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Summary

Over the last few years, neural networks have become extremely popular, and their usage
is increasing rapidly. This project has investigated the use of neural networks for one-step
time series forecasting on highly random data. Multi-layer perceptron (MLP), convolu-
tional neural networks (CNN), recurrent neural networks (RNN), and long short-term
memory (LSTM) cells are tested to see if they can give a binary classification accuracy
above 50% using this data. The assignment focuses on designing a small embedded neural
network with low latency.

The different neural network architectures are built using a deep learning library in
Python, called Keras. This is a high-level software framework, built on top of either Ten-
sorflow or Theano, for fast and easy prototyping of neural networks.

The conclusion of the study is that only the CNN satisfied the requirements of the
assignment during the work of this thesis. None of the other architectures showed sign
of learning generalized patterns and structures from the dataset in question. The CNN
showed the most promising results, being able to extract information about the training
set that increased the classification accuracy of the test. This leads the way for further
development and an eventual hardware implementation of the inference phase reducing
the run-time latency.
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Sammendrag

I de senere årene har nevrale nettverk blitt ekstremt populære, og deres bruk øker
stadig. Dette prosjektet har undersøkt bruken av nevrale nettverk for prediktering av
tidsserie data hvor dynamikken i dataene er svært tilfeldige. Multi-layer perceptron (MLP),
convolutional neural network (CNN), recurrent neural network (RNN) og long short-
term memory (LSTM) topologier testes for å se om de kan gi en binær klassifisering med
nøyaktighet over 50% på disse dataene. Oppgaven fokuserer på å designe et lite innvevd
nevralt nettverk med lav forsinkelse.

De forskjellige nevrale nettverksarkitekturene er implementert ved bruk av et bibliotek
for deep learning i Python, kalt Keras. Dette er et høynivå programmeringsrammev-
erk, bygget på toppen av enten Tensorflow eller Theano, for rask og enkel prototyping
av nevrale nettverk.

Under arbeidet med denne oppgaven, konkluderes det med at CNN-arkitekturen til-
fredsstiller kravene stilt av problemstillingen. Ingen av de andre arkitekturene viste tegn på
å lære generelle mønstre og strukturer fra det aktuelle datasettet. CNN topologien viste de
mest lovende resultatene. Modellen lærte generell informasjon fra treningssettet som bidro
til økt klassifikasjonsnøyaktighet av testsettet. Dette peker ut veien for videre utvikling og
en eventuell hardware implementasjon av inference delen for å redusere forsinkelsen fra
input til klassifisering.
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Preface

”We spend a great deal of time studying history, which, lets face it, is mostly the his-
tory of stupidity. So its a welcome change that people are studying instead the future of
intelligence.”
- Stephen Hawking
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Chapter 1
Introduction

This chapter gives a short motivation, describes the objectives, and presents the outcomes
from this thesis. A part of this project is subject to confidentiality requirements. This
is explained in a section 1.3. Finally, the chapter presents a brief overview of the report
structure.

1.1 Motivation
Machine learning, and especially deep learning, has gotten a lot of attention lately due to
the continuing increase in computational power and the availability of progressively big-
ger amounts of data. This enables machine learning, initially researched in the 1950s, to
solve today’s problems. In contrast to more traditional ways of solving problems, machine
learning algorithms evolve from analyzing samples of data instead of accurately modelling
all parts of a system from known models and equations. In deep learning, or so called end-
to-end learning, all parameters of the network are trained from input data, eliminating the
need for prior knowledge about the system’s dynamics to build a model. Deep learning
has proven to be very effective. Neural networks (NN) have become impressively accurate,
even being as good as humans in tasks like image classification. We still see though, that
humans perform better with degraded or distorted images, as discussed in [17] (Dodge, S.
2017) and [24] (Geirhos, R. 2017). Also, Google’s AlphaZero AI won or played remis on
all matches against the world champion chess program, Stockfish, in a 100-game match
up according to the Guardian [68].

Much of the interest about deep neural networks (DNNs) has been the increasing ac-
curacy, but this project will mainly focus on an embedded neural network. A smaller NN
with focus on latency, size and accuracy. It is meant to forecast multivariate time series
that contains highly random data, containing very little deterministic structures or patterns.
Different NN architectures will be tested to see if they can extract any information about
this type of data and thus increase the accuracy of a binary classification to over 50%.
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Chapter 1. Introduction

Mainly GPUs have been used for machine learning tasks, but there has also been an
increase of FPGA use, due to among other things, the potential of more computations per
unit of power and reduced latency as discussed by Quoc V. Le (2011) [47]. Tradition-
ally, programming of FPGAs requires knowledge about HDL (verilog of VHDL), and has
significantly longer development time than programming of a regular CPU or GPU. This
has led to an increased demand for higher levels of abstraction, speeding up a potentially
slow and tedious development process. The different tools for higher level of abstrac-
tion can largely assist the developer, but at the cost of the detailed development at the
Register-Transfer Level (RTL), which gives precise control over latency and throughput of
the system.

1.2 Objectives

The problem of this assignment is to assess the ability of different neural network topolo-
gies to forecast highly random time series data. We will implement a one-step forecast,
predicting the next single value of one time series based on the history of multiple time
series or features. This is repeated, doing multiple one-step predictions without retraining
the model. The data is highly random and will be predicted using no domain knowledge,
meaning that the forecast is solely based on the time series itself. Other use cases, like
predicting the weather or pollution can use domain knowledge, but that is not possible
here since there is no such information available.

The focus of the assignment is to design small and compact neural networks with low
inference latency, using a restricted number of parameters, well suited for FPGA imple-
mentation later on. Different architectures will be tested using a deep learning software
framework. Since the data is highly random, containing little or maybe no structures and
patterns, the goal is to test the different architectures to see if any of them can give a binary
classification accuracy slightly above 50%.

The long-term goal for this work is to implement the network in an FPGA minimizing
the inference latency, thus a focus on FPGA should be included in the literature review.
The goal of this thesis is to give a proof of concept and explore which type of network
will be most suited for further exploration and implementation in an FPGA. Testing and
development in SW is much faster, thus all testing carried out during this project are done
on CPUs and GPUs.

The objectives for this project will be the following:

1. Write a literature review and acquire necessary background knowledge: The back-
ground theory consists of, among other things, the basic understanding of deep
learning, recurrent neural networks, and convolutional neural networks. It will also
touch upon aspects like the opportunities of high-level synthesis and FPGA ver-
sus GPU. The literature review should also contain other NN implementations on
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FPGAs and usage of NNs for time series forecasting. It should include a short eval-
uation at the end of the review.

2. Compose/design a theoretical suggestion of different neural network architectures
based on the literature review.

3. Implementation of the typologies from 2 using a deep learning SW framework. This
also includes acquiring and pre-processing of input data. Test and compare the
results, and evaluate the work.

1.3 Confidentiality Requirements

The proprietor of this project is Embida AS. Due to confidentiality requirements, informa-
tion about the content of the dataset is left out of the report. We will refer to this dataset
as the ”mysteryset”. To ease the reader’s understanding of the report, the overall structure
of the data is explained, without revealing any information about the content of the data.
This is seen as sufficient for the purpose of this report. Hence this requirement, all work
on acquiring data and preparations specific to the content of the ”mysteryset” is not further
discussed. The code written for this project is also not included in this report due to the
same confidentiality requirements.

The ”mysteryset” is composed of a couple of hundred so called items. Each item con-
tains multivariate time series. There are 5-6 parameters in each item, and a few thousand
samples for each parameter. A selection of parameters from different items are combined
forming the time series, or features, of the ”mysteryset”. The selection of features is used
to predict the rising or falling of the next value of one feature, i.e. a parameter in one of
the items. The output or label of each time step is characterized as either rising or falling.
There is not one specific feature that should be predicted. Several different features are
used for prediction during the project. This is referred to as the classification feature later
in the report.

1.4 Outcomes

The outcomes from this thesis are:

• A literature review of neural network basics, FPGA implementations, and neural
networks used on time series.

• System for pre-processing and combining feature data used in this thesis.

• Training CNN models for binary classification of the dataset in question.

• Discussion about the use case and further development.
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1.5 Report Structure
The report is divided into five different parts: Background, Literature Review, Method,
Results and Discussion, and Closing Remarks.

The Background part gives a short motivation and introduces the problem and its ob-
jectives.

The Literature Review consists of three chapters; Background Theory of Deep Learn-
ing, FPGA and Software Tools, and Review of Related Work. The theory chapter starts
from the basics of deep learning. This reflects the prior knowledge of the writer, as a
cybernetics student, about the subject. It goes through the necessary theory about neural
networks, including topics like basic properties of neurons, layers, multi-layer perceptron,
activation functions, forward and backward propagation etc. Different network topologies
can be used for time series prediction, and for that reason the chapter includes the two
commonly used networks: convolutional neural networks and recurrent neural networks.

Hardware design on FPGAs is a time-consuming process, and higher level of abstrac-
tion and software frameworks are included in the FPGA and Software Tools chapter as a
natural result of using FPGAs.

GPUs are the most commonly used platform for NNs today, the Review of Related
Work chapter will explore the opportunities and advantages of using FPGAs instead. This
chapter also covers the most famous network architectures and the techniques they intro-
duced. Finally, related work of other implementations on FPGAs and time series forecast-
ing using NN are reviewed.

The Method part includes the following chapters: Functional Specification, Tools &
Data Preparation, Design, and Implementation. It gives a description of the system and
briefly goes thought the tools used and shows how the datasets are prepared. The design
and implementation chapters goes though the design process and the implementation of
the different network topologies.

The Results and Discussion presents each implementation. The final discussion of the
thesis has its own chapter at the end of this part.

Lastly, the Closing Remarks concludes the thesis and presents the future work.
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Chapter 2
Background Theory of Deep
Learning

This chapter introduces the basic terminology used in deep learning. It goes through the
building blocks of the neural networks, and introduces the commonly used network topolo-
gies: recurrent neural networks, and convolutional neural networks.

2.1 Origin
Deep learning (DL) is a sub field of machine learning which again is a sub field of the
much broader field of Artificial Intelligence (AI) [63, p. 4]. AI is deeply covered by other
texts such as Artificial intelligence: a modern approach by Stuart Russell and Peter Norvig
[67], and will not be covered in this thesis apart from pointing out that deep learning orig-
inates from AI.

The idea of deep learning is inspired by the biological behavior of the brain. Simplified,
each neuron, the main component or building block of the brain, transmits information to
other neurons forming a very large and complex network. Each node or neuron is stimu-
lated by inputs and passes information or some part of the information on to other neurons.

In size, the artificial neural networks today are not even close to the human brain. Josh
Patterson [63, p. 4], says that the brain is composed of approximately 86 billion neurons
and more than 500 trillion connections between these neurons. The article The Basics
of Brain Development [72] says more than 60 trillion connections. Big artificial NN to-
day have billions of parameters. Examples are, Building High-level Features Using Large
Scale Unsupervised Learning [48] with 1 billion parameters, and the company Digital
Reasoning with 160 billion parameters in their neural networks [40]. The brain is very
complex and there is much to be discovered before we understand the workings of the
brain. A very big artificial neural network doesn’t even resemble the complexity of the
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Chapter 2. Background Theory of Deep Learning

Figure 2.1: The fields of AI, ML and DL. Patterson, J.(2017) [63, p. 4]

human brain, but it’s the idea behind neural networks.

2.2 Supervised and Unsupervised Learning

In machine learning there are two groups of algorithms that differ in the way they learn.
These are classified as supervised and unsupervised learning. Supervised learning has
samples of labeled data and learns to predict the output based on input data. Expressed
in another way; the algorithm learns the function that maps the input data to the output
data. This is the most popular method and the one in focus during this project. Supervised
learning requires labeled data to work. Unsupervised learning on the other hand does not
need labeled data. It basically learns structures in the data set. It can for example be used
or categorize unlabeled data.

2.3 Classification and Regression

Classification and regression are two different types of machine learning algorithms. If
a model is trained to recognize only dogs and cats, this would be a binary classification,
since there are two outputs or classes. In time series forecasting this could be predicting if
the next value of the series is higher or lower that the current one. The number of classes
differs depending on the application. In regression the network outputs the actual predicted
value instead of the probabilities for each class.
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2.4 Biological Neuron
A simplified biological neuron is shown in Figure 2.2. In the most basic sense the biolog-
ical neuron consists of a cell body with one axon and many dendrites. The connections
between neurons are called synapses. This is the connection between the axon of one
neuron and a dendrite of another. A single neuron has many dendrites and one axon, mak-
ing every neuron a multiple input single output building block. Connecting many neurons
together forms the network of the brain.

Figure 2.2: Simplified biological neuron. Harry Fairhead (2014) [33]

2.5 Artificial Neuron
The artificial neuron is based on the biological version. It consists of inputs, weights and
a bias, a summation, an activation function, and the output as shown in Figure 2.3. The
output of a neuron can be called the activation of a neuron.

The summation basically does a linear transformation on the inputs by its weights and
bias as in equation 2.1. The non-linearity is introduced by the activation function which
decides how much of the information from this sum to pass through to the output. There
are diverse types of activation functions, also linear activation. Neural networks using only
linear activations are essentially linear regression models.

n∑
i=1

wi · xi + b (2.1)
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Figure 2.3: Artificial neuron

2.6 Activation Functions

Different activation functions are used for different problems. The following sub sections
give a brief overview of the most common ones. Information about each function are
taken from Patterson, J. (2017) [63, p. 65], and GUPTA, D. (2017) [31]. All plots of the
following activation functions are made in Python.

2.6.1 Linear

Figure 2.4 shows the linear activation function f(x) = x. When using this activation
function, the output is simply proportional to the input. It basically lets the signal through.

Figure 2.4: Linear Activation Function
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2.6.2 Rectified Linear

The Rectified Linear Unit (ReLU) function shown in Equation 2.2, illustrated in Figure 2.5
is the most common activation function due to its simplicity and good results. A subset
of neurons fire at the same time. This makes the network sparser, improving efficiency.
With a uniform initialization of the weights, around 50% of the hidden neurons will fire
according to Glorot Xavier (2011) [28]. Sparsity is discussed in more depth later in the
literature review.

f(x) = max(0, x) (2.2)

Figure 2.5: Rectified Linear Activation Function

There is also a Leaky ReLU. It is similar to the ReLU function except that when x
is less than 0 the function has a small negative slope. Dying ReLU [63, p. 70] can be a
problem with standard ReLU. Leaky ReLU prevents neurons from being totally inactive, or
to have dead neurons, which means that the neurons are inactive for all the input samples.
Solving dead neurons and other issues are discussed in Solving internal covariate shift in
deep learning with linked neurons by Carles R. (2017) [65].

f(x) =

{
x : x > 0

0.01x : x ≤ 0
(2.3)

There is also a Parameterised ReLU function, shown in Equation 2.4. The a, in the
equation, decides the slope for negative values of x. The added parameter is trained by the
network. This activation function can be used when the Leaky ReLU does not solve the
problem of dead neurons.

f(x) =

{
x : x > 0

ax : x ≤ 0
(2.4)
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2.6.3 Softplus

Figure 2.6 shows the softplus activation function. It is also a version of the ReLU function.
The standard ReLU function is graphed with a red dotted line. In contrast to the ReLU
this function is continuously differentiable.

Figure 2.6: Softplus activation function

2.6.4 Sigmoid

The sigmoid function, in Equation 2.5, is also a very popular activation function. It
squeezes the output between 0 and 1. It is continuously differentiable. The gradient of
this function is highest around 0 and flattens out for higher or lower input values. Meaning
that when the network falls into that region of the graph it learns slower and slower, i.e.
the vanishing gradient problem. The sigmoid function is shown in Figure 2.7.

f(x) =
1

1 + e−x
(2.5)

2.6.5 Tanh

Tanh, shown in Figure 2.8 is similar to the sigmoid function, only that it outputs values
from -1 to 1.

2.6.6 Softmax

The softmax function, shown in Equation 2.6 is also similar to the sigmoid function. It
outputs continuous values from 0 to 1 and is often used at the output layer as a classifier,
because it outputs the probabilities distributed over the number of classes. I.e summing up
all the probabilities add up to 1 or 100%.
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Figure 2.7: Sigmoid activation function

Figure 2.8: Tanh activation function

f(xi) =
exi

n∑
j=0

exj

, for i = 0, 1, 2...n (2.6)

2.6.7 Binary Step Function
The binary step function, shown in Equation 2.7, is basically just a threshold that says if
the neuron should be active or not. It is shown in Figure 2.9.

f(x) = 1, for x ≥ 0 (2.7)
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Figure 2.9: Binary Step function

2.7 Artificial Neural Networks (ANN)
Basic artificial neurons are the building block of an artificial neural network. An ANN
consists of three different types of layers; the input layer, hidden layers, and the output
layer [52]. There may be many hidden layers in the network. Figure 2.10 shows a basic
ANN with one hidden layer with four neurons, three inputs, and three outputs. A network
where each layer has multiple neurons and all the neurons in one layer are connected to
the neurons in the next layer, is called a fully connected network or multi-layer perceptron
(MLP).

A deep neural network, a NN with more than two layers, is to a considerable extent
based on statistics and linear algebra. This review will not go in depth on these topics
since they are broadly covered in other texts like Patterson, J. [63] and [55].

2.7.1 Forward Propagation
The neural network feeds (forward) information from the inputs through the hidden layers
to the outputs. This movement of information through the network is called forward prop-
agation.

2.7.2 Weights & Biases
Between layers in the NN, the output of neurons in one layer, or the activations of these
neurons, are connected to the input of neurons in the next layer, each connection associated
with a weight. These weights are the tuning knobs of the network. One can say that
the weight is the strength of the connection between two neurons, or how much of the
activation from one neuron that is carried through to the next. This can be illustrated using
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Figure 2.10: Basic Artificial Neural Network

different thickness of the connections like in Figure 2.11. The weights, and the bias that
basically offsets the activation of the neuron, are the adjustable parameters of a NN.

Figure 2.11: Weights between neuron i a NN

2.7.3 Parameter Optimization
The parameters, weights and biases, in a neural network are updated using a training data
set. Initially, the parameters of the network can be assigned randomly. With more training
data the model will more accurately resemble the real system. Machine learning (ML)
finds a way to represent data based on the training set. It does not try to match the data to a
mathematical model, i.e. it is not told what patterns to look for, but updates the parameters
of the model based on a cost function which represents the differences between the desired
values, i.e. the labels of the training data, and the actual output provided by the network.
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The weights and biases are updated such that the average cost of all the training example
are minimized the most.

As seen in Figure 2.12, using a simple linear function can be an under fit of the data
as it in many cases does not represent the data very well. There is also a problem with
overfitting in machine learning. Overfitting the model will give a very low error in the
training data but does not provide a generalized solution to the problem. This can result in
a significant decrease in accuracy on the test set, i.e. on new unseen inputs after training,
as it also will account for noise and outliers in the training set.

Figure 2.12: Underfitting & overfitting. Patterson, J (2017) [63, p. 27]

The process of updating the parameters of the model is called parameter optimization,
and is basically adjusting the weights based on the cost function. The weights are adjusted
such that the cost function decreases most efficiently. A popular method is the first or-
der optimization using gradient descent as it is easy to use and less time consuming and
computationally heavy than for example using the hessian for second order optimization.

2.7.4 Gradient Descent

Gradient descent is basically how the network learns. Training data is fed through the
untrained network, and the weights and biases are adjusted. Afterwards the network is
tested with unseen data. The way it works, is finding the minimum of a function. The
strength or weight between the connections in the network are initially random and the
network will perform terrible. The function to minimize is called the cost function. The
squared of the differences between each of the outputs and desired value of the outputs
are summed up. That is the cost of one training example. The inputs are the weights and
biases and the cost function outputs a single number, the average cost of all the training
samples. With one or two input parameters it is very easy to visualize moving a little bit in
the direction that decreases the value of the function the most like shown in Figure 2.13.
It becomes harder to visualize this with thousands of parameters, but the idea is still the
same. The negative gradient of the cost function is a vector. There is some direction inside
the high dimensional space that tell which nudges to all the parameters are going to cause
the most rapid decrease of the cost function. The algorithm for computing the gradient is
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(a)

Figure 2.13: Illustrations of gradient descent

called backpropagation. The learning rate decides how much the parameters are updated
per iteration. Setting it too big can make the function unable to settle on a good value
making the network worse. A network with too low learning rate takes very long time to
train. Choosing a learning rate proportional to the slope prevents it from overshooting.

2.7.5 Backpropagation

Each step takes the average cost of all the training samples. Each activation is a weighted
sum of all the activations of the previous layer and a bias. I.e. the error is dependent of
these weights, the bias and the activations from the last layer. Since the activations are
dependent of the previous layer and cannot be directly altered, we back propagate though
the network, adjusting the weights. Using every training sample for every gradient descent
step takes a long time to compute. Stochastic gradient descent (SGD) is used to make this
process faster. It basically randomizes the order of the input data and splits it up into mini
batches. A step is computed according to the mini batch. This does not give exactly the
correct direction in the high dimensional space to move in as it does not accord for the
whole training, but using a subset gives a good approximation.

Batch size, Iterations, and Epochs

These terms are easily explained using an example: If there are 10000 training samples
divided into 10 batches. The batch size is 1000, and there are 10 iterations for each epoch.
The number of epochs represents the number of times the model has trained on all the
training samples in the data set.

2.7.6 Training Phase and Inference

Normally the dataset is split into a training set, a validation set, and a test set. During
the training phase, the training data is used to update the parameters of the network. The
validation data is used during training to monitor the training process and to detect e.g.
overfitting. Inference is when the trained model is tested with new unseen data. E.g. when
a trained model is deployed and used in a live application.
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2.7.7 Sparsity of NN
This sub section is mostly based on the paper from Xavier Glorot, Antoine Bordes, and
Yoshua Bengio: Deep Sparse Rectifier Neural Networks [28]. Using activation functions
like ReLU which outputs 0 for negative input values naturally makes the network sparse.
This can have some advantages over a non-sparse network. Pruning is another technique
to achieve sparsity. It identifies non-important neurons and sets them to zero.

”We argue here that if one is going to have fixed-size representations, then sparse rep-
resentations are more efficient (than non-sparse ones) in an information-theoretic sense,
allowing for varying the effective number of bits per example”. Yoshua Bengio (2009)
[4]. Sparse representations allow the network to vary the effective dimension and required
precision of a given input. Using ReLU the output is a linear representation of the subset
of active neurons.

Using a sparse NN, results in a less entanglement network making it easier to identify
the factors explaining the variations in the data. Sparse NN gives a computational advan-
tage in comparison to a dense network and it can contribute to reducing the problem of
overfitting. Sparse networks are becoming more popular, as the accuracy of the NNs don’t
decrease significantly when introducing a sparser network. ”Maximum sparsity is ob-
tained by exploiting both inter-channel and intra-channel redundancy, with a fine-tuning
step that minimize the recognition loss caused by maximizing sparsity. This procedure ze-
ros out more than 90% of parameters, with a drop of accuracy that is less than 1% on the
ILSVRC2012 dataset” Liu, B, (2015) [51].

2.7.8 Dropout
Dropout is a technique used under training to avoid overfitting. As the name suggest is
drops out random neurons in the hidden layers. This means that the neurons are temporar-
ily removed from the network. An illustration of dropout neurons is shown in Figure 2.14
taken from Dropout: A Simple Way to Prevent Neural Networks from Overfitting [71]. For
each presentation of each training case a different reduced network is used. During the
inference phase all neurons are active.

2.7.9 Data Augmentation
Having too few training samples is a frequent problem using neural networks, as they often
need many samples to create a good generalization of the problem. Data augmentation
is creating new input data from already given inputs increasing the number of samples.
This is useful in application which has a restricted number of training samples available.
Examples of data augmentation on images are mirroring, rotations, random cropping and
color shifting.
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Figure 2.14: Illustration of dropout in a NN. Srivastava, N (2014) [71]

2.8 Convolutional Neural Network (CNN)

Convolutional neural networks are a type of neural network that has gained a lot of mo-
mentum lately partly due to its great ability to classify objects in images. It learns to
recognize features through convolution. It utilizes that pixels closer together in an image
are more related to each other than pixels far apart. For classifying images, MLPs does not
scale very well. It takes the input as a one-dimensional vector and passes the data through
the fully connected hidden layers. This is fine for small images. 10 pixels by 10 pixels
image and 3 RGB channels will give 300 weights per neuron in the first hidden layer. A
640x480 pixels image and 3 RGB channels will on the other hand give 921600 weights
per neuron in the first hidden layer.

The CNN basically consists of several types of layers stacked on top of each other.
There is no given way to stack the different layers, that is up to the designer. Using object
classification is a very intuitive example going through the basics of CNNs, but they can be
used on other types of data like text or sound, they are even being used to make computers
learn to play video games. Zhao Chen (2017) [10].

In the following sub sections different types of layers, input layer, convolutional layer,
pooling layer, fully connected layer, and batch normalization will be described.

2.8.1 Input Layer

The input layer stores the raw input data. It is a three-dimensional input consisting of the
width and height of the image and the depth is represented by the color channels, typically
three for RGB.
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2.8.2 Convolutional Layer
The convolution layer is the key layer of the CNN. It uses filters, or kernels, that basically
is a smaller image than the input. Convolution is done with a part of the input and the ker-
nel. This is done in a sliding window manner, ultimately covering the whole input image,
as illustrated in Figure 2.15. It is done for every depth of the input. The output from this
process is called a feature map or an activation map. The region of the input the feature
map is looking at, is called the receptive field. Each filter results in a feature map. The
activation map for each filter are stacked outputting a 3-dimensional tensor. As the filters
are trained they learn to recognize edges and patterns, and deeper in the network they can
recognize more advanced shapes. The input to a convolution layer is either the NN input
or the feature map output from another convolution layer.

Figure 2.15: Illustration of convolution Engineering, H (2015) [18]

Very commonly used in CNNs are the ReLU activation function. This layer basically
takes all the negative inputs and sets them to zero. The ReLU layer has no hyperparame-
ters, i.e. parameters that are chosen by the designer.

2.8.3 Pooling Layer
The pooling layer reduces the size of the data. The most common version is max pooling
which outputs the maximum value of the given window size and ignores the rest. It does
this operation over the whole input. The stride is chosen by the designer. With a common
window size of 2x2 and a stride of 2 the reduction would be 75% of the original size like
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shown in Figure 2.16. Pooling doesn’t care about where in that window the maximum
value is which makes it a little less sensitive to the position and helps to control overfitting.

Figure 2.16: Max Pooling layer example

2.8.4 Fully Connected Layer
Typically, at the output, or classification of the CNN we have one or multiple fully con-
nected layers. The classifier outputs probabilities for the different classes. Figure 2.17
shows an illustration of the famous CNN AlexNet developed by Alex Krizhevsky, Geof-
frey Hinton, and Ilya Sutskever.

Figure 2.17: Illustration of AlexNet. KARNOWSKI, J. (2015) [42]

2.8.5 Batch Normalization
It is common to normalize the data before inputting it to the NN. Batch normalization
normalizes the mean of the layer’s output activation close to 0 and its standard deviation
close to 1. This method is commonly used to accelerate the training of CNNs.

”The training is complicated by the fact that the inputs to each layer are affected by
the parameters of all preceding layers so that small changes to the network parameters
amplify as the network becomes deeper” Ioffe, S., Szegedy, C. T(2015) [39]. As the title
says: Batch Normalization: Accelerating Deep Network Training by Reducing Internal
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Covariate Shift, and the paper defines the internal covariate shift as the: ”change in the
distribution of network activations due to the change in network parameters during train-
ing”. As the problem becomes much more severe as the networks gets deeper, batch
normalization layers are more needed in these cases. The two extra parameters introduced
by batch normalization are also trained by the network.

2.9 Recurrent Neural Network (RNN)

Recurrent neural networks can be used for all sequential forms of data like video frames,
text, music etc. The feed-forward networks input some value to the network and returns
some value based on that input and the network parameters. A RNN has an internal state
that is fed back to the input, illustrated in Figure 2.18. It uses the current information on
the input and the prediction of the last input. The time steps of a recurrent neural network
are often illustrated as in Figure 2.19.

Figure 2.18: Illustration of RNN

Figure 2.19: Illustration of the time steps of a RNN

Feed-forward networks have a fixed size input and output. For example, an image has
a given number of pixels as inputs, and a number of classifiers as outputs. This is not
the case with RNNs. They can have one-to-many, many-to-one or many-to-many. For
example, one-to-many image classification could input an image and output a sequence
of words. Many-to-one could be used for sentiment analysis, and many-to-many can for
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example be sentence translation from one language to another.

RNNs have a problem with vanishing gradient descent. This can happen when the
gradient of the activation function becomes very small. When back-propagating through
the network the gradient becomes smaller and smaller further back in the network. This
makes it hard to model long dependencies. One way of getting around this is to use long
short-term memory (LSTM), which is a variant of the RNN. The opposite of the vanishing
gradient problem is the exploding gradient problem where the gradient gets to large.

2.9.1 Long Short-Term Memory (LSTM)

The LSTM block consists of three so called gates; the forget gate, the input gate, and the
output gate, in addition to the input and output blocks and the memory cell. Figure 2.20
shows an illustration of the block. The vector formulas for the LSTM can be found in
LSTM: A Search Space Odyssey [29].

Figure 2.20: Illustration of a LSTM block. Chen, J. (2016) [9]

Forget Gate

The LSTMs lack of an effective way to reset itself was solved introducing the forget gate
to the network [27]. The forget gate says how much of information from the input xt and
the last output ht−1 to keep. 1 is hold on to everything and 0 is forget everything.

Input Gate

The input gate says how much of the information that should be stored in the cell state. It
prevents the cell from storing unnecessary data.
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Output Gate

Lastly, the output gate decides how much of the content in the memory cell to expose to
the block output.
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Chapter 3
FPGA and Software Tools

This chapter gives a brief introduction for ways to increase the abstraction level in FPGA
development and gives a brief review of the different software frameworks available.

3.1 High Level Synthesis (HLS)
Since the low-level design on the register transfer level (RTL) can be quite time consum-
ing and prone the errors, tools providing a higher level of abstraction has lately become
increasingly popular.

High-level synthesis (HLS) basically converts C-code to hardware description lan-
guage (HDL) code. HLS is provided by both Xilinx, Intel FPGA and others. The HLS
compiler inputs the code together with a specification which contains information about
things like accuracy, speed and area. The main steps of the HLS design are shown in Fig-
ure 3.1.

The HLS tool executes the following tasks [15]:

• Compiles the specification

• Allocates hardware resources (functional units, storage components, buses, and so
on)

• Schedules the operations to clock cycles

• Binds the operations to functional units

• Binds variables to storage elements

• Binds transfers to buses
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Figure 3.1: HLS design steps. Coussy, P. (2009) [15]

• Generates the RTL architecture

The paper from Philippe Coussy goes through all the steps in more detail. In short,
the tool finds dependencies, unrolls loops, and utilizes pipelining to optimize the design.
The tool identifies needed RTL components, and decides what the clocking scheme should
look like; dependent of input specifications such as area, delay, and power. Operations can
be chained or scheduled to execute in parallel provided there are no dependencies and
sufficient amount of resources available. The output is the data flow and the control unit
which typically is a finite-state machine (FSM).

HLS it typically not used on system level design but used to solve some function f(x).
The module can then be included in the rest of the design. The Intel HLS compiler creates
an intellectual property (IP) core [21] of the design making it a self-contained component
that can be used in Qsys [22] as any other IP core.

3.2 OpenCL
OpenCL [73] is an open source C-based programming language for writing parallel com-
putational programs which can run on heterogeneous platforms like CPUs, GPU and FP-
GAs. It is a low level, high performance programming language. OpenCL can be used
instead of writing RTL code for an FPGA or to have snippets of code independent of
platform.
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3.3 Software Frameworks
There are a lot of different deep learning software frameworks. This section will take a
brief look at some of them, with focus on the ones with support for Python. This section
is based on online articles [38] [80] [54] [56] and the frameworks’ own documentation.

• TensorFlow [1] is an open source Python based machine learning library developed
by Google. It uses data flow graphs to represent the computations. It is said to be
easy to use.

• Theano [76] is a popular software framework for deep learning. It is a Python library
developed at the University of Montreal, LISA Lab. It is said to be somewhat harder
to use compared to e.g. TensorFlow.

• Torch [13] is a library based on Lua scripting language with C/Cuda implementation.

• Keras [12] is a higher level deep learning library used on top on either TensorFlow
or Theano.

• Caffe [41] is primarily a C++ library. It is much used for implementing convolu-
tional neural networks. It is developed at Berkeley Vision and Learning Center.

• Neon is also a Python library. It is said to be easy to use as well as very fast. It is
developed by Intel.

• CNTK [69], developed by Microsoft is very fast and outperforms TensorFlow on
performance, but it is somewhat harder to use. It has support for languages such as
Python and C++.
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Chapter 4
Review of Related Work

This chapter is built up of four sections:

• FPGA vs GPU

• Well Known Neural Network Architectures

• FPGA Implementations

• Neural networks in Time Series Forecasting

The first section reviews the usage of FPGA versus GPU in deep learning applications.
Secondly, well known CNN architectures are presented. It focuses on the layers intro-
duced by each model, and what makes them solve new problems improving performance.
Further, neural network implementations on FPGA are reviewed. And finally, different
neural network topologies used for time series forecasting are reviewed.

4.1 FPGA vs GPU
On the question of whether FPGAs are the new platform for deep learning, there are sev-
eral online articles [3] [58] [23] that refer to the same paper, Can FPGAs Beat GPUs in
Accelerating Next-Generation Deep Neural Networks? [60]. It reflects on the opportuni-
ties of the new FPGAs vs GPUs in deep neural networks.

GPUs are the most favored platform used in deep learning. FPGAs have proven to be
energy efficient but has not provided the performance or TFLOP/s as the GPU. Traditional
DNNs rely much on dense GEneral Matrix to matrix Multiplication (GEMM) on FP32
data type. This is very favorable for the GPU. It performs very well on regular parallelism
and gives high floating point computational throughput. The GPU only supports a fixed
set of native data types. In contrast, the FPGA offers extreme flexibility which makes it
better for irregular parallelism and custom data types. With new FPGA technologies there

31



Chapter 4. Review of Related Work

are not much difference in performance on FP32 TFLOP/s either according to Nurvitadhi,
E (2017) [60]: ”integration with high-bandwidth memories (up to 4x250GB/s/stack or
1TB/s), and improved frequency from the new HyperFlex technology, thereby leading to a
peak 9.2 TFLOP/s in FP32 throughput. In comparison, the latest Nvidia Titan X Pascal
GPU offers 11 TFLOPs in FP32 throughput”.

Deeper neural networks have shown more accuracy. This increases the computational
demand, and the focus on efficiency has thus increased. As discussed earlier, sparsity is
one way of making the network more efficient. Another popular approach is to use more
compact data types. ”Many researchers have shown (e.g., [6,7,10,11]) that it is possible
to represent data in much less than 32-bits, demonstrating the use of 8-4 bits (depending
on the network) leads to only a small reduction in accuracy compared to full precision.”
Nurvitadhi, E. (2017) [60]

Binarized neural networks (BNN) are very efficient at the expense of some accuracy.
For most efficiency 1 bit is used for both neurons and weights. Another type of network
is the ternary neural network (TNN). It uses 2 bits for the weights and fp32 for the neurons.

As discussed by Vivienne Sze (2017) [74] there are also techniques like weight shar-
ing, meaning several weights share the same value, using varying size filters, pruning, and
batch normalization. GoogleNet [75] for example uses 1x1 convolutional filters to increase
the efficiency of the network.

The increased use of sparse networks and compact data types might indicate that FPGA
is the new platform for deep learning, but as of today GPUs are still the most widely used
platform. Traditionally FPGAs have not been able to compete with GPUs, but devices like
Intel’s Stratix 10 with 5000 floating-point units and over 28MB of on-chip RAM integrated
with high-bandwidth memories, might level the playing field.

4.1.1 Acceleration of BNNs

Eriko Nurvitadhi’s paper (2016) Accelerating Binarized Neural Networks: Comparison of
FPGA, CPU, GPU, and ASIC [59] discuses FPGAs vs GPUs on solely on the classifica-
tion part, not the training of the network. They also compare FPGAs with ASICs.

With deeper nets, more storage capacity is needed. This is a limited resource which in-
creases the need for optimization. For example, the weights between two fully connected
layers with 5000 neurons each would result in 100 MB using 32-bit representations for
each weigh. This would be reduced to 3.125 MB if we used a binary representation for the
weights.

The activation functions in a BNN produces a 1-bit output, 1 or -1. Doing a multipli-
cation of a 1-bit value with another 1-bit value does not require multiplication. This can
be done simply with a xnor gate. The truth table is shown in Figure 4.1.
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Figure 4.1: XNOR truth table

”Our evaluation results show that the proposed accelerator can deliver orders of mag-
nitude improvements in performance and performance/watt over well optimized software
on CPU and GPU.” Eriko Nurvitadhi’s paper (2016) [59].

When training BNN, only the activations and the weights are binary. The gradients of
the weights are accumulated with higher precision. ”SGD explores the space of param-
eters in small and noisy steps, and that noise is averaged out by the stochastic gradient
contributions accumulated in each weight. Therefore, it is important to keep sufficient
resolution for these accumulators, which at first glance suggests that high precision is ab-
solutely required.” Matthieu Courbariaux (2016) [14].

Intel’s paper on acceleration of NN using binarization [57] uses higher precision for
the accumulated gradients. ”Real valued gradients are required for SGD to work. The
weights are stored in real valued accumulators and are binarized in each iteration for for-
ward propagation and gradient computations.”

It’s worth mentioning that some of the articles on the topic of FPGAs vs GPUs easily
can be perceived as slightly biased against using one or the other platform. But in the near
future, as the NN evolve, both the FPGA and be GPU will most likely coexist and outper-
form each other in different areas. There are various needs in form of accuracy, speed and
power consumption. GPUs will probably be used in high precision, and dense NNs, while
the FPGA is more suited for other types of irregularities and applications requiring lower
power consumption.

4.2 Well known Neural Network Architectures

There is a vast amount of literature on the different NN architectures from the 90s until
today. This section will only give a brief overview of some of the different architectures,
and look at the different techniques introduces by each network for solving various prob-
lems.

Many of the most famous neural networks have participated in the ImageNet challenge,
where the goal is to achieve the highest accuracy in image classification. Figure 4.2 from
Alfredo Canziani & Eugenio Culurciello (2017) [8] gives an overview of the different ar-
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chitectures. The challenge is quite popular and can be used for comparison of accuracy
between different NN architectures, but does not take any other measures, like speed or
size.

Figure 4.2: ”Top1 vs. operations, size parameters. Top-1 one-crop accuracy versus amount of
operations required for a single forward pass. The size of the blobs is proportional to the number of
network parameters; a legend is reported in the bottom right corner, spanning from 5106 to 155106
params. Both these figures share the same y-axis, and the grey dots highlight the centre of the blobs.”
Canziani, A., Paszke, A., Culurciello, E. (2016) [8]

4.2.1 LeNet5
The LeNet5 [49] was one of the first convolutional neural networks, being much of the
inspiration for the next generations of CNN to come. It did not use all the pixels as inputs
to a large fully connected multi-layer network, but took advantage of the fact that pixels
in an image are more closely related to neighboring pixels than pixels further away. The
network consists of 7 layers and the architecture is shown in Figure 4.3. The activation
functions used to introduce non-linearity were sigmoid or tanh.

Figure 4.3: The architecture of LeNet5. Lecun, Y. (1998) [49]
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4.2.2 AlexNet

AlexNet [45] is a bigger CNN than LeNet5. It reduced training time running on multiple
GPUs. The activation function used was ReLU making it more effective. The pooling
layers used max pooling and were overlapping, meaning that the pixels in a pooling unit
overlaps with the previous adjacent pooling unit. AlextNet addresses the overfitting prob-
lem in several ways. It uses data augmentation utilizing both color shift and random
cropping, in addition of using dropouts to reduce overfitting. The architecture of AlexNet
is shown in Figure 4.4.

Figure 4.4: The architecture of AlexNet. Krizhevsky, A. (2012) [45]

4.2.3 VGG

VGG [70] is deeper and more accurate than AlexNet, but has a lot of parameters and takes
a long time to train as illustrated by the size of the circle in Figure 4.2. It uses smaller
filter sizes of 3x3, making the network more efficient. Stacking multiple smaller filters
gives larger receptive field, similar to using a bigger filter. This reduces the number of
parameters needed. Also using ReLU functions between the layers introduce more non
linearities making the features more expressive.

4.2.4 GoogleNet

GoogleNet [75] made a deeper and more effective neural network. It introduces 1x1 con-
volutional layers and the inception module.

1x1 Convolutions

1x1 convolutions does mainly two things: it introduces more non-linearity to the network,
and it reduces the dimension. Using a 1x1 on an input of 1 channel doesn’t make much
sense (for example 7x7x1), it would only result in a scaling of all the number in the input.
Using more input channels, like 7x7x10, each pixel of the output would be a weighted sum
from that same pixel position in the input from each channel. The output channel depth
will be the same as the number of filters.
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Inception Module

Instead of using either a 3x3 or a 5x5 for example, the inception module basically uses
multiple filter sizes and a pooling layer and concatenates the outputs letting the network
learn what to use instead of choosing one to begin with. The 1x1 convolutions before the
3x3 and 5x5 reduces the dimension of the input before these larger filters reducing the
computational cost. Later, more versions of the inception module were introduced.

Figure 4.5: The inception module. Szegedy, C. (2014) [75]

4.2.5 ResNet
ResNet [34] introduces the residual block shown in Figure 4.14(a). This block adds a
shortcut connection. In plain networks without these shortcuts, a problem with training
arises when the networks get deeper. The shortcuts make the optimization solver converge
faster. With many layers they also started to use bottleneck layers, like shown in Figure
4.14(b). Figure 4.7 illustrates that the plain network struggles to converge when using
more layers as the accuracy does not improve. In contrast, the ResNet improves when
using a deeper network.

4.2.6 SqueezeNet
SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND
≤ 0.5MB MODEL SIZE [37]. As the title says, SqueezeNet’s goal was to achieve a certain
point of accuracy with a much smaller model. The paper points out three advantages
using fewer parameters; a more efficient distributed training process, less overhead when
exporting new models to clients, and feasible FPGA and embedded deployment, due to the
traditionally small amounts of on chip memory on the FPGA. To achieve fewer parameters
without degrading the accuracy, the paper introduces three design strategies for the NN:

• Strategy 1. Replace 3x3 filters with 1x1 filters

• Strategy 2. Decrease the number of input channels to 3x3 filters. Reducing the
inputs to the 3x3 filters are done using squeeze layers
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(a) Residual block (b) Residual block with bottleneck

Figure 4.6: Residual blocks of ResNet. He, K. (2015) [34]

Figure 4.7: Error in ResNet vs plain network. Szegedy, C. (2014) [75]

• Strategy 3. Downsample late in the network so that convolution layers have large
activation maps. This strategy is used to achieve high accuracy

SqueezeNet introduces the fire module shown in Figure 4.8. There are three hyperpa-
rameters in the fire module. The number of filters of 1x1 squeeze, 1x1 expand and 3x3
expand. The use of 1x1 reflects on strategy 1 and the squeeze also limits the number of
inputs to the 3x3 filters as proposed in strategy 2. Strategy 3 are shown by the somewhat
late positioning of the pooling layers in Figure 4.9.

4.2.7 ENet
ENet (efficient neural network) [62] was designed for Semantic Segmentation running on
low power mobile devices. It is very small and still precise. The building blocks introduced
by ENet is shown in Figure 4.10. Like many of the other more efficient networks, ENet
factorizes filters, meaning decomposing bigger filters into multiple smaller ones. It down-
samples early to reduce the module size, and it used PReLU (Parameterized ReLU) as
activation function. This uses more parameters, but enables learning of the negative slope
of the activation function. It also used Dilated convolutions. This adds one parameter to
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Figure 4.8: Fire Module. Iandola, F. (2016) [37]

Figure 4.9: Macroarchitectural view of our SqueezeNet architecture. Left: SqueezeNet; Middle:
SqueezeNet with simple bypass; Right: SqueezeNet with complex bypass Iandola, F (2016) [37]

the convolution. From the paper from Fisher Yu (2016) [83]: ”The dilated convolution
operator can apply the same filter at different ranges using different dilation factors.” It
is basically an upsampling layer, which gives a exponential growth in the receptive field
with the number of parameters growing linearly. Normal dropout used against overfitting
showed little success, so spatial dropout was used instead. It drops out whole branches
instead of random subset of neurons. Jonathan Tompson (2015) [77]: ”extend the dropout
value across the entire feature map. Therefore, adjacent pixels in the dropped-out feature
map are either all 0 (dropped-out) or all active”
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Figure 4.10: Blocks of ENet. Paszke, A. (2016) [62]

4.2.8 Xception

The Xception architecture is rather simple. It builds on inception, residual blocks. In the
paper from Franois Chollet (2017) [11]: ”In short, the Xception architecture is a linear
stack of depthwise separable convolution layers with residual connections.” The architec-
ture is shown in Figure 4.11.

Figure 4.11: Architecture of Xception. Chollet, F. (2016) [11]

4.3 FPGA Implementations

Most implementations done on FPGAs focus on the inference part, i.e. not the train-
ing phase. This makes sense because it is in the inference phase the FPGA really shine
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providing very low latency and better power efficiency. This section will look at both
implementation of training and inference but has most focus on the latter.

4.3.1 F-CNN: An FPGA-based Framework for Training Convolutional
Neural Networks

F-CNN [84] presents a framework for training convolution neural networks. I.e. not accel-
erating the classification of the CNNs as most FPGA accelerators, but the training process.
This has a more complicated workflow, requiring a more flexible network. Classification
uses forward propagation on a pre-trained network, while training does forward propaga-
tion, error propagation and then updates the weights. F-CNN has been used to implement
AlexNet and LeNet5 on an FPGA showing higher performance than a CPU, and a more
energy efficient implementation than a GPU.

The F-CNN paper proposes some design principles:

• Modularity: Since the FPGA has far from sufficient resources to implement the
whole training process, a modular design is used. The training process is parti-
tioned, and parameterized modules implements the three computational layers of
the network: the convolution, pooling and MLP.

• All the modules support a unified data path. The data transferred between the blocks
are 4-dimensional tensors.

• It uses runtime reconfiguration. There are not enough resources to pre-configure all
modules before execution.

The architecture of F-CNN is shown in Figure 4.12. The data controller divides the
input training data into smaller mini batches and loads them to DRAM.

Figure 4.12: F-CNN architecture. Zhao, W. (2016) [84]
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Which computational modules to use are controlled from the module controller. It
specifies the configuration of the modules dependent of the training cycle as seen in Fig-
ure 4.12. There are implemented modules for each of the layers in the network.

The running controller are responsible to start the module to do the actual computation.

The paper sets up four steps for a training cycle:

1. Reconfigure a module into a FPGA card

2. Prepare data in DRAM

3. Call the module to do the computation, with parameters and weights

4. Read back the results and update weights in CPU (for back-propagation modules)
and go to step 1

The basic architecture of the modules in F-CNN is shown in Figure 4.13. There can
be one or more kernels running in parallel in each module. Four different kernels: forward
convolutional kernel, backward convolutional kernel, pooling kernel, and MLP kernel.

Figure 4.13: Model architecture in F-CNN. Zhao, W. (2016) [84]

The hardware programming for this project was designed writing high-level code us-
ing the MaxCompiler [53] and the software results are obtained using the Caffe framework
[41]. It takes some time to reconfigure the FPGA, so two FPGAs are used. One is execut-
ing while the other one is reconfigured. The results show that the performance using the
FPGA is almost as good as the GPU. 4,3x speed up vs 4,7x on the GPU and the FPGA is
7,5 times more energy efficient.
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4.3.2 DLAU: A Scalable Deep Learning Accelerator Unit on FPGA
DLAU [81] is a scalable and flexible deep learning accelerator implemented in an FPGA.
It consists of three main blocks that is pipelined; the TMMU, the PSAU and the AFAU.
The architecture has 3 key elements;

• Each element uses FIFO buffers to prevent loss of data in case of inconsistent data
flow between units.

• It uses tiled techniques. It splits the input data into smaller pieces that is cached on
the chip. The hardware is time-shared between the partitions of the data.

• There are streaming interfaces between the processing units transferring data.

The TMMA (Tiles Matrix Multiplication Unit) is the main block doing the multipli-
cations and the additions like shown in Figure ??. In the illustration, the tile size is set
to 32, doing 32 multiplications for each tile. This is connected to the PSAU (Part Sum
Accumulation like shown in Figure ?? before the data goes though the AFAU (Activation
Function Acceleration Unit) which performs a sigmoid activation.
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Figure 4.14: DLAU schematics. Wang, C. (2016) [81]

The whole architecture is shown in Figure 4.15. As the paper illustrates; the speed
of the network is proportional with the tile size as expected, since more multiplications
would be executed in parallel. It also includes some discussion on resources and power
utilization. There is not much focus on training, or other topics. The core of the paper is
the acceleration unit itself, and its scalability.
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Figure 4.15: DLAU architecture. Wang, C. (2016) [81]

4.3.3 The implementation of a Deep Recurrent Neural Network Lan-
guage Model on a Xilinx FPGA

Yufeng Hao (2017) [32] focuses on implementing an embedded deep recurrent neural net-
work (DRNN) used for NLP (Natural Language Processing). It uses Python, with the
Theano deep learning framework [76], for training and verification of the DRNN. To deal
with the vanishing gradient problem it used LSTM blocks. The DRNN language model’s
program flow is shown in Figure 4.16.

The architecture of the DRNN is shown in Figure 4.17(a) and the main computational
block that’s implemented in logic is shown in Figure 4.17(b).

From the pynq website (http://www.pynq.io/): ”PYNQ is an open-source project
from Xilinx that makes it easy to design embedded systems with Xilinx Zynq All Pro-
grammable Systems on Chips (APSoCs).” This project utilizes high level of abstraction
speeding up the process implementing the DRNN. The trained model on PYNQ is de-
ployed through Jupyter. It shows that a pre-trained model on a CPU or GPU can be de-
ployed to an FPGA SoC using high-level system tools.
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Figure 4.16: Program flow of the DRNN LM. Hao, Y. (2017) [32]

(a) Block diagram of the accelerator overlay data
path diagram (b) DRNN accelerator

Figure 4.17: Architecture of DRNN. Hao, Y (2017) [32]
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4.3.4 FINN: A Framework for Fast, Scalable Binarized Neural Net-
work Inference

FINN is an embedded neural network performing millions of classifications per second
with very low latency. From the paper, Yaman Umuroglu* (2016), [78] ”On a ZC706
embedded FPGA platform drawing less than 25 W total system power, we demonstrate up
to 12.3 million image classifications per second with 0.31 s latency on the MNIST dataset
with 95.8% accuracy, and 21906 image classifications per second with 283 s latency on
the CIFAR-10 and SVHN datasets with respectively 80.1% and 94.9% accuracy”

The paper discusses, among other things, the tradeoffs between accuracy and network
size. Interestingly the difference in accuracy between low precision and floating-point net-
works is reduced in larger networks like seen in Table 4.1. The lack in accuracy can be
compensated, by making the network larger, and the speedup is greater than the increase
in parameters. That indicates that BNNs, achieving the same accuracy as fixed-point net-
works, could be faster.

The streaming architecture and scheduling of FINN are shown in Figure 4.18. All the
parameters of the NN are stored in on-chip memory, reducing the latency of the network.

For all the BNNs in this paper, the input and output activations and the weights are
represented using 1 bit, -1 or +1 like shown in Equation 4.1. They also use batch normal-
ization before the activation function:

Sign(x) =

{
+1 : x ≥ 0

−1 : x < 0
(4.1)

The paper explains some optimizing techniques:

• Popcount for Accumulation: only counting value since its only +1 or -1.

• Batch-norm activation as threshold: the same output can be computed via thresh-
olding.

• Boolean OR for Max-pooling: Max pooling after activation (on binary values)

Three topologies are presented:

Neurons/layer Binary err. (%) Float err. (%) Params Ops/frame
128 6.58 2.70 134,794 268,800
256 4.17 1.78 335,114 668,672
512 2.31 1.25 932,362 1,861,632
1024 1.60 1.13 2,913,290 5,820,416
2048 1.32 0.97 10,020,874 20,029,440
4096 1.17 0.91 36,818,954 73,613,312

Table 4.1: Accuracy results - BNN vs floating point NN. Umuroglu, Y. (2017) [78]
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Figure 4.18: FINN streaming architecture and scheduling. Umuroglu, Y. (2016) [78]

Name Thr.put Latency LUT BRAM Pchip Pwall

(FPS) (us) (W) (W)
SFC-max 12361 k 0.31 91131 4.5 7.3 21.2
LFC-max 1561 k 2.44 82988 396 8.8 22.6
CNV-max 21.9 k 283 46253 186 3.6 11.7
SFC-fix 12.2 k 240 5155 16 0.4 8.1
LFC-fix 12.2 k 282 5636 114.5 0.8 7.9
CNV-fix 11.6 k 550 29274 152.5 2.3 10

Table 4.2: Results from different topologies. Umuroglu, Y. (2016) [78]

• SFC: Three fully connected layer with 256 neurons in each layer. Used to classify
the MNIST data set (28 x 28 handwritten digits)

• LFC: Three fully connected layer with 1024 neurons in each layer. Used to classify
the MNIST data set (28 x 28 handwritten digits)

• CNV: It is a convolutional NN. From the paper: ”It contains a succession of (3x3
convolution, 3x3 convolution, 2x2 maxpool) layers repeated three times with 64-
128-256 channels, followed by two fully connected layers of 512 neurons each.” It
is used to classify CIFAR-10 (32 32 color images in 10 categories) and SVHN (32
32 images of Street View House Numbers).

Results from the different topologies are shown in Table 4.2. The max and fit are either
maximum performance or a fixed FPS.

The FINN framework outperforms the other topologies reviewed here and others [2]
[19] [35] [61].
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ALSTM RBM SAE Auto-LSTM
RMSE 0.011562 0.035586 0.030211 0.022520

Table 4.3: Power consumption: one-step performance. Hsu, D. (2017) [36]

4.4 Neural Networks in time series forecasting
Diverse types of network topologies have been used for time series forecasting. Takashi
Kuremoto [46] used a deep belief network (DBN) in 2014 and later both CNNs and LSTMs
have been used. This section will take a brief look at some of the different topologies used
for time series forecasting.

4.4.1 Time Series Forecasting Using LSTMs
Due to the memory of LSTMs, it has the ability to use long time dependencies when
forecasting time series. Daniel Hsu paper (2017) [36]: Time Series Forecasting Based
on Augmented Long Short-Term Memory, presents an augmented long short-term mem-
ory (A-LSTM). This is a combination of an Auto Encoder and the LSTM. The inputs are
encoded to latent variables. The latent variables are dependent on both the input and the
hidden state of the LSTM. The predicted output is decoded from the hidden state of the
LSTM and these latent variables. This idea comes from Felix A. Gers’s paper (2002) [26].
It shows that an MPL outperformed the LSTM on prediction only using some of the recent
inputs. ”LSTM learned to tune into the fundamental oscillation of each series but was
unable to accurately follow the signal. The MLP, on the other hand, was able to capture
some aspects of the chaotic behavior.” The paper also suggests using a hybrid of the two.

Daniel Hsu shows results using simulated data and real word data from household elec-
tric power consumption. The results from the A-LSTM are compared against: Restricted
Boltzman Machine (RBM) [46], Stacked Denoising Auto-Encoders (SDAEs) [66] and au-
toencoder stacked on LSTM (Auto-LSTM) [25].

The SDAE is a bit like the RBM. In the unsupervised part of the learning, some noise
is added to the inputs. Each layer then need to reconstruct a clean version of the inputs.
Doing this attempt to extract higher level features from the input data, generalizing it in a
better way. The Auto-LSTM is basically just as the name suggest an autoencoder stacked
on a LSTM.

Figure 4.19 shows the one-step performance test of power consumption data. 1000
data points are used for training and about 6000 for testing. Table 4.3 show the root-mean-
squared error (RMSE) for the architectures mentioned above.

4.4.2 Time Series Forecasting Using CNNs
Anastasia Borovykh’s (2017) paper [5], Conditional Time Series Forecasting with Con-
volutional Neural Networks is based on the WaveNet architecture [79] which is used to
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Figure 4.19: Predicted data (green). Actual values (blue). Hsu, D. (2017) [36]

generate audio from text. It uses dilated convolution to enable the network to learn con-
nections between data points that are further away from each other. In the dilated convo-
lution, the filter skips elements in the input vector. Figure 4.20 show a 1, 2 and 4-dilated
convolution.

Figure 4.20: Dilated convolution. Yu, F. (2015) [83]

The network uses residual connections and the activation function used is ReLU. The
architecture is shown in Figure 4.21. It uses conditional time series to help forecast the
input time series. There can be multiple conditions, and the parameterized skip connection
learns to skip connections that are not important for the forecast. According to the paper
this network shows promising results in comparison to LSTMs, that is widely used on time
series data.

Interestingly, Zhicheng Cui (2016) [16] explores the opportunity to use multiple trans-
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Figure 4.21: ”The network structure. In the first layer (L) the input and condition (with the zero
padding) are convolved, passed through the non-linearity and summed with the parametrized skip
connections. The result from this first layer is the input in the subsequent dilated convolution layer
with a residual connection from the input to the output of the convolution. This is repeated for
the other layers, until we obtain the output from layer L (M). This output is passed through a 11
convolution, resulting in the final output: the forecasted time series (R).” Yu, F., Koltun, V. (2015)
[83]

formation like time and frequency domain of the input data for time series classifications.
This showed better results in most cases compared to using an original CNN with the same
size. The architecture of the Multi-Scale CNN is shown in Figure 4.22.
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Figure 4.22: Architecture of multi-scale CNN. Cui, Z. (2016) [16]

4.4.3 Combining CNNs and RNNs
Wolfgang Groß’s paper from 2017 [30] introduces something they call Space-Time Con-
volutional and Recurrent Neural Network (STaR). It is a combination of a CNN and a
RNN or LSTM blocks. One of the key features in this paper is that it interprets the input
as a time-space matrix, i.e. each channel of the multivariate input has its own column and
the discrete time increases from top to bottom. The architecture of STaR and the arrange-
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ment of the input matrix is shown in Figure 4.23. This arrangement of the input matrix
only makes sense if the neighboring input channels are related to each other. Combin-
ing the CNN with a RNN like this enables the network to learn features with longer time
dependencies.

Figure 4.23: Space time arrangement and STaR architecture. Groß, W. (2017) [30]

The STaR architecture is tested against other architectures on the European power
exchange trading power in form of contracts. There are three output classes from each
network: the price stays the same within some margin, it rises, or it falls. Random selection
would get approximately 33%. Table 4.4 shows the results from the test done in the paper.
As we see the STaR network yields the best performance.

Time ST-CNN ST-CNN ST-CNN ST-CNN
CNN 6L-3Ch 6L-5Ch 9L-5Ch 6L-7Ch
38.6 % 41.9 % 41.8 % 43.9 % 44.3 %
NN RNN 1L RNN 2L STaR NN STaR Linear
42.1 % 45.3 % 44.3 % 48.3 % 43.2 %

Table 4.4: Model comparison. Groß, W. (2017) [30]
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Chapter 5
Evaluation of The Literature
Review

This literature review had the purpose of acquiring general knowledge about deep learn-
ing, and explore related work on neural networks, FPGA implementations and NNs used
for time series forecasting.

The review’s background theory chapters are influenced by the writer’s prior knowl-
edge on the topic as it starts from the basics. It covers basic elements about deep learning
and goes though some different architectures and optimization techniques. This relatively
broad approach touches upon several important subjects, but at the expense of going very
deep into any specific subject. It covers enough for the writer to start the implementation.

When discussing FPGA implementations and NN used for time series forecasting, the
writer reviews a few chosen academic papers instead looking very broadly on the subject.
In the case of deep learning it makes sense to use fewer, and stick to relatively new papers,
rather than including older research, as the field is evolving very fast. The main difference
between these implementations, and this project’s problem, is the aspect of the highly ran-
dom dataset. This makes it much harder to find clear patterns and structures in the data.
Methods of pre-processing, feature selection (like explored by Jundong Li (2016) [50])
and handling of highly random data is not included in the review. In hindsight of testing,
this should have been included and given more focus.
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Chapter 6
Functional Specification

This chapter will shortly describe the functional specification of the software that has been
developed as a part of this project, including what tasks it should perform and the success
criteria of the project.

6.1 System Description
The system consists of two sub systems: the pre-processing and application system shown
in Figures 6.1 and 6.2, respectively.

Figure 6.1: Pre-processing system

The pre-processing system in Figure 6.1 inputs the raw data. There is one file for each
item, and about 500 items in total in the ”mysteryset”. These contain a few parameters
each. All the parameters from these items makes up the total number of available features.
The Data fetcher combines all the features represented by each parameter into big pandas
Dataframes and saves them as .csv files. I.e. each parameter from all the items is stored
in their own csv file. The structures of the data from separate files for each item into one
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Figure 6.2: Application system

csv file for each chosen parameter is shown in Figure 6.3. The block diagram of the Data
fetcher is shown in Figure 6.4. The pickled list of item names is manually put together
from a much larger selection of items.

The application system in Figure 6.2 inputs the numpy arrays of inputs and labels.
These are split into a training-, a validation- and a test-set. The model is built, compiled
and fitted to the training data. Then the results are visualized and evaluated.

Figure 6.3: Illustration of the conversion from items to files for each parameter. This figure shows
an example using only 4 samples and 2 selected parameters

The pre-processing system does some features extraction, i.e. choosing what items to
keep, in each parameter file. All the selected features are scaled prior to saving the data as
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Figure 6.4: Block diagram of the data fetcher

one set of numpy arrays of inputs and labels. There will thus be one set of inputs/features
and outputs/labels files. A more detailed description of the feature selection is presented
in Section 7.2.4.

6.2 Specification
The specification of the pre-processing is easily summarized by three simple bullet points:

• Inputs raw files. One for each feature containing a few parameters each

• Feature selection and scaling

• Outputs one set of inputs and labels as numpy arrays.

The neural networks should be small in size, and kept shallow minimizing the la-
tency. Their specification is shown in Table 6.1. Only the common specification for all the
different topologies are included here. This common specification is used to ease the com-
parison of performance between the different architectures. Other specifics like: number
of epochs, batch size and optimizers might vary for the different topologies and are found
mostly by trial and error in the design chapter.
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input shape : look back · number of features
output shape : binary classification
number of features : < 50
look back : < 100
number of parameters : < 10 000
number of layers in depth : < 10
number of training examples : > 3000
number of test examples : > 400
output metrics : accuracy
baseline accuracy : > 50 %

Table 6.1: Common NN specification

6.3 Success Criteria
The success criteria are simply to create a model that finds a generalization of the training
data that achieves better than 50% accuracy on a binary classification on the test data, i.e.
predicting if the next value of a given feature is rising or falling. This must be showed on
multiple runs, using different features as the classification feature.
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Tools & Data Preparation

This chapter will briefly describe the software framework chosen for the neural network
implementation, and some of the pre-processing done prior to fitting the data to the model.

7.1 Keras - Software Framework
Based on the selection of software frameworks in the literature review, Keras is chosen
as the software framework for testing the different neural network architectures for pre-
dicting time series data. This software framework is chosen because of its high-level user
interface, enabling faster creation of different models compared to using a more low-level
framework - yet still with a lot of options for tweaking and modifications.

All information not cited elsewhere about the Keras functional API is taken from the
official Keras Documentation [12]. Keras uses either Tensorflow or Theano as backend. In
this project Tensorflow is used.

7.1.1 Building Models
Building of models is done using the Sequential function. The Sequential model is basi-
cally a stack of layers specified by the user. Only the first layer needs to specify the input
shape of the data. When combining multiple models, the Model method is used.

Core Layers

A selection of the core layers in Keras taken directly from the documentation [12]:

• Dense: Just your regular densely-connected NN layer.

• Activation: Applies an activation function to an output.

• Dropout: Applies Dropout to the input.
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• Flatten: Flattens the input. Does not affect the batch size. E.g. used between the
convolutional layer and the classifier.

• Input: Input() is used to instantiate a Keras tensor. The input can be specified as an
argument in the first layer.

Other layers like different convolutional layers, recurrent layers, and layers to merge mul-
tiple models etc. are found in the documentation.

7.1.2 Compilation

Configuration of the learning process is done with the compile method. The loss function
and the optimizer must be specified. All the different optimizers and their arguments can
be found in the Keras documentation. One example of categorical classification using
Nesterov Adam optimizer with 0.002 learning rate is shown below.

model.compile(optimizer=Nadam(lr=0.002),
loss=’categorical_crossentropy’,
metrics=[’accuracy’])

7.1.3 Training

The model is trained using the fit method. It uses numpy arrays for inputs and labels.
The number of epochs and the batch size are specified here. There are also many other
arguments that can be set. One example is shown below. The data is split into training and
validation data. The validation data is not used for updating the weights of the network,
but to keep track of the training process, and to detect overfitting.

history = model.fit(inputs_train, labels_train,
nb_epoch=n_epochs,
batch_size=batch_size,
verbose=1,
validation_data=(inputs_val, lables_val),
shuffle=True)

7.1.4 Evaluation

There is an evaluate method that returns the loss value and the metrics values. This pro-
vides the model accuracy for a given set of inputs and labels. There is also a method that
predicts the output based on a given input. This method is used to predict future values of
the time series. The evaluation is done on a separate (unseen) test set, which is not part of
the training or validation set.
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7.2 Pre Processing

7.2.1 Shape of Input Frame

The input frame is inspired by the space time arrangement from Wolfgang Groß’s paper
(2017) [30] in the literature review.

The input frame is made from a moving window over all the features in the dataset.
Each input feature is a 1-dimensional array. The length of the array depends on how much
history that is included in each input frame, denoted the look back. Combining all the
1-dimensional arrays of features form the input frame for each time stamp. Figure 7.1
illustrate the moving window which results i a new input frame for each sample. The final
shape of the input frame x will be on the format: (samples, look back, number of features).

(a) Time series of 5 features (b) One input frame from 5 features

Figure 7.1: The relationship between the input features and the input frame

In Groß’s paper, neighboring features should be related to each other, since the con-
volution kernel has a specific size in the ”spatial” dimension. This is not applied for this
implementation. The spatial dimension of the paper, which contains the different features,
can be seen as the number of channels in e.g. a standard RGB image with three channels.
Here the number of features will represent the number of channels, i.e. the number of one
dimensional vectors of the input frame.

7.2.2 Feature Scaling

The different features are not necessarily in scale when acquiring the dataset. Normaliza-
tion or standardization is done per input frame as shown in Equations 7.1 and 7.2

xstandardization =
x− x̄

σ
(7.1)

where x̄ is the mean of x and σ is the standard deviation of x.
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xnormalization =
x−min(x)

max(x) −min(x)
(7.2)

The whole dataset cannot be scaled before use. When predicting future values, these
futures vales cannot be a part of the scaling. Here each input frame of LOOK BACK length
is scaled.

for i in range(len(dataset)):
# Take out the input frame from the input features
in1 = feature_1[i:i + LOOK_BACK]
in2 = feature_2[i:i + LOOK_BACK]
in3 = feature_3[i:i + LOOK_BACK]
in4 = feature_4[i:i + LOOK_BACK]
in5 = feature_5[i:i + LOOK_BACK]

if feature_scaling == ’standardization’:
# Standardization for the input frame
in1 = (np.array(in1) - np.mean(in1)) / np.std(in1)
in2 = (np.array(in2) - np.mean(in2)) / np.std(in2)
in3 = (np.array(in3) - np.mean(in3)) / np.std(in3)
in4 = (np.array(in4) - np.mean(in4)) / np.std(in4)
in5 = (np.array(in5) - np.mean(in5)) / np.std(in5)

elif feature_scaling == ’normalization’:
# Normalization for the input frame
in1 = (np.array(in1)-np.min(in1))/(np.max(in1)-np.min(in1))
in2 = (np.array(in2)-np.min(in2))/(np.max(in2)-np.min(in2))
in3 = (np.array(in3)-np.min(in3))/(np.max(in3)-np.min(in3))
in4 = (np.array(in4)-np.min(in4))/(np.max(in4)-np.min(in4))
in5 = (np.array(in5)-np.min(in5))/(np.max(in5)-np.min(in5))

The dataset is also made stationary, preventing the NN from only extracting long-term
trends. The data could for example have an upward or downward going trend, making the
NN prone to overdoing that trend by learning to choose only one classifier for all inputs.

7.2.3 Labeling

Supervised learning uses pre-labeled data to train the models. Labels are the outputs or the
answers from the NN in response to the input data. Machine learning datasets may already
be labeled, but not always. If the data is gathered e.g. by sensors they need to be labeled.
In time series regression the labels are basically a time shifted version of the input feature
that is to be predicted. From the example in Figure 7.1 the label would be sample t=0 for
the feature or features in question. In standard classification with e.g. the MNIST dataset
there are 10 output probabilities, one for each handwritten digit. Each number represents
the model predictions for the specific classes. This can also be used for classification of
time series data. The classifications could e.g. be rising or falling or any number of clas-
sifications within specified ranges.

Labeling e.g. if Feature 1 is rising or falling, is done by looking at the previous and
current value like shown below.
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if feature1_t0 < feature1_t-1:
label = [1, 0]

else:
label = [0, 1]

7.2.4 Feature Selection
The ”mysteryset” studied in this project, contains a large number of features. All the fea-
tures can in principle be used, but this would increase computational time a lot, making
that approach very inconvenient for this study. Using all the features can also contribute
to overfitting. Some of the features have missing data fields. These could be replaced by
values from a neighboring feature, but since there are enough features in this case, the
features with missing data are not used.

The dataset is highly random, containing little, if any, structure or repetitive patterns.
This makes it hard to achieve any significant increase in classification accuracy. The goal
here is to see if the NNs can pick up any structures giving a slightly better performance
then 50% on a binary classification.

Multiple features can be used predict to the rise or fall of one feature. Correlation
between features are used to pick out which features to be included in the dataset. Several
different setups with different numbers of features will be tested. Using correlations of
lagged time series are also tested. Figure 7.2 shows the correlation matrix of the differ-
ences in the time series. The diagonal only shows the features correlated with themselves
giving ones on the diagonal. There are clearly some features that are more correlated to
the other time series, and others that are almost totally uncorrelated to the other features.
Including very correlated inputs would add less new information to the network than un-
correlated ones. Using groups of correlated features can make the network more prone to
overfitting since one type of structure might be over represented in the inputs.

(a) All features (b) Zoomed

Figure 7.2: Correlation matrix of features
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7.2.5 Selecting the Number of Samples
The dynamics of the data can change over time. Using too much history can lead to worse
results, making the network fit to older data which has little or nothing in common with
newer data. On the other side, the NN needs a fair number of examples to make a good
generalization of the problem. In this project, there is a finite number of samples available.
Initially, and probably throughout the project, all available samples will be used.

7.3 FloydHub
FloydHub [20] is a service used to train deep learning model in the cloud. When the
models get larger it takes a lot of time to train on a laptop, therefore FloydHub was used
during this project. It is a similar service to Google ML engine or Amazon AWS and
was chosen here for its simplicity. More information about FloydHub can be found on
their website. Setting up projects and running them on GPUs using FloydHub are well
documented and not included in this report.
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This chapter will cover the initial design of different network architectures used during
this project and some tuning of the hyperparameters.

Finding structures in highly random datasets, like the ”mysteryset”, is a challenging
task. All the topologies are therefore first tested using a different dataset which has the
same shape of the input frame, but contains much more structure, in order to get the feel
of the dynamics of each topology. Then, using this experience, the ”mysteryset” is tested
to see if any structures can be extracted.

There is not one specific way of designing a NN. It differs a lot depending on the
problem. Much is based on trial and error, but there exists a lot of tips and tricks, like the
guidelines for building a neural network explained in the article from InfoWorld (2015)
[82].

The designs used in this project are kept simple, and are to a considerable extent based
on trial and error. A small portion of the testing is included in this chapter. Some rules of
thumb were applied; one obviously needs many input examples for each classification and
there should not be too many parameters compared to the number of samples. Using too
large networks would almost certainly result in overfitting.

The dataset is split into training, validation and a separate test set. It is a finite number
of samples in the data set. The validation set is kept relatively small, using most of the
data for training. 10% of the data is set aside as a separate test set. The smaller valida-
tion set will affect the validation graphs. There will be more variations or noise in the
validation set, due to its small size, making it less informative. It is good enough to get
some information about the generalization of the data not used in training, and to spot
overfitting.
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8.1 Neural Network Topologies
Intuitively, RNNs are a good start for predicting sequences of data. Replacing the RNN
with LSTM cells would make the network able to learn longer dependencies. As seen in
the literature review, CNN are also being used for forecasting. Here dilated convolutions,
for example, can be used for enabling the network to exploit longer dependencies. Other
papers also reveal good results using a combination of LSTMs and CNN. The following
topologies - from the literature review - will be tested:

• MLP

• RNN

• LSTM

• CNN

• Combinations of the topologies listed above

All the networks will use a two neurons fully connected layer with sigmoid activation
as the classifier. The other activations are ReLU if nothing else is mentioned. To make the
comparison fair, each network should have approximately the same number of parameters.
This number is kept low and limited to 10000 parameters. This equals 20 kB of data using
16-bit resolution. This is done to keep the parameters storage size low enough to fit inside
the on-chip memory of an FPGA at a later stage. Larger networks would also result in
overfitting. In addition, none of the networks should be very deep, since this will increase
the inference latency.

8.1.1 Multi-Layer Perceptron (MLP)
The number of parameters in a fully connected layer is basically the weights and the bias
of each neuron, where the number of weights depends on the input size.

parameters = (input size + bias) · n neurons (8.1)

For the first layer the input size would be the number of features multiplied with the
look back length, i.e. all the samples in the input frame shown in Figure 7.1(b). Visualized
with an image analogy; all pixels in the input image are connected to each neuron in the
first layer through an unique weight. For the other layers the input size is the number of
outputs from the previous layer.

Using wide networks tend to result in overfitting. The idea that substructures are iden-
tified in different layers, and that more layers lead to more non-linearity often make net-
works grow in depth and not in width. Figure 8.1 shows two different depths of neural
MLPs with equal number of neurons in each layer. Plot (a) and (b) represent a 2-layer
MLP, and (c) and (d) represent a 12-layer MLP with dropout layer of 0.2 in between the
layers to avoid overfitting. The deeper network is actually doing slightly worse in accu-
racy. In both networks it does not seem like adding width to the layer adds anything to
the accuracy of the model. The shallow network reacts pretty much the same - increasing
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the number of neurons. Testing shows overfitting when increasing the number of neurons
extensively. The deeper network can avoid overfitting keeping the width of each layer low.

(a) Accuracy Training shallow (2-layer) (b) Accuracy Validation shallow (2-layer)

(c) Accuracy Training deeper (12-layer) (d) Accuracy Validation deeper (12-layer)

Figure 8.1: Shallow & deeper MLP with different layer width. The legend shows the number of
neurons in each layer of the model.

8.1.2 Recurrent Neural Network (RNN)
In general, the number of parameters of a RNN layer with a given number of cells is shown
in Equation 8.2. The simple RNN cell has only one hidden state. That state has a number
of weights as inputs. If the RNN cell is the first layer, this equals the number of features
in the dataset. In addition, it has a bias and the output state as shown in Figure 8.2.

parameters = hidden states · cells · ((weights + bias) + outputs) (8.2)

A simple two-layer RNN network with different number of cells are shown in Figure
8.3. There are similar dynamics to the MLP example, where more cells result in more
overfitting, and fewer cells achieve higher accuracy.

Figure 8.4 shows a three layered RNN with different dropout values. Overfitting is
clearly reduced with increasing dropout rate, but in this case not increasing the overall
accuracy. Overfitting is no big problem here, and using higher dropout rates only slows
down the learning process. It seems appropriate to leave the dropout rate between 0.1 and
0.5 to achieve good accuracy and generalization of the dataset.
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Figure 8.2: Illustration of a hidden state in a RNN layer

(a) RNN: Accuracy training (b) RNN: Accuracy validation

(c) RNN: Loss training (d) RNN: Loss Validation

Figure 8.3: Two-layer RNN. The legend shows the number of cells used in each layer.
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(a) RNN: Accuracy training (b) RNN: Accuracy validation

(c) RNN: Loss training (d) RNN: Loss Validation

Figure 8.4: Three layer RNN with different dropout rates. The legend shows the dropout rates
between each RNN layer.
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8.1.3 Long Short-Term Memory (LSTM)
The number of parameters in a LSTM layer is similar to the RNN. It has four hidden
states. The three gates and the cell, which makes one LSTM unit use four times as many
parameters compared to a RNN as shown in Equation 8.3

parameters = hidden states · units · ((weights + bias) + outputs) (8.3)

Figure 8.5 show a one-layer LSTM with different number of units. The LSTM seems
less prone to overfitting, achieving higher accuracy with more units.

(a) LSTM: Accuracy training (b) LSTM: Accuracy validation

(c) LSTM: Loss training (d) LSTM: Loss Validation

Figure 8.5: One-layered LSTM using different number of units. The legend shows the number of
units.

8.1.4 Convolutional Neural Network (CNN)
In a convolutional layer the number of parameters is basically the size of the convolutional
kernel and the bias, multiplied with the number of kernels like shown in Equation 8.4

parameters = (m · n+ bias) · n kernels (8.4)

Figure 8.6 shows a model with one convolutional layer increasing in size and number
of filters. The training set fits better as the size increases, but the optimal validation accu-
racy stops increasing after some epochs. Figure 8.7 shows different sizes and number of
filters, adding a second convolutional layer.
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(a) CNN: Accuracy training (b) CNN: Accuracy validation

Figure 8.6: CNN with one convolutional layer. The legend represents the size and number of kernels
used. This is not the exact numbers but show the relative size. The bigger the legend number the
bigger the size and number of kernels.

(a) CNN: Accuracy training (b) CNN: Accuracy validation

Figure 8.7: CNN with two convolutional layers. The legend represents the size and number of
kernels used. This is not the exact numbers but show the relative size. The bigger the legend number
the bigger the size and number of kernels.

Figure 8.8 shows the 2-layer convolutional model with added dropout layers using dif-
ferent rates. 8.8(c) 8.8(d) have batch normalization layers in addition, right before the
non-linearity. The batch normalization layers reduce overfitting, improving the accuracy
slightly in this dataset.

Some other adjustments were tested resulting in decreased or no significant increase in
performance:

• Dilated convolution with different rates

• Different activation: LeakyReLU

• Different number and size of kernels

• Pooling layer
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• Adding an extra Dense layer before the classifier

(a) With dropout (b) With dropout

(c) With dropout and batch norm (d) With dropout and batch norm

Figure 8.8: Convolutional layers adding different dropout rates. The legend shows the dropout rates
from 0.1 to 0.7.

8.1.5 Combinations
Different combinations of LSTMs, CNNs and MLPs can be put together forming the de-
sired topology. Layers can be added in series or parallel. In this project the latency should
be kept to a minimum. Accordingly, the different models should preferably be kept in
parallel, not building the network too deep.

The MLP, LSTM and CNN models from earlier are concatenated making a three input,
one output model. After the merging one dropout layer is added. Figure 8.9 shows the
training of the model using different dropout rates. Using batch normalization on the
combined model did not improve the performance on this dataset. It seems from this test
run that some dropout rate would be useful, but multiple runs with batch normalization
and dropout layer does not improve performance on this dataset.
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(a) Comb: Accuracy training (b) Comb: Accuracy validation

(c) Comb: Loss training (d) Comb: Loss validation

Figure 8.9: Combination of MLP, LSTM, and CNN using different dropout rates after concatena-
tion. The legend shows the different dropout rates starting from 0.1 to 0.7.

8.2 Choosing Optimizer
Keras provides a range of optimizers with different configuration parameters, though us-
ing most optimizers Keras recommend leaving the parameters at their default values. Each
optimizer affects the learning of the model differently. Some learns faster, but may be
less stable than others. Figure 8.10 shows 400 epochs with different optimizers used on a
shallow MLP network with two layers and the classifier. All give similar results in vali-
dation accuracy except for Adadelta which performs worse. SGD is clearly the optimizer
converging slowest but is the most stable. Adagrad is converging faster and seems stable.
For most optimizes, the model accuracy during training and the loss validation does not
converge against a value. They keep increasing for each epoch, overfitting the model more
and more to the training data.

Figure 8.11 shows the different optimizers on a deeper MLP with 12 layers and the
classifier. The deeper MLP seems to be less prone to overfitting. Also, in this case the
SGD is converging slower than the other optimizers, and Nadam has the best accuracy.
Both networks have approximately the same validation accuracy of about 70% on this
dataset.
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(a) Accuracy Training (b) Accuracy Validation

(c) Loss Training (d) Loss Validation

Figure 8.10: Shallow MLP using different optimizers. The legend shows the optimizers used.
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(a) Accuracy Training (b) Accuracy Validation

(c) Loss Training (d) Loss Validation

Figure 8.11: Deeper MLP using different optimizers. The legend shows the optimizers used.
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8.3 Choosing Look Back

The model accuracy is dependent on how much history is included in the input frame.
Also, the number of parameters, using a MLP model, increases with the size of the input
frame, making the model more prone to overfitting. Figure 8.12 shows a MLP using a look
back of 10 to 40. The highest accuracy is actually achieved using a fairly low look back
using MLP. The different graphs in each plot are from runs using a different classification
feature. In some cases the model does not seem to learn anything using too low look back.
To avoid this, choosing a look back of about 20 seems appropriate.

(a) Look back of 10 (b) Look back of 20

(c) Look back of 30 (d) Look back of 40

Figure 8.12: Training with different look back. Each Figure shows multiple runs using a different
classification feature.

8.4 Choosing Batch Size

Since using all input samples for each iteration of updating the model is inefficient, the
training samples are split into mini batches. The size of these batches will affect the per-
formance and training time. As seen in Figure 8.13 using LSTM, best performance is
achieved if the batch size is kept relatively low. A test with a simple MLP show less influ-
ence by changing the batch size on this dataset.
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Using all the training samples for each iteration would give the perfect direction in
the high dimensional space to update the model, but only the perfect direction to fit the
training data. Mini-batches will take a small step in the direction, which minimize the loss
function the most, for the samples included in that batch. This introduces some noise in
comparison to taking the whole data set on each iteration. Either using a very low batch
size like one, or taking the whole data set in one huge batch is also impractical, due to the
increasing computation time.

(a) Accuracy training (b) Accuracy validation

(c) Loss training (d) Loss validation

Figure 8.13: Training with different batch sizes. The legend shows the size of the training batches.

8.5 Analysis of The ”Mysteryset”
This section covers each topology on the highly random dataset, the ”mysteryset”.

8.5.1 Multi-Layer Perceptron (MLP)
The tests shown in this subsection use two Dense layers with dropout.

Figure 8.14 shows different look back values using the ”mysteryset”. It looks like the
accuracy is mostly unaffected by the different values, and that the network only overfits
to the training data when the look back is increased. Figure 8.15 shows the accuracy and
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loss using wider layers. This also results in more overfitting. It looks like increasing the
number of neurons increases accuracy slightly. Widening too much results in overfitting,
and the separate test set reveals that the model is unable to make a generalization of the
problem.

(a) MLP: model accuracy (b) MLP: model loss

Figure 8.14: Different look back values for MLP. The legend shows the training and validation using
the different look back values:10, 20, and 30.

(a) MLP: model accuracy (b) MLP: model loss

Figure 8.15: Different widths of MLP. The legend shows the width of the MLP. train/val 1/2/3
means either training or validation with 10, 20, or 30 neurons in each layer.

8.5.2 Convolutional Neural Network (CNN)
The tests shown in this subsection use two convolutional layers with batch normalization
and dropout.

Figure 8.16 shows results from a simple CNN using different look back lengths from
10 to 80. The increased look back value does not seem to result in much overfitting using
the CNN. In contrary to the MLP, this can be expected, since the number of parameters
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does not increase with the look back value. Though, it does not seem to find any clear
structure in the data. When increasing the size and number of the kernels the model over-
fits to the training data as seen in Figure 8.17.

(a) CNN: model accuracy (b) CNN: model loss

Figure 8.16: CNN: Different look back values. The legend shows the different look back values
from 10 to 80.

(a) CNN: model accuracy (b) CNN: model loss

Figure 8.17: CNN: number of size of kernels. The legend represents the size and number of kernels
used. This is not the exact numbers but show the relative size. The bigger the legend number, the
bigger the size and number of kernels.

Figure 8.18 show some signs of learning structures of the training data giving about
55% correct classifications on the test set. But here, the model predicts an overweight of
the rising class. It predicts about 80% rising and the test set contains about 55% rising and
45% falling. The model finds the slight increasing trend over time, but does not catch the
inner dynamics of the dataset.

Figure 8.19 shows a CNN using 80 look back. At first glance the network seems un-
able to learn any significant pattern from the data. But a closer look at the results can show
a slightly better performance than 50%. Average classification accuracy over multiple ex-
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Figure 8.18: CNN learning positive trend. The legend only indicates different runs of the same
code.

ecutions is about 52%. The interesting thing here is that the model predicts more falling,
but the test set contains more rising labels. Even with this mismatch the model predicts
above 50% correct. This is repeated with multiple runs using different features as the clas-
sification feature. After some tuning, the model gives relatively balanced classifications
and is able to find a generalization of the data giving better than 50% accuracy. Figure 8.20
shows the model loss of two test runs. It finds some patterns after a few epochs, but does
not lower the validation loss further after this initial improvement. Using the same CNN
only adding dilated convolutions decrease the accuracy. With a dilation rate of 2 there is
a slight decrease in accuracy, and with a dilation rate of 3 the accuracy is almost down to
50%.

(a) CNN: model accuracy (b) CNN: model loss

Figure 8.19: CNN with 80 look back. The legend only indicates different runs of the same code.
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(a) Model loss example 0 (b) Model loss example 1

Figure 8.20: CNN: Model loss examples. The legend only indicates different runs of the same code.

8.5.3 Recurrent Neural Network (RNN & LSTM)
Figure 8.21 shows different runs with RNN and LSTM topologies. There are some simi-
larities to the behavior of the MLP network. In some cases, it finds an upward going trend
making very biased classifications, but it cannot find any good generalization of the data.
It seems like the model learns some patterns, but the small validation set also makes it
somewhat harder to make that assumption. The test data reveals that the model performs
no better than random, i.e. 50%. Over multiple runs, the average accuracy on the test set
can be 52-54%. Taking the biased classification into considerations, this is no better than
random.

81



Chapter 8. Design

(a) Simple 2-layered RNN (b) Simple 2-layered RNN

(c) 2-layered RNN. More units (d) 2-layered LSTM

Figure 8.21: RNN & LSTM: Figure (a) and (b) show three runs from a simple 2-layered RNN
model. Figure (c) has increased the number of units. This results in overfitting, and a more biased
classification. Figure (d) shows multiple runs multiple runs with a 2-layered LSTM using the same
code. The average test results give about 52% accuracy, but with very biased classification.

8.5.4 Combinations
Both series and parallel combination of the MLP, LSTM, and CNN are tested, forming a
more complex network. An attempt is also made to make use of several CNNs in parallel,
concatenating them and using a MLP before the classifier. Figure 8.22 shows some of
the training using these combinations. It seems like the model in some cases can extract
information about the training set, making it perform slightly better than 50% on the test
set. Widening the Dense layer after the concatenations of the CNNs, results in overfitting
of the network.
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(a) Three CNNs in parallel (b) Three CNNs in parallel

(c) LSTM, MLP, and CNN concatenated (d) LSTM, MLP, and CNN concatenated

Figure 8.22: Figure (a) and (b) show the training using parallel CNNs. Figure (c) and (d) use a
concatenation of the LSTM, MLP, and CNN. The legend only indicates different runs of the same
code
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Chapter 9
Implementation

This chapter shows all the different model stacks using the different architectures. All the
activation functions except for the classifiers in the these model stacks are ReLU. Note
that the activation functions can be a part of another layer, like dense 1 (Dense, ReLU), or
as a stand-alone layer, activation 1 (ReLU).

9.1 Multi-Layer Perceptron (MLP)

The model stack of the MLP is shown in Table 9.1.

Layer (type) Output shape Param #
flatten 1 (Flatten) (None, 96) 0
dense 1 (Dense, ReLU) (None, 20) 1940
dropout 1 (Dropout 0.3) (None, 20) 0
dense 2 (Dense, ReLU) (None, 5) 105
dropout 2 (Dropout 0.3) (None, 5) 0
dense 3 (Dense) (None, 2) 12
activation 1 (softmax) (None, 2) 0

Table 9.1: MLP model

Total params: 2,057
Trainable params: 2,057
Non-trainable params: 0
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9.2 Convolutional Neural Network (CNN)
The model stack of the CNN is shown in Table 9.2.

Layer (type) Output shape Param #
conv 1 (Conv1D) (None, 40, 12) 2316
nb filter=12, filter length=4,
batch normalization 1 (None, 40, 12) 48
activation 1 (ReLU) (None, 40, 12) 0
dropout 1 (Dropout 0.3) (None, 40, 12) 0
conv 2 (Conv1D) (None, 40, 2) 26
nb filter=2, filter length=1,
batch normalization 2 (None, 40, 2) 8
activation 2 (ReLU) (None, 40, 2) 0
dropout 2 (Dropout 0.3) (None, 40, 2) 0
flatten 1 (Flatten) (None, 80) 0
dense 1 (Dense) (None, 2) 162
activation 3 (softmax) (None, 2) 0

Table 9.2: CNN model

Total params: 2,560
Trainable params: 2,532
Non-trainable params: 28

9.3 Recurrent Neural Networks (RNN & LSTM)
The simple RNN was not able to find any generalization of the data. For that reason, the
simple RNN is not included from here on out. The model stack of the LSTM is shown in
Table 9.3.

Layer (type) Output shape Param #
lstm 1 (5 units) (None, 40, 5) 760
lstm 2 (5 units) (None, 5) 220
dense 1 (Dense) (None, 2) 12
activation 1 (softmax) (None, 2) 0

Table 9.3: LSTM model

Total params: 992
Trainable params: 992
Non-trainable params: 0
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9.4 Combinations

The model stacks of three concatenated CNNs with a MLP before the classifier are shown
in Table 9.4.

Layer (type) Output shape Param # Connected to
input 1 (InputLayer) (None, 40, 32) 0
input 2 (InputLayer) (None, 40, 32) 0
input 3 (InputLayer) (None, 40, 32) 0
conv1d 1 (Conv1D) (None, 40, 12) 2316 input 1[0][0]
conv1d 3 (Conv1D) (None, 40, 12) 2316 input 2[0][0]
conv1d 5 (Conv1D) (None, 40, 12) 2316 input 3[0][0]
batch normalization 1 (None, 40, 12) 48 conv1d 1[0][0]
batch normalization 3 (None, 40, 12) 48 conv1d 3[0][0]
batch normalization 5 (None, 40, 12) 48 conv1d 5[0][0]
activation 1 (Activation) (None, 40, 12) 0 batch normalization 1[0][0]
activation 3 (Activation) (None, 40, 12) 0 batch normalization 3[0][0]
activation 5 (Activation) (None, 40, 12) 0 batch normalization 5[0][0]
dropout 1 (Dropout 0.3) (None, 40, 12) 0 activation 1[0][0]
dropout 3 (Dropout 0.3) (None, 40, 12) 0 activation 3[0][0]
dropout 5 (Dropout 0.3) (None, 40, 12) 0 activation 5[0][0]
conv1d 2 (Conv1D) (None, 40, 2) 26 dropout 1[0][0]
conv1d 4 (Conv1D) (None, 40, 2) 26 dropout 3[0][0]
conv1d 6 (Conv1D) (None, 40, 2) 26 dropout 5[0][0]
batch normalization 2 (None, 40, 2) 8 conv1d 2[0][0]
batch normalization 4 (None, 40, 2) 8 conv1d 4[0][0]
batch normalization 6 (None, 40, 2) 8 conv1d 6[0][0]
activation 2 (Activation) (None, 40, 2) 0 batch normalization 2[0][0]
activation 4 (Activation) (None, 40, 2) 0 batch normalization 4[0][0]
activation 6 (Activation) (None, 40, 2) 0 batch normalization 6[0][0]
dropout 2 (Dropout 0.3) (None, 40, 2) 0 activation 2[0][0]
dropout 4 (Dropout 0.3) (None, 40, 2) 0 activation 4[0][0]
dropout 6 (Dropout 0.3) (None, 40, 2) 0 activation 6[0][0]
concatenate 1 (Concatenate) (None, 40, 6) 0 dropout 2[0][0]

dropout 4[0][0]
dropout 6[0][0]

flatten 1 (Flatten) (None, 240) 0 concatenate 1[0][0]
dense 1 (Dense, ReLU) (None, 10) 2410 flatten 1[0][0]
dropout 7 (Dropout 0.3) (None, 10) 0 dense 1[0][0]
dense 2 (Dense, ReLU) (None, 5) 55 dropout 7[0][0]
dropout 8 (Dropout 0.3) (None, 5) 0 dense 2[0][0]
output 1 (Dense, softmax) (None, 2) 12 dropout 8[0][0]

Table 9.4: Three CNNs concatenated with a simple MLP before the classifier.

87



Chapter 9. Implementation

Total params: 9,671
Trainable params: 9,587
Non-trainable params: 84
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Chapter 10
Results & Discussion

The results are presented for each topology in separate sections. Discussion about each
topology’s performance is also assessed in this chapter, while the overall discussion is left
for the next chapter. Many of the models predicts a much higher amount of one class.
This may give a false impression of performance when the test set contains more of the
same class. For example: if there are 60% rising labels in the test set, predicting only that
class would give 60% accuracy. To compensate for this, the performance for the random
baseline will not be exactly 50%, but adjusted for how many predictions there are for each
label. If the predictions are totally balanced with an equal amount of predictions for each
classification, the baseline would be 50%. With 60% of one label in the test set and if 75%
of the predictions are for that label, the random chance for these predictions would be 60%
and 40% chance for the rest. The end baseline will be set to 55% in this case, which is the
weighted sum of these accuracies as seen in Equation 10.1.

Randomadjusted =
UP

UP +DN
· P (UP )[%] +

DN

UP +DN
· P (DN)[%] (10.1)

All results in the tables are from consecutive runs for each represented architecture.
This it done to avoid a selection of specific runs. Even running identical code repeatedly
gives natural variations in performance, since the weights are initiated randomly. The
tables include the following columns:

• UP predictions: the number of rising prediction on the test set

• DN predictions: the number of falling prediction on the test set

• Random adjusted: the adjusted random baseline is calculated from Equation 10.1.
The percentage of rising label in the test set, P(UP), are not given a dedicated col-
umn, but it is included in the calculation of the random adjusted value.

• Actual correct: the accuracy [%] predicted the model

• Diff: The difference between the random adjusted and the actual correct
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10.1 Multi-Layer Perceptron (MLP)
The MLP network does not seem to find any specific patterns in the dataset. In some cases
it seems like the network is learning some patterns. Below is an example of the network
giving about 53% accuracy on the validation set. The network predicts most falling, but
there are more rising labels in the test set, and the network still achieves right over 50%
on this separate test set. With a selection of runs there can be observed some behavior
that could resemble learning, but running multiple times shows that this is only statistical
variations. Over time the classification accuracy closes in on 50%. Figure 10.1 shows 50
runs of using the MLP.

val_acc: 0.53
acc: test data 50.12%
number of up predicitons: 198.0
number of down predicitons: 225.0
number of up in test: 239.0
number of down in test: 184.0
up procentage in test: 56.50
number of up in training: 1920.0
number of down in training: 1884.0
up procentage in training: 50.47

(a) MLP: model accuracy (b) MLP: model loss

Figure 10.1: 50 runs using the MLP. Average accuracy of about 50%. The legend only indicates the
8 first runs.

Runs from classification of four different features are shown in Table 10.1. Only com-
paring to 50% accuracy gives a better performance in all cases. Especially the last 8 runs
show a 4.5% better than 50% not considering the biased classification. Comparing to
the adjusted random accuracy in Equation 10.1, the model has no improvement in per-
formance. The average performance comparing to adjusted random is 0.1% worse than
random.
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# UP predictions # DN predictions Random adjusted [%] Actual correct [%] Diff[%]
109 316 46.74 46.82 0.08
294 131 52.57 52.71 0.14
347 78 54.24 57.18 2.94
379 46 55.25 55.76 0.51
238 187 50.80 49.41 -1.39

267 158 51.72 50.12 -1.60
274 151 51.94 51.29 -0.65
146 279 47.90 47.53 -0.37
387 38 55.50 57.18 1.68
385 40 55.44 54.82 -0.62

49 376 44.84 45.65 0.81
246 179 51.06 50.59 -0.47
384 41 55.41 54.82 -0.59
283 142 52.22 56.00 3.78
283 142 52.22 52.71 0.49
307 118 52.98 48.47 -4.51
131 294 47.43 45.65 -1.78
324 101 53.52 51.06 -2.46

396 29 55.79 57.18 1.39
359 66 54.62 54.59 -0.03
390 35 55.60 54.82 -0.78
349 76 54.30 54.59 0.29
325 100 53.55 53.65 0.10
288 137 52.38 51.06 -1.32
389 36 55.56 56.94 1.38
366 59 54.84 53.41 -1.43

Table 10.1: MLP: results
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10.2 Convolutional Neural Network (CNN)
The CNN seems to find some structures in the data. It achieves to make a generalization
of the data, resulting in more accurate model predictions on the separate test set. The
classification here is so to speak balanced, i.e. the results are not significantly affected
by adjusting the baseline. Table 10.2 show the results from multiple runs using different
features for classification. The overall average accuracy here is 2.48 % over baseline.
Comparing this against 50% would give 2.63% better than baseline.
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# UP predictions # DN predictions Random adjusted [%] Actual correct [%] Diff[%]
196 225 49.55 47.74 -1.81
226 195 50.48 53.44 2.96
227 194 50.51 55.11 4.60
236 185 50.79 56.29 5.50
227 194 50.51 49.88 -0.63
199 222 49.64 52.73 3.09
198 223 49.61 51.54 1.93
208 213 49.92 49.64 -0.28
178 239 49.06 47.96 -1.10
182 235 49.19 55.16 5.97
195 222 49.59 51.08 1.49
181 236 49.16 52.04 2.88
165 252 48.66 54.44 5.78
192 225 49.49 47.96 -1.53
202 215 49.80 50.84 1.04
188 229 49.37 51.32 1.95
246 175 51.35 56.77 5.42
205 216 49.79 51.78 1.99
243 178 51.24 56.53 5.29
217 204 50.25 48.93 -1.32
228 193 50.67 51.54 0.87
240 181 50.64 53.92 3.28
229 192 50.40 54.16 3.76
250 171 50.86 59.14 8.28
266 155 51.21 54.39 3.18
259 162 51.06 51.78 0.72
170 251 50.62 50.36 -0.26
219 202 49.87 50.59 0.72
205 216 50.08 52.49 2.41
190 231 50.31 52.73 2.42
176 245 50.52 53.68 5.29

Table 10.2: CNN: results
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10.3 Recurrent Neural Network (LSTM)
Some results from the LSTM model are shown in Table 10.3. The average accuracy is
0.17% worse than the adjusted baseline. It performs 2% better than 50% because of the
skewed classifications. It has similar results as the MLP network.
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# UP predictions # DN predictions Random adjusted [%] Actual correct [%] Diff[%]
246 175 51.10 49.64 -1.46
238 183 50.85 49.17 -1.68
200 221 49.68 48.69 -0.99
243 178 51.00 49.41 -1.59
225 196 50.45 50.83 0.38
305 116 52.92 52.73 -0.19
292 129 52.52 49.64 -2.88
260 161 51.53 52.02 0.49
242 179 50.97 48.69 -2.28
255 166 51.37 51.31 -0.06
219 202 50.26 53.68 3.42
290 131 52.45 52.49 0.04
272 149 51.90 53.44 1.54
218 203 50.23 49.64 -0.59
240 181 50.91 49.64 -1.27
222 199 50.36 49.64 -0.72
316 105 53.26 56.29 3.03
310 111 53.07 53.92 0.85
345 76 54.15 53.68 -0.47
310 111 53.07 52.49 -0.58
290 131 52.45 52.97 0.52
342 79 54.06 52.97 -1.09
384 37 55.36 55.34 -0.02
287 134 52.36 49.88 -2.48
302 119 52.83 51.07 -1.76
217 204 50.20 52.73 2.53
203 218 49.77 49.41 -0.36
281 140 52.18 53.68 1.50
317 104 53.29 55.11 1.82
347 74 54.21 52.26 -1.95
391 30 55.57 56.06 0.49
367 54 54.83 50.83 -4.00
200 221 49.68 48.69 -0.99
312 109 53.13 53.44 0.31
285 136 52.30 48.93 -3.37
332 89 53.75 53.92 0.17
320 101 53.38 52.97 -0.41
251 170 51.25 56.06 4.81
251 170 51.25 50.83 -0.42
367 54 54.83 57.48 2.65

Table 10.3: LSTM: results
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10.4 Combinations
Creating different combinations of the previous networks is not believed to increase per-
formance, when only the CNN shows promising results. But it can be hard to predict the
exact performance of the network when making substantial changes to its architecture. Ta-
ble 10.4 shows the results using three CNNs concatenated with a simple MLP before the
classifier. The accuracy is 0.8% better than the adjusted baseline, while it is 2.66% better
than 50%. This is reflected by the biased classification. This show some results, but way
worse than using only the CNN.
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# UP predictions # DN predictions Random adjusted [%] Actual correct [%] Diff[%]
371 50 54.96 56.53 1.57
363 58 54.71 56.06 1.35
255 166 51.37 50.83 -0.54
323 98 53.47 55.11 1.64
369 52 54.89 55.11 0.22
344 77 54.12 55.34 1.22
343 78 54.09 53.68 -0.41
314 107 53.20 54.39 1.19
326 95 53.57 52.97 -0.60
361 60 54.65 56.53 1.88
368 53 54.86 55.82 0.96
347 74 54.21 56.53 2.32
160 261 48.44 50.59 2.15
150 271 48.13 48.69 0.56
381 40 55.26 56.53 1.27
296 125 52.64 52.49 -0.15
326 95 53.57 55.34 1.77
155 266 48.29 46.08 -2.21
377 44 55.14 56.06 0.92
349 72 54.28 57.96 3.68
85 336 46.12 49.41 3.29
105 316 46.74 47.03 0.29
354 67 54.43 56.77 2.34
330 91 53.69 55.82 2.13

202 219 49.74 53.92 4.18
202 219 49.74 47.27 -2.47
162 259 48.50 48.22 -0.28
188 233 49.31 47.27 -2.04

Table 10.4: Three concatenated CNNs: results
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Chapter 11
Overall Discussion

The success criteria from the functional description of achieving over 50% accuracy was
only accomplished using the CNN, when the biased classifications are taken into consid-
erations. Combinations of topologies gave some positive results, but was worse than only
using the CNN. Keeping the size of the networks within the limit was no real issue. Using
larger networks result in overfitting without having more training samples.

The Main goal of the project was achieved using the CNN. The results from this thesis
indicate that there are structures and pattern to be found in the data.

It is very likely that the model performs better with further optimization. Not to men-
tion, that there is probably a lot to gain in the pre-processing and feature selection phase,
which is much based on trial and error during this project. There exist other methods, as
explored by Jundong Li (2016) [50], that might give a better starting point, resulting in
higher accuracy. From a better starting point, the other topologies which did not work in
this case, might also do better, though this thesis’s results indicate that CNNs probably are
the best choice for the problem. Although the thesis does not provide an optimal solution,
it gives the indented proof of concept and starting point for further research and develop-
ment.

As LSTMs are able to find long term dependencies, dilated convolutions widen the
receptive field enabling the CNN to utilize longer dependencies. During the design phase,
dilated convolution was tested. The accuracy decreased with higher dilation rates. The
model does not seem to benefit from these longer dependencies, but rather perform worse.
This can also be some of the reasons LSTMs did not work on the ”mysteryset”. If samples
further apart are less related, samples closer together, or values in between samples, might
be more related. Reducing the filter size does not improve the results, but it would be
interesting to see if increasing the sample rate would result in higher accuracy. This could
not be done in this case since an up-sampled version of the dataset was not available. An
up-sampled version of the data would also give more training examples. Furthermore, only
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acquiring and running tests using more samples with the same sampling frequency would
be interesting. Taking advantage of that e.g. pixels closer together in an image are more
related than pixels far away are exactly why CNNs are used a lot in image classification
tasks. This also seems to apply for the problem in question, which can be a partial reason
why the CNN worked much better than the MLP and LSTM.

The softmax classifier outputs the probabilities, predicted by the model, for each class.
Using two classes, this results in two probabilities that represents how strongly the model
predicts that the next value of the classification feature is bigger or smaller than the current
value. There could be interesting to investigate the distribution of probabilities, to see if
the model, more often, predicts the correct outcome in the cases when the predictions are
stronger.

In addition to binary classification, one could increase the resolution of the output
by adding more classes. E.g. using a three-way classifier for rising, falling, and stay-
ing within some limit. Regression can also be an option for future work, though higher
performance would probably be needed to yield any usable results. This project assesses
one-step forecasts. One might also do multi-step forecasts, with a probable decrease in
accuracy, extending the horizon. Before trying with multiple steps, the accuracy on the
one-step forecasts should be increased.

For the sake of this assignment, the use case indicates that there is no time to retrain the
network after each sample. In a live application, somewhere down the line, the model has
to retrain on the new arriving data. At which point the accuracy starts declining because
the model is fitted to old, less representative data, is unknown. Live, this would probably
be done using a moving window, retraining the model every given number of samples.

This project assesses the use of neural networks to predict the next value in the dataset
in question. Also using other types of supervised machine learning algorithms could be
tested.

The end goal is to implement the inference part of the network in hardware, lowering
the latency, while still doing training on GPUs. In that context lowering the bit accuracy,
or even trying binary representation for each weight as reviewed by the literature, might
be considered, optimizing the network for size and latency.
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Chapter 12
Conclusion

This chapter gives a short conclusion of the thesis including future work, repeated in with
bullet points, already assessed in the discussion.

12.1 Overview
This thesis has investigated the application of different neural network topologies, used in
one-step forecasting, on highly random data. This is meant as a proof of concept for fur-
ther development and implementation in an FPGA. The development platform for testing
the different topologies are built around a freely available deep learning library in Python,
called Keras.

The literature review assesses the use of MLPs, RNNs, LSTMs and CNNs. Models
of these, based on the literature review and trial and error have been tested. Only the
CNN have achieved the success criteria of classifying features with an accuracy over 50%
- about 2,5% better than the baseline. Most likely, more research and development would
improve this performance further. In hindsight of testing, pre-processing, feature selection
and handling of highly random data should have been included in the literature review.

Some of the papers reviewed in the literature use methods to increase the receptive
field, making the networks able to utilize dependencies between samples over a larger
time span. LSTMs are introduced to handle longer dependencies in recurrent networks,
and dilated convolutions are used in CNNs. Adding dilated convolutions for the CNN
decreased its performance. These findings suggest that adding ways of utilizing longer
dependencies, decreases the model’s prediction accuracy. Using an up-sampled version of
the dataset might have stronger relations between samples increasing the performance.

Even though the CNN topology gave satisfying results, this does not exclude other
approaches, machine learning algorithms or other procedures, not included in this thesis.
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12.2 Future Work
Based on the final discussion in Chapter 11, the future work can be summed up to:

• Acquire dataset with higher sampling frequency

• Trying different pre-processing and feature selection methods

• Trying other supervised machine learning algorithms

• Multi-step forecasting

• Categorical classification and/or regression

• Refit model every n samples using a moving window

• Implementation in an FPGA

• Exploration with bit accuracy
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D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems. Software avail-
able from tensorflow.org.
URL https://www.tensorflow.org/

[2] Alemdar, H., Caldwell, N., Leroy, V., Prost-Boucle, A., Pétrot, F., 2016. Ternary
neural networks for resource-efficient AI applications. CoRR abs/1609.00222.
URL http://arxiv.org/abs/1609.00222

[3] Barney, L., 2017. Can fpgas beat gpus in accelerating next-generation deep learning?
Accessed: 2018-01-29.
URL https://www.nextplatform.com/2017/03/21/can-fpgas-
beat-gpus-accelerating-next-generation-deep-learning/

[4] Bengio, Y., 2009. Learning deep architectures for ai. Foundations and Trends in Ma-
chine Learning 2 (1), 1–127.
URL http://dx.doi.org/10.1561/2200000006

[5] Borovykh, A., Bohte, S., Oosterlee, C. W., Mar. 2017. Conditional Time Series Fore-
casting with Convolutional Neural Networks. ArXiv e-prints.

[6] Brownlee, J., 2016. How to build multi-layer perceptron neural network models with
keras. Accessed: 2018-05-23.
URL https://machinelearningmastery.com/build-multi-
layer-perceptron-neural-network-models-keras/

[7] Brownlee, J., 2016. Time series prediction with lstm recurrent neural networks in
python with keras. Accessed: 2018-05-23.

107

https://www.tensorflow.org/
http://arxiv.org/abs/1609.00222
https://www.nextplatform.com/2017/03/21/can-fpgas-beat-gpus-accelerating-next-generation-deep-learning/
https://www.nextplatform.com/2017/03/21/can-fpgas-beat-gpus-accelerating-next-generation-deep-learning/
http://dx.doi.org/10.1561/2200000006
https://machinelearningmastery.com/build-multi-layer-perceptron-neural-network-models-keras/
https://machinelearningmastery.com/build-multi-layer-perceptron-neural-network-models-keras/


URL https://machinelearningmastery.com/time-series-
prediction-lstm-recurrent-neural-networks-python-keras/

[8] Canziani, A., Paszke, A., Culurciello, E., 2016. An analysis of deep neural network
models for practical applications. CoRR abs/1605.07678.
URL http://arxiv.org/abs/1605.07678

[9] Chen, J., Wang, D., 2016. Long short-term memory for speaker generalization in
supervised speech separation. The Journal of the Acoustical Society of America 141
6, 4705.

[10] Chen, Z., Yi, D., 2017. The game imitation: Deep supervised convolutional networks
for quick video game AI. CoRR abs/1702.05663.
URL http://arxiv.org/abs/1702.05663

[11] Chollet, F., 2016. Xception: Deep learning with depthwise separable convolutions.
CoRR abs/1610.02357.
URL http://arxiv.org/abs/1610.02357

[12] Chollet, F., et al., 2015. Keras. https://keras.io.

[13] Collobert, R., Bengio, S., Marithoz, J., 2002. Torch: A modular machine learning
software library.

[14] Courbariaux, M., Bengio, Y., 2016. Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR abs/1602.02830.
URL http://arxiv.org/abs/1602.02830

[15] Coussy, P., Gajski, D. D., Meredith, M., Takach, A., 2009. An introduction to
high-level synthesis. IEEE Design & Test of Computers 26 (4), 8–17.
URL http://dblp.uni-trier.de/db/journals/dt/
dt26.html#CoussyGMT09

[16] Cui, Z., Chen, W., Chen, Y., 2016. Multi-scale convolutional neural networks for
time series classification. CoRR abs/1603.06995.
URL http://arxiv.org/abs/1603.06995

[17] Dodge, S., Karam, L., May 2017. A study and comparison of human and deep learn-
ing recognition performance under visual distortions.

[18] Engineering, H., 2015. Introduction to convolution neural networks. Accessed:2018-
01-24.
URL https://engineering.huew.co/introduction-to-
convolution-neural-networks-18981d1cd09a

[19] Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R., An-
dreopoulos, A., Berg, D. J., McKinstry, J. L., Melano, T., Barch, D. R., di Nolfo,
C., Datta, P., Amir, A., Taba, B., Flickner, M. D., Modha, D. S., 2016. Convolutional
networks for fast, energy-efficient neuromorphic computing. CoRR abs/1603.08270.
URL http://arxiv.org/abs/1603.08270

108

https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1702.05663
http://arxiv.org/abs/1610.02357
https://keras.io
http://arxiv.org/abs/1602.02830
http://dblp.uni-trier.de/db/journals/dt/dt26.html#CoussyGMT09
http://dblp.uni-trier.de/db/journals/dt/dt26.html#CoussyGMT09
http://arxiv.org/abs/1603.06995
https://engineering.huew.co/ introduction-to-convolution-neural-ne tworks-18981d1cd09a
https://engineering.huew.co/ introduction-to-convolution-neural-ne tworks-18981d1cd09a
http://arxiv.org/abs/1603.08270


[20] Floydhub, 2018. Floydhub home page. Accessed: 2018-04-18.
URL https://docs.floydhub.com/

[21] FPGA, I., 2017. Introduction to intel fpga ip cores. Accessed: 2018-01-28.
URL https://www.altera.com/documentation/
mwh1409960636914.html

[22] FPGA, I., 2018. Platform designer (formerly qsys). Accessed: 2018-01-28.
URL https://www.altera.com/products/design-software/fpga-
design/quartus-prime/features/qts-platform-designer.html

[23] Gao, X., 2017. Fpga 2017 (part 1): Fpgas versus gpus in deep learning. Accessed:
2018-01-29.
URL https://admk.github.io/2017/07/13/fpga-2017-part-1-
fpgas-vs-gpus.html

[24] Geirhos, R., Janssen, D. H. J., Schtt, H. H., Rauber, J., Bethge, M., Wichmann,
F. A., June 2017. Comparing deep neural networks against humans: object recogni-
tion when the signal gets weaker.

[25] Gensler, A., Henze, J., Sick, B., Raabe, N., Oct 2016. Deep learning for solar power
forecasting x2014; an approach using autoencoder and lstm neural networks. In:
2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp.
002858–002865.

[26] Gers, F. A., Eck, D., Schmidhuber, J., 2002. Applying lstm to time series predictable
through time-window approaches. In: Tagliaferri, R., Marinaro, M. (Eds.), Neural
Nets WIRN Vietri-01. Springer London, London, pp. 193–200.

[27] Gers, F. A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual
prediction with lstm. Neural Computation 12, 2451–2471.

[28] Glorot, X., Bordes, A., Bengio, Y., 11–13 Apr 2011. Deep sparse rectifier neural
networks. In: Gordon, G., Dunson, D., Dudk, M. (Eds.), Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics. Vol. 15 of
Proceedings of Machine Learning Research. PMLR, Fort Lauderdale, FL, USA, pp.
315–323.
URL http://proceedings.mlr.press/v15/glorot11a.html

[29] Greff, K., Srivastava, R. K., Koutnk, J., Steunebrink, B. R., Schmidhuber, J., March
2015. Lstm: A search space odyssey.

[30] Groß, W., Lange, S., Boedecker, J., Blum, M., 2017. Predicting time series with
space-time convolutional and recurrent neural networks.

[31] GUPTA, D., 2017. Fundamentals of deep learning activation functions and when to
use them? Accessed: 2018-01-23.
URL https://www.analyticsvidhya.com/blog/2017/10/
fundamentals-deep-learning-activation-functions-when-
to-use-them/

109

https://docs.floydhub.com/
https://www.altera.com/documentation/mwh1409960636914.html
https://www.altera.com/documentation/mwh1409960636914.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-platform-designer.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-platform-designer.html
https://admk.github.io/2017/07/13/fpga-2017-part-1-fpgas-vs-gpus.html
https://admk.github.io/2017/07/13/fpga-2017-part-1-fpgas-vs-gpus.html
http://proceedings.mlr.press/v15/glorot11a.html
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/


[32] Hao, Y., Quigley, S., 2017. The implementation of a deep recurrent neural network
language model on a xilinx FPGA. CoRR abs/1710.10296.
URL http://arxiv.org/abs/1710.10296

[33] Harry Fairhead, i. c. Q. J., 2014. The mcculloch-pitts neuron. Accessed: 2018-01-19.
URL http://www.i-programmer.info/babbages-bag/325-
mcculloch-pitts-neural-networks.html

[34] He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recogni-
tion. CoRR abs/1512.03385.
URL http://arxiv.org/abs/1512.03385

[35] Hegde, G., Siddhartha, Ramasamy, N., Kapre, N., Oct 2016. Caffepresso: An opti-
mized library for deep learning on embedded accelerator-based platforms. In: 2016
International Conference on Compliers, Architectures, and Sythesis of Embedded
Systems (CASES). pp. 1–10.

[36] Hsu, D., 2017. Time series forecasting based on augmented long short-term memory.
CoRR abs/1707.00666.
URL http://arxiv.org/abs/1707.00666

[37] Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., Keutzer, K.,
2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. CoRR abs/1602.07360.
URL http://arxiv.org/abs/1602.07360

[38] Imanuel, 2017. Top 15 deep learning software. Accessed: 2018-02-07.
URL https://www.predictiveanalyticstoday.com/deep-
learning-software-libraries/

[39] Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. pp. 448–456.
URL http://jmlr.org/proceedings/papers/v37/ioffe15.pdf

[40] Jeremy Hsu, i. s., 2015. Biggest neural network ever pushes ai deep learning.
Accessed: 2018-01-19.
URL https://spectrum.ieee.org/tech-talk/computing/
software/biggest-neural-network-ever-pushes-ai-deep-
learning

[41] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., Darrell, T., 2014. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

[42] KARNOWSKI, J., 2015. Alexnet visualization. Accessed: 2018-01-24.
URL https://jeremykarnowski.wordpress.com/2015/07/15/
alexnet-visualization/

110

http://arxiv.org/abs/1710.10296
http://www.i-programmer.info/babbages-bag/325-mcculloch-pitts-neural-networks.html
http://www.i-programmer.info/babbages-bag/325-mcculloch-pitts-neural-networks.html
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1707.00666
http://arxiv.org/abs/1602.07360
https://www.predictiveanalyticstoday.com/deep-learning-software-libraries/
https://www.predictiveanalyticstoday.com/deep-learning-software-libraries/
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
https://spectrum.ieee.org/tech-talk/computing/software/biggest-neural-network-ever-pushes-ai-deep-learning
https://spectrum.ieee.org/tech-talk/computing/software/biggest-neural-network-ever-pushes-ai-deep-learning
https://spectrum.ieee.org/tech-talk/computing/software/biggest-neural-network-ever-pushes-ai-deep-learning
https://jeremykarnowski.wordpress.com/2015/07/15/alexnet-visualization/
https://jeremykarnowski.wordpress.com/2015/07/15/alexnet-visualization/


[43] Keras-team, 2018. Keras git repository. Accessed: 2018-05-23.
URL https://github.com/keras-team/keras/tree/master/
examples

[44] Kompella, R., 2017. Using lstms to forecast time-series. Accessed: 2018-05-23.
URL https://towardsdatascience.com/using-lstms-to-
forecast-time-series-4ab688386b1f

[45] Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with
deep convolutional neural networks. In: Pereira, F., Burges, C. J. C., Bottou, L.,
Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems 25.
Curran Associates, Inc., pp. 1097–1105.
URL http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks.pdf

[46] Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M., 2014. Time series
forecasting using a deep belief network with restricted boltzmann machines.
Neurocomputing 137, 47 – 56, advanced Intelligent Computing Theories and
Methodologies.
URL http://www.sciencedirect.com/science/article/pii/
S0925231213007388

[47] Lacey, G., Taylor, G. W., Areibi, S., February 2016. Deep learning on fpgas: Past,
present, and future.

[48] Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G. S., Dean, J., Ng,
A. Y., December 2011. Building high-level features using large scale unsupervised
learning.

[49] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied
to document recognition. In: Proceedings of the IEEE. pp. 2278–2324.

[50] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., Liu, H., 2016.
Feature selection: A data perspective. CoRR abs/1601.07996.
URL http://arxiv.org/abs/1601.07996

[51] Liu, B., Wang, M., Foroosh, H., Tappen, M. F., Pensky, M., 2015. Sparse convo-
lutional neural networks. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 806–814.

[52] Maind, S., Wankar, P., 01 2014. Research paper on basic of artificial neural network
2, 96–100.

[53] maxeler technologies, 2011. Maxcompiler. Accessed: 2018-02-02.
URL https://www.maxeler.com/media/documents/
MaxelerWhitePaperMaxCompiler.pdf

111

https://github.com/keras-team/keras/tree/master/examples
https://github.com/keras-team/keras/tree/master/examples
https://towardsdatascience.com/using-lstms-to-forecast-time-series-4ab688386b1f
https://towardsdatascience.com/using-lstms-to-forecast-time-series-4ab688386b1f
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.sciencedirect.com/science/article/pii/S0925231213007388
http://www.sciencedirect.com/science/article/pii/S0925231213007388
http://arxiv.org/abs/1601.07996
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf


[54] Meyen, N., 2017. A survey of deep learning frameworks. Accessed: 2018-02-07.
URL https://towardsdatascience.com/a-survey-of-deep-
learning-frameworks-43b88b11af34

[55] Mohamed, S., July 2015. A statistical view of deep learning combined pdf svdl.pdf.

[56] Murphy, J., 2016. Deep learning frameworks: A survey of tensorflow, torch, theano,
caffe, neon, and the ibm machine learning stack. Accessed: 2018-02-07.
URL https://www.microway.com/hpc-tech-tips/deep-learning-
frameworks-survey-tensorflow-torch-theano-caffe-neon-
ibm-machine-learning-stack/

[57] Nagappan, S., 2016. Accelerating neural networks with binary arithmetic. Accessed:
2018-01-30.
URL https://software.intel.com/en-us/articles/
accelerating-neural-networks-with-binary-arithmetic

[58] Nunes, N. E., 2017. Fpgas challenge gpus as a platform for deep learning. Accessed:
2018-01-29.
URL https://theintelligenceofinformation.wordpress.com/
2017/04/03/fpga-chips-will-be-the-hardware-future-for-
deep-leaning-and-ai/

[59] Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A. K., Venkatesh, G., Marr, D., 2016.
Accelerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic.
2016 International Conference on Field-Programmable Technology (FPT), 77–84.

[60] Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang, R., Ong Gee Hock, J., Liew,
Y. T., Srivatsan, K., Moss, D., Subhaschandra, S., Boudoukh, G., 2017. Can fpgas
beat gpus in accelerating next-generation deep neural networks? In: Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. FPGA ’17. ACM, New York, NY, USA, pp. 5–14.
URL http://doi.acm.org/10.1145/3020078.3021740

[61] Park, J., Sung, W., 2016. Fpga based implementation of deep neural networks using
on-chip memory only. CoRR abs/1602.01616.
URL http://arxiv.org/abs/1602.01616

[62] Paszke, A., Chaurasia, A., Kim, S., Culurciello, E., 2016. Enet: A deep neural net-
work architecture for real-time semantic segmentation. CoRR abs/1606.02147.
URL http://arxiv.org/abs/1606.02147

[63] Patterson, J., 2017. Deep learning : a practitioner’s approach.

[64] Remy, P., 2016. Stateful lstm in keras. Accessed: 2018-05-23.
URL https://philipperemy.github.io/keras-stateful-lstm/

[65] Riera Molina, C. R., Pujol Vila, O., Dec. 2017. Solving internal covariate shift in
deep learning with linked neurons. ArXiv e-prints.

112

https://towardsdatascience.com/a-survey-of-deep-learning-frameworks-43b88b11af34
https://towardsdatascience.com/a-survey-of-deep-learning-frameworks-43b88b11af34
https://www.microway.com/hpc-tech-tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/
https://www.microway.com/hpc-tech-tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/
https://www.microway.com/hpc-tech-tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/
https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic
https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic
https://theintelligenceofinformation.wordpress.com/2017/04/03/fpga-chips-will-be-the-hardware-future-for-deep-leaning-and-ai/
https://theintelligenceofinformation.wordpress.com/2017/04/03/fpga-chips-will-be-the-hardware-future-for-deep-leaning-and-ai/
https://theintelligenceofinformation.wordpress.com/2017/04/03/fpga-chips-will-be-the-hardware-future-for-deep-leaning-and-ai/
http://doi.acm.org/10.1145/3020078.3021740
http://arxiv.org/abs/1602.01616
http://arxiv.org/abs/1606.02147
https://philipperemy.github.io/keras-stateful-lstm/


[66] Romeu, P., Zamora-Martı́nez, F., Botella-Rocamora, P., Pardo, J., 2013. Time-series
forecasting of indoor temperature using pre-trained deep neural networks. In: Mlade-
nov, V., Koprinkova-Hristova, P., Palm, G., Villa, A. E. P., Appollini, B., Kasabov, N.
(Eds.), Artificial Neural Networks and Machine Learning – ICANN 2013. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 451–458.

[67] Russell, S., 2016. Artificial intelligence : a modern approach.

[68] Samuel Gibbs, T. G., 2017. Alphazero ai beats champion chess program after
teaching itself in four hours. Accessed: 2018-01-15.
URL https://www.theguardian.com/technology/2017/dec/07/
alphazero-google-deepmind-ai-beats-champion-program-
teaching-itself-to-play-four-hours

[69] Seide, F., Agarwal, A., 2016. Cntk: Microsoft’s open-source deep-learning toolkit.
In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. ACM, New York, NY, USA, pp. 2135–2135.
URL http://doi.acm.org/10.1145/2939672.2945397

[70] Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-
scale image recognition. CoRR abs/1409.1556.
URL http://arxiv.org/abs/1409.1556

[71] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15 (1), 1929–1958.
URL http://www.cs.toronto.edu/˜rsalakhu/papers/
srivastava14a.pdf

[72] Stiles, J., Jernigan, T., December 2010. The basics of brain development. Neuropsy-
chology Review 20 (4), 327–348.

[73] Stone, J. E., Gohara, D., Shi, G., May 2010. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in Science Engineering
12 (3), 66–73.

[74] Sze, V., Chen, Y., Yang, T., Emer, J. S., 2017. Efficient processing of deep neural
networks: A tutorial and survey. CoRR abs/1703.09039.
URL http://arxiv.org/abs/1703.09039

[75] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions. CoRR
abs/1409.4842.
URL http://arxiv.org/abs/1409.4842

[76] Theano Development Team, May 2016. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints abs/1605.02688.
URL http://arxiv.org/abs/1605.02688

113

https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours
https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours
https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours
http://doi.acm.org/10.1145/2939672.2945397
http://arxiv.org/abs/1409.1556
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://arxiv.org/abs/1703.09039
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1605.02688


[77] Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C., 2014. Efficient object
localization using convolutional networks. CoRR abs/1411.4280.
URL http://arxiv.org/abs/1411.4280

[78] Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P. H. W., Jahre, M.,
Vissers, K. A., 2016. FINN: A framework for fast, scalable binarized neural network
inference. CoRR abs/1612.07119.
URL http://arxiv.org/abs/1612.07119

[79] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A. W., Kavukcuoglu, K., 2016. Wavenet: A generative
model for raw audio. CoRR abs/1609.03499.
URL http://arxiv.org/abs/1609.03499

[80] Varangaonkar, A., 2017. Top 15 deep learning frameworks. Accessed: 2018-02-07.
URL https://datahub.packtpub.com/deep-learning/top-10-
deep-learning-frameworks/

[81] Wang, C., Yu, Q., Gong, L., Li, X., Xie, Y., Zhou, X., May 2016. Dlau: A scalable
deep learning accelerator unit on fpga.

[82] world, I., 2018. 5 guidelines for building a neural network architecture. Accessed:
2018-04-24.
URL https://www.infoworld.com/article/3155052/technology-
business/5-guidelines-for-building-a-neural-network-
architecture.html

[83] Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions.
CoRR abs/1511.07122.
URL http://arxiv.org/abs/1511.07122

[84] Zhao, W., Fu, H., Luk, W., Yu, T., Wang, S., Feng, B., Ma, Y., Yang, G., July 2016. F-
cnn: An fpga-based framework for training convolutional neural networks. In: 2016
IEEE 27th International Conference on Application-specific Systems, Architectures
and Processors (ASAP). pp. 107–114.

114

http://arxiv.org/abs/1411.4280
http://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1609.03499
https://datahub.packtpub.com/deep-learning/top-10-deep-learning-frameworks/
https://datahub.packtpub.com/deep-learning/top-10-deep-learning-frameworks/
https://www.infoworld.com/article/3155052/technology-business/5-guidelines-for-building-a-neural-network-architecture.html
https://www.infoworld.com/article/3155052/technology-business/5-guidelines-for-building-a-neural-network-architecture.html
https://www.infoworld.com/article/3155052/technology-business/5-guidelines-for-building-a-neural-network-architecture.html
http://arxiv.org/abs/1511.07122

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	I Background
	Introduction
	Motivation
	Objectives
	Confidentiality Requirements
	Outcomes
	Report Structure


	II Literature Review
	Background Theory of Deep Learning
	Origin
	Supervised and Unsupervised Learning
	Classification and Regression
	Biological Neuron
	Artificial Neuron
	Activation Functions
	Linear
	Rectified Linear
	Softplus
	Sigmoid
	Tanh
	Softmax
	Binary Step Function

	Artificial Neural Networks (ANN)
	Forward Propagation
	Weights & Biases
	Parameter Optimization
	Gradient Descent
	Backpropagation
	Training Phase and Inference
	Sparsity of NN
	Dropout
	Data Augmentation

	Convolutional Neural Network (CNN)
	Input Layer
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Batch Normalization

	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)


	FPGA and Software Tools
	High Level Synthesis (HLS)
	OpenCL
	Software Frameworks

	Review of Related Work
	FPGA vs GPU
	Acceleration of BNNs

	Well known Neural Network Architectures
	LeNet5
	AlexNet
	VGG
	GoogleNet
	ResNet
	SqueezeNet
	ENet
	Xception

	FPGA Implementations
	F-CNN: An FPGA-based Framework for Training Convolutional Neural Networks
	DLAU: A Scalable Deep Learning Accelerator Unit on FPGA
	The implementation of a Deep Recurrent Neural Network Language Model on a Xilinx FPGA
	FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

	Neural Networks in time series forecasting
	Time Series Forecasting Using LSTMs
	Time Series Forecasting Using CNNs
	Combining CNNs and RNNs


	Evaluation of The Literature Review

	III Method
	Functional Specification
	System Description
	Specification
	Success Criteria

	Tools & Data Preparation
	Keras - Software Framework
	Building Models
	Compilation
	Training
	Evaluation

	Pre Processing
	Shape of Input Frame
	Feature Scaling
	Labeling
	Feature Selection
	Selecting the Number of Samples

	FloydHub

	Design
	Neural Network Topologies
	Multi-Layer Perceptron (MLP)
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Convolutional Neural Network (CNN)
	Combinations

	Choosing Optimizer
	Choosing Look Back
	Choosing Batch Size
	Analysis of The ''Mysteryset''
	Multi-Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN & LSTM)
	Combinations


	Implementation
	Multi-Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)
	Recurrent Neural Networks (RNN & LSTM)
	Combinations


	IV Results and Discussion
	Results & Discussion
	Multi-Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (LSTM)
	Combinations

	Overall Discussion

	V Closing Remarks
	Conclusion
	Overview
	Future Work

	Bibliography


