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Preface

This thesis is the culmination of my work at the Norwegian University of Sci-
ence and technology, under the supervision of Anastasios Lekkas, during the spring
semester of 2018. The thesis is a summary of my findings, and the methods used,
to apply Deep Reinforcement Learning (DRL) methods to perform path following
for marine vessels in uncertain environments. The thesis was inspired by recent
advances in the field of machine learning, and in particular DRL. Reinforcement
Learning (RL) which has largely remained untouched as a viable control strategy
due to high computational demand, and limits in terms of expressive power, has
seen significant technological advances in recent years. This has caused a resur-
gence of interest in reinforcement learning, which is seen by some researchers as a
stepping stone to the development of Artificial General Intelligence.

The thesis assumes the reader has prior knowledge of linear and nonlinear systems,
and how to solve these types of systems numerically, as well as some knowledge
on optimization. Familiarity with machine learning, and in particular function ap-
proximators such as Artificial Neural Networks (ANNs), is beneficial, however the
theory needed to understand the specifics of DRL, will be presented. The thesis
is intended to show how DRL can be used to perform path following on marine
vessels, however it also gives an introduction to DRL, and is structured in such a
way that it should give a reader with little or no knowledge on the topic both a
theoretical and practical introduction.

The main contribution of this thesis is a method for applying DRL to the prob-
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lem of path following in uncertain environments, including simulations on three
different vessel models. The DRL algorithm which was used, was taken from the
work of Lillicrap Et al. [1], and implemented in the Python programming language.
Additionally the Tensorflow library for performing automatic differentiation, and
the numpy library for performing Linear algebra were used. The vessel models that
were used were ported from the Marine Systems Simulator (MSS) toolbox [2].
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Summary

The problem of following, or tracking a predefined path, has been a long stand-
ing problem in the control engineering community. In most cases, previous works
utilized existing or newly-presented models to represent the vessel dynamics and
kinematics before employing methods from nonlinear control theory for develop-
ing suitable cascading kinematic (i.e. guidance) and dynamic (i.e. control) laws for
achieving the control objective. Although significant advances have been made in
this field, the methods have mostly stayed the same, and usually require significant
domain expertise, and experience to implement.

In recent years, with the advances of Machine Learning (ML), and in particular
Deep Learning (DL), a number of problems that were previously thought impos-
sible, have seen great success. One field that has shown great promise from these
advances, is the field of Reinforcement Learning (RL), which in combination with
DL has given rise to Deep Reinforcement Learning (DRL). These methods allow
for learning to optimize decision making, by exploring environment and receiving
evaluative feedback based on the performance. In this thesis we propose a general
framework for using DRL algorithms in order to learn to optimize path following
for marine vessels, by learning from exploration. Applying the proposed method
on three different vessels, we were able to show how the DRL algorithm was able
to learn to control the vessel, and optimize the control law in order to outperform
the Line-of-Sight guidance law in its basic form, which is one of the most popular
guidance methods used today.
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Based on our results, DRL show great promise in performing complex guidance
task, as it allows for optimizing a user specified performance measure, and doing
so by requiring no knowledge of the internal dynamics of the vessel.
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Sammendrag

Problemet med å følge eller spore en forhåndsdefinert sti har vært et langvarig prob-
lem i kontrollteori. I de fleste tilfeller utnytter tidligere arbeider eksisterende eller
nylig presenterte modeller for å representere fartøydynamikken og kinematikken,
før man anvender metoder fra ikke-lineær kontrollteori for å utvikle egnede kine-
matiske og dynamiske kontrollover for å oppnå kontrollmålet. Selv om det er gjort
betydelige fremskritt i dette feltet har metodene for det meste forblitt det samme
og krever vanligvis betydelig domenekompetanse og erfaring for å implementere.

I senere år har fremskritt innen maskinlæring (eng. Machine Learning), og særlig
dyp læring (eng. Deep Learning), hatt stor suksess på en rekke problemer, som
man tidligere ikke har kunnet løse. Et felt som har opplevd et stort løft fra disse
fremskrittene, er feltet forsterkende læring (eng. Reinforcement Learning), som i
kombinasjon med dyp læring har gitt opphav til dyp forsterkende lærning (eng.
Deep Reinforcement Learning). Disse metodene optimaliserer beslutningstaking,
gjennom å lære ved å utforske miljøet og motta tilbakemeldinger basert på ytelsen.
I denne avhandlingen foreslår vi et generelt rammeverk for bruk av dyp forsterk-
ende læring, for å optimalisere sti-følging for marine fartøy. Ved å anvende den
foreslåtte metoden på tre forskjellige fartøy vil vi vise hvordan DRL-algoritmen
kan lære å kontrollere fartøyet, og optimalisere kontrolloven. Dette resulterer i at
DRL-algoritmen er i stand til å overgå Line-of-Sight kontrolloven som i sin grunn-
leggende form er en av de mest populære sti-følgings algoritmene som brukes i dag.

Basert på våre resultater, viser dyp forsterkende lærning seg å være en lovende
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metode for sti-følging, da det muliggjør optimalisering av et brukerdefinert ytelses-
mål, og gjør det uten å kreve at læringsalgoritmen har kjennskap til fartøyets indre
dynamikk.
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Chapter 1
Introduction

1.1 Background and motivation
Path following and path tracking for underactuated marine vehicles have attracted
the attention of the marine control research community for a long time, resulting in
a vast literature. The main task is to develop heading and speed control laws so as
to follow or track a predefined path with minimum position error. More specifically,
"following" pertains to the case where no temporal constraints are imposed, mean-
ing the vessel should be on the path at any given time, whereas "tracking" implies
the vessel should be at a specific point on the path at each time instant. In most
cases, previous works utilized existing or newly-presented models to represent the
vessel dynamics and kinematics, before employing methods from nonlinear control
theory for developing suitable guidance and control laws for achieving the control
objective.

In previous works, the guidance and control systems are often treated as a cas-
cade, where guidance is the driving system, which in turn drives the control system
responsible for driving the vessel actuators, this is illustrated in Figure 1. Using
the cascaded structure, helps simplify the stability analysis, and has been used
extensively in the past [5, 6, 7]. The problem however becomes more difficult when
unknown environmental forces need to be taken into account [8, 9, 10, 11], this
is often done by augmenting the original Line-of-Sight guidance law [12, 13]. In
general this makes the path following problem challenging due to the large model
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and environment uncertainties.

In the Artificial Intelligence (AI) community a theory for optimal system per-
formance under uncertain conditions has been in development for a long time. This
method, which is based on evaluative, rather than instructive feedback, is known
as Reinforcement Learning (RL), or alternatively neuro-dynamic programming or
approximate dynamic programming [14, 15, 16]. Reinforcement learning comes in
different forms, which might, or not, include partial knowledge of the environment
or the system. The most important element is the reward function which is directly
related to the objective and dictates which actions are good and receive a reward,
and which are undesired and receive a penalty. The algorithm then attempts to
explore the space of possible solutions until an appropriate policy (series of control
actions) that achieves the control objective in the best possible way is found. In the
past, a challenge for RL has been to keep track of everything the algorithm learns
about the system. Recently Deep Mind proposed a solution that turned out to
be very efficient and involves using Deep Neural Networks (DNNs) for representa-
tion purposes, hence resulting in the field of Deep Reinforcement Learning (DRL).
Methods in this field have given rise to some very interesting results. For problems
with discrete action spaces we have seen these methods learn to play Atari games
[17], and beating world champions at the game of GO [18]. For continuous action
spaces we have seen the methods solve dozens of highly nonlinear physics problems
such as robotic manipulation, bipedal locomotion, and game play [1, 19, 20].

1.2 Goal and method
The main goal of this thesis is to investigate how we can apply DRL to the com-
plex problem of performing end-to-end path following and control of marine vessels
exposed to unknown ocean currents. Our proposed method, illustrated in Figure 2,
consists of two main components. The first component which is the environment,
consists of a performance measure, which tells us how well we are doing at the
path following task, and the vessel, which we are tasked with controlling by only
being able to observe the state x. The second component is the DRL agent, which
consists of a control policy, mapping the input from the environment to a control
action, and a value function, which gives a measure of how good a certain state is.
Both the control policy and the value function are represented by Artificial Neural
Networks (ANNs), and are learned by exploration. Our proposed method involves

2



shaping a performance measure in order to achieve the desired behaviour, augment-
ing the state representation to give the DRL agent useful information on the path
following task, training the DRL agent in order to find a good policy, and choosing
an architecture for the control policy and value function. In order to train the the
agent, we use the DRL algorithm known as Deep Deterministic Policy Gradient
(DDPG) [1].

The proposed approach constitutes an alternative solution to the path following
problem by combining the ideas of optimizing performance similarly to model pre-
dictive control, with the benefits of being model-free. This sets it apart from most
methods that are used today, as methods such as Line-of-Sight, which although it
is model-free, does not optimize performance. While methods that optimize perfor-
mance, such as model predictive control, are highly dependant on a good model.
In addition, DRL allows for simplifying the control structure by creating a single
control law, eliminating the need for a cascaded system such as the one illustrated
in Figure 1.

This thesis is the culmination of the work of applying DRL methods to the path
following problem. In addition to the thesis, the work has also resulted in two
conference papers:

• One paper on straight-line path following [21], which has been accepted for
the 11th IFAC Conference on Control Applications in Marine Systems, to be
held in Opatija, Croatia from the 10th until 12th of September 2018.
• One paper on curved path following, which has been submitted to the OCEANS

conference, to be held in Charleston from the 22nd until the 25th of October
2018.

1.3 Outline of report
The thesis is divided into five main chapters, we will start off in Chapter 2 by
introducing some important concepts and notation used in the thesis. Here we will
also give an introduction to machine learning, and in particular deep learning and
artificial neural networks. We will also give a thorough introduction to reinforce-
ment learning, as well as the main deep reinforcement learning methods, namely
actor-only, critic-only, and actor-critic methods. Chapter 2 also discuss some of the
main concepts of kinematics, motion control, and guidance for marine vessels, in
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Guidance
system

Motion
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Figure 1: Block diagram of traditional cascaded guidance and control system.
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Performance

Environment
Control policy
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DRL Agent
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r

x u

u

Figure 2: Illustration of the proposed control architecture, where vessel is considered
a black box from, where only the given output can be observed.

order to give a good theoretical understanding. In Chapter 3 we will give a overview
of how a Line-of-Sight algorithm can be implemented, as well as giving a compre-
hensive description of our proposed control algorithm, visualized in Figure 2, for
performing end to end training and guidance of a marine vessel. In Chapter 4 we
will present the main results from applying DDPG to our proposed method, and
in Chapter 5 we will conclude the thesis.
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Chapter 2
Background and theory

2.1 Machine Learning
The control approaches presented later in this thesis is based on Machine Learning
(ML), which is a field in computer science which deals with the ability of com-
puters to learn, without being explicitly programmed. ML is usually categorized
into three main approaches, namely supervised learning, unsupervised learning and
reinforcement learning. Our proposed method is based on reinforcement learning,
however in this this section we will focus on supervised learning, as it has played
an essential role in the recent developments in DRL.

In general, supervised learning can be described as learning from examples, where
the machine is given training examples x which are a subset of the possible inputs
X , i.e. x ∈ X . The machine is also given the known outputs y of an unknown
function y = f(x), and is then tasked with finding an approximation f̂(x) of the
unknown function given the training data.

There are multiple approaches to learning function approximations depending on
input and output data type (discrete, continuous binary), and expected complex-
ity of the function (linear, nonlinear, logical), however we will mainly focus on
Artificial Neural Network (ANN) and Deep Learning (DL) as these approaches are
those best suited to working with continuous inputs and outputs, as well as highly
nonlinear functions.

5



End-to-end training for path following and control of marine vehicles

2.1.1 Artificial Neural Networks
Artificial Neural Network (ANN) is a learning algorithm which is inspired by biolog-
ical neural networks found in animals in nature. One of the first implementations
of neural networks was the perceptron introduced by Frank Rosenblatt[22]. The
perceptron consists of a weighting vector w and a scalar bias b. Given an input
vector x the output of the perceptron is given by

f(x) =

{
1 if w>x+ b > 0

0 otherwise
(2.1)

This gives binary classification algorithm where the w>x + b = 0 represents the
linear decision boundary. The simple single layer linear perceptron however has
some significant drawbacks. The greatest of these drawback are that the perceptron
learning algorithm does not terminate if the training set is not linearly separable,
and the the output of the perceptron is limited to binary classes, these issues can
be seen in Figure 3. In order to improve the perceptron, the idea of adding addi-
tional layers and activation functions were proposed in order to allow for continuous
outputs, and the approximation of more complex nonlinear functions. These com-
puting systems are what later became known as artificial neural networks.

In general artificial neural networks can be characterized by connected units or
nodes, which are organized in layers. Each layer is represented by weighting matrix
W, a bias vector b and a activation function f(·). Given an input vector x the
layer produces an output vector y by the the following operation.

y = f(Wx+ b) (2.2)

where the activation function is applied to each element of the vector given by
Wx + b. In a multi-layer ANN the input of each layer is the output of the previ-
ous layer. An example of an artificial neural network is given in Figure 4, and the
function of each unit or node can be seen in Figure 5.

The framework described above gives a way of representing a nonlinear function
with a given number of discrete inputs and outputs. Combining this with the uni-
versal function approximator theorem[23], it can be shown that a neural network
with a single hidden layer, containing a finite number of neurons, can approximate
any continuous function on compact subsets of Rn. The challenge now becomes
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x2

x1

w>x+ b = 0

Figure 3: The perceptron learns a linear decision boundary for classifying the input
data, this fails when the data is not linearly separable.

finding the weights and biases, which are collectively called parameters and de-
noted θ, in order to find the parameterization which best fits the artificial neural
network to the target function. The most popular method for doing this is the use
of gradient descent, where the gradient of loss function J(θ) with respect to the
parameter vector θ, is used to augment the parameters in order to lower the loss
on training data. Given the loss function, the gradient descent algorithm can be
written as:

θ ← θ − α∇θJ(θ) (2.3)

where α is the learning rate. When gradient descent is performed on the loss func-
tion evaluated on randomly sampled data from from the training set, this is called
Stochastic Gradient Descent (SGD).

2.1.2 Deep learning
Deep Learning (DL) can be considered an extension to the field of machine learn-
ing, in where a hierarchy of concepts enables a machine to learn complex concepts
by building them out of simpler ones. Building concepts in such a way results in
"deep" hierarchy with many layers where each consecutive layer represents more
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Figure 4: Artificial Neural Network
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Figure 5: Unit or node in the artificial neural network

8



End-to-end training for path following and control of marine vehicles

complex concepts. From a more mathematical point of view we can say that these
techniques give more complex nonlinear parameterizations, and hence more com-
plex functions can be modeled.

Where classical ML techniques rely on hand designed features to be selected as
inputs to the learning algorithm, the additional layers in DL techniques allow for
representation learning, where important features and abstractions are learned see
Figure 6. This enabels DL to learn with little human intervention.

The simplest form of DL are Deep Feed Forward Networks or Deep Artificial Neu-
ral Networks, which are essentially ANNs, with multiple layers, as they consist of
fully-connected layers with activation functions as illustrated in Figure 7. These are
called feed forward because the information flows through the network from the
input x through the intermediate hidden layers, until it reaches the output y. In
addition to fully-connected layers, seen in ANNs, DL also encompasses a number
of other methods of creating network layers which handle specific kinds of data.
Convolutional Neural Networks (CNNs) are one such method of adding convolu-
tion layers for processing data which is spatially connected. The architecture was
first proposed as a method for classifying handwritten numbers from images[24].
An other technique is Recurrent Neural Network (RNN), for processing sequential
data, such as dynamic and temporal data. RNNs work by saving information from
previous passes in an internal hidden state, which it then uses in later passes.

2.1.3 Transfer learning
Transfer learning refers to the the situation where what has been learned in one
setting, is used in order to improve generalization in an other, usually similar
setting. Transfer learning is based on the idea of representation learning, in where
the learning algorithm learns representations, or features, which can be useful when
faced with a similar tasks. In problems such as image classification, a model which
has learned to classify cats and dogs, can be adapted to classify ants and wasps,
since the representations of edges and shapes learned in the first task, may be used
in the second task. Similarly this can be used in RL, if the learning algorithm has
been trained on one task, it can be retrained on a similar task in a shorter amount
of time, by utilizing the representation learned from the previous task. In general
transfer learning will significantly shorten training time for the new problem, as
well as it requiring fewer training examples in order to learn a new task, however
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Figure 6: Flow chart of how AI systems relate [3]
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Figure 7: Illustration of deep feed forward neural network

the degree to which it will work is usually highly dependant on the similarity of the
problems, and how well the learned representation generalizes to the new problem.

2.1.4 Training DL models
Training DL models is as mentioned earlier, usually done by performing SGD on
the parameters of the network, where the gradients are calculated with respect
to a loss function. The actual gradient calculation is performed using automatic
differentiation, and backpropagation[25], where the gradient of the input of each
mathematical operation in the network is computed as a function of the output, by
utilizing the chain rule. Given the network y = f(g(x)), with the nested operations
f , and g, backpropagation will go back layer by layer, in order to calculate the
gradient as the product of the gradients of each layer with respect to its input in
the following way.

dy

dx
= f ′(g(x))g′(x) (2.4)

Modeling the network as a computational graph from x to y, where each node
represents a mathematical operation, the process of calculating the gradients using
backpropagation is simply the passing of gradients back through the network in
the reverse order, and multiplying with the gradient of the previous layer, this is
illustrated in Figure 8.
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x g(·) f(·) y

y′y′f ′(·)y′f ′(·)g′(·)

Figure 8: Illustration of backpropagation and forward pass of computational graph

Deep neural networks can often be difficult to train. Some of the major difficulties
include overfitting, in where the network only learns how the correct responses to
the training data, but does not learn any underlying concepts which it can use,
when faced with new unseen examples. An other problem is underfitting, in where
training is stopped before the network has reached its full potential. Training deep
neural networks can also be difficult in terms of stability while training, causing os-
cillations, such that the network does not converge. Deep Learning proposes many
different solutions to these problems, such as weight regularization[26], dropout [27],
early stopping, data augmentation, and noise injection, which all seek to improve
the performance of deep learning models.

2.2 Reinforcement learning

Agent

Environment

Action utNew state xt+1 Reward rt+1

Figure 9: Visualization of reinforcement learning

The Reinforcement Learning (RL) problem is a way of framing the problem of
a decision making agent interacting with its environment to learn how to act in
the best possible way so as to obtain maximum reward. For this we frame the
problem in terms of a Markov decision process presented in Section 2.2.1. Where
the reinforcement learning agent interacts with its environment over a sequence of
discrete time-steps as seen in Figure 9. In reinforcement learning the job of the
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xt xt+1 xt+2 . . .

rt rt+1 rt+2

ut ut+1

Figure 10: Markov decision process

agent is to learn how to act by continuing to interact with the environment, and
learn what actions are good and what actions are bad with respect to the reward
function, and in this way improve its performance.

2.2.1 Markov decision process
A sequential decision process which is fully observable, is in a stochastic environ-
ment, and has a transition model which satisfies the Markov property is called a
Markov decision process (MDP). For simplicity we can denote the Markov decision
problem as a tuple (X ,U , R, T ) where X is the set of all states, U are the actions
available to the agent (in general the actions available to the agent are dependant
on the state, we denote this U(x) where x ∈ X ), R is the reward function (most
often the reward is dependant on the state and action, we denote this R(x, u)),
and T is the transition model given by the transition probability P (x′|x, u). If the
environment is deterministic the transition model can be written as x′ = f(x, u).
The general structure of an MDP is visualized in Figure 10, where from each state
an action is taken, leading to a new state and reward which can be observed [28].

Given a Markov decision process where we can only observe evidence of the state,
and not the full state itself, we have a Partially Observable Markov Decision Process
(POMDP). The umbrella world is a good example of a POMDP. In this example
we imagine a person in a room with no windows, trying to figure out whether or
not it is raining outside. The person is not able to directly observe the rain, how-
ever by studying the people entering the room, the person can make an educated
guess based on whether or not the people entering are carrying umbrellas. Partially
observable Markov decision processes are a useful concept in many situations. It
should however be noted that all Partially observable Markov decision process can
be converted into Markov decision processes by introducing a belief state which is
inferred from the observable evidence.
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2.2.2 Bellman equation
The Bellman equation, sometimes referred to as the dynamic programming equa-
tion, gives the value of a decision problem in a certain state in terms of the payoff
from previous choices and the value of the remaining decision problem after making
these choices, this is given according to Richard Bellman’s Principle of Optimality:

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision [29]

The justification for the Principle of Optimality is quite simple. If the policy we
were following from state xi was not optimal, then we would be able to reduce the
cost by switching to an optimal policy for the subproblem when we reach state xi.
The Principle of Optimality suggests that an optimal policy can be constructed in a
piecewise fashion, and hence the problem can be broken into simpler subproblems.
This is known as Dynamic Programming (DP) and is the basis for solving opti-
mization problems for maximizing the cumulative reward in a sequential decision
problem.

Given a discrete deterministic decision problem we will go through the deriva-
tion of the Bellman equation. We start by looking at the value of being in a given
state x as a value function V (x), which we define as the sum of all the rewards we
get while taking the action ut at time t. This gives the following:

V (x0) =

∞∑
t=0

R(xt, ut)

s.t. ut ∈ U(xt), xt+1 = f(xt, ut)

(2.5)

where R(xt, ut) is the reward from taking action ut in state xt. and f(xt, ut) Is the
transition model.

We now wish to maximize the reward over time, that is find the highest value for
our current state, which we can do by always selecting the best action at every time
step. We also assume impatience by introducing a discounting factor 0 < γ < 1.
This will give the optimal value function in terms of expected discounted future
reward denoted V ∗ as:

V ∗(x0) = max
{ut}∞t=0

∞∑
t=0

γtR(xt, ut)

s.t. ut ∈ U(xt), xt+1 = f(xt, ut)

(2.6)
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By using the Principle of Optimality, we separate the first decision from the rest
of the decisions. This gives the equation:

V ∗(x0) = max
u0

{
R(x0, u0) + γ

[
max
{ut}∞t=1

∞∑
t=1

γt−1R(xt, ut)

]}
s.t. ut ∈ U(xt), xt+1 = f(xt, ut)

(2.7)

At first glance this seems to have made the problem uglier by separating the first
decision from the rest. However by noticing that what is inside the square brackets
is the value of the decision problem at t = 1 we can rewrite the problem as:

V ∗(x) = max
u∈U(x)

{
R(x, u) + γV ∗(f(x, u))

}
(2.8)

which is the Bellman equation in it’s simplest form.

The Hamilton–Jacobi–Bellman equation is an extension of the bellman equation
for continuous time systems. The equation is given as a differential equation, and
for the simple continuous time system on the form:

ẋ = f(x, u)

the Hamilton–Jacobi–Bellman equation is given as:

V̇ ∗(x, t) = max
u∈U

{
dV ∗(x, t)

dx
f(x, u) +R(x, u)

}
(2.9)

Solving either the Bellman equation or the Hamilton–Jacobi–Bellman equation
means finding the value function V ∗(x) which gives optimal value of the objective
as a function of the state x.

With a known transition model, and a finite and discrete state and action space,
these problems can be solved using DP. This approach involves making an initial
guess for the value function for all states, usually 0. Using the initial guess, the
Bellman equation is used to solve for all the states using the initial value function
guess. The updated value is then used for finding yet another value function. This
is performed iteratively until the value function converges, and an optimal value
function is found. Two popular methods for performing this are value iteration and
policy iteration.

15



End-to-end training for path following and control of marine vehicles

2.2.3 Temporal difference learning
In the previous section we saw that it was possible to use DP algorithms for solving
sequential decision problems. However this tends to be the exception. In most cases
a numerical solution is necessary. This is due to complexity of the problem causing
the number of states and actions to become overwhelming, and requires excessive
computational demands in order to solve the problem. Richard Bellman himself
called this the "curse of dimensionality". Dynamic programming also requires the
full model of the system to be known, which in most cases we do not. Temporal
difference learning is one solution which tries to solve these problems by combing
the ideas of dynamic programming and Monte Carlo methods. The main idea be-
hind Temporal difference learning is the use of experience to solve the prediction
problem, this means that as the agent interacts with the environment it gains ex-
perience which it can use to estimate the value function. The simplest Temporal
difference method, known as TD(0), is given as:

V (x)← V (x) + α
[
R(x′, x, u) + γV (x′)− V (x)

]
(2.10)

or alternatively when transitioning from state-action to state-action, we get the
following update rule

Q(x, u)← Q(x, u) + α
[
R(x′, x, u) + γQ(x′, u′)−Q(x, u)

]
(2.11)

where Q(x, u) is the expected value of taking action u in state x. Temporal dif-
ference learning is based on taking an action u in the state x and observing the
new state x′ and the reward R(x′, x, u). It then uses this information to update its
estimate of the state-value V (x) or action-value Q(x, u) of state x, as a weighted
sum of its new experience and its old estimate of the value. Note α is the weighing
factor called the learning rate.

The n-step prediction for temporal difference is an other way of updating the
temporal difference equation, where n denotes how many future discounted returns
we should take into account when computing the updated value. For a state reward
sequence xt, rt+1, xt+1, . . . , xT , rT with rt+1 = R(xt+1, xt, ut) and the discount rate
γ, the backed up discounted reward can be written as:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . γT−t−1rT (2.12)
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where T is the last step of the episode. For the one step backup this can be written
as the reward plus the discounted estimated value of the next state given as:

G
(1)
t = rt+1 + γV (xt+1)

Intuitively this makes sense, since V (xt+1) is an estimate of it’s future discounted
reward. Generalizing this we can write the n-step truncated return as:

G
(n)
t = rt+1 + γrt+2 + γ2rt+3 + . . . γnV (xt+n) (2.13)

This gives the n-step update equation as:

V (x)← V (x) + α
[
G

(n)
t − V (x)

]
(2.14)

This method however is rarely used as it requires waiting n steps to compute the
update, which makes it inconvenient to implement, as well as being problematic
in control applications for large n. It does however have a some benefits, which is
that the value from later states are more quickly propagated back to earlier states,
which reduces the number of iterations required to get sufficiently close to the value
function of a given policy.

The general TD(0) algorithm has been shown to converge to the optimal solu-
tion V ∗ [30] of the Bellman equation with a probability of one under the following
assumptions.

1. The values are stored in a table (tabular method)
2. The learning rate αt(xt) satisfies the following conditions:

∑
t αt(xt) = ∞,

and
∑
t αt(xt)

2 <∞ (these conditions are upheld if 0 < αt(xt) < 1 ∀t, xt)
3. V ar(r) <∞ (the variance of the reward is bounded, which holds true if r is

bounded r <∞)

This is a useful result, as it can be extended to tabular temporal difference meth-
ods, unfortunately the result does not hold for approximate methods such as deep
reinforcement learning.

2.2.4 Deep reinforcement learning
We have so far discussed methods which assume we have value functions and poli-
cies that can be represented as tables with one entry for each state or state-action
pair. This approach is however limited in that it only works for a finite number
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of state or state-actions pairs. These methods also suffer form the "curse of di-
mensionality", that is that as the number of states or state-action pairs increase,
the number of entries in the table increases exponentially. This becomes not only
a problem in terms of memory, but also in terms of the computational time to
accurately fill the value function and policy tables. A natural question that arises
is whether or not it is possible to generalize experience from a limited subset of
the state space in such a way that we find a good approximation for the entire
state space. Fortunately the answer to this question is yes, these methods are often
called function approximators, and have been extensively studied.

The popularity of approximate RL methods have increased significantly the last few
years as computational power has increased, and the use of function approximators
such as neural networks, and in particular deep neural networks have proven to be
able to learn tasks such as playing ATARI games at super human levels[31], de-
feating the world champion in the game of GO[18], and learning advanced robotics
manipulation tasks[32]. In this section we will look at some different approximate
methods where we use function approximators to find the approximations of the
value function and policy using ANNs and DL. These methods are collectively re-
ferred to as Deep Reinforcement Learning (DRL) methods.

DRL methods can be split into three main categories depending on architecture,
these three categories are actor-only methods, critic-only methods, and actor-critic
methods. The methods are categorized according to architecture, in where actor-
only methods only consist of learning a policy π(x), critic-only methods consist of
learning a action-value function Q(x, u), and actor-critic methods learn both a pol-
icy and value function. Due to the critic-only method, only having a action-value
function available. It must enumerate through all possible actions u in order to find
the optimal action which has the highest action-value. This means that the critic-
only architecture is only suitable for discrete finite action spaces. Actor-critic and
actor-only methods are both able to learn policies with continuous action spaces.
For most dynamical systems, the action space is continuous, this is also true for
path following and control, and we will therefor focus on these methods.

Policy gradient methods

Policy gradient methods are approximate methods which aim to find an estimate
for the optimal policy function π∗(x) by optimizing a parametrized policy function
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Actor
π(x)

Environment

Action utState xt+1 Reward rt+1

Policy gradients

Figure 11: Actor-only architecture

with respect to the expected long term cumulative reward. The optimization itself
takes place by using gradient descent to iteratively improve the policy with respect
to the expected return. the policy gradients method is an on policy method, which
manes it needs to follow the policy it is learning in order to improve.

In the policy gradient methods we parametrize the set of policies by a vector
θ = [θ1, . . . , θn]. We further assume that the policy can be written as a probability
distribution πθ(u|x) which is the probability of taking action u in state x given
the parameter vector θ. This is quite practical as it makes the policy inherently
stochastic. One example where a stochastic policy is useful is in card games, where
it is beneficial to be unpredictable, which a stochastic policy will allow. We will also
see that modeling the policy as a probability distribution naturally incorporates
exploratory actions which helps us train and optimize the policy. The general ob-
jective of reinforcement learning is as discussed earlier, to maximize the expected
discounted reward. this can be expressed as maximizing expected cumulative dis-
counted reward, giving the following objective function:

J(θ) = E

∑
t ut∼π(xt;θ)

γtR(xt, ut)



where the action ut at time t is sampled from the policy πθ. We can rewrite this
problem as finding the parameters θ∗ such that the policy gives the actions which
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maximize the expected reward. This gives the optimization problem:

θ∗ = arg max
θ

E

∑
t ut∼π(xt;θ)

γtR(xt, ut)

 (2.15)

To find the optimal parameter vector θ∗ we now come to the heart of policy gra-
dients which is to use gradient descent to iteratively improve the estimate of θ,
where the gradient descent algorithm is given as:

θ ← θ + α∇θJ(θ) (2.16)

The question now becomes how to compute the gradient of the objective function.
In order to do so there are tow main methods, finite difference approximation, and
direct policy differentiation.

Finite Difference Policy Gradient

The simplest approach to finding policy gradients, is by using the finite difference
method, which is one of the oldest policy gradient approaches. This is done by
perturbing θ slightly by an amount ε in the the kth dimension to find an approx-
imation to the partial derivative with respect to θk. Using the forward difference
method this can be written as:

∂J(θ)

∂θk
≈ J(θ + εvk)− J(θ)

ε

where vk is a unit vector with 1 in the kth component and 0 otherwise. We can
alternatively use the backwards difference or central difference method. Using the
partial derivatives we can compute the gradient as follows:

∇θJ(θ) =


∂J(θ)
∂θ1
∂J(θ)
∂θ2
...

∂J(θ)
∂θn

 (2.17)

The finite difference method uses n evaluations to compute the gradient for the
forward and backward difference method, and 2n evaluations when using the cen-
tral difference method. The finite difference method is often inefficient and noisy,
however it works for arbitrary policies, even if the policy parameterization is not
differentiable.
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Direct policy differentiation

A more common approach today is direct policy differentiation where we find an
analytical expression for the gradients. Due to the advance of deep neural nets,
one can easily find the derivatives of parameters in a computation graph by using
automatic differentiation and the chain rule during backpropagation. If we assume
that we know the gradient ∇θπθ(x, u), and that the policy gives likely hood ratios,
we can exploit the following identity:

∇θπθ(x, u) = πθ(x, u)∇θ log πθ(x, u)

Using this we can use standard differential calculus[33] to compute the gradient of
the objective function as:

∇θJ(θ) = E

[(
T∑
t=1

∇θ log πθ(xt, ut)

(
T∑
t′=t

γt
′−trt′

))]
(2.18)

With a Monte-Carlo approach, where we compute multiple different trajectories or
episodes given a policy, we can approximate the expected value of the gradients as
the average of the gradients over the simulation, and we get the policy gradient as
follows:

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(xi,t, ui,t)

(
T∑
t′=t

γt
′−trt′

))
where N are the number episodes we average over, and T are the number of steps
in the episodes. This update method has an intuitive appeal to it. Looking at the
gradient we see that it is given as product of the return and the gradient of the
probability of taking the action that lead to the return. This means that during
gradient descent, if an action sequence resulted in a high return, then we move the
parameters in the direction which make taking the actions more probable. In this
sense we move the parameters in the direction of taking an action, proportional
to the return, and hence the policy moves in the direction which favours actions
which give higher returns.

In order to reduce the variance of the gradient estimator, a constant baseline can
be subtracted from the gradients. The optimal baseline can be computed to be:

b =

∑N
i=1

(∑T
t=1∇θ log πθ(xi,t, ui,t)

)2 (∑T
t=1 γ

trt

)
∑N
i=1

(∑T
t=1∇θ log πθ(xi,t, ui,t)

)2
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which is just the expected reward, but weighted by gradient magnitudes. An ap-
proximation of the value function for each state, or the average reward may also
be used as a baseline. The average baseline is given as:

b =

N∑
i=1

T∑
t=1

γtrt

While the average baseline reduces the complexity in comparison to the optimal
baseline, it has a larger variance. The third option is to approximate the value
function, and use it as a baseline, this will usually be the best baseline, however it
increases complexity. Using a value function approximation as a baseline, we get
the following:

b(xi,t) = V (xi,t) (2.19)

where the baseline becomes a function of the state xi,t. When using a baseline the
gradient of the loss is given as the following:

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(xi,t, ui,t)

(
T∑
t′=t

γt
′−trt′ − b

))
(2.20)

The method described above is known as the REINFORCE algorithm [34] and is
summarized in Algorithm 1

Algorithm 1 REINFORCE
1: repeat
2: Sample trajectories using πθ(x, u)
3: Compute gradient ∇θJ(θ) from Equation 2.20
4: θ ← θ + α∇θJ(θ)
5: until sufficiently good policy

There are other methods which build on these the classical policy gradients above,
such as Natural Policy Gradients [35], Trust Region Policy Optimization (TRPO)[36],
and most recently Proximal Policy Optimization (PPO)[20]. These methods extend
the classical policy gradient methods in order to improve the performance and sta-
bility.

Actor-critic methods

In the previous sections we looked at policy approximation. Policy approximation
is an actor-only method since it learns a policy directly from the experience it
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gets. Similarly to actor-only methods, it is possible to create critic-only methods,
in which a value or action-value function approximation is used in order to approx-
imate the value of a state. Critic-only methods however are limited in that in order
to find the policy it is necessary to iterate through all possible actions, to find the
action which results in the highest state-value. This however is not practical for
problems with continuous action spaces.

Combining the policy approximation from actor-only methods, and value function
approximation from critic-only methods, we get the actor-critic methods which
learn both a value function and a policy. The actor-critic methods are based on
actor (policy) which acts on the environment, given a state, and a critic which finds
the value of being in a certain state when following the policy of the actor. The
actor in turn gets feedback from the critic to improve the policy, while the critic
continues to evaluate the performance of the actor, an illustration of the actor-
critic architecture is given in Figure 12. The actor-critic methods in this way aim

Actor
π(x)

Critic
V (x), Q(x, u)

Environment

Action utState xt+1

Reward rt+1

TD error

Figure 12: The actor-critic RL architecture consists of an actor which chooses which
action to take, and a critic, which evaluates the actor by looking at the difference
in expected and actual performance, in terms of the temporal difference error.

to combine the advantages of both actor-only methods such as policy gradients,
and critic-only methods. Similarly to actor-only methods, actor-critic methods are
capable of producing continuous actions, while the large variance in actor-only
methods is reduced in the actor-critic methods by learning from the critic. Today
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some of the most popular actor-critic algorithms are based on the use of policy
gradients and value function approximation using ANNs [37]. These methods have
been successfully used to play complex first person shooter video games [38, 39]
and perform complex humanoid locomotion tasks [40].

Actor-critic methods are most often based on approximate methods for both the
policy, and the value function. These methods parameterize the critic value func-
tion Vθc(x) in terms of a parameter vector θc. Similarly the actor policy πθa(x),
which is usually stochastic, is parameterized by the parameter vector θa. Since the
goal of the actor-critic method is to find the best policy by learning from the critic,
the critic needs some way of evaluating the policy. Using the Bellman equation, we
find the error between the right, and left hand side of the equation, which gives us
the temporal difference error:

δ = R(x′, x, u) + γVθc(x
′)− Vθc(x) (2.21)

Since the temporal difference error should converge to 0 as the value function
approximate converges to the true value function, the temporal difference error
becomes a natural choice for updating the critic. Using the squared temporal dif-
ference error as a loss function, we get

Jc(θc) =
1

2
δ2 (2.22)

we now assume the value function estimate of the next state in the temporal differ-
ence error is fixed and independent of the parameter vector θc. Taking the gradient
of the loss function will then give.

∇θcJc(θc) = δ∇θcδ = δ∇θcVθc(x) (2.23)

When using gradient descent on the value function parameters θc, we can write
the update law as follows:

θc ← θc + αcδ∇θcVθc(x)

where αc is the learning rate of the critic. For the actor we wish to minimize the
cost or maximize the reward of the policy, which means we need the gradient of the
policy parameters with respect to the cost or reward. From the derivation of the
policy gradients with direct policy differentiation, a one step horizon and a value
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function as baseline, we get

∇θaJ(θa) ≈ 1

N

∑
i

∇θa log πθa(xi,t, ui,t)

(
T∑
t′=t

γt
′−trt′ − V (xt)

)
(2.24)

From the the Bellman equation we have that

T∑
t′=t

γt
′−trt′ = rt + V (xt+1) (2.25)

denoting the next state xt+1 = x′, and using a batch size i = 1, we get the following
approximation for the gradient of the cost function.

∇θaJ(θa) ≈ δ∇θa log πθa(x) (2.26)

Using gradient descent we can write the parameter update equation for the actor
as follows:

θa ← θa + αaδ∇θa log πθa(x)

where αa is the learning rate of the actor. Intuitively we can think of this as guided
descent, where we multiply the gradient with the temporal difference error in order
to guide the gradient descent in such a way that we move towards actions which
give a positive temporal difference error, i.e. actions that perform better then the
current policy with respect to the value function.

The resulting actor-critic algorithm for the episodic case is describe in Algorithm 2.
The method can also be extended to train on minibatches of experience which of-
ten stabilizes training, since noise in the experience is suppressed when normalizing
over a batch of training data. Asynchronous actor-critic methods have also been
proposed[41], and allow for training on multiple distributed machines, which has
been shown to significantly speed up training on complex problems.

Deep Deterministic Policy Gradients

The method we settled on using for the path following tasks, is a hybrid method
of actor-critic methods combined with some of the ideas of critic-only methods,
called Deep Deterministic Policy gradients (DDPG)[1]. The general architecture of
DDPG is similar to that of the actor-critic architecture. DDPG approximates both
a policy and a value function, the major difference being the use of an action-value
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Algorithm 2 Actor-critic
1: repeat
2: Initialize x (first state in episode)
3: while x not terminal do
4: u ∼ πθa(x)
5: Take action u, and observe x′, r
6: δ ← r + γVθc(x

′)− Vθc(x)
7: θc ← θc + αcδ∇θcVθc(x)
8: θa ← θa + αaδ∇θa log πθa(x)
9: x← x′

10: end while
11: until training terminated

function Q(x, u) in stead of a value or state-value function V (x). Using a state-
value function allows for the critic to learn the value of all action in all states,
meaning the algorithm can learn the optimal policy even when it is not performing
the optimal policy, i.e. the algorithm is off policy.

Given a action-value function QθQ(x, u), parameterized by a parameter vector θQ.
And a policy πθπ (x), parameterized by a parameter vector θπ we define the loss
function as the squared temporal difference error, similar to the actor-critic algo-
rithm, as the following.

JQ(θQ) =
1

2
δ2t =

1

2

(
rt +QθQ(xt+1, πθπ (xt+1))−QθQ(xt, ut)

)2 (2.27)

For computing the loss of the policy, we utilize the fact that the action-value func-
tion encodes the value of taking a action in a given state, and hence we can use
the action-value function directly as a loss function. This means we can compute
the gradient of the the value function with respect to the policy parameterization
θπ for a given state as

∇θπJπ(θπ) = ∇θπQθQ(x, πθπ (x))

= ∇uQθQ(x, u)∇θππθπ (x)
(2.28)

DDPG additionally adds several methods for stabilizing the training, such as the
use of experience replay [31, 42], in where the training data (x, u, r, x′) consisting
of the state, action, and observed reward and next state, are sampled uniformly
from the replay memory. This method increases sample efficiency, and allows for
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experiences to be sampled multiple times. Additionally, experience replay allows
for batch training on temporally uncorrelated mini batches, which increases com-
putational efficiency, and increases stability during training.

In addition to experience replay, DDPG also utilizes soft parameter updates[1, 31],
where a separate target policy and action-value function parameterization, θπ′ and
θQ′ are used to calculate the target values, and slowly track the learned network.

θπ′ = (1− τ)θπ′ + τθπ

θQ′ = (1− τ)θQ′ + τθQ
(2.29)

This means that the target values are constrained to change slowly, and further
improving the stability of learning by avoiding feedback.

For training the DDPG policy, the algorithm must explore the environment. Fol-
lowing the learned policy directly would not lead to any exploration due to the
policy being deterministic. In order to incorporate exploration, noise sampled from
a noise process N is added to the policy.

ut = πθπ (xt) +Nt (2.30)

Combining everything we get the DDPG algorithm given in Algorithm 3

2.3 Guidance and control of marine vessels
2.3.1 Kinematics
In order to simulate and control marine vessels, it is necessary to study the kine-
matics, which treats the geometrical aspects of motion. In most control approaches,
the kinematics are a central part of the controller, for DRL however a model is not
necessary, however knowledge of the kinematics can be useful, when design a reward
function, and as we will be working with a simulated vessel, a kinematic model is
needed in order to perform simulations.

Using the SNAME notation in Table 1, the motion of a 3 Degree Of Freedom (DOF)
surface vessel can be represented by the pose vector η = [x, y, ψ]> ∈ R2 × S, and
velocity vector ν = [u, v, r]> ∈ R3. Here, (x, y) describe the Cartesian position in a
local North-East-Down (NED) reference frame, ψ is yaw angle, (u, v) is the body
fixed linear velocities, and r is the yaw rate, an illustration is given in Figure 13.

27



End-to-end training for path following and control of marine vehicles

Algorithm 3 Deep Deterministic Policy Gradients

1: Randomly initialize critic QθQ(x, u) and actor πθπ (x) with weights θQ and θπ.
2: Initialize target network θQ′ and θπ′ with weights θQ′ ← θQ, θπ′ ← θπ
3: Initialize replay buffer
4: for episode = 1, ...,M do
5: Initialize a random process N for action exploration
6: Receive initial observation state x1
7: for t = 1, ..., T do
8: Select action ut = πθπ (xt) +Nt
9: Take action ut and observe reward rt and new state xt+1

10: Store transition (xt, ut, rt, xt+1) in replay buffer
11: Sample N transitions (xt, ut, rt, xt+1) from replay buffer
12: Set yi = ri + γQθQ′ (xi+1, πθπ′ (xi+1)) for i ∈ 1 . . . N

13: Update critic by minimizing loss: 1
N

∑
i

(
yi −QθQ(xi, ui)

)2
14: Update policy with: 1

N

∑
i∇uiQθQ(xi, ui)∇θππθπ (xi)

15: Update critic target network: θπ′ = (1− τ)θπ′ + τθπ
16: Update actor target network:θQ′ = (1− τ)θQ′ + τθQ
17: end for
18: end for

DOF Force/Moment Velocity Position/Angle
1 Surge X u x
2 Sway Y v y
3 Heav Z w z
4 Roll K p φ
5 Pitch M q θ
6 Yaw N r ψ

Table 1: The SNAME notation [4] for 6-DOF marine vessels
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u

v

U

ψ

χ
β

Figure 13: 3-DOF vessel centered at (x, y), with surge velocity u, sway velocity v,
heading ψ, course χ and sideslip β, in a North-East-Down (NED) reference frame.
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From [43] we can describe a 3-DOF vessel model on vectorial form as

η̇ = R(ψ)ν (2.31)

Mν̇ +C(ν)ν +D(ν)ν = τ (2.32)

whereM ∈ R3×3, C(ν) ∈ R3×3,D(ν) ∈ R3×3 and τ are the inertia matrix, Corio-
lis matrix, dampening matrix and control input vector respectively. The rotational
matrix R(ψ) ∈ SO(3) is given by

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.33)

With the edition of ocean currents, both the rigid-body and hydrostatic terms, as
well as the hydrodynamic terms must be taken into consideration, this gives the
following 3-DOF vessel model.

MRBν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body and hydrostatic terms

+MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamic terms

= τ (2.34)

where νr = ν − νc is the relative velocity vector, when given the current velocity
vector νc. Assuming irrotational constant ocean currents, this simplifies to the
following model

Mν̇r + C(νr)νr + D(νr)νr = τ (2.35)

where M = MRB + MA and C = CRB + CA.

For maneuvering, some additional terms are important to know these include the
course, and sideslip angle, as well as the speed of the marine vessel. The speed U
of a marine vessel is defined as the absolute velocity of the vessel. From the model
above, this can be calculated as:

U =
√
u2 + v2 (2.36)

The sideslip angle β is defined as the angel of the speed vector in the vessel body
frame.

β = sin−1
( v
U

)
(2.37)

The sideslip angular velocity β̇ can then be computed using the following:

β̇ =
d

dt
sin−1

( v
U

)
=

v̇
U − vU̇

U2√
1− v2

U2

(2.38)
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The course angle χ is defined as the angle of the absolute velocity vector in the
NED frame, which is the heading angle ψ pluss the sideslip angle χ.

χ = ψ + β (2.39)

A visual representation of the course angle χ, and sideslip angle β, as well as the
speed U is given in Figure 13.

2.3.2 Guidance of marine vehicles
Guidance can be defined as "The process for guiding the path of an object towards
a given point, which in general may be moving."[44] In the simplest case guidance
is the generation of a reference trajectory for time varying trajectory tracking, or
a path for time invariant path following. In this section we will focus on the path
following task, which involves controlling a vessel such that it converges to a desired
path.

Straight-line path following

The simplest path following problem, is straight-line path following. In straight-
line path following the objective of the control algorithm, is to directly follow a
straight line, in other words, we want the x, and y direction of the vessel to lie on
the path. Consider a straight-line path defined by two waypoints, pk = [xk, yk]>

and pk+1 = [xk+1, yk+1]>, define in the the North east down coordinate system.
Then the angle of the path defined by the waypoints can be computed by:

γp = atan2(yk+1 − yk, xk+1 − xk) (2.40)

where atan2(y, x) is the four quadrant version of arctan(y/x). The rotation matrix
from the path fixed referance frame to the the NED frame is than given as

Rp(γp) =

[
cos(γp) − sin(γp)
sin(γp) cos(γp)

]
(2.41)

Using this we can find the position of the vessel in the path centered coordinate
frame given the vessel position p = [x, y]> in the NED frame as:

ε = [xe, ye]
> = R>p (p− pk) (2.42)

where xe is the along-track distance tangential to the path, and ye is the cross-track
error, which is normal to the path, this is illustrated in Figure 14.
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γp

pk

pk+1

Figure 14: Path centered coordinate transformation
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For the path following task, the objective is for the vessel to converge to the de-
sired path, this means that we want the cross-track error to go to zero as time goes
to infinity limt→∞ ye(t) = 0. One of the most popular methods of achieving this
behaviour is the use of Line-of-Sight (LOS) guidance, where the vessel is tasked
with traveling from one waypoint to the next while constrained to following the
straight-line path between the two waypoints. From Fossen 2011 [43] the steering
law can be selected as:

χd = χp + χr (2.43)

where the path tangential angle which ensures the vessel travels along the path is
given as:

χp = γp = atan2(yk+1 − yk, xk+1 − xk) (2.44)

and the path relative angle which ensures the vessel converges to the path, can be
chosen as:

χr = atan
(−ye

∆ye

)
(2.45)

where ∆ye > 0 represents the lookahead distance. This steering law can be inter-
preted as a saturating control law where the cross-track error ye ∈ R is mapped to
χr ∈ [−π/2, π/2] and where ∆ye is a tunable gain. The performance of this method
depends on the performance of the motion control system which maps the heading
to rudder actuation, as well as the ∆ye gain which controls the convergence speed
to the path. We will later propose a different method of performing both the motion
control, and guidance of a vessel using DRL, however the LOS approach is a good
benchmark approach, as it is one of the most widely used guidance approaches.

Curved path following

Curved path following generalizes the ideas of straight-line path following, by intro-
ducing arbitrary paths. It also significantly increases the complexity of the problem,
as the curvature of the path must be taken into consideration. In general this can
cause problems for underactuated vessels, as some paths may be infeasible to con-
verge to, due to the path exceeding the physical limits of the vessel. In this section
we will discuss the dynamics of curved path following.

For curved paths, it is useful to describe the path in terms of a parameteriza-
tion. These parameterized paths describe a geometric curve parameterized by a
continuous path variable. For a surface vessel, a path parameterized by ω can be
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xn

yn

pd

γp

Figure 15: The origin of the path centered coordinate frame pd is the point on
the path the shortest Euclidean distance from the vessel, and the orientation γp is
given by the directional derivative of the path at pd
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written as
pd(ω) = [xd(ω), yd(ω)]> (2.46)

where xd(ω) and yd(ω) describe the position of the vessel in the horizontal plane
for values of ω. The first and second order derivatives of a path pd(ω) with respect
to the parameterization ω are denoted p′d and p′′d , and are useful in expressing the
curvature of the path. The goal of path following for curved paths is the geometric
task of converging to the path.

lim
t→∞

p(t)− pd(ω(t)) (2.47)

Similarly to straight-line path following, the objective of the curved path following
task is to minimize the cross-track error. Since the path is no longer a straight line,
a new problem arises, which is to find the point along the curved path from which
to calculate the cross-track error. A natural point to select is the point along the
path which is closest to the vessel, this is illustrated in Figure 15. The problem of
finding the position, can be written as finding the path variable ω which minimizes
(x − xd(ω))2 + (y − yd(ω))2, given the vessel position p = [x, y]>. This can be
expressed as the following optimization problem.

min
ω
f(ω) = (x− xd(ω))2 + (y − yd(ω))2 (2.48)

In order to solve the optimization problem above, there are many approaches one
can take, however a good method is to use an iterative gradient descent approach,
by approximating a Taylor series expansion of the function at a given point. Using
the second order Taylor series expansion, we get the Newton method[45], giving
the following iterative update rule

ωk+1 = ωk −
(

d2f(ω)

dω2

)−1
df(ω)

dω

∣∣∣∣∣
ω=ωk

(2.49)

where k denotes the iteration. The first and second order derivative of the objective
function are given as follows.

df(ω)

dω
= −2(x− xd(ω))x′d(ω)− 2(y − yd(ω))y′d(ω) (2.50)

d2f(ω)

dω2
= 2

(
−(x− xd(ω))x′′d(ω)− (y − yd(ω))y′′d (ω) + x′d(ω)2y′d(ω)2

)
(2.51)

Using the newton method, we can compute the optimal ω iteratively until the esti-
mate is sufficiently close to the optimal value, which is determined by how close the
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Figure 16: Calculating parameter value ω, as the local minimum ensures the pa-
rameter value only changes slightly at each time step, and avoids large jumps from
one section of the path to another.

derivative gets to zero. It should be noted that the Newton method is only guaran-
teed to find local optima, this is however beneficial, since the vessel will only move
a short distance from one time step to the next. Using the previous parameter value
as the initial starting point for finding the next parameter value ensures that the
closest local minimum is selected as the parameter value. This ensures the path is
tracked smoothly, and avoids jumps in ω if we get closer to a different part of the
path then the part of the path that is currently being tracked, this is illustrated in
Figure 16.

When tracking the path, it is useful to know the evolution of the the parame-
ter ω. Given a desired speed along the path Ud(t), the parameter evolution ω̇(t) is
given by the following.

Ud(t) =

√
dxd(ω(t))

dt

2

+
dyd(ω(t))

dt

2

=
√
x′d(ω)2 + y′d(ω)2ω̇(t)

⇒ ω̇(t) =
Ud(t)√

x′d(ω)2 + y′d(ω)2

(2.52)

The angle of the path is given by the direction the path is traveling. Given the
derivatives of the position with respect to the parameterization y′d(ω) and x′d(ω)
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the path angle γp(ω) in the NED frame, can be computed using the following
equation.

γp(ω) = atan2(y′d(ω), x′d(ω)) (2.53)

The path angular velocity with respect to the parameterization ω, gives a measure
of the curvature of the path. The path angular velocity γ′p(ω) is given by:

dγp
dω

=
x′d(ω)y′′d (ω)− y′d(ω)x′′d(ω)

x′d(ω)2 + y′d(ω)2
(2.54)

The path angular velocity with respect to time, gives a desired yaw rate for which
we want the vessel to follow. Knowing the time evolution of the parameterization
ω̇ the path angular velocity γ̇p can be found using the following equation:

γ̇p =
dγp
dω

dω

dt
=
x′d(ω)y′′d (ω)− y′d(ω)x′′d(ω)

x′d(ω)2 + y′d(ω)2
ω̇ (2.55)

The position of the vessel in the path centered coordinate frame given the vessel
position p = [x, y]> in the NED frame is computed in the same way as for straight-
line pats:

ε = [xe, ye]
> = Rp(γp(ω))>(p− pd(ω)) (2.56)

where Rp is the rotation matrix from the NED reference frame to the path centered
reference frame given as:

Rp(γp(ω)) =

[
cos(γp(ω)) − sin(γp(ω))
sin(γp(ω)) cos(γp(ω))

]
(2.57)

Similarly, the path relative velocity can be calculated as follows:

ε̇ = [ẋe, ẏe]
> =

d

dt
Rp(ω)>(p− pd(ω))

= Ṙp(ω)>(p− pd(ω)) + Rp(ω)>(ṗ− ṗd(ω))

= Rp(ω)>
([

0 γ̇p
−γ̇p 0

]
(p− pd(ω)) + ṗ− ṗd(ω)

) (2.58)

2.4 Tools and libraries
For implementing the algorithms and models used in evaluating the performance
of the proposed control schemes, the python programming language was used. Ad-
ditionally the scientific library scipy, and the numerical library numpy were used
in order in order to do high level numerical calculations.
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In order to implement the function approximators used to represent the policy
and value functions, the automatic differentiation library Tensorflow[46] was used.
Tensorflow gives a high level interface for building DL models as computation
graphs, it also implements automatic differentiation and backpropagation, as well
as a number of optimization techniques which can be used in order to efficently
build and train train DL models.

The vessel models used to perform the simulations were ported over to python from
the Marine Systems Simulator (MSS) toolbox [2]. The models that were ported in-
clude the a 3-DOF Mariner vessel [47], a 3-DOF Tanker vessel [48], and a 4-DOF
Container vessel [49]. The vessel models are included in Appendix A.
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Chapter 3
Design and implementation

3.1 Line-of-Sight guidance
In order to gauge the performance of the new guidance method which we will outline
later, we need to be able to compare to the guidance systems which are used today.
The most commonly used guidance system is the Line-of-Sight (LOS) method, in
the simplest case the LOS algorithm is used to control the heading of the vessel
such that the vessel converges to the path. In order to do so it is necessary with
a motion control system, which can control the rudder in order to track a desired
heading. This gives a cascading control architecture as seen in Figure 17.

Guidance
system

Motion
control
system

Vessel

Navigation
system

νd, ηd
τ

ν, η

Path

Figure 17: Illustration of the cascaded guidance architecture.

3.1.1 Motion control
For motion control systems such as heading and speed autopilots, a common ap-
proach is to model the simplified decoupled dynamics. A good approximation of the
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decoupled yaw dynamics for a surface vessel, is the Nomoto model. The Nomoto
model can be derived from the linearized maneuvering model, described in the
handbook of Marine Craft Hydrodynamics and Motion Control [43]. For vessel
heading the first order Nomoto model is given as:

r

δ
(s) =

K

1 + Ts
(3.1)

where r is the yaw rate, and δ is the rudder angle. In the time domain the yaw
dynamics are given as:

T ṙ + r = Kδ

ψ̇ = r
(3.2)

In order to identify the parameters of the first order Nomoto model we can use the
step response of the vessel, to find the model parameters which best fit the vessel
response. Given a constant rudder angle δ = δ0 we can express the yaw rate r(t),
of the Nomoto model as:

r(t) = e−
t
T r(0) + [1− e− t

T ]Kδ0 (3.3)

Using least squares curve fitting it is then possible to fit the observed response
to the Nomoto model respones, by tuning the model parameters T and K. For a
constant rudder angle δ0 = 5◦, and the different vessel models traveling at typical
cruising speed, we get the response seen in Figure 18 for the various models, with
the following parameters:

• Container ship: K = 0.0826, and T = 30.4942

• Tanker: K : −0.0676, and T : 98.5742

• Mariner: K : 0.0846, and T : 19.0006

Using the Nomoto models, we can design a simple state feedback linearizing yaw
regulator. Using the yaw error ψ̃ = ψ − ψd, and yaw rate error r̃ = r − rd with
ψd and rd as the desired yaw and yaw rate respectively, we choose the following
control law.

δc =
T

K
[−Kpψ̃ −Kdr̃] +

1

K
r (3.4)

Combining the control law with the dynamics of the Nomoto model we get the
following error dynamics:

˙̃
ψ = r̃

˙̃r +Kdr̃ +Kpψ̃ = 0
(3.5)
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Figure 18: Step response comparison for first order Nomoto model and vessels.
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This is a second order linear system which will be globally exponentially stable at
the origin if the eigenvalues are in the left half plane. By placing all poles at −λ
we get from the error dynamics in the frequency as:

s2 +Kds+Kp = (s+ λ)2 (3.6)

which gives the following proportional and derivative gains.

Kd = 2λ, Kp = λ2 (3.7)

Selecting λ > 0 will then ensure the error dynamics are globally exponentially
stable. This approach also ensures that the dynamics are critically damped, as both
the eigenvalues lie on top of each other on the real axis of the complex plane. In
addition we now only have one tuning parameter, which makes tuning the controller
quite simple. It should however be noted that the properties stated above only
hold for the first order Nomoto model which is only an approximation of the actual
vessel dynamics, however we assume the the behaviour of the vessel is similar to
that of the first order Nomoto model, and hence the control law should perform
satisfactory.

3.1.2 Guidance
For the guidance scheme, the Line-of-Sight guidance algorithm discussed in Sec-
tion 2.3.2 was used. The desired course angle χd is given as:

χd = χp + χr (3.8)

The path tangential angle χp = γp is used in order to ensures the vessel has the
same course as the path, and give course convergence. The relative path angle χr
is used to steer the vessel towards the path in order to ensure path convergence.
The path relative angle is chosen as a mapping form the cross-track error ye ∈ R1

to an angle χr ∈ [−π/2, π/2] by the following function:

χr = atan
(−ye

∆ye

)
(3.9)

where the tuning parameter ∆ye represents the lookahead distance to the path.
Based on heuristics, this parameter is usually chosen to be between 1.5 and 2.5 times
the length Lpp of the vessel. For our implementation, a lokahead distance ∆ye =

3Lpp was chosen for all the vessels, as this seemed to give the best performance.
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The desired heading that is given to the motion control system is finally calculated
as:

ψd = χd − β (3.10)

where β is the sideslip angle. Subtracting the sideslip angle in this way ensures that
the we align the course angle of the vessel with the course of the path, which helps
compensate for vessel asymmetry, and external forces.

3.2 Guidance using deep reinforcement learning
For the straight-line path following problem the most common approach is to use a
Line-of-Sight method. Using the Line-of-Sight algorithm is a simple approach which
has proved to work quite well, there are however some drawbacks. One drawback of
the Line-of-Sight method is the use of cascading systems, in where a motion control
system is responsible for the control system, and having the Line-of-Sight algorithm
setting the set-points for the motion control system. This creates abstractions in
the control architecture, causing potentially useful information to be lost, as well as
making the performance of the higher level control, dependant on the performance
of lower level control systems. This usually leads to sub optimal global performance.
In order to improve tracking performance, we propose using Deep Reinforcement
Learning in order to perform the path following task. Using DRL has the benefit of
being able to learn one global policy, from the vessel state, to the rudder command,
hence eliminating the need for cascading control systems. Additionally DRL allows
for optimizing a performance measure, and taking into account more of the system
dynamics, then traditional control methods.

3.2.1 DRL algorithm
The main contribution of this thesis is looking at how DRL can be used for learning
a control policy for guidance of marine vessels. For this problem, a vital part is the
Deep Reinforcement Leaning algorithm, highlighted in Figure 19, which performs
the learning, exploration, and eventual control of the marine vessel. For this, we
used a Deep Deterministic policy gradient algorithm given in Algorithm 3. The
main reason for choosing this algorithm is due to the fact that it is an off policy
algorithm, this means that the algorithm is able to optimize a learned control pol-
icy, without having to follow the learned policy. This means that the algorithm is
able to learn the task by observing someone else performing the task, which for
a physical marine vessel would be necessary, as performing exploratory learning
may be unfeasible due safety concerns. It should however be noted that performing
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Figure 19: The control algorithm used to learn and perform the end to end guidance
problem, highlighted above, is an actor-critic algorithm.

exploratory learning, where the learned policy is used to generate new training
examples, is more efficient than learning from off policy examples.

The main components of the DDPG algorithm, are the policy π(x), which is re-
sponsible for generating a control action, given a state, and action value function
Q(x,u), which is an estimate of the expected cumulative discounted reward, when
taking action u in state x. In DDPG, both the policy, and value function are
estimated using neural networks as function approximators. The policy network
πθπ (x), was implemented as fully-connected neural network, consisting of two hid-
den layers with 400 and 300 hidden units respectively. Between the layers the relu
activation function,

relu(x) = max(x, 0) (3.11)

was used, in order to introduce nonlinearities into the function approximator. For
the output layer of the policy, the output vector is reduced down to the number
of outputs needed to perform the control task, and a hyperbolic tangent activation
function is used in order to scale the value between -1 and 1. This output is then
scaled by a linear transform such that it is between the saturating limits of the
actuator it controls, giving the control vector u such that

umin ≤ u ≤ umax
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As a function, where hi(x) represents the function of hidden layer i, and x is the
input state, we get the following network:

h1(x) = relu(W1x+ b1)

h2(x) = relu(W2h1(x) + b2)

π(x) = tanh(W3h2(x) + b3)uscale + umean

note that Wi and bi are the weight matrices and bias vectors respectively, and
are the trainable parameters which we wish to learn. For the action value function
approximator QθQ(x,u), a similar architecture was used. The network consisted
of two hidden layers with 400 and 300 units respectively, relu activation functions,
and the a scalar value as output. For the action value function, both the state and
action are given as inputs. In order to accommodate this, the state is passed though
both layers, while the action is only passed through the last layer. As a function
where hi(x) represents the function of hidden layer i, and x and u are the inputs,
we get the following network:

h1(x) = relu(W1x+ b1)

h2(x,u) = relu(W2,xh1(x) + W2,uu+ b2)

Q(x,u) = W3h2(x, u) + b3

where Wi and bi are the trainable parameters.

For the training of the policy, and action value function networks, Algorithm 3
was used. The batch size for training was 64 transitions, which were sampled ran-
domly form a buffer of a maximum of 106 transitions. For the policy, or actor
learning rate a value of 10−4 was used, while for the critic or value function a
learning rate of 10−3 was used. The discounting rate γ was 0.99, and the target
network update rate τ was 10−3.

3.2.2 Reward function
The reward function, or performance measure, is very important in reinforcement
learning. The objective of any reinforcement learning agent is to maximize the
reward. And hence the reward function is where the behaviour of the system is
shaped. The performance measure or reward function, is not considered a part of
the reinforcement learning agent, but rather a part of the environment, as illus-
trated in Figure 20. Having the performance measure as part of the environment,
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Figure 20: The performance measure, highlighted above, gives the learning algo-
rithm a reward or penalty based on the performance. This is the actual measure
we want the learning algorithm to optimize.

makes sense in many situations, as the reward may be a measurable quantity re-
lated to the environment, for which the underlying mapping from state and action
to reward is unknown.

For the path following task, there are many options for designing a reward function,
depending on the desired behaviour. Since the objective of a path following guid-
ance system is to regulate the cross-track error to zero, a reward function which
rewards the system for being close to the path, and penalizes it for being far away,
is needed. For our path following approach we further wanted to maximize the time
the vessel is on the path, or alternatively minimize the time the vessel is not on the
path. One such reward function would be to give a reward of 1 when the vessel is on
the path and a reward of 0 when it is not. Such a reward function would however
be very difficult to use, as the the policy is learned through experience, and the
probability of being exactly on the path, and hence getting experience, is zero. We
therefore propose a similar boundary reward, which gives a reward of 1 if the vessel
is sufficiently close to the path, and otherwise we would give a reward of 0. This
reward function also has a minimum time interpretation, where we minimize the
time until the vessel is within a certain bound of the path, while ensuring that it is
possible to receive a reward while the RL algorithm is exploring the environment.
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In addition to the path convergence, it is also important to follow the path in a
certain direction, that is towards the next waypoint, which is also something that
needs to be taken into account in the objective function. For achieving these tasks
we give a reward of 1 if the vessel is sufficiently close to the path, and pointing in
the correct direction, and 0 otherwise. This gives the following boundary reward
function:

R(ye, ψ̃) =

{
1 if |ye| < b and |ψ̃| < π

2

0 oterwise
(3.12)

where b is the width of the boundary. It should be noted that due to the shape of
the boundary reward, we can not guarantee the vessel will converge to the path,
as the reward for being anywhere within the boundary is the same as being on
the actual path. In order to further improve path convergence we propose using
a reward which will increase monotonically, peaking at a cross track error of 0.
Many such functions are available, but in order to keep similar properties to the
boundary function, we propose using a Gaussian reward function.

f(x) = ae−
(x−µ)2

2σ (3.13)

This gives a bell curve with amplitude a, centered at µ with a standard deviation
of σ. Using a standard deviation σ = b and an amplitude a = 1 we get a function
which has some the same properties to the boundary reward, but with a maximum
reward with a cross-track error ye = 0. In order to use this as a reward function
we must still ensure that the vessel is traveling with the path and not against it,
this can be done by making sure the yaw angle is within ±90◦ of the angle of the
path we are following. This gives the reward function:

R(ye, ψ̃) =

{
e−

(ye−b)2
2σ if |ψ̃| < π

2

0 oterwise
(3.14)

The Gaussian reward function has the benefit of promoting path convergence, as
well as giving a larger area in which a reward is given. This manes a less sparse
reward, and hence faster learning. The Gaussian reward, and boundary reward are
illustrated in Figure 21. For the actual implementation, we used a reward bound-
ary b = 10m and a standard deviation σ = 10m, as these seemed to give fairly
good convergence, while still giving reward often enough to have efficient learning.
Decreasing the values should theoretically give better path convergence, however a
decrease would also give a more sparse reward, which in practice gives less stable
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Figure 21: Comparison of Gaussian reward with σ = 10 and µ = 0, and boundary
reward with a boundary of 10, centered at 0

as well as slower learning.

Other considerations, when designing a reward function, is the magnitude of the
reward. Given the highest possible reward magnitude rmax, we can compute an
upper bound on the value function V (x), given the discount rate γ < 1, as follows:

V (x) ≤
∞∑
n=0

rmaxγ
n =

rmax
1− γ ∀x (3.15)

When using a reward with the largest possible magnitude of 1, and a discount rate
γ = 0.99, the maximum value function value would be 1

1−0.99 = 100. If the reward
becomes very large, it can be beneficial to reduce the maximum reward, this in
order to increase numerical stability, and avoid large parameter values in the value
function approximation.

In the reward function purposed above, it is possible to add additional rewards
or penalties to achieve additional goals. One such goal we found useful was the ad-
dition of a penalty on aggressive control actions, as it would cause significant wear
on the control surfaces, as well as passenger discomfort. In order to implement this
type of penalty, we propose adding a small penalty term, based on the derivative of
the rudder movement, to the reward function. This will favour slower and smoother
control actions. For our implementation we decided to use the following quadratic
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penalty term on the rudder derivative −cδ̇δ̇ δ̇2, where cδ̇δ̇ > 0 is the weighting factor
of the penalty. Adding this to for example the Gaussian reward we get the following
reward function:

R(ye, ψ̃, δ̇) = −cδ̇δ̇ δ̇2 +

{
ae−

y2e
2σ if |ψ̃| < π

2

0 otherwise
(3.16)

3.2.3 State augmentation
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Figure 22: The state vector, highlighted above, can be augmented to give the DRL
algorithm good features that are relevant for the assigned task.

For control using DRL, it is important to give the DRL algorithm useful informa-
tion. This ensures it is able to quickly, and efficiently learn and optimize the policy.
The state vector x, highlighted in Figure 22, is the source of information that the
DRL algorithm is given. The simplest state vector we could give the DRL algorithm
is the vessel state vectors ν and η, together with path information, such as way-
points. This is however not a good solution, as this means the state is not invariant
to rotation or translation of the path. This type of state vector also requires the
DRL algorithm to do a significant amount of transformation in the function ap-
proximators, in order to map the state to a control action and value function value.
Even though the function approximators are able to learn nonlinear transforms
of the state, augmenting the state vector by manually adding useful transformed
states, reduces the amount of transforms needed in the function approximator, and
hence reduces the architecture complexity needed. In general this translates to less
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layers in the ANN, and hence a network which is easier to train, without adding to
much additional cost, as only the layer size of the initial layer is changed in order
to accommodate size of the state vector.

straight-line path following

For the straight-line path following task we propose the following state vector:

x =



ye
ẏe
ψ̃
˙̃
ψ
u
v

 =


ye
ẏe

ψ − γp
r
u
v

 (3.17)

Here we have chosen to include the cross-track error ye and its derivative ẏe, as they
give a measure of how close the vessel is to the path, and how fast it is approaching,
while being invariant to the path position. The heading error ψ̃ = ψ−γp, and head-
ing error rate ˙̃

ψ are used to give a measure of the direction the vessel is traveling
with respect to the path. We have also added the surge and sway velocities u and
v which give information about the vessel dynamics at different velocities, and are
invariant to the heading of the vessel.

In addition to the state vector proposed above, we also propose an extended state
vector, which includes course information. Adding course angle error χ̃ = χ−χd =

χ− γp and course angle error rate ˙̃χ = χ̇− γ̇p which is χ̇ for straight-line paths, we
get the following state vector:

x =



ye
ẏe
χ̃
˙̃χ

ψ̃
˙̃
ψ
u
v


=



ye
ẏe

χ− γp
χ̇

ψ − γp
r
u
v


(3.18)

The benefit of using this state vector, is the additional information about about
how the vessel velocity vector lines up with the path. This ensures that information
about the sideslip due to model asymmetry, external forces, and model dynamics,
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are included, and can be more easily compensated for in the policy.

It is worth noting that all the states in the proposed state vectors above can all
be computed from the vessel state vectors ν and η when the path is known, as we
showed in Section 2.3. This means that the proposed states are possible for a func-
tion approximator to compute, however it would increase the complexity needed
for the function approximator, meaning slower and possibly less stable learning.

Curved path following

Training the algorithm for following curved line paths, we use the state vector:

x =



ye
ẏe
ψ̃
˙̃
ψ
u
v
r


=



ye
ẏe

ψ − γp
r − γ̇p
u
v
r


(3.19)

This state vector gives the same information, as in the curved path following task,
as well as including information about path curvature. Similarly to the straight-line
path following problem, it is possible to extend the vector with course information
to get the following extended state vector

x =



ye
ẏe
χ̃
˙̃χ

ψ̃
˙̃
ψ
u
v
r


=



ye
ẏe

χ− γp
χ̇− γ̇p
ψ − γp
r − γ̇p
u
v
r


(3.20)

For curved paths the additional course information is especially useful, as the turn-
ing induces sideslip, and hence the course angle becomes less reliable for path
following, since the objective is to align the vessel course with path tangent when
on the path.
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3.2.4 Training
Training the policy πθπ (x) and action value function QθQ(x,u) of the DDPG algo-
rithm is in general performed as described in Algorithm 3. For the vessel guidance
problem, the vessel was randomly placed on the map within 1000 meters of a path,
and then the vessel was simulated for 1000 steps, while the action, state and per-
formance of the vessel was recorded. For each time-step training was performed,
by randomly sampling 64 transitions, and performing SGD in order to improve the
action value function approximation, and furter optimize the policy.

Guided training

DDPG is an off policy algorithm, this means it is possible to train the algorithm off
policy on transitions not generated by the learned policy. It is natural to assume
that using transitions from a policy that is known to work, will improve training, as
less exploration is required in order to find a good policy. This is however not the
case, since training strictly on off policy training samples, generated by for example
a Line-of-Sight method, does lead to quite poor control performance. The reason
for this is that any deterministic policy, such as the Line-of-Sight guidance law,
will in general tend to only observe a subset of the full state space. This means the
training data is biased, and includes little exploration from which the action value
function approximation can generalize, and the policy approximation can optimize
performance.

In order to get the benefit of faster training by using known policies such as the
Line-of-Sight algorithm, while avoiding the potential bias, and lack of exploration,
we propose using guided training. Given a the policy we are learning πθπ (x) and
a known guide policy πguide(x), guided training can be performed by blending the
two policies. The policies can be blended in the following way

πblended(x) = (1− ω)πθπ (x) + ωπguide(x) (3.21)

where ω is the blending factor. Guided training may still bias the learned policy, by
counteracting the actions of the learned policy. When using guided training, it is
therefore beneficial to sample from the blended policy πblended(x) with a probability
p and use the learned policy πθπ (x), with a probability 1 − p. This helps remove
some of the bias introduced by the guide policy.
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Transfer learning

In addition to training the algorithm from scratch, we also utilized transfer learning,
discussed in Section 2.1.3. Specifically we used transfer learning when training
the control algorithm on path following of curved paths, by using the policy, and
value function learned for doing straight-line path following. Since straight-line
path following and curved path following are similar tasks, the transfer learning
was able to use, and refine what it had learned in the straight-line path following
task, in order to quickly learn the curved path following task.
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Chapter 4
Simulations

4.1 Main Results
In the following section, we will discuss some of the main results that were achieved
for both the curved path and straight-line path following tasks. The benchmark
tests were performed on the paths seen in Figure 23. The straight-line path in
Figure 23a consists of the waypoints in Table 2, and the curved path in Figure 23b
was made by interpolating the third order splines for the points in Table 3.
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Figure 23: Paths used for testing algorithm performance.
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Waypoint 1 2 3 4 5
Position x 0 -3880 -2248 -3878 -2246
Position y 600 -4680 -7662 -10644 -13626

Table 2: Waypoints used for generating the straight-line path segments

Waypoint 1 2 3 4 5 6
Path parameter ω 0 1000 2000 3000 4000 5000
Position x 0 -3880 -2248 -3878 -2246 0
Position y 600 -4680 -7662 -10644 -13626 -12000

Table 3: Waypoints used for generating interpolated curved path

4.1.1 Training progress
Training the control law consisted of episodes in where the vessel is randomly
placed on the map within 1000 meters of a the path, and simulating the vessel for
1000 steps, while recording the actions, performance and and state transitions of
the vessel. Saved transitions are sampled in batches at each time step, and SGD
is performed according to Algorithm 3, in order to iteratively optimize the value
function and policy parameterization.

When training the control algorithm on the straight-line path following task for
the three different vessels, we got the training progress seen in Figure 24. From
the results we can see that when using normal training, a good policy is found
after about 300 and 500 episodes for the Mariner and Container vessel respectively,
while no policy is found for the Tanker. When using guided training, a good policy
is found after 400, 800 and 300 for the Mariner, Tanker and Container vessel re-
spectively. For normal training, the results are as expected, when considering the
size and maneuverability of the different vessels, since the mariner is the smallest
vessel we would expect to see faster path convergence and more reward, leading to
faster training, while the larger container vessel, and even larger tanker vessel, we
would expect to see slower convergence, less reward, and hence slower training.

Using guided training, we see from the results in Figure 24, that there is a clear
improvement in training for the tanker, as it now is able to learn a policy which
ensures the vessel is able to follow the path. For the container vessel we also see
an improvement in terms of a shorter exploration phase, however after the initial
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peak, the reward for the guided policy has a significant dip, which may be due to
interference from the bias introduced by the guide policy. For the mariner vessel we
see the opposite effect of what was seen for the two other vessels, in that the initial
learning phase takes longer when using guided training, this is also most likely due
to bias introduced by the guide policy, which give training examples that are less
useful, then what is achieved when using normal training.

Using guided training seems to speed up training in the initial exploration phase
in some cases, it should however be noted that tuning the blending factor ω, and
probability p may give a different performance. It may also be beneficial to decrease
the probability p of taking actions from the blended policy as time progresses, this
will help speed up the initial training phase, as well as avoid biasing the policy
with the a sub-optimal policy in the later training phase.

4.1.2 Counteracting rudder noise
For the straight-line path following task, when following the path seen in Figure 23a,
we see from the results in Figure 25b and Figure 26b, that some very aggressive
control actions are being taken, the same behaviour was observed both when using
the Gaussian reward and boundary reward. This behaviour is however not desirable,
and in order to counteract it, the addition of a quadratic penalty on the rudder
derivative −cδ̇δ̇ δ̇2 was added. After tuning the the weighting factor, we found that
cδ̇δ̇ = 20 gave good results, in were the control actions were significantly smoother,
while still exhibiting good path following behaviour. After training the Mariner
and Container vessel with the new reward function, we got the result given in
Figure 25a, and Figure 26a when simulating the vessels for the same path. These
are some very interesting results, as they demonstrate how the reward function
can easily be shaped in order to accommodate any desired behaviour. Changing
the reward however, means that the original minimum time interpretation of the
the Gaussian and boundary reward no longer hold. The objective can now be
interpreted as a weighting between reducing the rudder angular velocity, while still
getting to the path in a reasonable amount of time.
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Figure 24: Comparison of training time when using guided and normal training,
for the straight-line path following problem.
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Figure 25: Mariner vessel rudder angle δ and command rudder angle δc, with and
without rudder derivative penalty.
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Figure 26: Container vessel rudder angle δ and command rudder angle δc, with and
without rudder derivative penalty.
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4.1.3 Path convergence
Path convergence is a desirable trait for a path following controller. If convergence
can be shown, then we can ensure the vessel will continuously get closer to the path
such that as time approaches infinity, the vessel approaches the path.

lim
t→∞

ye(t) = 0

For the curved path following, path convergence is difficult to achieve, this is due to
the vessel being underactuated, which causes certain vessel configurations to not be
reachable. For a straight-line path however, path convergence is possible. Testing
the learned control policies on a straight-line path we got the results in Figure 27.
As we can see, a steady state error is present, and hence path convergence is not
achieved with neither the Gaussian reward or the boundary reward directly. For
the Boundary reward this is an expected result, since the vessel has no incentive
to converge to the path as long as the vessel is within the boundary, and receives
the same reward. For the Gaussian reward however, we would expect the vessel to
converge, since the highest reward is found with cross-track error ye = 0. This is
not the case, however we can observe that the Gaussian reward has a lower steady
sate error then the boundary reward. The reason for not achieving convergence for
the Gaussian reward is most likely due to the nature of the deep reinforcement
learning algorithm, which does not converge to the optimal solution where it learns
how to counteract the steady state error, but rather finds a sub optimal solution.
It may be possible to get better convergence by slowing down the learning rate,
and training on larger batches, however this will slow down learning, and is still
not guaranteed to work.

As discussed in Section 3.2.3, DRL is highly dependant on the quality of the in-
formation it receives. Augmenting the state vector in order to get more relevant
information, and reduce the complexity of the function approximatiors, will usually
give better results. Using the extended state vector, where the the additional course
error χ̃ and course error rate ˙̃χ is added, we give the control algorithm information
about about how the vessel velocity vector lines up with the path. This ensures that
information about the sideslip due to model asymmetry, external forces, and model
dynamics, is included, and can be compensated for. From the results in Figure 27,
we see a significant improvement over the performance when using the minimal
state vector, however the vessel still has a steady state error.
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One way of achieving convergence is estimate the steady state cross-track error
êss, and using this to compensate by offsetting the observed cross-track error by
the steady state error before it is used in the control algorithm. Intuitively, this
can be viewed as trying to follow a virtual path, which is offset from the actual
path such that the steady state error causes the vessel to stay on the actual path.
Estimating the steady state error can either be done offline, or alternatively it can
be done adaptively online by integrating the cross-track error. This is given by the
following equation

êss(t) = ki

∫ t

0

e(t)dt (4.1)

where ki describes the rate at which the error estimate changes. In discrete time
this can be implemented in the following way

êss ← êss + τkiet (4.2)

where τ is the sample time, and et is the cross track error at time t. In order to
implement the compensation, the augmented state vector

x =

ye + ŷe,ss
ẏe
...

 (4.3)

is used as input to the trained policy. It should be noted that adding the steady
state compensation should only be done on a trained policy, and not performed
during training, as doing so will cause interference and possibly divergence due to
exploration noise. Additionally, an integration strategy with anti windup is used in
order to reduces overshoot, and improve stability.

When adding the adaptive steady state error compensation proposed above, we
see from the results in Figure 27, that we are able to compensate for the steady
state errors such that the vessels are able to fully converge to the path.

4.1.4 Guidance for straight-line paths
For bench marking the performance of the DRL learning algorithm, we look at the
cumulative reward gathered, when performing path following on the straight-line
path given in Figure 23a, giving the results found in Table 4. For the results we
have chosen to focus on the performance of the Gaussian reward, as it performs
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Figure 27: Cross-track error comparison when using boundary reward, Gaussian re-
ward, Gaussian reward with steady state error compensation and Gaussian reward
with extended state space.

similarly to the boundary reward, but has better convergence properties, and faster
as well as more stable learning. From the results we see that the learned policy when
using both the minimal, and extended state vector give very similar results, and
for both the Mariner and the Container vessel the DRL approach outperforms
the Line-of-Sight guidance law. The fact that the learned policy is outperformed
on the Tanker, reflects the struggle that was seen when training on the Tanker,
where guided training was required to achieve a working policy, and even then,
the training was unstable. Looking at the performance when using the minimal
state vector inn comparison with using the extended state vector, we see that the
minimal state vector seems to outperform the extended state vector in all but one
of the cases. This shows that no significant additional information is added when
extending the state vector. The extended state vector however gave more robust
performance, as the minimal state vector more often would fail to follow the path,
as seen for the container vessel when exposed to currents.

Without ocean currents

Simulating the different vessels with the policy found after training on the path
following task without currents, we get the results seen in Figure 28, Figure 29 and
Figure 30 for the Mariner, Container and Tanker respectively. It should be noted
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Mariner Container Tanker
Current 0m/s 0.9m/s 0m/s 0.9m/s 0m/s 0.9m/s
LOS 1885 1137 1128 1138 1597 1022
DRL minimal 2174 1783 1397 157 1252 735
DRL extended 2136 1606 1281 1291 1056 685

Table 4: Cumulative Gaussian reward for the straight-line path following problem

that these are the results when using the Gaussian reward, as it gave the best
convergence properties, as well as more stable, and faster training. When following
a path defined by the waypoints in Table 2, we observe some very different results
for the various vessels. For the Mariner we see a very good performance, where the
vessel is able to converge reasonably quickly to the path, with some minor spikes
when switching from one line segment to another. The Container vessel gives a
reasonably good performance, in comparison to the Mariner we see a significantly
slower path following behaviour, and more overshoot, which is to be expected for
a larger vessel. For the Tanker vessel we see a quite poor performance, with very
slow path convergence. It should be noted that the poor observed performance is
partly due to the slow path convergence, leading the vessel to not have converge
before switching between path segments.

Comparing the behaviour of the different vessels in Figure 28, Figure 29 and Fig-
ure 30 it is interesting to note the difference in how aggressively the vessels head
towards the path, with the smaller Mariner preferring sharper turns, while the
larger Tanker preferring larger turns. This behaviour reflects the dynamics of the
different vessels, since the Mariner is quick and easy to maneuver, performing sharp
turns will get you more quickly on to the path. While the larger and slower Con-
tainer and Mariner take longer to turn, and loose more speed in the process, such
that larger turns, give faster convergence.

With ocean currents

With the addition of ocean currents to the straight-line path following problem,
we introduce a new challenge, in where the vessel is affected differently depending
on the heading of the vessel with respect to the current heading. In order to be
able to compensate for currents the learning algorithm must learn to extract useful
information about the current in the body frame of the vessel, which it can use to
compensate.
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Figure 28: Mariner guidance simulation
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Figure 29: Container guidance simulation
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Figure 30: Tanker guidance simulation
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Figure 31: Cross-track error comparison for Mariner vessel with current, when using
Line-of-Sight, DRL and DRL with steady state error compensation (SSEC).

In order to teach the learning algorithm to compensate for ocean currents, training
was performed with the addition of a current with a uniformly distributed random
magnitude and heading, for each training episode. This ensures that learning algo-
rithm learns a robust policy which can work for a variety of current configurations.

Applying the learned policy to the path following problem in Figure 23a, with
a current of 0.9m/s at 45◦, we get the behaviour seen in Figure 31, Figure 32
and Figure 33 for the Mariner Container and Tanker vessels respectively. From the
results we clearly see a performance increase over the Line-of-Sight algorithm with-
out any current compensation. For the Mariner and Container vessel, the learned
policy is able to get the vessel within 5m and 10m of the path, while for the Tanker
there is only a slight performance increase over the Line-of-Sight method with a
cross track error of about 80m at the end of the simulation. Adding steady state
compensation, where the path steady sate error is estimated and added to the state
vector, the algorithm is able to achieve path convergence for all vessel models.
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Figure 32: Cross-track error comparison for Container vessel with current, when
using Line-of-Sight, DRL and DRL with steady state error compensation (SSEC).

4.1.5 Guidance for curved paths
For the curved path following problem, the objective is the same as for the straight
line following problem, namely to converge to the path, the difference being that
the path we wish to converge to is no longer a straight line, but a parametric
curve. In order to train the DRL algorithm, a method known as transfer learning
was used, where the models used for straight-line path following were used as initial
models, and refined on the curved path following problem. Doing this meant that
the learning algorithm did not have to learn a vessel policy from scratch. Rather it
starts with the straight-line path following algorithm, and can augment the learned
policy and value function in order to better suite the curved path following prob-
lem. In Figure 34, we can see that using transfer learning significantly reduced the
training time for the Mariner vessel, when compared to training from scratch.

Similarly to the straight-line path following problem, we benchmarked the per-
formance of the learned policy for the curved path following task by recording the
cumulative reward achieved on the path in Figure 23b, to get the results in Table 5.
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Figure 33: Cross-track error comparison for Tanker vessel with current, when using
Line-of-Sight, DRL and DRL with steady state error compensation (SSEC).
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Figure 34: Training progress for transfer learning, and learning from scratch on
mariner vessel.
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Mariner Container Tanker
Current 0m/s 0.9m/s 0m/s 0.9m/s 0m/s 0.9m/s
LOS 161 499 807 829 65 62
DRL minimal 1250 1249 2495 1492 176 34
DRL extended 3264 3134 2430 2763 1010 819

Table 5: Cumulative Gaussian reward for the curved path following problem

Comparing the performance of the Line-of-Sight guidance law with the learned con-
trol law when using both the minimal, and extended state representations, we see
that the learned policies for both the state representations, significantly outper-
form the Line-of-Sight guidance law. Comparing the performance of the minimal
and extended state representation, we also see that the extended state representa-
tion mostly outperforms the minimal representation. This indicates that the added
course information is quite important when following curved paths. This is likely
due to larger sideslip angles experienced when turning, causing the heading angle
to be less reliable.

Without current

Training the different vessels on the curved path following problem, with the Gaus-
sian reward function and rudder derivative penalty, we got the simulation seen in
Figure 35, Figure 36 and Figure 37 for the Mariner, Container and Tanker vessel
respectively. It should be noted that the waypoints used for the Tanker vessel were
scaled by a factor of 2, due to limitations in the turning rate of the vessel, making
the path difficult for the Tanker to follow. From the results we clearly see that
the minimal state vector struggles to keep the vessel aligned with the path when
performing sharper turns, in comparison the extended state vector is able to com-
pensate and significantly reduce the cross-track error. This observation, confirms
the results in found in Table 5, and indicates that adding course information is
important when following curved paths, due to the additional sideslip.

With Current

Simulating the policies found when training for the curved path following problem
with current, we got the result in Figure 38, Figure 39 and Figure 40, for the
Mariner, Container and Tanker vessel respectively. From the results we again see
the extended state representation gives significantly better performance then the
minimal state representation. This was also apparent when training the control
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Figure 35: Mariner curved path following when using minimal state and extended
state representations.
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Figure 36: Container curved path following when using minimal state and extended
state representations.
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Figure 37: Tanker curved path following when using minimal state and extended
state representations.

policy for the different state representations. While training with the extended
representation was stable, training with the minimal representation was unstable,
leading to the DRL algorithm to unlearn the policy.

4.2 Future work
From the observed behaveour, we see that we have achieved quite good results for
using DRL on the path following problem. Our proposed method is able to both
learn and optimize the path following behaviour, for all three vessel models, as
well as outperforming the Line-of-Sight method in most cases. For future work,
testing the methods for physical vessels would be quite interesting. Since the ves-
sel dynamics for the models are quite similar to that of actual vessels, we would
expect the method to work. However with the addition of measurement noise, and
other environmental forces, the problem becomes more difficult, which may effect
the performance of the DRL approach. For using the proposed method on physical
vessels, an important consideration to take into account is the training, as letting
the algorithm explore may be unfeasible do to safety concerns. One way of over-
coming the problem is by performing training on simulations, and only applying a
learned policy to a physical task after it performs sufficiently well on the simulation.
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Figure 38: Mariner curved path following when exposed to ocean currents, for
minimal and extended state representations.
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Figure 39: Container curved path following when exposed to ocean currents, for
minimal and extended state representations.
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Figure 40: Tanker curved path following when exposed to ocean currents, for min-
imal and extended state representations.

In order to further improve the proposed method, other reward functions can be
used, this may give more stable training, or different behavior which may be better
suited for the path following task. Additional improvements may be found by in-
vestigating other state augmentations, and different sizes of the ANN used for the
function approximators.

While the results for the DRL approach are fairly good, we do not have any guar-
antees that the vessel will converge to the track. While reinforcement learning
inherently has stability build in, the fact that we are approximating the policy and
value functions, which most likely will not converge to the true policy and value
functions of the problem, we have no guarantee for stability. An other concern is
robustness of the system, and how well the learned policy is able to handle noise.
In general, the reinforcement learning framework is designed to handle stochastic
systems, meaning the control algorithm can learn to still perform optimally un-
der the influence of noise. This is however also dependant on the learned policy
and value function converging to the true policy and value function, for which we
do not have any guarantees when using function approximators. Showing stability
would greatly improve the viability of the proposed method, and would therefore
be an important area of research not only for our proposed method, but for DRL
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in general.

DRL does not need to be confined to the path following problem. Other tasks
such as path tracking, dynamic positioning and control allocation are other prob-
lems in the marine control community on which DRL can be applied. It may also
be interesting to see how the proposed path following method works for problems
in other domains, such as robotics.
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Chapter 5
Conclusion

In this thesis we have presented a method for applying deep reinforcement learning
to the problem of path following for marine vessels in uncertain environments. Un-
like most existing methods, our proposed approach is a model-free optimal control
method. This is achieved by letting the DRL algorithm explore the environment,
and creating an internal representation in the form of an action value function,
which is used in order to optimize the control policy. In order to achieve the path
following task we have proposed two different reward functions, namely the bound-
ary reward, and Gaussian reward, which both aim at minimizing the time until
path convergence. While both functions have proven to work, the lower sparsity,
and better convergence properties of the Gaussian reward function, makes it a bet-
ter choice. In addition to the reward functions, we have also looked at two different
state representations, namely the minimal and extended representation. Based on
the results, the extended state representation gives significantly better results for
the curved path following problem, while performing similarly to the minimal rep-
resentation on the straight-line path following task.

In addition to presenting a method for applying DRL to the path following problem,
we have also presented results from simulations on three different vessel models.
Based on the results, the proposed method is quite promising. For the straight line
following task, the DRL approach was able to outperform the Line-of-Sight guid-
ance law for both the Mariner and Container vessel. For the curved path guidance
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law, the DRL approach was able to outperform the Line-of-Sight approach for all
three vessels, both with and without currents.

While the method has shown promising results, it does also have a few drawbacks
that must be taken into consideration. One drawback is the limited expressive
power of function approximators, which means that the policy and value function
that are found are only approximations, and hence they will most likely never give
the true optimal policy and value function. Increasing the depth and hence the
complexity of the ANNs used as function approximators, increases the expressive
power, however this makes training more difficult and computationally demand-
ing. An additional concern with using DRL, is the stability of training. In some
cases, training can be unstable, meaning that the function approximators are not
converging to a good policy and value function. Unstable training is however a
problem for most deep learning methods, and is an active area of research. An
other concern for DRL in general is the lack of being able to prove stability, for
the path following problem, this means we have no guarantees that the vessel will
go to the path for all initial states. Despite these drawbacks, DRL is in general a
very flexible framework, which has proven quite good at solving a wide variety of
problems, including path following. Research on DRL has increased in the past few
years, and new improvements will likely address some of the drawbacks, and make
it more robust for a wide variety of problems, including path following.
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Appendix A
Vessel models

A.1 3-DOF nonlinear manuvering model
The horizontal motion of a ship can be described by the motion in surge sway and
yaw. For these systems the state vector ν = [u, v, r]> and η = [x, y, ψ] are used.
From Fossen (2011)[43] the system can then be described in vectorial form as:

η̇ = R(ψ)ν (A.1)

Mν̇ +C(ν)ν +D(ν)ν = τ (A.2)

where the mass and Coriolis matrices can be split into a rigid body and a added
mass matrix, such that M = MRB +MA and C = CRB +CA. And R(ψ) ∈ SO(3)

is the rotation matix given by

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (A.3)

For a three degree of freedom vessel model with an xz-plane symmetry, the rigid
body kinematics computed on the craft centerline, reduce to the following

MRB =

m 0 0
0 m mxg
0 mxg Iz

 (A.4)

CRB =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 (A.5)
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It is worth noticing that the surge is decoupled form sway and yaw in MRB , this is
due to symmetry assumptions made above. For the added mass matrices computed
in the same point as the rigid body dynamics, we get the following

MA =

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Yṙ −Nṙ

 (A.6)

CA =

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 (A.7)

For the dampening matrix D(ν) it is difficult to find an analytical expression
based on first principals. This is why a more pragmatic approach is used for curve
fitting experimental data to a Taylor series describing the nonlinear terms N(ν) =

C(ν)ν + D(ν)ν, giving a nonlinear Abkowitz model [50]. Including the control
surfaces u, we get the following nonlinear model

η̇ = R(ψ)ν (A.8)

Mν̇ +N(ν,u) = 0 (A.9)

A.1.1 Mariner model
The mariner model is a 3-DOF surface vessel based on the work of M.S. Chislett
and J. Stroem-Tejsen [47], and released as a MATLAB model in the MSS Toolbox
[2]. The vessel takes in the control rudder angle δc, and has the following vessel
dynamics:

η̇ = R(ψ)ν (A.10)

ν̇ = M−1N(ν, δ) (A.11)

δ̇ =

{
δc − δ If δ <= δmax

0 otherwise
(A.12)

The mass matrix is given as

M =

 L
U2 0 0
0 L

U2 0

0 0 L2

U2

m 0 0
0 m mxg
0 mxg Iz

+

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Yṙ −Nṙ

 (A.13)

where U =
√
u2 + v2 is the absolute velocity of the vessel. The nonlinear terms

are based on the Abkovitz model described above, giving the following polynomial
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vector:

N(ν, δ) =

X(ν, δ)
Y (ν, δ)
N(ν, δ)

 (A.14)

where the polynomials describing the nonlinear components, are given as:

X(ν, δ) =Xuu+Xuuu
2
r +Xuuuu

3
r +Xvvv

2
r +Xrrr

2 +Xrvrvr

Xδδδ
2 +Xuδδurδ

2Xvδvrδ +Xuvδurvrδ

Y (ν, δ) =Yvvr + Yrr + Yvvvv
3
r + Yvvrv

2
rr + Yvuvrur + Yrurur + Yδδ+

Yδδδδ
3 + Yuδurδ + Yuuδu

2
rδ + Yvδδvδ

2 + Yvvδv
2δ+

(Y0 + Y0uur + Y 0uuu
2
r)

N(ν, δ) =Nvvr +Nrr +Nvvvv
3
r +Nvvrv

2
rr +Nvuvrur +Nrurur+

Nδδ +Nδδδδ
3 +Nuδurδ +Nuuδu

2
rδ +Nvδδvrδ

2+

Nvvδv
2
rδ + (N0 +N0uur +N0uuu

2
r)

For the mariner vessel, the parameters are given in Table 6, it should also be noted
that the velocities ur = u/U and vr = v/U used in the nonlinear terms, are relative
velocities, with respect to the absolute velocity.

A.1.2 Tanker model
The tanker model is a 3-DOF surface vessel based on the work of Van Berlekom,
W.B. and Goddard, T.A. [48], and released as a MATLAB model in the MSS
Toolbox [2]. The vessel takes in the control vector u consisting of the desired
rudder angle δc, and desired shaft velocity nc. The vessel dynamics of the tanker
are given as:

η̇ = R(ψ)ν (A.15)

ν̇ = M−1N(ν, δ) (A.16)

δ̇ =

{
δc − δ If δ <= δmax

0 otherwise
(A.17)

ṅ =
60

Tm
(nc − n) (A.18)

The mass matrix is given as

M =

m11 0 0
0 m22 0
0 0 m33

 (A.19)
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Term Value Term Value Term Value
Xu̇ −42e− 5 Yv̇ −748e− 5 Nv̇ 4.646e− 5
Xu −184e− 5 Yṙ −9.354e− 5 Nṙ −43.8e− 5
Xuu −110e− 5 Yv −1160e− 5 Nv −264e− 5
Xuuu −215e− 5 Yr −499e− 5 Nr −166e− 5
Xvv −899e− 5 Yvvv −8078e− 5 Nvvv 1636e− 5
Xrr 18e− 5 Yvvr 15356e− 5 Nvvr −5483e− 5
Xδδ −95e− 5 Yvu −1160e− 5 Nvu −264e− 5
Xuδδ −190e− 5 Yru −499e− 5 Nru −166e− 5
Xrv 798e− 5 Yδ 278e− 5 Nδ −139e− 5
Xvδ 93e− 5 Yδδδ −90e− 5 Nδδδ 45e− 5
Xuvδ 93e− 5 Yuδ 556e− 5 Nuδ −278e− 5

Yuuδ 278e− 5 Nuuδ −139e− 5
Yvδδ −4e− 5 Nvδδ 13e− 5

L 160.93 Yvvδ 1190e− 5 Nvvδ −489e− 5
m 798e− 5 Y0 −4e− 5 N0 3e− 5
Iz 39.2e− 5 Y0u −8e− 5 N0u 6e− 5
xg −0.023 Y0uu −4e− 5 N0uu 3e− 5

Table 6: Mariner parameter value table

The nonlinear terms are based on the Abkovitz model described above, where the
the nonlinear terms are given by the following polynomial vector:

N(ν, δ) =

X(ν, δ)
Y (ν, δ)
N(ν, δ)

 (A.20)
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where the polynomials describing the nonlinear components, are given as:

X(ν,u) =1/L(Xuuu
2 + Ld11vr +Xvvv

2 +Xccδδ|c|cδ2

+Xccβδ|c|cβδ + LgT (1− t) +Xuuzu
2z

+ LXvrzvrz +Xvvzzv
2z2)

Y (ν,u) =1/L(Yuvuv + Yvv|v|v + Yccδ|c|cδ + Ld22ur

+ Yccββδ|c|cββδ + YT gTL

+ LYurzurz + Yuvzuvz + Yvvz|v|vz
+ Yccββδz|c|c|β|β|δ|z)

N(ν,u) =Nuvuv + LNvr|v|r +Nccδ|c|cδ + Ld33ur

+Nccββδ|c|c|β|β|δ|+ LNT gT

+ LNurzurz +Nuvzuvz + LNvrz|v|rz
+Nccββδz|c|c|β|β|δ|z

where β, gT and c are computed as the following

β =
v

u

gT = 1/LTuuu
2 + Tunun+ LTnn|n|n

c =
√
cunun+ cnnn2;

and the parameters for the tanker are given in Table 7.

A.2 4-DOF nonlinear manuvering model
Describing the horizontal motion of a surface vessal, a 3-DOFmodel is often enough.
In certain situations however, including the roll dynamics is beneficial in order to
get a more accurate vessel model, as the roll dynamics are often strongly coupled
to the sway and yaw dynamics. Similarly to the 3-DOF case, the 4-DOF model can
be written on vectorial form as:

η̇ = J(ν)ν (A.21)

Mν̇ +C(ν)ν +D(ν)ν = τ (A.22)

The major differences from the 3-DOF model is the addition of the pitch angle φ,
giving the state vector:

ν = [u, v, ψ, φ]> (A.23)
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Term Value Term Value Term Value
d11 2.020 m11 1.050 Tuu −0.00695
d22 −0.752 m22 2.020 Tun −0.00063
d33 −0.231 m33 0.1232 Tnn 0.0000354
Xuuz −0.0061 YT 0.04 NT −0.02
Xuu −0.0377 Yvv −2.400 Nvr −0.300
Xvv 0.3 Yuv −1.205 Nuv −0.451
Xudotz −0.05 Yvdotz −0.387 Nrdotz −0.0045
Xuuz −0.0061 Yurz 0.182 Nurz −0.047
Xvrz 0.387 Yvvz −1.5 Nvrz −0.120
Xccdd −0.093 Yuvz 0 Nuvz −0.241
Xccbd 0.152 Yccd 0.208 Nccd −0.098
Xvvzz 0.0125 Yccbbd −2.16 Nccbbd 0.688

Yccbbdz −0.191 Nccbbdz 0.344
t 0.22 cun 0.605 L 304.8
Tm 50 cnn 38.2 g 9.8
T 18.46

Table 7: Tanker parameter value table

and the addition of pitch in the rotation matrix.

J(η) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (A.24)

A.2.1 Container model
The Container model is a 4-DOF surface vessel based on the work of Son og Nomoto
[49], and released as a MATLAB model in the MSS Toolbox [2]. The vessel model
takes in the control vector u consisting of the desired rudder angle δc, and desired
shaft velocity nc, and returns the state derivatives ν̇ and η̇. The vessel dynamics
of the tanker are given as:

η̇ = J(η)ν (A.25)

ν̇ = M−1N(ν, δ) (A.26)

δ̇ =

{
δc − δ If δ <= δmax

0 otherwise
(A.27)

ṅ =
60

Tm
(nc − n) (A.28)
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The mass matrix is given as

M =


m+mx 0 0 0

0 m+my −myly myαy
0 −myly Ix + Jx 0
0 myαy 0 Iz + Jz



L
U2 0 0 0
0 L

U2 0 0

0 0 L2

U2 0

0 0 0 L2

U2

 (A.29)

where U =
√
u2 + v2 is the absolute velocity. The nonlinear terms are based on the

Abkovitz model described above, where the the nonlinear terms are given by the
following polynomial vector:

N(ν, δ) =


X(ν, δ)
Y (ν, δ)
K(ν, δ)
N(ν, δ)

 (A.30)

where the polynomials describing the nonlinear components, are given as:

X(ν,u) =Xuuu
2 + (1− t)T +Xvrvr +Xvvv

2 +Xrrr
2 +Xφφφ

2+

cRXFN sin(δ) + (m+my)vr

Y (ν,u) =Yvv + Yrr + Ypp+ Yφφ+ Yvvvv
3 + Yrrrr

3 + Yvvrv
2r+

Yvrrvr
2 + Yvvφv

2φ+ Yvφφvφ
2 + Yrrφr

2φ+

Yrφφrφ
2 + (1 + aH)FN cos(δ)− (m+mx)ur

K(ν,u) =Kvv +Krr +Kpp+Kφφ+Kvvvv
3 +Krrrr

3 +Kvvrv
2r+

Kvrrvr
2 +Kvvφv

2φ+Kvφφvφ
2 +Krrphir

2φ+

Krφφrphi
2 − (1 + aH)zRFN cos(δ) +mxlxur −WGMφ

N(ν,u) =Nvv +Nrr +Npp+Nφφ+Nvvvv
3 +Nrrrr

3 +Nvvrv
2r+

Nvrrvr
2 +Nvvφv

2φ+Nvφφvφ
2 +Nrrφr

2φ+

Nrφφrφ
2 + (xR + aHxH)FN cos(δ)
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utilizing the following calculations

vR = gav + cRrr + cRrrrr
3 + cRrrvr

2v

uP = cos(v)((1− wp) + τ((v + xpr)
2 + cpvv + cprr))

J = uPU/(nD)

KT = 0.527− 0.455J

uR = uP ε
√

1 + 8kkKT /(πJ2)

αR = δ + atan(vR/uR)

FN = −((6.13∆)/(∆ + 2.25))(AR/L
2)(u2R + v2R) sin(αR)

T = 2ρD4/(U2L2ρ)KTn|n|
W = ρg∇/(ρL2U2/2)

where the parameters are given in Table 8.
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Term Value Term Value Term Value
m 0.00792 mx 0.000238 my 0.007049
Ix 0.0000176 αy 0.05 lx 0.0313
ly 0.0313 Ix 0.0000176 Iz 0.000456
Jx 0.0000034 Jz 0.000419 xG 0
B 25.40 dF 8.00 g 9.81
dA 9.00 d 8.50 ∇ 21222
KM 10.39 KB 4.6154 AR 33.0376
∆ 1.8219 D 6.533 GM 0.3/L
ρ 1025 t 0.175 T 0.0005
Xuu −0.0004226 Xvr −0.00311 Xrr 0.00020
Xφφ −0.00020 Xvv −0.00386
Kv 0.0003026 Kr −0.000063 Kp −0.0000075
Kφ −0.000021 Kvvv 0.002843 Krrr −0.0000462
Kvvr −0.000588 Kvrr 0.0010565 Kvvφ −0.0012012
Kvφφ −0.0000793 Krrφ −0.000243 Krφφ 0.00003569
Yv −0.0116 Yr 0.00242 Yp 0
Yφ −0.000063 Yvvv −0.109 Yrrr 0.00177
Yvvr 0.0214 Yvrr −0.0405 Yvvφ 0.04605
Yvφφ 0.00304 Yrrφ 0.009325 Yrφφ −0.001368
Nv −0.0038545 Nr −0.00222 Np 0.000213
Nφ −0.0001424 Nvvv 0.001492 Nrrr −0.00229
Nvvr −0.0424 Nvrr 0.00156 Nvvφ −0.019058
Nvφφ −0.0053766 Nrrφ −0.0038592 Nrφφ 0.0024195
kk 0.631 ε 0.921 xR −0.5
wp 0.184 τ 1.09 xp −0.526
cpv 0.0 cpr 0.0 ga 0.088
cRr −0.156 cRrrr −0.275 cRrrv 1.96
cRX 0.71 aH 0.237 zR 0.033
xH −0.48

Table 8: Container parameter value table
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