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ABSTRACT
In order to make non-linear finite element analyses applicable during assessments of
the ultimate load capacity or the structural reliability of large reinforced concrete
structures, there is need for an efficient solution strategy with a low modelling uncer-
tainty. A solution strategy comprises choices regarding force equilibrium, kinematic
compatibility and constitutive relations. This contribution demonstrates four impor-
tant steps in the process of developing a proper solution strategy: 1) definition, 2)
verification by numerical experiments, 3) validation by benchmark analyses and 4)
demonstration of applicability. A complete solution strategy is presented in detail,
including a fully triaxial material model for concrete, which was adapted to facilitate
its implementation in a standard finite element software. Insignificant sensitivity to
finite element discretization, load step size, iteration method and convergence tol-
erance were found by numerical experiments. A low modelling uncertainty, denoted
by the ratio of experimental to predicted capacity, was found by comparing the
results from a range of experiments to results from non-linear finite element predic-
tions. The applicability to large reinforced concrete structures is demonstrated by
an analysis of an offshore concrete shell structure.

KEYWORDS
non-linear finite element analyses; large concrete shell structures; practical
applications; ultimate load capacity; modelling uncertainty; structural design

1. Introduction

With the introduction of the semi-probabilistic safety formats in fib Model Code 2010
for Concrete Structures (fib, 2013), non-linear finite element analyses (NLFEA) are
receiving increased interest from the engineering community. This paper addresses the
topic of NLFEA applicable for the design of large reinforced concrete structures, where
the main scope of the analyses are accurate predictions of the ultimate load capacity.

The design of large reinforced concrete shell structures like dams and offshore oil and
gas platforms is normally based on global linear finite element analyses (LFEA). This
allows for using the principle of superpositioning in order to handle the vast number
of design load combinations (Brekke, Åldstedt, and Grosch, 1994; Engen, Hendriks,
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Øverli, and Åldstedt, 2015). For such large shell structures it is important to perform
global analyses due to the interaction between global and local load effects. In order
to reduce the computational cost, the finite elements are normally large compared to
the sectional dimensions. Sufficient capacity is assured by performing local sectional
design based on the sectional forces obtained from the LFEA.

In order to better take into account the real physical behaviour of reinforced con-
crete, non-linear finite element analyses (NLFEA) could be carried out in the design
phase. The NLFEA should then be used in combination with methods for global re-
liability assessments, e.g. the semi-probabilistic safety formats suggested in fib Model
Code for Concrete Structures 2010 (fib, 2013). Due to cracking of concrete and yielding
of reinforcement, a redistribution of the internal forces can be expected.

In order to perform NLFEA, the analyst needs to make proper choices regarding
force equilibrium, kinematic compatibility and constitutive relations. Collectively, the
choices constitute a strategy for obtaining a solution from NLFEA, or short, a solution
strategy for NLFEA (Engen et al., 2015). Previous research has led to the development
of a set of guidelines for NLFEA of reinforced or prestressed concrete beams, girders
and slabs (Belletti, Damoni, and Hendriks, 2011; Belletti, Damoni, den Uijl, Hendriks,
and Walraven, 2013; Belletti, Damoni, Hendriks, and de Boer, 2014; Belletti, Pimentel,
Scolari, and Walraven, 2015; Hendriks, de Boer, and Belletti, 2017). However, the
applicability to large reinforced concrete shell structures has not been demonstrated.

This contribution is part of an ongoing research project and complements the find-
ings reported by the authors in two separate publications (Engen et al., 2015; Engen,
Hendriks, Köhler, Øverli, and Åldstedt, 2017). Engen et al. (2015) compared results
obtained with the mentioned guidelines to results reported elsewhere in the literature
in order to select a solution strategy for further development. Engen et al. (2017)
adapted the selected solution strategy and assessed the modelling uncertainty by com-
paring results obtained with NLFEA to experimental results reported in the literature.
The modelling uncertainty can be defined as the ratio between the experimental and
the predicted capacity, θ = Rexp/RNLFEA. The modelling uncertainty is mainly related
to simplifications of the mathematical models compared to the real physical behaviour
that is modelled, either for practical reasons or due to a lack of knowledge. This can be
related to e.g. modelling of the material behaviour as a function of a limited number of
variables, or a simplified representation of the real loading or boundary conditions. For
reinforced concrete, the material model for concrete is considered the largest source of
modelling uncertainties.

In this paper the selected solution strategy from Engen et al. (2015, 2017) is further
developed and discussed in detail. The solution strategy includes a fully triaxial mate-
rial model for concrete which was adapted to facilitate its implementation in a standard
finite element software. The accuracy of the solution strategy should be assessed by
verification and validation, where verification answers the question are we solving the
equations right?, and validation answers the question are we solving the right equa-
tions? (Engen et al., 2017; Roache, 1998). The complete solution strategy was verified
by comparing results obtained with different finite element discretizations, load step
sizes and iterative solution procedures. Validation was performed by comparison of
experimental and predicted results from a range of benchmark analyses. Results from
two benchmark analyses are presented in this paper and the applicability to large con-
crete structures is demonstrated by NLFEA of an offshore concrete shell structure. It
will be demonstrated that the ultimate load capacity and load-displacement relations
can be efficiently predicted with reasonable accuracy in spite of using relatively simple
material models and coarse finite element meshes. It should be noted that problems
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related to e.g. durability or mechanical degradation, where a precise prediction of the
crack pattern is important, might call for other and more detailed solution strategies.

2. Solution strategy for NLFEA

2.1. Material model for concrete

A common way of selecting material models for concrete is to use a uniaxial material
model as basis, extended with additional models that take into account other material
effects such as the effects of confinement and lateral cracking. Such an approach can
be convenient when the structural effects of different material effects are to be studied,
but additional models are normally developed in combination with other complemen-
tary models and should not be separated (Vecchio, 2001). Alternatively, fully triaxial
material models where all material effects are treated, could be used. One such ma-
terial model has been developed by Kotsovos and co-workers since the 1970s and is
still subject to improvements (Bédard and Kotsovos, 1985; Cotsovos and Pavlovic,
2006; González Vidosa, Kotsovos, and Pavlovic, 1991a,b; Kotsovos, 1979a, 1980;
Kotsovos and Pavlovic, 1995; Kotsovos and Spiliopoulos, 1998; Kotsovos, Pavlovic,
and Cotsovos, 2008; Lykidis and Spiliopoulos, 2008; Markou and Papadrakakis, 2013;
Spiliopoulos and Lykidis, 2006). Recently, the model was also adapted to light-weight
aggregate concrete (Øverli, 2016). In the literature, it is stated that this model is
particularly suited for structural engineering NLFEA. Demonstrations of the com-
putational efficiency and comparisons to commercially available algorithms can be
found in the literature (Bark, Markou, Mourlas, and Papadrakakis, 2016; Markou,
Sabouni, Suleiman, and El-Chouli, 2015; Markou and Papadrakakis, 2013; Mourlas,
Papadrakakis, and Markou, 2016).

The early versions of the fully triaxial material model are implemented in special
purpose finite element software that allowed the user to interfer with the program on
several levels. In order to make the material model available for practising engineers,
it was adapted to facilitate its implementation in a standard finite element software in
the present work. In the following, the basic ingredients, i.e. the constitutive relation
and the fracture criterion, will be presented, the central parts of the implemented
algorithms will be outlined and two improvements to the earlier versions of the model
are highlighted.

In this section, the subscripts i and j are reserved for tensor components, while k
and l are used for the load step and iteration number respectively. Thorough reviews
of other constitutive relations and crack models for concrete can be found elsewhere
(Cotsovos, 2004; González Vidosa, 1989; Rots, 1988; Rots and Blaauwendraad, 1989).
It is emphasized that the objective of the present work was not to contribute to a
detailed discussion about how concrete as a material should be modelled, but how it
could be modelled in NLFEA performed by practising engineers where the purpose
of the analysis is to assess the ultimate load capacity or structural reliability of large
reinforced concrete structures. The material model did not include regularization of
the constitutive relation in terms of e.g. crack bandwidth and fracture energy in order
to obtain results that are objective with respect to the size of the finite elements
(Bazant and Oh, 1983). It will be demonstrated that this sensitivity was insignificant
when relatively large elements were used in analyses of reinforced concrete.
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Figure 1. Demonstration of the shape of the fracture criterion for concrete with fc = 50 MPa.

2.1.1. Constitutive relation and fracture criterion

When concrete is subjected to an increasing state of stress, the non-linear deforma-
tional response below the ultimate stress level can be described in terms of the internal
fracture process which reduces tensile stress concentrations near the tips of internal
microcracks (Kotsovos, 1979b). The response under multiaxial states of stress can be
decomposed into three parts: 1) the change in volume due to hydrostatic loading, 2)
the change of shape due to deviatoric loading and 3) the change in volume due to devi-
atoric loading (Kotsovos, 1980). Part 1 can be modelled by superimposing an internal
hydrostatic stress, which is statically equivalent to the stress reduction due to micro-
cracking, or by continuously degrading the bulk modulus, K, which is depending on
the hydrostatic stress level. Similar reasoning can be used of parts 2 and 3. Due to this
decomposition, it is convenient to decompose the stress state into octahedral stress
components: σoct, τoct and θoct. σoct is the hydrostatic stress, which is the projection
of the point in principal stress space onto the hydrostatic axis along σ1 = σ2 = σ3.
The deviatoric plane is orthogonal to the hydrostatic axis, and intersects with σoct.
The point which represents the state of stress in principal stress space lies in the devi-
atoric plane with a distance τoct to the hydrostatic axis. θoct is the lode-angle which is
the angle between the point in the deviatoric plane and the projection of the positive
σ1-axis as indicated in Figure 1(a). σoct is a function of the first invariant of the stress
tensor, τoct is a function of the second invariant of the deviatoric stress tensor and θoct

is a function of the second and third invariant of the deviatoric stress tensor.
By assuming non-linear elastic isotropic material behaviour for uncracked concrete

and using the secant values of the stiffness moduli, the total strains corresponding to
a given stress level below the ultimate stress level, can be calculated by Hooke’s law
in Equation (1) which can be interpreted as the sum of the change of shape and the
change in volume.

εij =
σij − σoctδij

2Gs
+

(σoct + σid)δij
3Ks

(1)

G and K is the shear modulus and the bulk modulus, respectively. K and G rep-
resent part 1 and 2, respectively, of the non-linear deformational response described
above. The subscript s indicates that the respective modulus is a secant modulus.
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Figure 2. Internal hydrostatic stress and non-linear bulk and shear moduli as functions of the stress level
for concrete with fc = 50 MPa. The subscripts 0, s and t indicate initial, secant and tangent values of the

respective modulus.

σid is an equivalent internal hydrostatic stress which represents the change in volume
due to deviatoric loading, i.e. part 3 of the non-linear deformational response, and is a
function of the cylinder strength fc and the current σoct and τoct (Kotsovos, 1980). The
development of σid is shown in Figure 2(a). δij is the Kronecker delta which is equal
to unity for equal indices and zero elsewhere. Note that positive and negative values
indicate tensile and compressive stresses and strains in the present work. With this
type of formulation, the effects of confinement and Poisson’s ratio on the stress-strain
relation are automatically included. Initial, unloaded values of the shear and bulk
modulus, G0 and K0, can be calculated from the cylinder strength, and expressions
describing the dependency of the moduli on their initial values, the cylinder strength
and the stress level are found in the literature (Kotsovos, 1980). Figures 2(b) and 2(c)
show K and G respectively as functions of the stresses.

The ultimate stress level, given by a fracture criterion, is defined in terms of the
critical octahedral shear stress, τoct,u(σoct, θoct, fc), and expressions for τoct,u depen-
dent on σoct, θoct and fc are found in the literature (Kotsovos, 1979a). The critical
octahedral shear stresses for θoct = 0◦ and θoct = 60◦ are calculated using Equations
(2) and (3) respectively, and shown in Figure 1(b). By ordering the principal stresses
according to σ1 > σ2 > σ3 it can be shown that all stress states have 0◦ ≤ θoct ≤ 60◦,
and the relation proposed by Willam and Warnke (1974) can be used to calculate
intermediate values of τoct,u for given σoct, θoct and fc. The fracture criterion can be
interpreted as a limit beyond which the fracture process changes from internal micro-
cracking to visible macrocracking. In the principal stress space, the fracture criterion
can be visualized as a cone opening along the compressive hydrostatic axis, with a
cross section approaching a triangle for hydrostatic tensile stresses, as demonstrated
in Figure 1(a). Figure 1(c) demonstrates the significant effect of lateral stresses on the
axial strength. If the fracture criterion is exceeded with at least one positive principal
stress, a crack is formed on a plane with a normal parallel to the direction of the
largest principal stress. If on the other hand the fracture criterion is exceeded with all
principal stresses compressive, this corresponds to compressive failure, i.e. a complete
loss of capacity in all directions.
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τoct,u,0◦

fc
= 0.633

(
0.05− σoct

fc

)0.857

(2)

τoct,u,60◦

fc
= 0.944

(
0.05− σoct

fc

)0.724

(3)

Figure 3 shows the material response up to failure for a) uniaxial loading and b) 10%
confining stresses. The effect of confinement on both deformations and capacity was a
direct consequence of the stress-dependent non-linear stiffness moduli and fracture cri-
terion. Following the approach presented in this section the material model depended
on only one material parameter, the compressive cylinder strength. It is noted that
the expressions for K, G, σid and τoct,u found in the literature are results from fitting
mathematical expressions to experimental results (Kotsovos, 1979a, 1980).

2.1.2. Outline of the implemented algorithm

The implemented material model consisted of three main parts: A) uncracked stress
update algorithm, B) crack initiation and stress update algorithm for cracked integra-
tion points, and C ) crack closing and stress update algorithm for closing integration
points. Each part provided the appropriate material stiffness matrix. In part A, the
non-linearities are mainly due to loading in compression, and in parts B and C, the
non-linearities are due to opening and closing of cracks. Two improvements to the
earlier versions of the material model were introduced: i) material stiffness matrix for
uncracked integration points based on initial stiffness moduli, ii) and threshold angle
for crack initiation.

A) Uncracked stress update algorithm. The stress-strain relationship up to the ulti-
mate stress level given by Equation (1) is stress-driven, i.e. in the form ε = ε(σ) where
σ and ε are the stress and strain vectors shown in Equation (4). Since typical strain-
driven material models are required in standard finite element software, the relation
should either be inverted or solved in an iterative manner. An iterative solution as
proposed in the literature (González Vidosa, 1989; Kotsovos and Pavlovic, 1995) was
used. In the iterative stress update, the fracture criterion was continuously monitored,
and if τoct > τoct,u, τoct,u was used in the calculation of G and σid in Equation (1).
If this limitation was not used, G and σid could attain unrealistically low and high
values respectively.

In a general case, the material stiffness matrix consists of partial derivatives of the
constitutive relation in terms of the strains, or partial derivatives of the stress update
algorithm in terms of the strains. Following the recommendations by Kotsovos and
Pavlovic (1995) the material stiffness matrix, C, was given in the form of Equation
(5) corresponding to Hooke’s law neglecting the coupling between deviatoric loading
and hydrostatic deformation. The subscript t indicates that tangent stiffnesses were
used, and λ = K − 2G/3 is Lame’s constant. The material stiffness matrix according
to Equation (5) with initial values for the material stiffness parameters was output
from the material model. Compared to updated values for the stiffness parameters,
this was found to have a slightly stiffening and stabilizing effect on the solution.
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Figure 3. Examples of loading, unloading and reloading of concrete with fc = 50 MPa subjected to a)
uniaxial compression, b) triaxial compression, c) uniaxial tension and d) pure shear. Note that no unloading

and reloading is shown for the uniaxial tension case and that reinforcement ρx = ρy = 3% with yield stress

fy = 500 MPa was included in the pure shear case.

σ = {σx σy σz τxy τyz τxz}T , ε = {εx εy εz γxy γyz γxz}T (4)

C =


2Gt + λt λt λt 0 0 0

2Gt + λt λt 0 0 0
2Gt + λt 0 0 0

Gt 0 0
sym. Gt 0

Gt

 (5)

As indicated in Figure 2(c), the non-linearities due to deviatoric loading dominate,
and τoct can be regarded as the main contributor to the internal fracture process
below the ultimate stress level. τoct was thus used as an indicator for loading and
unloading. If τoct was found to be less than the previously maximum sustained τoct,
indicating unloading, the stresses were simply updated linearly using initial values
of the material stiffness parameters as shown in the unloading-reloading branches in
Figure 3. A similar procedure is suggested in the literature (Bathe, Walczak, Welch,
and Mistry, 1989; Kotsovos, 1984; Kotsovos and Spiliopoulos, 1998). The resulting
stress update for an uncracked integration point can be seen in Figure 3 for loading,
unloading and reloading. It is evident that confinement leads to a stiffer material
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Figure 4. Demonstration of possible crack states, where the plane of each open crack is visualized as a circle.

response, i.e. the strains are smaller in Figure 3(b) than in 3(a) for the same axial
stress level, since due to a lower τoct the shear modulus is less degraded. Also, the
axial stress at the ultimate stress level, and the corresponding strains are larger due
to the stress dependent fracture criterion. If the confinement was further increased,
the response would become more linear, but still non-linear due to the continuously
degrading bulk modulus.

After the stresses were updated, the fracture criterion was checked, and if the stresses
were found to exceed the ultimate stress level, i.e. if τoct > τoct,u, the crack initiation
algorithm was called.

B) Crack initiation and cracked stress update algorithm. Upon cracking, the material
model followed a smeared, non-orthogonal, fixed cracking approach with a maximum
number of three cracks per integration point. The possible crack states are shown
in Figure 4. In this context, the terms fixed and non-orthogonal refer to that the
normal to a crack plane is kept constant after crack initiation and not rotated along
the principal stress or strain directions, and that further cracking is not restricted to
directions orthogonal to existing cracks. If the fracture criterion was exceeded with at
least one principal tensile stress, a crack was initiated on a plane with a normal parallel
to the largest principal stress, as shown by the vector n11 in Figure 4(a), resulting in
a state of nearly plane stress. The stress normal to the crack plane was set equal to
zero. If on the other hand the fracture criterion was exceeded with all principal stresses
compressive, compressive failure was initiated by setting all normal stresses equal to
zero, i.e. a complete loss of capacity in all directions. It should be noted that this
way of treating cracking is non-standard as cracking is initiated in a brittle manner
neglecting any softening both in tension and compression. Also, no measures were
introduced on material level to ensure objectivity with respect to finite element size
in terms of e.g. fracture energy and crack bandwidth (Bazant and Oh, 1983), but as
will be demonstrated, the mesh size dependency was found to be insignificant for the
coarse finite element meshes used in the present work.

8



C̄1 =


βσ(2Gt + λt) 0 0 0 0 0

2Gt + λt λt 0 0 0
2Gt + λt 0 0 0

βτGt 0 0
sym. Gt 0

βτGt

 (6)

C̄2 =


βσ(2Gt + λt) 0 0 0 0 0

βσ(2Gt + λt) 0 0 0 0
2Gt + λt 0 0 0

βτGt 0 0
sym. βτGt 0

βτGt

 (7)

C̄3 =


βσ(2Gt + λt) 0 0 0 0 0

βσ(2Gt + λt) 0 0 0 0
βσ(2Gt + λt) 0 0 0

βτGt 0 0
sym. βτGt 0

βτGt

 (8)

The material stiffness matrix of a cracked integration point was evaluated in a local
coordinate system defined by the crack direction, and transformed to global coordi-
nates by an appropriate transformation rule. The stiffness parameters, G and λ, were
assigned the values from the stress level upon first crack initiation, and kept constant
for all remaining load steps regardless of further cracking and loading or unloading.
The material stiffness matrix corresponding to one crack is given by Equation (6),
which simply is a reduction of Equation (5), with the only remaining significant stiff-
nesses in the plane of the crack. The overbars in Equations (6) to (8) indicate that
the matrices are established in a local coordinate system. The index 1 in Equation
(6) indicates that the matrix represents one crack and that it is evaluated in the
coordinate system defined by the vectors n11, n12 and n13, and similarly for the in-
dices 2 and 3 in Equations (7) and (8). The normal retention factor, βσ = 0.0001,
followed the recommendations by Bathe et al. (1989), and was provided in order to
avoid diagonal elements equal to zero. The shear retention factor, βτ = 0.1, followed
the recommendations by Gonzlez Vidosa, Kotsovos, and Pavlovic (1988). It is empha-
sized that the off-diagonal terms that are set equal to zero in Equations (6) to (8) are
equivalent to setting the corresponding Poisson’s ratio equal to zero. This represents a
simplified treatment of the gradual post-cracking reduction of the Poisson’s ratio often
recommended in the literature (Hendriks et al., 2017). The material stiffness matrix
corresponding to compressive failure was set equal to the matrix corresponding to
three cracks given by Equation (8).

When using a smeared crack approach, every crack represents an average crack state
within the volume represented by the integration point. A rotation of the stress field
and an increase of the stresses can lead to new cracks in the same integration point,
but if the angle between the new and existing crack(s) is small, the new crack can
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be interpreted as already represented by the existing crack(s), at least if the elements
are relatively large. Hence, it is appropriate to introduce a threshold angle as a lower
bound to the angle between the new and the existing crack(s). The effect of different
values for the threshold angle between 0◦ and 90◦ is demonstrated in the literature
(de Borst and Nauta, 1985; Rots and Blaauwendraad, 1989). A threshold angle of
45◦ was selected in the present work. Large threshold angles could lead to stress
states exceeding the fracture criterion in critical integration points without initiating
new cracks (de Borst and Nauta, 1985; Rots and Blaauwendraad, 1989). In order to
ensure conservative results, this potential issue was avoided in the present work by
proportionally scaling down the stress state in cases where the stresses exceeded the
fracture criterion without initiating new cracks. The proportional stress scaling can be
interpreted as a limitation of the stress state to a value given by the fracture criterion
until new cracks are allowed to initiate.

If the fracture criterion was exceeded for the second time with at least one positive
principal stress, a second crack could be formed on a plane with a normal parallel to
the current largest principal stress, as indicated by the vector n21 in Figure 4(b). Note
that n11 and n21 are non-orthogonal vectors separated by an angle larger than the
threshold angle. The material stiffness matrix was reduced to Equation (7) with the
only significant normal stiffness left in the direction of the intersection between the
crack planes, indicated by the vector n23 = n11 × n21 in Figure 4(b), resulting in a
state of nearly uniaxial stress. The stresses in the directions n21 and n21 × n23 were
set equal to zero. Finally, a third crack could be formed on a plane with a normal
indicated by n31 in Figure 4(c) parallel to the current largest principal stress. With
three cracks, the normal stresses in the directions corresponding to the principal stress
directions upon formation of the third crack were all set equal to zero. The material
stiffness matrix was given by Equation (8).

If the threshold angle was set equal to 0◦ and the stress scaling described above
was left out, a possible outcome of initiating a new crack in a previously cracked
integration point due to a small rotation of the stress field could be a spurious loss
of capacity in a direction orthogonal to the normal to the new crack plane. Although
not presented herein, the global results from analyses with values of the threshold
angle below 45◦ showed no significant influence from the selected value, however, by
introducing the threshold angle and the stress scaling, any potential spurious stress
reduction was avoided.

The stress update of a cracked integration point followed a linear relation between
the material stiffness matrices in Equations (6) to (8) and the total strain increment e.g.
∆σ = C1∆ε, where C1 is C̄1 transformed to the global coordinate system, in addition
to the stress reduction normal to the crack planes described above. The material
stiffness matrices in Equations (6) to (8) are thus close approximations to the partial
derivatives of the stress update algorithm, and will contribute to fast convergence.
The resulting stress update is shown in Figures 3(c) and 3(d) for uniaxial tension and
pure shear respectively. Before cracking in pure shear, the stresses are carried by the
concrete as compression and tension in the principal directions. Upon cracking, the
principal tensile stress is reduced to zero, and the concrete carries stresses in principal
compression only, resulting in stresses in the coordinate directions that need to be
equilibrated by reinforcement. Hence, the results for pure shear were obtained with
reinforcement amounts ρx = ρy = 3% and a yield stress fy = 500 MPa.

C) Crack closing and closing stress update algorithm. In a cracked integration point,
the strain(s) normal to the crack plane(s) were checked. If the total strain normal to
a crack plane was found to turn negative, and less than its value upon cracking, the
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crack was in a state of closing. It should be noted that the strain upon cracking could
be negative if the integration point was unloading to cracking from a compressive state
of stress.

The material stiffness matrix was restored for the appropriate number of cracks
that remained open and evaluated locally according to the directions of the remain-
ing crack(s). An integration point that had experienced compressive failure was not
allowed to close, since compressive failure represented a complete loss of capacity in
all directions.

The stresses in a closing integration point were first updated according to the al-
gorithm for cracked integration points. If one crack was found to be closing, the total
strains were transformed to the local directions of the closing crack and multiplied
with a uniaxial stiffness in order to find the stresses due to closing, ∆σ̄, according
to Equation (9). The local closing stress was further transformed to global coordi-
nates and added to the current stress. A similar procedure was applied to two and
three closing cracks with plane stress and triaxial stiffnesses respectively, according
to Equations (10) and (11). In Equations (9) to (11), the overbars indicate that the
stresses and strains are transformed to local coordinates and the numerical subscripts
indicate strains along the first, second and third local axis. By following this procedure
it was ensured that the closing stress update was unified with the cracked stress up-
date and that the correct stress components were updated for closing. This algorithm
is similar to what was presented by Spiliopoulos and Lykidis (2006).

∆σ̄uniaxial =
Gt(2Gt + 3λt)

Gt + λt
ε̄1 → ∆σ̄ =



∆σ̄uniaxial

0
0
0
0
0


(9)

∆σ̄plane =


4Gt(Gt + λt)

2Gt + λt

2Gtλt

2Gt + λt

sym.
4Gt(Gt + λt)

2Gt + λt

{ ε̄1
ε̄2

}
→ ∆σ̄ =


∆σ̄plane

0
0
0
0

 (10)

∆σ̄triaxial =

2Gt + λt λt λt

2Gt + λt λt

sym. 2Gt + λt

 ε̄1
ε̄2
ε̄3

→ ∆σ̄ =


∆σ̄triaxial

0
0
0


(11)

2.2. Material model for reinforcement

A bilinear elastic-plastic relation was used for the reinforcement. The initial slope of the
stress-strain curve was fully defined by an elastic Young’s modulus E = 200000 MPa.
After yielding, the relation between stress and total strain was defined by a low hard-

11



ening modulus EH = 2000 MPa. Similar recommendations are found in the literature
(Hendriks et al., 2017; Kotsovos and Pavlovic, 1995).

2.3. Force equilibrium

In the present work, results from analyses with modified and full Newton-Raphson
were compared. Line search was applied in order to improve the iterative displacement
increments. For reinforced concrete structures, a force based convergence criterion
can be difficult, or even impossible, to satisfy in load steps where large forces need
to be redistributed due to cracking. This is expected to be pronounced in analyses
with large elements and large load steps. In the present work, a force criterion based
on the change in the norm of the nodal residual forces given by Equation (12) was
thus used in combination with an energy criterion given by Equation (13). Rres is
the vector of nodal residual forces, δu is the vector of nodal iterative displacement
increments, and εF and εE are the convergence tolerances. The subscripts l, 1 and
0 indicate the current iteration, the first iteration of the current load step, and the
last iteration of the previous load step respectively. According to recommendations
published elsewhere (Hendriks et al., 2017) the tolerances were set to εF = 0.01 and
εE = 0.001. Convergence was achieved with at least one of the criteria satisfied within
a maximum number of 40 iterations per load step. The load was applied with constant
load increments.

|
√

RT
res,lRres,l −

√
RT

res,l−1Rres,l−1|

|
√

RT
res,1Rres,1 −

√
RT

res,0Rres,0|
≤ εF (12)

δuTl Rres,l

δuT1 Rres,1
≤ εE (13)

2.4. Kinematic compatibility

When analysing concrete shell structures, shell elements are often preferred due to
their efficiency in modelling and computation. However, such elements usually require
additional capacity control, since the interaction between in-plane forces and moments,
and transverse shear forces is usually not accounted for in the NLFEA. Solid elements
thus seem most applicable. This also allows the analyst to model the geometry and
load application more accurately, and ensures correct modelling of the stiffness in
structural joints. In LFEA with properly formulated hexahedral elements, the internal
forces and bending moments in slender shells can be calculated with high accuracy even
with only one element over the shell thickness or beam height. However, in NLFEA it is
expected that there is need for evaluation of the internal stress state in a larger number
of integration points over the thickness in order to capture the effect of cracking, and
the interaction between in-plane forces, bending moments and transverse shear forces.

Markou and Papadrakakis (2013) have stated that the use of numerically unstable
material models is one of the reasons for researchers to use higher order elements with
higher order numerical integration rules. Bergan and Holand (1979) argues that higher
order interpolation functions with artificially high differentiability should be avoided
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due to the highly discrete and localized deformational behaviour of concrete. This is
considered particularly relevant in analyses with relatively large finite elements, i.e.
elements that are large relative to the cross sectional dimensions. Artificial straining
should also be avoided in order to reduce the risk of premature cracking. The two-point
Gauss rule calculates the exact values of stresses and strains for undistorted elements
(Barlow, 1976), and the error is smaller with a two-point rule than with a three-point
rule in case of distorted elements (Barlow, 1989). This was believed to be crucial in the
present work in order to reduce artificial straining and the risk of premature cracking.

Based on these arguments, fully integrated 8-noded solid elements were used in the
present work. In order to avoid spurious shear strains in bending dominated areas, so-
called enhanced strains were used (Simo and Rifai, 1990; Simo, Armero, and Taylor,
1993). A minimum number of three elements were used over the shell thickness or
beam height. Compared to using 20- or 27-noded solid elements the size of the global
stiffness matrix can be significantly reduced which in turn results in a faster solution
of each equilibrium iteration and a lower amount of required memory.

The reinforcement was assumed fully bonded, i.e. neglecting any differential defor-
mation between the concrete and the reinforcement. This assumption was justified by
the size of the elements, prohibiting any detailed modelling of local variations in the
interface. The reinforcement was modelled as elements overlaying the solid concrete
elements, providing strength and stiffness embedded within the volume of the concrete
element according to the material model of the reinforcement steel, the cross sectional
area of the bars, the orientation in space and the size of the cover. This functionality,
referred to as embedded reinforcement in most commercial finite element software, is
an efficient way of modelling reinforcement in engineering applications, without the
need for adapting the mesh of solid elements to the reinforcement layout.

3. Verification by numerical experiments

Verification is related to how the mathematical problem is solved, and the sensitivity
to the selected solution method. The sensitivity to size of finite elements, Newton-
Raphson procedure and size of load steps were assessed by performing numerical ex-
periments of two setups that were designed for the purpose. In the crack plots of this
section and Section 5, each crack is visualized as a circular plane with a normal parallel
to the largest principal tensile stress upon cracking. If the normal lies in the drawing
plane, the crack appears as a line, but if the normal forms an angle with the drawing
plane, the crack appears as an ellipse approaching a circle. If the crack closes, the
symbol is removed, and the integration point appears as uncracked in the figure.

3.1. Description of the numerical experiment setups

One slender and one short beam was designed for the verification of the solution
strategy. The cross section and reinforcement layout is shown in Figure 5(a). The
concrete had a cylinder strength of 40 MPa and all reinforcement had a yield strength
of 500 MPa. The slender and the short beam had a total length of 6 m and 3 m
respectively. The beams were simply supported and were subjected to a constant
distributed load, as shown schematically in Figure 5(b). Unless explicitly specified,
the load steps were adjusted in order to reach yielding of the tensile reinforcement
after 30 load steps. In the Figures 6, 9 and 10 the total load, R = R1 +R2, is plotted
against the vertical displacement, ∆, at the midspan.
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(a) Cross section. (b) Loading and boundary conditions.

Figure 5. Details of the numerical experiment setups.
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(b) Short case.

Figure 6. Comparison of results obtained with modified Newton-Raphson with three (solid), six (dashed)
and nine (dash-dotted) elements over the beam height for a) slender case and b) short case.

3.2. Sensitivity to size of finite elements

The sensitivity to finite element discretization was checked by performing analyses of
the two experimental setups with three different element sizes. Three, six and nine
elements were used over the beam height, and the number of elements along the beam
length was adjusted in order to keep the elements square. Two elements were used over
the width in all analyses. Figure 6 shows the resulting load-displacement curves from
analyses with modified Newton-Raphson, and no significant element size dependency
can be observed. Similar results were obtained with full Newton-Raphson. Figures 7
and 8 show examples of the resulting crack patterns. For each load level, the crack
directions were comparable. The element size in the coarsest meshes was comparable
to the crack spacing that can by estimated using e.g. fib Model Code 2010 (fib, 2013).
The observed cracks in the results from the analyses with the coarsest meshes should
thus be interpreted as average states of cracking within the volume corresponding to
each integration point. With smaller elements, it can be seen that the crack patterns
were gradually localizing, and the crack spacing can be found as a result of the analysis.
This topic of gaining more details from the results upon mesh refinement has been
elaborated on in the literature (fib, 2008), but will not be taken further here. As the
mesh was refined, the cracks were found to propagate deeper towards the compressive
zone, although this had no significant effect on the load-displacement curves as shown
in Figure 6. The coarsest meshes in Figures 7 and 8 are comparable to the element
sizes that were used in the validation in Section 4 and the demonstrations in Section
5.
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(a) Three elements over the beam height.

(b) Six elements over the beam height.

(c) Nine elements over the beam height.

Figure 7. Crack patterns for the slender case at load step 10: R = 153 kN. All the analyses were performed
with two elements over the width of the beam.

(a) Three elements over the beam height.

(b) Six elements over the beam height.

(c) Nine elements over the beam height.

Figure 8. Crack patterns for the short case at load step 10: R = 347 kN. All the analyses were performed

with two elements over the width of the beam.
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(b) Short case.

Figure 9. Comparison of results obtained with three elements over the beam height with modified (solid)

and full (dashed) Newton-Raphson for a) slender case and b) short case.

3.3. Sensitivity to Newton-Raphson procedure

The sensitivity to the method for updating the tangent stiffness matrix during equilib-
rium iterations was checked by comparing results from analyses with full and modified
Newton-Raphson. All of the analyses were performed with three elements over the
beam height. The resulting load-displacement curves are shown in Figure 9. No sig-
nificant sensitivity was observed in either of the cases. For the slender case, a total
number of 409 iterations with modified Newton-Raphson taking approximately 115 s
was needed to reach yielding of the longitudinal reinforcement in 30 load steps. These
numbers were reduced to 214 iterations and 60 s using full Newton Raphson. Simi-
larly for the short case, 277 iterations in 40 s and 173 iterations in 30 s was needed
with modified and full Newton-Raphson respectively. A slight increase of the cal-
culation time per iteration with full Newton-Raphson was thus compensated for by
requiring a lower number of iterations for reaching convergence. The sensitivity to
the selected convergence tolerances were also assessed by decreasing the tolerance of
the force-based convergence criterion, however no significant influence on the resulting
load-displacement curve could be observed.

3.4. Sensitivity to size of load steps

The sensitivity to the size of the load steps was checked by performing analyses of both
the slender and the short case with three elements over the beam height, modified
Newton-Raphson and applying the load corresponding to yielding of the longitudinal
reinforcement in 30, 20 and ten load steps. The resulting load-displacement curves are
shown in Figure 10, where no significant sensitivity can be observed.

4. Validation by benchmark analyses

Validation is related to how well the numerical predictions correspond to real observa-
tions. In the present work, validation was performed by comparing experimental and
predicted capacities from 38 benchmark analyses. The sample of benchmark analyses
contained beams (Bresler and Scordelis, 1963; Jelic, Pavlovic, and Kotsovos, 2004;
Kotsovos, 1982), walls (Cervenka and Gerstle, 1972; Lefas, Kotsovos, and Ambraseys,
1990) and frames (Ernst, Smith, Riveland, and Pierce, 1973; Vecchio and Balopoulou,
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Figure 10. Comparison of results obtained with modified Newton-Raphson and three elements over the beam

height with 30 (solid), 20 (dashed) and ten (dash-dotted) load steps for a) slender case and b) short case.

1990; Vecchio and Emara, 1992) with failure modes ranging from fully brittle to fully
ductile. The sample could have been separated in smaller samples depending on the
failure mode or type of structural component, but since the failure mode of large
concrete shell structures most likely is due to an interaction between different sec-
tional forces, the collection seems justified. During post-processing of the results from
the benchmark analyses, the nodal displacement increments were plotted as deformed
shapes, and if the displacement increments were found to significantly change from step
to step, this was treated as a warning of failure. The last converged load step before
failure was selected as the predicted capacity. Failure can thus be interpreted as the
load level where the materials are degraded to such an extent, either due to cracking,
yielding or both, that a further internal redistribution of forces is not possible.

Figure 11 shows the relation between experimental and predicted capacity. It is
evident that the capacity is properly predicted with a small scatter in most of the
cases. Based on these results, the modelling uncertainty, θ = Rexp/RNLFEA can be
assessed. By using the Bayesian inference technique suggested by (Engen et al., 2017)
and assuming that θ can be modelled as a log-normally distributed random vari-
able, a mean µθ = 1.07 and a coefficient of variation Vθ = 0.09 was found. This can
be regarded as being within the requirements suggested in the literature (Pimentel,
Brühwiler, and Figueiras, 2014; Schlune, Plos, and Gylltoft, 2012). Engen et al. (2017)
analysed the same set of benchmark experiments with the same solution strategy as
used herein, however using modified Newton-Raphson, a force-based convergence cri-
terion, ||Rres||/||Rext|| < 0.01, and not continuously monitoring the fracture criterion
during the stress update algorithm for uncracked integration points as mentioned in
Section 2.1.2. Rres is the vector of nodal residual forces, Rext is the vector of nodal
external loads, and || · || is the L2-norm of the vectors. With these settings, µθ = 1.10
and Vθ = 0.11 was obtained. Assuming a 5% level of significance, the modelling uncer-
tainty obtained using the two versions of the solution strategy can not be rejected to
come from the same population, i.e. having the same mean and coefficient of variation.
This finding underlines the conclusions from the previous section where no sensitivity
to Newton-Raphson procedure was found.
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Figure 11. Predicted and experimental capacities, RNLFEA and Rexp, for the 38 benchmark analyses.

Table 1. Summary of computational performance in the three demonstration cases.
Case Solid elements Reinf. elements Equations Iterations Solution time

MDCB3 162 378 974 763 178 s

2D18H 720 1764 4286 775 764 s

Large structure 5547 10554 22351 662 3965 s

5. Demonstration of performance

In this section, the performance of the solution strategy is demonstrated by two bench-
mark analyses from the previous section involving sequential loading and an analysis
of an offshore concrete shell structure that was specially designed in the present work.
The focus of the present work was on the structural behaviour at the ultimate load
level, and the presented results were thus limited to load-displacement curves and crack
plots for the benchmark analyses and displacement plots and indications of internal
load redistributions for the shell structure. It is noted again that all of the analyses
were performed using solid elements.

Table 1 shows a summary of the number of elements, equilibrium equations, total
number of iterations and the time spent computing the solutions of the NLFEA in
this section. All analyses were performed on a Windows PC with an Intel Xeon E5620
CPU with 2.39 GHz and 16 GB RAM. No parallel processing was used. The average
solution time per iteration and equilibrium equation was 0.23 ms to 0.27 ms in all
analyses. This number should only be treated as indicative, since the solution time
highly depends on the computer specifications and how data are transferred by the
solver.

5.1. Continuous beam MDCB3 by Jelic, Pavlovic & Kotsovos

Jelic et al. (2004) tested simply supported beams subjected to sequential loading. The
beam MDCB3 was selected for the present paper. The loading and supports are shown
schematically in Figure 12(b), where the loads R1 and R2 were applied as pressures
over the full width and two elements along the length, and the supports were modelled
by multi-point constraints in order to mimic the load and support plates. The load
at the midspan, R1, was applied first, and while keeping R1 = 90 kN, the load at the
tip of the cantilever, R2, was increased until failure. R2 was applied with constant
load steps so that the experimental capacity of R2 = 103.9 kN was reached in 30 load
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(a) Full intensity of the load at midspan: R1 = 90 kN, R2 = 0 kN.

R2

Δ1 Δ2

R1

(b) Load step 2 substep 30: R1 +R2 = 192.6 kN.

Figure 12. Crack patterns for the beam MDCB3 tested by Jelic et al. for a) full intensity of the load at
midspan and b) failure. The analysis was performed with two elements over the width of the beam.
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Figure 13. Load-displacement curves from the two benchmark analyses.

steps. The predicted total failure load was RNLFEA = R1 + R2 = 192.6 kN, giving
a modelling uncertainty θ = 1.01. The resulting load-displacement curve is shown in
Figure 13(a) where the total reaction is plotted against the deflections below the two
point loads. Crack patterns for selected load steps are shown in Figure 12, where it
can be seen that several cracks were closing during application of the second point
load. The predicted failure mode was characterized by diagonal cracking between the
point load at the tip of the cantilever and the right support, combined with yielding
of the longitudinal reinforcement over the support, corresponding to the failure mode
described by Jelic et al. (2004).

5.2. Portal frame 2D18H by Ernst, Smith, Riveland & Pierce

Ernst et al. (1973) tested the portal frame 2D18H subjected to three vertical point
loads and one horizontal point load. While keeping the total vertical load constant
with a value 3V = 24.6 kN, the horizontal load, R, was increased until failure. The
loading and supports are shown schematically in Figure 14(b), where the horizontal
and vertical loads were applied as distributed pressures over three and two elements
along the height and length respectively, and the supports were modelled by multi-
point constraints in order to mimic the load and support plates. R was applied with
constant load steps so that the experimental capacity of R = 14.1 kN was reached in

19



(a) Full intensity of the vertical loads: V = 8.2 kN, R = 0.
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(b) Load step 2 substep 32: V = 8.2 kN, R = 15.4 kN.

Figure 14. Crack patterns for the frame 2D18H tested by Ernst et al. for a) full intensity of the vertical loads

and b) failure. The analysis was performed with two elements over the width of the cross sections.

30 load steps. The predicted failure load was RNLFEA = 15.4 kN, giving θ = 0.92. The
resulting load-displacement curve is shown in Figure 13(b), where the total horizontal
reaction is plotted against the horizontal deflection at the top. Crack plots for selected
load steps are shown in Figure 14. Due to the reversed bending in the left leg of the
frame resulting from application of the horizontal load, several cracks were closing
when approaching the ultimate load level. The predicted failure mode was character-
ized by yielding of the outer longitudinal reinforcement of the right leg, followed by
splitting of the compressive zone in the inner right corner and compressive failure, in
close agreement with what was reported by Ernst et al. (1973).

5.3. Offshore concrete shell structure

A large offshore concrete shell structure suitable for oil or gas production was specially
designed during this work. A thorough description of e.g. the design procedure, result-
ing reinforcement layout and geometry is beyond the scope of this paper, and only a
brief description is provided in the following. A description of the design, construction
and performance of offshore concrete structures for oil and gas fields can be found in
the literature (fib, 2009).

The structure consisted of a 90 m tall shaft supported on a 10 m tall circular caisson
as shown in Figure 15(a). The outer radii of the shaft and caisson were 6 m and 18 m
respectively. The purpose of the structure is to support a topside with production
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(a) Complete struc-

ture.

(b) The sector covering 30◦ and a total height of 20 m

which was studied in the present work.

Figure 15. Offshore concrete structure.

(a) LFEA. (b) NLFEA.

Figure 16. Deformed shape at full characteristic intensity of all applied loads. The displacements are scaled
with a factor of 100.
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(a) Radial force resultant in
the bottom slab in section 1-1,
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(b) Global bending moment in
the caisson in hoop direction in

section 2-2, Mhoop.
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(c) Global bending moment in
the caisson in radial direction

in section 3-3, Mrad.

Figure 17. Force resultants and global bending moments in sections as functions of the total applied load
from the topside carried by the studied part of the structure, Fz,ext, from NLFEA (solid) and LFEA (dotted).

The bending moments are calculated around the mid-height of the caisson, and the sections are shown in Figure

15(b).

facilities and living quarters with an assumed total weight of 18000 t, and to guide riser
pipes from the sea-bed through the caisson and shaft. A mean water depth of 80 m was
assumed to be applicable, and the structure was assumed to be completely waterfilled
during operation. The caisson was stiffened with twelve equally spaced ribs as shown in
Figure 15(b). A concrete strength of B55 and reinforcement steel strength of B500NC
according to NS 3473 (Norges Standardiseringsforbund, 2003) was assumed. In order
to demonstrate the applicability of the presented solution strategy to a large structure,
a sector corresponding to one twelfth of the structure was studied in the present work
as shown in Figure 15(b). The studied finite element model had a total height of 20 m.
In the finite element model, all the nodes at the top of the shaft were constrained in
the vertical direction, and the nodes along the radial symmetry edges were constrained
in the hoop direction. The structure was assumed supported on soft soil, so that the
vertical load could be applied as a constant outer pressure on the bottom slab.

Based on results from LFEA, the structure was designed with a special post-
processor and non-linear sectional design software (Brekke et al., 1994) according to
NS 3473 and EN-ISO 19903 (CEN, 2006; Norges Standardiseringsforbund, 2003). Only
the dead weight of the concrete, the external and internal static water pressure and
the total vertical load from the topside were considered in the present work in order
to be able to reduce the complexity of the problem. The structure was designed for
the applicable load combinations in the operation phase in the ultimate limit state.

The resulting reinforcement amounts from the non-linear sectional design were
transferred back to the finite element model used in the NLFEA, and were mod-
elled similarly as in the benchmark analyses described above. It should be noted that
the complete structure could easily have been modelled, analysed and designed, but
due to the symmetry with respect to load and geometry, and due to the mechanism
of load transfer in circular shafts, a limited amount of information would have been
gained compared to the smaller model that was used.

In a real design situation other static and dynamic loads and other limit states will
require global modelling of the complete structure and are expected to have significant
influence on the required shell thicknesses and reinforcement amounts. Also, the rein-
forcement amounts are normally adjusted in local areas due to e.g. constructability,
continuity in reinforcement layout and required anchorage. However, in the present
work, only the required amounts found directly from the ultimate limit design checks
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were included.
A combination of local bending moments and transverse shear forces, and global

membrane forces, results in a relatively complex distribution of internal sectional
forces. The vertical load is transferred through the upper parts of the shaft as vertical
compressive forces. When approaching the caisson, the shaft is subjected to additional
local bending in the vertical direction, compressive forces in the hoop direction and
transverse shear forces. The ribs provide stiffness to the caisson, and ensures that the
caisson deforms as one unit, and that the vertical load is carried as a combination of
global bending in the hoop and radial direction. The ribs are subjected to in-plane
forces, while the top and bottom slab and the outer wall and the lower parts of the
shaft within the caisson are subjected to in-plane forces, bending moments in two
principal directions and transverse shear forces. Because the structure was assumed
completely waterfilled, the internal and external water pressure mainly resulted in a
slight prestressing of the structure due to the difference in internal and external area
for load application.

In the NLFEA the dead weight of the concrete and the internal and external water
pressure was first applied in five load steps, before the total load from the topside
was applied in 40 load steps. It should be noted that in the present paper it was
not attempted to perform a reliability assessment of the structure; the materials were
assigned their characteristic strengths and the loads were applied with their charac-
teristic intensities. Ideally, the results from the NLFEA should have been compared to
experimental results, but for obvious reasons, no relevant results are available for such
structures. Instead it would be valuable to study the difference in calculated response
between a LFEA and a NLFEA, since the design is based on the former, and a possible
global reliability assessment would be based on the latter. Hence, the global and local
structural effects of material non-linearity are presented in the following comparing re-
sults from LFEA and NLFEA following the same load histories. The deformed shapes
in the final load step of the LFEA and NLFEA shown in Figure 16 are provided as
physical evidence for the discussion.

At 37.5% and 40% of the total vertical load, Fz,ext, cracks appeared on the outer and
inner face of the central parts of the bottom slab. The cracks resulted in a translation of
the neutral axis in the central parts of the bottom slab, an elongation of the midplane
and the significant radial displacement of the joint between the shaft and the bottom
slab that can be seen in Figure 16(b). This effect, known in the literature as the
compressive membrane effect, gave a reduction of the radial resultant tensile forces in
section 1-1 in the central parts of the bottom slab as shown in Figure 17(a), but also
an increase in hoop tension in the lower parts of the shaft, the outer wall and the rest
of the bottom slab.

From 52.5% to 67.5% of the total vertical load, cracks appeared at the outer face
of the bottom slab along the rib, the inner face of the bottom slab along the radial
symmetry edge and in lower parts of the shaft along the rib. The cracking in the
bottom slab led to a compressive membrane effect in hoop direction, slightly reducing
the hoop tension in the bottom slab. The cracking in the shaft reduced the stiffness
of the shaft, leading to a reduction of horizontal forces transferred from the rib to
the shaft and a slight redistribution of global bending of the caisson from radial di-
rection in section 3-3 to hoop direction in section 2-2 as shown in Figures 17(b) and
17(c). The global resultant moments Mhoop and Mrad were calculated by summing the
moment contributions around the mid-height of the caisson from the nodal forces in
hoop direction in section 2-2 and radial direction in section 3-3 respectively. Due to
the reduction of horizontal force transfer from the rib to the shaft, the tensile and
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compressive resultants due to global radial bending of the caisson were localized in
the bottom and top slab respectively. As the vertical load was further increased to
the characteristic level, cracking propagated in the described cracked areas, and only
minor cracking appeared in the outer wall and in the lower parts of the rib close to
the joint between the shaft and the bottom slab. The reinforcement did not yield in
any direction. The compressive membrane effect in the two directions in the bottom
slab resulted in crack closure, where some of the closed cracks remained closed during
the rest of the load application, but some also reopened. At the final load level 11757
cracks had appeared in the structure, of which 153 were closed.

Due to the global force redistribution, a change of local behaviour was observed,
e.g. the principal compressive stress, σ3, in the shaft above the top slab increased from
−23.5 MPa to −25.7 MPa, and σ3 in the rib close to the joint between the shaft and
the top slab increased from −10.0 MPa to −10.6 MPa. A beneficial reduction of tensile
forces in the bottom slab thus came with the expense of increased compressive stresses
in the shaft and the rib.

6. Discussion

The level of detail which is required for the material model depends on the phenomena
that are to be studied in the analysis. In the present work, the ultimate load capacity
was sought, and for this application the simple material models for concrete and rein-
forcement was appropriate. The results were supporting the conclusions from Engen
et al. (2015) advising a shift of the attention from a detailed description of the post-
cracking tensile behaviour to a rational description of the pre-cracking compressive
behaviour of concrete in analyses where large finite elements are used. The assumed
brittleness in tension and compression was considered a useful simplification which
resulted in a material model with only one material parameter needed. If on the other
hand a tensile softening relation based on crack bandwidth and fracture energy was
used, results from Bazant and Oh (1983) and Hendriks et al. (2017) show that the
element size should be limited to 100-400 mm depending on the cylinder strength in
order to avoid snap-backs in the constitutive relation. The limiting values correspond
to a sudden vertical drop in the stress-strain relation upon cracking (Bazant and Oh,
1983). Because the size of the elements used in the present work was in the order of
these limiting values and the results indicated insignificant sensitivity to finite element
size, the simplified brittle behaviour was justified. With the scope of the present work
being focused on large reinforced concrete structures, the brittle degradation of one
local point is not expected to significantly influence the ultimate load capacity, since
the stresses released due to cracking of the concrete are directly supported by the rein-
forcement. If however, lightly reinforced or unreinforced concrete was studied, a more
detailed description of the post-cracking tensile behaviour might become necessary.

Although not presented in detail in the present paper, the tolerances of the conver-
gence criteria and the maximum number of iterations were observed not to significantly
influence the predicted global behaviour, but influenced which load was treated as the
predicted capacity in the benchmark analyses. This result indicates that the solutions
were converged to a stable state close to equilibrium, and that the remaining force un-
balance in unconverged load steps might be due to local self-equilibrating unbalances
as discussed by Bergan and Holand (1979). In most of the load steps of the presented
NLFEA, the energy convergence criterion was governing, i.e. it was satisfied before
the force criterion, even though a tighter tolerance was used for the energy criterion.
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The two criteria are fundamentally different, and the tolerances are not directly com-
parable, but the results indicate that different criteria require different tolerances in
order to obtain comparative levels of accuracy, and that it is important to state both
the selected tolerance and the mathematical expression of the criterion when results
from NLFEA are presented.

The cylinder strength reported in the references was used directly as the only input
material parameter for the concrete material model in the benchmark analyses, and
was not calibrated in order to improve the results. This was considered particularly
important in engineering applications where the results are not known on beforehand.
The results from the benchmark analyses did not show exact crack patterns, but the
failure modes and the ultimate limit loads were close to what was experimentally
obtained. Finite elements of the size that was used in the present study are typically
in the order of the crack spacing and localized crack patterns can not be expected.

The results from the NLFEA of the large shell structure show that a global analysis
is required for a realistic assessment of such structures. If only local analyses were
performed, the analyst should pay close attention to the applied boundary conditions.
If the central part of the bottom slab was modelled locally, the compressive membrane
effect could be overestimated if the slab was fully constrained in the radial direction.
Also, if only the rib was modelled, the effect of redistribution of resultants from global
bending could not be predicted, and too large horizontal force transfer from the rib to
the shaft might be predicted, which could lead to an overestimation of crack widths
and stresses in the horizontal reinforcement. With a solution time of approximately
6 s per equilibrium iteration, the solution strategy presented in the present paper is
considered applicable for NLFEA of large concrete structures in the design phase.

7. Conclusions

Development of a solution strategy for NLFEA should as a minimum include the four
steps 1) definition, 2) verification, 3) validation and 4) demonstration of applicability.
This contribution complements findings published by the authors in two separate
publications (Engen et al., 2015, 2017). In spite of relatively simple material models
and large finite elements, the results from the present work indicate that the presented
solution strategy has a low modelling uncertainty and a low element size and load
step size dependency. With the presented solution strategy, the practising engineer is
equipped with an efficient tool for performing detailed assessments of the ultimate load
capacity and the structural reliability of new and existing large reinforced concrete
structures. This will be elaborated on in the further work of the present research
project.
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