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Abstract

The purpose of this project is to investigate the application of multivariate analysis meth-
ods on vibration data obtained from a diesel engine using acoustic contact microphones. A
fully instrumented Mercedes-Benz OM613 diesel engine for passenger cars is the subject
of the research. Data acquisition was carried out at the Internal Combustion Engine
Laboratory at the Norwegian University of Science and Technology. A large number
of measurements related to engine operation, including vibrations, were obtained for a
range of different operating conditions. Analysis was initially carried out in the time
domain where it was shown that vibration amplitude increases with engine speed and
load.

In addition, both traditional time-frequency domain analysis and multivariate analysis
methods were studied. Resampling of the vibration data revealed some frequencies
that were present for all operating conditions, however increasing in magnitude with
increasing engine speed. An attempt was made to connect these frequencies to engine
events. A suggestion was that the common rail fuel system, with pressure sensor and
fuel regulator could be connected to a static frequency, but with magnitude increasing
with engine speed. This theory was further substantiated through that the return of fuel
to the tank was increased with engine speed.

Principal component analysis revealed a resonance structure which was not visible in
the time-frequency domain analysis. This resonance is thought to be the resonance of the
engine block. Several regression models were made for different response variables, with
vibration data in the time-frequency domain as predictors. The best regression models
were found for the variables weight of exhaust gases, intake temperature and fuel return
to tank. Regression models for cylinder pressure and oil temperature were evaluated
against regression models where engine speed had been used as the predictor. For the
cylinder pressure model, vibration data were better predictors than engine speed, but
had an estimated prediction error of 12% with 7 factors. For the oil temperature model
an estimated prediction error of 6% was obtained with 5 factors, but engine speed gave
a better model with fewer factors. The vibration models showed promising results, but
further research is needed before vibration sensors can replace other sensors.
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Sammendrag

Formålet med dette prosjektet er å undersøke bruken av multivariate analysemetoder på
vibrasjonsdata hentet fra en dieselmotor ved bruk av akustiske kontaktmikrofoner. En
fullt instrumentert Mercedes-Benz OM613 dieselmotor for personbiler er gjenstand for
forskningen. Datainnsamling ble gjennomført ved laboratoriet for forbrenningsmotorer
ved Norges teknisk-naturvitenskapelige universitet. Mange ulike målinger relatert til
motoroperasjon, inkludert vibrasjoner, ble utført for en rekke forskjellige driftsforhold.
Analysen ble innledningsvis utført i tidsdomenet, hvor det ble vist at vibrasjonsnivået
økte med motorhastighet og belastning.

Videre ble både tradisjonell tidsfrekvensdomene-analyse og multivariate analysemet-
oder studert. Resampling av vibrasjonsdataene viste noen frekvenser som var tilstede for
alle driftsforhold, men økte i styrke med økende motorhastighet. Det ble forsøkt å koble
disse frekvensene til motorhendelser. Et forslag var at common rail drivstoffsystemet,
bestående av blant annet trykksensor og drivstoffregulator kunne kobles til en konstant
frekvens, men med styrke som økte med motorhastighet. Denne teorien ble videre
underbygget gjennom at retur av drivstoff til tanken økte med økende motorhastighet.

Prinsipal komponent analyse avslørte en resonansstruktur som ikke var synlig i
tidsfrekvensdomene-analysen. Denne resonansen antas å være resonansen imotorblokken.
Flere regresjonsmodeller ble laget for ulike responsvariabler, med vibrasjonsdata i tidsfrek-
vensdomenet som prediktorer. De beste regresjonsmodellene ble funnet for variablene
vekt av eksosgass, innsugningstemperatur og mengde returnert drivstoff til tank. Regres-
jonsmodeller for sylindertrykk og oljetemperatur ble evaluert mot regresjonsmodeller der
motorhastigheten var brukt som prediktor. For sylindertrykkmodellen var vibrasjonsdata
en bedre prediktor enn motorhastighet, men modellen hadde en estimert prediksjonsfeil
på 12% med 7 faktorer. For oljetemperaturmodellen ble en estimert prediksjonsfeil på 6%
oppnåddmed 5 faktorer, menmotorhastigheten ga en bedremodell med færre faktorer. Re-
gresjonsmodellene med vibrasjonsdata i frekvensdomenet som prediktorer viste lovende
resultater, men det er nødvendig med videre forskning før vibrasjonssensorer kan erstatte
andre sensorer.
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Chapter 1

Introduction

1.1 Background and Motivation

Condition monitoring of machines is far from a new field; the idea of monitoring ma-
chines as a way to realise predictive maintenance strategies has been used for decades.
Some of the earliest methods that can be related are investigations of fatigue on axles of
stage coaches and railways as well as fatigue of chains in the machines of the industrial
revolution. The “monitoring” was carried out using the simplest sensing devices there is;
the hands, ears and eyes of experienced operators. As machines and equipment grew in
complexity, such sensing devices no longer gave satisfactory information about the condi-
tions, and new methods emerged proportionally with the availability of instrumentation,
technology and computational power [1].

Although many parameters have been used and still are in use for condition monit-
oring of machines, vibrations are without doubt the dominating indicators of machine
health [2]. As sound is generated through vibration of objects, it is also an indicator
of machine health. The reason for the extensive use of vibration analysis for condition
monitoring purposes is due to the fact that a change in the condition of a machine will
affect its dynamic behaviour, which in turn affects its vibratory behaviour [1]. This makes
vibration analysis a good indicator of the condition of a machine, because emerging faults
can be detected in real-time, as opposed to for example oil and lubrication analysis, where
the time between samples taken and analysis of samples can be several days.

Condition monitoring of rotary equipment such as roller bearings and turbines is
usually easier due to the stationary nature of the vibration signals; periodic events in
such machines have a frequency of occurrence, and thus makes separation and study
of such sources easier. Therefore, traditional statistical and frequency domain analysis
has seen a lot of success in the area of vibro-acoustic condition monitoring for such
machinery [3], [4]. Internal combustion (IC) engines also has recurring events; for each
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engine cycle there is a combustion event in each of the cylinders of the engine. However,
even if these events happen repeatedly there are variations from one cycle to the next,
thus the vibration signals of IC engines are classified as non-stationary. What separates
stationary signals from non-stationary signals is that stationary signals have statistical
properties which does not change in time [5].

Research has been done in the time and frequency domains with various results; Abed
et al [6] analyse the vibration signatures of a four-stroke, four cylinder diesel engine and
study in particular the effects of load and speed variations as well as induced faults in the
exhaust valve clearance of cylinder #1. Time domain analysis proves useful for relating
engine events to the angle of the crank shaft, however in a condition monitoring approach
the usefulness is less prominent. When examining the recorded signals in the frequency
domain using the fast Fourier transform, differences can be seen between the faulty and
healthy cases. Albarbar et al [7] conclude that limited information is found in the time
and frequency domain of acoustic signals from diesel engines, due to the dominating
appearance of the firing frequencies of the engine and its harmonics. Although apparent,
this is not stated as an issue in [6].

The non-stationary nature of the vibration and acoustic signals from IC engines
seems to lead to the need of more advanced signal processing methods. Analysing such
signals in the joint time-frequency domain using signal processing methods such as the
short-time Fourier transform (STFT), continuous wavelet transform (CWT), Wigner-Ville
distribution (WVD) has shown to be effective for extraction of relevant features. Albarbar
et al [7] show that applying the Wigner-Ville distribution on acoustic signals of a diesel
engine makes it possible to define the frequency of combustion induced noise (below
5kHz), however defining other acoustic sources proved more difficult without carefully
applying filters on the respective frequency bands. Gu et al [8] apply both the continuous
wavelet transform and the smoothed Wigner-Ville distribution on acoustic signals of a
diesel engine for comparison, and find that the CWT provide better detail of the high
frequency combustion, while SPWVD provide more detailed information in the lower
frequency band.

Yadav et al [9] propose a method where airborne acoustic signals from internal
combustion engine are separated into frames and an FFT is applied to each frame, thus
taking advantage of the assumption that a signal is stationary within a small time frame
(“quasi-stationary”). Antoni et al [10] introduce a condition monitoring approach for IC
engines based on cyclostationarity of vibration signals; some of the events (mechanical)
in the engine cycle will have periodic patterns whereas other events (thermodynamics,
fluid mechanics) will have random variations from one cycle to the next. The idea is that
the random variations have a hidden periodicity and thus contain useful information.
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This coincides with the signal classification given in [5]. This shows that there are many
ways to handle the non-stationary signals of the IC engines, however most of this studies
have been carried out in a laboratory environment, and thus it remains to see how these
methods can be implemented in on-line monitoring systems.

As the industry’s demand for reliability, availability, maintainability and safety con-
tinues to increase, condition monitoring is an area which can provide many benefits. The
technology development has led to easier, better and cheaper equipment and sensors
for data acquisition. A growing concern in our connected society is the vast amounts
of data that is collected; the data in itself is not useful unless meaningful information
can be extracted by efficient methods, preferably in real-time. Multivariate data analysis,
tightly connected to chemometrics, has seen an increase in areas of application over
the last two decades. Successful implementations include pattern recognition, process
monitoring, multivariate calibration, classification and discriminant analysis. The idea of
multivariate data analysis is to use mathematical and statistical tools to uncover (hidden)
structures in data, and thus extract useful information. Nature is multivariate, meaning
that a phenomenon usually is dependant upon more than one factor; this is assumed to
hold for most data generating systems, technological and otherwise [11].

Over the past decade, different applications of multivariate analysis for condition
monitoring purposes has been studied in academia, however few solutions have been
implemented in real-world environments. Li et al [12] study the noise sources of a
diesel engine using the independent component analysis (ICA). The argument for the
proposed method is that traditional methods like time domain, frequency domain and
time-frequency domain analysis are not successful in identifying low-level noise sources
such as fuel injection and valve movements due to the small energy level of the signals
of these events. In addition, these events often happen to be buried under events such
as the combustion, which contain a high level of energy. Applying ICA to the acoustic
measurements of a diesel engine and then transforming them to the time-frequency
domain using the CWT made it possible to separate events such as fuel injection, inlet
valve opening, exhaust valve opening and piston slap. A similar method is utilised in [7],
with attention directed towards monitoring of the diesel engine fuel injection system.

Independent component analysis has also seen other applications; Li et al [13] suggest
a method where ICA is used for sensor fusion; data from four vibration sensors are
combined using ICA, and results of the study show that the recognition of faults is
improved through information fusion. Another method with roots from the realm of
multivariate analysis is the principal component analysis (PCA); it is a method which
replaces the original variables in a data set with latent variables and at the same time
reduces the dimension of the data [11]. Jafarian et al [14] apply principal component
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analysis to vibration measurements done on a four-cylinder IC engine.
The motivation behind the study is the quality check in the last step of the manu-

facturing process of an automobile engine at the Iranian manufacturing company IKCO.
Sound, vibration and resonance, among other things, are examined and compared to
standards; any deviations lead to the respective engine being removed from the produc-
tion line for further investigation. Although faults are detected, their location is not;
thus the process of fixing an engine is time consuming, and the risk of incorrect fault
detection and diagnosis is present which could lead to an engine being opened several
times. The proposed method applies PCA on vibration signals acquired in healthy and
faulty operating conditions of the IC engine, and clear differences are seen in the outputs
of the PCA. Extracting standard deviation and mean as features, three fault categories
and the healthy state are separated clearly.

In the study done by Li et al [13] which was mentioned above, after using ICA for
sensor fusion, STFT for transforming the measurements to time-frequency domain and
extracting relevant features, PCA is successfully used as a “feature fusion” technique,
i.e reducing the dimension of the extracted features. PCA has also been proposed for
other condition monitoring methods, mainly as a way to classify and separate different
conditions of mechanical equipment from each other. Baydar et al [15] apply PCA to the
vibration signals of a two-stage helical gearbox; a reference model and confidence region
with normal operating conditions is first established, and deviations from these indicate
a fault. It is found that the Q-statistics (squared prediction error), the T 2-statistic and
confidence regions all are useful towards fault identification. Similar applications of PCA
for condition monitoring purposes is also seen in [16], [17] and [18].

Another consequence of the technological development and increase in computational
power is the appearance of intelligent systems for condition monitoring; systems that
learn, and based on what they learn can make decisions. In engineering, such systems
are usually connected to artificial intelligence and artificial neural networks (ANN). Such
systems have seen some research in academia; Li et al [13] implement a fuzzy neural
network for fault pattern identification in a marine diesel engine and Abraham et al
[19] use an artificial neural network for classification of acoustic signals of a motorcycle
engine. Applications of artificial neural networks is also seen in [20] and [21].

As can be seen condition monitoring is a major research area, and many types of
(successful) systems and methods are proposed. However, few have found their way into
real-world condition monitoring applications. This might indicate that more research is
required, or that the proposed methods are too advanced or unpractical to implement in
the industry. The intent of this master’s thesis is to build on the existing literature and
research, with a main focus on internal combustion engines.
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1.2 Goal and Method

The goal of this master’s thesis is to use one or more vibration sensors (or contact
microphones) and multivariate analysis to monitor an internal combustion (diesel) engine
in order to characterise operation under varying conditions. The result can be used for
one or more of the following:

• Replacing other sensors with vibration sensors (being able to characterise variations
in for example temperature and pressure from vibration signals)

• Detecting and characterising long term trends

• Automatic control of performance (limit a cars performance when the engine is
“cold”)

This will be accomplished by making one or more bilinear models for establishing
relationships between vibrations and other parameters. An attempt will be made to
obtain sensor values (temperature, pressure) as a function of vibrations.

1.3 Objectives

The main objectives of this Master’s project are

1. Literature study

(a) Condition monitoring of mechanical equipment using vibrations and acoustic
measurements, with main focus on internal combustion engines

(b) Condition monitoring using multivariate methods, with focus on principal
component analysis

2. Study of internal combustion engines

(a) General principle

(b) Noise (vibration) sources

3. Data acquisition

(a) Determine method and measurement plan

(b) Implement data acquisition according to plan

4. Data processing

(a) Structure data appropriately
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(b) Consider and apply necessary pre-processing

(c) Study measurements using appropriate signal processing methods (time do-
main, frequency domain, time-frequency domain)

5. Experimental study of vibration measurements for condition monitoring
of diesel engine

(a) Establish a set of normal operating conditions, and a reference model based
on normal operating condition vibrations

(b) Look into the effects of speed and load on vibrations

(c) Look for relationships between the vibration measurements and operating
parameters (temperature, pressure) using multivariate methods

1.4 Approach

The literature study is done by a literature search in the available scientific databases
provided by the Norwegian University of Science and Technology (NTNU). Relevant
literature is read and summarised, and used as a source of information and inspiration
for procedures and experiments. Data acquisition will be carried out at the Internal
Combustion Engine Laboratory at the Department of Energy and Process Engineering at
NTNU. In particular, the experiments will be performed on a fully instrumented Mercedes
Benz OM 613 turbocharged diesel engine. New for this project is the integration of
acoustic pickups on the engine and to the already existing data acquisition system, for
measurement of vibrations. The obtained measurements from the engine system will be
processed and analysed using the following software:

• MATLAB R2018a

• The Unscrambler®X v10.5

The measurement system and methodology is more thoroughly described in chapter 3.
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1.5 Contributions

This master’s project builds on existing literature and research on condition based main-
tenance for internal combustion engines. The first contribution is the study of how cheap,
simple acoustic piezo pickups can be used for measuring vibrations on a six-cylinder
diesel engine for condition monitoring purposes. The second, and most important con-
tribution is the application of multivariate analysis on the measured data. Furthermore,
the investigation of relationships between operating parameters such as temperature,
pressure and vibrations can bring about new knowledge and thus reduce the need for
many sensors (of which some are intrusive) in for example a laboratory rig.

1.6 Limitations

This project is limited to the spring semester of 2018, and funding and equipment other
than what is available through the Norwegian University of Science and Technology
is not looked into. Albeit, the available equipment and software should be sufficient to
investigate the problem at hand. As the engine used for data acquisition in this project
also is used by many other projects, inducing faults will not be possible. However, the
engine system provides other options for applying changes to the operating conditions.
Moreover, this project is not focused towards the development of a complete condition
monitoring system, but rather studies the underlying opportunities for the creation of
such a system.
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1.7 Outline

The following gives an overview of how the thesis is organised.

• Chapter 1 - Introduction: Sets the background and motivation as well as the
goal and the objectives for the project. Furthermore, the approach, limitations and
contribution are presented.

• Chapter 2 - Theoretical Background: Gives a presentation of theory needed
for the methods used and discussions made throughout the project. This includes
condition monitoring, the general principle of an internal combustion engine and
the most important noise sources, signal processing and multivariate analysis.

• Chapter 3 - Materials and Methods: Introduces the system and equipment that
have been used in this study, and explains the methods and the pre-processing that
have been applied, so that the experiments can be recreated.

• Chapter 4 - Results and Discussion: States the findings of the study, interpreta-
tion of results, and discussion of sources that might have influenced the results.

• Chapter 6 - Conclusion: Insights and ideas for further work.

• References: The reference list of the literature review.

• Appendix - A: Abbreviations

• Appendix - B: Regression plots

• Appendix - C: MATLAB code



Chapter 2

Theoretical Background

This chapter provides theory and background information related to conditionmonitoring,
internal combustion engines, signal processing and multivariate analysis. The theory
presented should give the necessary understanding for the methods and procedures to
come, but is by no means an exhaustive representation of the subjects.

2.1 Condition Monitoring

2.1.1 Maintenance Strategies

Most machines are degrading systems, meaning that wear eventually will lead to a
need for maintenance or replacement. To reduce the downtime, and thus increase the
availability of machines, several maintenance programs have been developed. Which
maintenance program that is implemented for a given machine usually depends on
the importance of that machine. Rao [1] classifies the maintenance programs into the
following categories:

• Run to failure

• Preventive maintenance

• Predictive maintenance

The same categories are also used by Randall [2] and Mohanty [22], however the run to
failure-category is here also known as reactive maintenance. The following paragraphs
shortly explain each of these strategies.

Reactive maintenance is as mentioned above a strategy where the machines run until
they break or fail to do their job. At this point, maintenance is required either in the form
of changing of parts or complete replacement. This maintenance program is usually only

9
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implemented for non-critical machines and equipment and is commonly associated with
large repair costs and long downtimes.

Preventive maintenance is a strategy where maintenance is planned and performed
according to guidelines from manufacturers or based on prior knowledge of failures.
Overhauls are carried out periodically, and parts whose life expectancy have surpassed
are replaced by new ones. The positive aspect of such a maintenance strategy is that the
downtime is reduced, because the maintenance is planned, and machines are less prone
to critical failures. However, a downside is that some of the parts that are being replaced
probably have some remaining useful life (RUL).

Predictive maintenance is the condition-based strategy; indicators of machine health
is monitored and deviations from “normal” values might indicate a problem. From the
information of the current condition of the machine the future condition is predicted,
and maintenance can be planned and carried out according to this. Thus downtime is
minimised and availability is maximised.

2.1.2 Machine Condition Monitoring

Within condition monitoring, it is normal to divide the monitoring into two categor-
ies; permanent monitoring and intermittent monitoring. Permanent monitoring relates to
condition monitoring systems where the transducers are permanently attached to the
machine being monitored. Such systems are usually implemented for machines that are
critical; monitoring is done continuously, and thus abrupt changes can be discovered and
the machine can be shut down if necessary. Intermittent monitoring is monitoring where
there is a preset interval for the data acquisition; thus it is more directed towards the
long-term trends and not the sudden changes that might occur. In general, intermittent
monitoring can be used on most machines by setting the data acquisition interval to an
appropriate value. Furthermore, intermittent monitoring can be carried out both by per-
manently mounted transducers and transducers which are moved between measurement
points [2].

Although several definitions are used, it is common to divide machine condition
monitoring into some main phases. Randall [2] divide machine condition monitoring into
three phases: fault detection, fault diagnosis and fault prognosis. Prognosis is the
phase where the future condition of the machine is predicted; i.e the remaining useful life
of the machine (components). Jardine et al [23] divide the condition-based maintenance
program into three steps: (1) data acquisition, (2) data processing and (3) decision
making, however diagnostics and prognostics are deemed as two important parts of
condition based maintenance. These three steps are also mentioned as key elements in
[9]. Building on this, the process of condition-based maintenance can be summarised
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with the flowchart presented in Figure 2.1.

Figure 2.1: Flowchart summarising the process of condition-based maintenance

The data acquisition step is rather self-explaining; it is the step where data is collected
and stored. In general there are two different types of data, the first being data related to
events such as installation, breakdown and overhauls and the second being condition
monitoring data which are the measurements from various sensors. The latter type is the
one being used in the process of condition-based maintenance, however the event-data
can provide insight into the performance of the machine. That is, the performance of an
engine or machine can be said to be decreasing as the wear rate increases through the
running-in phase, the normal operations phase and the wear-out phase [24].

The data processing step can be divided into two: (1) pre-processing and (2) signal
processing and feature extraction. The pre-processing vary considerably from application
to application, however data cleaning i.e the searching and removal of erroneous data
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is a common and important part of the pre-processing. Furthermore, methods like
normalisation and mean centring are also typical in the pre-processing of data. As
mentioned in the previous paragraph, there are two data types in the data acquisition
step. The condition monitoring data can be further divided into three categories: (1)
waveform data, (2) value data and (3) multidimensional data [23]. The waveform data
are data that are recorded for a variable as a time series, like vibration and acoustic
measurements. The value type data are data that are recorded as a single value like
temperature and pressure. Finally, the multidimensional data are data with several
dimensions such as images.

The data processing for waveform and multidimensional data is called signal pro-
cessing, and there are many different approaches of which some are discussed in section
2.2. Raw data by itself seldom provide a lot of useful information, and therefore feature
extraction is often necessary. Depending on the application and the data category, the
process of feature extraction vary considerably. A brief overview of feature extraction
techniques is given in section 2.1.3.

Although presented in separate boxes in the flowchart, the steps of data processing,
data analysis and data classification are tightly interconnected. The idea of the data
analysis step is that the extracted features from the processing step are investigated
closer, and that “alarms” will give indication of something being out of order, i.e a fault
detection. Alarms might be related to a preset threshold, or as a result of comparing the
extracted features to features extracted from the same machine at a time of similar and
healthy operation.

With a fault present, as indicated by alarms the next step is to classify the fault to
discover its location, nature and severity. As seen in Figure 2.1, the main part of the
data classification is the fault diagnosis; the isolation and identification of a fault. The
fault isolation is the action of locating the component which is responsible for the fault
whereas fault identification is the action of determining the nature of the fault, i.e why is
there a fault and what is the severity of the fault. Having a database with known fault
cases and data related to these fault cases can be used as a way to compare and classify
the newly occurring fault. If the new fault has features that coincide with a fault in the
database it is very likely that the fault is the same, however if the features of the new
fault show no similarities with faults in the database further investigation is required. An
example of such a way of classifying a fault can be that vibrations in a certain frequency
range with a noticeable amplitude measured in the fault at hand matches the vibrations
in the frequency range of a known fault in the database.

The final step of the condition-based maintenance process is the fault prognosis
and the maintenance decision making. The prognosis and diagnosis in this scheme are
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somewhat intertwined; in general the fault diagnosis consist of the fault detection, fault
isolation and fault identification. So for there to be a fault diagnosis a fault will necessarily
already have occurred, and thus diagnostics is a posterior event analysis [23]. With the
fault diagnosed, recommendation of maintenance actions can be given directly. The fault
prognosis on the other hand is a prior event analysis, and attempts to predict a fault
before it occurs. The prediction includes an estimate of how likely and how soon the fault
is to occur i.e the RUL of the machine before maintenance is necessary. So if an alarm has
revealed that a fault is emerging, it can still be on a very early stage and the prognosis
thus predicts when the fault is too severe for the machine to continue operation and that
maintenance is necessary. Therefore it is often common to include several alarm levels
which represents the severity of the faults.

2.1.3 Condition Monitoring Techniques

In the case of condition monitoring of machines there are several measurements that
could be done to investigate the health of the machine. In all practical applications
(outside laboratory environments) such measurements should be limited to those that
can be done externally. With this in mind, the most common techniques are vibration
analysis and lubricant oil analysis [2]. Airborne acoustic measurements and acoustic
emission techniques has also seen an increase in condition monitoring research, however
these are closely related to the vibration analysis. Put very shortly, the idea of oil analysis
is to examine the chemical contaminants and the size and amount of wear particles in the
lubricant oil. As the main focus of this project is towards vibration analysis, oil analysis
will not be discussed further.

Vibration analysis for condition monitoring purposes has been used for decades and
shows many advantages over other condition monitoring techniques. All machines emit
vibrations during operation, whether they are in good condition or not. However the
vibration of a machine that is in good condition and the vibration of the same machine
with a fault will be different, which makes vibration analysis very well suited for condition
monitoring purposes. In fact, as a fault emerges the vibration signature will change along
with it, meaning that a fault can be uncovered at an early stage.

2.1.4 Vibration Measurement

Randall [2] describes three ways to interpret vibrations when used for condition monit-
oring purposes: (1) absolute vibration (f.ex of a machine housing), (2) relative vibration
(f.ex between a shaft and the housing) and (3) torsional vibration. The three types give
different yet relevant information for diagnostics. Most relevant for this project is the
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absolute vibration of a machine housing, as contact microphones will be attached on
the engine block. Furthermore, vibration can be expressed through the three parameters
displacement, velocity and acceleration. The corresponding transducers most commonly
used for measurements in condition monitoring applications are proximity probes, velo-
city transducers and accelerometers. Proximity probes measure relative displacement,
while absolute motion is measured by most acceleration and velocity transducers. The
following paragraphs shortly explain the principles of these transducers, but with the
greatest emphasis on accelerometers since these are most closely related to the equipment
used in this project.

Proximity Probes

A proximity probe measures the distance between a surface and the probe tip. There
are several principles on how this distance is measured; by creating a circuit which
includes the distance under inspection, changes in capacitive, magnetic and inductive
properties can be used to represent changes in the distance and thus give a measure of the
displacement caused by vibration. Proximity probes are commonly used for monitoring
of shaft vibration, however for other applications different transducers are preferred
due to the limited dynamic range of 40dB. The dynamic range describes the ratio of the
largest to the smallest measurable signal [2]. In reality the dynamic range limitation
impacts the frequency range and reduces it significantly.

Velocity Transducers

The velocity transducers give a signal proportional to absolute velocity. They usually
consist of a coil and a permanent magnet, where the movement of the coil around the
magnet causes an electromotive force (emf) to be generated. The emf is proportional to the
movement of the coil in the magnetic field, and thus proportional to the velocity. There are
also types where the role of magnet and coil are switched, i.e the coil is rigidly mounted
to the transducer housing whereas the magnet is seismically suspended, meaning that
it is attached to the transducer through a spring. In terms of frequency and dynamic
ranges, such transducers are limited to a lower frequency limit of 10Hz and the upper
frequency limit of 1-2kHz and with a dynamic range of around 60dB. Velocity transducers
have a tendency of being larger and heavier than accelerometers, thus integration of
such transducers will be more difficult without affecting the components which are being
monitored.
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Accelerometers

In the same way as velocity transducers and velocity, the accelerometers produce a signal
which is proportional to the acceleration of a body. The principle of piezoelectricity is the
one most commonly encountered in accelerometers for condition monitoring purposes.
Some materials have a piezoelectric property, meaning that they generate an electric
charge when subject to mechanical strain. This property makes it possible to obtain
an electric charge which is proportional to the acceleration of the surface which the
transducer is attached to. A common design for accelerometers is the compression type,
which utilise the principle of piezoelectricity. In the compression type the piezoelectric
element acts as a very stiff spring between a base and a mass. The base, piezoelectric
element and mass is clamped together with a spring. With the accelerometer attached to
the surface of a vibrating object, the mass in the assembly will lead to deformation of the
piezoelectric element, which in turn creates an electric charge. In the world of condition
monitoring, accelerometers are the vibration transducers which are used the most; this
is mainly due to the advantages of the wide amplitude (dynamic) and frequency ranges
which typically are 120dB and 10Hz-10kHz [2]. Furthermore, the accelerometers are
compact and thus have little influence on the equipment being monitored. Figure 2.2
shows an example of the compression accelerometer and its components.

Figure 2.2: A compression accelerometer and its components (Copyright©Brüel & Kjær)

In this project the use of contact microphones in the form of piezoelectric pickups
will be investigated for condition monitoring purposes. These are made for and used to
collect vibrations on the surface of musical instruments and turn them into electrical
signals which can be transmitted through an amplifier. These transducers, as the acceler-
ometers, utilise the principle of piezoelectricity and thus work in much the same way.
Accelerometers tend to be a lot more robust which is natural due to the environment they
are exposed to. Both the piezoelectric accelerometer and the piezoelectric pickup have
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a high output impedance, which generally means that an amplifier is required before
anything else can be done with the electrical signals they generate. More on the specific
equipment used in this project is discussed in chapter 3, but Figure 2.3 shows a drawing
with the general structure of a piezoelectric pickup.

Mass

Piezoelectric material

Spring
VoltageInside

Housing

Outside

Acceleration
(Vibration)

Figure 2.3: Structure of a piezoelectric pickup microphone

Requirements to instrumentation for measurement of vibrations on rotating and
reciprocating machinery are given in International Organization for Standardization
[ISO] 2954 [25]. As the chosen measurement equipment in this project is an acoustic
guitar pickup microphone it is clear that there will be some deviations to the requirements.
But the main purpose of the requirements in the standard is to reduce the inaccuracies
of measurements to within a specific value. Another standard of interest with regards
to vibration condition monitoring is ISO 13373-1 [26] which give general guidelines
for the measurement procedures. As this project tends to be quite different from a
traditional vibration analysis procedure, not all of the elements of these standards are
equally relevant, however some of them are discussed further in chapter 3.

2.1.5 Vibration Analysis

As mentioned in section 2.1.3, there are many reasons as to why vibrations are good
indicators of machine health. All machines vibrate, and emit certain vibration character-
istics depending on the operating condition and health condition. This is especially true
for machines with rotating components, or components with repetitive or cyclic work
patterns. This makes frequency analysis one of the main diagnostic tools for interpreta-
tion of vibration signals from machines. As an example, take the rotation of a shaft; if it
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rotates at a constant speed the frequency of rotation can be recognised in the frequency
analysis, and other components that are dependent on the shaft speed or multiples of the
shaft speed can be identified and separated.

Vibration analysis in its entirety is a very extensive field, and the following paragraphs
are only intended as a minor introduction to the area. Furthermore, the goal of this project
is to take on a “new” approach to vibration analysis, parting from the traditional time
domain and frequency domain approaches. Firstly, a short introduction to vibration in
the time domain is given. Vibration is motion around an equilibrium position, and in the
time domain the vibration signals appear as a curve which shifts around zero. Figure 2.4
shows an example of a vibration waveform from an internal combustion engine. One of
the most useful aspects of the time domain analysis of vibration signals from IC engines
is to plot the vibration signals with respect to rotation of the crank shaft. This makes
it possible to relate the vibration signatures to the different events of the engine cycle.
Information of the vibration signal in the time domain representation can be extracted
through mathematical and statistical properties. However, these are most relevant for
signals that are stationary in time, meaning that their statistical properties does not
change in time [5]. As stated in the introduction (section 1.1), the vibration signals from
internal combustion engines are non-stationary, thus the time domain descriptors are
less useful for such signals. Nevertheless, the most common statistical descriptors are
given in Table 2.1, as some of them might still have relevance for later parts of the project.
In Table 2.1 xi is the signal at any time instant and N is the total number of time instants.

As mentioned these descriptors provide little information with regards to non-
stationary signals and even for stationary signals, more insight can be obtained by
translating the analysis into the frequency domain. ISO 13373-2 [28] gives some guidelines
on how to process, present and analyse vibration data both in time and frequency do-
mains, and ISO 20816 Part 1 [29] and ISO 10816 Part 6 [30], deals with the evaluation of
the vibration measurements. Since the analysis in this project mostly takes place in the
frequency domain, vibration analysis in the time domain will be discussed no further.
Before presenting general procedures for vibration analysis in the frequency domain,
some basic signal processing theory is ascertained, with main focus on the transition
from time to frequency domain. The following section takes on much of the theory
from the pre-project mentioned in the preface, as this theory also was necessary for
implementation and understanding of the methods there.
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Table 2.1: Time domain descriptors for vibration signals [22], [27]

Name Formula Description

Mean x̄ =
1
N

N∑
i=1

xi

The sum of the signal over all time instants divided by the
number of time instants provides the mean value of the
signal

The mean value can be used as a preliminary indicator,
where a higher mean should lead to further investigation

Max xmax =max |xi |

The max value, also known as the peak value gives useful
information in regards to events of short duration like bursts
or shocks (peak-to-peak can also be interesting for relation
to vibration displacement)

Min xmin =min |xi | The minimum value of the vibration signal

Range xranдe = xmax − xmin The range of the vibration signal

Sum xsum =
N∑
i=1

xi The sum of the vibration signal over all time instants

RMS xrms =

√√√
1
N

N∑
i=1

xi2
Root mean square, which basically is the squared average. It
is useful for signals which have both positive and negative
values and is related to vibration energy

Standard Deviation σ =

√√√
1
N

N∑
i=1

(xi − x̄)2
Standard deviation provides the average distance of the
values from the mean and thus acts as a measurement of
the distribution of the data.

Variance σ 2 =
1
N

N∑
i=1

(xi − x̄)2
The variance is the square of standard deviation, which
means that it is the square of the average distance of the
values from the mean

Kurtosis xkur =

∑N
i=1(xi − x̄)4

(N − 1)σ 4

Kurtosis is a measure of the “heaviness” of the tails in a
distribution. The tails in a distribution are the parts of the
distribution that are far away from the mean.

A kurtosis larger than 0 implies that the data is distributed
in such a way that samples away from the mean have a
large weigth compared to the rest of the distribution, and
vice-versa

Skewness xskew =

∑N
i=1(xi − x̄)3

(N − 1)σ 3

Skewness says something about the symmetry of a distri-
bution of data, and the well known normal distribution has
a skewness of 0

Crest Factor C f =
xmax

xrms

The crest factor is the ratio of the maximum value to the
RMS value. An increase in the crest factor might be related
to impulses or random vibrations, thus by using the crest
factor as a monitoring variable faults might be discovered
before breakdown occurs

Form Factor S f =
xrms

x̄

The form factor is the ratio of the RMS value to the mean,
and alongside the crest factor it gives some information of
the waveshape of the signal
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Figure 2.4: Typical vibration waveform (time domain) of an internal combustion engine.
The peaks are related to the combustion events in the engine cylinders

2.2 Signal Processing

When the vibration measurements are collected, they are expressed in the time domain.
The units may vary, but in this project the amplitude of the vibrations is expressed as a
voltage, and the measurements are a time series ranging from the start of recording to
the end of recording. From the vibratory movement of the engine and until a waveform
of the vibrations can be expressed on a computer, the signal goes through several steps
of processing. Most important is the analog-to-digital conversion; since the voltage
produced by the piezoelectric material in the pickup microphone is a physical quantity, it
has to be converted to a size which a computer can understand. Shortly put, this is done
through the sampling and quantisation procedures, which deals with the discretisation
of time and measurement values of the continuous signal respectively [31].

An important aspect of this step of the processing is to have sufficient sample rate.
Proper sampling is used of a sampling process where the analog signal can be recovered
from the digital signal. Then the opposite, improper sampling is when the analog signal
cannot be recovered exactly from the digital signal. In the latter, it is usually the problem
of aliasing that leads to errors in the transition; aliasing is when sine waves change
their frequency in the analog-to-digital conversion. This happens because frequency
components in the signal are too "fast" for the sampling rate. To overcome this problem,
one must apply The Sampling Theorem which states that to obtain a proper sampling
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of a continuous signal the frequency components of the signal must be no larger than
one-half of the sampling rate. This frequency (one half of the sampling rate) is known as
the Nyquist frequency. To clarify, if we have a sampling rate of 4000 samples per second,
the frequency components of the signal cannot be larger than 2000 cycles per second
[31].

2.2.1 Frequency Domain

In the frequency domain the representation of the vibration signal is dependent on
frequency rather than time as in the time domain. Transforming the signal from the time
domain to the frequency domain includes some mathematical formulas which will be
discussed in this section, and the Fourier Transform is the core of it all. The basis of the
Fourier transform is that every continuous periodic signal can be represented as a sum
of sinusoidal waves. The Discrete Fourier Transform (DFT) is a mathematical technique
applied to digitised signals [31], which compares the content of a signal to sinusoids of
different frequencies [32]. Sinusoid is a term used for both cosine and sine waves. The
sine and cosine waves are closely related, and each can be expressed by the other by
including a phase shift. The importance of sine waves in signal processing lies within the
fact that the sine wave retains its shape when added to another sine wave with the same
frequency; it produces a new sinusoid with the same frequency. This property of sine
waves is sometimes called sinusoidal fidelity, and only apply to linear systems which
are time-invariant [31]. Most of this is common knowledge, at least for people working
with digital signal processing, but it gives an introduction to how the DFT is carried out.
Adopting the terminology and notation from [32] the frequency magnitude- and phase-
coefficients can be expressed as the following, where R is the range of real numbers.

ωϵR (2.1)

dωϵR ≥ 0 (2.2)

φωϵR (2.3)

As mentioned, the Fourier transform compares the signal to sinusoids of different
frequencies. If a sinusoid of a frequency ω is resembling an oscillation in the signal,
this will give rise to a large magnitude coefficient dω . Similarly, if a frequency ω does
not resemble any of the oscillations in the signal, this will lead to a small magnitude
coefficient dω . Thus, for every frequency ωϵR, a magnitude coefficient dω and a phase
coefficient φω is obtained. The phase coefficient reflects how the sinusoid is shifted to
best fit the original signal.
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It is not the goal to give a comprehensive explanation of the Fourier transform in
this project, thus in-depth explanations of the mathematics will not be given. Necessary
formulas will simply be stated, and the reader is referred to other sources for more
thoroughly explanations. In general, the (real) discrete Fourier transform takes in a real
valued N point signal, and outputs two N /2 + 1 arrays. The arrays can be thought of
as the amplitudes of the sine and cosine waves for which the signal is represented by.
For the input signal x[.] the arrays are given as ReX [.] and ImX [.], where the real array
represents the amplitude of the cosine waves, and the imaginary array represent the
amplitudes of the sine waves. The arrays are calculated as shown in equation (2.4) and
(2.5) , where k is an integer in the range [0,N /2] and i runs from [0,N − 1]. Here the
notation is adopted from [31].

ReX [k] =
N−1∑
i=0

x[i]cos(2πki/N ) (2.4)

ImX [k] = −

N−1∑
i=0

x[i]sin(2πki/N ) (2.5)

This is known as the analysis equation, and is an example of the concept of correlation
and how the DFT can be calculated mathematically. The time domain signal is multiplied
with sine and cosine for different frequencies and the resulting points are added to form
the frequency domain signal. However, it is easier to interpret the signal in the frequency
domain in terms of magnitude and phase, and the transformation is given by

MaдX [k] =

√
(ReX [k])2 + (ImX [k])2 (2.6)

PhaseX [k] = arctan

(
ImX [k]

ReX [k]

)
(2.7)

Using Euler’s formula, a more formal definition can be given for the discrete Fourier
transform [32]

X (k) =
N−1∑
n=0

x(n) · e(−2πikn/N ) (2.8)

for integers
k ϵ [0 : N − 1]
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where

N = Number of samples

e(−2πikn/N ) = cos(2πkn/N ) − isin(2πkn/N )

However, calculating the DFT like this is very time consuming, and therefore many
applications today use algorithms to calculate the DFT. One of the most widespread
algorithms is the Fast Fourier Transform (FFT). What makes the FFT so much faster than
the method presented above is that it utilises the redundancy found over sinusoids with
varying frequencies, and then computes the Fourier coefficients by recursion [32]. Using
the above calculation method would give n2 operations, while using the FFT will give
a number of operations equal to nloд2n. MATLAB has a built-in function for the FFT
which will be used throughout the project. No further details will be given of the FFT, but
the reader is encouraged to read chapter 12 of [31] and chapter 2.4.3 of [32] for further
explanations. Figure 2.5 nicely summarises the transform from the time to the frequency
domain.

Figure 2.5: Graphical representation of the transition from time domain to frequency
domain (Figure by "Phonical", distributed under the Creative Commons Attribution-
ShareAlike 4.0 International license [33], [34])
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2.2.2 Spectra

In this section a short introduction to frequency spectra and their relevance towards the
project is presented. A spectrum is a representation of the frequencies contained within
a signal, and it is one of the main results from the Fourier transform of a time domain
signal. There are several different types of spectra, but themost common are the amplitude
spectrum and the phase spectrum. These are simply the plots of the magnitude an phase
angle versus frequency [35]. The amplitude spectrum is also therefore commonly called
the magnitude spectrum. The phase spectrum can provide a lot of useful information,
however for this project it is the amplitude spectrum that is of most interest.

Another common spectrum representation is the power spectrum (periodogram), or
power spectral density which it also is called. The name "power" comes from the fact
that sound and vibration signals very often are interpreted or expressed as a voltage,
and the relation between power and voltage is given by Power = (Voltaдe)2/Resistance .
The power spectrum thus shows how much power is contained within every frequency
component of the signal [35]. The representations can differ depending on the value
on the axes; the x-axis is usually the normalised frequencies (i.e with respect to the
sample rate), and the y-axis is the magnitude given either a linear or logarithmic scale.
Furthermore, the spectra can be given as single- or double-sided, where for the single-
sided spectra the negative frequencies are omitted. Figure 2.6 shows the (single-sided)
amplitude spectrum of a 2,4seconds long recording of a six cylinder diesel engine running
at 1000rpm with a load of 20Nm. A zoomed view is given in Figure 2.7, where it is possible
to locate several frequencies related to the operating condition. In both these figures, the
amplitude has not been normalised according to the signal length, hence the large values.
The horizontal axis contains the frequencies up until the Nyquist frequency.

In Figure 2.7 several frequency peaks are pointed out with red arrows. The first one,
which is marked with "rpm" is found at approximately 16,6Hz, and is thus related to the
rpm of the engine because 1000 revolutions per minute gives 16.67 revolutions per second.
The subsequent peaks are related to the firing frequency of the engine; a six cylinder IC
engine requires two complete revolutions of the crankshaft to complete an engine cycle,
which means that there are three combustion events per revolution of the crankshaft.
Taking the number of revolutions per second (16,67 at 1000rpm) and multiplying it with
three gives 50 combustion events per second, and gives the peak marked with "F" in the
figure. The following peaks that are marked are the harmonics of the firing frequency;
these are integer multiples of the firing frequency. Since the firing frequency is related to
the rotational speed, these can also be said to be integer multiples of the rotational speed,
which is the basis for the field of order analysis.

In order analysis the frequency of rotation is the first order, and the second order is the
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Figure 2.6: Amplitude spectrum of a 2.4second long vibration recording of a six cylinder
diesel engine running at 1000rpm and with a load of 20Nm

rotational frequency multiplied by two, whereas the third order is the rotational frequency
multiplied by three and so on. In the case of a six cylinder engine, the third order and
the firing frequency are the same. Order analysis is a technique used to find information
for specific orders [36]. As can be seen in Figures 2.6 and 2.7 a lot of information can be
extracted, and this is at the core of traditional vibration analysis. For example, Abed et
al [6] managed to detect faults in exhaust valve clearances by comparison of amplitude
spectra from the healthy and the faulty conditions. However, the spectrum is largely
influenced by the firing frequency and its harmonics, which might make it difficult to
separate out other frequencies that could be of interest [8]. Furthermore, this method
requires knowledge of the engine beingmonitored and experiencewith frequency analysis
if faults are to be detected, which is why new methods are constantly being developed.

Four more expressions should be presented as their meaning and effect has some
relevance towards the chosen methods in this project; smearing, leakage, truncation and
windowing. If an interval of a (deterministic) signal in the time domain is to be transformed
to the frequency domain the following can be said: the interval is a rectangular window
which has value 1 for the length of the interval but zero elsewhere1. The truncated signal
is the product of the original signal and the rectangular window. The Fourier transform
of the product of two time signals is given by equation (2.9)

1Having a rectangular window is thus the same as having no window at all, and it is just used here for
a proof of concept
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Figure 2.7: A zoomed view of Figure 2.6, where it is possible to recognise several
frequencies and relate them to physical events.

F {x(t)ω(t)} =

∫ ∞

−∞

X (д)W (f − д)dд = X (f ) ∗W (f ) (2.9)

which basically states that a product in the time domain is convolution in the fre-
quency domain. The convolution introduces truncation errors in the Fourier transform
known as smearing and leakage. Shortly put, and without going into too much detail
smearing is what happens when frequency components that are closely spaced are diffi-
cult to separate, or resolve and leakage is spreading of frequency components over the
bandwidth, which can lead to addition of new frequencies not originally present in the
signal [35]. There are many different window functions that are better suited to reduce
these errors than the rectangular window, and two are shortly mentioned in the next
section. The point of mentioning this is that the errors of smearing and leakage can be
even more prominent when the signal being analysed is non-stationary, which means
that interpreting amplitude spectra obtained through the Fourier transform of vibration
signals from IC engines can be troublesome.

2.2.3 Time-Frequency Domain

In the introduction of the project, it is stated that the vibration signal of an IC engine
is non-stationary, and some relevant research on different signal processing methods
used is presented. In this section further discussion will be given as to why it can be
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problematic to transform the non-stationary vibration signals from IC engines directly to
the frequency domain using the Fourier transform, and what can be done instead.

The cycles of an IC engine consist of the combustion happening in the cylinders and
the other strokes that are before and after the combustion stroke. More detail on the
combustion cycle is given in section 2.4. The engine cycles and the processes within
each engine cycle happen repeatedly, however there will be variations from each cycle to
the next due to the nature of the combustion events. Thus, the vibration signal from IC
engines vary both in time and frequency, and by transforming the signal to the frequency
domain by means of the regular Fourier transform the information of the time-variation
is lost. Therefore it is useful to analyse vibration signals from IC engines in the joint
time-frequency domain.

There are several methods for transforming a signal to the time-frequency domain,
and as can be seen from the research presented in the introduction the most common are
the Short-Time Fourier Transform (STFT), the ContinuousWavelet Transform (CWT) and
the Wigner-Ville Distribution (WVD). For this project the STFT will be used mainly due
to its easy integration with Principal Component Analysis (PCA) which will be discussed
in section 2.3. Therefore no further information will be given on the CWT and the WVD.

What makes the STFT different from the DFT is that it only considers a small section
of the signal at a time, to prevent information from being hidden, as may happen when
considering the signal in one entity. These sections of the signal, commonly denoted
frames or segments are of equal length, and their length is usually given in a number of
samples. A Fourier transform is calculated for each of these frames using the FFT, which
results in frequency information at different times of the signal. The result of all the
Fourier transforms are gathered and then the frequency spectra can be plotted against
time. [32].

Building on the discussion of window functions from the previous section, a window
function can be said to be a function that is nonzero for a only a short period of time.
This period defines the interval of the section being considered. The windowed signal
is obtained by multiplying the window function by the frames of the original signal.
Window functions are in general used to afford more influence to the data at the centre
of the set than to the data at the edges, however this can lead to a loss of information.
To overcome this obstacle, it is normal to use overlapping frames, and an overlap of
50% is quite common. This will reduce the loss of information. Because of the window
functions, the STFT is also known as "the windowed Fourier transform". Two typical
window functions are shown in Figure 2.8, and the effect of a Hamming window on a
frame of a vibration signal is shown in Figure 2.9. Furthermore the concept of dividing a
signal into frames is shown in Figure 2.10.
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Figure 2.8: An example of two different window functions for 512 samples, the Hanning
and Hamming windows.

When deciding for the frame length for a given application there are several things one
should bear in mind. First of all the sample rate, i.e the number of samples collected per
second should be considered. The sample rate together with the frame length determine
the time interval of each frame. Next, one should contemplate on the physical origin of
the signal to find a frame length that best suits the signal at hand. The following provides
an example of this; returning to Figure 2.9, which contains one frame with a length of
512 samples. With the background knowledge that this is from an IC engine, it is possible
to relate the impulses centred around 250 on the horizontal axis to a combustion event.
If a frame length of 256 samples was to be used, the combustion event would be split
in half, or at least spread over two subsequent frames. This is not necessarily negative,
however it is something that should be thought of when selecting the frame length.

An other thing related to the selection of the frame length is the trade-off between
time resolution and frequency resolution. Increasing the frame length gives an increased
frequency resolution, i.e that closely valued frequencies are easier to separate. Shorter
frame lengths gives better time resolution which means that it is easier to detect when
frequencies change [32]. Thus one must make a choice of which resolution is most
important for the given application. This trade-off, or dilemma is by some considered a
weakness of the STFT [37], [35] which has led to the development of methods like the
CWT.

Lastly, the way to visualise the result of the STFT is by using a spectrogram. A
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Figure 2.9: The original and windowed signal of one frame of length 512 samples from
the vibration waveform presented in Figure 2.4

spectrogram is a representation of how the magnitude of the frequencies change in
time [31]. It is thus a two-dimensional representation of the magnitude, because it
shows the dependency in both time and frequency. The spectrogram is composed of
the frequency spectra of all the frames which the signal is divided into; the spectrum
of each frame represent one vertical line in the spectrogram image. The spectrogram is
usually presented with frequency along the y-axis, time along the x-axis, and then colour
or light intensity which represents the magnitude of the frequencies. Low magnitude is
represented by light colours or white fields, whereas high magnitude is given by dark
colours or black and grey fields. For spectrograms with colours, it is good custom to
include a colorbar showing which colours represent which magnitudes.

Figure 2.11 shows an example of a spectrogram2 based on the same recording as
was used for the amplitude spectrum in Figure 2.6. A frame length of 4096samples and
50% overlap has been used for the transformation to the time-frequency domain. The
values along the horizontal axis are here denoted "frequency coefficients" i.e they are not
frequencies directly, but they represent the frequencies from 0 to the Nyquist frequency.
Thus, to get the frequency at an occurrence in the figure, the value along the horizontal

2In literature, a spectrogram is given as the squared magnitude of the STFT [32], however here the
word spectrogram is used when visualising magnitudes that are not squared as well
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Figure 2.10: The principle of dividing a signal into frames. The figure shows a vibration
signal from an IC engine with a total of 16384 samples, frame length of 4096 samples and
with 50% overlap between successive frames

axis has to be multiplied by the the Nyquist frequency divided by the number of frequency
coefficients (which is determined by the frame length). In this recording the sampling
rate is 34,1kHz, which makes the Nyquist frequency 17,05kHz. So, to give an example
there is a line with high intensity at approximately frequency coefficient 242; using the
relations provided above, this gives a frequency of roughly 2015Hz. This can be validated
towards the amplitude spectrum in Figure 2.6, where the largest peak appears between
2014Hz and 2015Hz.
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Figure 2.11: Spectrogram of the vibration recording of a six cylinder diesel engine.
The frames on the vertical axis represent the time-dependency, whereas the frequency
coefficients along the horizontal axis represent the frequencies, although not directly.
The recording is the same as in Figure 2.6
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2.3 Multivariate Analysis

This section moves on to some other methods used in this project, which all fall under the
common name of multivariate analysis. The main focus will be on Principal Component
Analysis and regression methods such as Principal Component Regression (PCR) and
Partial Least Squares Regression (PLSR). As PCA was used for the pre-project done during
the autumn semester of 2017, some of the theory presented there will be reused in the
following paragraphs.

Some terminology must be introduced before delving into the Principal Component
Analysis. A multivariate method is a method in which several variables are measured
simultaneously as opposed to univariate methods, where only one variable is measured
[38]. Multivariate analysis (MVA) is useful when relationships between variables becomes
more complex, and when investigating one variable at a time is no longer practical.
Correlation is a dimensionless property that describes how variables or measurements
vary together, thus two variables are correlated if variations in values of one of the
variables leads to variations in the values of the other variable. If this is not the case, the
variables are said to be uncorrelated. Covariance describes the influence one variable has
on others and its definition is very similar to that of correlation. Given two variables X1

and X2, their covariance and correlation is mathematically expressed as [39], [40]

Cov(X1,X2) = E[(X1 − E[X1])(X2 − E[X2])] (2.10)

Corr (X1,X2) =
E[(X1 − E[X1])(X2 − E[X2])]

(σX1σX2)
(2.11)

where

E(X ) = expected value (mean)

σX1 = Standard deviation in X1

σX2 = Standard deviation in X2

Formulas for mean and standard deviation are given in Table 2.1. The discussion of
terminology will be concluded by introducing causality; causality describes the relation
between cause and effect. An example of causality can be given by thinking of two
random processes; if the first process is the reason for the second process to happen, and
the second process is to some degree reliant upon the first, there is causality between the
two processes.
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2.3.1 Principal Component Analysis

Principal component analysis is a statistical multivariate method used to find and under-
stand relationships in large data sets [38]. It does this by reducing the dimensionality of
the data by replacing the original variables with latent variables. The latent variables are
"hidden" variables, meaning that they do not necessarily represent physical factors; they
are linear combinations of the original variables. These linear combinations, or latent
variables are known as principal components (PCs). PCA is useful if the original variables
are correlated. One of the main goals of the PCA is to reduce the dimension of a set
of data without losing too much of the information contained within it; the principal
components are therefore uncorrelated and chosen on basis of the largest variation in the
the original variables. The first principal component represent the largest variation in
the data set, and the second principal component represent the second largest variation
in the data set and so on [41].

Assuming the data is represented in a matrix, PCA utilises the principle of projection;
the columns of the data matrix represent the original variables and each of the variables
defines an axis in a coordinate system, which in total defines the variable space. The rows
of the data matrix are the objects, samples or observations which are shown as points in
the variable space [42]. These observations could for example represent measurements at
a particular point in time. To best explain the variation of the observations in the variable
space, a "trend-line" or "best-fit-line" can be drawn through the swarm of points; this
line summarises and estimates what the points are describing. This first best-fit line is in
fact the first principle component, and the distance from the 90deдree projection of an
observation on the line and to the origin (of the latent variable space) is the score of that
exact observation. Every observation is awarded its own score value, which can be either
positive or negative. The direction of the line is therefore sometimes describes as “the
direction of maximum variance of the projections onto the line” [43, p. 294]

The second PC is found in the same way, however it has to be perpendicular to the
first PC. The second PC will point in the direction of the second largest variance, and
the scores for this component are the distances from the origin to the projections of the
observations along this line. The PCs are composed of two elements; The total number
of score values (one for each observation) collected in a column vector denoted t and the
direction of the component given by a direction vector denoted p. The direction vectors
are unit column vectors known as loadings, and they act as a link between the original
variable space and the latent variable space [43]. After having found two PCs, a plane
can be defined where the two PCs act as a new coordinate system often called the latent
variable coordinate system. This plane is the best description of the data we can obtain
using two PCs. The theory presented in this and the previous paragraph is illustrated in
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Figure 2.12. Here a 3D-space is shown with observations given as green dots; principle
components are given as red lines, and the picture shows the projection of a score value
onto the first PC.

Figure 2.12: Illustration of Principal Components and the score value [42]

2.3.2 Mathematical Derivation of PCA

The following gives a deeper insight into the maths behind the PCA. It does not have
any direct relevance to the project, other than that it provides a greater understanding
of the method. Thus, skipping this section and going straight to section 2.3.3 where
larger emphasis is put on interpreting the results of the PCA can be done if desired. The
explanation that is presented here is obtained from [43, p. 296]. PCA is based on linear
algebra and statistics, but can also be explained from a geometrical point of view. Suppose
we have a data matrix X of size (N × K). Denote a row from the data matrix as X ′

i , so
that X ′

i becomes a 1 × K vector.
In Figure 2.13 the following is given: the vector Xi , the direction vector P1 which is

a unit vector, and the distance ti,1 which is the score value for the ith observation with
regards to the first principal component. Using the following relations of the cosine



34 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.13: Geometrical representation of scores

cos(θ ) =
adjacent

hypotenuse
=

ti,1
| |Xi | |

a ·b = | |a | | · | |b | |cos(θ ) (2.12)

cos(θ ) =
X ′
iP1

| |Xi | | · | |P1 | |

ti,1
| |Xi | |

=
X ′
iP1

| |Xi | | · | |P1 | |

ti,1 = X ′
iP1 (2.13)

It can be seen that the score value is a linear combination of the ith row of data Xi

and the vector P1. To calculate all score values for the same observation, one can do the
computation

t ′i = X ′
iP

and for a complete data matrix, the computation takes the form

T = XP (2.14)
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where

T = The scores for all the observations given as a (N ×A)

X = The original data matrix (N × K)

P = The loadings (K ×A)

A = The number of principal components

The geometrical point of view gives an easy and understandable introduction into the
world of PCA, however it is natural to talk a bit about the covariance matrix, which forms
the basis for the PCA. The following is obtained from [44]. Let X be a data matrix of
size (m × n), where n = 30 represent the samples andm = 3 represent the variables. The
ith measurement can be represented as a (3 × 1) vector ®xi . The expected value, or mean
was presented in equations (2.10) and (2.11) for covariance and correlation. Formulas for
variance and mean were also given in Table 2.1, however to follow the notation of the
literature that is used as a basis here, they are given as

E[X ] = ®µx =
1
n
(®x1 + ®x2 + ®x3 + . . . + ®xn) (2.15)

Var (A) =
1

n − 1
(
(
a1 − µA)

2 + . . . + (an − µA)
2) (2.16)

As a pre-processing it is often common perform data-centring the origin. This is
done by subtracting the mean from each measurement vector. Using this, a new matrix
is defined as

B =
[
®x1 − ®µx ®x2 − ®µx . . . ®xn − ®µx

]
(2.17)

Then, defining the covariance matrix as

S =
1

n − 1
BBT (2.18)

It can be seen that this makes sense in relation to the definition of the covariance in
equation (2.10). The S-matrix will be a symmetric (m ×m) matrix, with the entries on the
diagonal being the variances of the variables, and the other entries being the covariance
between variables. This can be illustrated by an example which is adopted from [44].
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Given the following

®x1 =



a1

a2

a3

a4


, ®x2 =



b1

b2

b3

b4


, ®x3 =



c1

c2

c3

c4


, ®µx =



µ1

µ2

µ3

µ4


This gives

B =



a1 − µ1 b1 − µ1 c1 − µ1

a2 − µ2 b2 − µ2 c2 − µ2

a3 − µ3 b3 − µ3 c3 − µ3

a4 − µ4 b4 − µ4 c4 − µ4


(2.19)

Then the first entry of S would be given by

S1,1 =
1

3 − 1
(
(
a1 − µ1)

2 + (b1 − µ1)
2 + (c1 − µ1)

2)
whereas the first entry of the second row would be given by

S2,1 =
1

3 − 1
((a1 − µ1)(a2 − µ2) + (b1 − µ1)(b2 − µ2) + (c1 − µ1)(c2 − µ2))

It is easy to see that the entry S1,1 is the variance of the first variable, whereas the
entry S2,1 is the variance between the first and the second variable. To wrap this up, the
eigenvalues of S (in decreasing order) can be found from the relation

A®vi = λi ®vi (2.20)

(A − λI )®v = 0 (2.21)

The corresponding eigenvectors to the eigenvalues of S are the principal components.
Hence, the relation between statistics and linear algebra has been established. The most
common algorithms for calculating PCA are the Singular-Value Decomposition (SVD)
and the nonlinear iterative partial least squares (NIPALS) algorithms, however these will
not be discussed further here.
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2.3.3 Important Plots and Interpretation of Plots

PCA provides many powerful graphical representations of the data, however the most
important results of the PCA analysis is the scores, the loadings and the explained or
residual variance. Scores and loadings have already been introduced, but the explained
variance remains to be presented. The explained variance shows how much information
is carried by each principal component, and the residual is the complementary; that is
how much variance remains to be explained after each PC [42]. Thus, the importance of
a PC is determined by the size of its residual variance.

Score plot

The score plot often appears as a map of the scores of one PC plotted against the scores
of another PC. This provides a scatter plot of the samples, and gives an illustration of the
distribution of the data. Although you could plot the scores of any of the PCs against
each other, the most interesting is the plot of the scores of PC1 and PC2, because these
are the components with the largest explained variance. The score plot can be used
to reveal patterns, groupings and outliers. Outliers are samples that are very different
from the rest, meaning that they appear far away from all the other samples in the score
plot. Outliers could be a result of errors in the data collection, and should be considered
removed from the data set. As mentioned earlier, each sample has its own score value for
each PC, and this value represents the location of that sample along the PC. It can be a
good idea to look at the score plot of two PCs at the same time as a loadings plot of the
same PCs, because this can provide insight into which variables that lead to differences
between samples.

Loadings plot

The loadings of a PC describe how much each variable contribute to that PC, and is
a value between -1 and +1. The value of the loadings is connected to its geometrical
representation, which is the same as the relation given in equation (2.12), i.e a loading is
the cosine of the angle between the corresponding PC and the variable [42]. A small angle
gives a large value for the loading and indicates that the connection between the variable
and PC is high. When interpreting loadings plot, it is wise to look for variables with
loading values close to 1 or -1 for each PC, because this means that the PC describes the
variable in a good way. Depending on the variables of the application, it can sometimes
be easier to look at the loadings plot as a line plot, i.e look at the loadings for one PC at a
time.

To end the discussion of the PCA a short summary is given. PCA can be applied on a
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matrix of data (N×K) , where the goals can be one or more of the following: simplification,
data reduction, modelling, outlier detection, variable selection, classification, prediction
[45]. PCA can be used to find an underlying data structure in a set of data and separate
this from the noise in the data. PCA thus provides a bilinear matrix decomposition of the
data matrix, where the scores and the loadings of the principal components are the main
elements.

When interpreting a PCA model there are several things to pay attention to: firstly
the quality of the obtained model must be assessed by looking at the number of principal
components and the variance explained by each of them. Further on, outliers should
be detected and investigated closer. Before using the model for prediction, it should be
validated. Validation is discussed further in section 2.3.8. In the interpretation of scores
and loadings, if the loading of a variable and the score of a sample on the same PC have
positive values, the value of the sample is higher than average for that variable, and
the other way around; if the signs are negative the value of the score is lower than the
average for that variable. However, one should be careful to interpret loadings with small
values, because this means that the variable is badly described by the PC.

2.3.4 Regression Methods

This section shortly describes the principles of three different regression methods that
will be employed in the project, namely Multiple Linear Regression (MLR), Principal
Component Regression and Partial Least Squares Regression. It is not the intention here
to go into very specific details about these three methods, thus the mathematical repres-
entations will be kept at a minimum. Instead the focus is directed to what separates these
three methods, how their results can be interpreted and what makes a good regression
model.

Regression is a common name given to methods where the intention is to establish a
relationship between variables. The regression methods used in this project are linear,
thus the desired relation is that one variable can be approximated as a linear function
of the other. These variables go by many names, but frequently encountered names are
predictors (X-variables) and responses (Y-variables). They also sometimes go by the name
"independent" and "dependent" variables, respectively. The established relationship can
be used either to gain more insight into the variables or to predict new values. Prediction
can be advantageous in cases where measurements are hard to obtain, or for economical
reasons [42].

It is possible to do both univariate regression andmultivariate regression; the difference
is whether one or several prediction variables are used. In this project more than one
predictor variable will be used most of the time. A good regression model is characterised
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by (1) it extracts all relevant information, and (2) it does not model noise (does not overfit
the model). Most regression methods seek to minimise the sum of the squared residuals,
where the residuals are the differences between measured and predicted Y-variables [46].
Using the notation in [46], the general form of the linear (multivariate) regression model
can be given as

f (X ) = β0 +

p∑
j=1

X jβj (2.22)

where

f (X ) = Y = Response variable(s)

β0 = intercept term

βj = Regression coefficients

X j = Predictor variables

Before using a regression model to predict new values it is of great importance to
validate and assess the quality of the model. Validation will be discussed in section 2.3.8,
however there are some other characteristics or features common for all the regression
methods used in this project that could and should be addressed to evaluate the quality
of the model. Initially it can be a good idea to evaluate if the model is overfitted (has
modelled noise), or if the model has a lack of fit, i.e there are nonlinearities in the data.
For example, the residuals should have a random distribution, and show no trend [42].
Furthermore, one should look for outliers and consider them removed if they have large
influence on the model.

Moreover, when assessing the quality of the model there should be a straight line
relationship between predicted and measured values of the Y-variable, i.e an increase
in the value of the measured Y-variable should give a corresponding increase in the
value of the predicted Y-variable (for example when looking at a plot of measured versus
predicted values). This line relationship should have a slope close to 1 to qualify as a
"good fit". Some other statistical measures that indicate the quality of the model are
R-squared, adjusted R-squared, R2(Pearson) and root-mean-square error (RMSE). The
R-squared, which also goes by the name of coefficient of determination, gives a measure
of the correlation between predicted and measured values, and ranges from 0-1, where
a value close to 1 is indicative of a good model. The R-squared value comes from the
sum 1 − Residual Y-variance [42]. The adjusted R-squared, which is the R-squared for
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validation, is a measure of how good the fit of future predictions are expected to be,
and also range between 0-1, where 1 is a good result. R2(Pearson) is simply the square
of the correlation value. The RMSE can be given both for calibration and validation,
and it says something about the spread of the samples in relation to the regression line
[42]. More specifically there are three main types of RMS: root mean square error of
calibration (RMSEC), root mean square error of cross validation (RMSECV) and root mean
square error of prediction (RMSEP). The RMSEC is the spread of the samples around the
regression line for the calibration samples, i.e the average deviation between reference
and predicted values. RMSECV is the spread of samples around the regression line for
cross validation, and is thus an estimate of the average prediction error. RMSEP can be
thought of as the average prediction error, and it is the best measure on how a model will
perform on future samples. The RMSEP is obtained with a separate test set, where the
samples have not been used in calibration of the model. The following sections shortly
outline the three regression methods that will be used in this project, where PCR and
PLSR are bilinear methods.

2.3.5 Multiple Linear Regression

Multiple Linear Regression is a "standard" simple regression method where several
predictors (X-variables) are used to predict one response (Y-variable). MLR should only
be used if there are few predictors, and a rule of thumb gives 20 variables or less as a limit.
As discussed in the previous section, most regression methods act on a "least squares"
objective, i.e they strive to minimise the residual sum of squares. MLR works towards
this directly by finding regression coefficients that minimise the error. Three more things
should be noted about the MLR method: (1) if the predictor variables are not linearly
independent of each other, the resulting regression can end up being unstable, (2) the
number of sample must be larger than the number of variables, and (3) when using MLR
on noisy data, one should pay extra attention to overfitting [42].

2.3.6 Principal Component Regression

Principal Component Regression is a method which consist of twomain steps (1) Principal
Component Analysis, and (2) Multiple Linear Regression. PCA was introduced in section
2.3.1, and there are many similarities here as PCA is one of the main steps. In this method
the scores of the principal components from the PCA are used as predictors in theMultiple
Linear Regression. One of the reasons that this works good is that the PCs are orthogonal;
as mentioned the MLR can be unstable with variables that are linearly dependant, but
by using the PCA first this is no longer a problem. In fact, PCR works better when the
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original X-variables are correlated and express the same type of information. The scores
and loadings of the PCR are the same as for the PCA, thus the reader is referred to the
section of PCA for further explanation of these.

2.3.7 Partial Least Squares Regression

Partial Least Squares Regression is the third and final regression method presented here. It
has many similarities with the two previous methods, however it has some characteristics
that may require some extra explanation. Unlike PCR, PLSR uses information from both
predictors and responses simultaneously when establishing the relationship between
them [46]. As PCA, PLSR finds latent variables in X, however different from PCA it also
finds latent variables in Y at the same time and uses this information to build a model
with the best predictive ability [42]. The components created in PLSR are called factors,
but they have many similarities with the principal components of PCA. In PLSR it is
possible to model several responses simultaneously, which is in contrast to the two other
methods where only one response can me modelled at a time.

A short explanation of the PLSR factors and associated scores and loadings is necessary
to gain a brief understanding of the method, as there are some deviations between the
scores and loadings of PLSR and the previously discussed scores and loadings of PCA. The
largest difference is that PLSR has two sets of scores and loadings, since latent variables
are found from both X-variables and Y-variables. These are namely the T- and U-scores
and the W- and Q-loadings. T-scores and P-loadings are related to the X-variables and
are very much like the scores and loadings of PCA. Thus, they can be interpreted the
same way as for PCA. U-scores and Q-loadings are a bit different; they are related to the
Y-variable(s). If we say that the T-scores summarise the parts of X used for prediction of
Y, then U-scores summarise the parts of Y explained by X, and the Q-loadings give the
relationship between the T-scores and the Y-variable(s) [42].

In general this leads to more diagnostic tools and a greater room for interpretation of
the regression model [11]. PLSR is good towards modelling of data that is influenced by
noise, and often reaches the same result as PCR with fewer components (factors). Truly,
there is a lot more to be said of PLSR, however the interested reader is referred to other
sources for a deeper explanation of the method, for example [11] which contains some
practical examples, or [46] which has a deeper focus on the statistical and mathematical
aspects of the method.
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2.3.8 Validation

To complete the theory of multivariate analysis, a short explanation of the importance of
validation and how it can be done is presented here. The following is mostly based on the
information on validation given in [42]. In general there are two steps that are crucial
to the creation of a model: (1) calibration and (2) validation. Therefore, it is normal to
talk about a training set which consist of the samples used for calibration and a test set
which contains the validation samples. It is important that the calibration samples and
validation samples are separate, i.e that the test set does not contain samples used for
calibration. As stated in the respective sections, validation is necessary both for the PCA
models and the regression models. Without validating the models, one cannot be sure if
future predictions or classification is to be trusted. Thus, validation is the same as testing
whether a model can be applied for new data sets. Two well-known validation methods
are test set validation and cross validation.

Test set validation is exactly as described above; the data is divided into a set used for
calibration and a set used for validation, namely the test set. The test set should contain
samples that are representative of the variations in the complete data set, and the number
of samples should be 20-40% of the total number of samples. After a model has been
created, the samples in the test set are fed into the model, and their predicted values are
compared to the measured values. The residuals from prediction can then be used to
calculate the root mean-square error of prediction, which gives the uncertainty of future
predictions. Test set validation is a good method for data sets with many samples.

The cross validation method differs from the test set validation method in that all
samples are used both for calibration and validation, however not in the same computation.
The way it works is that a model is computed several times, each time with different
samples kept out from the calibration set. For each computation, the predicted values are
calculated for the samples that were kept out from the calibration, and compared to the
corresponding measured values. This procedure is carried out until all samples have been
kept out of the calibration set once. The residuals are kept for each computation, and
after the last computation they are put together to form the RMSECV. Cross validation
thus makes better use of the samples in data sets where the number of samples are low.
The Unscrambler®X provides several types of cross validation, for instance full cross
validation, where each sample is kept out separately, and segmented cross validation,
where groups of samples are kept out simultaneously. A third validation method is
known as leverage correction. Without going into more details on this method, it can
be mentioned that when used for MLR models, it is comparable to full cross validation.
Furthermore, when leverage correction is being used, the model error is given as the root
mean square error of estimation (RMSEE).
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2.4 Internal Combustion Engines

The following section gives a short introduction to the internal combustion engine and
its main components, the four-stroke cycle, and the largest sources of noise and vibration
in engines. This is deemed relevant for the project, as experimental data are recorded
on a diesel engine, and several references are made to components and processes in the
engine.

2.4.1 Principle of Operation

Internal combustion engines is a common name used for all engines where the combustion
process happens internally and the result of the combustion process creates a force which
acts on a mechanical component inside the engine. The combustion process is (usually)
the ignition of a mixture of (fossil) fuel and air, which results in a gas expansion [47].
There are several engines which falls within the category of internal combustion engines;
namely the piston engine, several types of rotary engines and gas turbines. For this
project it is the piston engine (reciprocating engine) which is relevant. In the piston
engine the expansion of gas "forces" the pistons down, and creates a rotary motion due
to the assembly of the engine, which is further explained in the coming sections.

There are two main types of the reciprocating engine; the spark ignition (SI) engine,
and the compression ignition (CI) engine. The spark ignition engines use gasoline as a
fuel, and the mixture of gasoline and air is ignited by means of a spark plug, which exerts
a spark at a certain point of the engine cycle. Compression ignition engines generally use
diesel as a fuel, and the mixture of diesel and air is ignited through compression, i.e at a
certain point in the engine cycle the temperature of the mixture reaches a value in which
the mixture self-ignites. In newer CI engines, diesel is injected at a high pressure after the
air has been compressed to a temperature that is higher than the ignition temperature.

The main components of an automotive piston engine are the following: cylinders,
pistons, connecting rods, crankshaft, camshaft, valves. some of these components
are illustrated in Figure 2.14. The cylinders are the containers of the combustion process;
depending on the application the number of cylinders vary. For a motorcycle, two
cylinders is quite common, whereas four cylinders and more is typical for automobiles.
Together the cylinders form the cylinder block. Below the cylinder block another large
structure of the engine can be found, namely the crank case; it contains the crankshaft
of the engine. The crank case and cylinder block together forms the engine block, and in
most cars they are one structure. The crankshaft is the part of the engine which turns
the energy of the combustion process into rotary motion. Along the crankshaft there are
several connecting rods (one for each cylinder) that join the pistons in the cylinders to
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the crankshaft. As the combustion "forces" the pistons down due to the expansion of the
gas, the movement is transferred to the crankshaft via the connecting rods and turned
into rotation.

Fuel Injector

Exhaust
Valve

Intake Valve

Piston

Connecting
rod

Crankshaft

Cylinder

Figure 2.14: A simplified illustration of a diesel engine cylinder

The piston engine can work either on a two-stroke cycle or a four-stroke cycle, where
the four-stroke cycle is the one most used today. The four-stroke cycle refers to the fact
that a piston has to travel up and down the cylinder four times in order to complete
one engine cycle. The four strokes are: (1) Intake stroke, (2) Compression stroke, (3)
Expansion stroke and (4) Exhaust stroke [47]. Two strokes are done per rotation of the
crankshaft, which means that a complete engine cycle requires two rotations (720 crank
angle degrees (CAD)) of the crankshaft. Two other terms that are important towards the
position of the pistons in the cylinders are top dead centre (TDC) and bottom dead centre
(BDC). These are marked in Figures 2.15a and 2.15b .
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The intake stroke starts with the piston in the TDC, and ends with the piston in BDC,
creating a suction of air into the cylinder. Then the compression stroke follows, starting
in BDC and ending with ignition shortly before TDC is reached again (depending on
engine type, the start time of combustion varies). Next, the expansion stroke ensues,
forcing the piston from TDC and back down to BDC. The cycle ends with the exhaust
stroke, where the piston travels from BDC to TDC, "pushing" the exhaust gases through
the now open exhaust valve [47].

The camshaft and the valves are essential for the engine cycle; each cylinder has
valves solely for the purpose of intake of fresh air and release of exhaust gases. There
is at least one intake valve and one exhaust valve per cylinder, and today it is common
to have two of each. A typical layout for valve motion is through mechanical impact
of a rocker arm, which is activated by the camshaft, although other solutions has been
developed in recent years. The engine used in this project is fitted with a turbocharger. A
turbocharger is a turbine-device which uses the exhaust gases to increase the amount of
air fed to the combustion chambers in the cylinders, thus increasing the efficiency (and
power) of the engine.

A typical measurement encountered in the world of engine related thermodynamics
is the Air-to-fuel ratio. Not all too relevant for this project, a very short description is
given as one of the measurements from the lab is based on this. The air-to-fuel ratio (AFR)
describes the mass of air to the mass of fuel in a combustion process. The stoichiometric
air-to-fuel ratio is the optimal air-to-fuel ratio; for this ratio all fuel is completely burned.
As the stoichiometric AFR is the ideal situation, it is common to use this as a reference, and
compare the actual AFR to this optimal situation. This gives the air-to-fuel equivalence
ratio λ, which is the ratio of the actual AFR to the stoichiometric AFR. A value of λ = 1
thus indicates that the actual AFR is equal to the stoichiometric AFR, whereas a λ > 1
indicates that the mixture is lean, i.e that there is excess air, and a λ < 1 indicates that
the mixture is rich, i.e that there is excess fuel. In general, diesel engines always have
excess air, meaning that λ > 1 [48].
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TDC

(a) Illustration of the top dead centre (TDC)

BDC

(b) Illustration of the bottom dead centre
(BDC)

Figure 2.15: Illustrations of the TDC and BDC positions of the piston

2.4.2 Noise and Vibration Sources

The internal combustion engine is a complex composition of reciprocating and rotating
parts, thus separating noise sources is a challenging task. However, the combustion
process has been pointed out as the largest contributor to engine noise and vibration [8],
[37], [49], this is especially true for diesel engines due to the higher cylinder pressure.
The other noise sources are commonly summarised as "mechanical noise sources" [49],
however Drouet et al [50] further divides the mechanical sources into "load-dependent"
and "load-independent" groups, whereas others include a third group called "aerodynamic
noise sources" for sources that directly produce air-borne noise [37], [51]. Figure 2.16
summarises the different noise sources, and it is based on the classifications given in [37],
[49] and [50].

With this in mind, it is even more clear that using vibrations as an indicator of the
condition of an engine makes perfectly good sense, even though it sometimes can be
challenging to separate the different sources from each other. The combustion process
is of course responsible for some of the mechanical impact noises, like the piston slap.
Piston slap is the name given to the event in which the pistons hit the walls of the cylinder
while moving up and down [8], and it is a large contributor to engine noise. Delvecchio
et al [37] also give a great summery of typical faults and the transmission path of their
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Figure 2.16: The different noise sources in internal combustion engines

vibrations, however as it is not possible to induce faults in the engine (other than maybe
misfiring of cylinders) used for this project, it is less relevant but it can be used as a
reference if such possibilities should appear.





Chapter 3

Materials and Methods

This chapter presents the experimental setup, information about the measurements done
and the measurement plan and procedure. The experimental setup includes the diesel
engine, the placement of the pickup microphones, the arrangement of the equipment
in the lab and the data acquisition hardware. Furthermore, the implementation of the
methods presented in chapter 2 are presented and linked to relevant code in Appendix C.
Challenges encountered along the way and how they were solved is also given in this
chapter.

3.1 Experimental setup

As mentioned in the introductory chapter (ch.1), the Internal Combustion Engine Labor-
atory at the Department of Energy and Process Engineering at the Norwegian University
of Science and Technology is used for data acquisition. Thus, the changes made to the
test rig for this project were minimal. As the purpose of this laboratory is mainly directed
towards energy efficiency and emissions research, the instrumentation is largely based on
temperature sensors, pressure sensors and emission analysis equipment. The following
gives an overview of the laboratory setup and the main parts of the instrumentation
already found in the lab prior to this project. Then the changes made for this project are
presented.

3.1.1 The Diesel Engine

There are several test rigs at the Internal Combustion Engine Laboratory, however the
one most relevant to this project is the diesel engine. The engine is a Mercedes-Benz
six-cylinder inline diesel engine for passenger cars. The six cylinders are placed after
each other in a line, and it is common to number the cylinders from the front of the
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engine and towards the back, i.e the cylinder closest to the front of the car (when placed
in a car) is cylinder #1 This is the numbering that will be used in this project. Figure 3.1
shows the engine, and from this cylinder-counting scheme, the cylinder that is closest in
the picture is cylinder #1

Figure 3.1: The instrumented diesel engine in the lab

The engine resides on a Stuska test bench with integral hydrodynamometer; the
dynamometer is connected to the output shaft of the engine, and acts as a break on the
torque produced by the engine. Without going into details, the breaking effect is obtained
by means of two rotors mounted on the shaft; a system of pumps and tanks supply water
to the rotors, making rotation harder. Thus, increasing water flow to the rotors increases
the load on the engine. Table 3.1 summarises the technical details of the engine, and
Figure 3.2 shows the engine and test bench with dynamometer. Two more things with
regards to the engine can be of interest; it has a variable geometry turbocharger and a
common-rail injection system, i.e the vanes in the turbocharger are adjustable and the
engine has a common high-pressure reservoir of fuel (instead of having one fuel pump
for each cylinder.)
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Figure 3.2: The engine and test bench with dynamometer

Table 3.1: Technical details for the engine [52]

Engine type
Turbocharged diesel engine
for passenger cars

Engine manufacturer Mercedes-Benz
Engine code OM 613
Number of cylinders 6
Orientation of cylinders Straight (inline)
Total cylinder volume 3,2L (3222 cc)
Bore × Stroke 88 × 88,3 mm

Valve gear
Double overhead camshaft (DOHC)
4 valves per cylinder

Maximum power output 194 break horsepower (bhp)(145kW)
Maximum torque 470Nm at 1800-2600rpm
Compression ratio 18:1
Break mean effective pressure (BMEP) 1883,1kPa
Number of crankshaft bearings 7
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3.1.2 Measurements and Sensors

The measurements obtained at the lab are divided into "high speed measurements" and
"low speed measurements", where the sampling frequency is the major difference. For
some measurements it is more interesting to investigate trends, in this case for example
over an engine cycle, whereas for other measurements it is more interesting to look
at how values change from a very short time step to the next, for example during the
combustion stroke in a cylinder. Thus, the low speed measurements are sampled at 10Hz,
independent of the speed of the engine, and the high speed measurements are sampled
at several kHz, and the sampling rate increases with the engine speed.

This is done in the following way; an encoder is attached to the output shaft of the
engine. The encoder provides 2048 trigger-signals and one reference signal for each
rotation of the shaft. Hence, an increase in the engine speed will lead to increased
sampling rate. Each trigger signal leads to sampling of data through the associated
sensors and data acquisition hardware. Thus, an engine speed of 1000rpm leads to a
sampling rate of approximately 34,1kHz. By increasing the sampling rate while the engine
speed increases, satisfying measurements can be obtained of the cylinder pressure during
the combustion process, for all rotational speeds of the engine.

In-cylinder pressure is measured in cylinder #5. Measurements are obtained with a
Kistler 6058High Temperature Pressure Sensor, fitted inside the glow plug hole. The signal
is fed to a Kistler Charge Amplifier Type 5073, before it is sent to the data acquisition
unit, which is a National Instruments CompactRIO. A large number of temperature
measurements are done; intake temperatures, exhaust gas temperatures, oil temperature,
fuel temperature and coolant temperature to mention some. Most of the temperature
measurements are done with type K thermocouples. Torque measurements are obtained
by a force cell which is connected to the dynamometer with a torque arm.

Control of the engine is done with a Bosch Motorsport engine control unit (ECU)
and Modus software. This makes it possible for the user to adjust engine parameters,
like injection pressure, injection timing, turbo and engine speed. Thus, data about
the injection timing, duration, volume, and fuel pressure and consumption is available
through the ECU. When the load is adjusted, it is the ECU that ensures that the speed
is kept constant, for example by increasing or decreasing the amount of fuel injected.
Control of the load applied by the dynamometer and data logging is done through a
program in LabView.

To measure the rate of air flow, an orifice plate with a nozzle is installed in the in-
take pipe (which is of a large diameter). Emission measurements are done by a Horiba
Automotive Tests Systems Gas analyser, and all devices related to emissions originally
mounted on the engine (from manufacturer, i.e catalysts etc. ) are removed. All meas-
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urements with their respective units and group affiliation (i.e high speed / low speed)
are given in Table 3.2 and 3.3. Some of the measurements listed here might not be that
relevant for this project, but the tables still provide a good overview of the content of the
data sets, and thus the available data for closer investigation. Of the measurements that
are given as boolean values, the reference signal from the encoder is the most important
as it gives a signal (1) each time the crank shaft starts a new rotation, but is zero elsewhere.

Table 3.2: High Speed Measurements

High Speed Measurements
Measurement Unit
Time Date
Cylinder Pressure [MPaG]
Exaust Pressure [hPaG]
Fuel Pressure [MPaG]
Engine Torque [Nm]
Microphone 1 [Volt]
Microphone 2 [Volt]
Crank - encoder Bool
CAM - ECU Bool
Crank - ECU Bool
Reference - Encoder Bool
TDC - ECU Bool
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Table 3.3: Low Speed Measurements

Low Speed Measurements
Measurements Unit Measurements Unit
Time Date Fuel consumption ECU [l/h]
EGT cylinder 1 [◦C] Airmass flow ECU [kg/h]
EGT cylinder 2 [◦C] Airmass flow stroke ECU [g/str]
EGT cylinder 3 [◦C] Duration of main injection ECU [µs]
EGT cylinder 4 [◦C] Engine control mode ECU [.]
EGT cylinder 5 [◦C] Lambda estimated ECU [.]
EGT cylinder 6 [◦C] Fuel consumption inlet [l/h]
Spill water [◦C] Fuel consumption inlet total [l]
Fuel temperature [◦C] Fuel consumption return [l/h]
Oil temperature [◦C] Fuel consumption return total [l]
EGT after turbine 1 [◦C] Engine torque - Nm [Nm]
EGT after turbine 2 [◦C] Engine power - kW [kW]
Intake temperature before charger [◦C] Engine power - HP [HP]
Intake temperature after cooler [◦C] Mass flow rate [kg/h]
Intake temperature before cooler [◦C] Orifice plate pressure [Pa]
Coolant temperature [◦C] Engine speed [rpm]
Water pressure [hPaG] Turbo speed [rpm]
Oil pressure [hPaG] Cylinder peak pressure position [deg]
Boost pressure [hPaG] Cylinder peak pressure [MPaG]
Load pump [%] Room pressure [hPaA]
Exhaust pressure [hPaG] Room temperature [◦C]
Battery voltage ECU [Volt] Room humidity [[%]
Fuel Pressure ECU [MPaG] NOx [ppm]
Boost Pressure ECU [hPaA] CO [ppm]
Engine speed ECU [rpm] CO2 [vol%]
Fuel quantity ECU [mg/str] O2 [vol%]
Fuel pressure valve ECU [%] Weight [g]
Boost valve ECU [$%] NO2 [ppm]
Begin of main injection ECU [deg] THC [ppm]
Injection volume ECU [mm3/inj] NO [ppm]
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3.1.3 Preparations for Vibration Measurements

As the last section outlined the equipment already in the lab prior to this project, this
section describes the changes that were made in order to obtain vibration measurements.
In section 2.1.4 the piezoelectric pickup microphone was introduced. For this project, two
cheap acoustic guitar microphones bought online was used for measuring vibrations. ISO
2954:2012 [25] gives some general requirements for the instrumentation used to measure
the severity of vibrations. These requirements are given for the purpose of reducing
inaccuracies in vibration measurements of a machine housing (casing).

From the requirements given in the standard it follows that the measurement instru-
ment(s) should at least be able to measure RMS value of vibration velocity in the frequency
range 10Hz-1000Hz; as no specifications are given of the pickup microphones from the
supplier, a bold assertion is to assume that the frequency range of the pickup microphones
are similar to that of the accelerometer, i.e 10Hz-10kHz [2]. The standard further provides
requirements related to sensitivity, requirements to indicating unit, cables and power
supply. As this project pursue a simplistic approach to vibration measurements, the
requirements in this standard will be discussed no further. Thus, assumptions are made
that the specifications of the piezoelectric pickup microphones are adequate. Figure 3.3
shows the microphones that are used for this project.

(a) Acoustic guitar
pickup microphone in
package as obtained
from supplier

(b) The microphone is fitted with a
6,35mm female jack plug

Figure 3.3: The pickup microphone used for this project

Initial tests were performed outside the laboratory to determine the amplitude level of
the output signal. As can be seen in Figure 3.3, the microphone output is a 6,35mm female
stereo jack; appropriate connectors were used to connect this to the headphone jack port
of a mobile phone. Recordings of short duration bursts or continuous knocking in the
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vicinity of the microphones were carried out to investigate the amplitude of the output
signal. After reviewing the recordings, it seemed as an amplifier was needed to get decent
results. Transducers utilising the piezoelectric property tend to have a high impedance
at the output [2], thus if connected directly to data acquisition unit some of the voltage
signal might be lost due improper impedance matching. This pointed further towards the
need for an amplifier, because an amplifier could turn the high output impedance of the
pickup microphone into a low output impedance signal for the data acquisition unit (i.e
an amplifier has better impedance matching with the piezoelectric pickup microphone).
With this in mind it was decided that a review of the measurements at the lab was to be
done before investing in an amplifier.

In general, the jack plugs and corresponding connectors are not well suited for
laboratory measurements; data acquisition hardware seldom have such input channels,
and they are also susceptible to noise (electromagnetic radiation, etc.) [2]. Thus, the
cables on the pickup microphones were changed to coaxial cables with BNC plugs. These
cables have a proven effect on minimising noise due to a braided wire shield around the
central wire carrying the signal [2]. Furthermore, two 0-5V channels were added to the
data acquisition hardware and the LabView program. These tasks were carried out by a
laboratory technician working at the Department of Energy and Process Engineering.
Figure 3.4 shows the connections and new cables on a microphone. With the signal level
of measurements obtained at the lab being in the range of approximately ±1V, it was
decided that the project would carry on without the procurement of an amplifier.

Figure 3.4: The new BNC plug an coaxial cable on the microphone
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Finally,the placement of the microphones posed some challenges. ISO 13373-1:2002
[26] gives some general guidelines as well as typical transducer locations when measuring
vibrations. As a general rule, a position near bearings can provide useful information
with regards to vibration. However, based on the application one should consider to place
the transducers at locations where vibration values are expected to be maximal. In an
internal combustion engine, it is likely that the maximum vibration values will occur
in the engine block near the cylinders. Thus, this was the desired transducer location
initially.

Testing showed that the temperature on the engine block was too high for the chosen
piezoelectric transducers, as they showed signs of melting (the microphone that showed
signs of melting was taken out of service.) To overcome this obstacle, the microphones
were moved to new locations where the temperature was sufficiently low. Microphone
#1 was placed at the air-intake manifold, whereas microphone #2 was placed at the
air supply pipe of the turbocharger. The placements are shown in Figure 3.5 and 3.6,
respectively. Before the final tests were made, the signals obtained from these positions
were investigated, to make sure that they captured an adequate amount of the engine
vibration. Microphone #1 was attached with a clamp, whereas microphone #2 was
attached with a glue pad which came along in the microphone package.

(a) Placement of microphone #1,
on the air-inlet manifold.

(b) Placement of microphone #1.
A clamp keeps the microphone in
place.

Figure 3.5: The placement of microphone #1
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Figure 3.6: Placement of microphone #2, on the air supply to the turbocharger.

When looking at the data collected by microphone #2, it is important to keep in mind
its placement, i.e it is glued to a hose clamp, which can vibrate differently than the rest
of the engine. The reason for this particular placement was that it had to be placed at a
location where the temperature was sufficiently low, and a location near the turbocharger
was desired. To end this description of the equipment and setup at the lab, a schematic
overview of the laboratory area is given in Figure 3.7, with the most important equipment
outlined.



3.2. MEASUREMENT PROCEDURE 59

2

1

4

3

6

5

National Instruments
CompactRIO 

Cylinder pressure
sensor

Microphone_1

Microphone_2

Test Bench

Engine

Water
Brake

Kistler Charge
Amp.

Figure 3.7: Schematic overview of microphone and pressure transducer locations

3.2 Measurement Procedure

After the preliminary tests, a measurement plan was made. The intention of the meas-
urement plan was to gain a sufficient amount of data for different operating conditions.
Three load conditions were chosen, and these loads were applied to the engine over a
large range of rpms. Based on personal experience, the range of rpm was chosen from
1000rpm to 2600rpm, as this is a common area of operation for diesel engines in passenger
cars. It also partly matches the rpm range where the engine can provide maximum torque,
namely 1800-2600rpm (see Table 3.1). Thus, the range of rpm is a representative range
for engine operation.

The chosen load conditions were 20Nm, 50Nm and 90Nm, and these loads were
applied to nearly all rpms; however at the lower rpms the highest load conditions were
skipped, due both to limitations of the dynamometer and partly the engine. As can be
seen in Table 3.1, the maximum torque the engine can produce is 470Nm; thus the chosen
load conditions are not as representative of the operating range of the engine, but still
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gives the possibility of comparing equal load conditions between different rpms. Ideally,
data logging should be done for a longer period of time, i.e the engine should be run
for hours with data logging the entire time. But as the focus of the lab used for data
acquisition in this project is quite different than that of the project, both data storage
and equipment were not prepared for such endeavours. Thus, only approximately 30s
of recording was done for each of the operating conditions. However, due to the high
sampling rate this still provides more than 800 000 samples for the test with the lowest
rpm. The measurement plan with the test conditions are summarised in Table 3.4.

Table 3.4: Measurement plan with test conditions

Test RPM Load Duration Test RPM Load Duration
Test1 1000 20Nm 30sec Test13 2000 20Nm 30sec
Test2 1200 20Nm 30sec Test14 2000 50Nm 30sec
Test3 1200 50Nm 30sec Test15 2000 90Nm 30sec
Test4 1400 20Nm 30sec Test16 2200 20Nm 30sec
Test5 1400 50Nm 30sec Test17 2200 50Nm 30sec
Test6 1400 90Nm 30sec Test18 2200 90Nm 30sec
Test7 1600 20Nm 30sec Test19 2400 20Nm 30sec
Test8 1600 50Nm 30sec Test20 2400 50Nm 30sec
Test9 1600 90Nm 30sec Test21 2400 90Nm 30sec
Test10 1800 20Nm 30sec Test22 2600 20Nm 30sec
Test11 1800 50Nm 30sec Test23 2600 50Nm 30sec
Test12 1800 90Nm 30sec Test24 2600 90Nm 30sec

For each of the speed and load conditions stated in Table 3.4, all the measurements of
Tables 3.2 and 3.3 were logged. Before the start of data acquisition, the engine was run for
15minutes to make sure that the temperature of components and fluids were warm and
stable. For each of the operating conditions stated as "Tests" in Table 3.4, the engine was
run for approximately 1minute before start of data logging, to make sure that the engine
had stabilised at the new condition. This could be visually confirmed through the graphs
and values provided by the user interface in the LabView program. The data acquisition
was carried out according to plan, and without any large deviations. However, there was
one test condition that seemed "unstable"; during Test18 with 2200rpm and 90Nm the
engine stalled. It started again immediately, nonetheless this test was marked and kept
in mind for the work to come.
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3.3 Data Processing and Analysis

The data from the laboratory measurements was stored in the TDMS file format, which
is a common format when using software and hardware from National Instruments. It
was desired to do the data processing in MATLAB; thus, a TDMS reader program was
downloaded from MathWorks File Exchanger [53]. By using the functions provided
by the TDMS reader, the data sets could be read into MATLAB and stored as structs.
It is also possible to open these files in excel, and read the data into MATLAB using
the xlsread-function, however Excel has a maximum limit for the number of rows,
and some of the data sets in this project are larger than this limit. In MATLAB, several
processing steps were made before the data set was loaded into The Unscrambler®X for
PCA and regression. The following sections shortly outline the processing that was done
in MATLAB. Two scripts have been written for the purpose of the following procedures;
the first script deals with data extraction, and the second deals with the processing of the
data. Both of these scripts can be found in Appendix C.

3.3.1 Data Extraction

After having loaded the data into MATLAB as structs, all the data of all the tests were
gathered in two multidimensional arrays; one with all low speed measurements and
one with all high speed measurements. The multidimensional arrays can be thought of
as three-dimensional matrices, where the first and second dimension are the rows and
columns, and the third dimension is like the pages in a book [54]; in this case each page
correspond to the measurements of one test. This gave an easy and tidy collection of the
data sets, where values could be indexed out from a certain measurement and/or a certain
test. The process of extracting all the data and gathering it in the multidimensional arrays
can be seen in the MATLAB code in Appendix C.1.

3.3.2 Defining an Engine Cycle

From the theory presented about the four-stroke cycle in section 2.4 and the shaft encoder
presented in section 3.1.2, i.e that a complete engine cycle requires two rotations of the
crankshaft, and that the shaft encoder provides 2048 trigger-signals per rotation of the
crankshaft, it is clear that the length of an engine cycle always will be 4096samples. Thus,
engine speed and sampling rate will not affect the number of samples per cycle. Therefore
it should be an easy task to extract an equal number of engine cycles from the tests.
However, as there is no way to easily determine the position of the crank shaft when
commencing data logging, it is not necessarily so that each recording starts at the same
place in an engine cycle. This is illustrated in Figure 3.8, where the first 4096samples
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Figure 3.8: Vibrations from microphone #1 and cylinder pressures for Test1
(1000rpm20Nm) and Test3 (1200rpm50Nm). Values for cylinder pressures have been
down scaled by a factor of 10 for easier illustration, and units along the y-axis have been
omitted on purpose.

of the vibration measurements for two different test conditions are plotted along with
their respective cylinder pressures. It is reasonable to expect that the cylinder pressure is
shifted a few samples from one operating condition to the next, however as illustrated
here the difference is more than 2500samples. To obtain comparable data for all of the
test conditions, it was necessary to define the start of an engine cycle, and implement
this definition for all tests.

Twomethods were proposed to fix this problem; the first one is based on a combination
of the reference signal from the encoder and the cylinder pressure measurements, and
the second one is only based on the cylinder pressure peaks. The first method builds
on the following: the shaft encoder provides one reference signal per rotation (i.e per
2048 samples). Hence, an engine cycle can be defined as the interval between subsequent
reference signals; starting the cycle at one reference cycle, passing a reference signal at
2048samples (after one rotation) and ending the cycle at the next reference signal (after
two rotations). So, the first thing that is done is to find the index of the first reference
signal; this will of course vary between the different tests. Then, the index of the first
cylinder pressure peak is found. Both of these indices are found using the max-function
in MATLAB. Then, it follows that if the index of the reference signal is lower than that
of the pressure peak, the new index of the reference signals is updated to be the first
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reference signal that comes after the index of the pressure peak. The idea is that the
cycles can be matched by using the reference signals from the encoder; starting all cycles
at the first reference signal that occurs after a pressure peak.

The second method is based on a similar approach; the index of the first pressure
peak that is at least 2048samples into the recording but not further in than 2048samples
plus one cycle (i.e 4096samples) is found using the max-function in MATLAB. This index
is then used as the start of the cycles, so that each cycle starts 2048samples before a
pressure peak, and ends 2048samples after a pressure peak. The code for this method can
be seen in Appendix C.2, lines (30-65). Figure 3.9 shows the cylinder pressure peaks of
the three first cycles of all tests before implementing the methods described above, and
Figure 3.10 shows the cycles after having implemented each of them. Units on Y-axes
have been omitted on purpose.

Figure 3.9: The three first cycles (or, 12288 first samples) of the cylinder pressure data
for all tests, down scaled by a factor of 10.
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(a) The cylinder pressure peaks of the three first cycles after implementing
the first method for defining an engine cycle

(b) The cylinder pressure peaks of the three first cycles after implementing
the second method for defining an engine cycle

Figure 3.10: Illustrations of the effect of matching engine cycles

From the figure, it seems as though the second method is the most successful one
with regards to matching the cycles; however some fluctuations are seen in later engine
cycles. After having decided to move on with the second method, the multidimensional
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arrays were reset to start at the new indices. This was important to make sure that all
the other measurements also follow the same cycles. Due to limitations in the length
of the recording with the lowest rpm, a number of 200 engine cycles were extracted for
comparison (200*4096 = 819200samples) and further use in the project. Although not
ideal, it should give sufficient information for this study.

3.3.3 Fourier transform

After having extracted the data sets and matched their starting indices, the next step
was to transform the vibration measurements into the frequency domain. This was done
using a windowed Fourier transform, i.e the vibration signals were divided into frames,
and an FFT was applied to each of the frames. Since the engine cycles have a length of
4096samples, this was chosen as the frame lengths over which the FFT was applied. In
addition, an overlap of 2048samples (50%) were used together with a Hamming window
in MATLAB. The results from the Fourier transform of all tests were gathered in one
large matrix, with the frames acting as rows, the frequency coefficients acting as columns,
and the values within the matrix as intensity, or magnitude of the frequencies.

MATLAB has a built-in function of the Short-Time Fourier Transform, however in
this project a for-loop with MATLABs fft-function was implemented instead. The
MATLAB code for this procedure can be seen in Appendix C.2, lines (128-215). This
procedure was carried out on the vibration signals from both microphone #1 and #2.
A large frequency spectrum was created, which could be put in the same table as all
the other measurements. Along the way, the effect of using overlapping frames in this
specific application was reconsidered.

3.3.4 Adapting Measurements to Engine Cycle

As the frequency data nowwas based on frames matching the sample-length of the engine
cycles, something had to be done to the other measurement data for them to correspond
to the number of frames. For the high speed measurements, an equal number of samples
existed as for the vibration data, i.e 4096 samples per engine cycle. The solution that
was implemented was to take the mean of the samples across each frame (=cycle). One
should be careful with the use of mean values, i.e information can be lost when taking
the mean over a number of measurements. However, as the purpose was to compare
between engine cycles, and not the values within engine cycles, the mean was chosen as
a simple solution to the problem at hand. To make the high speed measurements fit the
number of frames for the frequency vibration data, overlap was also implemented. That
is, the mean of the measurements was taken with 50% overlap with the previous engine
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cycle. The MATLAB code for this procedure can be seen in Appendix C.2, lines (218-270).
For the low speed measurements, a different approach had to be followed. As the

sampling rate of the low speed measurements is constant at 10Hz, independent of engine
speed, something had to be done to make sure that the measurement values corresponded
to their respective frames (or cycles). First, an array where the rows correspond to the
total number of frames and the columns correspond to the number of tests, was created.
Then, the end-times of each frame of each test was calculated using the associated (high
speed) sampling rates. The next step was then to match the frame times with the time of
a low speed measurement; this was done using the min-function in MATLAB. The index
of the value of the low speed measurement times that gave the minimum result when
subtracting the frame-times was used as the measurement for that frame. The MATLAB
code for this procedure can be found in Appendix C.2, lines (272-340). Finally, the high
speed and low speed measurements for the frames of all tests were gathered in a common
matrix.

3.3.5 Resampling

The last major processing step that was performed was resampling of the results of the
Fourier transform. As the sampling rate was different for the vibration data for all tests,
it was necessary to resample the data to a reference. The resampling was carried out
using MATLABs resample-function. When resampling the vibration data, a reference
rpm of 3000 was chosen; for each test the measurements were resampled at a number
given by the original rpm divided by the reference rpm, times the original sample rate.
Before resampling it was difficult to interpret the results with regards to frequencies,
as all tests had different sampling rates. After resampling, it was possible to see how
the intensity of a certain frequency changed with load and rpm. The MATLAB code
for this procedure can be seen in Appendix C.2, lines (479-512). When looking at the
results of the windowed Fourier transform, the word "frequency coefficients" has been
used. An explanation of how to interpret this is given in section 2.2. After the resampling
procedure, the same method can be used to transform the frequency coefficients into
frequencies, but the sampling rate is now 3000*2048/60 = 102400 Hz. Thus, to transform
a frequency coefficient to a frequency in a spectrogram obtained after resampling, the
frequency coefficient has to be multiplied by the Nyquist frequency divided by the number
of frequency coefficients. In this project a window length of 4096samples has been used,
and this leads to 2048 frequency coefficients. Therefore, after resampling a frequency
coefficient has to be multiplied by 25 to get the frequency in Hz.

After resampling, a common table was created for the data for all the measurements,
including the resampled frequency data. The corresponding rownames (test conditions
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and frame nr.) and column names (variable names) were added, and the table was written
to a csv file. Before the csv-file could be imported into The Unscrambler®X, the commas
that were used as separators where replaced with semicolons, whereas the dots used for
decimals were replaced with commas, in order for the program to interpret all values as
numeric.

3.3.6 The Unscrambler®X

The final processing of the data set was done in The Unscrambler®X. Before each PCA
and regression analysis, the data was mean centred. In addition, analyses were done with
and without weighting. The weighting that was used was the inverse of the standard
deviation. It works as follows: the standard deviation of each column (variable) of the
X matrix is calculated. Then, each element in X is multiplied with the inverse of the
standard deviation of the variable it belongs to. This procedure ensures that the variance
of each variable is the same [11], and is thus particularly useful for data sets where there
are variables with different units, like in this project. As an example, take the turbo
speed, which may vary from 20000 to 150000rpm and the NOx measurements which
are in the order of 1,11-1,15ppm. The weighting function is a built-in feature of The
Unscrambler®X.

For the PCA analyses, the maximum number of components was limited to 7. Further-
more, the NIPALS algorithm was used, with the number of iterations being limited to 100.
For the validation part, random segmented cross validation was employed. The number
of cross validation segments were set to be 20 for the PCA analyses. For the regression
analyses, the maximum number of factors was yet again limited to 7, as this was the
standard input of the program. Moreover, random cross validation with 8 segments
was used for the validation procedure. Due to the size of the data set (9576x4166) the
number of cross validation segments had to be reduced when making several models.
NIPALS algorithmwith the number of iterations limited to 100 was used for the regression
models as well. The functions in The Unscrambler®X are quite straightforward, and a
comprehensive user manual is available online. The overall data processing procedure is
summarised in Figure 3.11.
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Chapter 4

Results and Discussion

This chapter presents the results obtained in this study and discusses the findings, their
limitations and relevance. The chapter is divided into three sections, each section reflect-
ing the results obtained in relation to one of the objectives stated under "Experimental
study" in chapter 1.3. The sections are further divided into subsections to make it easy to
follow the methods that have been used to obtain the given results. Discussion of the
results are given for each section throughout the chapter. Results are mainly presented
as graphs with explanatory text, however tables will be given in addition for some of the
results; this mainly concerns the results for the regression section.

4.1 The Effects of Speed and Load on Vibrations

4.1.1 Time Domain

Figures 4.1-4.3 shows the first extracted engine cycle of all rpms, for all load conditions.
The peaks correspond to the combustion events, of which there should be six for each
engine cycle due to the six cylinders of the engine. It can be seen that these combustion
peaks are more noticeable for the tests with lower rpm; the overall vibration amplitude
increases with increased rpm. Furthermore, the combustion events seems to be stretched
over a larger number of samples for the tests with the higher rpms, than for the tests
with the lower rpms. However, load condition seem to be a more important factor for the
vibration level than rpm. This can be seen from within each plot, where the vibration
level increases with increasing load. Moreover, the vibration amplitude for the highest
load condition for a given rpm is larger than for the lowest load condition of the next
rpm. This can be seen from comparison of the 90Nm load condition in Figure 4.1c and
the 20Nm load condition in Figure 4.2a.

69



70 CHAPTER 4. RESULTS AND DISCUSSION

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Samples

-1

0

1

V
o
lt
a
g
e

1000rpm 20Nm

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Samples

-1

0

1

V
o
lt
a
g
e

1200rpm 20Nm

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Samples

-1

0

1

V
o
lt
a
g
e

1200rpm 50Nm

(a) The vibration of the first extracted engine cycle for the
different load conditions at 1000rpm and 1200rpm
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(b) The vibration of the first extracted engine cycle for the
different load conditions at 1400rpm
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(c) The vibration of the first extracted engine cycle for the
different load conditions at 1600rpm

Figure 4.1: Time domain vibration signal for three different rpms
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(a) The vibration of the first extracted engine cycle for the
different load conditions at 1800rpm
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(b) The vibration of the first extracted engine cycle for the
different load conditions at 2000rpm
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(c) The vibration of the first extracted engine cycle for the
different load conditions at 2200rpm

Figure 4.2: Time domain vibration signal for three different rpms
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(a) The vibration of the first extracted engine cycle for the
different load conditions at 2400rpm
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(b) The vibration of the first extracted engine cycle for the
different load conditions at 2600rpm

Figure 4.3: Time domain vibration signal for three different rpms

The plots have been obtained from the vibrations measured by microphone #1, how-
ever the same trend is apparent in the vibrations frommicrophone #2, although the overall
vibration levels in general are lower for the vibrations obtained from this microphone.
These results thus point towards that vibration is affected by both speed and load. An in-
teresting plot which further backs the given statement is the plot of the root mean square
of the vibrations. The RMS was introduced in section 2.1.5, and the formula is given in
Table 2.1. Figure 4.4 shows the root mean square value of the vibration measurements
obtained from microphone #1 for all tests. The peaks are marked with numbers, and the
numbers correspond to which test the RMS value applies to. It can be verified from Table
3.4 that the peaks in RMS value correspond to the tests with the highest load condition
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for all rpms, except from Test1 which only had a 20Nm load condition. As RMS value is
related to vibration energy, this further points towards a relation between vibrations and
load and vibrations and speed.
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Figure 4.4: The RMS value of the vibration measurements from microphone #1 of all
tests.

4.1.2 Time-Frequency Domain

To further investigate this relationship, the vibration measurements were analysed in the
time-frequency domain. Figure 4.5 shows a spectrogram of the vibration measurements
from microphone #1 prior to resampling. In the figure, the frames for all the vibration
measurements have been placed beneath each other; due to the fact that sampling rate
is dependent on the engine speed (trigger signals from shaft encoder), different sample
rates have been used for the different tests, and therefore it might be hard to interpret
some of the contents of the figure. There is one interval with a higher intensity than the
rest, which shifts to the left for increasing rpm (which is the same as increasing sample
rate). Figure 4.6 shows the same data after all measurements have been resampled to a
reference rpm.
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Figure 4.5: Spectrogram of vibration measurements (microphone #1) for all tests prior
to resampling
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Figure 4.6: Spectrogram of vibration measurements (microphone #1) after resampling

From Figure 4.6 it can be seen that the interval of high intensity that was shifted
towards the left now maintains a straight line; furthermore, it seems to increase in
intensity for increasing frame number. The frame numbers correspond to the different
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tests (i.e frame 1-399 is Test1, frame 400-799 is Test2 and so on). An increase in the
intensity for increasing rpm means that the magnitudes of the frequencies are larger at
the higher rpms; in other words, the vibrations are stronger. A 3D-plot showing the same
data can aid in the interpretation. Figure 4.7 shows the same data as Figure 4.6, now as a
three-dimensional figure.

Figure 4.7: A 3D plot of the time-frequency data of the vibration measurements from
microphone #1

It is easy to see from Figure 4.7 that the magnitude of the frequencies increase for
increasing rpm; furthermore, the stair-like structure corresponds well with the RMS
values in Figure 4.4. The load conditions appear as steps in a staircase; and as discussed
in section 4.1.1, the vibration level is higher for the largest load for the preceding rpm
than it is for the smallest load for the next higher rpm. Figure 4.8 and 4.9 shows the the
same plots for the vibration measurements from microphone #2 after resampling. The
same trends that appear in the measurements from microphone #1 are also apparent here;
increasing vibration magnitude as load and rpm increase, and the stair-like structure.
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Figure 4.8: Spectrogram of resampled vibration data from microphone #2

Figure 4.9: A 3D plot of the time-frequency data of the vibration measurements from
microphone #2

In Figure 4.6 there are some intervals of frequency coefficients that show higher
intensity than the others. From frequency coefficient 40 to 100 there is a lot of activity;
firstly, a line of high intensity (green and blue) is visible between frequency coefficients
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70-80. This line is continuous for all tests. The highest magnitude is seen for the tests of
2400rpm and 2600rpm (frames 7182-9576). The frequency coefficients on each side of this
high-intensity interval (i.e 40-70 and 80-100) has a structure in which an increase in the
intensity comes and goes with a fixed number of frames. In addition there is an interval
of higher intensity at frequency coefficients 130-145, which seems to bee quite consistent,
but slightly affected by the same pattern as in the previous line. Lastly there is a band
at frequency coefficients 13 and 14 which has a higher intensity at frames 4800-7200,
and frames 8400 to 9576, with the highest intensity being from frame 4800 to frame 6000
approximately.

For the measurements obtained from the second microphone which are shown in
Figure 4.8 there are two intervals of higher intensity. These are found at frequency
coefficient 50 and 97, approximately. Some similarities can be seen when compared to
Figure 4.6: the intervals around coefficient 50 and 97 seem to be continuous and increasing
in intensity for the larger rpms. The highest intensity is found for the line at coefficient
50. The same pattern of varying intensity can be seen for the frequency coefficients on
both sides of the high-intensity lines (which also are slightly affected). Moreover, there is
a structure around frame 4000 that shifts to the right (higher frequency) for each new
rpm; this is visible in both Figure 4.6 and 4.8, but is easiest to spot in the latter.

Using the approach described in the theory chapter, section 2.2.3 and in the method
chapter, section 3.3.5, the above frequency coefficients may be transformed into fre-
quencies. The interval of frequency coefficients 40-100 seen in Figure 4.6 correspond to
frequencies 1000-2500Hz; the magnitude of these frequencies seems to be largely affected
by the load conditions of each test. In Figure 4.6, the pattern of increase and decrease in
intensity correspond well with the different load conditions. This is best illustrated with
a zoomed view of Figure 4.6, which is given in Figure 4.10.
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Figure 4.10: A zoomed view of Figure 4.6 which shows the effect of the different load
conditions

At approximately frame number 3600, a transition from higher intensity to lower
intensity is seen in the frequency band given above. The lower intensity lasts for the
next 400 frames, i.e to frame number 4000, where the intensity once again increases.
The transition from high intensity to lower intensity at around frame number 3600
corresponds to the transition from Test9 to Test10, which is 1600rpm and 90Nm to
1800rpm and 20Nm, whereas the transition at around frame number 4000 corresponds to
the transition from Test11 to Test12, which is 1800rpm and 20Nm to 1800rpm and 50Nm.
Thus, the repeating pattern reflects the load conditions for each test, and yet again shows
that vibrations increase with increasing load. It is also possible to point out the transition
from 50Nm to 90Nm for each test, but this is a bit less visible than the transitions to or
from 20Nm. This same pattern is also visible in the measurements from microphone
#2. These frequencies which come and go thus seems to be mostly affected by load (at
least for the measurements from microphone #1). In section 2.4.2, different noise sources
for combustion engines were introduced, and mechanical noise sources were divided
into load dependent and load independent groups [50]. The frequencies described in this
paragraph seems to relate mostly with the load dependent sources, which includes the
fuel injection system and fuel pumps.

For the lines with the highest intensity, namely frequency coefficients 70-80 in Figure
4.6 and frequency coefficients in the vicinity of 50 and 97 for Figure 4.8 the intensity
increases with increased rpm. These frequency coefficients correspond to frequencies
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of 1750-2000Hz, 1250Hz, and 2425Hz, respectively. A zoomed view of these frequency
coefficients are given in Figure 4.11. The frequency coefficient with the highest intensity
in Figure 4.6 is 73,5, which correspond to a frequency of 1837Hz. Although some effect is
seen from the load conditions, these frequencies seem to be more dependent on engine
speed. As for the grouping of mechanical noise sources, these would relate to the load
independent sources, like the camshaft and the valves. Whats interesting is that the
frequencies are in the same band, but increase in magnitude with increasing rpm. When
it comes to the slightly visible structures that shifts to the right in both Figure 4.6 and 4.8,
these events increase in frequency with increasing engine speed. Since microphone #2 is
placed near the turbocharger it is likely that the frequencies in Figure 4.11b are linked to
the the operation of the turbocharger, whose rotational speed varies from approximately
20 000rpm to 125 000rpm throughout the tests, and increase and decrease with the load
conditions.

It is worth mentioning that the plots in Figures 4.1a to 4.4 are made of the vibration
data prior to resampling; i.e these measurements have been obtained with different sample
rates. However, since the shaft encoder gives an equal number of samples per rotation,
independent of engine speed, meaning that each engine cycle has an equal number of
samples, it is still very relevant to compare these measurements. Nonetheless, this might
be the reason to the "stretching" of the combustion peaks seen for the higher rpms; the
combustion events happen faster in terms of time, but the number of samples remain the
same. Thus, the effect of increased sample rate for the higher rpms is diminished. The
increase of the vibration amplitude peaks as well as the increase of the overall vibration
level might also contribute to the stretched appearance. The vibration measurements
could have been resampled before comparison, however as the number of samples per
engine cycle remained the same this was thought to a better method as it led to an equal
number of samples for the same number of engine cycles, and thus easier data processing.

Results from both time-domain and time-frequency domain indicates that vibration
is dependent on load and speed when measured in a diesel engine. The RMS values
and the three-dimensional time-frequency plots have a stair-like structure, where the
largest peaks correspond to the largest load conditions for all rpms. Furthermore, the
smallest load condition for one rpm has less vibration than the largest load condition for
the preceding rpm, thus indicating that load has more influence on the vibration than a
(small) increase in rpm. The 90Nm peaks is even more apparent in the vibrations from
microphone #2 (Figure 4.9). These findings correspond well with the findings of Ball et al
[55], where it is shown that the RMS value of the (airborne) sound signals of an engine
increases with engine load and speed. Therefore this is not a new revelation, but it shows
how the obtained data correspond with research done elsewhere, and thus increases the
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(a) Zoomed view of the high intensity area of the measurements
from microphone #1
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(b) Zoomed view of the high intensity area of the measurements
from microphone #2

Figure 4.11: Zoomed views of the high intensity bands of the vibration measurements.
Some of the frequencies show a tendency to increase in magnitude with the engine speed.
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integrity of the data set.
In an engine, it is reasonable to believe that most sources of noise and vibration are

related to the engine speed in such a way that the vibration or noise would come with
a higher frequency at higher rpms. However, the frequencies with highest intensity
found here, seem to only increase in magnitude when the speed increases, and thus
is not affected by the speed directly. A process that could be tied to these frequencies
are the functions of the pressure regulator in the common rail injection system. When
rpm increases, the fuel pump works faster to deliver the amount of fuel required and
to maintain the pressure in the common rail. The pressure in the rail quickly reaches
its maximum level. To prevent the pressure from exceeding its maximum level due to
further increase in rpm, a control loop with a pressure sensor and a pressure control valve
(PCV) regulates the pressure by returning fuel to the tank. Thus, the pressure remains the
same but the amount of fuel returned is likely to increase at higher rpms. The increased
amount of fuel returned could provide larger vibrations. That the frequency is "static"
could be related to the pressure regulator (the PCV), which opens and closes at regular
intervals. However, this is only a theory and more knowledge of the fuel system of diesel
engines is necessary for further evaluation.

4.2 PCA Models

As described in chapter 3, the resulting matrix of the Fourier transform of the vibration
measurements from microphone #1 and microphone #2 was loaded into The Unscram-
bler®X where a PCA was carried out. A PCA was also carried out on the large table
where all measurements are included. In total three different PCA models were created;
one where the frequency matrix was analysed directly, one where the frequency matrix
was analysed with a weighting of 1/standard deviation and one where all measurements
(frequency, high speed, low speed) were included with the weighting 1/standard deviation.
Each of these models are presented in the following subsections.

4.2.1 PCA Model 1

This section shows the results after performing a PCA on the resampled vibration data
in the time-frequency domain without the use of any weighting. Row ranges for the
different rpms have been made which makes it possible to use colours to separate sample
groups in the score plots. Figure 4.12 shows the score plot of the two first principal
components.
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Figure 4.12: Scores of PC1 and PC2 from the first PCA model plotted against each other.
The different rpms have been colourised

As can be seen from the figure, the different rpms have been colourised; i.e all load
conditions for each rpm is expressed with the same colour. The first thing that is obvious
from the figure is that the rpm increases along the horizontal axis, which is the first
principal component. Moreover, the load conditions for each rpm increase along the first
PC (this is hard to tell without labels on the samples, however this makes the plot very
messy, thus they have been kept out in this presentation). The samples for each rpm
have been clustered together, however as the rpm increases the samples are more spread.
Starting at 1400rpm, the samples seem more spread due to the influence of the vertical
axis (PC2). The largest spread of samples is seen for the highest rpm. An interesting
observation is that the majority of samples for 2200rpm have positive values along PC2,
whereas the majority of samples for 2400rpm have negative values for PC2.

Figure 4.13 shows the loadings of the first principal component. A large peak with
a value of 0,4 is seen for frequency coefficient 73 and 74 from microphone #1, and two
peaks of value 0,13 and 0,12 is seen at frequency coefficients 50 ± 1 and 97 ± 2 from
microphone #2. This corresponds very well with the lines of high intensity seen in the
spectrograms in section 4.1.2 ( Figures 4.6 and 4.8).
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Figure 4.13: The loadings of PC1 for the first PCA model

As there are very many frequency variables, the labels on the horizontal axis have
been cut a bit short, therefore zoomed views of the peaks are given in Figure 4.14. In
section 4.1.2 it was discussed that the intensity of these frequencies seemed to increase
with increasing engine speed; that the same frequencies now are the variables that have
contributed the most to the first principal component further supports the assertion
that the engine speed is described by PC1. The first PC also has the largest amount of
explained variance; this can be seen in the parentheses on the axis labels of all the plots.
PC1 has 46% explained variance and PC2 has 9% explained variance. This means that the
variation seen along the vertical axis is only responsible for 9% of the variation in the
data set.

In the interpretation of PCA loadings it is so that if a large positive peak (large relative
to the scale -1 to 1) is found for a variable in the loadings of a principal component,
then the samples which have a high score value along the same PC have values for that
variable that are larger than average. In this model a peak occurs at frequency coefficients
73-74 for PC1 loadings, thus the samples which have (large) positive score values for this
PC will have larger values (magnitudes) for these frequencies. From Figure 4.12 it can be
seen that the majority of the samples for 2400rpm and close to all samples for 2600rpm
have positive score values along PC1, with the samples for 2600rpm having the highest
values. This also correspond well with the information provided by the spectrogram in
Figure 4.6, where the intensity increased for this frequency for higher rpms. The same
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can be said for the two other peaks in the plot of PC1 loadings.
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(a) Zoomed view of a peak for PC1 loadings for the first PCA model
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(b) Zoomed view of peaks for PC1 loadings for the first PCA model

Figure 4.14: Zoomed views of the peaks for PC1 loadings in the first PCA model

The scores of PC1 are shown in Figure 4.15. It has a familiar structure; once more
the staircase structure is apparent, and it is easy to separate the different load conditions
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for each test. For 1000rpm there is only one load condition, whereas there are two load
conditions for 1200rpm and three for all other rpms. It can be seen that the score value
increases when the rpm increases; furthermore it also increases with increased load, and
as before the largest load condition of one rpm has a higher score value than the lowest
load condition of the succeeding rpm. This yet again matches very well with the results
in the time and time-frequency domains. As the plot of PC1 loadings had three prominent
peaks, the value of the scores in PC1 describes the value each sample has for the variables
(here:frequency coefficients) that these peaks correspond to. It can be validated in the
spectrograms in section 4.1.2 that the magnitude is larger for these frequencies at the
higher rpms. The score values for the highest load conditions for 2400 rpm and 2600rpm
is quite similar.
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Figure 4.15: The scores of PC1 for the first PCA model

Figure 4.16 and 4.17 shows the loadings and score values for the second principal com-
ponent. Some of the positive peaks seen for PC1 loadings appear here as negative peaks.
This is expected, as there should be no correlation between the principal components. The
largest negative peak is seen for frequency coefficient 73 from microphone #1, whereas
the largest positive peak is seen for frequency coefficients 75 and 76 for microphone
#1. In addition, there are both negative and positive peaks for some of the frequency
coefficients from microphone #2; positive peaks are seen at frequency coefficient 50 and
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98, and a negative peak can be found at frequency coefficient 97. However the values of
these peaks are quite low, thus one should be careful when interpreting their relevance.
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Figure 4.16: The loadings of PC2 for the first PCA model
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Figure 4.17: The scores of PC2 for the first PCA model

It can be seen that the scores and loadings for the second PC does not provide so
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much new information; it generally shows how the spread in the samples increase with
increasing rpm, i.e that the variation in intensity for frequency coefficient 75 and 76 is
larger for higher rpms. The PCA analysis has reduced the original data set consisting of
4096 variables (frequency coefficients, 2048 for each microphone) to a data set with only
two variables, PC1 and PC2. Only two PCs were returned; the model did not converge
for PC3, meaning that a third score vector fulfilling the convergence criterion was not
obtained by the limit of 100 iterations. As PC1 has 46% explained variance, whereas PC2
has 9% explained variance only a total of 55% of the original variation in the data set is
explained by these two principal components. However, the most important frequencies
were kept, and the stair-like structure was still visible. In section 4.1.2, an attempt was
made to tie these frequencies to engine events. The regulation of fuel pressure in the
common rail injection system was suggested as a possible source, but no conclusions
were drawn. If it is so that these frequencies can be connected to specific events in the
engine, then the PCA has managed to extract these events and used them to describe the
different operating conditions.

4.2.2 PCA Model 2

This section shows the results after performing a PCA on the resampled vibration data in
the time-frequency domain with the weighting option A/SDev, where A = 1 and B = 0.
As described in chapter 3, this function finds the standard deviation of each column and
multiplies each sample within each column with the ratio 1/Standard deviation (of that
column). This gave a new structure in the score plot of the two first principal components,
which is seen in Figure 4.18.
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Figure 4.18: Scores of PC1 and PC2 from the second PCA model plotted against each
other. The different rpms have been colourised

All samples have been colourised after their respective rpms. In this model the clusters
for the different rpms are more clear, although some overlap can still be found. The groups
for each rpm is shaped almost like lines, where the higher load conditions come after
the lower load conditions, i.e increased load leads to higher values for both horizontal
(PC1) and vertical (PC2) axes. Each new rpm is placed slightly higher on the vertical
axis and further to the right on the horizontal axis. Some load conditions typically align
along PC1; for instance are the samples belonging to the condition 1800rpm and 20Nm
at the same horizontal position as the samples of 1600rpm 50Nm and 1400rpm 90Nm.
This is also seen for some of the other rpms and load conditions. What separates these
samples is their values along PC2. The trend seems to continue up to and including the
samples for 2000rpm. The samples for 2200rpm follow approximately the same pattern,
however the values along PC2 are now mostly lower than those of the samples belonging
to 2000rpm. For the samples of the 2400rpm operating condition, nearly all samples have
positive values for PC1; apart from this the samples follow roughly the same trend as the
lower rpms, where values increase for both PC1 and PC2 when the load increases. The
largest deviation is seen for the samples belonging to 2600rpm, where all samples have
positive values along PC1, but negative values along PC2. Furthermore, the values along
PC2 decreases as the load increases.
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Figure 4.19 shows the loadings of the first principal component. The first thing one
can see is a pattern which is repeated for consecutive frequency coefficients, both for
microphone #1 and microphone #2. This structure illustrates something that comes and
goes periodically, but increases in magnitude. The structure is a bit more inconsistent
in the frequency coefficients from microphone #2, but still seems to represent the same.
The structure have an average period of 137 frequency coefficients for microphone #1,
and 138 frequency coefficients for microphone #2. This corresponds to a frequency of
approximately 3425Hz. A zoomed view of the structure for the frequency coefficients of
microphone #1 is given in Figure 4.20. This could be related to a resonance effect. Other
things worth noting from the loadings of the first PC is that there are positive peaks for
frequency coefficient 69 (microphone #1) and 97 (microphone #2). This is almost the same
as the peaks seen in PC1 loadings in the first PCA model, and indicates that the samples
with positive score value along PC1 has a higher magnitude for these frequencies. The
samples belonging to the higher load conditions for 2000rpm, 2200rpm and all samples
for 2400rpm and 2600rpm have positive score values along PC1. One prominent negative
peak is seen at frequency coefficient 4 of microphone #2, and means that the lower rpms
have a higher magnitude for this frequency, because these have negative values along
the first principal component. The score plot of PC1 is in fact almost identical to the one
given for the first PCA model in Figure 4.15, thus it is not so interesting to present this
again.
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Figure 4.19: The loadings of PC1 for the second PCA model



90 CHAPTER 4. RESULTS AND DISCUSSION

X-variables (PC-1) (28%)

Mik1Freq35 Mik1Freq47 Mik1Freq59 Mik1Freq71 Mik1Freq83 Mik1Freq96 Mik1Freq10 Mik1Freq12 Mik1Freq13 Mik1Freq14 Mik1Freq15 Mik1Freq16

0

0,01

0,02

0,03

Loadings

Figure 4.20: Zoomed view of the frequency structure in the loadings of PC1 for the
second PCA model

Figure 4.21 and 4.22 shows the loadings and the scores for the second principal
component. In the loadings plot there is a structure that resembles the one seen in Figure
4.19, however now it is much less periodic. The structure is caught by both microphones.
In addition there are positive peaks at frequency coefficient 5 for both microphones, and
the largest negative peaks are found at frequency coefficients 40, 74 and 79 for microphone
#1 and 17, 7 and 43 for microphone #2. Figure 4.22 shows that the score values increases
for rpm and load until the samples for 2200rpm, where they start to drop slightly and
then a large drop is seen for the samples at 2600rpm. This of course corresponds with
the separation seen in Figure 4.18.
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Figure 4.21: The loadings of PC2 for the second PCA model
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Figure 4.22: The scores of PC2 for the second PCA model

The third principal component only has 6% explained variance and provides little
new information. The loadings has many similarities with the loadings of the two first
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components, with positive and negative peaks at various frequency coefficients, and a
structure resembling the one discussed for the first PC, however yet again not periodic. As
discussed in the the theory chapter (ch. 2), validation is an important part of multivariate
analysis when making models. In the case of PCA, validation is most relevant if the
model is to be used to classify new data samples, and for this reason it is not so important
here where the PCA mostly has been used as a descriptive tool. Nevertheless, because
validation is automatically carried out by The Unscrambler®X, some validation has been
done for the PCA model. As described in chapter 3, cross validation with 20 segments
was carried out. Figure 4.23 shows the scores for PC1 and PC2 for both calibration and
validation; as far as the eye can see, the model has obtained good results for validation,
however this is not very exact. Although a bit hard to see from this plot, in general,
the validation samples have been placed correctly in their rpm groups as divided by the
calibration. For now, it is deemed good enough and will be discussed no further. Outliers
have not been considered, but what can be said is that there are no extreme outliers,
but that there is more spread among the samples for the higher rpms. This model could
now act as a reference model for the operating range of the diesel engine. The model
has a good range of different rpms, but only three load conditions have been considered.
In Table 3.1 it can be seen that the engine can produce as much as 470Nm in the range
1800rpm-2600rpm. Thus, as the largest load condition considered here is 90Nm, the load
range is not so representative of the engines (possible) operating range.
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Figure 4.23: Calibration scores and Validation scores in same plot
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An interesting feature of this model when compared to the first PCA model is the
revelation of the periodic frequency structure. This structure was not visible in the load-
ings of the first PCA model, but by implementing the weighting of 1/standard deviation,
the structure appeared on the exact same data set. This frequency structure was very
prominent in the loadings, and it was found that it had a period of approximately 3425Hz.
A hint was given that this resembled a resonance effect. The engine block is made of cast
iron, of which the speed of sound is 4600m/s. The product of the period of the frequency
structure and the speed of sound in cast iron results in a distance of 1.34m, approximately.
This is not far from the length of the engine block, which can be estimated through the
following: the bore of the cylinders is found in Table 3.1 to be 88mm. For 6 cylinder this
corresponds to 528mm, or approximately 0,53m. In addition, there is space between each
cylinder and on either side of the cylinders. From this, the length of the engine block can
be estimated to be around 1m. Thus, it is likely that the PCA has found the resonance
in the engine block. This is an interesting result, as it probably is transmissible to other
engines of similar design.

4.2.3 PCA Model 3

This section shows the results after performing a PCA on all the measurements combined,
i.e all resampled vibration data in time-frequency domain along with the high speed
measurements and the low speed measurements. This was done in order to investigate
the relationship between the frequencies and the measurement variables. The results
of this PCA gives an indication of if and which variables that are correlated with the
vibration data, and thus gives a hint of which variables that will perform well during
regression.

Figure 4.24 shows the scores of PC1 and PC2; this is almost identical with the repres-
entation given in Figure 4.18, which means that the frequencies are the among the most
important variables to describe the variation between the different operating conditions.
Looking at the scores and loadings for PC1, PC2 and PC3 they take the same shape as
for the second PCA model; the only difference is the introduction of a few new variables
which affect the model slightly. In PC1 loadings some new peaks appear for the meas-
urement variables. Firstly, a large negative peak is seen for the variable "Weight". The
second largest negative peak is the variable "Room humidity". In addition, a negative
peak appear for "Lambda estimated ECU". The most prominent positive peaks are seen
at variables "Room temperature", "Fuel consumption return total", "Fuel consumption
inlet total", "Airmass flow ECU"„ "Fuel Consumption ECU", "Intake temperature before
charger", "Intake temperature after cooler" and "Spill water temperature". There are also
peaks for "Engine speed ECU", "Mass flow rate", "Oil temperature", "orifice plate pressure",
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Figure 4.24: Scores of PC1 and PC2 for the third PCA model plotted against each other.
The different rpms have been colourised. The plot is almost identical to that in Figure
4.18

"EGT cylinder 1", "Oil pressure" and "Begin of main injection", however they are less
prominent.

In PC2 loadings there are negative peaks for "Exhaust pressure", "Fuel temperature",
"Turbo speed", and "Boost valve" in addition to some of the peaks that were positive
for PC1 loadings. The positive peaks for PC2 loadings are found at the variables "Fuel
Quantity ECU", "Load pump", "Injection volume ECU", "Engine torque (high speed)",
"Engine torque (low speed)" and "Duration of main injection ECU". There are also peaks
at several other variables, for instance "Cylinder pressure", but these are less outstanding.
PC3 only has 6% explained variance, and the most outstanding peaks of measurement
variables are the same as for the two first components, with the largest positive peak
being "Lambda estimated ECU" and "Injection volume ECU".

Although the frequencies and the frequency structure seem to dominate the analysis,
some variables were found to have an influence on the model; these variables should
have some correlation with the vibration data, and thus gives an indication of which
variables that potentially could do well in the regression analysis. Due to the dominance
of the frequency variables, one should be careful to interpret the model in relation to
the other measurement variables. However it should still be possible to extract some
information based on the most prominent peaks for the measurement variables. The
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largest negative peak for PC1 loadings was the variable "Weight". This is the weight of
the exhaust gases measured in [д]. In relation to the score plot this should mean that
the weight of the exhaust gases decrease with increasing load and rpm, as the lower
rpms have negative score values along PC1. This could be related to air-fuel ratio in the
cylinders at different rpms. In fact, the third largest negative peak is as mentioned above
"Lambda estimated ECU". As described in the theory chapter, this is a dimensionless
number describing the ratio of actual air-to-fuel ratio to an optimal air-to-fuel ratio. That
lambda estimated decreases alongside the weight makes perfect sense; at the lower rpms
both weight and lambda has higher values, and a high value of lambda indicate that the
combustion mixture is lean, i.e it has a ratio higher than the stoichiometric ratio. This
will lead to production of more NOx-particles, which of course increases the weight.
For the higher rpms, both weight and lambda have lower values. This means that the
combustion mixture is "richer". As diesel engines in general have excess air (λ > 1), this
only means that the amount of excess air is less at higher rpms.

Looking at the positive peaks of PC1 loadings the majority was related to temperatures
and fuel consumption. That fuel consumption increases for increased load and for higher
rpmsmatches well with the above statement that themixtures get richer (lambda decrease)
at increased load and rpm. At higher rpms the engine burns more fuel, and produces
more heat, which makes it logical that the room temperature and spill water temperature
increase. However one should be careful when considering temperature measurements,
because even though the engine was run at a 15-minute period prior to data logging,
temperatures in the engine might still increase as a result of time in operation, and is
therefore not necessarily only connected to the increased rpms and loads. That is, the
tests with low rpm were acquired first, and then the rpm was increased gradually so that
the test with the highest rpm was taken in the end. Thus, for the final test the engine
had been run for a longer period than for the first test. The loadings for PC2 and PC3
are even more dominated by the frequencies and frequency structures, thus interpreting
the relevance of the measurement variables will not be done for these components. The
variable "Fuel consumption return total" were among the most positive peaks for PC1
loadings. This indicates that the return of fuel to the tank is larger for the higher rpms,
because these have higher positive score values along PC1. This further substantiates the
theory of the frequencies and the fuel regulator discussed in section 4.1.2. The theory
was based on that the operation of the fuel regulator was approximately constant, but
that the increase of return fuel flow could lead to larger vibrations.
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4.3 Regression models

This section shows the results of using the vibration data in the time-frequency domain
as predictors for some of the measurement variables using different regression meth-
ods. Comparisons were made with regression models where engine speed is used as
the predictor variable. As the intention of the project was to investigate relationships
with variables such as oil temperature and cylinder pressure, most emphasis is put on
the regression models of these variables. However, as the third PCA model provided
information on the correlation of some other variables, regression models have been
made for some of them as well. In addition, results are compared between methods,
mainly PCR and PLSR.

4.3.1 Cylinder Pressure

The first regression model considers the cylinder pressure. Since the combustion process
is the largest contributor to noise and vibration in diesel engines as discussed in section
2.4.2, it is reasonable to assume that there will be a correlation between the cylinder
pressure and the vibrations. The reason to investigate the cylinder pressure is because the
cylinder pressure sensors often are mounted inside the cylinders, and thus are intrusive
in nature. In the test rig for this project, the pressure sensor is fitted in the glow plug
hole of cylinder number 5. Initially a PCR was performed, with the vibration data in
time-frequency domain from both microphones as predictors and the cylinder pressure as
the response variable. Figure 4.25 shows the connection between the predicted cylinder
pressure values and the reference cylinder pressure values. As described in section 2.3.4,
ideally one would want a slope and R-squared close to 1. The regression line and target
lines are shown in blue and black, respectively.

In the figure, the model is shown with three components. It is easy to see that the
model is not good when looking at the regression measures. The first thing to notice is
the large spread of the data and the deviation between the target line and the regression
line. In the data table given in the figure, several regression measures are given. It can
be seen that both the slope and R-squared have values lower than 0,4. Furthermore the
correlation between the predicted and reference values are 0,62 and the average modelling
error (RMSEC) is 0,81. Figure 4.26 shows the same predictors and response variables,
but this time a PLSR has been done. The result of the PLSR is clearly better than that
of the PCR; less dispersion is seen of the values and higher values are seen for slope,
R-squared and correlation, whereas the RMSEC is reduced significantly. In the predicted
versus reference plot of the PLSR there is initially a group which is placed a bit higher
than what seems to be the trend along the regression line; these samples belong to the
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Figure 4.25: Predicted versus reference cylinder pressure values. Vibration data in
time-frequency domain has been used as predictors in a PCR model.

operating condition 1600rpm and 50Nm. No obvious trend is seen for the rpms but in
general the cylinder pressure seems to increase for the larger rpms, with some exceptions.
Furthermore, the load conditions for the respective rpms seem to go from high to low
along the regression line; i.e the larger load conditions have lower cylinder pressures.

To evaluate whether it makes sense to use vibrations as predictors, the regression
results are compared towards a regression model where engine speed has been used as the
predictor. Since only one variable is used as a predictor, MLR is used. Figure 4.27 shows
the predicted versus reference cylinder pressure values. What can be seen for the figure is
that there are 24 clusters which are separated well from each other. Closer investigation
shows that each of the clusters correspond to one of the operating conditions of the tests
presented in Table 3.4. For the clusters, the general trend is an increase in rpm vertically,
and a decrease in load from right to left in the plot; the higher load conditions are placed
further to the left than the lower load conditions for the same rpm. As for the regression
measures, they show similar values to those of the PCR model seen in Figure 4.25.

Table 4.1 shows some regression measures for the three models presented above.
It can be seen that the PLSR model is better than both the PCR model and the MLR
model where engine speed has been used as the predictor variable. Firstly, the slope and
R-square values for the PLSR model is twice as large as for the other two models, and
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Figure 4.26: Predicted versus reference cylinder pressure values. Vibration data in
time-frequency domain has been used as predictors in a PLSR model
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Figure 4.27: Predicted versus reference cylinder pressure values. Engine speed data has
been used as predictors in an MLR model.
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it has a higher correlation between the predicted and reference values. Furthermore,
the root mean square error of calibration is smaller. From the regression measures of
validation the model fit can be evaluated. It is important to keep in mind the number
of components in the model, as this has relevance towards the fit of the model and the
prediction measures. It can be seen that the root mean square error of cross validation is
slightly higher than that of calibration. The deviation is only approximately 0,01, however
this is for 7 factors. As the original unit of the Cylinder pressure is given in [MPaG]
(megapascal gauge), so is the RMSECV. The RMSECV is approximately 0,48MPaG, which
indicates that future predictions are expected to have a prediction error of approximately
0,48MPaG. In the range -2 to 2 this gives an error of 12%. Furthermore, the R-square is
approximately 0,78 in validation for 7 factors. Thus, for 7factors it is not a very good
model. However, it still has better measures when compared to the PCR model using
only 3 factors, and similar measures to the MLR model with 1 factor.

Table 4.1: Comparison of the regression measures for the three models with cylinder
pressure as response variable

Response:
Cylinder Pressure

Model 1 Model 2 Model 3

Regression measures PCR PLSR MLR

Calibration
Predictors:
Frequencies

Predictors:
Frequencies

Predictor:
Engine Speed

Slope 0,3895505 0,7903299 0,3730874
Correlation 0,6241398 0,8890049 0,6108088
R-square 0,3895519 0,7903298 0,3730874
R2 (Pearson) 0,3895505 0,7903298 0,3730875
RMSEC 0,8105046 0,4750063 0,8214483

Validation
Cross validation,
8 segments

Cross validation,
8 segments

Leverage
correction

Slope 0,3890022 0,7840710 0,3729926
Correlation 0,6237821 0,8839393 0,6106493
Adjusted R-square 0,3892015 0,7813563 0,3728926
R2(Pearson) 0,3891041 0,7813486 0,3728926

RMSECV 0,8108446 0,4850848
0,8215321
(RMSEE)

As described in the theory chapter, PLSR is better at modelling noisy data, which
is why it might have gotten a better result than PCR. The vibration measurements are



100 CHAPTER 4. RESULTS AND DISCUSSION

likely to be affected by noise as they were obtained without the use of an amplifier,
and because the vibration sensors really were made for an entirely different application
(guitar pickups). A PLSR model was also made where the use of overlapping frames in
the frequency domain transformation was removed. Improvements in the order of 0,01
was seen for most of the regression measures, however at the same number of factors.
The idea was that overlap between successive frames (which range over entire engine
cycles) was not ideal for the prediction of the cylinder pressure, however as seen the
improvements were so minimal that the effect was negligible. Furthermore, the effect
of using the weighting 1/standard deviation was investigated, and the best regression
models were obtained with this weighting applied, the difference in most of the regression
measures being about 0,04 for an equal number of factors. Finally, the effect of using two
microphones instead of one was investigated. Using only the data from one microphone
led to a worse regression model, however the differences were not as large as one would
have imagined, as the number of predictor variables are doubled when using the data
from two microphones.

All in all the regression model(s) for the cylinder pressure are not good enough to
be used as replacements, for instance for the pressure sensor in the lab. As the work
and research performed in the lab requires accurate measurements, the prediction error
will be to large. However, it is likely that the PLSR model, which was the best of the
three models, could be used to discover faults in compression in the cylinders of a car
and cylinder misfire. Moreover, it is important to remember that the pre-processing of
the cylinder pressure data, placement of microphones, and drift in pressure sensor can
have affected the measurements negatively. As pre-processing, the mean of the cylinder
pressures have been taken over each engine cycle; this might not be beneficial and can
have influenced the data in a bad way. Furthermore, the pressure sensor was placed in
cylinder #5, whereas the microphones were placed at a distance from this cylinder. Ideally,
the microphones should have been placed at the cylinder head, or at least directly on
the engine block. Finally, thermal drift in the pressure sensor might have influenced the
measurements in a way that has made them non-representative of the different operating
conditions.

4.3.2 Oil Temperature

In this section regression models for the oil temperature in the engine will be presented
and analysed. The principle is the same as in the previous section; vibration data in
time-frequency domain have been used as predictors and oil temperature is the response
variable. Furthermore, the regression models with frequencies as predictors will be
compared to a model where engine speed has been used as predictor. Oil temperature
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is a common variable which is being measured in most cars. However, if values of the
oil temperature can be predicted by the use of vibrations it shows the versatility of the
vibration measurements. Figure 4.28 shows the predicted versus reference values of a
PLSR model for oil temperature where frequencies have been used as the predictors.
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Figure 4.28: Predicted versus reference oil temperature values. Vibration data in the
time-frequency domain has been used as predictors in a PLSR model.

The figure shows that there is a connection between the predictors and the responses;
the samples are not too spread, and the regression line and the target line only have small
deviations. Ideally, all the samples should lie clustered on the regression line, but as was
the case for the cylinder pressure as well, the samples have some dispersion vertically
around the regression line. When investigating the samples, the trend seems to be that the
oil temperature increase for increasing rpm and load, and that the dispersion around the
regression line increases at the higher temperatures. The temperature seems to increase
gradually up until 94, 5◦C at 1400rpm and 50Nm, whereafter a sudden "jump" to 97, 5◦C
appears for 1400rpm and 90Nm. As for the regression measures, these can be said to be
good; the slope and R-squared are approximately 0,94, and the RMSEC is about 1,07. In
the range of 88 − 106◦C this gives an error of about 6%. It is important to remember that
this is for 5 factors, but when compared to the PLSR model of the cylinder pressure which
had 7 factors, this can be said to be a better model. Furthermore, the validation measures,
which are given in Table 4.2, shows that the deviation between calibration and validation
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is minimal. Thus, the model does not suffer from overfitting. Figure 4.29 shows another
regression model. In this figure engine speed has been used as the predictor variable in a
MLR model of oil temperature.
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Figure 4.29: Predicted versus reference oil temperature values. Engine speed data has
been used as predictor in a MLR model.

Once again the samples have been placed in clusters; in the MLR model of the cylinder
pressure (Figure 4.27 each of the clusters corresponded to one of the operating conditions
of the 24 tests. This is not the case here as overlap is seen for a few of the operating
conditions, mostly the 20Nm and 50Nm conditions of rpms from 1600-2600. As for the
first oil temperature regression model, the temperature increases for increased load and
rpm. This is of course decided by the data and not the regression model, but shows the
connection between the operating conditions and the temperature. Earlier in this chapter
it was found that vibrations increase with increasing load and rpm; now it seems that
the same is true for oil temperature. Thus, the large correlation between the predictors
and responses in these regression models is probably related to this. The regression
measures for the MLR model are shown in the figure, but they are also given in Table
4.2 for easier comparison with validation measures and the two other regression models.
When compared to the PLSR model where the frequencies were used as predictors, the
MLR model has lower values for both slope, correlation, R-squared and higher values
for RMSEEE. This indicates that the PLSR model with vibrations is a better model than
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the MLR model with engine speed; however, the PLSR model uses 5 factors to get the
regression measures shown here. At 3 factors, the regression measures of the PLSR model
are surpassed by those of the MLR model.
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Figure 4.30: Predicted versus reference oil temperature values. Engine speed and torque
data has been used as predictors in a PLSR model.

Figure 4.30 shows a third regression model for the oil temperature; here both engine
speed and engine torque has been used as predictors. This model shows similar measures
to those of the first PLSR model, although slope, correlation and R-square have slightly
lower values and RMSEC is a bit higher. The model gets these regression measures with
only 2 factors, however here two different variables have been used as predictors. The
engine speed is a very common measurement when working with engines; engine torque
however, is maybe less so, at least for the typical car. In most laboratories and research
facilities, engine torque is likely to be a common measurement. The point to be made is
that vibration data in time-frequency domain gives an equally good regression model as
when engine speed and engine torque is being used (albeit with more factors). This in
itself shows that the vibration measurements have a lot of potential.

The regression models have shown that there is great correlation between vibration
data and oil temperature, and engine speed (and load) and oil temperature. As opposed
to the cylinder pressure PLSR model, the vibration data provided a better model here
with a lower number of factors. In a car, the measurements for oil temperature does not



104 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.2: Comparison of the regressionmeasures for the themodels with oil temperature
as response variable

Response:
Oil Temperature

Model 1 Model 2 Model 3

Regression measures PLSR MLR PLSR

Calibration
Predictors:
Frequencies

Predictors:
Engine Speed

Predictors:
Engine Speed
Engine Load

Slope 0,9452296 0,8966322 0,9379722
Correlation 0,9722292 0,9469066 0,9684907
R2(Pearson) 0,9452296 0,8966322 0,9379743
R-square 0,9452304 0,8966355 0,9379752
RMSEC 1,067418 1,466535 1,135919

Validation
Cross validation,
8 segments

Leverage
correction

Cross validation,
8 segments

Slope 0,9459367 0,8966156 0,9379626
Correlation 0,9715765 0,9468855 0,9684788
R2(Pearson) 0,9439609 0,8965921 0,9379512
Adjusted R-square 0,9439676 0,8965845 0,9379745

RMSECV 1,079756
1,466816
RMSEE

1,136130

necessarily have to be very exact, and the PLSR model with vibration data provided a
root mean square error for cross validation of approximately 1,08, which means that
new samples (on the same scale) are likely to have a prediction error of a bit more than
1◦C. This is not much in the case of measurements in a car, but of course might not be
exact enough for a laboratory environment. One should keep in mind that in an engine,
temperatures are likely to increase as the period of operation increases. For the tests and
data acquisition performed here, the tests with the lower rpms were carried out first, and
then the rpm was gradually increased to log data for each operating condition. Thus, at
the tests with the higher rpms, the engine has been run for a longer period of time than
at the tests with lower rpm. This might have influenced the oil temperature and made
the measurements less representative of their operating condition. However, the engine
was run for 15minutes prior to the start of data logging to prevent or reduce the effect
this could have on the measurements.



4.3. REGRESSION MODELS 105

4.3.3 Other variables

This section investigates regression models of some other variables obtained from the
enginemeasurement system. Analysis of themodels will not be as thorough as for cylinder
pressure and oil temperature; instead, regression measures for different responses are
gathered in a large table for easy comparison. The predictors are vibration data in the
time-frequency domain. Some models will be outlined and the predicted versus reference
plot for these models will be given in Appendix B. The responses are essentially the
variables discussed in section 4.2.3, i.e those that appeared in the loadings for the third
PCA model.

Table 4.3: Regression measures for several different measurement variables related to
engine operation. Calibration values are given in blue and validation values are given
in red for each model. Validation has been done by random cross-validation with 8
segments.

Variables Regression Measures
Number of
factors

Responses Prediktors Slope Correlation R-squared RMSE
0,9568371 0,9781804 0,9568366 170,0071

Weight [g] Frequencies
0,8565927 0,9781305 0,9567481 170,1993

2

0,9746484 0,9872428 0,9746484 2,815842Fuel consumption
return total [l]

Frequencies
0,9749666 0,9869714 0,9741167 2,845924

4

0,9683817 0,9840639 0,9683812 0,4416076Spill water
temperature [◦C]

Frequencies
0,9677584 0,9828694 0,9660458 0,4577434

5

0,8939310 0,9454793 0,8939296 0,2050000Lambda
estimated ECU [-]

Frequencies
0,8864679 0,9428360 0,8889420 0,2097853

7

0,9599580 0,9797744 0,9599576 93,89131Engine
Speed [rpm]

Frequencies
0,9600499 0,9791237 0,9586924 95,37666

5

0,9210295 0,9597028 0,9210292 7,890084Engine
torque [Nm]

Frequencies
0,9111322 0,9577693 0,9172873 8,075238

7

0,9664701 0,9830921 0,9664699 0,2680566Fuel consumption
ECU [l/h]

Frequencies
0,9637158 0,9822365 0,9647993 0,2747009

5

0,9537267 0,9765893 0,9537267 0,4837511Intake temperature
after cooler [◦C]

Frequencies
0,9534999 0,9765552 0,9536645 0,4840999

2

0,9521710 0,9757925 0,9521722 0,3900680Begin of main
injection [deg]

Frequencies
0,9524339 0,9749004 0,9504398 0,4001120

6

0,7901476 0,8889025 0,7901360 3,218397Fuel pressure
ECU [MPaG]

Frequencies
0,7825182 0,8799335 0,7742751 3,338657

7

0,3498936 0,5915180 0,3498913 0,007793400
NOx [ppm] Frequencies

0,3350571 0,5673864 0,321730 0,007962400
7

From Table 4.3 it can be seen that many models have good regression measures, but
that some require more factors than others to obtain these measures. The two models
which stands out the most are the models with "Weight" and "Intake temperature after



106 CHAPTER 4. RESULTS AND DISCUSSION

cooler" as response variables. These models obtain equally good measures as many of the
other models with only two factors. These were also among the most prominent peaks for
the loadings of the first principal component of the third PCA model in section 4.2.3. The
"Weight" model has a RMSECV of 170,1993; in the range of 12000-15000g (which spans
the measurements for the samples) this corresponds to an estimated prediction error of
5,7%, approximately. The predicted vs reference values of the Weight-model is shown in
Figure B.1 in Appendix B. It can further be seen from table that a specific exhaust gas
is hard to predict: the regression model for NOx-measurements is not good, even with
7 factors. But as can be seen from the weight model, the total amount of exhaust gases
has a good correlation with vibrations. It is possible that an increased amount of exhaust
gases (larger weight) will lead to more vibrations in the exhaust gas pipes, thus making
vibrations a good indicator of the amount of exhaust gas. However, when looking back
to the discussion made on weight and lambda estimated in section 4.2.3, where it was
found that lambda estimated and weight were both higher at the lower rpms, it seems to
be the other way around. As the weight was found to be higher at lower rpms whereas
vibrations were found to increase with rpm and load, it should mean that vibrations and
exhaust gas weights are negatively correlated. It could be that the increased weight of
the exhaust gases leads to increased damping in the affected systems, thus less vibration.

The model with the response variable "Intake temperature after cooler" also provided
some really good regression measures. Since one of the microphones is placed directly to
the intake manifold, it might be that it has managed to detect small changes in the air
temperature. Figure B.2 in Appendix B shows the predicted versus reference values for
the intake temperature after cooler model. As for all temperature measurements, one
should be careful to draw conclusions too fast. It can be seen that the intake temperature
after cooler increase with increasing rpm and load. In section 4.2.3 it was seen that
"Room temperature" appeared in the loadings of the first principal component. The room
temperature can be seen to increase over the time span of the different tests; this is mainly
due to the engine operation which produces heat through the combustion process. If the
air intake to the engine is in the room, and not through a pipe to the outside, it is clear
that the temperature of the intake air will increase as the room temperature increases.
This should be kept in mind when looking at the result. Another interesting model is the
one where "Fuel consumption return total" is the response variable; as discussed earlier
in the report this variable, or the function of the fuel system which leads to return of fuel
might be the reason for the frequencies discussed in section 4.1.2 and 2.3.1. As can be
seen here it has a very high correlation with the vibration data with 4 factors. Finally, the
engine-torque model, although with many factors and not the best regression measures,
shows that it could be possible to predict the load of an engine based on vibrations.
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This could be useful in many contexts, where torque measurements are unavailable or
expensive. In this project only three different load conditions have been used, and to
further develop the torque model it would be necessary to have a much wider range of
load conditions. The predicted versus reference values of the engine-torque model can
be seen in Figure B.3 in Appendix B.

To end the results and discussion chapter of this report, some final remarks will be
made. Regression has been performed with vibration data in time-frequency domain
obtained from two contact microphones at two different locations. The regression models
have shown a lot of potential, at least for some of the variables that have been predicted.
The cylinder pressure-model and oil temperature-model was compared to models where
engine speed was used as the predictor variable. The point was to see if an equally
good or better model could be obtained from engine speed only, thus making the use of
vibrations unnecessary as rpm measurements are very common in all engines. Table 4.3
shows that there is a lot of potential in the vibration measurements, but some important
points must be mentioned. For all the regression models here, only cross validation
has been performed, giving the root mean square error of cross validation. This gives
a better measure on how the models will perform on future data than the root mean
square error of calibration, but the best estimation of how a model will perform on future
samples is given from the root mean square error of prediction, which requires a separate
test set. Test-set validation have not been employed in this project, and would give a
further indication on the potential of vibration data. Also, the vibration sensors (contact
microphones) and all other measurement equipment are prone to errors, which might
have affected the results obtained here.





Chapter 5

Conclusion

This chapter presents a conclusion for the work that has been carried out in this project.
The main results will be summarised with respect to the objectives stated in section 1.3
in the introductory chapter.

The purpose of this project has been to investigate the application of multivariate
analysis methods on vibration data obtained from a diesel engine using cheap acoustic
contact microphones. Initially, a literature study on condition monitoring research for
internal combustion engines was carried out. Both traditional frequency-domain analysis
and multivariate analysis methods were studied. The literature study gave an overview
of the research that has been done in the field, and provided inspiration for this project.
Condition monitoring research has seen an increase in the later years, and to get an
overview of all the research in the field is a task that exceeds the objectives of this project.
However, a thorough literature review was carried out, with the results being put in
context throughout the project. The main parts of the literature studied is woven into the
introduction chapter to set the background for this project. Furthermore, a short review
on the working principles of the internal combustion engine was done in order to better
understand the connections between the measurements.

Data acquisition was carried out according to plan in the Internal Combustion Engine
Laboratory at the Norwegian University of Science and Technology. More specifically,
data was obtained from a fully instrumented Mercedes-Benz OM613 diesel engine. The
instrumentation and test rig was set up prior to this project, and only small changes were
made to the existing setup. Of the changes worth mentioning was the inclusion of the
contact microphones to the existing instrumentation system, and the changes made in
the LabView software for data logging. In addition, the connectors on the microphones
were changed from 6,35mm female stereo jacks to BNC plugs to reduce the influence of
noise, and to make them fit the existing data acquisition hardware. This work was carried
out by laboratory technicians the Department of Energy and Process Engineering. When
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preparing the plan for the measurements, emphasis was put on getting a representative
range of engine speeds. Measurements were obtained in the range 1000-2600rpm, which
can be said to be describing of the typical operating range of a diesel engine for passenger
cars. Three different load conditions were applied at each rpm (except at 1000rpm and
1200rpm), namely 20Nm, 50Nm and 90Nm. In hindsight, this is less representative of the
typical operation of a diesel engine, as it can produce as much as 470Nm at max.

Two problems were encountered in the data acquisition process; microphone place-
ment and the need for an amplifier. As the microphones are intended for guitars, they
were not fit for the high temperatures that take place on the engine block. Thus, new
placements where the temperature was adequately low had to be found. Furthermore,
the initial impression was that an amplifier had to be used to get usable vibration meas-
urements from the contact microphones. However, preliminary tests showed that the
measurements were representative, and it was decided to move on with the project
without an amplifier. Moreover, for the purpose of condition monitoring, it would be
beneficial to obtain data over a longer time period. But due to the limitations in storage,
the data acquisition system in its whole and the fact that the lab was used for several
projects simultaneously, only short time intervals of operation was logged. However, the
amount of data acquired was deemed sufficient for the objectives of this project.

For the experimental study, a superficial analysis was initially carried out in the time
domain. It was shown that vibration amplitude increases with increased rpm and load,
and that this matches results from other research papers. Furthermore, analysis was
carried out in the time-frequency domain. Resampling of the vibration data revealed some
frequencies that appeared as "static", i.e the frequencies were apparent for all rpms. The
interesting part of these frequencies was that they increased in magnitude for increasing
rpm. The frequencies were found at approximately 1837Hz, 1250Hz and 2425Hz. An
attempt was made to connect these frequencies to engine events. A suggestion was that
the common rail fuel system, with pressure sensor and fuel regulator could be connected
to a static frequency, but with magnitude increasing with engine speed. This theory was
further substantiated through that the variable "Fuel consumption return total" appeared
in the loadings of the first principal component of the PCAmodel where all measurements
were included.

Implementation of the weighting function 1/standard deviation revealed a resonance-
like structure in the loadings of the frequencies which was not visible prior to the
weighting. The period of the structure was found to be 3425Hz on average. Multiplication
of the period with the speed of sound in cast iron resulted in a distance of 1,34m, which
is possible that represents the length of the engine block in the laboratory. In addition to
the PCA models, several regression models were made for different response variables,
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with vibration data in the time-frequency domain as predictors. The models showed good
regression measures for many different response variables, and the best results were
found for the variables "Weight", "Intake temperature after cooler" and "Fuel consumption
return total". It was further found that exhaust gas weight and vibrations were negatively
correlated. Models for cylinder pressure and oil temperature were compared to models
where engine speed was used as the predictor variable. An estimated prediction error
of 12% with 7 factors was found for the cylinder pressure model, whereas the estimated
prediction error for oil temperature was approximately 6% with 5 factors. For the cylinder
pressure model, vibration data gave a better model than engine speed, however the
prediction error is too large for vibration sensors to replace pressure sensors in for
instance the laboratory. For the oil temperature model, vibration data gave a better model
when used as predictors than when engine speed and torque was used as the predictors,
however with more factors. All in all the vibration models showed promising results, but
further research must be done before vibration sensors can replace other sensors.

5.1 Recommendations for Further Work

There are many things that can be done to further investigate the vibration data of
diesel engines. The recommendations are divided into three subsections, where the first
is related to measurement equipment, the second is related to the measurements and
operating conditions of the engine, and the third is related to the processing of the data.

Data acquisition - Equipment

For further work, it would be interesting to use better microphones, or vibration sensors
which are more suited to the application, like accelerometers. This could make it possible
to place the vibration sensors directly on the engine block, which could produce stronger
vibrations, or even different vibrations than those obtained in this project. Furthermore,
an amplifier could be implemented as part of the data acquisition hardware to further
improve the quality of the measurement and reduce the influence of noise and potentially
the loss of information. In addition, using several vibration sensors at different locations
could lead to the discovery of new vibrations which can be related to specific events in
the engine. It was seen in this project that using two microphones instead of one gave
better results in the regression models.
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Data acquisition - Measurements

The range of rpm measurements in this project was quite representative of the operation
of a diesel engine for passenger cars, however the range of loads were not. Therefore, new
measurements done at several different load conditions could reveal more information,
and make the reference model more representative of normal operation. For instance, load
conditions from 0Nm to 150Nm or more could be applied to the engine at speeds where
it is feasible. The step between load conditions could for example be 15Nm. Furthermore,
as the software and ECU at the lab makes it possible to adjust the injection timing in the
cylinders and the activation level of the turbocharger, it could be interesting to see the
effects this would have on vibrations. The ECU and Modus software makes it possible
to completely close off the injection of fuel to one cylinder; thus simulating misfiring.
Recording vibrations from this operating condition, and then projecting these samples
onto the reference model could be very interesting in a condition monitoring perspective.
If the samples of misfiring are clearly separated from the other samples in the reference
model, this is promising towards a CM system.

Data Processing

In this project, the vibrationmeasurements have been transformed into the time-frequency
domain using a windowed Fourier transform. Moreover, frame lengths of 4096samples
which is the same as the number of samples in an engine cycle have been used in the
transformation. It might be that other frame lengths are better suited for the vibrations,
thus trying various frame lengths could lead to different results. In addition, the pro-
cessing of the high speed measurements, where the mean was taken over the engine
cycles, might not be the best way to process the data. It was necessary in order to have
an equal number of measurements as frames from the time-frequency transformation,
but it is likely that there are other solutions that will provide a better result. Finally, only
cross validation has been used for the regression models, and to further evaluate these
models data should be collected which could be used as separate test sets. This would
give a better indication of the prediction error the models will have for new samples.
A different approach could be to make new models of the existing data, but with some
of the samples being kept out as a separate test set. This would be the next step in the
process of investigating if vibrations could give exact enough predictions for vibration
sensors to act as replacements for other sensors.
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5.2 Closing Remarks

This project has been truly experimental, and what would be the outcome of it was not
known at the start. PCA has been used in an exploratory manner, and exactly what would
be found was left for surprise. Thus, it has also been challenging to know what to look
for, and to tie the findings to actual engine events or components. However it has been
shown that there is information to be found in the vibration data, and that vibrations
have a lot of potential towards prediction of other variables. When it comes to the world
of multivariate analysis, this project has probably only touched the tip of the iceberg of
different possibilities, and it is likely a lot more information to be found in the vibration
data of diesel engines.
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Appendix A

Abbreviations

CM Condition monitoring

CBM Condition based maintenance

RAMS Reliability, availability, maintainability, and safety

RUL Remaining useful life

AE Acoustic Emission

ANN Artificial neural network

MEMS Microelectromechanical systems

emf Electromotive force

GUI Graphical user interface

MVA Multivariate analysis

ICA Independent component analysis

PCA Principal component analysis

PLSR Partial least squares regression

MLR Multiple linear regression

PCR Principle component regression

RMSE Root mean square error

RMSEC Root mean square error of calibration
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RMSEP Root mean square error of prediction

RMSECV Root mean square error of cross validation

RMSEE Root mean square error of estimation

IC Internal combustion

ICE Internal combustion engine

VICE Vehicle internal combustion engine

TDC Top dead centre

BDC Bottom dead centre

OHV Overhead valve

CAD Crank angle degrees

ECU Engine control unit

rpm Revolutions per minute

AFR Air-to-fuel ratio

DFT Discrete Fourier transform

FFT Fast Fourier transform

STFT Short-time Fourier transform

CWT Continuous wavelet transform

HT Hilbert transform

HHT Hilbert-Huang transform

SPWVD Smoothed pseudo Wigner-Ville distribution

BSS Blind source separation

RMS Root mean square
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Regression plots
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Figure B.1: Predicted versus reference exhaust gas weight values. Frequency vibration
data has been used as predictors in a PLSR model. The weight values increase for the
lower rpms, i.e the lowest values are found for 2600rpm90Nm and the highest values are
found for 1000rpm20Nm
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Reference Y (Intake_temperature_after_cooler, Factor-2)
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Figure B.2: Predicted versus reference intake temperature after cooler values. Frequency
vibration data has been used as predictors in a PLSR model. The temperature increase
for increasing rpm and load
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Figure B.3: Predicted versus reference engine torque values. Frequency vibration data
has been used as predictors in a PLSR model. The three load conditions are very clear,
with some spread.



Appendix C

MATLAB Code

C.1 Data Extraction

This script deals with extraction of data from tdms files and creation of multidimensional
arrays. The script has to be placed in the same folder as the MATLAB files provided by
the TDMS-Reader package.

1

2 %Initializing

3 close all;

4 clear;

5 clc;

6

7 %Number of tests

8 NumTests = 24;

9 %Number of variables in High Speed measurements

10 NumVarHigh = 12;

11 %Number of variables in Low Speed measurements

12 NumVarLow = 60;

13 %Number of samples in one engine cycle

14 CycleLength = 4096;

15 %Low speed sampling rate

16 FsLow = 10;

17

18

19

20

21

22

23

24
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25

26 %Storing filenames in array

27 %Preallocate

28 Filenames=num2cell(zeros(NumTests,1));

29 for i=1:NumTests

30

31 CurFilename = ((strjoin(([{'Test'},num2str(i),{'.tdms'}]))));

32 CurFilename = CurFilename(CurFilename ~= ' ');

33 Filenames(i) = cellstr(CurFilename);

34

35 end %end for i

36

37 %Reading datafiles using tdms-reader

38 for i=1:NumTests

39

40 Tests(i) = TDMS_getStruct(char(Filenames(i)));

41

42 end

43

44 %Multidimensional array for High Speed measurements

45 %Preallocate size of each test

46 TestSizeHigh= zeros(length(Tests(24).High_speed.Time.data),...

47 NumVarHigh);

48

49 Tests_High = cat(3,TestSizeHigh,TestSizeHigh,TestSizeHigh,...

50 TestSizeHigh,TestSizeHigh,TestSizeHigh,TestSizeHigh,...

51 TestSizeHigh,TestSizeHigh,TestSizeHigh,TestSizeHigh,...

52 TestSizeHigh,TestSizeHigh,TestSizeHigh,TestSizeHigh,...

53 TestSizeHigh,TestSizeHigh,TestSizeHigh,TestSizeHigh,...

54 TestSizeHigh,TestSizeHigh,TestSizeHigh,TestSizeHigh,...

55 TestSizeHigh);

56

57 %Multidimensional array for Low speed measurements

58 %Preallocate size of each test

59 TestSizeLow = zeros(1000,NumVarLow);

60

61 Tests_Low = cat(3, TestSizeLow,TestSizeLow,TestSizeLow,...

62 TestSizeLow,TestSizeLow,TestSizeLow,TestSizeLow,...

63 TestSizeLow,TestSizeLow,TestSizeLow,TestSizeLow,...

64 TestSizeLow,TestSizeLow,TestSizeLow,TestSizeLow,...

65 TestSizeLow,TestSizeLow,TestSizeLow,TestSizeLow,...

66 TestSizeLow,TestSizeLow,TestSizeLow,TestSizeLow,TestSizeLow);

67

68

69 %Create arrays of the variable names
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70 HighSpeedVar = struct2table(Tests(1).High_speed, 'AsArray',true);

71 HighSpeedVar = HighSpeedVar.Properties.VariableNames;

72

73 LowSpeedVar = struct2table(Tests(1).Low_speed, 'AsArray',true);

74 LowSpeedVar = LowSpeedVar.Properties.VariableNames;

75

76 %%Data extraction

77 for i=1:NumTests

78

79 %Get Current Test

80 CurTest = Tests(i);

81

82 %Extract High speed measurements

83 for j=1:NumVarHigh

84

85 %Index out each variable, starting from 'Time'.

86 CurVar_H = char(HighSpeedVar(j+2));

87

88 %Extract data for current variable, and transpose

89 %to get data in rows

90 CurVarData_H = (CurTest.High_speed.(char(CurVar_H)).data)';

91

92 %Store the extracted data in the multidimensional array

93 Tests_High(1:length(CurVarData_H),j,i) = CurVarData_H;

94

95 end %end for j:NumVarHigh

96

97 %Extract Low speed measurements

98 for k=1:NumVarLow

99

100 %Index out each variable starting from 'Time';

101 CurVar_L = char(LowSpeedVar(k+2));

102

103 %Extract data for current variable, and transpose to

104 %get data in %rows.

105 CurVarData_L = (CurTest.Low_speed.(char(CurVar_L)).data)';

106

107 %Store the extracted data in multidimensional arrray

108 Tests_Low(1:length(CurVarData_L),k,i) = CurVarData_L;

109

110 end %end for k:NumVarLow

111

112 end %end for i:NumTests

113

114 %%Determine number of cycles to extract



128 APPENDIX C. MATLAB CODE

115 %Find the number of samples in the shortest test, i.e the test with

116 %the lowest rpm

117 Duration_High = length(Tests(1).High_speed.Microphone_1.data);

118 Duration_Low = length(Tests(1).Low_speed.Time.data);

119

120 %The largest possible number of cycles that can be extracted:

121 %NumCycles = Duration/CycleLength;

122

123 %Chosen number of cycles

124 NumCycles = 200;

125

126 %Extract High speed measurements starting from sample number 4097

127 %due to an oddity in the time measurements. To match the low speed

128 %measurements,extract these starting from sample number 2.

129

130 %Extracting number of samples equal to the samples in

131 %NumCycles*CycleLength from High_Speed measurements,

132 %with a buffer of 2cycles.

133 Tests_High = Tests_High(4097:(NumCycles+2)*CycleLength+4096,:,:);

134

135 %Extracting Low speed measurements (fitted to numCycles,

136 %with a buffer)

137 Tests_Low = Tests_Low(2:257,:,:);



C.2 Data Processing

This script deals with the data processing of the measurements, including Fourier trans-
form, adaption of high and low speed measurements, and resampling. The output is a
large table, where all measurements are gathered. Tables before and after resampling of
the vibration measurements are given.

1 %Initialize

2 clearvars -except HighSpeedVar LowSpeedVar Tests Tests_High...

3 Tests_Low NumVarHigh NumVarLow NumTests NumCycles...

4 CycleLength FsLow;

5

6 close all;

7 clc;

8

9 %% Data extraction

10

11 %Preallocate matrices

12 %Microphone1

13 Vibarray_1=zeros(NumCycles*CycleLength,NumTests);

14 %Microphone2

15 Vibarray_2=zeros(NumCycles*CycleLength,NumTests);

16 %cylinder pressure

17 Pressurearray=zeros(NumCycles*CycleLength,NumTests);

18 %RPM

19 RPM =zeros(length(Tests_Low(:,1,1)),NumTests);

20 %reference enc.

21 Reference_encoder = zeros(NumCycles*CycleLength,NumTests);

22 Index = zeros(NumTests,1); %index array

23

24 %In order for the extracted cycles to have the "same content",

25 %a reference must be used when extracting the measurements.

26 %Thus, by finding the index of a pressure peak, and subtracting 2048

27 %samples from this index, a cycle will be

28 %-2048 samples : pressure peak : +2048 samples.

29

30 %For 1 to number of tests

31 for i=1:NumTests

32

33 %Extract cylinder pressure measurements and gather in array

34 Pressurearray_Temp = Tests_High(:,2,i);

35

36 %Find the first pressure peak that is at least 2048 samples in

37 % but not further in than 2048+1cycle
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38 [M,I] = max(Pressurearray_Temp(2048:6144));

39

40 %Store index for later use

41 Index(i,1) = I;

42

43 %Find the reference signals from new index

44 Reference_encoder(:,i) = ...

45 Tests_High(I:NumCycles*CycleLength+I-1,11,i);

46

47 %Use the index to extract the pressure measurements so as to fit

48 %the cycles of the coming vibration measurements

49 Pressurearray(:,i) = Tests_High(I:NumCycles*CycleLength+I-1,2,i);

50

51 %Extract vibration measurements and gather in array

52 %Use the index found in previous line to define start point for

53 %first cycle

54

55 %Microphone1

56 Vibarray_1(:,i) = Tests_High(I:NumCycles*CycleLength+I-1,6,i);

57

58 %Microphone2

59 Vibarray_2(:,i) = Tests_High(I:NumCycles*CycleLength+I-1,7,i);

60

61 %Extract RPM measurements and gather in array

62 RPM(:,i) = Tests_Low(:,46,i);

63

64 end

65 clear Iref Ip Referene_encoder_temp Pressurearray_temp I;

66

67 %By starting the cycles at a later index, the start time of

68 %high speed and low speed measurements are no longer identical,

69 %however the difference is so small that it is negligble.

70 %Also, the low speed measurements are sampled at a lower sample

71 %rate,and seldom change from one measurement to the next.

72

73 %%Calculating means of rpm-measurements

74 %Preallocate

75 RPM_mean = zeros(NumTests,1);

76

77 %For 1 to number of tests

78 for i=1:NumTests

79

80 %Calculate mean of RPM vectors

81 RPM_mean(i,1) = mean(RPM(:,i));

82
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83 end

84

85 %%Calculating sample rates

86 %Preallocate

87 Fs = zeros(NumTests,1);

88

89 %For 1 to number of tests

90 for i=1:NumTests

91

92 %Calculate sample rate which is dependant upon RPM

93 Fs(i,1) = round(2048*RPM_mean(i,1))/60;

94

95 end

96

97 %%Calculating time vectors

98 %Preallocate

99 Time = zeros(NumCycles*CycleLength,NumTests);

100

101 %For 1 to number of tests

102 for i=1:NumTests

103

104 %Calculate time vectors based on sample rate

105 Time(:,i) = 0:1/Fs(i,1):NumCycles*CycleLength/...

106 (Fs(i,1))-1/Fs(i,1);

107

108 end

109

110 %%Calculate Cycle times

111 %Preallocate

112 CycleTimes = zeros(NumCycles,NumTests);

113

114 %For 1 to number of tests

115 for i=1:NumTests

116

117 %For 1 to the number of cycles

118 for j=1:NumCycles

119

120 % Append the end time of each cycle to a matrix

121 CycleTimes(j,i) = j*(1/(RPM_mean(i,1)/(60*2)));

122

123 end %end for j:NumCycles

124

125 end %end for i:NumTests

126

127
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128 %% Calculating Fourier transform of vibration signals

129

130 %Length

131 L = NumCycles*CycleLength;

132

133 %Frame lengths

134 windowLength = 4096; %Frame length equal to one engine cycle

135 step = 2048; % 50% overlap

136

137 %Shorter window lengths give better time resolution

138 %Longer window lengths give better frequency resolution

139

140 %Compute the total number of frames;

141 numFrames = floor((L-windowLength)/step) + 1;

142 %floor rounds down

143 %Take length of signal, subtract 1 frame

144 %divide by step to obtain number of frames

145

146 %Init;

147 CurPos = 1;

148 Position = 1;

149

150 %Preallocate matrices

151 %Microphone1

152 X_1 = zeros(ceil(windowLength/2),numFrames);

153 XBig_1 = zeros(numFrames*NumTests,round(windowLength/2));

154

155 %Microphone2

156 X_2 = zeros(ceil(windowLength/2),numFrames);

157 XBig_2 = zeros(numFrames*NumTests,round(windowLength/2));

158

159 % Calculate the FFT of each frame of each vibration measurement

160 % and append all FFT results in a large table

161

162 for i=1:NumTests %For 1 to the number of tests

163

164 % Get vibration measurements

165 Vib_1 = Vibarray_1(:,i);

166 Vib_2 = Vibarray_2(:,i);

167

168 % For each frame

169 for j=1:numFrames

170

171 % Get current frame

172 frame_1 = Vib_1(CurPos:CurPos+windowLength-1);
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173 frame_2 = Vib_2(CurPos:CurPos+windowLength-1);

174

175 % Multiply the frame with the hamming window

176 frameW_1 = frame_1.*window(@hamming,length(frame_1));

177 frameW_2 = frame_2.*window(@hamming,length(frame_2));

178

179 % Find FFT of each frame

180 %compute magnitude of each frame spectrum

181 %normalize by the number of samples

182 FFT_1 = abs(fft(frameW_1))/windowLength;

183 FFT_2 = abs(fft(frameW_2))/windowLength;

184

185 % Due to symmetric property of the magnitude of DFT coeff:

186 %return first half of spectrum

187 FFT_1 = FFT_1(1:ceil(windowLength/2)); %ceiling rounds up

188 FFT_2 = FFT_2(1:ceil(windowLength/2));

189

190 % Gather all frames in one matrix

191 ...where the DFT coefficients of each frame are placed into

192 ...separate columns

193

194 %Microphone1

195 X_1(:,j) = FFT_1;

196 %Microphone2

197 X_2(:,j) = FFT_2;

198

199 %Update index

200 CurPos = CurPos + step;

201 end

202

203 %Gather cycles in a matrix

204 XBig_1(Position:Position+length(X_1(1,:))-1,:)= X_1';

205 XBig_2(Position:Position+length(X_2(1,:))-1,:)= X_2';

206

207 %Update index for matrix appending

208 Position = Position + length(X_1(1,:));

209

210 %Restore index for inner loop

211 CurPos = 1;

212

213 end

214 clear Position CurPos frame_1 frame_2 frameW_1 frameW_2 FFT_1...

215 FFT_2 Vib_1 Vib_2

216

217
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218 %% Making a matrix of High speed measurements by taking the mean of

219 ...the samples across each frame

220

221 %Preallocating matrices:

222 % Temporary matrix used in loop

223 MeanMeas_H = zeros(numFrames,length(Tests_High(1,2:end,1)));

224

225 % Matrix that will contain the low speed measurements for each cycle

226 ...of each test

227 Measurements_H = zeros(NumTests*numFrames, ...

228 length(Tests_High(1,2:end,1)));

229

230 %Initialize indices

231 Pos = 1;

232 Loc = 1;

233

234 %For 1 to the number of tests

235 for i=1:NumTests

236

237 CurIdx = Index(i);

238

239 %Get measurements

240 Measurements = ...

241 Tests_High(CurIdx:NumCycles*CycleLength+CurIdx-1,2:12,i);

242

243 %For each cycle

244 for j=1:numFrames

245

246 %For each column of High Speed measurements

247 for k=1:length(Measurements(1,:))

248

249 %Take mean over number of samples equal to frame length

250 MeanMeas_H(j,k) = ...

251 mean(Measurements(Pos:Pos+windowLength-1,k));

252

253 end %end for k:columns

254

255 %Update index position

256 Pos=Pos+step;

257

258 end %end for j:NumCycles

259

260 %Restore index

261 Pos = 1;

262
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263 %Append matrices from each test to a common matrix

264 Measurements_H(Loc:Loc+numFrames-1,:) = MeanMeas_H;

265

266 %Update index

267 Loc = Loc+numFrames;

268

269 end %end for i:NumTests

270 clear Loc Pos Measurements MeanMeas_H CurIdx;

271

272 %% Creating a matrix of low speed measurements by connecting

273 ...measurements to frame times

274

275

276 %Low speed measurements are sampled at 10times per second

277 Time_Low = (0.1:1/FsLow:length(Tests_Low(:,1,1))/FsLow-1/FsLow)';

278

279 %%Calculate frame times

280 %Preallocate

281 FrameTimes = zeros(numFrames,NumTests);

282 %For 1 to number of tests

283 for i=1:NumTests

284

285 %For 1 to the number of cycles

286 for j=1:numFrames

287

288 % Append the end time of each frame to a matrix

289 FrameTimes(j,i) = j*((windowLength/2)/Fs(i));

290

291 end %end for j:numFrames

292

293 end %end for i:NumTests

294

295 %Preallocating matrices:

296 % Temporary matrix used in loop

297 Meas_L = zeros(numFrames,length(Tests_Low(1,2:end,1)));

298

299 % Matrix that will contain the low speed measurements for each

300 ...cycle of each test

301 Measurements_L = zeros(NumTests*numFrames, ...

302 length(Tests_Low(1,2:end,1)));

303

304 %Initialize index;

305 Position = 1;

306

307 % For 1 to the number of tests
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308 for i=1:NumTests

309

310 %Get measurements

311 CurMeasurements = Tests_Low(:,2:end,i);

312

313 %Obtain frame times of current test

314 CurFrames = FrameTimes(:,i);

315

316 %For each frame

317 for j=1:numFrames

318

319 %Return the index of the time for samples that best matches

320 %the frame time.

321 [~,idx] = min(abs(Time_Low-CurFrames(j)));

322

323 %For each column of Low Speed measurements

324 for k=1:length(CurMeasurements(1,:))

325

326 %Append the measurements of the index found above to the

327 %subsequent frames

328 Meas_L(j,k) = (CurMeasurements(idx,k));

329 end %end for k:Columns

330

331 end %end for j:numframes

332

333 %Append matrices from each test to a common matrix

334 Measurements_L(Position:Position+numFrames-1,:) = Meas_L;

335

336 %Update index

337 Position = Position+numFrames;

338

339 end %end for i:NumTests

340 clear Position CurFrames CurMeasurements Meas_L idx;

341

342 %% Putting Low Speed and High Speed measurements in same matrix

343

344 %Preallocate

345 Measurements_H_L = zeros(numFrames*NumTests, ...

346 length(Measurements_H(1,:))+length(Measurements_L(1,:)));

347

348 %Append High Speed measurements

349 Measurements_H_L(:,1:length(Measurements_H(1,:))) = Measurements_H;

350

351 %Append Low speed measurements

352 Measurements_H_L(:,length(Measurements_H(1,:))+1:...
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353 length(Measurements_L(1,:))+length(Measurements_H(1,:))) = ...

354 Measurements_L;

355

356 %Include the FFT coefficients in the same table as the measurements

357 Measurements_ALL = zeros(numFrames*NumTests, length(XBig_1(1,:))+...

358 length(Measurements_H_L(1,:)))+ length(XBig_2(1,:));

359 Measurements_ALL(:,1:length(XBig_1(1,:)))= XBig_1;

360

361 Measurements_ALL(:,length(XBig_1(1,:))+1:length(XBig_1(1,:))+...

362 length(XBig_2(1,:))) = XBig_2;

363

364 Measurements_ALL(:,length(XBig_1(1,:))+length(XBig_2(1,:))+1:...

365 length(XBig_1(1,:))+length(XBig_2(1,:))+...

366 length(Measurements_H_L(1,:)))= Measurements_H_L;

367

368 %% Preparing column and row names for measurement table

369

370 colNames=num2cell(zeros(1,round(2*windowLength/2)+...

371 length(Measurements_H_L(1,:))));

372

373 FreqVarName_1 = {'Mik1Coeff'};

374 FreqVarName_2 = {'Mik2Coeff'};

375

376 for i=1:round(windowLength/2)

377 colNames(i) = cellstr(strjoin([FreqVarName_1,num2str(i)],'_'));

378 end

379

380 for i=round(windowLength/2)+1:windowLength

381 colNames(i) = cellstr(strjoin([FreqVarName_2,num2str(i-2048)],...

382 '_'));

383 end

384

385 colNames(2*round(windowLength/2)+1:2*round(windowLength/2)+...

386 length(Measurements_H_L(1,:))) = {...

387 'Cylinder_Pressure','Exhaust_Pressure_H','Fuel_Pressure',...

388 'Engine_Torque','Microphone_1', 'Microphone_2',...

389 'Crank_Encoder','CAM_ECU', 'Crank_ECU', 'Reference_Encoder',...

390 'TDC_ECU','EGT_Cylinder_1','EGT_Cylinder_2','EGT_Cylinder_3',...

391 'EGT_Cylinder_4','EGT_Cylinder_5', 'EGT_Cylinder_6',...

392 'Spill_water','Fuel_Temperature','Oil_Temperature',...

393 'EGT_after_turbine_1','EGT_after_turbine_2',...

394 'Intake_temperature_before_charger',...

395 'Intake_temperature_after_cooler',...

396 'Intake_temperature_before_cooler','Coolant_Temperature',...

397 'Water_Pressure','Oil_Pressure','Boost_Pressure',...
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398 'Load_Pump', 'Exhaust_Pressure_L','Battery_voltage_ECU',...

399 'Fuel_Pressure_ECU', 'Boost_Pressure_ECU','Engine_Speed_ECU',...

400 'Fuel_Quantity_ECU', 'Fuel_Pressure_valve_ECU',...

401 'Boost_valve_ECU', 'Begin_of_main_injection_ECU',...

402 'Injection_Volume_ECU','Fuel_Consumption_ECU', ...

403 'Airmass_flow_ECU','Airmass_flow_stroke_ECU',...

404 'Duration_of_main_injection_ECU','Engine_control_mode_ECU',...

405 'Lambda_estimated_ECU','Fuel_Consumption_inlet',...

406 'Fuel_consumption_inlet_total','Fuel_consumption_return',...

407 'Fuel_consumption_return_total','Engine_Torque_Nm',...

408 'Engine_Power_kW','Engine_Power_HP','Mass_flow_rate',...

409 'Orifice_plate_pressure','Engine_speed','Turbo_speed',...

410 'Cylinder_peak_pressure_position','Cylinder_peak_pressure',...

411 'Room_pressure', 'Room_temperature','Room_humidity','NOx',...

412 'CO', 'CO2','O2','Weight','NO2', 'THC', 'NO'};

413

414 %Preallocate

415 rowNames = cell(numFrames*NumTests, 1);

416 Test_names = {'1000rpm20Nm','1200rpm20Nm','1200rpm50Nm',...

417 '1400rpm20Nm','1400rpm50Nm','1400rpm90Nm','1600rpm20Nm',...

418 '1600rpm50Nm','1600rpm90Nm','1800rpm20Nm',...

419 '1800rpm50Nm','1800rpm90Nm','2000rpm20Nm','2000rpm50Nm',...

420 '2000rpm90Nm','2200rpm20Nm','2200rpm50Nm','2200rpm90Nm',...

421 '2400rpm20Nm','2400rpm50Nm','2400rpm90Nm','2600rpm20Nm',...

422 '2600rpm50Nm','2600rpm90Nm'}';

423

424 Basename = 'F_'; %Frame nr. (because rownames must be unique)

425 %Index

426 indicator = 1;

427

428 %For each test

429 for i=1:NumTests

430

431 %Get name of current test

432 Rowname = (Test_names(i));

433

434 %For each cycle

435 for j=1:numFrames

436

437 %Append test name and cycle name to rows

438 rowNames(indicator+j-1,1) = cellstr(strjoin([Rowname,...

439 Basename,num2str(j)]));

440

441 end %for j:NumCycles

442
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443 %Update index

444 indicator = indicator + numFrames;

445

446 end %end for i

447 clear Rowname indicator;

448

449 %% Create table and write to file

450

451 %Create table with all measurements, included FFT results

452 Measurements_ALL = array2table(Measurements_ALL,'RowNames',...

453 rowNames,'VariableNames',colNames);

454

455 %Write to CSV

456 % writetable(Measurements_ALL,'Measurements_ALL.csv',...

457 % 'WriteRowNames',true);

458

459 %% Resample the FFT data and put into matrix together with all other

460 ...data

461

462 %%Creating an RPM vector with equal number of rows as XBig

463 %Preallocate %large RPM vector

464 RPM_Big = zeros(length(XBig_1(:,1)),1);

465 steg=1;

466

467 %For 1 to the number of different RPMs

468 for i=1:length(RPM_mean(:,1))

469

470 %Append the current rpm to the corresponding test rows

471 RPM_Big(steg:steg+numFrames-1) = round(RPM_mean(i));

472

473 %Update index

474 steg = steg+numFrames;

475

476 end %end for i:RPM_mean

477 clear steg;

478

479 %%Resampling

480 Reference_rpm = 3000; %chosen reference rpm for resampling

481

482 %Preallocate the resampled matrix

483 %After resampling, the number of columns will vary,

484 ...so pad with some extra zeros.

485 %Approximating the number of columns required and adding some extra

486 Pad = round((RPM_mean(end)/Reference_rpm)*length(XBig_1(1,:)));

487 XBig_Resampled_1 = zeros(length(XBig_1(:,1)),Pad+288);
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488 XBig_Resampled_2 = zeros(length(XBig_2(:,1)),Pad+288);

489

490 %For all rows of XBig

491 for i=1:length(XBig_1(:,1))

492

493 %Get current row

494 CurRow_1 = XBig_1(i,:);

495 CurRow_2 = XBig_2(i,:);

496

497 %Get current rpm

498 CurRPM=RPM_Big(i);

499

500 %Resample

501 CurRow_resampled_1 = resample(CurRow_1,CurRPM,Reference_rpm);

502 CurRow_resampled_2 = resample(CurRow_2,CurRPM,Reference_rpm);

503

504 %Append to large matrix

505 XBig_Resampled_1(i,1:length(CurRow_resampled_1)) = ...

506 CurRow_resampled_1;

507 XBig_Resampled_2(i,1:length(CurRow_resampled_2)) = ...

508 CurRow_resampled_2;

509

510 end %end for i

511 clear CurRow_1 CurRow_2 CurRPM CurRow_resampled_1 ...

512 CurRow_resampled_2;

513

514 %Create a common matrix for the resampled FFT matrices

515 XBigBig = XBig_Resampled_1;

516 XBigBig = [XBigBig XBig_Resampled_2];

517

518 %%Add the resampled FFT matrix to the other measurements in a

519 ...large table

520 %Preallocate

521 Measurements_ALL_Resampled = zeros(length(XBig_1(:,1)),...

522 length(XBig_Resampled_1(1,:))+ length(Measurements_H_L(1,:))...

523 +length(XBig_Resampled_2(1,:)));

524

525 %Adding resampled FFT data

526 Measurements_ALL_Resampled(:,1:length(XBig_Resampled_1(1,:)))...

527 = XBig_Resampled_1;

528

529 Measurements_ALL_Resampled(:,length(XBig_Resampled_1(1,:))+1:...

530 (length(XBig_Resampled_1(1,:)))+length(XBig_Resampled_2(1,:)))...

531 = XBig_Resampled_2;

532
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533 %Adding high and low speed measurements

534 Measurements_ALL_Resampled(:,2*length(XBig_Resampled_1(1,:))+1:...

535 2*length(XBig_Resampled_1(1,:))+...

536 length(Measurements_H_L(1,:)))= Measurements_H_L;

537

538 %Finally, creating a table with corresponding row-and columnnames

539 rowNames; % The same as before resampling

540 %Preallocate

541 colNames_Resampled = num2cell(zeros(1,...

542 length(Measurements_ALL_Resampled(1,:))));

543

544 %Add Frequencies

545 for i=1:length(XBig_Resampled_1(1,:))

546 CurColName = strjoin([{'Mik1Freq'},num2str(i)]);

547 CurColName = CurColName(CurColName ~= ' ');

548 colNames_Resampled(i) = cellstr(CurColName);

549 end

550 clear CurColName;

551

552 %Add Frequencies

553 for i=length(XBig_Resampled_1(1,:))+1:...

554 length(XBig_Resampled_1(1,:))+length(XBig_Resampled_2(1,:))

555 CurColName = strjoin([{'Mik2Freq'},...

556 num2str(i-length(XBig_Resampled_1(1,:)))]);

557 CurColName = CurColName(CurColName ~= ' ');

558 colNames_Resampled(i) = cellstr(CurColName);

559 end

560 clear CurColName;

561

562 %Adding measurement names

563 colNames_Resampled(length(XBig_Resampled_1(1,:))+...

564 length(XBig_Resampled_2(1,:))+1:end) = ...

565 colNames(length(XBig_1(1,:))+length(XBig_2(1,:))+1:...

566 length(XBig_1(1,:))+length(XBig_2(1,:))+...

567 length(Measurements_H_L(1,:)));

568

569 %Creating table

570 Measurements_ALL_Resampled = array2table(...

571 Measurements_ALL_Resampled,'RowNames',rowNames,...

572 'VariableNames',colNames_Resampled);

573

574 clear i j k FreqVarName Basename;

575 %%Writing to csv

576 % writetable(Measurements_ALL_Resampled,...

577 % 'Measurements_ALL_Resampled_v4.csv','WriteRowNames',true);
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