model orders. For this case, only 21 of the 30 different model orders tested included the
identified mode, indicating that clustering results may be used as an indicator of signal quality.

Reconstruction of the estimated mode indicates that it is the dominating part of the measured
signal as seen in Figure 5.18.

Figure 5.18: Reconstruction of modes, in this case one decaying sine wave

With a signal-to-noise ratio of 14 dB, the reconstructed signal proves the presence of noise,
where variable frequency in measured ringdown signal gives an estimation inaccuracy.

Summarized Observations

• Non-linearities affect the ringdown analysis, as several high amplitude and damping trivial
modes are generated.

• Number of occurrences of the most dominant mode in the cluster indicates the existence
of non-linearities in the signal. If the number of occurrences is low, the oscillations are
not just dominated by linear modes.
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5.2.2 Ambient data prior to ringdown

With only 81 seconds of data prior to ringdown, the RRLS method implemented will not
converge as it is. In order to obtain a credible result, the forgetting factor is kept at 0.9 for
a longer period of the measured signal, before gradually increasing to 0.999 midway through
the window of analysis. As a result, the estimation outcome is not completely trustworthy,
due to the portion of measurements that is forgotten and the fact that only a small part of
signal remains to validate the convergence. Using a non-parametric method such as Welch for
verification of the estimated modes is no longer as robust, since it is affected by the smaller
timewindow.

Figure 5.19 shows pre-filtering using the EMD-technique. With 50 Hz sampling, it is possible
to identify and subsequently remove high frequency noise. The resulting denoised signal in red
is a combination of IMF 4 through 7.
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Figure 5.19: IMF plot of EMD result, extracting IMF 4-7

With further analysis depending on the quality of the filtered signal, the stability of filtering
is important. A comparison of power spectrum before and after filtering would indicate if the
signal is modified, as seen in Figure 5.20.

(a) Complete result of spectra (b) Spectra in electro-mechanical range

Figure 5.20: Welch’s power spectra of measured signal
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Figure 5.20a shows the entire resulting spectrum of the pre- and post-filtered signal, both
of which are sampled at 50 Hz. As seen, the filtered spectrum indicates effective removal of
all frequencies above approximately 4 Hz, with a clear decrease in power. Figure 5.20b gives
a better view of the frequencies in the electro-mechanical range, where it can be seen that
frequencies below 0.2 Hz have a significantly lower power level. For frequencies in the electro-
mechanical range, it can be observed that filtering using EMD maintains the same power level,
with only limited adjustments.

The next step is to estimate modal components in the EMD-filtered signal using the RRLS
method, the result of which can be seen in Figure 5.21.

(a) Frequency (b) Damping ratio of the 0.467 Hz mode

Figure 5.21: Mode-tracking of identified modes in PMU signal

As seen in Figure 5.21a, one mode indicates convergence at a frequency of 0.467 Hz. The same
mode is shown with damping in Figure 5.21b, where it can be noted that convergence is not
as assured. With a downward trend on the damping, it gives an indication that convergence
has not yet been achieved.

For the second mode with a frequency ending at 0.220 Hz, the damping is of such a magnitude
that it is excluded from further analysis, although it can be noted that this mode was not
indicated in Welch’s power spectrum. Studying the clustering in one of the last timesteps
indicates that the resulting modes are the ones actually present as seen in Figure 5.22.
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Figure 5.22: Clustering result after convergence

With two distinct clusters, both with occurrences in all of the 20 possible model orders, the
number of modal components are clear. However, convergence is questionable, as the clusters
are spacious. The extracted modal information is given in Table 5.6.

Table 5.6: Modes identified prior to ringdown

Mode Freq. [Hz] Damp. Ratio η # occurrences
1 0.467 0.095 20 / 20
2 0.220 0.35 20 / 20

With a damping ratio of 9.5 %, the 0.467 Hz mode is well above the critical limit. It can be
noted that the result of analysis using Welch’s method indicates a mode in the area of 0.46 Hz
as seen in Figure 5.20b, thus validating the result. The mode with a frequency estimated at
0.22 Hz, had a corresponding damping ratio equal 35 %.

Summarized Observations

• The timespan of ambient data must be of a length large enough to ensure convergence.
In this section, the timespan of just over a minute is too short to give a convincing
convergence.

• PMU-data sampled at 50 Hz improves pre-filtering using EMD, as it is possible to identify
high-frequency noise at this sampling rate.

• Power spectral density indicates that the EMD-filter technique successfully removes both
high frequency noise and low-frequency trend without altering modes in the electro-
mechanical range.
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5.2.3 Ambient data after ringdown

With two and a half minutes of data after ringdown, the timewindow is almost twice that of
the ambient data prior to the event.
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Figure 5.23: IMF plot of EMD result, extracting IMF 4-8

Figure 5.23 shows the Empirical Mode Decomposition, where IMF 4 through 8 are utilized for
further analysis. The quality of filtering is tested using Welch’s method as seen in Figure 5.24.

(a) Complete result of spectra (b) Spectra in electro-mechanical range

Figure 5.24: Welch’s power spectra of measured signal

Similar to the data prior to the ringdown, Figure 5.25a indicates a clear filtering of high
frequency noise. With more data to analyze, the spectrum is of higher detail than what was
observed in Figure 5.20. This is clear when studying Figure 5.24b, where it can be seen that
there has been only limited modifications in the electro-mechanical range. With the cutoff
frequency in the lower region at 0.1 Hz, it can be noted that one of the two peaks with the
highest power density is located just above with a frequency of 0.14 Hz.

Continuing with IMF 4-8 as validated by the spectrum, RRLS is applied, the result of which
is presented in Figure 5.25.
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(a) Frequency (b) Damping ratio of the 0.455 Hz mode

Figure 5.25: Mode-tracking of identified modes in PMU signal

Figure 5.25a shows the identification of two modes in the signal, both of which appear in the
power spectrum in Figure 5.24b. Both modes appear continuously except the highest frequency
that contains a few seconds of missing results; however, it can be noted that this is prior to
convergence.

The mode with the highest frequency, estimated at 0.455 Hz, is the one with the lowest damping.
Figure 5.25b indicates that convergence in this mode is obtained approximately 80 seconds after
the fault, where damping ratio stabilizes around 14 %.

The cluster plot in Figure 5.26 shows two clusters clearly separated from the remaining noise.

Figure 5.26: Clustering result after convergence

Both clusters identified contain 20 modal components from 20 different model order simulations,
giving credibility to the estimate. The extracted modal information is presented in Table 5.7.
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Table 5.7: Modes identified after ringdown

Mode Freq. [Hz] Damp. Ratio η # occurrences
1 0.455 0.14 20 / 20
2 0.146 0.48 20 / 20

With a damping ratio at 14 %, the 0.455 Hz mode is well within critical damping limits. For
the second mode at 0.146 Hz, the damping ratio is about 48 %.

Summarized Observations

• A longer stream of measurements improves the estimation accuracy of both RRLS and
Whelch’s method.

• Although highly damped, RRLS estimates two modes accurately compared with results
from Welch’s method.

• The cluster plot shows two dense clusters, both of which are present for the duration of
the measured signal.

Case 2 summary

In this case with loss of generation, the change in frequency is limited when studying the
mode with lowest damping ratio. With a variation of 0.02 Hz, the difference may simply be
estimation error. The highest frequency estimated is during the ringdown, where the mode is
estimated at 0.476 Hz. This is however from a signal that by visual inspection is not completely
dominated by linear trends, and the result should be questioned because of the lower number
of occurrences in the cluster.

The frequency estimated both prior to and after the ringdown matches those found by the
respective analyses using Welch’s method, increasing the estimation credibility.

The damping ratio is well within critical limits in both ambient and ringdown. The lowest
damping ratio is estimated in the ambient data prior to the fault at 9.5 %, indicating that this
area is sufficiently damped.
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6 Concluding remarks and further work

A major concern of signal analysis is undoubtedly the data quality and content. Appropriate
analysis of PMU measurements for electro-mechanical oscillations requires knowledge of the
underlying phenomena. Performance of any signal analysis method is never better than the
quality of the signal itself. Identifying a suitable area of measurement in the power system
where ambient data along with ringdown data contain clear linear oscillations, is far from a
trivial issue. Ambient data is particularly difficult, as visual inspection of both frequency and
damping is hindered by the continuous, hidden inputs. A toolbox of comparable methods will
reduce the impact of any one method’s weaknesses, and facilitate better understanding of the
measured values. Although the three methods investigated here reinforce each other, they
should be accompanied by other methods with different assumptions and strengths.

Prony Analysis has been well established for system identification, yet requires clear ringdowns
without significant noise or non-linearities. Much work in this thesis has gone towards im-
proving the accuracy and robustness of PA as a signal analysis tool, while at the same time
providing valuable insights into its main characteristics. Its sensitivity regarding model order
should not be too high for a suitable ringdown. This trait is exploited so that if the sensitivity
is high, no erroneous modes are found by the clustering algorithm. Thus PA becomes more
user-friendly, which is of great importance for power system operators, who have a need for
simple, yet reliable analysis tools.

PA is not the only parametric method sensitive to model order selection. Modal identification
on ambient data using Robust Recursive Least Square, is based on the same principles. By
exploiting its sensitivity to changing model order, trivial modes may be excluded. Generally,
estimation accuracy and validity is a major concern in signal analysis. Through clustering,
and subsequently the number of identified modes in each cluster, the weakness of parametric
methods in this thesis is transformed to a strength for proper identification.

Clustering has yet another purpose when applying the RRLS method on ambient data. With
automated selection of modes in each timestep, a seamless tracking of modes is possible. Hence,
there is no need to pre-select the mode of interest, as all modes present will be pursued.

Filter application of Empirical Mode Decomposition has large potential in power system mea-
surements, as the measurements contain non-linear and non-stationary dynamics. The para-
metric methods of Prony and RRLS have abilities to deal with small distortions in the signal,
yet improve significantly if band-pass filtering is performed first. The performance of EMD
filtering has been evaluated by the frequency spectrum estimate of Welch’s method. Results
show the capabilities of EMD in a power system setting, with a clear band-pass filtering of the
signal without modifying the frequencies in the electro-mechanical range. Additionally, Welch’s
method provides a non-parametric frequency spectrum of the signal, which enables another way
of identifying dominant modes. As no method is perfect, mutual verification contributes to
increased legitimacy of the resulting estimate.
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Concluding remarks

• The applied methods establish a signal analysis toolbox for power system identification
in Smart Grids. Appropriate combination of the tools enables analysis of a variety of
power system measurements.

• A comprehensive study of several techniques is presented in this thesis. Although their
application is narrowed down to power system identification, most of the shown charac-
teristics also hold true in the general field of signal analysis.

• EMD is successfully implemented and evaluated as a band-pass filter.

• Clustering automatically and accurately identify true, dominant modes in a signal for
both Prony and RRLS.

Further work

Although the study has described successfully new applications of described techniques, con-
tinuous improvement is prudent. The last comments describe the open doors and possibilities
the authors of this thesis have identified.

• Thorough investigation of ambient dynamics could pave way for dedicated analysis tools.

• A major concern is the acquisition of suitable PMU measurements. The location of
the equipment, as well as the output variable, is important for correct identification.
Optimal placement of PMUs for dynamic stability assessment should be subject to more
investigation.

• The possibility for recursive EMD, or otherwise applying it in a real-time scenario could
be of great value for certain applications. RRLS is tailored for near real-time purposes
like mode-metering, and would benefit from a real-time filtering technique.

• The impact of forgetting factor on convergence and accuracy of RRLS should be investi-
gated. Manual tuning is a hindrance for online applications, and a barrier for interested
parties without significant experience with the method. A robust and simple solution
would improve its user-friendliness significantly.

• Signal analysis leans on much empirical knowledge, and is a field with huge amount
of data processing. Machine learning techniques like clustering will aid in uncovering
patterns that are obscure to the human mind. Clustering has successfully proven its
capabilities through improvements of both RRLS and PA; surely the methodology is
applicable in a multitude of areas.
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Abstract—This paper investigates the theory, intuition
and performance of two known implementations of Prony’s
method. Such methods are useful for identifying the individual
modes of a system without constructing a component-based
model. In the Smart Grid, Prony Analysis has been widely
used on post-disturbance ring-down measurements, which
have been increasingly available with the extensive deployment
of PMU’s. Both methods decompose the signal into decaying
sinusoidals, and estimate the frequency, damping, amplitude
and phase of each modal component. The first method is based
on the original Prony’s method, whilst the second method is
based on the thought that the system can be viewed as a digital
synthesis problem where the system has the properties of an
infinite impulse response filter. Both methods employ EMD-
based pre-filtering. Additionally, a cluster based approach is
proposed for circumventing the issue of determining model
order, so that the true modes of the estimation can be
distinguished from the trivial modes.

Index Terms—Prony Analysis, model order, modal analy-
sis, signal processing, linear prediction model, linear time-
invariant systems, clustering, empirical mode decomposition

I. INTRODUCTION

Prony’s method with it’s variations are ways for ex-
tracting modal information from a signal. The signal is
modeled as a sum of damped, complex exponentials -
or equivalently - decaying sinusoidals. The goal is to de-
termine the frequency, damping, phase and amplitude of
these components. The first description of such a method
is not new, in fact, it was first discovered by Gaspard de
Prony in the 18th’ century [1]. Several of the involved
process tasks are demanding, like rooting a high order
polynomial and performing linear least-square estimation,
although with present computing power these have be-
come trivial matters. Prony Analysis (PA) for power system
ringdown analysis was initiated in 1990 by J.F. Hauer
[2]. Since then, significant research has been made in
order to tackle low-damped small-signal oscillations in the
power system. High frequency measurement equipment
like Phasor Measurement Units, have been instrumental to
the implementation of real-time observation and control
of the Smart Grid. Huang et al. [3] gives a thorough
presentation of the motivation for measurement-based

mode tracking and control, and presents a tool for aiding
operating personnel.

Different versions of Prony have recently been imple-
mented and used for practical, industrial purposes in the
power system sector, as seen in [4] and [5]. Prony’s method
can be classified as a linear modal estimation technique,
and is used on ringdown signals where the modal com-
ponents are observable. There are other methods in this
category, as the Matrix Pencil method and the Eigensystem
Realization Algorithm (ERA) [6]. In industry as well as
academia, non-linear methods for modal estimation are
emerging. The Variable Projection method is one example
of this [6].

The motivation for this paper is to address some of the
major issues with Prony analysis as a measurement-based
modal estimation technique. Empirical mode decomposi-
tion (EMD) is used as a robust pre-filtering technique to
remove high frequency noise. Clustering methods for all
modes found by running Prony for multiple model orders,
are used to avoid the need for specifying this in advance.
The latter reduces the need for a priori knowledge of the
signal, and more importantly, increases the trustworthi-
ness of the results.

As most documentation available rely on heavy experi-
ence from signal analysis theory, this paper aims at provid-
ing a pedagogical introduction to the underlying concepts
of each method. They will be described and demonstrated
as general signal analysis tools, yet the paper is partly
influenced by the Smart Grid perspective. The first method
is here referred to as Original Prony (abbreviated PAO ),
as it is the same theory as initially used by Gaspard de
Prony. The second is named Prony Filter (PAF ), for it is
implemented from the perspective of digital filter theory
[7]. However, both arrive at the same end-point, the modal
decomposition information of the signal. Note that both
methods are implemented as off-line, block-processing
methods. This is to reduce the comprehensiveness of the
theory. For real-time applications, the reader is referred to
the improved recursive Prony algorithm proposed in [8].

Three steps are made for testing the two methods. The
first is to create synthetic signals, so that the desired
outcome is known. Secondly, time-domain simulations are
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done for a small power system model, where the desired
information is partially known through linearization of the
component-based model. The final step is to test with
PMU data from real world Smart Grid event.

II. THEORY

A. Discretization

Although there are different ways of conducting a Prony
analysis, they all rely on important concepts in the field
of signal analysis. In order to fully understand any im-
plementation of Prony, it is essential to be familiar with
these concepts. The starting point is to determine the
desired model as a Linear Time-Invariant (LTI) system.
Such a system can be characterised entirely by a single
function called the system’s impulse response. LTI systems
are subject to several mathematical concepts laid out in
[9]. An example of a time-continuous LTI model is given
below.

c2
δ2y (t )
δt 2

+ c1
δy (t )
δt

= d 2
δ2x (t )
δt 2

+d 1
δx (t )
δt

+d 0x (t ) (1)

where y (t ) = response (output), x (t ) = excitation (input)
and c , d = constant coefficients.

This describes the system as a time-continuous model.
However, the measurement values are obtained as samples
at discrete time points. Thus, the model must be described
with finite differences, that is, with discrete equations.
This conversion is of course not necessary if the physical
phenomena actually is discrete. However, as many models
are time-continuous, this theory serves as a connection
between the time-continuous model, and the sinusoid in-
formation obtained through the discrete analysis of Prony.

y (t )= y [n ]
δp y (t )
δt p

=
�p y [n ]

h p
+O (h ) (2)

where O(h) is leading error of order h and

�p y [n ]
h p

∝ y [n ]− y [n −1]− ...− y [n −p ]

where (2) shows the relationship between derivatives
and backward finite differences [10]. Rewriting (1) as an
approximated discrete system yields:

a 0y [n ]+a 1y [n−1]+a 2y [n−2] =b0x [n ]+b1x [n−1]+b2x [n−2]
(3)

where a and b are coefficients different from - but
related to - c and d in (1).

Rearranging, and generalizing to p previous values for
y , and q previous values for x gives the general difference
equation shown in (4).

The estimation of a i and bi is the desired information
for deriving the modal decomposition of the signal. From
this point on, the derivation of the two methods will differ.

y [n ] =−
p∑

i=1

a i y [n − i ]+
q∑

i=0

bi x [n − i ] (4)

B. Original Prony

PAO assumes zero input to the system, which eliminates
the bi -terms. This difference equation represents a Linear
Prediction Model (LPM). Having N number of samples,
and choosing a model order p , the LPM can be extended
to (5) by stating that the difference equation should be
satisfied for the previous (N −p ) measurements:

−

⎡
⎢⎢⎣

ŷ [p ]

.

.

.

y [N −2]
y [N −1]
⎤
⎥⎥⎦
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= b

=

⎡
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.

.

.

y [N −3]
y [N −2]

y [p −2]

.

.

.

y [N −4]
y [N −3]

· · ·

...
· · ·
· · ·

y [0]

.

.

.

y [N −p −2]
y [N −p −1]
⎤
⎥⎥⎦

︸ ︷︷ ︸
= A

·
⎡
⎣

a p

.

.

.

a 1

⎤
⎦ (5)

This is an over-determined system for N > 2p , with (N −
p ) rows and p columns. For solving this system, the linear
least-square approximation method is used, yielding an
estimation of the a-coefficients that will describe a model
close to the measured values. This method is intuitively
described in [11, Ch. 4.3].

The next step is to connect these predictor coefficients
to the modal decomposition. This is done through the Z-
transform. It is shown in [12] that they form the charac-
teristic equation in (6):

1+a 1z −1+ . . .+a P z −p = 0 (6)

The polynomial is factorized in order to obtain the
roots of the polynomial (e.g. by using the freely available
numpy.roots in python).

These roots are closely linked to the eigenvalues of the
modal decomposition in the following manner:

λn = f s a m p lnζn (7)

Where f s a m p is the sampling frequency of the input
signal and ζn is the corresponding polynomial root. From
the eigenvalues, the frequencies f and damping ratios η
are found:

f n =
|I m (λn )|

2 ·π ηn =
R e (λn )
|λn | (8)

The amplitude and phase of the modal components
are estimated by another least-squares approximation.
Extending equation (9) to all measurement values, results
in equation (10), as stated in [13].

C. Prony filter

In this Prony variation, the perspective is slightly differ-
ent. The system is assumed to be a Linear Time-Invariant
system (LTI-system) with the properties of an Infinite
Impulse Response filter (IIR-filter) [14, chap. 10].
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i=1
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k
i , k = 0, 1, ..., N −1 (9)
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Cp

...

C2

C1
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⎥⎥⎦
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= C

(10)

Modelling the system as an IIR-filter means that an
impulse is assumed to excite the system at time t = t0

through the system transfer function, which results in
a time-response that is possible to measure. This can
be viewed as a digital synthesis problem, which means
that the desired information is an approximated transfer
function that models the system response as close as
possible.

By utilizing the Z-transform and its timeshift operator
on the difference equation in (4), the transfer function of
the system can be obtained.

Z


y [n ]
�
=−a 1Y (z )z −1− . . .−a p Y (z )z −p +b0X (z )+ . . .+bq X (z )z −q

⇓
Y (z )=−Y (z )
�
a 1z −1+ . . .+a p z −p

�
+X (z )
�
b0z 0+ . . .+bq z −q

�
⇓

Y (z )
�
1+a 1z −1+ . . .+a p z −p

�
= X (z )
�
b0+ . . .+bq z −q

�
⇓

Y (z )
X (z )

=H (z ) =
b0+b1z −1+ . . .+bq z −q

1+a 1z −1+ . . .+a p z −p
(11)

The main difference in the two methods can be seen
already. PAO assumes all input to be zero - eliminating
the terms with b-coefficients from the difference equation.
In PAF all input is zero, except x [0] which is equal to 1,
resulting in q zeros in the transfer function. An important
assumption in PAF is that the resulting IIR filter is causal.
This is ensured if the order of the denominator p is
greater that the order of the nominator q [14, p. 145], and
that the signal prior to t = t [0] is assumed to be zero.
To ensure this, and to avoid unnecessary computations
without much improvement of the result, the q -order is
set to p −1.

It can be noted that the coefficients are strictly real
numbers. From the general difference equation, inserting
x [0] = 1 and remembering that bn equals zero for n > q ,
the equation system shown in equation (12) can be ob-
tained.

Firstly, the least square solution for the a-coefficients
in equation (12) is found for n = q + 1 to n = N , similar
to equation (5). Note that given the same p -order, PAF

utilizes p −q−1 more equations than PAO for determining
the a-coefficients.

n = 0: b0− y [0] = 0

n = 1: b1− y [1]−a 1y [0] = 0
.
.
.

n =q : bq − y [q ]−a 1y [q −1]− . . .−a q y [0] = 0

n =q +1: −y [q +1]−a 1y [q ]− . . .−a q+1y [0] = 0 (12)
.
.
.

n = p : −y [p ]−a 1y [p −1]− . . .−a p y [0] = 0
.
.
.

n =N : −y [N ]−a 1y [N −1]− . . .−a p y [N −p ] = 0

The next step is to solve for the b-coefficients by using
equation (12) for n = 0 to n =q . There is no need for least-
square approximation as this system has only one unique
solution.

The eigenvalues, and thus frequency and damping, can
be found from the roots of the denominator (poles) in
equation (11) (similar to PAO ). The very same roots are
used in a Laurent series expansion of the transfer function,
to find the amplitude and phase of the modal components.

H (z ) =
R1

z −1+ζ1
+ . . .+

Rp

z −1+ζp
(13)

Where Rn is the residue connected to the pole ζn for n
from 1 to p . It is important to remember that the poles
appear in complex conjugate pairs in this calculation. The
residue is given as a complex value where the amplitude
and phase can be found from the absolute value and
angle respectively. To find the modes and thus frequency
and damping, the poles need to be scaled as shown in
equation (7). Lastly, the frequency and damping is found
using equation (8).

D. EMD

There exists a variety of solutions to improve PAs ro-
bustness under noisy conditions. Kumaresan and Feng [15]
propose two different pre-filtering methods to improve PA,
one based on a predefined FIR filter and one defining the
pre-filter iteratively from the measured data. Pre-filtering
using the EMD-technique is also proposed in [16].

In this paper, Empirical Mode Decomposition (EMD) is
used as a band pass filter, removing high frequency noise
and the signal trend. EMD is a method for nonlinear, non-
stationary signal processing that decomposes the signal
into a set of Intrinsic Mode Functions (IMFs) [17]. The
conditions for an IMF are that its mean value is zero, and
that the number of extremas equals the number of zero-
crossings (or at most differs by one). The stepwise process
to identify IMFs in a measured signal y (t ) is:

1) Start with signal y(t) as input
2) Identify extremas
3) Calculate the upper and lower envelope of the signal

(eu p , ed o w n)
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4) Find the mean value (m (t )) of the upper and lower
envelope

5) Extract the difference from the signal: d (t ) = y (t ) -
m (t )

6) Repeat step 2-5 with d (t ) as input, until it satisfies
the conditions of an IMF

7) Set d (t ) as an IMF, and subtract it from the input
signal. Repeat the process with the residue r (t ) as
input signal (r (t ) = y (t ) - d (t ))

8) Continue until there are no more extrema present in
signal

The EMD output extracts modal components starting
with the highest frequency and ending with the residual
"trend" of the signal. The hierarchy in the decomposed
modes gives the EMD characteristics similar to that of
a dyadic filter bank [18]. The average frequency of each
IMF, gives a rough criterion for choosing which IMF to
include in the filtered signal. By merging the IMFs with
an average frequency in the electro-mechanical range
(oscillating frequency from 0.2 to 2 Hz), the high frequency
components and the signal trend (given by the residual)
is excluded, and a filter has been implemented.

One challenge when using the EMD, is that modes
with closely spaced frequencies may be mixed together.
This makes the basic version of EMD more challenging
for identification of electro-mechanical modes unless spe-
cial strategies are used for intermittent or closely-spaced
tones as described in [19]. For high frequency filtering
on the other hand, its characteristics are well suited, as
it elegantly extracts high frequency components without
altering the remaining signal components.

In this paper, the EMD implemented is based on the
work by Deshpande [20].

E. Cluster

To solve the problem of identifying the number of
modes present in a signal, and thus solve the challenge
of model order selection, this paper proposes to run PA
in a range of model orders. By performing PA with every
model order between a lower and a higher limit, the idea
is that the true modes and their shapes will remain close
to constant. True modes are those that are responsible
for actual linear behaviour in the system. Subsequently,
the trivial modes (identified by their frequency, damping
and amplitude) will change significantly. Trivial modes are
those that fit the noise and nonlinear behaviour.

A lower limit of p = 10 and an upper limit of p =N /2 is
chosen for the model order range to ensure a good basis
for clustering. The lower limit is defined as 10 to mitigate
simulations where the number of observable modes is
larger than the model order.

The clustering method used in this paper is a density-
based algorithm named "Density-based spatial clustering
of applications with noise" (DBSCAN). This method was
first proposed by Ester et al. [21], to make clustering
more versatile. Density-based algorithms are not limited

to finding spherical clusters of a predefined size. It can
on the other hand, by considering the density of an area,
find clusters of arbitrary shapes. It works as an unsuper-
vised learning mechanism, labelling data in clusters and
assigning the rest as noise [22].

The DBSCAN algorithm depends on two input param-
eters: epsilon (ε) and minimum cluster size (minClu). By
firstly assuming that none of the input-data belongs to a
cluster, DBSCAN chooses one of the unassigned objects
as a starting point p . From this point all objects within
a distance of ε is considered as a neighbour. If the point
p is found to be a core point [21], it finds all objects in
its area using ε and minClu. All these objects are then
assigned to the same cluster. If p is not considered as
a core object, and is not present in another cluster, it is
labelled as noise. The clustering is completed once every
object is either assigned to a cluster or labelled as noise.

In this paper, the input data for DBSCAN is three-
dimensional. Frequency, damping and amplitude of all
identified modes from all model order simulations of
PA are utilised. For weighting purposes, the algorithm
is altered so that only a small deviation in frequency is
allowed. For amplitude and damping, some deviation is
accepted in each cluster.

III. REMARKS ON IMPLEMENTATION

The modes of interest in this paper, lies in the
electro-mechanical range. In accordance with the Nyquist-
Shannon sampling theorem [23], the sampling frequency
must be at least 4 Hz to contain information of the modes
at 2 Hz. In this paper the sampling frequency is set to
6 Hz, well above the minimum limit, to avoid loss of modal
information. For data sampled at higher frequencies, ap-
proximately 6 Hz is achieved through downsampling. The
sampling theorem applies to the high frequency noise as
well. When the sampling frequency is below twice the
noise frequency, information is lost and signal aliasing
occurs [24]. To assure that this problem is handled, the
signal is filtered for high frequency noise by using the
EMD-technique, without altering the components in the
electromechanical range.

For higher model orders, many of the modes found by
PA have insignificant amplitudes, or very high damping
ratios. These are filtered out before feeding the clustering
algorithm with the modes, as they do not influence the
signal dynamics. Choosing a hard limit on mode ampli-
tude (1/30 relative to highest amplitude), and excluding
modes with damping ratio above 50%, is a brute way of
post-filtering the results. A more sophisticated evaluation
method is presented by Zhou, Pier and Trudnowski [25].
However, the hard limit is sufficient for this method, with
the purpose of removing the obvious trivial modes. The
clustering algorithm is responsible for classifying the rest.

A. Proposed method

• Pre-Filtering using EMD
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– Identify signal IMFs
– Extract IMFs in the electro-mechanical range
– Rebuild signal without high frequency noise and

signal trend

• Downsample signal to 6 Hz
• Define range of model orders to be investigated
• Do PA for all p orders in defined range
• Cluster the resulting modes

B. Steps of PA

PAO :

• Build LPM in (5)
• Estimate a-coefficients

using least-squares
• Find roots of charac-

teristic polynomial in
(6)
• Calculate eigenvalues

from roots with (7)
• Establish equation sys-

tem shown in (10)
• Solve the equation sys-

tem for residual C

PAF :

• Define q as p −1
• Build equation system

in (12)
• Obtain least-square

solution for a-
coefficients
• Utilise q first equations

to obtain b-coefficients
• Insert a- and b-

coefficients into trans-
fer function in (11)
• Calculate Laurent se-

ries expansion of trans-
fer function with (13)
• Calculate eigenvalues

from roots of denomi-
nator
• Find residual from de-

nominator

Common for both methods :

• Calculate frequency and damping from eigenvalue
• Calculate amplitude and phase from residual
• Post-filter of insignificant modes

IV. TESTING

A. Synthetic signal

First, the two methods will be demonstrated for syn-
thetic signals. 3-dimensional plots are used to demonstrate
the clustering method, as well as how the results of the
Prony analysis vary with the model order.

y (t )= 16c o s (2π ∗1.55+1.5π)e −0.25t

+30c o s (2π ∗0.28+0.5π)e −0.04t (14)

+20c o s (2π ∗0.75+0.2π)e −0.3t

The synthetic signal tested is shown in equation (14),
and contains three modes with a damping ratio (η) of
0.026, 0.023 and 0.064 respectively.

The three coloured dots in Figure 1 are actually clusters,
each consisting of 55 data points obtained from PAO ,
equalling the number of runs with different model orders.
These results are only shown to demonstrate that the

Fig. 1: Clustering of pure, synthetic signal

modal decomposition will be determined exactly for all
model orders in the defined range, given a pure sinusoidal
signal like this. Averaging each cluster, yields the modal
components of equation (14) to a precision of 8 decimals.
The results are similar for PAF .

Introducing noise to the signal will degrade the perfor-
mance of Prony, as experienced by previous authors [25].
Given the same synthetic signal, embedded in 20 dB white
Gaussian noise, the performance of the EMD-filter Prony
can be evaluated.

Fig. 2: Decomposing noisy signal using EMD

Summation of IMF 6 - IMF 8, yields the red, filtered sig-
nal in Figure 2. Clustering and averaging yields the modal
components shown in Table I. The signal is reconstructed
using only these modes in Figure 3b, which yields a signal-
to-noise ratio (SNR) of approximately 43.5 dB for both
methods when comparing with the EMD-filtered signal.

As seen in Table I, the frequency and damping ratio has
minor deviations (less than 1/100) compared to the origi-
nal signal. Amplitude and phase deviates slightly more, but
are still close to original when comparing with the noise
that was added to the system. When comparing the two
methods, it is observed that the differences are negligible.
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(a) Clustering of noisy, synthetic signal (b) Reconstruction

Fig. 3: Analysis of PMU-data

TABLE I: Consistent modes for multiple model orders

PAO PAF
Freq. η Amp. Phase Freq. η Amp. Phase
[Hz] [rad] [Hz] [rad]

0,755 0,069 21,96 0,18π 0,756 0,069 21,64 0,18π
0,278 0,026 31,42 0,52π 0,278 0,030 31,48 0,53π
1,548 0,027 16,92 1,52π 1,548 0,027 16,82 1,52π

B. Power Factory simulation

The next step is to test on measurements from a Power
Factory (PF) model. The model used is the Kundur Two
Area Model [26, p. 813] showed in Figure 4 .

Fig. 4: Kundur Two Area System

To simulate a larger fault and create oscillations, the line
between bus 6 and 7 are disconnected and reconnected
0.05 s later. Power flow measurements between bus 5 and
6, and bus 10 and 11, are then analyzed to identify modes.

Using the built-in modal analysis tool in PF, the fre-
quency and damping of the modal components present
in the system are found. It must be kept in mind that it
will find all modes, and not just those that are excited by
a given fault. The oscillatory modes identified by PF are:

TABLE II: Modes identified by PF

Mode Freq. [Hz] Damp. Ratio η
1 0,475 0,024
2 0,700 0,052
3 0,989 0,110

PF calculates the modal components present based on
steady-state snapshot of the power system. In this test,
variable load was added in order to better simulate the
real world grid. Ambient noise was simulated as Gaussian
white noise, similar to the synthetic signal. Furthermore,

the ambient noise included an increase in the mean of
the load 5 seconds into the time window of analysis. The
result of this can be seen in Figure 5. The signal-to-noise
ratio of the signal with variable load compared to the
constant load signal, is approximately 10 dB for both lines.
It can be noted that adding the ambient noise reduces
the damping of the signal, as well as shifting the signal
slightly. This continuous change in the system, makes the
comparison of the modal estimation to the PF modes in
Table II less trivial, as the modes change in each time-step.
The assumption is then, as it was for the synthetic signal,
that linear behaviour dominates the ringdown signal.

(a) Line 10-11 (b) Line 5-6

Fig. 5: Comparing measured signal for same fault with and
without load variation

Running both PAO and PAF on the constant load signal,
resulted in both methods identifying all three modes in the
measurements from line 5-6 and line 10-11. Reconstruct-
ing and comparing to the measured signals, resulted in a
signal-to-noise ratio of 50 dB and 63 dB for line 5-6 and
line 10-11 respectively. The results were close to identical
in PAO and PAF . It was also noted that for line 5-6, the
0.475 Hz mode and 0.700 Hz mode in Table II were both
observable, while it was barely possible to distinguish the
0.989 Hz mode. For line 10-11, only the 0.475 Hz mode was
distinguishable with a large magnitude, while the other
two were small (just above 1/30 of the magnitude). With
a close to 180◦ phase shift between the two areas, the
0.475 Hz mode is identified as a clear inter-area mode.

Figure 6a shows the ringdown signal with ambient noise.
By using the EMD-method as a filter to remove high
frequency components and the trend, the signal shown
in Figure 6b is obtained.

(a) Measurements before EMD-
filtering

(b) Measurements after EMD-
filtering

Fig. 6: Measured signal

It can be observed that the EMD-filter removes most of
the noise in the signal. Applying PAO and PAF combined
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with clustering, gives the modal estimation shown in Table
III and IV.

TABLE III: Modes identified from measurements on line 5-6

PAO PAF
Fre. η Amp. Phase Fre. η Amp. Phase
[Hz] [rad] [Hz] [rad]
0,489 0,034 20,900 0,50π 0,489 0,036 20,961 0,53π
0,710 0,048 16,153 0,02π 0,710 0,047 15,374 0,02π

TABLE IV: Mode identified from measurements on line 10-11

PAO PAF
Freq. η Amp. Phase Freq. η Amp. Phase
[Hz] [rad] [Hz] [rad]
0,486 0,014 47,946 -0,52π 0,486 0,015 47,999 -0,52π

The results are as expected not identical to Table II. The
ambient noise has altered both frequency and damping,
compared with results from PF as seen in Figure 5. From
the measurements on the line between bus 5 and 6, only
two of the modes are found. This was as expected, since
these two were the most observable in the signal, while
the last one barely was present. Similarly, only the most
observable mode from the noise free test was found in
line 10-11.

One important note is that the mode with the smallest
damping ratio found by PF, still is the most critical mode
with ambient noise included. With a phase-shift close
to 180◦, the mode oscillates between the two areas. The
0.700 Hz mode on the other hand, was barely present in
Area 2 in the noise free signals and can be labelled as a
local mode in Area 1. By plotting the estimated modes
together with the signal after filtering, the estimation
accuracy can be evaluated as seen in Figure 7.

(a) Line 10-11 (b) Line 5-6

Fig. 7: Comparing measured signal after EMD-filtering with
identified modes

The curve fit seen in Figure 7a and 7b shows that the
modal components dominating the signal has been iden-
tified. PAO and PAF perform similarly, both estimations
yielding SNR of 35 dB for Figure 7a and 22 dB for Figure
7b.

C. PMU-data

In this section, PMU-data from the nordic grid is ana-
lyzed. The PMU-measurements contain information of a
production outage, with resulting oscillations in the grid.
Identification of this oscillation is vital for stable operation

in a smartgrid. Figure 8 shows the PMU-measurement,
with the ringdown portion magnified.

Fig. 8: PMU-data example

Even though the ringdown part of the signal is large
compared to the ambient noise, the latter must be re-
moved to avoid aliasing and improve the performance of
PA. Figure 9 shows the decomposed signal. Summation of
IMF 4 and IMF 5, yields the denoised signal for further
analysis.

Fig. 9: Decomposing PMU-data into IMFs

Running both PA methods for 30 different model orders
gives the modal plot shown in Figure 10a. The identified
cluster contains data from 21 of the 30 simulations of PAO .
For PAF 20 out of 30 simulations were connected to the
identified cluster. The remaining data-points were labelled
as trivial modes.

Figure 10b shows the comparison of the identified
modes in Table V with the filtered PMU-measurement,
where both methods had a signal-to-noise ratio of 14 dB
after reconstruction. The results in Table V show small
differences between the two methods. In addition, the
mode identified has a damping ratio well within the limit
of what is acceptable.
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(a) Cluster identification using PAO

(b) Identified mode
compared with original
signal after EMD-
filtering

Fig. 10: Analysis of PMU-data

TABLE V: Identified mode

PAO PAF
Freq. η Amp. Phase Freq. η Amp. Phase
[Hz] [rad] [Hz] [rad]
0,476 0,116 48,08 0,45π 0,477 0,117 47,91 0,44π

D. Computational burden

From Table VI it can be observed that the most de-
manding routine is PAF , spending close to or more than
twice the time of PAO in all tests. The EMD spends in
general less time than PA, although it must be kept in mind
that the Prony method’s are run for 30 or more different
model orders. The clustering algorithm spends a negligible
amount of time. These tests were run using Intel Core i7
8650U.

TABLE VI: Computation time in seconds

Synthetic signal PF PMU
Time window 15 12 10
EMD filter 0,235 0,193 0,089
PAO 0,514 0,255 0,117
PAF 0,903 0,369 0,292
Clustering 0,003 0,002 0,001

V. CONCLUSION

The intuition of Prony Analysis, along with it’s main
drawbacks, have been addressed in this paper. Pre-filtering
of signal noise and trend is elegantly performed by the
EMD technique, and improves performance of PA in noisy
conditions. Performing PA for multiple model orders, in-
dicates the consistency of true modes, and fluctuations of
trivial modes. This phenomena is exploited by the cluster-
ing method, enabling correct identification of true modal
components. This method is versatile, as demonstrated by
testing for both Prony methods. Improvements to PA, like
recursive implementation for real-time observation and
control, can be incorporated into the clustering method.
Comparing PAO and PAF reveals only small differences
in performance, except for the extra computation time
required in PAF .
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Motivation

Dynamic stability is a major concern for power
system operators, and may prove to be increas-
ingly challenging with less inertia and more
power electronic converters in the Smart Grid.
If this issue is neglected, the risk of large area
blackouts increases.
One example is from the US in 1996: unstable
oscillations forced a complete system break-
down where 7.5 million customers lost their
power supply for periods ranging from minutes
to 6 hours. The following figure demonstrates
how this breakup was visible from power flow
measurements, and the indications that could
be used to avoid the disaster.

Figure 1: WECC breakdown [1]

However, operators today are good at keeping
the system well within stability limits, by in-
cluding substantial margins in calculation of
power transfer constraints. The challenge is
mainly to reduce investment costs as much
as possible, by operating the system close to
the limits while still maintaining stability. In-
creased awareness and real-time monitoring of
system damping will aid in pushing this limit
and move towards a Smarter Grid.

Objective

Small-signal stability has for a long time been
assessed by component-based models, i.e. clas-
sical eigenvalue analysis of a linearized power
system. Prony’s method attempts to evaluate
the same small-signal stability, by fitting post-
disturbance (ringdown) measurements to a sum
of damped sinusoids.

Figure 2: Demonstration of Prony Analysis

Correct estimation of the modal content of a
multi-modal sine wave is a trivial matter, as
long as the signal does not exhibit non-linear,
non-stationary and/or noisy features. However,
power system measurements are often just that.
The task is to obtain the linear characteristics
in a somewhat distorted signal.

Proposed method

First, a time-window of analysis containing a
proper ringdown must be identified. PMU data
from a production outage incident in the Nordic
Grid is shown below, with the ringdown por-
tion enlarged.

Figure 3: PMU signal with ringdown enlarged

Then, the signal must be properly band-passed
filtered to extract the approximate frequency
band of interest, electro-mechanical modes in
the range of 0.2-2 Hz. This is achieved with
the Empirical Mode Decomposition (EMD),
and as the time-window is short, it effectively
does two things: low-pass filtering and trend
removal.
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Figure 4: Empirical Mode Decomposition

Now Prony Analysis (PA) can be applied. Two
known implementations are investigated: Orig-
inal Prony (PAO) and Prony Filter (PAF). For
both, the choice of model order is often cru-
cial to validity and accuracy of results. This
issue is circumvented by running PA for mul-
tiple model orders, and clustering all the esti-
mated modes. The true (dominating, suppos-
edly responsible for system dynamics) modes
remain relatively constant, and are thus distin-
guished from the trivial (originates from noise
and non-linear behaviour) modes that change
significantly.

Figure 5: Cluster identification using PA

The resulting clusters are averaged to find the
approximate frequency, damping, phase and
amplitude estimates. If no clusters are found, it
is a strong indicator that the signal does not ex-
hibit dominant, linear characteristics; thus the
signal should not be used for evaluating the
small-signal stability of the originating system.

1 2 3 4 5 6 7 8 9
Time [s]

−4

−3

−2

−1

0

1

2

3

Po
we

r t
ra
ns
fe
r [
W
]

1e7

Prony Original
Prony Filter
Post-filtered signal

Figure 6: Identified mode compared with orig-
inal signal after EMD-filtering

Reconstruction of identified mode demon-
strates how PA captures the linear characteris-
tics, although the signal is partially influenced
by non-linearities.

Conclusion

‚ EMD elegantly performs low-pass filtering
and trend removal

‚ By performing PA for multiple model or-
ders, true and trivial modes can be separated
through clustering

‚ Clustering increases the trustworthiness of
the resulting modes

‚ Clustering is versatile and can be incorpo-
rated in recursive, real-time PA

‚ Comparing PAO and PAF reveals only small
differences in performance, except for the
extra computation time required by PAF
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