
Reactive Collision Avoidance
Safe navigation in a dynamic cluttered

environment

Andreas L. Aarvold

Master of Science in Cybernetics and Robotics

Supervisor: Kristin Ytterstad Pettersen, ITK
Co-supervisor: Martin Syre Wiig, FFI

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Problem description

Autonomous vehicles are increasingly used in both scientific and commercial appli-
cations. During autonomous or semi-autonomous operations, the capability to avoid
static and dynamic obstacles without human intervention is crucial for mission success
and vehicle safety. In complex environments with dynamic obstacles the vehicle has
to react quickly to obstacles, which can make the time consumption of motion plan-
ning algorithms unacceptable. Hence, there is a need for reactive collision avoidance
algorithm for avoiding moving obstacles.

Many vehicles, such as cars, can be modeled as a vehicle with nonholonomic
constraints, i.e. they can move forwards and turn, but not move sideways. Such a
model can also be used as a simplified model of a ship or a fixed wing aircraft, however
these vehicle have a limited speed envelope and may have significant constraints on
the forward acceleration due to a high mass.

The goal of this master assignment is to develop a reactive collision avoidance al-
gorithm for a vehicle with nonholonomic constraints and limited forward acceleration.
The algorithm should be combined with a classical guidance law for target reaching
or path following, and the system should make the vehicle able to safely traverse
a crowded environment with multiple obstacles. The performance of the algorithm
should be analyzed, and it should be tested in simulations.

This master assignment builds on a project assignment where the following sub-
tasks were achieved:

i

• Perform a literature study on reactive collision avoidance algorithms for mobile
robots

• Develop a reactive collision avoidance algorithm, ormodify an existing algorithm,
suitable for a nonholonomic vehicle with velocity constraints and limited forward
acceleration

• Perform an analysis of the system when applied to such a vehicle in an environ-
ment with at least one obstacle

• Implement the algorithm in a simulation environment

• Verify the performance of the collision avoidance algorithm in the presence of
multiple obstacles

The main topic of the master assignment will be to extend the algorithm from the
project assignment to a multi-agent scenario. Each agent should be modeled like a
unicycle, and should employ the same collision avoidance algorithm. The following
subtasks are proposed:

• Perform a literature survey on collision avoidance algorithm in multiagent
scenarios

• Modify the algorithm from the project assignment to work in such a scenario, if
necessary

• Analyze the resulting algorithm to find conditions under which safety are guar-
anteed

• Verity the analysis in simulations

• Implement the Reciprocal Velocity Obstacles algorithm and compare simulation
results

ii

Abstract

Collision-free navigation in unknown environments is an essential quality for any
autonomous vehicle. In this thesis, a reactive collision avoidance algorithm is presented
for vehicles constrained by a unicycle nonholonomic model in a multi-agent environ-
ment. The agents navigate independently in a decentralized manner, without explicit
communication. Restricted forward speed makes the model suitable for vehicles with
heavy linear constraints such as marine vessels and unmanned aircraft. The sensor
model is given by an integrated representation of the environment where only limited
sensing is required. A new braking rule is created to cope with typical multi-agent
challenges such as oscillation and deadlocks.

Through rigorous mathematical analysis, sufficient conditions for collision-free
navigation is derived by reducing the number of agents. Tests, simulating thousands
of cluttered environments, is presented including scenarios with both multiple agents
and passive obstacles. The simulations prove that agents safely navigates the envi-
ronment even when ignoring the strict conditions made in the mathematical analysis.
Furthermore, the algorithm shows promising results when compared to other well
known multi-agent reactive algorithms, such as the Reciprocal Velocity Obstacles.

The main contribution of this thesis is a computational efficient reactive algorithm
suited for a wide range of vehicles. By merging two existing algorithms and adding a
new breaking rule, the result is a fast and safe multi-agent algorithm. In addition, a
literature review is carried out to investigate alternative approaches to collision-free
navigation and present the most relevant prior research in the field.

iii

iv

Sammendrag

Kollisjonsfri navigering i ukjente miljøer er essensielt for autonome kjøretøy. Denne
avhandlingen presenterer en reaktiv antikollisjons-algoritme for agenter modellert som
ett-hjuls kjøretøy med ikke-holonomiske begrensninger. Agentene er desentralisert
og styres individuelt av samme algoritme, uten kommunikasjon. Begrenset lineær fart
gjør modellen egnet for kjøretøy som biler, ubemannede fly og skip. Sensormodellen
er gitt av en integrert representasjon av miljøet rundt en agent og krever begrenset
målingsdata. En ny bremseregel tar hånd om typiske utfordringer relatert til fler-agent
situasjoner, som oscillering og deadlocks.

Gjennom robust matematisk analyse er det lagt til grunn tilstrekkelige betingelser
som garanterer kollisjonsfri navigasjon. Det er presentert tester med mange agenter
og passive hindringer i tusenvis av tette simuleringer. Testene viser at agenter trygt
navigerer simuleringene selv uten å ta hensyn til betingelsene slått fast i den matema-
tiske analysen. Algoritmen viser lovende resultater når den sammenlignes med andre
kjente reaktive algoritmer, som Reciprocal Velocity Obstacles.

Hovedbidraget til denne avhandlingen er en reaktiv algoritme som er beregn-
ingsmessig effektiv og aktuell for en stor mengde kjøretøy. Resultatet av å sammenslå
to eksisterende algoritmer og legge til en ny bremse-lov, er en rask og trygg algoritme
tilegnet miljøer med mange agenter. Det er ytterligere utført et litteraturstudie som
undersøker tidligere forskning på området og alternative antikollisjonsalgoritmer.

v

vi

Preface

This thesis concludes my Master of Science degree from the Department of Engineer-
ing Cybernetic at the Norwegian University of Science and Technology. Researching
autonomous vehicles has been an inspiring undertaking. As a technology enthusiast,
autonomous vehicles intrigues me and relies on technology that I find truly fascinating.
I would like to use the opportunity thank my supervisors, PhD candidate Martin
Syre Wiig and Professor Kristin Ytterstad Pettersen. Their support throughout this
project has guided me on the right path and steered me away from possible collisions.
The background material provided prior to writing this thesis is described fully in
Section 1.4. Finally, I would like to thank my friends and fellow students for the time
together at NTNU. It has been five years with a lot of fun and invaluable experiences.

Andreas L. Aarvold
Trondheim 04-06-2018

vii

viii

Contents

Problem description i

Abstract iii

Sammendrag v

Preface vii

1 Introduction 1
1.1 Motivation . 1
1.2 Literature review . 2

1.2.1 Reciprocal Velocity Obstacles 7
1.3 Assumptions . 9
1.4 Background . 9

1.4.1 Contributions . 10
1.5 Outline . 10

2 System Description 13
2.1 Agent model . 13
2.2 Passive obstacle model . 15
2.3 Sensing model . 15

2.3.1 Available measurements . 18

ix

2.4 Velocity compensation . 18
2.5 Control objective . 21
2.6 Assumptions summary . 21

3 Navigation and Collision Avoidance 23
3.1 Guidance law . 24
3.2 Collision avoidance . 24

3.2.1 The braking rule . 25
3.2.2 Choosing a collision-free heading 27

3.3 Reactive navigation law . 29

4 Mathematical Analysis 31
4.1 Uncompensated obstacle measurements 32

4.1.1 Proof of Theorem 1 . 33
4.2 Velocity compensation angle . 36
4.3 The braking rule . 40
4.4 Agent-agent encounter . 40
4.5 Target reaching . 43

5 Simulations 45
5.1 Simulations . 46

5.1.1 Single-agent environment . 46
5.1.2 Single-agent environment and IEA 51
5.1.3 Multi-agent environment . 52
5.1.4 Multi-agent environment and RVO 58

5.2 Monte Carlo experiments . 60
5.2.1 Single-agent environment . 60
5.2.2 Multi-agent environment . 62

6 Conclusions and Future Work 67
6.1 Result discussion . 67
6.2 Conclusion . 69

x

6.3 Further work . 70

Appendix A Seeking a Path Through the Crowd 73
A.1 Integrated sensor representation . 73
A.2 Collision avoidance algorithm . 75

Appendix B The Velocity Compensation Angle 77

Appendix C Additional Monte Carlo Experiments 79

Appendix D Algorithm by Erlend Hårstad 83
D.1 Algorithm description by Hårstad . 83
D.2 Results . 84

Appendix E Creating the Simulator 87

References 95

xi

List of Tables

5.1 Monte Carlo: One agent and 10 obstacles 61
5.2 Monte Carlo: One agent and 15 obstacles 62
5.3 Monte Carlo: One agent and obstacles with high speed 62
5.4 Multi-Agent Monte Carlo: The braking rule 64
5.5 Multi-Agent Monte Carlo: With obstacles 64
5.6 Multi-Agent Monte Carlo: RVO comparison 64

C.1 Monte Carlo: Choosing rmax . 79
C.2 Monte Carlo: Choosing vmin . 80
C.3 Monte Carlo: Choosing amax . 80
C.4 Monte Carlo: Choosing dsen . 81
C.5 Monte Carlo: Choosing δ . 81

D.1 Monte Carlo: Comparing with Erlend Hårstad 84

xii

List of Figures

1.1 Geometrically understanding of the reciprocal velocity obstacle . . . 7

2.1 Agent model and minimum turning radius 14
2.2 Expanded obstacle set . 16
2.3 Sensor disk D and agent sensing ability 17
2.4 M(α , t) example . 19
2.5 Relation between Di and M̂i (α̂ , t) . 20

3.1 The braking rule example 1 . 25
3.2 The braking rule example 2 . 26
3.3 M̂i (α̂ , t) example . 28

4.1 Figure to support Assumption 14 . 33
4.2 Illustration of D0,i (t) in relation to Di (t) 34
4.3 Collision avoidance for ri (kδ) , 0 . 37
4.4 Three cases of obstacle velocity compensation 38
4.5 Proposition 1 support figure. 39
4.6 The braking rule pass-case. 41
4.7 Two agents on collision course. 42
4.8 Three multi-agent conflict scenarios 43

5.1 Simulation: Moving and static obstacles 47
5.2 Simulation: High speed approaching obstacles 47

xiii

5.3 Simulation: Narrow passage, static environment 48
5.4 Simulation: Concave obstacle . 49
5.5 Simulation: Sharp approaching obstacles 50
5.6 Simulation: Comparing velocity compensation, circular obstacles 1 . 50
5.7 Simulation: Comparing velocity compensation, narrow passage 1 . . 51
5.8 Simulation: Comparing velocity compensation, narrow passage 2 . . 52
5.9 Simulation: Comparing velocity compensation, circular obstacles 2 . 53
5.10 Multi-agent simulation: Circle simulation with 40 agents 54
5.11 Multi-agent simulation: Circle simulation without the braking rule . 55
5.12 Multi-agent simulation: Parallel agents 56
5.13 Multi-agent simulation: Agents and obstacles 56
5.14 Multi-agent simulation: Over 200 agents 57
5.15 RVO: Comparing efficiency with PA 58
5.16 RVO: Circle scenario . 59
5.17 RVO: Parallel scenario . 59
5.18 Monte Carlo: Initial positions and a typical scenario 61
5.19 Monte Carlo: Collision examples . 63
5.20 Monte Carlo: Typical multi-agent simulation 66

A.1 Sensor disk D and vehicle sensing ability 74
A.2 M(α , t) example . 75

B.1 Illustation of velocity compensation 78

D.1 Appendix D: Reciprocal dances . 84
D.2 Appendix D: Path comparison . 85

E.1 Simulator implementation illustration 88

xiv

Nomenclature

Abbreviations

IEA Integrated Environment algorithm

PA Proposed Algorithm

RVO Reciprocal Velocity Obstacles

Variables

α Angle of emitted sensor rays, defining where obstacles are detected

Ê(t) Set of impenetrable obstacles expanded with a safety distance dsaf e,i

Di (t) Sensor disk in front of an agent

ψi (t) Agent heading

ψτ ,i (t) Angle to agent’s target

ψd,i (t) Desired agent heading in guidance mode

ai (t) Agent linear acceleration bounded by [−amax,i ,amax,i]

Ci (t) Desired direction in collision avoidance mode

E(t) Set of impenetrable obstacles

xv

ri (t) Agent heading rate, bounded by [−rmax,i , rmax,i]

vi (t) Vehicle forward speed, bounded by [vmin,i ,vmax,i]

vÊi (t) Obstacle forward speed

xi (t), yi (t) Agent Cartesian coordinates, with position pppi = [xi (t), yi (t)]

Constants

δ Discrete time step

τi Agent target with radius Rτ ,i and position pppτ ,i = [xτ ,i , yτ ,i]

amax,i Maximum agent linear acceleration

dsaf e,i Safety distance to account for agent size and other safety measures

rmax,i Maximum agent heading rate

Rr,i Agent radius

Rturn,i Agent minimum turning radius

Tbrake Minimum amount of time the braking rule is active

vmax,i Agent maximum forward speed

vmin,i Agent minimum forward speed

Functions

Mi (α , t) Binary function representing obstacles inside the sensor disk Di (t)

M̂i (α̂ , t) Analog toMi (α , t) with obstacle velocity compensation

m̂i (t) Binary function indicating if one or more obstacles are detected

bi (t) Binary function indicating that the braking rule is active

xvi

Chapter 1

Introduction

1.1 Motivation

In today’s society autonomy can be found in self-driving cars, unmanned aerial vehi-
cles(UAV), unmannedmaritime vessels andmuchmore. It is fair to say that autonomous
vehicles are increasingly important in everyday life. The upsides of autonomous ve-
hicles are the opportunities to operate with increased efficiency and safety while
reducing cost and exposure. In environments unsuitable to humans, for example
in radiation-exposed areas, minefields or on the moons of Saturn, the advantage of
unmanned vehicles are unprecedented. More practical examples are given in [1], [2],
[3] and [4].

To ensure safe navigation and application of autonomous vehicles, the ability
to successfully perform collision avoidance is of essential importance. Autonomous
collision avoidance has been, and still is, a major field of research in the scientific
community. There are numerous different approaches to collision avoidance, normally
they are divided into two categories: motion planning and reactive collision avoidance.
A motion planning algorithm use information about the environment to calculate a
desired path and a reactive algorithm maps sensor input directly to control output,

1

2 CHAPTER 1. INTRODUCTION

making reactive methods less computationally complex.

This thesis focuses on the problem of collision avoidance in a decentralized ho-
mogeneous multi-agent system. The algorithm proposed is local and reactive, where
limited computation effort and sensing are of interest. There is no communication
between agents and all computations are done locally. This kind of algorithm is well
suited for real-time application for vehicles with limited computational capacity or
operating in rapidly changing environments.

The improvement in sensing and computation abilities has in recent years led to
reactive collision avoidance being especially interesting. With improved accuracy,
sampling rate and computational power, vehicles have a better understanding of their
surroundings and are capable of finding safe control inputs within a reasonable time.
As the literature review shows, previous methods are often restricted both by available
computationally power and sensor data. Reactive collision avoidance is an important
part of a safe navigation system and can be combined with a more computationally
expensive path planning algorithm to form a robust strategy. By doing so the complete
navigation system becomes both safer and more efficient compared to using either
method alone.

Rigorous mathematical analysis is important to classify safety and reliability of
collision avoidance algorithms. In order to mathematically prove safe navigation,
several assumptions and restrictions have to be made. These restrictions are often
strict and thus simulations and experimental testing are important additions to present
a wider view on the algorithms’ performance.

1.2 Literature review

Safe navigation of autonomous vehicles remains an active research field. The primary
objectives are related to collision avoidance, target reachability, multi-vehicle coordina-
tion or a combination of the three. In order to achieve these goals, numerous methods

1.2. LITERATURE REVIEW 3

have been suggested. Although the main focus of this thesis is on local multi-agent
reactive navigation, for completeness the review also considers alternative methods
and prior research. A survey focusing on local navigation for mobile robots in cluttered
environments is given in [5].

The alternative to reactive collision avoidance is path planning algorithms. In a
path planning approach, the vehicle uses knowledge about its environment to calculate
the most desirable path. Most commonly, such algorithms require more information
about the environment than a reactive method, but that need not be the case. In [6], [7]
and [8] optimal paths are found through a static environment assuming it is a priori
known. Unfortunately, the path calculation tends to be computationally complex. In
fact, the more general motion planning problem for multiple agents with bounded
velocities has been shown by [9] to be NP-hard.

Another interesting and more recent approach in this category is the model pre-
dictive control (MPC) [10]. A path for the next N time steps is calculated at each time
instant, taking the vehicle model into account. According to [5], MPC has several
favorable properties compared to the commonly used artificial potential fields and
velocity object based methods, which are generally more conservative when extended
to higher order vehicle models. MPC has mostly been applied to scenarios where the
environment is known [11], but can also be used in a priori unknown environments
as in [12] and [13]. In general, MPC has the advantage of considering a more optimal
path, but on the other hand, tend to be more computationally complex and lacking
rigorous mathematical analysis. Without higher order vehicle models, the advantages
of using MPC abates.

A reactive approach can be seen as a memory-less mapping between sensor input
and control output, and thus tend to be computationally effective. A popular reactive
approach is the artificial potential field [14], which works by creating artificial fields
where the target has an attracting ability and obstacles are repulsive. It has some
stability problems [15], that have been solved by [16] and [17]. A polar histogram

4 CHAPTER 1. INTRODUCTION

of merged sensor measurements serves as the solution in [17]. By choosing a new
desired velocity using the polar histogram, the stability problem vanishes. Only a
single, holonomic vehicle and static obstacles are considered. The dynamic window
[18] can be regarded as an MPC algorithm with a prediction horizon of a single time
step and handles nonholonomic constraints by choosing a safe direction among a set
of valid vehicle trajectories, also only for static environments. The collision cone [19]
and velocity obstacle [20] algorithms on the other hand deals with dynamic obstacles,
but without considering nonholonomic constraints.

The above-mentioned algorithms suffer from different undesirable limitations such
as stability, and many do not consider dynamic obstacles or nonholonomic constraints.
Some of the older papers focus on noisy and inaccurate sensor measurements as a
major limitation. However, with improved sensors and pre-processing of sensor data
that need not be the main focus. Thus there is room for new and smarter ways to
achieve reactive collision avoidance.

The algorithm proposed in this thesis builds on the algorithm presented in [21].
Resembling the vector field histogram from [17], the algorithm is reactive and local.
Additionally, it accounts for both moving and deformable objects in an unknown
environment as well as a nonholonomic vehicle with constant forward speed. An
integrated representation of the local environment together with bearing to the target
provides the only required measurements. The algorithm works by steering the vehicle
towards a collision-free zone on a sensor disk in front of the vehicle. According to
the simulations, the algorithm safely navigates cluttered environments with multiple
moving obstacles. For this reason, along with the interesting use of an integrated
sensor representation, the algorithm from [21] serves as a starting point for the algo-
rithm proposed in this thesis. Nevertheless, by not accounting for obstacle velocity,
the algorithm can be conservative and less effective dealing with moving obstacles.

Another interesting approach to reactive collision avoidance can be found by in-
spiration from the world of biology. The algorithm presented in [22] is one example.

1.2. LITERATURE REVIEW 5

Here, dynamic obstacles are overcome by providing a navigation strategy that switches
between moving to the target along straight lines, and a sliding-mode obstacle avoid-
ance law. The sliding-mode controller aims at maintaining a constant avoidance angle
between the vehicle’s heading and the tangent from the vehicle to the obstacle. The
paper does, however, allow varying vehicle forward speed without hard constraints,
resulting in a behavior where in some scenarios the vehicle completely stops in order
to maintain safe navigation. Working with aircraft or marine vessels, having large
inertia which restricts linear acceleration, such behavior may not be feasible. The
algorithm proposed by [23] builds on [22] and incorporates constant forward speed
and a nonholonomic vehicle model. Decoupled from the vehicle speed, the heading is
the only control input. In addition [23] contributes with a new method to compensate
for obstacle velocities, which is discussed in detail in later chapters.

In recent years multi-agent systems have become a growing research topic, both
due to relevant applications such as highway maneuvering, aircraft traffic control
and modeling pedestrians, and to the price reduction in swarm-like vehicles such
as UAVs. There are many challenges related to multi-agent systems and different
ways to achieve safe navigation. In this thesis, we consider an arbitrary number of
homogeneous agents guided by the same collision avoidance algorithm. This creates
an environment well suited for a local reactive collision avoidance algorithm. A well-
known paper on the topic is Reciprocal Velocity Obstacles [24], which expands [20] to
decentralized multi-agent control. The basic idea is to share the responsibility of the
collision avoidance maneuver between the conflicting agents. This concept has been
used in several other multi-agent papers such as [25], [26] and [27]. A challenge occurs
when agents encounter passive moving obstacles that are not guided by the same
collision avoidance algorithm. One solution to the challenge is to prioritize agents
and obstacles, such that agents take full responsibility on an encounter with passive
obstacles. An obvious requirement is that agents are able to distinguish between
obstacles and other agents. To avoid this challenge, the algorithm presented in this
thesis treats all conflicts equal, agents or obstacles. Another interesting method is
given in [28], where the algorithm requires initial maneuvering to ensure no agents

6 CHAPTER 1. INTRODUCTION

are in conflict, then guarantees that all agents avoid a state of conflict.

Deadlocks and oscillations have proven to be considerable problems in multi-agent
systems. "Rules of the Road" is a common concept in multi-agent control to overcome
deadlocks. A set of rules are defined that apply to all agents. When a conflict arises
between agents the rules decide which agent has to yield and which to pass. An
interesting example is given in [29], here the International Regulations for Preventing
Collisions at Sea, known as COLREGS, are applied to maritime autonomous navigation
guided by Velocity Obstacles. Building on the Rule of the Roads concept, the algorithm
presented in this thesis applies a conditioned yield-pass braking rule.

In an alternative approach to multi-agent control, vehicles share state information
to provide safe navigation. Sharing information can be done through inter-agent
communication or by a centralized entity. Examples are given in [30], [31] and [32].
Unfortunately in a real-world scenario, one can not always assume communication
with other vehicles and thus making this kind of algorithms unsuitable for a general
reactive approach.

In summary, there exist numerous different approaches to collision avoidance. The
methods differ in constraints, assumptions and environments. Even though many of
the above methods have important contributions, there is still room for improvements.
The main contribution of this thesis is a computational effective reactive algorithm for a
multi-agent environment where the agents are restricted by nonholonomic constraints
with bounded forward speed. The algorithm deals with moving obstacles, without
being too conservative, in a cluttered environment. Building on the work done in
[21], the integrated environment representation is used. Nevertheless, agents are not
restricted to constant forward speed, providing more flexibility without the risk of
a complete stop. Further, the algorithm is expanded by the velocity compensation
method presented in [23], making it safer in a dynamic environment. A simple Rule of
the road is implemented as a braking rule to avoid deadlocks and increase safety. The
thesis presents rigorous mathematical analysis supported by a wide set of simulated
scenarios, where Monte Carlo experiments are central.

1.2. LITERATURE REVIEW 7

1.2.1 Reciprocal Velocity Obstacles

This subsection highlights one of the commonly used algorithms for multi-agent envi-
ronments, namely the classic Reciprocal Velocity Obstacles, RVO, presented in [24].
Due to its widespread usage and the fact that the algorithm is constructed for similar
environments as the algorithm presented in this thesis, RVO will be used as a basis
for performance comparison in chapter 5. To better understand the reason behind
choosing RVO as the benchmark algorithm and the arguments made in the coming
chapters, this subsection will have a more in-depth description of RVO.

B

VOB(vB)A

RVOB(vB,vA)A

vB

vB

B -A

vA

A

0.5(vA+vB)

Figure 1.1: Both the Velocity Obstacle VOA
B (vvvB) and the Reciprocal Velocity Obstacle

RVOA
B (vvvA,vvvB) from agent B to agent A. The figure is inspired by the original RVO

paper [24]

RVO is an extension of Velocity Obstacles (VO) introduced in [20]. While RVO in-
herent the appealing properties of VO, it is extended to resolve the common oscillation
problem related to multi-agent navigation. The velocity obstacle is described as follows:
Let A be a moving agent in a 2D plane with position pppA and velocityvvvA. Likewise, let

8 CHAPTER 1. INTRODUCTION

B be a planar moving agent with position pppB and velocityvvvB . The velocity obstacle
VOA

B (vvvB) from B to A is then described by all velocitiesvvvA that at some point in time
will result in a collision between A and B. The velocity obstacle is easier understood
geometrically and is illustrated in Figure 1.1, where the light-grayed cone with apex in
pppA +vvvB is the velocity obstacles from B to A. By choosing a velocity outside the union
of all velocity obstacles from all agents to A, agents A is guaranteed collision-free
navigation. The oscillation problem occurs when two agents, A and B, both have
their current velocity inside the velocity obstacle resulting from the opposing agent.
Both change their velocity to avoid a collision, resulting in new velocities outside the
velocity obstacles. In the next time instance, both agents will be free to choose new
velocities guiding the agents towards their target. If, in the next time instance, the new
velocities are inside the velocity obstacle of the opposing agent the problem repeats,
resulting in oscillatory behavior.

The extension from VO to RVO is simple. Instead of choosing a new velocity for
each agent that is outside the other agent’s velocity obstacle, the agent chooses a new
velocity that is the weighted average of its current velocity and a velocity that lies
outside the other agent’s velocity obstacle. The geometrically understanding of RVO
can be seen as the green cone in Figure 1.1, where the apex of the cone is moved to
pppA + (1 − α)vvvA + αvvvB , where α ∈ [0, 1] is the weight. For the case in Figure 1.1 the
weight is equally shared, α = 0.5. If, for every time instance, each agent chooses a new
velocity outside the union of all RVOs closest to its current velocity, both collision-free
and oscillation-free navigation is guaranteed. For proof, the reader is referred to [24].
In cases where there is no feasible new velocity outside the combined RVOs, a new
velocity is chosen by the closeness to the preferred velocity and the minimum time to
collision. The RVO algorithm accounts for dynamic constraints by choosing a new
velocity in the union of dynamically constrained velocities and velocities outside the
RVOs.

The required sensor measurements are the same for RVO and the algorithm pre-
sented in this thesis. Both operate in a planar multi-agent environment including

1.3. ASSUMPTIONS 9

obstacles and are suitable for cluttered navigation. One of the main differences is the
nonholonomic constraints that are considered in the proposed algorithm. Although
similar preconditions, the resulting algorithms are inherently different and makes for
an interesting comparison.

1.3 Assumptions

Throughout this thesis, there are several assumptions. First of all, the environment is a
2D planar surface. Secondly, agents are modeled as unicycles with nonholonomic con-
straints. The agent’s forward speed is upper and lower bounded, and has a maximum
rate of change. No assumption is made regarding the shape of the obstacles, moreover,
they can be multiple and overlapping. Furthermore, the obstacles are considered
passive, meaning they have zero control input and can be either static or moving. The
obstacles’ linear velocities are however assumed to be lower than the lower bound
on agents forward speed. The agents’ angular velocity is bounded, resulting in a
minimum turning radius. Furthermore, it is assumed that the agents’ heading rate and
linear acceleration can be controlled directly. All agents operate as individual entities,
and there is no communication between agents. The environment is completely a
priori unknown, except for information gathered through local sensor measurements.
Agents have access to their target bearing at all times. An abstract sensor model is
assumed, where measurements are both noise- and error-free.

1.4 Background

In this thesis, the collision avoidance algorithm from [21] serves as a baseline and is
presented in Appendix A. More precisely, the integrated environment representation
resulting in a binary function for avoidance is used and expanded. The algorithm is
chosen for its versatility in regard to size and shape of the obstacles as well as the
interesting use of a sensor disk in front of the agents. The velocity compensation
calculation provided in [23], serves as a method for incorporating the velocity of
other vehicles in the algorithm. It is presented as a stand-alone calculation and is

10 CHAPTER 1. INTRODUCTION

well suited to extend the integrated sensor representation. See Appendix B for a
detailed derivation. A basis for the Matlab simulator used in Chapter 5 is provided by
PhD. candidate Martin Syre Wiig. More details about the simulator can be found in
Appendix E.

1.4.1 Contributions

The main contribution of this thesis is a computational effective reactive algorithm for
multi-agent navigation where the agents are restricted by nonholonomic constraints
with bounded forward speed. The algorithm deals with moving obstacles, without
being too conservative, in a cluttered environment. It is created by combining the
algorithm presented in [21] with the obstacle velocity compensation from [23] and a
new braking rule. The complete navigation strategy is analyzed by rigorous mathemat-
ical analysis to guarantee collision-free navigation in an environment with one agent
and one obstacle, and in an environment with two agents. Furthermore, extensive
simulation and testing is performed and presented in Chapter 5 and Appendix C.
The simulations are implemented without the strict restrictions of the mathematical
analysis and with multiple agents and obstacles. Details regarding the work behind
building the simulator are described in Appendix E. Besides testing multiple different
scenarios for the presented algorithm, this thesis also presents results comparing it
to both the algorithm presented in [21] and [24]. By running the algorithms through
thousands of simulation in different Monte Carlo experiments, the presented results
are based on statistics and are more proportionate. The extensive simulations provide
solid support to the analysis presented in Chapter 4, and to the claim that the algorithm
works well for less strict conditions.

1.5 Outline

The remainder of this thesis is organized as follows. In Chapter 2 the system descrip-
tion is presented, both agent and obstacle models are provided including respective
assumptions. Chapter 3 describes the proposed navigation and collision avoidance

1.5. OUTLINE 11

algorithm. Chapter 4 provides the mathematical analysis, including proofs of the
stated theorems. Chapter 5 presents several computer-simulated scenarios that ana-
lyze performance and provide insight into the behavior of the algorithm. The chapter
also provides Monte Carlo experiments where the performance is compared with
the algorithm from [21] and [24]. Lastly, Chapter 6 discusses the results, presents a
conclusion and states further work. In addition, Appendix A presents the collision
avoidance algorithm proposed by [21]. The method used to calculated the velocity
compensation angle provided by [23] is shown in Appendix B. Additional Monte Carlo
results are presented in Appendix C, testing the system parameters influence on overall
performance. Appendix D present and compare Monte Carlo results with an algorithm
created by Master of Science student, Erlend Hårstad. Finally, the work behind creating
the simulator used in Chapter 5 is described in Appendix E.

12 CHAPTER 1. INTRODUCTION

Chapter 2

System Description

This chapter presents the mathematical model for both the agents and the obstacles.
The main difference being that obstacles are passive; they do not navigate according
to the proposed algorithm and in fact have no control input. All stated assumptions in
both models are formally declared and listed in the last section of the chapter. The
models presented in this chapter are directly implemented in Chapter 5, while some
simplifications are made in Chapter 4. Throughout this thesis, all agent and obstacle
movement is two dimensional along a planar surface.

2.1 Agent model

The agents are modeled as planar unicycle-type vehicles defined by

Ûxi (t) = vi (t) cos(ψi (t)) (2.1a)

Ûyi (t) = vi (t) sin(ψi (t)) (2.1b)
Ûψi (t) = ri (t) (2.1c)

Ûvi (t) = ai (t) (2.1d)

13

14 CHAPTER 2. SYSTEM DESCRIPTION

where i indicate agent number i , xi (t) and yi (t) are the agent’s Cartesian coordi-
nates. The linear velocity vi (t) is bonded by vi (t) ∈ [vmin,i ,vmax,i], where vmax,i >

vmin,i > 0. The heading,ψi (t), is measured clockwise from the x-axis1. The heading
rate ri (t) is the first control input and is bounded by ri (t) ∈ [−rmax,i , rmax,i], where
rmax,i > 0. The second control input is the linear acceleration ai (t), bounded by
ai (t) ∈ [−amax,i ,amax,i], where amax,i > 0. Agents are shaped as planar disks with
radius Rr,i . This simple model can describe the motion of many vehicles, such as
wheeled robots, unmanned aerial vehicles, underwater vehicles and missiles [33]. The
agents’ position is the center of the disk given by

pppi (t) = [xi (t), yi (t)]
T (2.2)

Using this model agents have a minimum turning radius given by

Rturn,i =
vmin,i

rmax,i
(2.3)

pi(t)

y-axis

x-
ax
is

ψi(t) vi(t)

Rturn,i

ψ ,i(t) target
i

Figure 2.1: Agent model, where Rturn,i is the minimum turning radius and the target
is indicated by τi .

1This thesis follows the marine convention of NED-orientated coordinate system

2.2. PASSIVE OBSTACLE MODEL 15

2.2 Passive obstacle model

Obstacles are defined as areas in the environment that are forbidden to the agents. The
shape and number of obstacles are arbitrary and they can be both static or dynamic.
However, all obstacles are assumed to be passive, having no control input.

Definition 1. The set of all obstacles are defined as E(t) ⊂ R2 consisting of all obstacles
Ei (t) for i = 1, 2, ...,n that are forbidden to the agents.

E(t) is a priori unknown and assumed to have a closed piece-wise analytic boundary.
The rate of change is constrained such that any pointeee(t) = [xe (t),ye (t)] ∈ E(t) has the
property ∥ Ûe(t)∥ < vmin . This implies that the E(t) cannot change or move faster than
the slowest moving agent. Thus each obstacle, Ei (t), can move and rotate arbitrarily
and independently.

Remark. In the general case, collision-free navigation cannot be guaranteed for obsta-
cles moving faster than an agent.

Furthermore, a safety margin dsaf ei > 0 is introduced, that accounts for the size of
agent i and contributes as a safety parameter. Hence, dsaf e,i ≥ Rr,i for agent i . E(t) is
expanded with the safety distance dsaf ei to create a new set Ê(t). See Figure 2.2 for an
example. Expanding to Ê(t) is only a matter of size, thus the same assumptions apply
to E(t) and Ê(t). The remainder of this thesis assume Ê(t) as the default obstacle set.

2.3 Sensing model

This sections follows along the lines of [21], for more details see Appendix A. The
sampling period is defined as δ > 0, where measurements and control input are
updated at discrete times t = 0,δ , 2δ , ... The agents’ current heading,ψi (t), is measured
clockwise from the x-axis. Every agent has a corresponding target, τi , with radius Rτ ,i
and position pppτ ,i = [xτ ,i , yτ ,i]

T . The angle to the target center,ψτ (t),i is available at
every time interval, see Figure 2.1.

Remark. An agent does not distinguish between other agents and passive obstacles. All
objects, obstacles and agents, inside the current agent’s sensor range, is recognized as

16 CHAPTER 2. SYSTEM DESCRIPTION

d
safe,i

d
safe,i

d
safe,i

d
safe,idsafe,i

dsafe,iE1(t)
E2(t)

E3(t)

Ê1(t)

Ê2(t)

Ê3(t)

Figure 2.2: Illustrate three obstacles. Original environment E(t) (dark gray) and the
expanded environment Ê(t)(light blue + dark gray), where Ê(t) = Ê1(t) + Ê2(t) + Ê3(t)

obstacles the agent has to avoid. Hence, the remainder of this chapter focuses on agent-
obstacles interaction, which does not exclude agent-agent encounters.

To better understand the integrated sensor model lets first look at a case with only
stationary obstacles. A sensor on the agent emit rays in directions denoted α in a
half circle defined by [ψi (t) −

π
2 , ψi (t) +

π
2] and range dsen,i . The sensor disk Di (t) is

introduced as a circle in front of the agent with diameter dsen,i . The agent detects all
obstacles inside the disk

Di (kδ) = dsen,i cos(α), ∀ α ∈ [ψi (kδ) −
π

2
, ψi (kδ) +

π

2
]

at t = kδ . See Figure 2.3a and Figure 2.3b.

Remark. It is worth noting the assumption that Ê is sensed directly. In a real application,
one would detect E and then calculate an angle to compensate for dsaf e,i to achieve Ê.
This angle is not necessarily straightforward to calculate and is an area for further work.
The same argument goes for detecting other agents.

Now, the binary function representing the integrated environment can be intro-
duced:

2.3. SENSING MODEL 17

vi(t)

dsen,i

Sensor disk

(a) Sensor range and sensor disk

Ê(t)

vi(t)

0.5 dsen,i

y

x

α1

α2

i(t)

Agent

(b) An agent detecting an obstacle

Figure 2.3: Illustration of the sensor disk D and an agents’ sensing ability.

Definition 2. A binary function Mi (α , t) ∈ {0, 1} is defined for all t ≥ 0 and α ∈

[ψi (t) −
π
2 , ψi (t) +

π
2] as

Mi (α , t) =

1, i f dpppE ≤ dsen,i cosα

0, otherwise
(2.4)

where dpppE := ∥pppi (t) −pppE ∥ is the distance to the point, pppE , where the ray emitted
from the agent at time t in direction α hits Ê(t) or another agent. ∥ · ∥ is the standard
Eucledian vector norm. Basic trigonometry prove that dsen,i cos(α) is indeed a circle
in front of the agent directly from the values of cos(x) for x ∈

[
−
pi
2 ,

pi
2

]
.

Remark. A typical senor, in this case, could be a Lidar or Radar, where both the time
interval δ and the sensor resolution of the emitted rays α have an impact on the perfor-
mance of the overall navigational ability. Further sensor and measurement analysis are
outside the scope of this thesis.

18 CHAPTER 2. SYSTEM DESCRIPTION

One might argue against an agent that only senses obstacles inside a disk in front of
itself to be considered safe. In Chapter 4 it is proved that the sensor disk representation
is safe under certain assumptions and in Chapter 5 persuasive simulation are presented
along with further discussion. The goal of using a sensor disk in this model is that
it forces the agents to only avoid obstacles that are in danger of collision. Regarding
the bounded agent’s forward speed and limited turning radius resulting from the
nonholonomic model, it is more efficient to avoid obstacles that the agent is directed
towards. With the sensor disk, this is the case. Actively avoiding obstacles within the
sensor range, dsen,i , and outside the sensor disk, D(t), is considered conservative and
inefficient.

Remark. Note that the above arguments only hold under the assumption that no passive
obstacle moves with a higher speed than the slowest agent and that dsaf e,i is chosen
large enough. The size of the sensor disk is also of critical importance and is discussed in
Chapter 4.

2.3.1 Available measurements

The measurements available to an agent at every time interval is

• Agent headingψi (t)

• Bearing to the targetψτ ,i (t)

• Obstacle forward speed vÊ (t)

• Obstacle headingψÊ (t)

• The binary functionMi (α , t)

2.4 Velocity compensation

A velocity compensation angle is calculated to expand the binary functionM(α , t)with
obstacle velocity. By including obstacles’ velocity the goal is to increase algorithm

2.4. VELOCITY COMPENSATION 19

1

i(t) - π/2

i(t)
i(t) + π/2

Mi(α,t)

α

vi(t)

Ê1(t) Ê2(t) + Ê3(t) Ê4(t)

x

y

Ê1(t)

Ê2(t)

Ê3(t)

Ê4(t)

Figure 2.4: Example ofM(α , t) showing multiple and overlapping obstacles together
with the respective binary values.

20 CHAPTER 2. SYSTEM DESCRIPTION

safety and efficiency. Examples and discussion are provided in Chapter 5. The velocity
compensated binary function is denoted M̂i (α̂ , t), where the collision areas in M̂i are
shifted to account for individual obstacle velocity. See Figure 2.5.

Remark. Obstacle velocity can be obtained by a rate of change between time intervals
and does not require additional sensor components.

1

i(t) - π/2

i(t)

i(t) + π/2

β1
β2

Mi(α,t)

α

vÊ(t) vÊ(t)

Ê(t)

vi(t)

y

x

α1

α2

i(t)

Agent

vÊ(t)

vÊ(t)

vÊ(t)

ɣv,2

ɣv,1

Figure 2.5: Illustration of the sensor disk Di and the binary function M̂i (α , t) with
obstacle velocity compensation.

Let’s consider the scenario given in Figure 2.5, let α1 and α2 be the angles defining
the obstacle on the sensor disk before velocity compensation. The desired velocity
compensated angles can be expressed as

α̂i = αi + γv,i , f or i = 1, 2 (2.5)

2.5. CONTROL OBJECTIVE 21

where α̂i is bounded by α̂i ∈ [ψi (t) −
π
2 , ψi (t) +

π
2], maintaining a valid sensor disk.

The compensation angle γv,i is depicted in Figure 2.5. For more details about the
derivation of γv,i , see Appendix B or the original paper [23].

2.5 Control objective

The control objective is for all agents to reach their target, τi , in finite time while
keeping a minimum distance dsaf ei to any obstacle.

Definition 3. An algorithm is target reaching if agent i reaches the target τi in finite
time tf > 0. The algorithm is collision-free if pppi (t)< Ê(t), ∀t , where pppi (t) is the position
of agent i .

In other words, any instance where dÊ,min < dsaf e,i is considered a collision,
where dÊ,min := min

ppp Ê ∈Ê
∥pppi (t) −pppÊ ∥. The navigation strategy is considered successful if

it is both target reaching and collision-free for all agents.

2.6 Assumptions summary

Assumption 1. All agent and obstacle movement is two dimensional along a planar
surface.

Assumption 2. The sampling period is defined as δ > 0, where measurements and
agents’ heading rates are updated at discrete times 0,δ , 2δ , ...

Assumption 3. Agent movement is bounded by the following constraints:

vi (t) ∈ [vmin,i , vmax,i], where vmax,i > vmin,i > 0 (2.6a)

ri (t) ∈ [−rmax,i , rmax,i], where rmax,i > 0 (2.6b)

ai (t) ∈ [−amax,i , amax,i], where amax,i > 0 (2.6c)

Assumption 4. Obstacles have no control input.

22 CHAPTER 2. SYSTEM DESCRIPTION

Assumption 5. Ê(t) is a closed set with piece-wise analytic boundary. Any point ê(t) =
[xê ,yê]

T in the set Ê(t) satisfies

Û̂e(t) < min
i
vmin,i (2.7)

Assumption 6. The target, τi , is assumed to be a stationary circle with radius Rτ ,i >
Rturn,i and position pppτ ,i = [xτ ,i ,yτ ,i]

T . The angle to the target, ψτ ,i (t), is available to
the agent2.

Assumption 7. All measurements are considered perfect in the sense that they are error-
and noise-free.

Assumption 8. The velocity, both magnitude and direction, of each individual obstacle
inside the sensor disk, Di (t) is available to the respective agent.

2Rturn,i is the agent’s minimum turning radius.

Chapter 3

Navigation and Collision
Avoidance

The navigation strategy consists of two separate modes with a switching criteria. There
are two control inputs, the heading rate and the linear acceleration. In Section 3.1
the guidance law is introduced. The guidance law is active when the sensor disk is
obstacles-free. The collision avoidance algorithm presented in Section 3.2 is active
when obstacles are detected inside the sensor disk. The heading rate is controlled by a
simple bang-bang controller to ensure fast turning toward the target as well as fast
obstacle avoidance

ri (t) :=

0, ψ̃i = 0 and m̂i (t) = 0

±rmax,i , ψ̃i , 0 or m̂i (t) = 1
(3.1)

where ψ̃i = ψi −ψτ ,i is the heading error and m̂i (t) = 1 when an obstacle is inside the
sensor disk and zero otherwise. The function m̂(t) defined in Section 3.2. In situations
where the risk of collision is high, an acceleration controller slows the agents forward
speed to enhance safety. The results from Chapter 5 show that the combination of
heading and speed controller significantly increases the overall safety of the navigation

23

24 CHAPTER 3. NAVIGATION AND COLLISION AVOIDANCE

strategy.

Remark. The heading controller (3.1) is implemented as a saturated high-gain P con-
troller to avoid chattering.

3.1 Guidance law

When an agent is not actively avoiding collisions, a simple pure pursuit guidance law
[10] steers the agent towards the target

ψd,i (t) := atan2(yτ ,i − yi (t), xτ ,i − xi (t)) (3.2)

where [xi (t), yi (t)] and [xτ ,i , yτ ,i] are the x- and y-coordinates of the agent and target
center respectively. The desired heading,ψd,i (t), is chosen in the intervalψd,i ∈ (−π ,π]

to ensure shortest turn toward the desired direction. The function atan2 is the four-
quadrant inverse tangent, where the signs of the arguments are used to place the
output in the right quadrant. In contrast, the normal inverse tangent have an output
in the range

[
− π

2 ,
π
2
]
. An important feature of (3.2) is that ψi (t) = ψd,i (t) results in

constant heading while no obstacles are detected.

3.2 Collision avoidance

The introduction of the collision avoidance algorithm is divided into three parts. First,
the switching criteria including binary functionm(t) is introduced. Then, the braking
rule is defined and explained. Finally, in Section 3.2.2, a collision-free heading is chosen.
The binary function m̂i (t) is defined as:

m̂i (t) :=

0, i f M̂i (α̂ , t) = 0 ∀ α̂ ∈ [ψi (t) −
π
2 ,ψi (t) +

π
2]

1, otherwise
(3.3)

If m̂i (t) = 1, there are one or more obstacles inside the sensor disk at time t and
m̂i (t) = 0 if the sensor disk is empty.

3.2. COLLISION AVOIDANCE 25

Assumption 9. Initially, at t = 0, no obstacles are inside the sensor disk, i.e. m̂i (0) = 0

3.2.1 The braking rule

Rules of the road are situation dependent rules that apply to all agents. The rules are
inherent in the algorithm, thus there is no need for inter-agent communication. The
braking rule applied in this thesis resembles a typical yield-pass rule, where agents
to the left yield and agents to the right pass, similar to the scenario in Figure 3.1. Let
Ω ∈ [0, π2] be an angle on the sensor disk defining when the rule applies. See Figure 3.2.
There are two different scenarios where the rule applies.

B

A

B

A

B

A

B

A

1 2

3 4

A ignores velocity compensation
B yields and slows down

A ignores velocity compensation
B yields and slows down

A is out of conflict
B speeds up

A and B are out of conflict
B speeds up to max speed

Figure 3.1: Example scenario illustrating the desired yield-pass behavior introduced by
braking rule.

First, an obstacle is in the area on the sensor disk for angles less than −Ω and
the velocity compensated obstacle is in the right half of the sensor disk, indicated by
obstacle A in Figure 3.2, resulting in the agent ignoring the velocity compensation and
marks the left half of M̂i (α̂ , t) from the obstacle as occupied. This maneuver lets the
agent pass and is similar to the scenario for agent A in Figure 3.1.

26 CHAPTER 3. NAVIGATION AND COLLISION AVOIDANCE

Secondly, an obstacle is in the area on the sensor disk for angles larger than Ω and
the velocity compensated obstacle is in the left half of the sensor disk, indicated by
obstacle B in Figure 3.2, results in the agent braking according to

ai (t) =

−amax,i , vi (t) > vmin,i

0, otherwise
(3.4)

The former is a yield maneuver, resembling that of agent B in Figure 3.1. Let the binary
function bi (t) indicate agent i in braking mode

bi (t) =

1, agent in braking mode

0, otherwise
(3.5)

To ensure smooth navigation and alleviate churning the agents are forced to brake for
a minimum amount of time Tbrake , even if there are no obstacles on the sensor disk
fulfilling the braking criteria in the current time instance. For obstacles C and D in
Figure 3.2 the agent operate as normal.

D

B

B

C

A

A

Agent

vi(t)

-Ω Ω

0

-π/4 π/4

x

y

Figure 3.2: Example show scenarios for when the braking rule applies.

3.2. COLLISION AVOIDANCE 27

Remark. At first sight, the braking rule might not seem intuitive. However, the rule
achieves cooperative behavior in scenarios where velocity compensation is at it most ex-
treme and cause agents to turn in opposite direction of the uncompensated case.

3.2.2 Choosing a collision-free heading

Consider again Figure 2.4, where an example of Mi (α , t) is given in a scenario with
four obstacles. Combine this with the obstacles velocity compensation illustrated in
Figure 2.5 to obtain the new Figure 3.3. In this scenario m̂i (t) = 1 and there exist
some α̂ ∈ [ψi (t) −

π
2 , ψi (t) +

π
2] where M̂i (α̂ , t) = 0, illustrated by the open intervals

[A−
i , A

+
i] for i = 1, 2, 3, 4. A new heading is chosen as the closest obstacle-free interval

to the current heading and the middle value C(t) of the interval is calculated by

ji (t) := arд min
i
{|A−

i |, |A
+
i |} (3.6)

where ji (t) is the index of the A−
i or A+i that is closest to ψi (t). The middle value is

found by:

Ci (t) =
A−
ji (t)
+A+ji (t)

2
(3.7)

where A−
3 is the closest start/end of an interval in this example. Thus j(t) = 3 and C(t)

is the middle of the interval [A−
3 , A

+
3]. Note that C(t) is indeed an angle.

Remark. The braking rule is applied beforeCi (t) is chosen, such that M̂i (α̂ , t) is updated
with the correct open intervals.

Remark. The algorithm for choosing a collision-free heading follows the lines of [21]
when the velocity compensation and braking rule are neglected.

28 CHAPTER 3. NAVIGATION AND COLLISION AVOIDANCE

1

i(t) - π/2

i(t)

i(t) + π/2

Mi(α,t)

vi(t)

Ê1(t) Ê2(t) + Ê3(t) Ê4(t)

vO,1(t)

vO,3(t)

vO,2(t)

vO,4(t)

A-
1

A+
1 A-

2 A-
3 A-

4A+
2 A+

3 A+
4

Ci

x

y

Ê1(t)

Ê2(t)
Ê3(t)

Ê4(t)

Figure 3.3: Example scenario illustrating multiple and overlapping obstacles with four
obstacle-free intervals [A−

i , A
+
i] for i = 1, 2, 3, 4.

3.3. REACTIVE NAVIGATION LAW 29

3.3 Reactive navigation law

With both the guidance law and the collision avoidance algorithm introduced, the
complete navigation law is given as

ri (t) :=

rmax,i sgn(ψd,i (t) −ψi (t)), i f m̂i (t) = 0

rmax,i sgn(Ci (t) −ψi (t)), i f m̂i (t) = 1
(3.8a)

ai (t) :=

amax,i , i f bi (t) = 0 and vi (t) < vmax,i

−amax,i , i f bi (t) = 1 and vi (t) > vmin,i

0, otherwise

(3.8b)

where sдn(·) returns the sign of its argument,Ci (t) is given by (3.6) and (3.7), andψd,i (t)
is given by (3.2). The inputs, ri (t) and ai (t), are constant during the interval [t , t + δ].
The navigation algorithm is fairly simple; if there are one or more obstacles inside the
sensor disk, the agent turns as fast as possible towards the closest obstacle-free area.
Otherwise the agent turns as fast as possible toward its target. The same goes for the
acceleration controller, if the agent is in a yielding position it slows down, otherwise
it aims for maximum speed.

30 CHAPTER 3. NAVIGATION AND COLLISION AVOIDANCE

Chapter 4

Mathematical Analysis

Mathematical analysis of the proposed algorithm (PA) is performed on an environment
with reduced complexity. The outline of this chapter is as follows: First, the collision
avoidance algorithm is analyzed in the simplest case with one agent and one obstacle
without velocity compensation or the braking rule. Followed by the introduction
of velocity compensation. In Section 4.3 the braking rule is analyzed. Lastly, an
agent-agent encounter is analyzed for the complete algorithm.

Definition 4. The set Ô(t) is a closed convex set, consisting of a number of non-overlapping
individual and disk-shaped passive obstacles Ôi (t) with radius rÔ > 0 . LetvÔ (t) = | ÛpÔ |

be the obstacle speed and pÔ = (xÔ , yÔ) is defined as the obstacle position.

The extended obstacle set Ê(t) is reduced to Ô(t) containing only disk-shaped
obstacles.

Assumption 10. The maximum obstacle speed satisfies vÔ,max > vÔ (t) ≥ 0 ∀t ≥ 0

Assumption 10 bounds the obstacle forward speed by a positive upper limit
vÔ,max > 0. The limit is be extensively used throughout this chapter and can, com-
bined with Assumption 12, be seen as a stricter form of Assumption 5. Note that
obstacles where vÔ (t) = 0 are static.

31

32 CHAPTER 4. MATHEMATICAL ANALYSIS

4.1 Uncompensated obstacle measurements

Starting with the simplest case, this section analyzes the uncompensated binary func-
tion Mi (α , t) and deduce sufficient conditions for collision-free navigation without
compensating for obstacle velocity. Note that the analysis below is remain unchanged
for constant forward speed, vmax = vmin .

Assumption 11. All agent are bounded by global constraints, vmin , vmax , amax , rmax ,
Rr and dsen .

Assumption 12. The following inequalities hold:

vmin sin(rmaxδ)

rmax
> vÔ,maxδ (4.1)

vmin(1 − cos(rmaxδ))

rmax
> vÔ,maxδ (4.2)

dsen > 2(vmax +vÔ,max)δ (4.3)

Let di j (t) = min
i, j

∥pO,i (t) − pO, j (t)∥ be the distance between two obstacle i and j.

Assumption 13. di j (t) > dsen + 2vmaxδ ∀ t ≥ 0.

Assumption 14. No obstacles are, at any time interval t , inside the half-circle directed
opposite to the current heading, with the agent as center and radius 2vminδ .

See Figure 4.1.

Remark. Assumption 12-14 are not too conservative. Assumption 12 is achieved by a
large enough dsen and (4.1-4.2) is close to vmin > vÔ,max for small δ . Assumption 13
restrict the distance between two obstacles such that only one obstacle is inside Di (t) in
one time interval. This is a rather strict assumption considering that the algorithm is
designed for cluttered environments. Note, however, that the assumption is only used for
mathematical analysis and as Chapter 5 show, the algorithm works with more obstacles
inside Di (t). Again, Assumption 14 is not restrictive for small δ .

Theorem 1. The navigation strategy (3.8) is collision-free, given Assumptions 12-14.

4.1. UNCOMPENSATED OBSTACLE MEASUREMENTS 33

2vmin vi(t)

x

y

Figure 4.1: Illustrate the half-circle stated in Assumption 14

4.1.1 Proof of Theorem 1

The proof of Theorem 1 follows along the lines of [21]. Consider a new disk D0,i (t),
concentric toDi (t), with diameter dsen−2vminδ > 0, according to (4.3). An illustration
is given in Figure 4.2. The proof is divided into two parts, first for ri (kδ) = 0 then for
ri (kδ) , 0, where ri (t) is the agent’s angular velocity.

ri (kδ) = 0ri (kδ) = 0ri (kδ) = 0. From the navigation strategy (3.8a) and ri (kδ) = 0, it is given that
Ô(kδ) does not overlap with the sensor disk Di (kδ). The diameter of D0,i (t) is chosen
such that the agent is at the border of, or inside, D0,i (kδ) at t = (k + 1)δ for ri = 0 in
t ∈ [kδ , (k + 1)δ], i.e. the distance between the border of the disks is

dsen
2

−
dsen − 2vminδ

2
= vminδ (4.4)

For vi (t) = vmax , Assumption 4.3 and the size of D0,i (t) guarantee that the agent is
inside D0,i (kδ) at t = (k + 1)δ . By proving that D0,i (t) is obstacle-free at t = (k + 1)δ ,
the interval must be collision-free. An obstacle can maximum move sÔ,max = vÔ,maxδ

34 CHAPTER 4. MATHEMATICAL ANALYSIS

vi(t)

Ɗi(t)

Ɗ0,i(t)

dsen/2

dsen/2 - vmin
vmin

x

y
ri(t) = 0

ri(t) = 1

Figure 4.2: Illustrate of how D0,i (t) relate to Di (t). The figure also show possible
obstacles positions for the two different cases; ri (t) = 0 and ri (t) , 0 at t = kδ .

4.1. UNCOMPENSATED OBSTACLE MEASUREMENTS 35

in one time instance, directly from the basic linear equation distance = speed × time .
Consider an obstacle approaching the center ofD0,i (kδ) with maximum speedvÔ,max .
By (4.1),vmin > vÔ,max and thus the obstacle can not be insideD0,i (kδ) at t = (k +1)δ .
Also note that (4.3) ensures that dsen is large enough for D0,i to exist inside Di with
the stated diameter.

ri (kδ) , 0ri (kδ) , 0ri (kδ) , 0. When considering ri (kδ) , 0, Ô(kδ) intersects with Di (kδ) according
to (3.8). There are two possible responses, ri (kδ) = ±rmax , right and left turn. This
proof follows the line of a right turn ri (kδ) = rmax , note that the exact same arguments
hold for a left turn. Becausevmin > vÔ,max it is not possible forD0,i (kδ) and Ô(kδ) to
intersect in the first time interval an obstacle is detected. According to (3.8) a right turn,
ri (tδ) = rmax , can only happen for a single obstacle if the intersection of Ô(kδ) and
Di (kδ) is in the left half of Di (kδ). Hence, proving that D0,i ((k + 1)δ) and Ô((k + 1)δ)
does not intersect guarantees that no collision occurs. See Figure 4.3b for an illustration.

Consider the movement in x- and y-direction from D0,i (kδ) to D0,i ((k + 1)δ) as
shown in Figure 4.3a.

∆xi =
vmax

rmax
sin(rmaxδ) > Rturn sin(rmaxδ) (4.5a)

∆yi =
vmax

rmax
(1 − cos(rmaxδ)) > Rturn(1 − cos(rmaxδ)) (4.5b)

where ∆xi ≜ xi ((k + 1)δ) − xi (kδ) and ∆yi ≜ yi ((k + 1)δ) − yi (kδ) is the agent
displacement in x- and y-direction respectively. Rturn is the minimum turning radius
as given by:

Rturn =
vmin

rmax

By equations (4.1) and (4.2), the obstacle to the left and D0,i (t) do not intersect at
t = (k + 1)δ , for

∆xi > vÔ,maxδ and ∆yi > vÔ,maxδ

Assumption 10 and 14 ensures that no obstacle behind or to the right of the agent is

36 CHAPTER 4. MATHEMATICAL ANALYSIS

inside Di ((k + 1)δ) and hence not in D0,i ((k + 1)δ).

4.2 Velocity compensation angle

By including the obstacle velocity compensation, the analysis changes in some sce-
narios. First of all, observe that the analysis for ri (kδ) = 0 applies as it is. While the
case whereDi (kδ) and Ô(kδ) intersect changes. Consider the three different scenarios
illustrated in Figure 4.4 and observe that the only case that differs from the analysis
above is case 2. Note that the same arguments hold for an obstacle heading leftwards.
Obstacles heading straight toward or away from the agent are similar to case 1 and
3. However, case 2 differs by causing the agent to left turn in a case that would have
resulted in a right turn without velocity compensation.

Arguably, turning left in case 2 is considered a safer maneuver. By Assumption
4, obstacles have no control input and thus does not change path. The maneuver in
case 2 causes the agent to move behind or away from, rather than turning in the same
direction as the obstacle.

Proposition 1. If the agent turns left at t = kδ when an obstacle is in the left half of
Di (kδ), the obstacle must be in the upper left quadrant of Di (kδ)

Proof. The velocity compensated angle is calculated according to equation (B.3)

γvc = sin−1
(
vÔ,max sin(π −ψÔ + α)

vi (t)

)
(4.6)

where γvc is the angle describing the velocity compensation and ψÔ is the obstacle
heading. Referring to Chapter 2, α is the angle of the left sensor-ray because the
obstacle of interest is in the left half of Di (kδ). The mathematical condition for a left
turn in this case is

γvc − α > 0 −→ γvc > α

4.2. VELOCITY COMPENSATION ANGLE 37

θ

Δxi = Rturnsin(θ)

Rturnvi(t)

vi(t)

(k+1)

k

Δiy = Rturn(1 - cos(θ)) θ = rmax

(a)

Ô(t)

k

(k+1)

Ɗ0,i((k+1))dsen-2vmin

Ô(t)

dsen+ 2vmax

vi(t)x

y

(b)

Figure 4.3: Collision avoidance for ri (kδ) , 0. Figure (a) indicate the agent’s movement
during one time step while performing a right turn. In (b) the scenario is illustrated
with two obstacles, the sensor range and D0,i .

38 CHAPTER 4. MATHEMATICAL ANALYSIS

Case 1 Case 2 Case 3

Figure 4.4: Three different cases where the cones indicate the velocity compensated
obstacles for binary function M̂i (α̂ , t).

where the γvc is largest in regard to the obstacle whenψÔ =
π
2 . See Figure 4.5. Thus

α < γvc (4.7a)

α < sin−1
(
vÔ,max sin(

π
2 + α)

vi (t)

)
(4.7b)

sin(α) <
vÔ,max

vi (t)
sin(

π

2
+ α) (4.7c)

sin(α) < sin(
π

2
+ α) (4.7d)

sin(α) < cos(α) (4.7e)

α <
π

4
, f or α ∈ [0,

π

2
] (4.7f)

where
vÔ,max
vi (t)

< 1. Proving that the obstacle must be in the upper left quadrant of
D(kδ). □

Proposition 2. An agent turning with maximum turning rate, ±rmax at t = kδ , is not
in the upper half of D(kδ) at t ∈ [kδ , (k + 1)δ]

Proof. Figure 4.3a show that the agent translation along the x-axis during one time

4.2. VELOCITY COMPENSATION ANGLE 39

Agent

Ô(k)

dsen/2

x

y

α

α = π/4

ɣ

t = k

Figure 4.5: Proposition 1 support figure.

interval is vmax
rmax

sin(rmaxδ). Proposition 2 is proved by showing that vmax
rmax

sin(rmaxδ) <
dsen
2 .

vmax

rmax
sin(rmaxδ) <

dsen
2

(4.8a)

Because vmax > vmin
vmin

rmax
sin(rmaxδ) <

dsen
2

(4.8b)

Applying Assumption 12, equation (4.1) give

vÔ,maxδ <
dsen
2

(4.8c)

Which is true by Assumption 12, equation (4.3). □

Together proposition 1 and 2 prove that the navigational strategy (3.8) is collision-
free with velocity compensation.

40 CHAPTER 4. MATHEMATICAL ANALYSIS

4.3 The braking rule

Let’s first take a closer look at a pass-maneuver illustrated by A in Figure 3.1. The agent
ignores the velocity compensation in this case and mark the area from the obstacle to
the current headingψi (t) on Di (t) as blocked, see Figure 4.6a. This is in fact the same
case as the one analyzed in Section 4.1 and is collision-free by Theorem 1. The second
braking rule scenario is the yield-maneuver, illustrated by B in Figure 3.1. This is the
only case in the collision avoidance algorithm where the agent changes forward speed
by slowing down. Besides slowing down, the agent-obstacle relative position is similar
to the problem analyzed in Section 4.2. Proving that the braking rule is collision-free.

Remark. According to the navigation strategy (3.8), the lower bounded forward speed
is vmin , rendering the proof in Section 4.1 and 4.2 valid.

4.4 Agent-agent encounter

In this section, an agent-agent encounter is analyzed where both agents are guided
by the navigation strategy given in (3.8). Keeping in mind that the strategy does not
distinguish between encounters with passive obstacles and other agents, the most
interesting case to analyze in this section is one where both agents are bounded by
the same constraints, speed, heading rate, size etc, creating a scenario furthest from a
passive obstacle encounter. As with passive obstacles, lets first look at a case without
velocity compensation.

Proposition 3. Without velocity compensation, two agents detecting the other always
turns in opposite directions, away from each other.

Proof. If agent A detects agent B in the left half of DA(t), then agent B has to detect
agent A in the right half of DB (t), this is true considering the mirrored effect from one
agent to the other. Hence, by equation (3.8a) the agents turn away from each other.
See Figure 4.7. □

4.4. AGENT-AGENT ENCOUNTER 41

A

A

Agent

vi(t)

-Ω Ω

0

-π/4 π/4

x

y

(a) A possible situation where the agent fulfill a
pass-maneuver according to the braking rule.

i(t) - π/2
i(t) + π/2

1

i(t)

Mi(α,t)

α

i(t) - π/2
i(t) + π/2

1

i(t)

Mi(α,t)

α

i(t) - π/2
i(t) + π/2

1

i(t)

Mi(α,t)

α

Without velocity compensation

With velocity compensation

Rule of the Road - case A

(b) The sensor binary function M̂i (α̂ , t) for uncompensated, compensated
and with the braking rule, for the obstacle in 4.6a.

Figure 4.6: The braking rule pass-case.

42 CHAPTER 4. MATHEMATICAL ANALYSIS

B

A

Figure 4.7: Two agents on collision course.

Theorem 2. Two agents, A and B, where

B ∈ DA(kδ) ∩ B < D0,A(kδ)

A ∈ DB (kδ) ∩ A < D0,B (kδ)

does not collide at t = (k + 1)δ .

Proof. The proof is given directly from Proposition 3. Because A and B turns with rmax

away from each other, the shortest distance between A and B during t ∈ [kδ , (k + 1)δ]
is at t = kδ . Thus, making it impossible for A and B to collide. □

Lets now include velocity compensation and again look at the three different cases
in Figure 4.4, where only case 2 change the agents’ behavior of the above analysis. This
problem can be broken down into three new cases, illustrated in Figure 4.8. Case 1 is
exactly the same as the one analyzed in Section 4.2. Case 3 is also similar, the difference
being that B also turns. The analysis from Section 4.2 still apply to this case, as vB (t)
has to be significantly smaller than vA(t) for the scenario to be possible. Which leave
case 2, in fact the forward speed of A and B has to be in the same magnitude for case 2
to happen. The only way to guarantee safety in case 2 is to include the braking rule.

4.5. TARGET REACHING 43

By doing so one can observe that the case changes such that A slows down and B turns
right. Resulting in a scenario similar to the analysis done in Section 4.3. Hence, by the
analysis presented in Sections 4.1-4.3 an agent-agent encounter is collision-free when
both agents are controlled by the navigation strategy (3.8).

A

B

B

A
B

BA

A
B

B

A

Case 1 Case 2 Case 3

Figure 4.8: The dotted lines indicate the agents’ sensor disk, where A is red and B is
blue. The faded disk indicate where the velocity compensated agents are seen. The
coloured arc indicates turning direction with velocity compensation. Case 1, A detects
B and velocity compensation cause A to turn right. Case 2, both agents detect the
other and velocity compensation cause the agents to turn towards each other. In case
3, both agents detect the other, but because B has lower forward speed, only agent B
change turn direction as a result of velocity compensation.

4.5 Target reaching

Assumption 15. The distance dτ ,12 between two targets τ1 and τ2 is restricted by

dτ ,12 > 4vmaxδ +max
i

Rr,i , for i ∈ [1, 2]

Assumption 15 ensures that agent do not detect other agents close to their targets.
Without the assumption agents can possibly block another agents’ target by being to
close, resulting in a deadlock.

Theorem3. The navigation strategy given in (3.8) is target reaching, givenAssumptions

44 CHAPTER 4. MATHEMATICAL ANALYSIS

10-15.

Proof. From the navigation strategy (3.8), it is clear that agent i steers towards the target
as fast as possible when there are no obstacles inside the sensor disk Di (t). Because
the strategy switches between ri (t) = ±ri,max , it is possible for agent i to converge
towards a circle with radius Rturn around the target center. Assumption 6 solves the
problem ensuring that the target’s radius is larger, Rτ ,i > Rturn . In Sections 4.1 -
4.4 it has been proven that the strategy is collision-free. Thus by considering that
vmin > vÔ,max it is evident that agent i escapes every obstacle in finite time t < ∞.
Assumption 13 restricts the distance between obstacles such that there is only one
obstacle inside theDi (t) at all times. Furthermore, Assumption 15 restricts the distance
between two targets such that two agents close to their target are not disturbed by
each other. Hence, agent i escapes every obstacle and move toward the target when
Di (t) is obstacle-free. Thus, the navigation strategy (3.8) is target reaching. □

Remark. When target reachability is analyzed, it is assumed that no obstacles actively
blocks the target. This is obviously a necessary assumption, take for example the case
where a static obstacle fully covers a target, then there is no finite path ensuring that the
agent reaches its target.

The navigation strategy given in (3.8) is proven to be both target reaching and
collision-free, concluding the mathematical analysis chapter.

Chapter 5

Simulations

Two different approaches, divided into separate sections, are used to evaluate the
proposed navigation strategy (3.8). In the first section, specific scenarios are illustrated
and addressed to gain insight into the proposed algorithm’s behavior as well as ex-
posing strengths and weaknesses. The second section provides results from multiple
Monte Carlo experiments, gaining statistical information regarding the performance
of the algorithms. Both sections test the algorithm in single-agent and multi-agent
environments. Beside the proposed algorithm (PA), both the Integrated Environment
Algorithm from [21] (IEA) and the Reciprocal Velocity Obstacles (RVO) from [24] are
implemented and compared to PA. By dividing the chapter in two, the goal is to achieve
better insights into the workings of the algorithms as well as providing statistical
performance results.

All simulations are, unless stated otherwise, executed with sampling interval
δ = 0.05s . The agents are modeled by (2.1), with radius Rr = 1m, maximum turning
rate rmax = 1 rad/s and maximum linear acceleration amax = 0.05m/s2. The sensor
range is dsen = 7m. Finally, the safe distance is equal to the agent radius, dsaf e = 1m,
and is illustrated by the stippled lines around the obstacles in the illustrated scenarios.
Note that Rr = dsaf e results in collisions on physical contact, without further safety

45

46 CHAPTER 5. SIMULATIONS

margin. Appendix C provide more information regarding the choice of parameter
values. For more information about the work behind creating the simulator, the reader
is referred to Appendix E.

5.1 Simulations

Each path plot shows, as in Figure 5.1a, four separate time-instances of interest. Black
arrows on the obstacles indicate linear velocity. The vehicle path is illustrated by a blue
stippled line and the target is marked by a cross. Beside the path plot, there is a plot
similar to Figure 5.1b, indicating the distance to each obstacle during the simulation.
The navigation strategy is considered collision-free as long as the agent maintains the
safe margin to all obstacles, marked in the plots by a blue stippled line.

5.1.1 Single-agent environment

In this subsection, the agent is restricted to constant speed vi (t) = V = 3m/s and
operate in environments containing only passive obstacles. Constant speed is used
to compare PA to IEA in similar environments. Besides, the braking rule is foremost
a tool to solve multi-agent challenges and testing PA with constant speed increases
algorithm robustness. In Figure 5.1 the agent navigates the unknown environment
consisting of both static and moving obstacles with various speeds. Observe that the
agent safely and efficiently navigates the environment and reaches the target without
violating the safety margin.

An interesting case is illustrated in Figure 5.2, where obstacles approach the agent
at 3m/s , which is as fast as the agent moves in opposite direction. Nevertheless, the
agent safely navigates the environment and reaches the target. From Figure 5.2b it is
clear that the agent is now closer to the obstacles compared to Figure 5.1b. In Figure 5.3,
a narrow path is taken in a static environment consisting of rectangular obstacles.
Considering the first three scenarios, PA successfully navigates both high-speed clut-

5.1. SIMULATIONS 47

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 5 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 10 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 15 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 20 s

(a)

0 5 10 15 20

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 [

m
]

Safety Distance

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle 4

Obstacle 5

Obstacle 6

(b)

Figure 5.1: In (a), four time instances with the agent path is shown. Figure (b) provide
the distance from the agent to every obstacle during the simulation. The agent navigates
a cluttered environment with both moving and static obstacles.

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 5 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 10 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 15 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 20 s

(a)

0 5 10 15 20 25

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 [

m
]

Safety Distance

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle 4

Obstacle 5

Obstacle 6

Obstacle 7

Obstacle 8

Obstacle 9

(b)

Figure 5.2: The agent safely navigates the obstacles approaching at speed 3m/s , which
is same speed as the agent in the opposite direction.

48 CHAPTER 5. SIMULATIONS

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 3 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 6 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 9 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 14 s

(a)

0 2 4 6 8 10 12 14 16 18

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 [

m
]

Safety Distance

Obstacle 1

Obstacle 2

Obstacle 3

(b)

Figure 5.3: Narrow passage in static maze-like environment.

tered environments and narrow maze-like environments. The scenarios also prove
that the algorithm operates safely under conditions that are less strict than assumed
in the mathematical analysis.

In Chapter 2, it was mentioned that the algorithm does not assume a specific obsta-
cle shape. This is proven in Figure 5.4 where a concave obstacle approaches the agent
at 0.5m/s . The concave obstacle is created by three overlapping obstacles, where the
algorithm reacts to overlapping obstacles as one. Note that the agent is still assumed to
measure the velocity of each obstacle separately, which may be difficult in overlapping
situations. However, one can argue that overlapping obstacles with different velocities
is not a relevant real-world scenario. Figure 5.4 is another example where the algorithm
navigates without adhering to the assumptions made in the mathematical analysis.

The scenario presented in Figure 5.5, explore the possible weaknesses caused by
only considering obstacles in a disk in front of the agent. To do so, two individual
obstacles approach the agent at sharp angles. Both obstacles move as fast as the agent.
The left obstacle approach in a straight line normal to the agent’s velocity and the right

5.1. SIMULATIONS 49

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 3 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 5 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 8 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 11 s

(a)

0 2 4 6 8 10 12

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 [

m
]

Safety Distance

Obstacle 1

Obstacle 2

Obstacle 3

(b)

Figure 5.4: Concave approaching obstacle, generated by three overlapping circular
obstacles.

obstacle approach the agent from behind in a circular maneuver. The agent does not
react to an obstacle outside the sensor disk, thus an obstacle approaching from behind
will not immediately be reacted to. From Figure 5.5b one can see that the agent does
not violate the safety margin. This makes sense considering that the agent is modeled
as point a mass and that the obstacles are extended by the safety margin, relying on
the obstacles’ velocity not exceeding the agent’s velocity. Looking only at the safety
distance, no weakness is found with regard to the sensor disk representation and
sharply approaching obstacles. Still, one can consider the sensor disk representation
a weakness in that it can never be considered safe for obstacles moving faster than
the agent, as obstacles approaching from behind are not detected. The scenario also
shows that the algorithm handles obstacles moving in curved paths.

50 CHAPTER 5. SIMULATIONS

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 3 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 6 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 9 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 14 s

(a)

0 2 4 6 8 10 12 14 16

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 [

m
]

Safety Distance

Obstacle 1

Obstacle 2

(b)

Figure 5.5: Testing the sensor disk representation by obstacles approaching with high
speed from each side. Figure (b) indicate that the scenario is collision-free.

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 3 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 9 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 14 s

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 20 s

(a) PA

-40 -20 0 20 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 3 s

-40 -20 0 20 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 9 s

-40 -20 0 20 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 14 s

-40 -20 0 20 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time = 20 s

(b) IEA

Figure 5.6: Both PA and IEA safely navigates the environment in approximately the
same time. PA passes behind the moving obstacles while IEA moves in front of them.

5.1. SIMULATIONS 51

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 3 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 6 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 9 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 14 s

(a) PA

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 3 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 6 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 9 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 14 s

(b) IEA

Figure 5.7: The lower obstacles move from left to right. PA(a) moves around the gap
while IEA(b) take the narrow passage.

5.1.2 Single-agent environment and IEA

Next, the performance of the proposed algorithm(PA) is compared with the integrated
environment algorithm provided in [21], henceforth referred to as IEA. First of all, it is
worth noting that PA and IEA is the exact same algorithm for static obstacles when
the braking rule is excluded. Lets first look at a cluttered environment with moving
obstacles illustrated in Figure 5.6. Both PA and IEA safely navigate the environment
and reach the target at approximately the same time. One can argue that PA chooses
a safer path as it moves behind the moving obstacles rather than in front, making
it generally easier to bypass the obstacles. Using the same argument one can say
that PA in some scenarios chooses a more conservative path as shown in Figure 5.7,
where IEA navigates through a narrow gap while PA moves around. The desired path
in this scenario is application dependent. In Figure 5.8, the result is reversed when
the obstacles move in the opposite directions. Considering both scenarios one can
argue that the behavior of PA the more desirable, as the average path is shorter by
maneuvering behind moving obstacles.

The last single-agent scenario is illustrated in Figure 5.9 and show another example

52 CHAPTER 5. SIMULATIONS

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 3 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 7 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 11 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 16 s

(a) PA

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 3 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 7 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 11 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 16 s

(b) IEA

Figure 5.8: The middle obstacles move from right to left. The result is that PA takes
the narrow passage and IEA moves around.

where PA is both safer and more efficient than IEA. Here, the obstacles move in rows
from either side with small gaps between the rows. From Figure 5.9a and 5.9b it is
clear that the advantage is gained by maneuvering behind the moving obstacles. It is
also evident from Figure 5.9c and 5.9d that PA generally maintain a larger distance to
the obstacles.

5.1.3 Multi-agent environment

The simulations presented in this section seek to investigate and understand the be-
havior of the navigation strategy (3.8) in a multi-agent environment. All agents are
bounded by the global constraints, vmax = 3m/s , vmin = 1.2m/s , amax = 0.05m/s2,
rmax = 1 rad/s and Rr = 1m. The first multi-agent simulation is presented in Fig-
ure 5.10, where 40 agents start on a circle with antipodal targets. No collisions occur
and the figure illustrate the cluttered nature of the simulation. The simulation is
completed within reasonable time, proving the effectiveness of PA. One might expect
circular behavior similar to cars in a roundabout in this scenario, it is in fact the
non-perfect symmetry and the braking rule that causes this behavior. The symmetry
of the scenario is non-perfect in that the agents are discreetly placed on the initial

5.1. SIMULATIONS 53

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 5 s

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 15 s

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 22 s

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 28 s

(a) PA

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 5 s

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 15 s

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 22 s

-40 -20 0 20 40

y [m]

0

20

40

60

80

x
 [

m
]

time = 28 s

(b) IEA

0 5 10 15 20 25

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 [

m
]

Safety Distance

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle 4

Obstacle 5

Obstacle 6

Obstacle 7

Obstacle 8

Obstacle 9

(c) PA

0 5 10 15 20 25 30

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 [

m
]

Safety Distance

Obstacle 1

Obstacle 2

Obstacle 3

Obstacle 4

Obstacle 5

Obstacle 6

Obstacle 7

Obstacle 8

Obstacle 9

(d) IEA

Figure 5.9: Comparing PA against IEA in a challenging cluttered scenario. Where PA
prove to be both faster and safer.

54 CHAPTER 5. SIMULATIONS

Figure 5.10: Circle scenario with 40 agents having antipodal targets. All agents navigate
the cluttered environment without collisions.

5.1. SIMULATIONS 55

-50 0 50

y [m]

-50

0

50

x
 [

m
]

time = 5 s

-50 0 50

y [m]

-50

0

50

x
 [

m
]

time = 12 s

-50 0 50

y [m]

-50

0

50

x
 [

m
]

time = 20 s

-50 0 50

y [m]

-50

0

50

x
 [

m
]

time = 37 s

(a) 20 agents on a 40m radius circle

-30 -20 -10 0 10 20 30

y [m]

-30

-20

-10

0

10

20

30

x
 [

m
]

time = 1 s

-30 -20 -10 0 10 20 30

y [m]

-30

-20

-10

0

10

20

30

x
 [

m
]

time = 5 s

-30 -20 -10 0 10 20 30

y [m]

-30

-20

-10

0

10

20

30

x
 [

m
]

time = 10 s

-30 -20 -10 0 10 20 30

y [m]

-30

-20

-10

0

10

20

30

x
 [

m
]

time = 37 s

(b) 10 agents on a 10m radius circle

Figure 5.11: Circle scenario without the braking rule. The case in (a) is successful with
a roundabout-like behavior. While no collision occur in (b), deadlock hinder the agents
to reach their targets.

circle which causes the distance between agents to be slightly different. While the
behavior looks chaotic, such behavior is the reason why the presented algorithm does
not suffer from deadlocks. To emphasize the effect, Figure 5.11 shows a similar scenario
where the braking rule is excluded and the scenario ends in deadlock dependent on
the number of agents and the size of the starting circle.

Figure 5.12 present an interesting case emphasizing the importance of the braking
rule. Observe that the agents in Figure 5.12a follow the desired yield-pass maneuver,
while Figure 5.12b, without the braking rule, ends in a collision. The scenario is equal
to the one analyzed in Figure 4.8, where velocity compensation causes two agents
to turn toward each other. For completeness, the scenario presented in Figure 5.13
show that the algorithm successfully navigates an environment with multiple agents
and both static and dynamic obstacles. The last and most dense scenario is presented
in Figure 5.14, where over 200 agents move in rows approaching the center of the
simulation. All agents navigates without collision and reaches their target which are
located opposite to the initial position.

56 CHAPTER 5. SIMULATIONS

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 3 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 6 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 9 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 14 s

(a) With the braking rule

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 3 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 5 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 5.5 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x
 [

m
]

time = 6 s

(b) Without the braking rule

Figure 5.12: Simulation illustrate the importance of the applied braking rule. In (a) the
desired yield-pass behavior is shown, while (b) ends in a collision.

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 5 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 15 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 35 s

-30 -20 -10 0 10 20 30

y [m]

0

10

20

30

40

50

60

x
 [

m
]

time = 50 s

Figure 5.13: Simulation with three agents (red) in an environment containing both
static and moving obstacles (blue). The moving obstacles has same forward speed as
the agents.

5.1. SIMULATIONS 57

Figure 5.14: This scenario contains over 200 agents with targets on the opposite side
of the initial position. The scenario is effectively simulated without collisions.

58 CHAPTER 5. SIMULATIONS

5.1.4 Multi-agent environment and RVO

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 1 s

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 2 s

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 4 s

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 10 s

(a) PA

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 1 s

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 2 s

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 4 s

-15 -10 -5 0 5 10 15

y [m]

0

5

10

15

20

25

30

x
 [

m
]

time = 6 s

(b) RVO

Figure 5.15: A simple scenario illustrating the different behavior of PA and RVO in a
passing maneuver.

Figure 5.15- 5.17 show three different scenarios where the agents are guided by
the RVO algorithm. One of the significant differences in behavior between PA and
RVO is the choice of preferred velocity. PA chooses the closest valid velocity to the
current velocity, while RVO chooses the closest valid velocity to the maximum speed
toward the target. The result can be observed in Figure 5.15, where PA aims at avoiding
the approaching agents while RVO navigates more efficiently. Another example of
the same effect can be seen in Figure 5.16, where agents pass each other closer when
guided by RVO compared to PA in Figure 5.10. The close passage results in a more
efficient path. Note that RVO requires a sensor range of 20m in order to successfully
navigate the scenario. Finally, RVO is tested in a scenario similar to that in Figure 5.12.
The result is collision-free, but not target reaching, see Figure 5.17. In the scenario,
the agents block each other and thus does not reach their targets and shows that RVO
might be more susceptible to deadlocks than PA.

5.1. SIMULATIONS 59

-20 -10 0 10 20

y [m]

-20

-10

0

10

20

x
 [

m
]

time = 1 s

-20 -10 0 10 20

y [m]

-20

-10

0

10

20

x
 [

m
]

time = 5 s

-20 -10 0 10 20

y [m]

-20

-10

0

10

20

x
 [

m
]

time = 7 s

-20 -10 0 10 20

y [m]

-20

-10

0

10

20

x
 [

m
]

time = 11 s

Figure 5.16: Circle scenario performed with 10 agents and a sensor range of 20m to
avoid collision. The scenario illustrate the efficiency of RVO

-20 -10 0 10 20

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 10 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 15 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 24 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 32 s

Figure 5.17: Scenario that is comparable to the scenario in Figure 5.12 and depict a
possible challenge with RVO algorithm.

60 CHAPTER 5. SIMULATIONS

5.2 Monte Carlo experiments

By investigating specific scenarios, the previous section addressed behavior under-
standing of the three algorithms at hand. In this section, statistically performance
results of the PA, the IEA and RVO are presented. Using Monte Carlo1 experiments,
the three algorithms have been tested in thousands of simulations for randomly given
initial conditions2. Four output variables are produced in each experiment to measure
the performance of the algorithms:

• Percentage of successful runs

• Percentage of runs where collision occurred

• Percentage of runs that was collision-free but not target reaching, e.i runs that
timed out

• Average time to target, calculated using the successful runs

A successful run is a collision-free simulation where all agents reach their targets.
For further insight into the choice of parameter values and their impact on system
performance, see Appendix C.

5.2.1 Single-agent environment

For single-agent environments, three different experiments of 1000 simulations are
tested for both PA and IEA and proposed in this thesis. The result is summarized in
Table 5.1-5.3. To ensure a collision-free initialization, a setup like the one illustrated in
Figure 5.18a is used. The gray area defined by x ∈ [15, 65] and y ∈ [−25, 25], indicate
the area where obstacles are randomly initialized. In all cases, the initial position of
the agent is ppp(0) = (0, 0) and the stationary target is located at pppτ (t) = (70, 0) ∀t . The
maximum time duration of a simulation is 65 seconds and the agent forward speed is
constant v(t) = V = 3m/s , with maximum turning rate |rmax | = 1 rad/s . The initial

1https://en.wikipedia.org/wiki/Monte_Carlo_method
2Remark: The randomly generated initial conditions are seeded and saved, such that all experiments can

easily be reproduced.

https://en.wikipedia.org/wiki/Monte_Carlo_method

5.2. MONTE CARLO EXPERIMENTS 61

Agent initial position

Initial position for obstacles

Target

(a)

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time: 5.95

(b)

Figure 5.18: In (a) the initial position boundary is illustrated. Figure (b) show a typical
10 obstacles initial scenario taken from the simulation in Table 5.1.

heading of the obstacles is in the range (π2 ,
3π
2) to force interaction with the agent and

prevent obstacles from actively blocking the target. In the experiment with 10 obstacles
from Table 5.1, 93.1% of the simulations engaged in collision avoidance, while 98.1% did
in the experiments with 15 obstacles from Table 5.2, proving that the environment is in
fact cluttered. Figure 5.18b shows a typical scenario with the setup used in Table 5.1. It
is important to note that both algorithms are tested on the exact same environment with
the same initial conditions for all of 1000 simulations, hence the results are comparable.

Table 5.1: Experiment consist of 10 circular obstacles with radius 2m and speed 2m/s .

Algorithm Success Collision Timed out Average time

PA 98.0% 2.0% 0% 23.32s
IEA 93.4% 6.6% 0% 24.53s

For the scenarios tested in Table 5.1, PA outperforms IEA in both safety and
efficiency. By testing 1000 simulations created with random initial conditions, the
results are more unbiased and in coherence with the results from in Section 5.1. The

62 CHAPTER 5. SIMULATIONS

Table 5.2: Experiment consist of 15 circular obstacles with radius 2m and speed 2m/s .

Algorithm Success Collision Timed out Average time

PA 95.9% 4.1% 0% 23.66s
IEA 86.4% 13.6% 0% 26.12s

Table 5.3: Experiment with 8 obstacles, where the obstacle speed, 4m/s , is higher than
agent speed, 3m/s .

Algorithm Success Collision Timed out Average time

PA 80.9% 19.1% 0% 22.59s
IEA 66.3% 33.7% 0% 24.03s

experiment with results presented in Table 5.2 are from a more densely cluttered
environment containing 15 obstacles in the same space as in Table 5.1. Here, PA
shows a clear advantage especially with regard to the number of collisions. In the
last single-agent experiment the obstacles have higher speed than the agent i.e. 4m/s .
As expected, this is a scenario where PA stand out positively, which make sense
considering examples such as Figure 5.9. This is also in coherence with earlier results,
and again show that the algorithm works for conditions outside the assumptions made
in Chapter 4. Figure 5.19 presents two cases from Table 5.1 where PA collides. The
collision in these cases occurs because the agent becomes surrounded by obstacles,
which is unavoidable in a cluttered scenario using a local method with limited sensor
range and with velocity constraints.

5.2.2 Multi-agent environment

The experiments in this section are conducted inmulti-agent environments, where both
the algorithm presented in this thesis(PA) and the Reciprocal Velocity Obstacles(RVO)
described in Section 1.2.1 are tested. To prevent initial collision and target blocking, all
initial positions and targets are separated by at least a distance dinit . Contrary to the

5.2. MONTE CARLO EXPERIMENTS 63

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time: 4.65

(a)

-40 -30 -20 -10 0 10 20 30 40

y [m]

0

10

20

30

40

50

60

70

80

x
 [

m
]

time: 11.95

(b)

Figure 5.19: Two collision cases for PA taken from the experiments in Table 5.1. The
red circle is the agent with path and a red target, the black dotted circle is the sensor
disk and blue indicate obstacles.

single-agents experiments, the initialization in this section is randomized for all agents
in the complete given area. Results from the experiments are given in Table 5.4-5.6.
The first experiment presented in Table 5.4 show the effect of the braking rule in a
cluttered environment with 12 agents of radius Rr = 1m and maximum forward speed
vmax = 3m/s . By comparing the results with Table 5.1, it is evident that the algorithm
works well in a multi-agent system with more difficult initial conditions. The low
percentage in Timed out and Average time indicate that the algorithm overcomes
multi-agent challenges such as oscillation and deadlock. The braking rule is clearly
a positive contribution to the algorithms safety. Next, is an experiment with both
agents and passive obstacles, see Table 5.5. This is an interesting case to compare the
performance of PA and RVO due to their difference in handling passive obstacles. With
7 agents and 4 obstacles, the experiment is similar to that in Table 5.4 with regard to
obstacle density. As the table show, PA is safer with fewer collisions, while RVO is
more efficient with lower average completion time. Hence, the results are in coherence
with the discussion from Section 5.1.4

Finally, Table 5.6 present results where RVO and PA are tested using the same
conditions in a clutters multi-agent environment. There are three experiments, where

64 CHAPTER 5. SIMULATIONS

Table 5.4: Experiment with 12 agents in an 50x50m area, rmax = 1 rad/m and vmax =

3m/s . The scenario is tested with and without the braking rule.

Algorithm Success Collision Timed out Average time

With the braking rule 98.0% 1.1% 0.9% 20.70s
Without the braking rule 93.1% 6.5% 0.4% 20.52s

Table 5.5: Experiment with 7 agents and 4 obstacles in an 50x50m area, rmax = 1 rad/s ,
vmax = 3m/s and vo,max = 2m/s .

Algorithm Success Collision Timed out Average time

PA 97.0% 2.6% 0.4% 20.15s
RVO 93.4% 6.6% 0.0% 15.28s

Table 5.6: Three experiment with 10 agents in an 50x50m area for 1000 simulations
each and with dinit = 4m.

Algorithm Success Collision Timed out Average time

vmax = 2m/S , rmax = 1 rad/s
PA 99.8% 0.0% 0.2% 27.49s
RVO 96.6% 3.4% 0.0% 23.32s

vmax = 3m/S , rmax = 1 rad/s
PA 99.8% 0.2% 0.0% 18.97s
RVO 90.2% 9.8% 0.0% 16.09s

vmax = 3m/S , rmax = 3 rad/s
PA 100.0% 0.0% 0.0% 17.74s
RVO 99.4% 0.4% 0.0% 15.33s

5.2. MONTE CARLO EXPERIMENTS 65

the only differences are the variables rmax and vmax . RVO does not originally consider
nonholonomic constraints, hence the relation between forward speed and turning
rate is a critical factor for its’ success. As the table show, PA is safer in all cases, and
significantly so for the case with large vmax

rmax
ratio. RVO is more efficient in all cases

with lower average completion time. Considering that RVO uses bearing to the target
as an incorporated variable in its’ collision avoidance algorithm, it can be expected that
RVO is more efficient. PA, on the other hand, switches between collision avoidance and
target reaching, where bearing to the target is neglected during collision avoidance.
Nevertheless, the results show that the efficiency comes at the cost of safety. Figure 5.20
present a typical scenario taken from the first simulation in Table 5.6. The general
behavior difference is that RVO is less conservative, allowing to be closer to other
agents, while PA maintains a larger distance to other agents, resulting in longer paths.

66 CHAPTER 5. SIMULATIONS

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 3 s

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 6 s

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 8 s

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 11 s

(a) PA

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 3 s

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 6 s

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 8 s

0 10 20 30 40 50

y [m]

0

10

20

30

40

50

x
 [

m
]

time = 11 s

(b) RVO

Figure 5.20: Typical simulation for both PA and RVO taken from the first experiments
in Table 5.1.

Chapter 6

Conclusions and Future Work

This chapter present results, discussion and concluding remarks. Further work is
stated at the end of the chapter, proposing possible algorithm extensions and tasks
outside the scope of this thesis.

6.1 Result discussion

In the single-agent scenarios presented in Section 5.1.1, the algorithm safely navigates
the environment without adhering to the assumptions made in Chapter 4. Furthermore,
the results from Section 5.1.2 and the Monte Carlo experiments from Section 5.2.1
show that the proposed algorithm (PA) outperforms the Integrated Environment Algo-
rithm from [21] (IEA) in both safety and efficiency. As mentioned in Section 5.1.2, the
algorithms are the same for stationary obstacles when the braking rule is not applied.
For moving obstacles in a dynamic environment, the general result is that the PA
choses both safer and shorter paths by passing behind moving obstacles. There are
also examples where PA is more conservative than IEA, however, still considered safer.

In the simulations there are two main collisions causes; hard initial conditions and
"impossible situations". Hard initial conditions arise when the agent and an obstacle

67

68 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

start on collision course close to each other. "Impossible situations" are scenarios where
the agent become surrounded by obstacles and cannot choose a collision-free velocity.
Such situations are unavoidable in a priori unknown and cluttered environments with
limited sensor range and bounded velocity.

Contrary to using all available measurements around the agent to avoid obstacles,
the sensor disk representation can seem counter-intuitive. It can be understood as a
measurement pre-processing method. Using the sensor disk representation, the agents
avoids fast obstacles aiming for the agents in an effective manner, see Figure 5.5. There
is also the advantage of only looking for obstacles in an area where the agents are
required to take action in order to avoid a collision and otherwise ignore the obstacles.
However, there is a disadvantage in the fact that the algorithm cannot be considered
safe for obstacles moving faster than the agents.

Looking at multi-agent environments, the PA successfully navigates scenarios
with hundreds of agents without collision. The scenarios are effectively simulated
by exploiting the local nature of the algorithm, making it suitable for parallel compu-
tation. Typical scenarios that are prone to deadlocks and oscillations are addressed.
PA successfully navigates the scenarios where the braking rule proves to be of vital
importance. In Section 5.2.2 the performance of PA is compared to Reciprocal Veloc-
ity Obstacles (RVO) in multiple cluttered environments. The results show that PA
is generally safer, while RVO is more effective. The difference in efficiency can be
explained by the fact that RVO uses bearing to target when choosing a new velocity,
resulting in closer passage to other agents. Note that the original RVO do not consider
nonholonomic constraints. It is evident from the results in Table 5.6 that the success of
RVO is heavily dependent on the minimum turning radius. The simulations also prove
that PA performs better for short sensor ranges, making it suitable as a "last measure"
avoidance algorithm in a navigation control system. RVO on the other hand, works
better (compared to PA) with longer sensor range, making it more versatile. Still, one
can argue that the most important feature of a reactive collision avoidance algorithm
is collision-free guidance, where PA outperforms RVO.

6.2. CONCLUSION 69

As a side-note, it is worth mentioning why bearing to the target, ψd (t), is not
included in the collision avoidance of the proposed algorithm. RVO proves that
including the angle can result in a more efficient strategy. The two reasons whyψd (t)
is not included in the collision avoidance is: One, choosing the closest obstacle-free
area to the current heading, as in PA, is arguably the safer among the two possibilities.
Least effort to safety is considered safer than minimizing the distance to the target.
Two, includingψd (t) and making a less conservative move at the current time instant
does not guarantee a more efficient path. Using the fact that the environment is
unknown, one cannot a priori know which of the two choices that ultimately lead to
the most efficient path.

6.2 Conclusion

The reactive navigation algorithm presented in this article assume a nonholonomic
agent model without a priori knowledge about the environment. No communication
is required and the algorithm is suitable for environments with multiple agents as
well as passive obstacles. Agents and obstacles can be of any shapes. The information
available to the agents are based on an integrated representation of the environment,
compensated with obstacle velocity.

The main features of the proposed algorithm are:

• Safe navigation in complex environments

• Multi-agent navigation without oscillations and deadlocks

• Low computational complexity

• Require only local measurements

• Show promising result compared with other algorithms

70 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Thus the algorithm is suitable for a wide range of vehicles, including vehicles
with heavy constraints on linear acceleration and fast vehicles that operate in rapidly
changing environments. The algorithm has potential a weakness concerning fast
approaching obstacles from behind and also seem to be less efficient regarding target
reachability. Mathematical analysis is an important addition to support the safety qual-
ification of the algorithm and is given in Chapter 4. Nevertheless, the algorithm work
under conditions that are less strict compared to those provided in the mathematical
analysis, as shown in Chapter 5. Appendix C provide insight into the influence system
parameters have on the overall performance and contribute to algorithm robustness.
The Monte Carlo experiments given in Section 5.2 provide random scenarios for PA,
IEA and RVO, where PA seem to be the safest in both single- and multi-agent scenarios.
Furthermore, real-time performance can be achieved in such scenarios, as an indepen-
dent computation is performed for each agent. Dividing the simulation chapter into
two main sections provide both understanding of the algorithm behavior, as well as
statistical performance results.

6.3 Further work

The original Reciprocal Velocity Obstacle algorithm does not consider nonholonomic
constraints, there are however extended versions of RVO that do, such as [25] and [29].
Hence, it would have been interesting to compare the algorithm to a more advanced
version of RVO that adhere to the same constraints. Aside from computer simulations,
it will eventually be important to test the algorithm on an actual vehicle in an experi-
menting environment. Such an experiment would test whether the assumptions made
in the simulations can be applied to a real-world scenario.

Throughout this thesis, it is assumed that the agents measure the obstacles’ position
and velocity without error. The real world is not that simple and it is thus a potential
weakness that is not yet explored. It would be interesting to research the effect noise
and occasional loss of measurements have on the safety and performance of the
navigation strategy. As mentioned in Chapter 2, it is assumed that the safety extended

6.3. FURTHER WORK 71

environment is sensed directly. In order to obtain Ê(t) in a physical application, the
actual sensed objects, E(t), must be extended by calculating a safety compensation
angle based on dsaf e . Furthermore, the agent model used in this thesis is suitable for
describing a large variety of vehicles, it is also fairly simple. In further work, one should
consider developing a more complex model that incorporate higher order physical and
dynamical terms.

72 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Appendix A

Seeking a Path Through the
Crowd by Savkin and Wang

In this appendix, the algorithm from [21] is presented to clearly separate the acquired
background from the contributions provided by this thesis. The vehicle and obstacle
models are similar and the focus is thus directed towards the integrated sensor repre-
sentation and the collision avoidance algorithm. To ease readability, the algorithm is
presented following the notation used throughout this thesis. The algorithms’ main
differences are the introduced velocity compensation, braking rule and multi-agent en-
vironment. For a complete algorithm description, the reader is referred to the original
paper [21].

A.1 Integrated sensor representation

A sensor located on a vehicle emit rays in directions denoted α in a half circle defined
by [ψ (t) − π

2 , ψ (t) +
π
2] and range dsen , whereψ (t) is the vehicle heading. The sensor

disk D(t) is as a circle in front of the vehicle with diameter dsen , where the vehicle

73

74 APPENDIX A. SEEKING A PATH THROUGH THE CROWD

detects all obstacles inside the disk

D(kδ) = dsen cos(α), ∀ α ∈ [ψ (kδ) −
π

2
, ψ (kδ) +

π

2
]

at t = kδ . See Figure A.1.

v(t)

dsen

Sensor disk

(a) Sensor ability and sensor disk

Ê(t)

v(t)

0.5 dsen

y

x

α1

α2

(t)

Vehicle

(b) A vehicle sensing an obstacle

Figure A.1: Illustration of the sensor disk D and the vehicle sensing ability.

The binary function representing the integrated environment is defined as

Definition 5. A binary function M(α , t) ∈ {0, 1} is defined for all t ≥ 0 and α ∈

[ψ (t) − π
2 , ψ (t) +

π
2] as

M(α , t) =

1, i f dpppE ≤ dsencosα

0, otherwise
(A.1)

A.2. COLLISION AVOIDANCE ALGORITHM 75

where dpppE := ∥pppi (t) −pppE ∥ is the distance to the point, pppE , where the ray emitted
from the vehicle at time t in direction α hits Ê(t). ∥ · ∥ is the standard Eucledian vector
norm. See Figure A.2 for an example.

1

(t) - π/2

(t)
(t) + π/2

M(α,t)

α

v(t)

Ê1(t) Ê2(t) + Ê3(t) Ê4(t)

x

y

Ê1(t)

Ê2(t)
Ê3(t)

Ê4(t)

Figure A.2: Example ofM(α , t) showing multiple and overlapping obstacles.

A.2 Collision avoidance algorithm

A new binary functionm(t) is defined as

m(t) :=

0, i f M(α , t) = 0 ∀ α ∈ [ψ (t) − π
2 , ψ (t) +

π
2]

1, otherwise
(A.2)

for m(t) = 1 there are one or more obstacles inside the sensor disk at time t and
m(t) = 0 if the sensor disk is obstacle-free.

76 APPENDIX A. SEEKING A PATH THROUGH THE CROWD

Consider again Figure A.2, where an example ofM(α , t) is given in a scenario with
four obstacles. In this scenariom(t) = 1 and there exist some α ∈ [ψ (t) − π

2 , ψ (t)+
π
2]

whereM(α , t) = 0, illustrated by the open intervals [A−
i , A

+
i] for i = 1, 2, 3, 4. Next, a

new heading is chosen as the closest obstacle-free interval to the current heading and
the middle value C(t) of the interval is calculated by

ji (t) := arд min
i
{|A−

i |, |A
+
i |} (A.3)

where ji (t) is the index of the A−
i or A+i that is closest to ψ (t). The middle value is

found by:

C(t) =
A−
ji (t)
+A+ji (t)

2
(A.4)

where A−
3 is the closest start/end of an interval in the example shown in Figure A.2.

Thus j(t) = 3 andC(t) is the middle of the interval [A−
3 , A

+
3]. Note thatC(t) is an angle.

The complete collision avoidance algorithm is given as

r (t) :=

rmax sgn(ψτ (t) −ψ (t)), i f m̂i (t) = 0

rmax sgn(C(t) −ψ (t)), i f m̂i (t) = 1
(A.5a)

where sдn(·) returns the sign of its argument andψτ (t) is the angle to to target. The
input r (t) is constant in the interval [t , t + δ]. The navigation algorithm is fairly
simple; if there are one or more obstacles in the sensor disk, the vehicle turns as fast
as possible towards the closest obstacle-free zone. Otherwise the vehicle turns as fast
as possible toward the target. Note that it is assumed that the vehicle forward speed is
constant v(t) = V .

Appendix B

The Velocity Compensation
Angle

In Section 2.3 the velocity compensated binary function M̂(α̂ , t) was introduced. This
appendix derive the mathematics behind calculating the compensation angle and
follows the lines of the original paper [23]. Equation (2.5) gave an expression for how
to compensate the rays used inM(α , t) to obtain M̂(α̂ , t).

α̂i = αi + γab,i , f or i = 1, 2 (B.1)

Now a method is presented to find correction angle γab,2 as illustrated in Figure B.1.
Here γab,2 is the angle between a vectoraaa2 along the α2 ray and a new corrected vector
bbb2, where ∥bbb2∥ = vi (t). The second ray is considered in this derivation, but the exact
same theory applies to the first ray α1.

Step one is to find the angle, γv,2 between aaa2 andvvv Ê . Then apply the sine rule to
calculate γab,2 and obtain α̂2. From Figure B.1 γv,2 is found by

γv,2 = π − (ψv − α2) (B.2)

77

78 APPENDIX B. THE VELOCITY COMPENSATION ANGLE

The length of booth bbb2 andvvv Ê are known, thus the sine rule is used to find γab,2.

γab,2 = sin−1
(
∥vvv Ê ∥ sin(γv,2)

vi (t)

)
(B.3)

ɣab,2

vi(t)

x-
ax
is

α2

i(t)

Vehicle

vÊ(t)ɣv,2
a2

b2
||vi(t)||

v

x-
ax
is

x

y

Figure B.1: Velocity compensation where α2 +γab,2 is the corrected angle of the second
ray defining the compensated collision zone.

Appendix C

Additional Monte Carlo
Experiments

In these additional Monte Carlo experiments, the system parameters used in Chapter 5
are tested. The goal is to present the influence each parameter value has on the
algorithms overall performance. The parameters used in the below simulations are,
if not otherwise stated, given by: vmax = 3m/s , vmin = 1.2m/s , amax = 0.05m/s2,
rmax = 1 rad/s and dsen = 7m.

Table C.1: Choosing rmax : 12 obstacles in a 50x50m environment, where Tstop = 60sec
and number of simulations is 1000. It is worth noting that a very high rmax is physically
impossible and, in a way, cancels out the nonholonomic model. A too low rmax hinder
the maneuverability of the agents.

rmax [rad/s] Success Collision Timed out Average time

5 99.7% 0.0% 0.3% 19.30s
3 99.3% 0.2% 0.5% 19.66s
1 98.1% 1.2% 0.7% 20.93s
0.5 70.5% 20.2% 9.3% 25.95s

79

80 APPENDIX C. ADDITIONAL MONTE CARLO EXPERIMENTS

Table C.2: Choosing vmin : 12 obstacles in a 50x50m environment, where Tstop = 60sec
and number of simulations is 1000. As the results show the forward speed controller
have only a small influence on the overall result. Note that a higher amax would
increase the effects as can be seen in Table C.3.

% of vmax Success Collision Timed out Average time

100% 97.2% 2.3% 0.5% 20.85s
80% 97.3% 2.0% 0.7% 20.87s
60% 97.6% 1.5% 0.9% 21.19s
40% 97.9% 1.3% 0.8% 21.12s
20% 97.9% 1.3% 0.8% 21.15s

Table C.3: Choosing amax : 12 obstacles in a 50x50m environment, whereTstop = 60sec
and number of simulations is 1000. Naturally there is a decrease in number of collision
as amax increase. It is interesting to note that amax = 0.5m/s2 have worse performance
than amax = 0.1m/s2 and is seemingly too high. Note also the variations in number
of Timed out cases.

amax [m/s2] Success Collision Timed out Average time

0.5 97.6% 0.3% 2.1% 20.68s
0.1 99.5% 0.2% 0.3% 20.68s
0.05 98.3% 1.1% 0.6% 20.88s
0.025 86.3% 3.0% 10.7% 22.09s
0.01 94.0% 4.1% 1.9% 24.81s

81

Table C.4: Choosing dsen : 6 obstacles in a 25x25m environment, where Tstop = 60sec
and number of simulations is 500. As expected, larger sensor range dsen leads to less
collisions. But, as the table show, there is a trade-off between collisions and average
time to reach the target.

dsen Success Collision Timed out Average time

13m 70.8% 0.6% 28.6% 31.77s
11m 89.8% 0.6% 9.6% 25.38s
9m 93.4% 1.0% 5.6% 19.06s
7m 96.8% 1.8% 1.4% 14.01s
5m 89.8% 9.8% 0.4% 10.62s

Table C.5: Choosing δ : 6 obstacles in a 25x25m environment, where Tstop = 60sec
and number of simulations is 500. The results clearly show that the time interval has
critical influence on system performance.

δ [sec] Success Collision Timed out Average time

0.5 64.8% 35.2% 0.0% 13.39s
0.1 88.0% 3.4% 8.6% 13.89s
0.05 96.8% 1.6% 1.6% 13.38s
0.025 99.6% 0.2% 0.2% 13.87s
0.01 98.8% 0.0% 1.2% 13.78s

82 APPENDIX C. ADDITIONAL MONTE CARLO EXPERIMENTS

Appendix D

Algorithm by Erlend Hårstad

Erlend Hårstad has, in his thesis, independently addressed the same problem as re-
searched in this thesis. The algorithm produced by Erlend is presented here in short
terms and is compared to the proposed algorithm(PA). The comparison is completed
in a Monte Carlo experiment with one thousand simulations.

D.1 Algorithm description by Hårstad

This collision cone [34] based reciprocal collision avoidance algorithm uses an ex-
tended collision cone which considers the nonholonomic constraints of vehicles [35]
to determine possible collisions. The algorithm is designed for vehicles with constant
forwards speeds such as large ships which have a limited speed envelope due to high
mass. As the main focus is vessels at sea, the reciprocal collision avoidance algorithm
is designed such that the vehicles respect the Collision Regulation [36] defined by the
International maritime organization. Thus, the collision avoidance maneuver is carried
out in a predictable manner. To make use of the reactive nature of other vehicles, the
collision cone defined in [35] is reduced such that the responsibility of avoiding a
collision is shared equally between the involved vehicles.

83

84 APPENDIX D. ALGORITHM BY ERLEND HÅRSTAD

D.2 Results

The results from the Monte Carlo experiment are summarized in Table D.1. Besides the
difference in the number of collisions, the algorithm proposed by Hårstad is prone to
Reciprocal dances when the environment becomes too cluttered. The typical behavior
of the reciprocal dances is illustrated by circular paths in Figure D.1. Similar to the
comparison with RVO, the algorithm produced by Hårstad seem to create more efficient
paths while PA maintains a larger distance to other agents. An example scenario taken
from the experiments presented in Table D.1 is given in Figure D.2b. Note that both
algorithms are restricted to constant forward speed in the simulations.

Table D.1: Simulations conducted with 10 agents in a 50x50 m environment. The
agents are restricted to constant forward speed 1m/s . The initial agent separation is
7m and the maximum simulation time is 150 s .

δ [sec] Success Collision Timed out Average time

PA 99.9% 0.1% 0.0% 51.7s
Hårstad 89.8% 5.8% 4.4% 56.9s

-10 -5 0 5 10 15 20 25 30 35 40

y [m]

-10

-5

0

5

10

15

20

25

30

35

40

x
 [

m
]

time: 43.99

Figure D.1: Undesirable circular maneuvers, called reciprocal dances, as a result of the
restrictions caused by a nonholonomic model with constant speed.

D.2. RESULTS 85

-10 -5 0 5 10 15 20 25 30 35 40

y [m]

-10

-5

0

5

10

15

20

25

30

35

40

x
 [

m
]

time: 29.99

(a) Proposed algorithm

-10 -5 0 5 10 15 20 25 30 35 40

y [m]

-10

-5

0

5

10

15

20

25

30

35

40

x
 [

m
]

time: 31.99

(b) Algorithm by Erlend Hårstad

Figure D.2: By comparing the agent paths, one can observe slight differences. As with
RVO, the proposed algorithm tend to maintain a larger distance to other agents. The
algorithm provided by Hårstad seem to have behavior that resembles RVO.

86 APPENDIX D. ALGORITHM BY ERLEND HÅRSTAD

Appendix E

Creating the Simulator

This appendix presents the work of creating the simulator used in Chapter 5. The
simulator is written in MATLAB R2017a. Martin Syre Wiig provided a basic version
of the simulator he used in [23], including a basic kinematic nonholonomic vehicle
model and live visualization. It is this basis that formed the foundation of the complete
simulator used in Chapter 5.

The first task at hand was to implement the algorithm presented in [21], where
the most important components are the integrated sensor representation and the
collision avoidance function. The integrated sensor model is represented by the func-
tionM(α , t) presented in Chapter 2 and is implemented by calculating the distances
between rays from the agent to obstacles inside the sensor disk. The closest ray that
was not inside the safety distance was chosen. See Figure E.1. Next, the velocity
compensation presented in [23] was implemented as part of the integrated sensor
representation to account for obstacle velocity. For proof of concept and to improve
visualization, the simulation obstacle model was implemented for both circular and
rectangular obstacles, static and dynamic. Simulating rectangular obstacles require
more computational effort and was hence excluded in the multi-agent environments,
note that it is the simulation that is computational complex not the algorithm by itself.

87

88 APPENDIX E. CREATING THE SIMULATOR

-10 -8 -6 -4 -2 0 2

y [m]

6

8

10

12

14

16

18

20

x
 [

m
]

time: 10.95

Figure E.1: Two obstacles with safety distance(blue and magenta) and the agent(red)
with sensor disk and the rays(black). The angles from the agent headingψi (t) to the
rays αi ∈ [− π

2 ,
π
2] define blocked areas inM(α , t).

With the agent-obstacles simulator up and running, the next task was to implement
simulations with multiple agents. The work required substantial revision of the main
simulation loop and its functions. Beside implementing the algorithm, all the scenarios
presented in Chapter 5 have been created from scratch. All plotting and visualization
functions have been rewritten to fit the desired format. Furthermore, the Monte Carlo
simulation functionality with data logging was implemented for statistical simulation
experiments. Finally, the Reciprocal Velocity Obstacles from [24] was implemented as
a comparison algorithm. Below are two code snippets; the main simulator loop of the
proposed algorithm and function used to calculate the RVO cone from an agent to an
obstacle.

1 %% i n i t i a t i o n
2 h _ i n s t a n t = f i g u r e (' un i t s ' , ' normal i zed ' , ' ou t e r p o s i t i o n ' , [0 . 2 0 . 2 0 . 6

0 . 7]) ; % F i gu r e f o r r e a l t im e p l o t t i n g
3 hold on ;
4

5 p s i _d = z e r o s (1 , t ime . ge t_ samp le_coun t) ;
6 num_agen t s_ f i n i shed = 0 ;
7

89

8 %% Main c o n t r o l loop
9 f o r t =2 : t ime . ge t_ samp le_coun t () −2
10

11 f o r i i = 1 : l e ng t h (a g e n t _ l i s t)
12 c u r r e n t _ a g en t = a g e n t _ l i s t (i i) ;
13 c u r r e n t _ p o s i t i o n = cu r r e n t _ a g en t . s t a t e (1 : 2 , t) ;
14

15 % Sk ip i f agen t has c r a shed or reached i t ' s goa l
16 % Break with a_max u n t i l speed i s z e ro
17 i f c u r r e n t _ a g en t . f i n i s h e d
18 i f c u r r e n t _ a g en t . get_max_speed () ~= 0
19 c u r r e n t _ a g en t . c a l c u l a t e _ n e x t _ s t a t e (t , c u r r e n t _ a g en t .

s t a t e (3 , t) , 0) ;
20 i f c u r r e n t _ a g en t . g e t _ speed () == 0
21 c u r r e n t _ a g en t . s e t_max_surge_speed (0) ;
22 end
23 end
24 con t i nue ;
25 end
26

27

28 %% Agents
29 p s i = c u r r e n t _ a g en t . s t a t e (3 , t) ;
30 o b s t _ i n s i d e _ s e n s o r _ d i s k = [] ;
31 c s = cu r r e n t _ a g en t . g e t _ s e n s o r _ d i s k _ c e n t e r (d a t a b a s e .

o b s t a c l e S e n s eD i s t a n c e , t) ;
32 f o r k = 1 : l e ng t h (a g e n t _ l i s t)
33 i f k ~= i i
34 % Check f o r c o l l i s i o n with o the r agen t
35 d i s t _ t o _ a g e n t = a g e n t _ l i s t (k) . g e t _ d i s t a n c e _ t o _ p o i n t (t ,

c u r r e n t _ p o s i t i o n) . . .
36 − a g e n t _ l i s t (i i) . g e t _ d _ s a f e () ;
37

38 % C o l l i s i o n between agen t s
39 i f d i s t _ t o _ a g e n t < 0
40 d i s p ('−−−− COLLISION −−−− ')
41 num_agen t s_ f i n i shed = num_agen t s_ f i n i shed + 1 ;
42 c u r r e n t _ a g en t . s e t_max_surge_speed (0) ;
43 c u r r e n t _ a g en t . f i n i s h e d = t r u e ;

90 APPENDIX E. CREATING THE SIMULATOR

44 break ;
45 end
46

47 % Check f o r agen t s i n s i d e the s en so r d i s k
48 d i s t _ t o _ c s = a g e n t _ l i s t (k) . g e t _ d i s t a n c e _ t o _ p o i n t (t , c s)

. . .
49 − a g e n t _ l i s t (i i) . g e t _ d _ s a f e () ;
50 i f d i s t _ t o _ c s < da t a b a s e . o b s t a c l e S e n s eD i s t a n c e / 2
51 o b s t _ i n s i d e _ s e n s o r _ d i s k = [o b s t _ i n s i d e _ s e n s o r _ d i s k

a g e n t _ l i s t (k)] ;
52 i f k == c l o s e s t _ a g e n t
53 c l o s e s t _ a g e n t = l eng t h (o b s t _ i n s i d e _ s e n s o r _ d i s k)

;
54 end
55 end
56 end
57 end % k − i nne r agen t loop
58

59 %% Ob s t a c l e s
60 % Check f o r o b s t a c l e s i n s i d e agen t s s en so r range
61 f o r o = 1 : l e ng t h (o b s t a c l e _ l i s t)
62 d i s t _ t o _ c s = o b s t a c l e _ l i s t (o) . g e t _ d i s t a n c e _ t o _ p o i n t (t , c s)

. . .
63 − a g e n t _ l i s t (i i) . g e t _ d _ s a f e () ;
64 d i s t _ t o _ o b s t = o b s t a c l e _ l i s t (o) . g e t _ d i s t a n c e _ t o _ p o i n t (t ,

c u r r e n t _ p o s i t i o n) . . .
65 − a g e n t _ l i s t (i i) . g e t _ d _ s a f e () ;
66

67 i f d i s t _ t o _ o b s t < 0
68 d i s p ('−−− COLLSION WITH OBSTACLE −−− ') ;
69 num_agen t s_ f i n i shed = num_agen t s_ f i n i shed + 1 ;
70 c u r r e n t _ a g en t . s e t_max_surge_speed (0) ;
71 c u r r e n t _ a g en t . f i n i s h e d = t r u e ;
72 s t e p s _ l e f t = l e ng t h (t +1 : t ime . ge t_ samp le_coun t ()) ;
73 c u r r e n t _ a g en t . s t a t e (: , t + 1 : t ime . ge t_ samp le_coun t ()) =

d i ag (c u r r e n t _ a g en t . s t a t e (: , t)) ∗ ones (4 , s t e p s _ l e f t) ;
74 break ;
75 end
76

91

77 i f d i s t _ t o _ c s < da t a b a s e . o b s t a c l e S e n s eD i s t a n c e / 2
78 o b s t _ i n s i d e _ s e n s o r _ d i s k = [o b s t _ i n s i d e _ s e n s o r _ d i s k

o b s t a c l e _ l i s t (o)] ;
79 i f o == c l o s e s t _ o b s t
80 c l o s e s t _ o b s t = l eng t h (o b s t _ i n s i d e _ s e n s o r _ d i s k) ;
81 end
82 end
83 end % o − o b s t a c l e s loop
84

85 %% Guidance
86 p s i _ gu i d = gu i d a n c eCon t r o l l e r (c u r r e n t _ a g en t . g e t _ t a r g e t () ,

c u r r e n t _ a g en t . s t a t e (: , t)) ;
87 i s C o l l i s i o nMod e = f a l s e ;
88 i f ~ i sempty (o b s t _ i n s i d e _ s e n s o r _ d i s k)
89 [M, M_pos , BR] = get_M_extended (cu r r en t _ agen t ,

o b s t _ i n s i d e _ s e n s o r _ d i s k , d a t a b a s e . o b s t a c l e S e n s eD i s t a n c e , t) ;
90 i s C o l l i s i o nMod e = t r u e ;
91 p s i _d (t) = c o l l i s i o n _ a v o i d a n c e (M, p s i) ;
92 e l s e
93 p s i _d (t) = p s i _ gu i d ;
94 BR = 0 ;
95 end
96

97 % Break ing r u l e
98 i f BR == 1
99 BR_ac t i v e (i i) = BR_ac t i v e (i i) + 2 ;
100 i f BR_ac t i v e (i i) > BR_COUNTDOWN
101 BR_ac t i v e (i i) = BR_COUNTDOWN;
102 end
103 new_speed = MIN_SPEED ∗ c u r r e n t _ a g en t . get_max_speed () ;
104 e l s e i f BR_ac t i v e (i i) > 0 && BR == 0
105 BR_ac t i v e (i i) = BR_ac t i v e (i i) − 1 ;
106 new_speed = MIN_SPEED ∗ c u r r e n t _ a g en t . get_max_speed () ;
107 end
108

109 % Stop i f we a r e c l o s e to t a r g e t
110 i f norm (c u r r e n t _ a g en t . g e t _ t a r g e t () − c u r r e n t _ a g en t . s t a t e (1 : 2 , t)

) <=TARGET_RADIUS
111 num_agen t s_ f i n i shed = num_agen t s_ f i n i shed + 1 ;

92 APPENDIX E. CREATING THE SIMULATOR

112 c u r r e n t _ a g en t . f i n i s h e d = t r u e ;
113 end
114

115 % Update s t a t e s
116 c u r r e n t _ a g en t . c a l c u l a t e _ n e x t _ s t a t e (t , p s i _ d (t) , new_speed) ;
117 end % i i − agen t s loop
118

119 % Update o b s t a c l e p o s i s t i o n
120 f o r oo = 1 : l e ng t h (o b s t a c l e _ l i s t)
121 o b s t a c l e _ l i s t (oo) . c a l c u l a t e _ n e x t _ s t a t e (t , o b s t a c l e _ l i s t (oo) .

s t a t e (3 , t) , o b s t a c l e _ l i s t (oo) . g e t _ speed ()) ;
122 end
123

124 % P l o t an i n s t a n t o f the s imu l a t i o n
125 i f (mod (t , p l o t _ t im e _ s t e p) ==0)
126 c l f (' r e s e t ') ;
127 p l o t I n s t a n tA g e n t s (a g e n t _ l i s t , o b s t a c l e _ l i s t , t , h _ i n s t an t , t ime

, a x i s _ a r r a y) ;
128 drawnow ;
129 end
130

131 %% Stop when a l l a g en t s a r e f i n i s h e d
132 i f num_agen t s_ f i n i shed == l eng t h (a g e n t _ l i s t)
133 d i s p (' A l l agen t s f i n i s h e d ')
134 r e t u r n ;
135 end
136 end % t − t ime loop

1 f u n c t i o n vo = c a l c _ c one (agent , obs t , d_ sa f e , d_rvo , t)
2 % Ca l c u l a t e RVO from agent to o b s t a c l e
3

4 r = ob s t . g e t _ r a d i u s () + d_ s a f e + d_rvo ; % Obst r a d i u s with s a f e t y
d i s t

5

6 a_pos = agent . s t a t e (1 : 2 , t) ; % Agent p o s i t i o n
7 o_pos = ob s t . s t a t e (1 : 2 , t) ; % Ob s t a c l e p o s i t i o n
8

9 a_v = agent . s t a t e _ d o t (1 : 2 , t −1) ; % Agent v e l o c i t y
10 v_v = ob s t . s t a t e _ d o t (1 : 2 , t −1) ; % Ob s t a c l e v e l o c i t y

93

11

12

13 % Calc t angen t p o i n t s from pos to o b s t a c l e + d_ s a f e
14 P = a_pos ' − o_pos ' ;
15 d2 = dot (P , P) ;
16 Q0 = o_pos '+ r ^2 / d2 ∗P ;
17 i f d2−r ^2 > 0
18 T = r / d2 ∗ s q r t (d2−r ^2) ∗P ∗ [0 , 1 ; − 1 , 0] ;
19 p1 = Q0−T ; % Tangent p o i n t s l e f t
20 p2 = Q0+T ; % Tangent p o i n t s r i g h t
21

22 % Move apex with r e s p e c t to o b s t a c l e speed
23 % Where f i n i s h e d i n d i c a t e a p a s s i v e o b s t a c l e , e qua l to VO
24 i f o b s t . f i n i s h e d
25 rvo_v = v_v ;
26 e l s e
27 rvo_v = (a_v+v_v) / 2 ;
28 end
29 apex = a_pos + rvo_v ;
30 p1 = p1 ' + rvo_v ;
31 p2 = p2 ' + rvo_v ;
32

33 % Calc each t angen t l i n e to o b s t a c l e through apex
34 ang1 = vec to r_ang (apex , p1) ;
35 ang2 = vec to r_ang (apex , p2) ;
36

37 vo = cone (apex , [ang1 ; ang2]) ; % C l a s s to save RVO
38 e l s e
39 % Corner c a s e where c a l c above r e s u l t i n complex numbers
40 % RVO i s s i m p l i f i e d to a ha lv p l ane in the d i r e c t i o n o f the

ob s t
41 ang = vec to r_ang (a_pos , o_pos) ;
42 i f o b s t . f i n i s h e d
43 rvo_v = v_v ;
44 e l s e
45 rvo_v = (a_v+v_v) / 2 ;
46 end
47 apex = a_pos + rvo_v ;
48 vo = cone (apex , [ang + 1 . 5 ; ang − 1 . 5]) ; % C l a s s to save RVO

94 APPENDIX E. CREATING THE SIMULATOR

49 end
50

51 end

References

[1] D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and R. E. Davis. Collective
motion, sensor networks, and ocean sampling. Proceedings of the IEEE, 95:48 –
74, 2007.

[2] H. Sahin and L. Guvenc. Household robotics: autonomous devices for vacuuming
and lawn mowing. IEEE Control Systems, 27:20–96, 2007.

[3] D. Voth. A new generation of military robots. IEEE Intelligent Systems, 19:2–3,
2004.

[4] T. Le-Anh and M. B. M De Koster. A review of design and control of automated
guided vehicle systems. European Journal of Operational Research, 171:1–23, 2006.

[5] A. S. Matveev, M. Hoy, and A. V. Savkin. Algorithms for collision-free navigation
of mobile robots in complex cluttered environments: a survey. Robotica, 33:463 –
497, 2015.

[6] Z. Shiller. Online suboptimal obstacle avoidance. The International Journal of
Robotics Research, 9:480 – 497, 2000.

[7] I. Kamon and E. Rivlin. Sensor-based motion planning with global proofs. IEEE
Transactions on Robotics and Automation, 13:814 – 822, 1997.

[8] Y.H. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles. The International Journal of Robotics
Research, 11:376 – 382, 1992.

95

96 REFERENCES

[9] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. Annual Symposium on Foundations of Computer Science, 27:49 – 60,
1987.

[10] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
Wiley, 2011.

[11] P. Ogren and N.E. Leonard. A convergent dynamic window approach to obstacle
avoidance. IEEE Transactions on Robotics, 21:188 – 195, 2005.

[12] K. Yang, S. Gan, and S. Sukkarieh. An efficient path planning and control algorithm
for ruav’s in unknown and cluttered environments. Intelligent Robots and Systems,
57:101 – 122, 2010.

[13] Y. Zhu and U. Ozguner. Constrained model predictive control for nonholonomic
vehicle regulation. Proc. IFAC 17th world congress, 2008.

[14] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Proc.
IEEE International Conference Robotics and Automation (ICRA), pages 500 – 505,
1985.

[15] Y. Koren and J. Borenstein. Potential field methods and their inherent limitation
for mobile robot navigation. IEEE int. Conference on Robotics and Automation,
pages 1398–1404, 1991.

[16] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations
for mobile robot navigation. Robotics and Automation, 2:1398–1404, 1991.

[17] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance
for mobile robots. IEEE Transactions on Robotics and Automation, 7, 1991.

[18] K. Fujimura. Motion planning in dynamic environments. Tokyo, Springer-Verlag,
1991.

[19] A. Chakravarthy and D. Ghose. Obstacle avoidance in a dynamic environment:
A collision cone approach. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, 28, 1998.

REFERENCES 97

[20] P. Fiorini and Z. Shiller. Motion planning in dynamic environments using velocity
obstacles. The International Journal of Robotics Research, 17:760 – 772, 1998.

[21] A. V. Savkin and C. Wang. Seeking a path through the crowd: Robot navigation in
unknown dynamic environments with moving obstacles based on an integrated
environment representation. Robotics and Autonomous Systems, 62:1568 – 1580,
2014.

[22] A. V. Savkin and C. Wang. A simple biologically inspired algorithm for collision-
free navigation of a unicycle-like robot in dynamic environments with moving
obstacles. Robotica, 31:993 – 1001, 2013.

[23] M. S. Wiig, K. Y. Pettersen, and A. V. Savkin. A reactive collision avoidance algo-
rithm for nonholonomic vehicles. Proc. 1st IEEE, Conference on Control Technology
and Applications, 2017.

[24] J. van den Berg, J. Manocha, D., and Ming Lin. Reciprocal velocity obstacles for
real-time multi-agent navigation. Proc. IEEE International Conference on Robotics
and Automation (ICRA), pages 1928 – 1935, 2008.

[25] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R Siegwart. Reciprocal collision
avoidance for multiple car-like robots. IEEE International Conference on Robotics
and Automation, 2012.

[26] D. Barreiss and J. van den Berg. Generalized reciprocal collision avoidance. The
International Journal of Robotics Research, 34:1501–1514, 2015.

[27] A. Yasuaki and M. Yoshiki. Collision avoidance method for multiple autonomous
mobile agents by implicit cooperation. Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2001.

[28] E. Lalish, K. A. Morgansen, and T. Tsukamaki. Decentralized reactive collision
avoidance for multiple unicycle-type vehicles. IEEE American Control Conference,
2008.

98 REFERENCES

[29] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger. Safe maritime
autonomous navigation with colregs, using velocity obstacles. IEEE Oceanic
Engineering, 39:110–119, 2014.

[30] D. Panagou. A distributed feedback motion planning protocol for multiple unicy-
cle agents of different classes. IEEE Transactions on Automatic Control, 62:1178 –
1193, 2017.

[31] S. B. Mehdi, V. Cichella, T. Marinho, and N. Hovakimyan. Collision avoidance
in multi-vehicle cooperative missions using speed adjustment. Proc. 56th IEEE
Conference on Decision and Control, 2017.

[32] M. Hoy, A. S. Matveev, and A. V. Savkina. Collision free cooperative navigation
of multiple wheeled robots in unknown cluttered environments. Robotics and
Autonomous Systems, 60:1253 – 1266, 2012.

[33] H. Teimoori and A. V. Savkin. Equiangular navigation and guidance of wheeled
mobile robot based on range-only measurements. Robotics and Autonomous
Systems, 58:203 – 215, 2010.

[34] A. Chakravarthy and D. Ghose. Obstacle avoidance in a dynamic environment:
a collision cone approach. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, 28(5):562–574, Sep 1998. ISSN 1083-4427. doi:
10.1109/3468.709600.

[35] M. S. Wiig, K. Y. Pettersen, and A. V. Savkin. A reactive collision avoid-
ance algorithm for nonholonomic vehicles. In 2017 IEEE Conference on Con-
trol Technology and Applications (CCTA), pages 1776–1783, Aug 2017. doi:
10.1109/CCTA.2017.8062714.

[36] Convention on the international regulations for preventing collisions at
sea. https://www.navcen.uscg.gov/pdf/navRules/navrules.pdf, 1972. Ac-
cessed: 2018-02-20.

https://www.navcen.uscg.gov/pdf/navRules/navrules.pdf

	Problem description
	Abstract
	Sammendrag
	Preface
	Introduction
	Motivation
	Literature review
	Reciprocal Velocity Obstacles

	Assumptions
	Background
	Contributions

	Outline

	System Description
	Agent model
	Passive obstacle model
	Sensing model
	Available measurements

	Velocity compensation
	 Control objective
	Assumptions summary

	Navigation and Collision Avoidance
	 Guidance law
	 Collision avoidance
	The braking rule
	Choosing a collision-free heading

	 Reactive navigation law

	Mathematical Analysis
	Uncompensated obstacle measurements
	Proof of Theorem 1

	Velocity compensation angle
	The braking rule
	Agent-agent encounter
	Target reaching

	Simulations
	Simulations
	Single-agent environment
	Single-agent environment and IEA
	Multi-agent environment
	Multi-agent environment and RVO

	Monte Carlo experiments
	Single-agent environment
	Multi-agent environment

	Conclusions and Future Work
	Result discussion
	Conclusion
	Further work

	Appendix Seeking a Path Through the Crowd
	Integrated sensor representation
	 Collision avoidance algorithm

	Appendix The Velocity Compensation Angle
	Appendix Additional Monte Carlo Experiments
	Appendix Algorithm by Erlend Hårstad
	Algorithm description by Hårstad
	Results

	Appendix Creating the Simulator
	References

