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Problem description
Autonomous ships and autonomous surface vehicles (ASVs) in general need an au-
tomatic collision avoidance (COLAV) system for safe navigation. A key component
of the COLAV system is a multi-target tracking method which estimates positions
and velocities of other moving objects, referred to as targets. A key challenge is
track initialization: The tracking method must make decisions regarding whether
or not a sequence of radar measurements come from a target, or whether they are
to be discarded as clutter. In the real world, clutter is highly non-stationary, and
it tends to be particularly bothersome near land.

This project will build on a previous 5th year specialization project where the
conventional M-out-of-N method was compared with the Integrated Probabilistic
Data Association (IPDA) for track initialization. In this Master’s thesis the goal
will be to further adapt the IPDA for optimal performance when zones with high
clutter densities are present. The project involves the following tasks:

1. Test a plain vanilla IPDA on real radar data recorded in the Autosea project.

2. Implement a clutter map and discuss strategies for determining/estimating
the clutter density.

3. Use the clutter map to provide the clutter density used in the IPDA.

4. Analyze and discuss choices for confirmation and termination thresholds in
the IPDA with clutter map.

5. Propose different performance measures for track initiation and discuss their
suitability, with particular focus on their usefulness in a COLAV system.
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Abstract

Target tracking is of vital importance for autonomous vehicles moving in areas
with unpredictable traffic. The radar is an important sensor in target tracking
for autonomous vessels, though, it suffers from occasional false alarms, which may
be particularly troublesome near land. Track initiation methods have different
approaches to filtering the clutter and detecting true targets among the measure-
ments. Integrated Probabilistic Data Association (IPDA) is a method suitable for
both data association and track initiation, though its assumption of uniform clutter
is not fully adaptable to many real world situations. Near-shore environments tend
to have an uneven clutter distribution at the same time as they are the subject
to targets leaving shore, making efficient track initiation a difficult task. Clutter
maps attempt to estimate clutter density to assist in the process of selecting or
weighting measurements associated with a target.

Three clutter estimators were thoroughly tested and compared, which given some
initialization time, improved the efficiency and accuracy of the IPDA in simula-
tions. The Spatial estimator shows the best results for a shorter initialization
length of 20 scans, while the Classic and Temporal estimators are able to achieve
higher true detection rates when given longer initialization time. The Spatial es-
timator performs the best in simulated uniform clutter which correlates with its
theoretical bias and quick convergence. The tests from real data sets recorded in
Trondheimsfjorden suggest that the Classic estimator is most suitable for tracking
scenarios where the radar is on board the ownship. For a stationary radar setup,
which is more comparable to the simulations in this thesis, the Temporal estimator
is a logical choice due to no theoretical bias when given sufficient estimation time.
Excluding estimated target measurements from clutter estimation shows a positive
effect on track initiation time, and should be tested and explored in further testing
of clutter maps.
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Sammendrag

Målfølging er kritisk for autonome kjøretøyer som beveger seg i omr̊ader med
uforutsigbar trafikk. Radaren er en viktig sensor i m̊alfølging for autonome fartøy,
men den lider av sporadiske falske alarmer, noe som kan være spesielt problematisk
nærme land. Målinitieringsmetoder har ulike tilnærminger til å filtrere clutteret
og detektere sanne m̊al blant m̊alingene. Integrated Probabilistic Data Association
(IPDA) er en metode som passer for b̊ade dataassosiasjon og m̊alinitiering, men
antagelsen om uniformt clutter stemmer ikke helt overens med mange virkelige
situasjoner. Omr̊ader nærme land har en tendens til å ha en ujevn clutterfordeling
samtidig som det kan dukke opp mål som forlater kysten, noe som gjør effektiv
m̊alinitiering til en vanskelig oppgave. Clutterkart forsøker å estimere cluttertet-
thet for å bist̊a i prosessen med å plukke ut eller vekte m̊alinger assosiert med et
m̊al.

Tre clutterestimatorer ble grundig testet og sammenlignet, og gitt noe tid til
initialisering, forbedret de effektiviteten og nøyaktigheten til en IPDA i simu-
leringer. Den romlige estimatoren viser de beste resultatene for en kortere initialis-
eringslengde p̊a 20 skanninger, mens den klassiske og den temporale estimatoren
kan oppn̊a høyere sanne gjenkjenningsrater n̊ar de f̊ar lengre initialiseringstid. Den
romlige estimatoren gir de beste resultatene i simulert enhetlig clutter som ko-
rrelerer med dens teoretiske bias og raske konvergens. Tester fra ekte datasett
registrert i Trondheimsfjorden antyder at den klassiske estimatoren er best eg-
net for m̊alfølgings-scenarier hvor radaren er ombord p̊a det autonome fartøyet.
For et stasjonært radaroppsett, som er mer sammenlignbart med simuleringene
i denne oppgaven, er den temporale estimatoren et logisk valg p̊a grunn av null
teoretisk bias n̊ar den blir gitt tilstrekkelig estimeringstid. Å ekskuldere estimerte
m̊alm̊alinger fra clutterestimering viser en positiv effekt p̊a m̊alinitieringstid, og
bør testes og utforskes ved ytterligere testing av clutterkart.
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Chapter 1
Introduction

1.1 Motivation and background

Target tracking is of key importance for autonomous surface vehicles (ASVs) mov-
ing in environments with traffic. Autonomous vehicles need to keep track of other
moving objects in their vicinity to avoid any collisions. We refer to the objects
we wish to keep track of as targets. Target tracking entails processing data from
one or several exteroceptive sensors, such as radar, lidar or camera, to monitor the
surroundings. The radar is especially suitable for object detection at sea, however
it suffers from noise due to external conditions such as weather and land which can
lead to false measurements. A significant amount of noise may be especially appar-
ent in near-shore environments [20]. Returns from land stand for the majority of
these measurements. Most of the returns from land are removed, but due to map
inaccuracies, some measurements may be apparent from land.

An autonomous vessel needs to keep track of its surroundings in order to safely
navigate through an area without any collisions or dangerous situations. Other
moving objects like ships or small boats are especially important to keep track
of as they may show unpredictable behaviour in terms of velocity and direction.
Desired information about other ships can either be communicated between ships,
or it has to be estimated through sensors aboard the ownship. One widespread
way of communicating ship information with other ships and coastal authorities
is called Automatic Identification System (AIS) [8]. All ships of a certain size or
type are required to use AIS which communicates information about the ship such
as position, course and speed. However, AIS is not required for all sea vessels and
may also not be completely reliable in all situations. For this reason, having a way
of tracking the surrounding ships and other objects using exteroceptive sensors is
essential for a collision avoidance (COLAV) system at sea. Such an estimation
process of other targets system state is referred to as target tracking.

A sequence of measurements associated with a possible target is called a track,
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Chapter 1. Introduction

and a track can be either true or false depending on if there is a real target at that
location. Returns from land or other measurements considered as noise can cause
a target tracking system to initiate false tracks, which can cause problems for an
autonomous vehicle navigating through these areas. Unwanted measurements in
a radar scan are referred to as clutter. Measurements from real targets moving
close to shore may be associated with measurements from land or other types of
clutter, resulting in the real targets not being discovered. Clutter should therefore
in some way be handled in target tracking to achieve a controlled tracking situation.

A tracking system needs a way of determining initial states for potential targets
in the measurement area. A proper initiation method must be able to filter false
measurements from measurements originating from true targets in order to initiate
correct tracks. Initiation of a track based on false measurements may lead to un-
wanted navigation and behaviour from an autonomous vehicle. On the other hand,
not detecting a true target may lead to a collision with the target.

The process of filtering out false measurements from a set of real world measure-
ments is a difficult task. Some methods and algorithms attempts to do so, while
others take all measurements into account and weight them differently according
to the likelihood that they originate from a target. In both cases, knowing the
spatial distribution and frequency of false measurements may be beneficial. Some
methods rely on an assumption that the false measurements are uniformly spread,
while others, such as clutter maps [17], attempt to map noise densities in several
regions of the map.

A map of noise estimates across the measurement area may not be necessary far out
in the middle of the ocean, but in areas close to shore there might exist considerable
discontinuities in the amount of noise returns. Consequently, combining a clutter
map with a tracking system can improve the performance of the system while op-
erating in near-shore environments. Areas close to shore are also more likely to
spawn new targets as ships or small boats leave dock. This is a complicating factor
considering that turning up the estimated clutter density near land to filter more
noise may also lead to undetected new targets from such areas. If measurements
from a real target are classified as clutter we might get dangerous situations for
autonomous ships relying on proper detection techniques of other surrounding ves-
sels. Accurate and efficient track initiation is thus of vital importance in such areas
to maintain a secure COLAV system.

1.2 Previous work

There exists a number of tracking methods and techniques which can be used in
maritime COLAV systems. They differ in scope and area of specialization, as they
attempt to solve different challenges of autonomous vehicle movement in maritime
environments. Tracking systems are generally divided into two catogeries; single-
target tracking, and multi-target tracking. Single-target tracking [2, 15] attempts
to track a single target at a time and associate measurements to that target, while
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1.3 Objective and scope

multi-target tracking [14, 18, 9] considers all potential targets at a given time
simultaneously. Associating measurements to a target (data association) is rele-
vant to both single-target tracking and multi-target tracking. Some methods like
nearest-neighbor [6] and Multiple Hypothesis Tracking (MHT) [18] single out one
measurement for the target as a basis for estimating the target state, while others
like Probabilistic Data Association (PDA) [10] use several nearby measurements
and merge their contribution to a single estimate. PDA is a data association filter
based on a Kalman filter [4] approach for estimating the state of a target. PDA
has been a proclaimed and much used method since its introduction, and has since
been extended to other more complex methods such as Integrated PDA (IPDA)
[15], Joint PDA (JPDA) [2] and Interacting Multiple Model PDA (IMM-PDA) [2].

Initiating tracks precisely and efficiently is also an important part of a COLAV
system, with several different approaches and existing methods. Popular track
initiation methods such as M/N [2], IPDA [15], IMM-PDA [2], SPRT [9] and Per-
ceivability [12] have been used together with the PDA to make a complete tracking
system. Of these methods, all except M/N tries in some way to estimate detection
probability or existence probability for a possible track to determine whether to
initiate a track or not. M/N and IPDA were tested and compared in the specializa-
tion project [1] where it was demonstrated that IPDA achieves significantly better
results in high clutter areas.

Some track initiation methods, such as the IPDA, have been further improved
by combining them with noise estimation methods such as clutter maps [17] or
semi-parametric clutter estimation [7]. A clutter map estimates unique clutter val-
ues for regions of the measurement area based on measurement data accumulated
over some preceding duration of the tracking scenario. Estimating the clutter den-
sities can assist track initiation by relying more on measurements from low clutter
areas than from high clutter areas.

1.3 Objective and scope

In this thesis we will examine how track initiation can be improved in near-shore
and other non stationary environments by the use of clutter maps. A regular
IPDA will be used for track initiation combined with estimated noise (clutter)
density values from the clutter map. Three different clutter map estimators [17]
are implemented and tested for a set of scenarios and various parameter tuning. We
want to determine strengths and weaknesses of the three clutter map estimators,
and compare them to a non parametric IPDA. It is also desirable to identify types
of scenarios in which a clutter map is most beneficial.

1.3.1 Contributions

The contributions of this thesis are:

• A review of single target tracking, with extra focus the IPDA method and
clutter maps
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Chapter 1. Introduction

• A study of how the theoretical biases of different clutter map estimators relate
to specific parameter setups and clutter distributions

• A proposed technique for excluding target measurements from clutter esti-
mation

• A comparison of a non parametric IPDA and a parametric IPDA with the
three featured clutter map estimators in [17] in the form of:

– A simulation study of a scenario where two targets are moving into, out
of and alongside the transition between high and low clutter areas

– Performance results on two real data sets recorded in Trondheimsfjorden.
The first is a relatively simple COLAV experiment with three vessels
present. The second is a longer scenario where the ownship follows
another target to shore with several other targets are present.

1.4 Outline

The remainder of the thesis is organized as follows: The second chapter presents
target tracking theory. This entails exploring methods of noise filtering, measure-
ment association, track initiation and clutter maps. Chapter three explains how
a tracking simulator was created and tuned in Python, and how a test scenario
was designed to analyze theory from Chapter two. In Chapter four the biases of
different clutter map techniques are evaluated and results from the simulations are
presented to compare performance of an IPDA with clutter maps and a non para-
metric IPDA. Chapter five presents results from two scenarios of real data recorded
in Trondheimsfjorden. The results from both the simulations and the real data sets
are discussed in Chapter six, and an overall conclusion of the thesis is written in
Chapter seven.

This thesis is a continuation of the specialization project [1] written during the
fall of 2017.

Parts of this thesis are included in a conference article [19] accepted in FUSION
2018 (21st International Conference on Information Fusion) held at the University
of Cambridge. The contribution to the article by the author of this thesis was the
implementation and testing of an IPDA. The article is added in Appendix B.
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Chapter 2
Tracking theory

Target tracking is the process in which we want to estimate the system states of
any potential targets in an area of interest. The estimation is based on measure-
ments from the surveillance area. A target can be a ship, a plane, or any physical
object within the search area. In this report we will define the area of interest as
a limited search area at sea and the targets will be objects detected at sea level.
Hence, these objects will in most cases be ships or small boats. The states we want
to estimate are position and velocity for each target.

A tracking system needs a set of measurements from the surveillance area. With
high quality measurements, the tracking system will be able to make better esti-
mates of target states. The process of establishing a set of measurements can be
divided into several steps. First, we need a way to register objects within the area
by receiving reflected energy using appropriate sensors. Then raw data from the
sensors needs to be processed to make valid measurements which can be sent as
input to a tracking system. Suggested steps of this process using a radar are shown
in Figure 2.1 and are inspired by [20].

Radar Noise 
reduction Projection Filter land Clustering

Signal 
threshold

Relative 
location

Nautical 
charts

Target 
tracking

Figure 2.1: Block diagram of proposed processing of radar signals.

The steps shown in Figure 2.1 are explained in Section 2.1.
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Chapter 2. Tracking theory

2.1 Object detection and management

One or several sensors are required to locate targets in the area. Radar, lidar and
camera are commonly used sensors for object detection. In this report we will
examine target tracking using radar scans. Radar has the advantage that it has a
long range and it is not dependent on good lighting conditions like a camera. A
radar scan also contains less information so it is easier to interpret. Less information
containing only positional data of obstacles within a certain range may be more
relevant to a COLAV system than high resolution pictures of the surveillance area.
Still, a combination of several sensors could supplement each other.

2.1.1 Radar scanning

A circular radar scan contains information about objects in an area surrounding
the transmitter [11]. A transmitter emits radio waves in predetermined directions,
whilst a receiver records reflected waves from solid objects hit by the transmitted
waves. The receiver is usually in the same position as the transmitter. The angle
of the reflected signal and the time difference from a wave was transmitted until a
reflected wave returns, is used to estimate the position of the object. A detected
object on a scan is called a measurement. An illustration of radar scanning is
shown in Figure 2.2 where the blue circles are transmitted waves, and black dots
are physical objects in the surrounding area.

Figure 2.2: Illustration of radar transmitter and a circular scan.

2.1.2 Noise reduction

In a radar scan there is often noise which is referred to as clutter. The clutter
derives from unwanted reflected signals in the scanning area. Clutter can be caused
by waves, land, rain, snow, animals, insects or other disturbances. Much clutter
can be filtered by having a threshold for the received signals, so that only signals
with a certain strength results in valid measurements. However, setting a threshold
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2.1 Object detection and management

too high may lead to loss of wanted information. In a real scenario some amount of
clutter is to be expected among the validated measurements. Clutter is therefore
an important factor to take into consideration in a tracking system.

2.1.3 Projection

The valid measurements has a position relative to the radar location, but should
be projected to a world fixed frame. Given the GPS position and attitude of the
radar, the measurements can be projected to GPS coordinates. For an autonomous
vehicle the radar system may be on board the vehicle, which makes it important
to have an accurate navigation system for the vehicle in order to make proper
estimates of other target positions.

2.1.4 Filter land

When there is land within the scanned area, the radar will receive a large amount
of reflected signals from it. Since most land is already mapped on nautical charts,
they should not be tracked by the tracking system. Returns from land should
therefore be excluded from the measurements sent to the tracking system. By
combining the radar search with a nautical map, we can filter these returns. If a
measurement is on a location where it is land on the chart, it is removed from the
set of valid measurements sent to the tracking system.

2.1.5 Clustering

Most target tracking methods are based on the assumption that at most one mea-
surement per scan originates from the target. In reality, radar often detects more
than one measurement for a single target due to high resolution compared to the
target size. Hence, the measurements should be further processed to output only
one measurement per target. Measurements within a close range of each other are
therefore clustered together to produce one shared measurement. The resulting
measurement is located at the centroid of the shared measurements as shown in
Figure 2.3.

 

Figure 2.3: Clustering of three measurements.
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2.1.6 Target management

Once we have a set of valid measurements in the search area, we need to evaluate
which measurements originate from targets and filter the clutter. Doing analysis
from a single scan can be ambiguous, so multiple scans are needed to properly
analyze the situation. Thus, the measurements are evaluated over several con-
secutive scans to determine initial states for potential targets. We call this the
initiation process. Once one or several targets are initiated, they can be tracked
by single-target tracking or multi-target tracking methods. By using single-target
tracking we look at each target individually to estimate its state over time. Multi-
target tracking considers all measurements and targets simultaneously to establish
all target estimates. Single-target tracking will be the focus in this report.

2.2 Single-target tracking

There are several challenges to consider when it comes to single target tracking.
First one needs to initiate an estimate of the location and system dynamics of the
target. Different approaches exist for finding an initial estimate, however they are
often complicated if there is much clutter in the search input data. Once an initial
estimate is given, the target has to be continuously tracked over time to keep up
with the current state of the system. When only one valid measurement for the
target is given as input, the Kalman filter can be used to filter measurement noise
and estimate the current system state. However, in a real tracking scenario some
amount of clutter is to be expected, and we need some method to associate correct
data to the track.

Finding a subset of measurements that most likely originate from a specific target
is often refereed to as an association problem. There exists several approaches to
this association problem, including PDA [10], nearest neighbour [6] and track split.
Nearest neighbour is the simplest of the three, as it takes the closest measurement
to the current target estimate and uses it to calculate the next state. Track split
is basically a single-target edition of MHT [18], which takes each target estimate
and creates a tree of new possible estimates based on nearby measurements in each
step. It is more common to use MHT for multi-target tracking, than to use it for
single-target tracking in the form of track split. JPDA [2] is a popular method
for data association in multi-target tracking which also handles situations where
nearby targets share a subset of potential measurements. Since the PDA was in-
troduced it has been one of the most popular algorithms for single-target tracking,
and is thus the method we will use in this thesis.

A Probabilistic Data Association (PDA) filter attempts to find the most likely
position of the target, by looking at measurements from a certain region of the
search input. It expands the Kalman filter method to possibly include more than
one measurement. Thus, it can can maintain single-target tracking in a scenario
with several valid measurements and measurement noise.

In this section we will discuss Kalman filter and PDA filter, under the assump-
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2.2 Single-target tracking

tion that a single track already has been initialized.

2.2.1 Kalman filter

The Kalman filter is used for estimating the state of a given system (target) based
on incoming measurements. The filter is used to remove noise and estimate a sys-
tem state based on a sequence of single measurements. It is an algorithm which
first predicts the next state of the system based on previous estimation and mea-
surements, and then updates the estimate when the next measurement is given.
The theory of a discrete Kalman filter is explained in further detail in [4], but a
summary of the basics of the algorithm are presented in this section.

It is assumed that the system state xk and measurements zk can be modeled
as follows:

xk+1 = Fkxk +wk (2.1)

zk = Hkxk + vk (2.2)

wk and vk are sequences of white noise with known covariances Qk and Rk. An
initial estimate of the system is acquired, as the filter bases its predictions for the
next state on the current state. The estimated state is denoted x̂. The estimation
error is

ek|k−1 = xk − x̂k|k−1 (2.3)

and the associated error covariance is

Pk|k−1 = E[ek|k−1e
>
k|k−1] (2.4)

Next, the measurement zk is used to improve the estimate of the current state.
The updated estimate is found using a linear blending of the noisy measurement
and the prior estimate.

x̂k|k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
(2.5)

The current error covariance is then updated

Pk|k =
(
I −KkHk)Pk|k−1(I −KkHk

)>
+KkRkK

>
k (2.6)

To minimize the estimation error, we use a Kalman gain which is given as follows

Kk = Pk|k−1H
>
k

(
HkPk|k−1H

>
k +Rk

)−1
(2.7)

Using (2.7) as Kk we can simplify (2.6) to

Pk|k =
(
I −KkHk

)
Pk|k−1 (2.8)

Based on (2.1) we can set up a prior estimate of the next state. wk has a zero mean
and is not correlated with any of the previous w’s. Therefore, the prior estimate
of the next state is

x̂k+1|k = Fkx̂k|k (2.9)

9



Chapter 2. Tracking theory

The error for the prior estimate of the next step is

ek+1|k = xk+1 − x̂k+1|k = Fkek +wk (2.10)

The expression for the error covariance of the next step is

Pk+1|k = FkPkF
>
k +Qk (2.11)

Now we have all the equations we need for setting up the Kalman filter. The filter
is a loop consisting of estimating the next step, and then updating according to
system measurements. An illustration of the loop is shown in Figure 2.4 inspired
by [4].

Compute Kalman gain:

= ( +Kk Pk|k−1H⊤

k
HkPk|k−1H⊤

k
Rk)

−1

Compute error covariance:

= (I − )Pk KkHk Pk|k−1

Update estimate with  :zk

= + ( − )x̂ k|k x̂ k|k−1 Kk zk Hk x̂ k|k−1
= +Pk+1|k FkPkF⊤

k
Qk

=x̂ k+1|k Fk x̂ k|k

Project ahead:

Figure 2.4: Kalman filter loop.

2.2.2 The Probabilistic Data Association filter (PDA)

A PDA filter is used when there is uncertainty in the measurement origin. This un-
certainty is often the case for radar tracking of targets, where several measurements
are close to the expected target position even though there is only one target in
the area. At each time step, a validation region is set up around the prior estimate
of the track location, and all measurements within this region are considered in
the estimation of the posterior target state. The PDA calculates the association
probabilities for each measurement in the validation region at the current time.
The measurement-conditional estimates are then used to give a single posterior
estimate of the target state. Next, the filter uses a normal Kalman filter approach
for giving a prior estimate of the track in the next time step.

Assumptions for PDA [2]:

• There is only one target of interest in the search area.

• The track has been initialized.

10



2.2 Single-target tracking

• The past information is summarized approximately by

p[xk|Zk−1] = N [xk; x̂k|k−1,Pk|k−1] (2.12)

• At each time a validation region is set up around the prior estimate of the
track.

• At most one of the validated measurements can be target-originated.

• There is a fixed probability of clutter in the gate.

• False measurements are independently and uniformly spatially distributed
and independent across time.

• The target detections occur independently over time with known probability
PD.

where N denotes the normal distribution.

Validation gate

The validation gate of the PDA is determined based on the predicted covariance.
Higher covariance means a bigger validation region. Only the measurements within
the validation region are considered to possibly originate from the target in order
to reduce needed calculation. The error covariance is calculated using (2.11) from
the Kalman filter approach. Using the error covariance we find the covariance of
the innovation corresponding to the true measurement.

Sk = HPk|k−1H
> +R (2.13)

This is used to find Normalized Innovation Squared (NIS). The innovation νk is
the distance from a measurement to the prior estimate of the track position ẑk.
Given the innovation covariance Sk at the current step, we find NIS as

NIS = (zik − ẑk)>S−1k (zik − ẑk) (2.14)

= νi>k S
−1
k νik ≤ γG (2.15)

If NIS is beneath a given threshold γG, the measurement is within the gate. γG
is calculated from a given gate probability PG. The gate probability PG is the
probability that the target measurement will fall within the gate. The gating
threshold γG is found from the inverse cumulative distribution function (CDF) of
the χ2-distribution with degrees of freedom corresponding to the dimension of the
measurement [20]. An illustration of the validation gate is shown in Figure 2.5.
The number of measurements within the gate is denoted mk.
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Figure 2.5: Illustration of the validation gate.

Hedging of measurements

When a (possibly empty) set of measurements is assigned to each target, an approx-
imation of the posterior state of the target is made by hedging on the measurements.
Each measurement is assigned a value according to the likelihood that it originated
from the target. The probability that none of the measurements are valid is also
calculated. The probabilities are calculated by the given formula from [2]

βik =

{
1
c exp(− 1

2ν
i>
k S

−1
k νik), i = 1 ... mk

1
c
2(1−PDPG)

γGPD
mk, i = 0

(2.16)

where c is a normalization constant.

The combined innovation is

νk =

mk∑

i=1

βikν
i
k (2.17)

Once the probabilities of each validated measurement is calculated, the posterior
estimates for predicted state and error covariance are calculated

Kk = Pk|k−1H
>S−1k (2.18)

x̂k|k = x̂k|k−1 +Kkνk (2.19)

Pk|k = Pk|k−1 − (1− β0
k)KkHPk|k−1 + P̃k (2.20)

where

P̃k = Kk

( mk∑

i=1

βikν
i
kν

i>
k − νkν>k

)
K>k (2.21)
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2.2 Single-target tracking

P̃k is also called the Spread of Innovations (SOI).

Now we have all we need to track a target through the same recursive principles
as with the Kalman filter.

2.2.3 Parametric PDA

Given an estimation of clutter density in specific areas of the map, we can ad-
just the PDA algorithm to include the additional information. When the tracking
method assumes knowledge of the prior clutter density, we call it a parametric
method. This terminology is in agreement with Musicki’s definition of parametric
methods [17], though there exists other definitions of the term as well.

When using PDA combined with a clutter map or another method to more ac-
curately estimate clutter density, we say we are using a parametric PDA [16]. In
the case where we have non-uniform clutter estimation in the map, for example
by using a clutter map, the calculation of (2.16) in the PDA algorithm needs to
be modified. This is done to account for specific clutter density linked to each
measurement. We can calculate the probabilities βik as in [16]

βik =

{
1
cPDp(z

i
k|θik)/λi, i = 1 ... mk

1
c (1− PD), i = 0

(2.22)

A parametric method should in theory perform better than a non parametric, but
is naturally also harder to implement due to more added complexity. The extra
complexity and adjustments needed can take time to implement and may slow
down runtime, but should lead to more accurate results. A non parametric PDA
will use all measurements within the gate at scan k under the assumption that the
number of clutter measurements inside the gate is uniformly distributed. For each
measurement, only the distance from the predicted position and covariance of the
estimate x̂k|k−1 will contribute to the new estimated position. On the other hand,
a parametric PDA with a clutter map is able to distribute unique clutter densities
to each measurement dependent on their geographical position. This will support
the tracking system in being more critical to measurements from high clutter areas.
An illustration of how a clutter map may provide more accurate results is shown
in Figure 2.6
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Figure 2.6: PDA estimated position near high clutter area. A parametric method
will reduce the association probability of z1k, since it originates from an area with
higher clutter density.

2.3 Track initiation

In most real world scenarios, the number of targets as well as their initial positions
in the scanning area are not given. Hence, an initiation method is required to locate
potential tracks. Once a set of potential tracks has been established, each target can
be tracked using a single- or multi-target tracking method as discussed in Section
2.1.6. Depending on the chosen initiation method and the associated parameters
as well as the tracking scenario, some amount of false tracks may be initiated.
These false tracks need a way to be terminated. A proper termination method can
continuously determine the validity of ongoing tracks. Suitable methods for track
initiation and termination are vital to maintain a viable tracking process over
time. Several methods attempt to initiate and terminate tracks through single-
target-tracking or multi-target tracking, such as M/N [2], IPDA [15], IMM-PDA
[2], SPRT [9] and Perceivability [12]. Before we elaborate how the different methods
work, a normal way of categorizing tracks during their initiation phase is presented.

2.3.1 Pre-track categorization

All measurements of a radar scan can potentially come from valid targets in the
searching area. Data from one scan must in some way be kept and compared with
several succeeding scans in order to obtain actual targets and filter the clutter.
Measurements within a small range of each other in successive scans increases the
possibility that a target exists in that area. As in [2], measurements in each scan
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2.3 Track initiation

can be linked with one of three pre-track categories; tentative tracks, preliminary
tracks and confirmed tracks.

Tentative tracks are all measurements that are not associated with any existing
preliminary or confirmed tracks. They are candidates for new tracks. In the suc-
ceeding scan, a validation gate is set up around each tentative track. If a mea-
surement falls within the validation gate of a tentative track, a preliminary track
is formed. Otherwise, the tentative track is dropped. The radius of the validation
gate is given by the maximum velocity of a potential target and the measurement
noise statistics.

Since a preliminary track has two measurements it can be tracked using for in-
stance a PDA. Further conditions or logic can now be examined in order to confirm
or terminate the preliminary track. This is the critical part of the track initiation
problem. If the confirmation conditions are met, the track is confirmed and thus
assumed to be a real target. Still there may be reasons for terminating some of
the confirmed tracks in the future, so a termination routine should be operating
concurrently with the tracking.

M/N-logic

The M/N approach [2] is a simple and intuitive way of initiating and/or terminating
tracks. It checks for a number of M associated measurements in a total of N scans
to evaluate initiation or termination. A preliminary track is tracked using a filter
with a validation region in each step, like the PDA, for a maximum of N scans. If
a measurement falls within the validation region of the preliminary track at least
M times over the N scans, the track is confirmed. If not, the track is terminated.
The same procedure can be used for terminating a confirmed track, and the chosen
parameters for M and N need not be the same as for initiation. M/N is often used
in tracking systems because of its easy implementation.

A comparison of M/N and IPDA was done in the specialization project [1]. The re-
sults from the report demonstrated that IPDA achieves significantly better results
in high clutter areas, and the difference is noticeable for clutter densities higher
than λ = 1× 10−5m−2. This corresponds to a rough estimate of 0.04 gated clutter
measurements in each scan for a confirmed track.

IMM-PDA

An Interacting Multiple Model PDA (IMM-PDA) filter [2] can be used for initiation
and termination of tracks, as well as track maintenance. It continuously estimates
a True Track Probability (TTP) for each track, which is used for track initiation
and track termination given predetermined thresholds. The estimation of TTP for
track initiation is done by following a model for a detectable target and a model for
an undetectable target. The TTP is updated in each step according to a Markov
chain transition matrix. The initiation process is quite similar to the IPDA, but
they differ in techniques of track maintenance and track termination. An IMM-
PDA may have additional models after track initiation where other models of target
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movement and detectability are modeled.

SPRT

Sequential Probability Ratio Test (SPRT) [9] is a method which calculates the ratio
between the probabilities of a track existing in the scan, and no tracks existing in
the scan. It is also referred to as sequential track extraction. The initiation method
distinguishes two hypotheses from all measurements in a scan;

• All measurements in a scan consists of detections from one target and false
detections

• All measurements in a scan are false detections

Under the assumption that there exists at most one target, and no special cases
of suddenly spawned targets or a suddenly disappearing target, one of the two
hypotheses has to be true. Both of these probabilities are calculated in each step,
and the ratio between them is used to decide which hypothesis is accepted.

Perceivability

Perceivability [12] attempts to more accurately estimate the number of false mea-
surements mk within a track gate, and thus also the clutter density within the
gate. It makes no attempt to map locations of clutter densities in the map, only
the clutter density connected to a track and its gate for each scan.

There are three approaches to estimating mk;

• Conditional Mean Estimation

• Maximum Likelihood Estimation

• Method of Moments

The Conditional Mean Estimation models three ways of estimating mk based on
the current scan and previous scans. Maximum Likelihood Estimation assumes the
clutter density in each scan to be unknown, but nonrandom. Method of Moments
is a heuristic approach to estimating the number of false measurements mk.

2.3.2 Integrated Probabilistic Data Association (IPDA)

The IPDA includes calculation of probability of track existence in a PDA controller
in order to initiate or terminate tracks. The model is described in depth in [15].
The track existence is modeled as a Markov process with two possible cases. The
first, which is called Markov chain one, models two possibilities;

• The track exists

• The track does not exist

The second case, which is called Markov chain two models three possibilities;
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2.3 Track initiation

• The track exists and is observable

• The track exists and is not observable

• The track does not exist

Markov chain one is usually used in track initiation, while both can be used for
the termination process of confirmed tracks. Markov chain two can be used for
track maintenance when the target trajectory is partly obscured or the target is
otherwise not observable for parts of the tracking [15]. It has also proven better
results for track maintenance when tested on real data in [3]. Since this report is
focused on track initiation, Markov chain one is used in the tracking simulator.

Algorithm for IPDA using Markov chain one

Let Zk be the set of measurements falling in the track window up to and including
scan k. The a priori probability that the track exists at scan k is denoted by
P{xk|Zk−1} and the probability that the track does not exist is denoted by 1 −
P{xk|Zk−1}

P{xk|Zk−1} = p11P{xk−1|Zk−1}+ p21
(
1− P{xk−1|Zk−1}

)
(2.23)

1− P{xk|Zk−1} = p12P{xk−1|Zk−1}+ p22
(
1− P{xk−1|Zk−1}

)
(2.24)

p11 is often called “survival probability” as it denotes the chance that a track at
scan k − 1 is still present at scan k. p21 denotes the chance that a track is present
at scan k which was not present at scan k − 1, and is often called “probability of
birth”. The Markov chain coefficients must satisfy

p11 + p12 = p21 + p22 (2.25)

The standard procedures from PDA are used to find predicted state x̂k|k−1, pre-

dicted covariance P̂k|k−1 and validation gate. Using (2.3.2-1) in [2] we can calculate

a priori probability density of the predicted measurement position f(z|Zk−1)

f(z|Zk−1) = N [zk; ẑk|k−1,Sk] (2.26)

Let m̂k denote the number of expected false tracks in the set of measurements at
scan k. If the number of false measurements in each scan are modeled by a Poisson
distribution over the validation region Vk, then

m̂k = λVk (2.27)

where λ is a known parameter. For a non parametric IPDA where λ is unknown,
m̂k can be estimated by (2.28) below.

m̂k =

{
0, mk = 0

mk − PDPGP{xk|Zk−1}, mk > 0
(2.28)
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Vk can be found by (2.3.2-4) in [2].

The posterior track existence using the following equation.

P{xk|Zk} =
1− δk

1− δkP{xk|Zk−1}
P{xk|Zk−1} (2.29)

This value P{xk|Zk} may be used to determine whether to initiate or terminate
the track. We use δk to scale the a priori existence value according to data from
the newest scan k. Combining (2.9) and (2.13) in [15] we evaluate the quantity δk.
With a non parametric IPDA, δk is calculated as follows

δk =

{
PDPG, mk = 0

PDPG − PD Vk

m̂k

∑mk

i=1 f(zik|Zk−1), mk > 0
(2.30)

f(zik|Zk−1) in (2.30) is found using (2.26). Since a parametric IPDA with a clutter
map has specific estimates for λ, these estimated densities can be used directly to
calculate δk. The estimated number of false alarms m̂k from (2.27) can then be
calculated for each measurement according to its area of origin, and we get

δk =

{
PDPG, mk = 0

PDPG − PD
∑mk

i=1 f(zik|Zk−1)/λi, mk > 0
(2.31)

This altered δk readjusts the contribution of each measurement depending on the
associated clutter density. Measurements from low clutter areas will have a bigger
impact on the existence probability than other high clutter measurements on the
same scan. For instance, measurement z2k will contribute more positively to the
existence probability than measurement z1k in Figure 2.6.

2.4 Clutter map

A clutter map is useful when there are variations in the clutter density distribution
across the scanned area. It can be combined with a multitude of tracking methods
such as PDA, IPDA [17], M/N, SPRT [19], to improve their performance. As listed
in Section 2.2.2, one of the assumptions for the PDA is; “False measurements are
independently and uniformly spatially distributed and independent across time”,
which is an invalid assumption in many maritime scenarios. Therefore, a register
of specific clutter densities connected to smaller regions of the map can make the
tracking method applicable in a larger scope of scenarios. Figure 2.7 shows how
including a clutter map with the IPDA can assist in existence calculation.
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Figure 2.7: Illustration of a target tracking scenario with a clutter map. The upper
target will have a higher existence probability for a parametric IPDA.

Without a priori knowledge of the clutter density in an area, a parametric method
has to estimate clutter density over a number of scans [17]. This can be done
globally for the whole search area or locally in smaller regions in the form of a
clutter map. We will examine three different clutter map estimators originally
proposed in [17];

• Classic clutter map estimator

• Spatial clutter map estimator

• Temporal clutter map estimator

The three estimators share some fundamental principles and equations. The surveil-
lance volume is divided into clutter map cells c with volume V (c), which may or
may not be equal. The chosen cell sizes may depend on clutter density charac-
teristics, sensor resolution and other system requirements. System runtime may
for instance be of importance, and can be affected negatively by having too many
and too small cells. It is assumed that the clutter statistics are stationary. In the
case that they are not stationary, they must not change faster than the clutter
map is updated. In other words, the clutter densities must not change with a time
constant which is lower than the time constant to update the map.

The clutter map cells are updated using moving average for averaging. It is also
possible to use an auto regressive filter [17], but only the moving average will be
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used in this thesis. The moving average is calculated as follows

Nk(c) =
1

L

k∑

j=k−L+1

µj(c) (2.32)

where µj(c) is the clutter density measurement to be averaged in cell c. For both
the Classic and the Spatial method, k is the scan index. For Temporal clutter map,
k is the index of measurement arrival in clutter cell c. Nk(c) denotes the averaged
value and the averaging time constant is denoted by L.

As previously stated, (2.32) is a fundamental equation used by all three estimators.
The following subsections addresses how the estimators update a single clutter map
cell c.

2.4.1 Classic clutter map estimator

The Classic estimator averages the number of measurements which have fallen into
the cell over time. µk(c) in (2.32) is in this case the number of measurements in the
cell at scan k. The average found in (2.32) is used to calculate the clutter density
in the cell. The clutter density is calculated as follows

λ̂k(c) =
Nk(c)

V (c)
(2.33)

(
1̂

λk(c)

)
=

V (c)

Nk(c)
(2.34)

To avoid division by zero, the estimator using (2.32) is slightly modified

N1
k (c) =

{
Nk(c), Nk(c) > 0
1
L , Nk(c) = 0

(
1̂

λk(c)

)
∝ V (c)

N1
k (c)

(2.35)

This modification is necessary when no measurements have appeared in the cell
during the averaging window L. The clutter is then estimated as though it was
one measurement in the cell during the averaging window.

2.4.2 Spatial clutter map estimator

The Spatial estimator uses the volume of a shape to estimate distance from the
center of the cell. The shape can be a circle, a square or another type of polygon.
The shape expands in size, while the center is retained, until it touches the near-
est measurement position. The size expansion is not limited by the cell area, and
may overlap other cells to touch the closest measurement. However, the volume
will need to be adjusted if parts of the shape ends out of the surveillance area, by
discarding the portion outside of the surveillance area. An illustration of the shape
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is shown in Figure 2.8 where the red box is an illustrated cell on the map, the blue
box is the shape associated with the cell and the orange circles are measurements.

The volumes found in each cell are stored as µk(c) and are averaged by (2.32)
to find Nk(c). The clutter density estimate is

(
1̂

λk(c)

)
= Nk(c) (2.36)

An effective implementation of the Spatial estimator is somewhat more difficult to
conduct than the other two estimators, since the cell is not limited to measurements
within its own borders. Using a nearest-neighbour method through the use of a
k-d tree [5] can help minimize runtime when implementing the estimator.

Figure 2.8: Illustration of the shape expansion for the Spatial estimator for two
different scans. The blue solid colored areas are the volumes used as µk(c).

2.4.3 Temporal clutter map estimator

The Temporal estimator uses inter-arrival time τ(c) of two Poisson measurements
arriving in the same map cell, to calculate the mathematical distance between the
two. For instance, if one measurement arrives three scans later than the previous
measurement in the cell, its inter-arrival time τ(c) is three. If more than one
measurement, nk(c) > 1, arrives in the cell at scan k, a number of nk(c) equal
values τk(c)/nk(c) is used as input to (2.32). If one were to check the density of
a cell c prior to any measurements falling in the cell, an inter-arrival time of the
current scan index k is used to estimate the clutter density. The average time
between measurements arriving in the cell combined with the volume of the cell
provides an estimate of the clutter density within that volume. The clutter density
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of the Temporal estimator is

(
1̂

λk(c)

)
= V (c) · ̂(τk(c)) (2.37)

2.4.4 Biases of the estimators

The three clutter map estimators provide good approximations to the real clut-
ter density, yet they have some biases and other disadvantages connected to their
estimation techniques. Their difference in methodology makes them more or less
applicable for distinct scenarios and setups. Knowing their advantages and disad-
vantages can be valuable when choosing which type of estimator to use. In this
section we will refer to the relative bias of the estimators, which is given as

relative bias =

1̂
λ(c) − 1

λ(c)

1
λ(c)

(2.38)

The clutter estimation of the Classic and the Temporal estimator is constrained by
the measurements falling within the area of one cell c. Thus we will discuss their
biases according to the average number of measurements falling in a cell during
one averaging length of L scans.

The Classic estimator has a bias due to the fact that there may be zero measure-
ments within the averaging window at any given time. Without measurements,
the estimator has no base to say anything about the clutter density in the cell c.
When there are no measurements, the modified moving average N1

k (c) in (2.35)
sets a limit for the lowest estimated density in the gate, as it estimates the density
as though it was one measurement within the window L. Hence, when the real
clutter density is lower than the lowest limit of the cell, it gets a negative bias.
A negative bias means a higher estimated density than the actual density. The
theoretical bias of the Classic estimator is shown in Figure 2.9.
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Figure 2.9: Theoretical values for classic and temporal clutter map bias.
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The reason why the Classic estimator has a positive bias converging to zero as
the mean number gets higher, may be because of the limited data set within the
averaging window. When there are fewer measurements than average inside the
window, the estimated clutter density is relatively lower than the true value than
when there are more measurements than average inside the window. This results
in a lower estimated density on average than the true density.

While the Temporal estimator does not have any theoretical bias, as shown in
Figure 2.9, it does have some amount of bias during initiation, as well as some
bias caused by the length of the averaging window. Its theoretical bias of zero is
only achieved as t→∞ and L→∞. This will be further explained and tested in
Section 4.1.

The relative variance of the Classic and the Temporal estimators converge slower
than the Spatial estimator, as illustrated and discussed in [17]. Temporal has a
variance diverging towards infinity as the mean clutter measurement number ap-
proaches zero. However, for mean numbers of clutter higher than approximately
2.5 measurements, Classic has the most relative variance.

The Spatial estimator does not have any bias of the clutter density in uniform
clutter, but it does have a bias when there is heavy clutter close to the cell. Mean-
ing that if a cell in a low clutter area is located near a high clutter area, its estimated
density will be higher than otherwise, and vice versa for cells in high clutter areas.
When there exists a discontinuity in real clutter density, the estimator will have a
transition between regions of different density. The other two estimators does not
suffer from this bias. This is shown in Figure 2.10.

Nevertheless, even though the Spatial estimator has a bias for real clutter den-
sity discontinuities, it has the fastest convergence of the three estimators. The
Spatial estimator averages in every scan even when there are no measurements in
a cell, as shown in Figure 2.8. The Temporal estimator on the other hand, has no
theoretical bias, but can have especially slow convergence in low clutter. Consid-
ering that it only accumulates information in scans where there are measurements
falling into the cell, it can take many scans to fill up the averaging window in low
clutter areas. Spatial and Classic will have filled up their averaging window when
scan index k equals the averaging length, and on average they will not produce
more accurate estimates beyond that point.
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Figure 2.10: All estimators after 100 scans and an averaging length of 100.

2.4.5 Clutter map dilemmas

There are a few minor dilemmas with the clutter map estimators in [17] which are
examined in this subsection. These are:

• How to exclude target measurements from clutter density calculation?

• Should a clutter map method have time to initialize before any tracking
begins?

How to exclude target measurements from clutter density calculation?

The first question applies to all three methods and has a number of possible solu-
tions. The easiest solution is to ignore the issue entirely and use all measurements
in the calculation of the clutter map. This can however lead to a negative bias when
calculating existence probability of a preliminary track. If a target measurement is
included in clutter calculation, the measurement itself will appear less reliable and
thus lessen the existence probability of the target.
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2.4 Clutter map

An idea is to exclude the most likely target originated measurements from the
estimation of the clutter map. Selecting which measurement to exclude can be
achieved in several ways. The simplest way would be to pick the measurement
closest to the estimated position of the preliminary track. Another way is to pick
the measurement with the highest association probability from (2.16), though this
may be slightly more complicated to implement efficiently. In the end there is no
simple way of choosing the target measurement with certainty. The issue is not
addressed in Musicki’s article [17].

If one were to exclude the measurements most likely originate from targets from the
clutter calculation, it would be most essential for confirmed tracks. Though it can
also be applied to preliminary tracks. The reason for applying this to preliminary
tracks is to hopefully improve the track initiation phase. However, excluding cer-
tain measurements associated with preliminary tracks from the clutter estimation
may contradict its purpose and lead to a less accurate clutter map. Preliminary
tracks which are subsequently terminated would erroneously lower the estimated
clutter density in their area.

Should a clutter map method have time to initialize before any tracking
begins?

The estimated values of a clutter map cell are improved for each incoming scan
until L scans after startup. Consequently, given an initialization time before the
tracking starts, the estimated clutter densities may be more precise and lead to
more accurately estimated existence probabilities in the IPDA algorithm. A pos-
sible complication with having an initialization phase is that there might be ships
or other objects in the search area which adds additional false clutter to the map,
as with the first listed dilemma in this section. Combining an initialization phase
with tracking, to exclude target measurements could result in better initiated clut-
ter maps. The tracking process could then be reset once the clutter map is initiated.
A proper way of excluding target measurements would thus solve more than one
problem.
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Chapter 3
Simulator Development

All simulations in this thesis were run in Python 2.7. The simulator and test
environment are based on the work done in [1] and done in a collaboration with
the Autosea project.

3.1 Motion model

The system is modeled with the same assumptions for system process and noise as
in the Kalman filter in section 2.2.1. The state is given as x = [N,VN , E, VE ] with
N and E being North and East position in the North East Down (NED) reference
frame. VN and VE are velocities in north and east direction.

F =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 , H =

[
1 0 0 0
0 0 1 0

]
(3.1)

The covariances for the process and measurement noise are set as follows

Q = σ2
q




T 4/4 T 3/2 0 0
T 3/2 T 2 0 0

0 0 T 4/4 T 3/2
0 0 T 3/2 T 2


 , R = σ2

r

[
1 0
0 1

]
(3.2)

Q is based on equation (15) in [13], but expanded for two dimensions.

3.2 Tracking filter and initialization parameters

The parameters for the tracking model were tuned during testing to achieve desired
results. The parameters are shown in Table 3.1 and Table 3.2. The values for
Markov chain coefficients in Table 3.2 were based on the parameters used in the
simulations in [15]
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PG 0.99
γG 9.21

Table 3.1: PDA parameters

p11 0.98 p12 0.02
p21 0.00 p22 1.00

Terminate threshold 0.15
Initial probability 0.5

Table 3.2: IPDA parameters

The initiation threshold of the IPDA was varied to test the initiation accuracy of
various thresholds.

3.3 Clutter map parameters

There are several parameters and implementation choices one can make that will af-
fect the runtime, accuracy and desired results of a clutter map. The most apparent
choices are listed below.

• Map size

• Clutter cell size

• Reference frame

• Initialization time

• Averaging length

Map size will obviously affect runtime, but also clutter cell size will have an impact
on runtime, as a unique clutter density will have to be calculated for each cell.
Thus there is a trade off between accuracy and runtime depending on the chosen
size of each cell. In scenarios where certain predictable areas of the map contain
more clutter variation than others, one might consider having smaller cells in these
areas. Near-shore areas might bring more clutter returns, and may thus be a sen-
sible choice for applying smaller cells. A problem with not having a fixed clutter
cell size throughout the map, is that one will need additional logic for selecting
desired size for each area. Running additional logic could potentially slow down
the system, meaning a smaller fixed cell size for the whole map may be just as
efficient.

In this thesis, the map size has been chosen to be 1200m × 1200m. Real radar
data recorded by the Autosea project using the ship Telemetron have a signifi-
cantly wider range, so the simulated map size in this thesis is just scaled down to
reduce testing runtime. The clutter cell size was originally thought to be chosen to
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3.3 Clutter map parameters

something similar to 20m× 20m which was used in [17], however, with the chosen
map size this equals 3600 individual cells and took far too long to simulate. Hence,
the cell size was chosen to 100m × 100m which gave acceptable simulation times.
No attempt was made to implement any logic for selecting unique cell sizes on
different areas on the map.

Making the clutter cells earth-fixed or fixed to the ownship’s reference frame can be
justified for different reasons. If the radar itself is more prone to clutter in certain
directions of the scan or specific areas relative to the ownship, a clutter map with
a body-fixed reference frame could prove beneficial. If the clutter is more prone in
certain areas of the sea, for instance close to shore, the reference frame is ideally an
earth-fixed coordinate frame. In this thesis we have chosen to use an earth-fixed
reference frame, since our main focus is geographical clutter and not due to radar
or other ship equipment.

The number of scans one uses for initialization impacts the accuracy of the clutter
map upon the start of the tracking phase, as discussed in Section 2.4.5. Appropri-
ate initialization length depends on a number of factors such as clutter cell size and
clutter density. Different initialization lengths are tested based on the test setup
in Section 3.4 and discussed in Section 3.5. The averaging length L is in each test
case set to the same length as the selected initiation time.

The clutter map was updated prior to the IPDA calculations in each scan, meaning
that the clutter densities used in the IPDA were based on Nk and not Nk−1 as in
[17]. This was done to accumulate more data prior to IPDA estimation, but it
could also be argued that it alters gate measurement contributions negatively by
weighting the measurements twice in the same scan.

All parameters used in conjunction with the clutter map implementation are listed
in Table 3.3.

Map size 1200m× 1200m
Cell size 100m× 100m
Number of cells 144
Initialization time 20, 40 or 80
Averaging length Same as initialization time
Reference frame Earth-fixed

Table 3.3: Clutter map parameters

To test the real measurement data presented in Chapter 5, the clutter map im-
plementation had to be partially modified. The real data sets are recorded from
radar data on board a moving vessel, so the measurement area is not stationary.
Clutter cells were therefore only initiated and updated when they were inside the
maximum range of the radar.
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3.4 Test setup

To test the clutter map methods properly we need a set of scenarios with various
target setups and clutter layouts on the map. We want to imitate real tracking
challenges in marine environments to find the best possible methods and solutions
these difficulties. Since this thesis is focused on track initialization near shore, a
test scenario was made to mimic situations where vessels move close to or out of
high clutter areas. The final setup can be seen in Figure 3.1, which is the same
setup which was used in [19]. The initial state of the two spawned targets follow
Table 3.4.
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Figure 3.1: Test scenario. The gray areas are high clutter areas. One target
is spawned in each dashed region in one test run. The black lines are sample
trajectories of spawned targets.

Parameter Lower target Upper target
N0 U(−500m,−300m) U(350m, 450m)
E0 U(−500m, 500m) U(−400m, 0m)
V0 U(5ms−1, 10ms−1) U(5ms−1, 12ms−1)
χ0 U(−30◦, 30◦) U(70◦, 110◦)

Table 3.4: Target parameters for the test scenario

After an initial state is set, the simulated targets move according to a nearly con-
stant velocity (NCV) model [13]. The values for σ2

q and σ2
r are shown in Table 3.5.
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3.4 Test setup

Sampling time T 2.5s
Process noise covariance σ2

q (0.05ms−2)2

Measurement noise covariance σ2
r 6m2

Probability of detection PD 0.9
Low clutter density λlow 1× 10−5m−2

High clutter density λhigh 5× 10−5m−2

Table 3.5: Tracking system parameters

To test falsely initiated tracks, the clutter measurements were used exclusively at
first to check if any false targets were initiated. Then the same set of measurements
was simulated along with the target measurements to check if the real targets were
discovered.

A successful scenario of all measurements where both targets were found is shown in
Figure 3.2. The blue dots are all the measurements during runtime. The blue color
shading of the measurements represent their timestamps. The brightest shades
are from the beginning of the simulation, while a darker shade of blue means a
measurement originating from a scan closer to the end of the simulation. The red
lines show confirmed tracks.
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Figure 3.2: All measurements from an example run of the test setup plotted along
with target trajectories and confirmed tracks.

3.5 Initialization time

As mentioned in Section 2.4.5, an initialization time might be beneficial for the per-
formance of tracking using a clutter map. An appropriate number of initialization
scans can vary from method to method. Different scan lengths were tested in [17]
where it was suggested that approximately 200 scans is sufficient for all methods to
reach convergence. Comparing the test setup and lowest density of λlow = 1×10−5

for this thesis, the same number of scans would be 80. This is however not neces-
sary for all three estimators, as some converge quicker than others.

The original test setup described in Section 3.4 was run using only clutter mea-
surements to initialize the clutter maps. After initialization, the regular scenario
was run with spawned targets.
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3.5 Initialization time

Initial testing of initialized clutter maps was done using a relatively short ini-
tialization time and averaging length of 20 scans. The Spatial estimator was tested
first, since it has the fastest convergence of the three estimators [17]. The initialized
map is shown in Figure 3.3 along with a comparison to an uninitialized map. Com-
paring the gray high clutter areas in Figure 3.1 with the estimated clutter densities
in Figure 3.3 we see that the initialized map is much closer to the ground truth
than the uninitialized. This confirms that an initialization period will provide more
accurate estimated clutter values, though it gives no further indication of what an
optimal number of scans may be. Figure 3.4 shows that the two clutter maps are
quite similar after ten scans, meaning that a total of 40 scans may be somewhat
overly cautious for the Spatial estimator. Though, since the averaging length is also
40, it may still be beneficial to have a longer averaging window for better estimates.

The three estimators were tested for three chosen lengths of initialization and av-
eraging lengths. 20 scans was picked as the shortest length which should favor the
Spatial estimator, while 80 scans were chosen as the longest length to compare the
estimators when they are all close to convergence values. 40 scans was picked as
a middle ground between the two and most tests were conducted with this length.
Unique initialized maps based on random clutter were created for each run of the
simulator, and one example of each tested length is shown in Figure 3.5.
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Figure 3.3: Spatial clutter map after one scan with averaging length L = 40. The
initialization time for the initialized map was 40 scans.
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Figure 3.4: Spatial clutter map after ten scans with averaging length L = 40. The
initialization time for the initialized map was 40 scans.
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Figure 3.5: Initialized clutter maps of all tested initialization lengths.
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3.6 Excluding target measurement from clutter estimation

3.6 Excluding target measurement from clutter
estimation

As described in Section 2.4.5 excluding target measurements from the calculation
of the clutter map, should provide a more accurate estimation of the real clutter
density. The problem however, is that it may be difficult to be certain of which
measurements are in fact from a real target in a tracking scenario. To test whether
removing estimated target measurements would have any impact on initialization
results, estimated target measurements from preliminary and confirmed tracks were
removed from clutter estimation. The gated measurement with the highest βik was
assumed to be from a target, as long as it was higher than the likelihood of no
target measurements in the gate, β0

k. A proposed equation is presented as follows

Target measurement = zik, i = arg max
i

βik, if

(
mk > 0 and βik > β0

k

)

(3.3)
This exclusion method is done for all preliminary and confirmed tracks prior to
updating the clutter map. The estimated target measurements are then discarded
from the set of measurements sent to the clutter map for the current clutter esti-
mation.
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Chapter 4
Simulation Results

4.1 Clutter map bias

To test the biases from Section 2.4.4, a single cell of each type of estimator was
simulated 10000 times with different number of mean clutter measurements falling
into the cell. The idea was to compare the results with Figure 2.9 for the Classic
and Temporal estimators, as well as examining simulated bias of the Spatial esti-
mator.

From (2.27) we have that the expected number of clutter measurements in an
area at a scan k depends on the clutter density λ and the area Vk. The mean
number of measurements over L scans is gives as

x , V (c) ·L ·λ(c) (4.1)

By setting λ(c) = 1 × 10−5 and V (c) = 100m × 100m, we get an average of 1
measurement over 10 scans. The clutter density was adjusted to get the necessary
results to reproduce the figures from [17]. The relative bias was calculated accord-
ing to (2.38), and the results are shown in Figure 4.1. Each point on the graph
represents an explicit test setup simulated 10000 times to get the resulting bias for
a specific mean clutter measurement number.
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Figure 4.1: Classic and Temporal clutter map bias.

Both estimators show expected bias results concurring with the theoretical values.
However, as stated in Section 2.4.4, the Temporal estimator does have some bias
during initiation phase, which is not visible in Figure 4.1. The averaging length
L also impacts the Temporal estimator. The estimator was run for 1000 times
more timesteps than the Classic estimator in each run and an averaging window of
L = 1000 to achieve the close to zero bias.

The amount of initialization bias from the Temporal estimator depends on the
length of the initialization and the mean clutter measurement number. A variety
of initialization lengths have been tested and are plotted in Figure 4.2.
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Figure 4.2: Temporal bias with different lengths of initilization.

Figure 4.2 shows that longer init time leads to a lower bias for high mean clutter
measurement numbers. The bias seems to approach zero as the initialization time
increases. Keep in mind that the clutter density is adjusted for each time length
to get the correct mean number of measurements within the time window. This
means that a mean number of 5 measurements for ‘init time 10’ is simulated with
the same clutter density as a mean number of 20 measurements for ‘init time 40’.
An interesting observation with Figure 4.2 is that an initialization time of 1 scan
equals the same amount of bias as the Classic estimator. In other words, the Tem-
poral estimator already has a less biased clutter estimate than the Classic estimator
at the second scan. The reason why all three lines goes towards negative infinity is
due to the event that if no measurements have fallen in the cell, the estimator uses
the current scan as the inter-arrival time to estimate the density. The estimated
density value is then heavily biased to output a higher clutter density than ground
truth for low mean number of measurements, just as the Classic estimator.

Negative bias for small clutter measurement numbers in the Temporal estima-
tor will only occur during the beginning of a scenario and will deteriorate over
time. To show the remaining bias of the averaging window size L as time pro-
gresses, the bias simulation was run for a number of time steps equal to 1000 ×
L/(mean measurements). The result is shown in Figure 4.3.
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Figure 4.3: Temporal bias of different window lengths L for a longer simulation
time.

Figure 4.3 clearly demonstrates that even as the mean clutter measurement num-
ber increases, there is still a bias in the Temporal estimator due to the averaging
length L. Yet with a length of L = 40 the bias is already close to zero.

The Spatial estimator only has bias of the clutter density when cells are located
near a discontinuity in real clutter density, as stated in Section 2.4.4. To demon-
strate this bias, three cells from the test setup in Section 3.4 were simulated for
10000 scans with a range of window lengths L to get different number of mean
clutter measurements (Figure 4.4).
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Figure 4.4: Comparison of spatial biases for three different clutter cells.

As we can see in Figure 4.4, the bias of a Spatial clutter map cell is heavily influ-
enced by its proximity to an area of another clutter density. ‘cell 1’ and ‘cell 3’
have a significant amount of bias, since they are located on the border between two
densities of λlow = 1 × 10−5 and λhigh = 5 × 10−5. The negative bias for ‘cell 1’
in Figure 4.4 means it estimates higher clutter values than the real values, and the
positive bias for ‘cell 3’ means lower values than the ground truth. This transition
between regions of different density coincides with the theory from Section 2.4.4.
Areas further away from such discontinuities in density, such as ‘cell 2’, are less
influenced by these variations.
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4.2 Performance measures

An important question when comparing techniques in a field of research is how to
measure their quality against each other, as well as finding advantages and dis-
advantages with the application areas of the techniques. One should attempt to
adjust performance measures to desired real world applications. Thus, test sim-
ulation should attempt to mimic real situations, and the findings should reflect
suitability and reliability of a set of methods according to the problem we want to
solve.

First, we want to test reliability of track initiation using different methods. Thus,
we need clear criteria for classifying true and false initiated tracks.

A typical way of presenting performance results of a given component or a sys-
tem is with Receiver Operating Characteristic (ROC), which will be the main way
of presenting results in this thesis.

4.2.1 SOC analysis

ROC analysis shows the trade off between positive and negative detections in a
binary classification problem as the discrimination threshold is varied. When test-
ing a complete system instead of a single system unit, it can also be referred to
as System Operating Characteristic (SOC). In terms of track initiation this can be
used to show the trade off between true and false tracks detected. For the SOC
tests in this thesis, the true positive rate is denoted PDT for true track detection
probability and the false positive rate is denoted PFT for false track probability.
This notation follows [2].

The SOC estimation was conducted the same way as in [19].

PDT =
Number of targets detected

Number of total targets
(4.2)

PFT =
Number of false confirmed tracks

Number of confirmed and terminated tracks
(4.3)

The false and true track probabilities were calculated individually from simula-
tions with and without targets. The false track probability PFT was calculated
after running simulations with only clutter in the test setup. Therefore, the simu-
lated targets had no impact on this value.

To test how the different clutter map methods compares against a regular non
parametric IPDA, the test scenario was run 1000 times for each method with each
given set of parameters. A specific random seed was chosen to create all mea-
surement data for the tests, to make the results easier to compare. The initiation
thresholds were set in the range [0.85, 1.0), though most tests were done with
thresholds above 0.98.

All SOC plots in this chapter are plotted with logarithmic axes. This is due to
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the fact that a COLAV system needs to be as close to a fail-safe state as possible,
and improving a value by a decade is thus highly relevant as a criteria for a secure
COLAV system. Also, most values in for PDT in this section are in the upper range
of [0.99, 1.0), and most values of PFT are in the lower range of [0.0, 0.01].

Since the clutter maps have been tested for a set of initialization lengths, the
number of initialization scans is added in the label name. For instance, ‘Classic
40’ means the Classic estimator initiated with an initialized map from 40 scans of
clutter measurements.

4.3 SOC results

In theory, a tracking system with prior knowledge of clutter density should per-
form better than a non parametric method. This is due to the fact that the non
parametric method assumes a uniformly distributed number of clutter measure-
ments, as stated in Section 2.3.2, and may therefore be more inclined to initiate
false tracks in high clutter areas. It may also be slower to initiate true targets in
low clutter areas compared to parametric solutions. Furthermore, a clutter map
with knowledge of ground truth clutter densities would ideally perform better than
an estimated clutter map. The results shown in Figure 4.5 corresponds somewhat
with these theoretical assumptions, though there are some surprises.

Figure 4.5 and Figure 4.6 shows estimator performance after an initialization pe-
riod of 20 scans. As expected, the non parametric IPDA performed poorer than
the parametric ones. Spatial shows best results of the three estimators both in
terms of SOC scores and initiation time. Spatial is also the estimator with the
fastest convergence which could explain why it outperforms the other two estima-
tors for an initiation time of only 20 scans. Classic and Temporal has considerable
amounts of bias for the low clutter area after only 20 scans which was discussed
and demonstrated in Section 4.1. Temporal appears to be slightly better at track
initiation time than Classic.
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Figure 4.5: SOC performance of initialized clutter maps. L = 20.
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Figure 4.6: Track initiation time. L = 20.
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The IPDA with a true clutter map provides mostly the best results, but quite
surprisingly it has a sudden drop below other methods for the two highest test
thresholds. One of the false initiated tracks for the True clutter map was examined
to discover why this occurred. One of the missed true targets was also examined.
The false initiated track scenario is shown in Figure 4.7, while the missed true
target scenario is shown in Figure 4.8.

−600 −400 −200 0 200 400 600
−600

−400

−200

0

200

400

600
True clutte  map with false t ack

−600 −400 −200 0 200 400 600
−600

−400

−200

0

200

400

600
All measu ements f om t=5.0 to t=12.5

6 8 10 12 14 16 18 20
Timestamp

10−3

10−2

10−1

100

1 
- P

ro
ba

bi
lit

y

Existence for confirmed tracks
classic 20
true

−50 0 50 100

−50

−25

0

25

50

75

100

125
Close up of initiation a ea

Figure 4.7: A false track initiation for True clutter map.

As we see in Figure 4.7, the IPDA with a True clutter map estimates a higher
existence probability at timestamp = 12.5 than with a Classic estimator, and
thus it confirms the track even at a higher initiation threshold. The Spatial and
Temporal estimators performed similarly to the Classic estimator for this scenario,
and did not initiate the track at the threshold of 0.999 which is shown with a dotted
line in the figure. The circled measurements with a red color scale on the rightmost
subplots show which measurements were gated in the preliminary track. In the time
period t = 5.0 to t = 12.5 it appears as though there may be a target with course
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towards the bottom right corner of the map, but as we see from the existence plot,
the existence drops quickly in the following scans, and the false (preliminary or
confirmed) track is terminated by all methods by t = 20. As we can see, the first
three gates of the IPDA caught four measurements from the high clutter area, while
the last measurement is from the low clutter area. Since the clutter measurement at
t = 12.5 happens to align with the estimate of the preliminary track, the parametric
solutions are primed to trust it more than the previous measurements due to a
lower assumed clutter density. However, to understand why the True clutter map
gets a higher spike than the other parametric solutions, we have to look into their
estimated clutter density in that area. The estimated clutter densities are listed in
Table 4.1 along with the existence probabilities.

Estimator Clutter density
t=10

Clutter density
t=12.5

Existence
Probability

t=12.5
True 1.00× 10−5 1.00× 10−5 0.999
Classic 20 1.50× 10−5 2.50× 10−5 0.996
Spatial 20 2.34× 10−5 3.39× 10−5 0.997
Temporal 20 2.22× 10−5 2.31× 10−5 0.996

Table 4.1: Clutter and existence estimates for the false track from Figure 4.7 at
low clutter cell area N={-100, 0}, E={0, 100}

We see from Table 4.1 that all the estimated clutter map methods have a higher
estimated density than the true density in the area. Higher clutter density λ ex-
plains the lower existence probabilities, due to (2.31), which proves to be beneficial
in this specific scenario. The reason for the estimators’ high clutter estimates can
be explained by their individual biases discussed in Section 2.4.4 and Section 4.1.
The Spatial estimator estimates higher density since it is located close to a high
density region, as can be seen for ‘Spatial cell 1’ in Figure 4.4. The Classic esti-
mator estimator should not have any considerable bias based on a mean clutter
measurement number of 2 in Figure 4.1, but does have a large variance for low
clutter measurement numbers, which may explain its poor estimation in this sce-
nario.

We also see from Table 4.1 that all three estimators estimate higher clutter density
in t = 12.5 than in t = 10, especially Classic and Spatial. This shows that they
still have high variance in estimated densities at this point. Variance will for all
estimators be higher in low clutter areas since they have less information to base
their estimates on. It also demonstrates that without any way of filtering measure-
ments from a real target, the estimators will measure higher clutter amounts in
areas where a target is moving. In this case the preliminary track was in fact false,
so the higher estimates worked in their advantage.
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Figure 4.8: A true track initiation where Spatial clutter map is more certain than
True clutter map. Only clutter measurements and upper target measurements are
included.

Figure 4.8 shows a scenario where the Spatial estimator is able to initiate the track
at a threshold as high as 0.9995, while the True clutter map is not. Scenarios in
which the real target is moving just inside of the high clutter area for nearly the
whole simulation, are the scenarios which the True clutter map struggles the most.
These scenarios are mostly what is causing the sudden drop in the PDT values for
True clutter map for high thresholds in Figure 4.5. The clutter map estimators are
able to initiate more of these targets due to their inaccuracies in clutter estimation,
causing sudden spikes in existence probability. This is especially apparent for the
Spatial estimator which has significant bias in corners of the high clutter area,
demonstrated in Figure 4.4. We can see that the last existence probability spikes
over the threshold in the last scan in Figure 4.8 due to entering a lower estimated
clutter cell.
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Other initialization lengths

The test scenario was also simulated with initialized clutter maps of 40 and 80
scans. Results from 40 scans of initialization are shown in Figure 4.9 and Fig-
ure 4.10. Both Classic and Temporal have improved their SOC values from the
results from 20 scans of initialization (Figure 4.5), while Spatial show similar values
as before. Otherwise the three estimators produce comparable SOC results for this
initialization length. The track initiation time for Classic and Temporal has also
improved, although Temporal is still slightly better, as shown in Figure 4.10.
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Figure 4.9: SOC performance of initialized clutter maps. L = 40.
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Figure 4.10: Track initiation time. L = 40.
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Figure 4.11: SOC performance of initialized clutter maps. L = 80.
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Figure 4.12: Track initiation time. L = 80.

Results from 80 scans of initialization are shown in Figure 4.11 and Figure 4.12.
The Classic and Temporal estimator have slightly improved their SOC results from
40 scans (Figure 4.11) while Spatial remains approximately at the same values as
for 40 scans. Spatial seems to have a flatter curve than the other estimators,
being able to detect more targets at lower false track rates, but fewer targets at
higher PFT acceptance rates. Initiation times for all estimators seem to be almost
identical to the True clutter map for PFT values higher than 10−4. At this length
of initialization, all three estimators should be close to convergence and increasing
initialization length further would not likely yield improved results.

4.3.1 Without initialization time

While initialization time can be helpful to provide initial estimates prior to starting
a vessel at sea, this extra time may not always be available. Hence, the clutter map
estimators were also simulated without initialization time. The Classic estimator
shows the best results of the three estimators in both Figure 4.13 and Figure 4.14.
Temporal has just barely better SOC results than the non parametric IPDA. As
for initiation time, all three estimators are outperformed by the non parametric
method.
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Figure 4.13: SOC performance without initiation time.
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Figure 4.14: Track initiation time. No initialization for clutter maps.
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The results from varying the initialization lengths is shown for each estimator
individually in Appendix A demonstrating the points made about initialization
time in another way.

4.3.2 Excluding target measurements

As stated in Section 2.4.5, excluding the target measurements from clutter esti-
mation might be beneficial for the estimated clutter densities. In Section 3.6 a
suggested method for removing target measurements was proposed. This method
has been implemented and tested using the test scenario from Section 3.4. The
results from the clutter maps estimated without the real target measurements are
labeled ‘wo target’, while the maps estimated without the proposed target removal
technique are labeled ‘wo est target’. The results from ‘wo target’ are only achiev-
able through simulation, as there is no way to be completely sure of what are target
measurements or not in a real scenario. If one could pinpoint the target measure-
ments with certainty there would be no need for clutter maps in target tracking.

In Figure 4.15 we see that ‘wo target’ is closer to the True clutter map results
than the other results, which is expected. The target removal technique performs
slightly worse than the estimator with all measurements except for some results
with higher PFT values.
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Figure 4.15: SOC performance for Temporal estimator with and without target
measurements.
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Figure 4.16: SOC performance for Classic estimator with and without target mea-
surements.

The removal of estimated target measurements performs better for Classic, shown
in Figure 4.16, but still shows reduced performance for some tests.

4.3.3 Uniform clutter performance

The test setup (Section 3.4) is set up to imitate the challenges of clutter variations
in the map, which favors favors parametric methods over non parametric. There-
fore the same setup was simulated, but with uniform clutter across the whole map.
The uniform clutter was set to λhigh from the original test setup. This simulation
was done to see if the parametric methods are still better than the non parametric
method in uniform clutter.

This test was only done for initialized maps of length L = 40. The initialized
maps are shown in Figure 4.17. Initialized maps of both high uniform with λhigh
and low uniform with λlow were created to compare the differences.
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Figure 4.17: Initialized clutter maps in uniform clutter. L = 40. High clutter:
5× 10−5. Low clutter: 1× 10−5.

We can see in Figure 4.17 that the Spatial estimator produce the best results in
uniform clutter, which is consistent with the theory from Section 2.4.4. The low
clutter density equals a mean clutter measurement number of 4, which means a
high positive bias for the Classic estimator in Figure 4.2. That explains the dark
areas which are lower than the true density value. The Temporal estimator has
a huge negative bias for values for mean numbers close to zero, which is why it
estimates some very high density values in a few cells on the map. Nonetheless,
Temporal is the only estimator which will on average improve estimate accuracy in
subsequent scans, since the averaging windows of Spatial and Classic are already
full.

The clutter maps based on high clutter show significantly better results, since
it means a higher mean clutter measurement number and thus a lower bias.
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Figure 4.18: SOC performance in uniform clutter for Temporal.
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Figure 4.19: Track initiation time in uniform clutter for Temporal.
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Figure 4.18 shows that the non parametric IPDA is still inferior to the parametric
IPDAs. Nonetheless, it is the only method to achieve zero false targets for the
highest tested initiation threshold. We see that the temporal estimator ‘wo target’
performs nearly equally to the True clutter map. This conforms with the bias re-
sults in Figure 4.2, where the bias is close to zero for this density. In this scenario
the mean clutter measurement number equals 20 when L = 40.

Track initiation time results in Figure 4.19 seem to show the same order from
best to worst, although it is difficult to tell them apart for higher PFT values.

The Spatial SOC results in Figure 4.20 show even better results than the Tem-
poral estimator, as expected for uniform clutter. The fact that they outperform
the True clutter map may be because the clutter in the current scan are included
in clutter density calculation, making them slightly adaptable to dynamic changes
in clutter from one scan to the next.

The proposed method of excluding target measurements shows promising results
for both the Spatial and the Temporal estimator. This suggests that using such a
method may be beneficial in other scenarios as well.
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Figure 4.20: SOC performance in uniform clutter for Spatial.
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Figure 4.21: Track initiation time in uniform clutter for Spatial.

The initiation time results in Figure 4.21 are almost identical to the Temporal
results in Figure 4.19.
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Chapter 5
Results from real data

The Autosea project provided two real data sets of scenarios tested and recorded
in Trondheimsfjorden:

• Seatex Drone

• Near Munkholmen and Approach

The two scenarios vary in terms of length, number of vessels, and clutter amount
and distribution. The radar used in the experiments, shown in Figure 5.1, has
a radar scan rate of approximately 2.5 seconds per scan. The autonomous vessel
‘Telemetron’, shown in Figure 5.2, is used as the ownship in both scenarios with the
radar on board. It should be noted that the position of the radar is therefore non
stationary in an earth-fixed reference frame in contrast to the the simulator which
would be more comparable to a stationary radar. The measurement detection
probability in the scenarios was seemingly poorer than in the simulator, so the
detection probability in the IPDA was readjusted to PD = 0.8. Some targets in
the ‘Near Munkholmen and Approach’ scenario had more maneuverability than
the NCV model used for targets in the simulator, so target noise covariance was
readjusted up to σ2

q = (0.5ms−2)2 in that scenario. This noise covariance value
was set according to testing done in [20].
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Figure 5.1: The radar used to obtain measurements for the scenarios ‘Seatex Drone’
and ‘Near Munkholmen and Approach’.

Figure 5.2: The ownship, labeled ‘Telemetron’, in the scenarios ‘Seatex Drone’ and
‘Near Munkholmen and Approach’ with the radar from Figure 5.1 on board.

Since there was only one set of test data in each scenario, the results are not shown
with SOC plots and initiation time plots. Instead, each tracking setup and pa-
rameters were tuned according to each scenario to get the best results where they
found the known targets.

The scenarios were also tested with clutter estimation posterior to updating track
estimates, meaning that the clutter estimates used in estimate update was based
on Nk−1 as in Musicki’s theory [17]. The results did not change noticeably by this
algorithm adjustment, and was thus not included in the results in this chapter.
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5.1 Scenario: Seatex Drone

5.1 Scenario: Seatex Drone

This scenario was done as a COLAV experiment with ‘Telemetron’ as the ownship
trying to avoid Kongsberg’s autonomous drone ‘KSX 0SD1’ on its path southwards.
Radar measurement data and AIS data from the relevant targets are shown in
Figure 5.3. The two targets are shown in Figure 5.4.
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Figure 5.3: Raw radar and AIS data from the real scenario referred to as ‘Seatex
Drone’ recorded with AIS and radar.
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Figure 5.4: The two targets present in the scenario. The top is labeled ‘KSX 0SD1’
and was the target of a coordinated COLAV experiment, the bottom is a passing
ferry labeled ‘Vesteraalen’.
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Figure 5.5: Confirmed tracks from a non parametric IPDA running the ‘Seatex
Drone’ scenario shown in Figure 5.3.
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Figure 5.5 shows a successful run of a non parametric IPDA initiating only true
tracks. The reason why tracks are dropped only to be re initiated can be explained
by the fact that the implemented IPDA in this thesis uses a Markov chain one,
which does not take into account that the target may not be observable for parts
of the tracking process. Using a Markov chain two after initiating a track could
assist in this problem (Section 2.3.2) but since we are focusing on track initiation in
this thesis, we will continue to use Markov chain one. The process noise covariance
following a NCV model used in this scenario might also contribute to premature
track termination, if the targets show a sudden change in course or velocity. Setting
a higher value for process noise covariance could solve this issue, but would also
make the track trajectories more exposed to measurement noise. It could also lead
to more false initiated tracks.

The results are presented in Table 5.1. The initiation times are listed for the
detected targets in this order: [KSX 0SD1, Vesteraalen].

Method Init
threshold

N Cell size Number
of false
tracks

True track
conf. time
(scan nr.)

Non
parametric

0.90 - - 2 [4, 15]

Non
parametric

0.94 - - 0 [4, 16]

Non
parametric

0.99 - - 0 [5, 17]

Classic 0.90 20 50m× 50m 3 [5, 16]
Classic 0.94 20 50m× 50m 0 [5, 16]
Classic 0.99 20 50m× 50m 0 [9, 26]

Classic wo est
target

0.90 20 50m× 50m 6 [4, 15]

Classic wo est
target

0.99 20 50m× 50m 0 [5, 17]

Spatial 0.99 20 50m× 50m 6 [14, 14]
Spatial 0.999 20 50m× 50m 1 [15, 15]

Spatial wo est
target

0.99 20 50m× 50m 8 [4, 14]

Spatial wo
est target

0.999 20 50m× 50m 1 [4, 15]

Spatial wo est
target

0.9999 20 50m× 50m 0 [5, 15]

Temporal 0.99 20 50m× 50m 1 [16, 25]
Temporal 0.995 20 50m× 50m 0 [24, 26]
Temporal
wo est
target

0.99 20 50m× 50m 1 [9, 17]

Table 5.1: Tracking results from the scenario ‘Seatex Drone’
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The non parametric IPDA performs very well in this scenario, and it seems that
the addition of a clutter map does not improve the results. In fact, the parametric
methods actually perform worse in most cases, and need higher initiation thresh-
olds to filter the false tracks. Still, the Classic clutter map is able to filter all false
tracks with a threshold of 0.94 and still has nearly identical confirmation times for
the true tracks. Temporal only initiates one false track with a threshold of 0.99,
but its initiation time for ‘KSX 0SD1’ is not comparable to that of Classic and non
parametric.

Increasing the averaging length N or using larger cell sizes than 50m × 50m did
not show improvement for any of the estimators.

Removing estimated target measurements shows an improvement for the Spatial
estimator and the Temporal estimator. They do not initiate fewer false tracks,
but the confirmation times show huge improvement. ‘Spatial wo est target’ reduce
the initiation time for the target ‘KSX 0SD1’ from 15 to 4 scans for an initiation
threshold of 0.999. It is also able to maintain this improved initiation time for a
threshold as high as 0.9999 where it has no false tracks. The Temporal estimator
significantly reduce initiation time for both targets while still only initiating one
false track.

The reason why the non parametric IPDA performs so well compared to the
parametric IPDA’s, can be somewhat explained by the change in clutter densi-
ties throughout the scenario. By comparing Figure 5.6 and Figure 5.7 we see that
a field of clutter appears in the top center of the map in the second half of the
scenario. This results in low estimated clutter densities in this area from the first
scans, which is only slowly changed to higher estimated densities as the clutter
appears in the second half of the scan set. False tracks may easier initiate when
these low estimates from the first half are still apparent in the averaging windows
of the estimators. Rapid changes in clutter densities are therefore not suitable for
the clutter map estimators.
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Figure 5.6: First 37 scans of the real scenario referred to as ‘Seatex Drone’.
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Figure 5.7: Last 37 scans of the real scenario referred to as ‘Seatex Drone’.
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5.2 Scenario: Near Munkholmen and Approach

This scenario is almost 10 minutes long and covers a larger area than the ‘Seatex
Drone’ scenario. The data set consists of 234 radar scans along with AIS data for
vessels in the measurement area. The measurement set and AIS data are plotted
in Figure 5.10. Since the set consists of a significant amount of scans, the first and
second half of the set are shown in Figure 5.11 and Figure 5.12 for a clearer view.

The vessel ‘Autosea target vessel’ was a relatively small private pleasure craft
used to test the tracking and COLAV capabilities of ‘Telemetron’, and is shown in
Figure 5.8. There were other vessels with AIS present in this scenario which were
not affiliated with the Autosea experiment. These vessels are shown in Figure 5.9.

Figure 5.8: The vessel labeled ‘Autosea target vessel’ in the ‘Near Munkholmen
and Approach’ scenario.
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Figure 5.9: Three of the vessels present in the AIS data for the ‘Near Munkholmen
and Approach’ scenario. The top is a rowing boat labeled ‘Aerora’, the middle is
a high speed craft labeled ‘Ladejarl’ and the bottom is a passenger vessel labeled
‘Nidarholm’ ( c© Joakim Eide).
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Figure 5.10: Raw radar and AIS data from the real scenario referred to as ‘Near
Munkholmen and Approach’.
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Figure 5.11: First 117 scans of the real scenario referred to as ‘Near Munkholmen
and Approach’.
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Figure 5.12: Last 117 scans of the real scenario referred to as ‘Near Munkholmen
and Approach’.

The AIS target ‘Aerora’ was not found for any parameter setup, and does not seem
to be detected in much of the radar scans. This is only a small rowing boat, as we
can see from Figure 5.9. In addition, it moves close to shore and more than 500m
away from the ownship (Figure 5.11), making it harder for the radar to detect it.
The setup was therefore tuned only enough to find the other targets in the scenario.

Measurements from land has been filtered out in this scenario by using a nau-
tical map, in the way discussed in Section 2.1.4. The ship ‘Nidarholm’ can be seen
arriving at the island ‘Munkholmen’ in Figure 5.12, and the ownship and ‘Autosea
target vessel’ arrive at shore in the end of the scenario. Unfortunately, there was
not sufficient time to implement the clutter map in combination with the nautical
map, so the clutter estimators along the coast may be biased by this fact. The vol-
ume V (c) used in the Classic and Temporal estimator should ideally be adjusted
for cells containing masked land. Without any readjustment, these cells are biased
to estimate lower clutter values. However, the lack of a nautical map may affect
the Spatial estimator the most as it should ideally remove volume expansion in the
masked areas (Figure 2.8). All cells with volume expansion which sometimes occur
in masked areas are therefore affected by this issue.
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One track which was usually initiated by all tested tracking methods appear to
the naked eye to be a real target. However, since we have no AIS data from this
target and no other data to confirm whether it was a vessel or just clutter, the
tracks initiated for these measurements are neither counted as false or true. The
potential target measurements are shown in Figure 5.13. This also demonstrates
the difficulty of determining real targets from radar measurements alone.
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Figure 5.13: Measurements from scan 100 to scan 234 showing a potential target
without any associated AIS data.

The results from the testing of non parametric vs parametric IPDA’s show promis-
ing results for some of the estimators. The results are presented in Table 5.2. The
initiation times are listed for the detected targets in this order: [Autosea target
vessel, Nidarholm, Ladejarl].
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Method Init
threshold

N Cell size Number
of false
tracks

True track
conf. time
(scan nr.)

Non
parametric

0.99 - - 19 [6, 69, 122]

Non
parametric

0.998 - - 6 [9, 70, 123]

Classic 0.985 20 50m× 50m 12 [10, 69, 124]
Classic 0.998 20 50m× 50m 1 [10, 70, 128]
Classic 0.998 40 50m× 50m 6 [10, 70, 126]
Classic 0.998 40 100m× 100m 26 [15, 65, 122]

Classic wo est
target

0.998 20 50m× 50m 2 [10, 70, 128]

Spatial 0.9995 20 50m× 50m 25 [5, 65, 121]
Spatial wo
est target

0.9999 20 50m× 50m 10 [6, 65, 121]

Temporal 0.9995 20 50m× 50m 7 [38, 96, 131]
Temporal 0.9995 40 100m× 100m 19 [21, 75, 128]
Temporal 0.9999 40 100m× 100m 0 [53, 96, 140]

Temporal wo
est target

0.9995 20 50m× 50m 20 [24, 70, 128]

Table 5.2: Tracking results from the scenario ‘Near Munkholmen and Approach’

Even though the non parametric IPDA was outperformed by the clutter map es-
timators in Chapter 4, the results are not as clear in this real scenario. The non
parametric IPDA initiated six false tracks for a threshold of 0.998, and increasing
the threshold lead to the real targets not being found. Spatial performed arguably
the worst in terms of number of false tracks. The estimator lead to falsely initiated
tracks across the whole map. Nonetheless, some of its poor estimation may be due
to the lack of a nautical map implementation, as mentioned earlier in this section.

The Temporal estimator manages to filter all false preliminary tracks by setting
the threshold to 0.9999. Yet the high threshold affects initiation time consider-
ably. 53 scans is in most scenarios not an acceptable initiation time. At a lower
threshold of 0.9995 it does considerably better in terms of initiation time, but also
initiates several false tracks. The tracks initiated by the Temporal estimator are
mostly close to the areas by the border where the nautical map has masked out
land, as we see in Figure 5.14. Since clutter cells overlapping this border has a
bias, they may contribute to higher existence estimation and cause the initiation
of false tracks. There is in general more clutter near shore, so the implementation
faults are not necessarily entirely to blame, but they may have a negative impact
on the results.

The Classic estimator performs best out of the three estimators, and is the only
one of the three to clearly outperform the non parametric method. With cells of
size V (c) = 50×50m2 and an averaging length of N = 20, it is able to initiate only
one false track. The initiation times are still nearly as good as the non parametric
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method. The initiated tracks are shown in Figure 5.15. When comparing it to
Figure 5.16 we see that it does not initiate the false tracks that ‘Non parametric’
does in some of the high clutter areas on the map.
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Figure 5.14: ‘Near Munkholmen and Approach’ scenario with confirmed tracks
from Temporal estimator. N = 20, V (c) = 50× 50m2.
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Figure 5.15: ‘Near Munkholmen and Approach’ scenario with confirmed tracks
from Classic estimator. N = 20, V (c) = 50× 50m2.
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Figure 5.16: ‘Near Munkholmen and Approach’ scenario with confirmed tracks
from a non parametric IPDA.
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It is worth noticing that both Spatial and Temporal have to use very high initiation
thresholds to filter out false tracks. This may be due to poor clutter estimation
as the real clutter densities change when the ownship changes location, which was
also mentioned for the ‘Seatex Drone’ scenario in Section 5.1.

Excluding estimated target measurements from clutter estimation was also tested
and proved very beneficial in some tests. The Spatial estimator was able to re-
duce the number of false tracks from 25 to 10 and retained the same initiation
times. Excluding the estimated target measurements in the clutter estimator lead
to higher existence values for the true tracks, meaning the threshold could be in-
creased without loosing true confirmed tracks. Figure 5.17 demonstrates how the
estimated clutter densities in the area around a real target are lower when the ex-
clusion of target measurements method is applied. However, as this may happen for
false preliminary tracks as well, some false tracks can get higher existence values.
This was the case for Classic and Temporal, which did not benefit from removing
the estimated target measurements in terms of number false tracks. Temporal got
lower track initiation times, but at the cost of almost the triple amount of false
tracks.
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Figure 5.17: A comparison of a Spatial estimator with and without the estimated
target measurements removal method (Section 3.6) in an area around a real target.
The clutter maps are based on the first 40 scans of the ‘Near Munkholmen and
Approach’ scenario. N = 20, V (c) = 50× 50m2.
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In general it was found that a smaller cell size (50m×50m) and a shorter averaging
length (20) was beneficial for the results. As we see in Table 5.2, Classic was tested
with the same threshold for N = 40 and a cell size of 100m × 100m, and both
affected the number of false tracks negatively. That being said, smaller cell size
also means more cells on the map and will thus affect runtime negatively.

Visual inspection of the entire clutter map did not contribute to much analysis.
The clutter map for the Classic estimator with N = 20 can be seen in Figure 5.18.
The cells with a higher clutter density forming an ellipse in the outer regions of
the map, show the the outer rim of the circular radar range as the ownship has
moved. These cells were not within radar range long enough to fill up the averaging
window and therefore estimate a higher clutter density than the lowest bound of
the estimator.
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Figure 5.18: Clutter map using Classic estimator at the end of the scenario ‘Near
Munkholmen and Approach’. N = 20, V (c) = 50× 50m2.
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The efficiency and quality of a track initiation process is affected by choice of equip-
ment and initiation techniques, and depends on the desired outcome and quality
measures for the field of application. An effective COLAV system at sea relies on
quick initiation of tracks in order to avoid dangerous situations when navigating
through congested areas. On the other hand, setting initiation thresholds too low
for faster initiation can lead to false tracks and erroneous trajectory behaviour of
the ownship.

The requested maximum number of scans to initiate a track may differ accord-
ing to the radar equipment and details about ownship location and the specific
scenario. The ratio between radar scan rate and vicinity to new potential targets
has a direct impact on the requested number of scans. When moving close to shore,
the time to initiate targets might be lower than when further out on the ocean due
to the proximity to vessels which may suddenly leave harbor. Areas near shore
are also prone to producing more clutter, making the process of filtering clutter
measurements from target measurements critical for a reliable initiation system.
Parametric editions of tracking methods attempt to assist in clutter calculation by
taking previous or additional information into account when evaluating the current
situation. Using a clutter map is one way to estimate clutter in different regions of
a scanned area, with advantages and disadvantages accompanied with the chosen
clutter estimation method.

Musicki’s three clutter estimators featured in [17] each have certain estimation
biases connected to parameter choices and real clutter distribution. Theoretical
biases of each estimator were presented in Section 2.4.4 and were tested in Sec-
tion 4.1. The performance results of each estimator in simulations was presented
in Section 4.3 where most results corresponded with the theory. The real results
on the other hand, showed that parametric IPDA’s does not necessarily provide
superior results. One significant difference of the real data sets compared to the
simulations is that the radar is on board a moving vessel, meaning the radar po-
sition is not stationary. One prominent effect from the moving radar in the real
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scenarios was a non stationary clutter distribution over time. By comparing figures
from the first and second half of both scenarios (Figure 5.6, Figure 5.7, Figure 5.11,
Figure 5.12), we see that new high clutter areas have formed, while others have dis-
appeared. In addition, new clutter cells are also spawned as the radar range reaches
outside the current outer clutter cells in the ‘Near Munkholmen and Approach’ sce-
nario (Section 5.2). Another effect influencing the results comes from the filtered
land areas in the measurement set in ‘Near Munkholmen and Approach’. Both of
these effects are further discussed for each clutter map estimator below.

6.1 Classic clutter estimator

The Classic estimator is theoretically the least preferred estimator of the three due
to its slow convergence time and bias for low mean clutter measurement values.
This corresponds with some of the results from the simulations, yet not as much
as one might suggest from only knowing the theoretical bias. It was only slightly
less favorable to the Temporal estimator for some initialization lengths, but when
tested without initialization time, Classic actually showed the best results of the
three estimators (Figure 4.13, Figure 4.14). This may be because the other two
estimators are more affected by the target measurements when they have no prior
initialization period. Classic has a positive relative bias for few measurements in
the averaging window meaning that the estimated value is lower than it should be,
while the other two estimators are more prone to estimating higher densities in this
situation. Higher estimated densities around real targets can cause lower existence
values, meaning the other two estimators need lower thresholds to initiate the true
tracks.

When tested for real measurement data, the Classic estimator outperforms the
other estimators in both tested scenarios (Chapter 5). It shows similar results to
the non parametric IPDA in the ‘Seatex Drone’ scenario in Section 5.1 and shows
the best results of all tested IPDA setups in the ‘Near Munkholmen and Approach’
scenario in Section 5.2. As stated earlier, the non stationary radar in these sce-
narios may contribute to these results. The Classic estimator has a lower bound
for the clutter density estimate when the averaging window is filled up, which may
actually be beneficial when the clutter distribution is non stationary. With a clut-
ter area of V (c) = 50m × 50m and averaging length N = 20, the lower bound
for clutter density is λ = 2 × 10−5. Smaller cells and shorter averaging lengths
leads to an increased lower bound. The lower bound may be slightly in favor of
the Classic estimator for new high clutter areas as the IPDA will estimate lower
existence values for false tracks in these areas. We also see from its relative bias in
Figure 2.9 that it is otherwise biased to estimate lower clutter densities than real
values. This implies that the estimator in general has a smaller range for most of
its estimates, than the other two estimators.
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6.2 Spatial clutter estimator

The spatial estimator does not have any bias in uniform clutter which is clearly
shown in Figure 4.17 where it outperforms the other two estimators in both accu-
racy and convergence speed. Hence, in real scenarios where the clutter is known
to be close to uniformly spread across the map, the Spatial estimator would be the
most effective. Whether the assumption that clutter is uniformly spread at sea can
be further discussed, and if so it would be somewhat unnecessary to have a number
of clutter cells in the map. Nonetheless, the Spatial estimator outperformed the
non parametric IPDA in uniform high clutter by a significant amount, shown in
Figure 4.20 and Figure 4.21.

The simulated advantages of the Spatial estimator from Chapter 4 were not as
easy to come across in the results from real data sets in Chapter 5. Spatial showed
the poorest results in both tested scenarios in terms of number of false tracks. Still,
track initiation time for the real targets was comparable to the best results in both
tested scenarios. The moving radar and non stationary clutter distribution can ex-
plain why the estimator operated so poorly. Since the cell size does not constrain
the lowest estimated clutter density for the estimator, as it does to some degree
for the other two, it can obtain very low estimated values in areas of the map. If
these areas suddenly return more clutter, the new density will use some time to
propagate in the averaging window, meaning that the very low estimated value will
be retained for some time. False preliminary tracks in such areas will get too high
estimated existence values before the new density has propagated in the window,
and may thus result in the initiation of false tracks. The lack of a nautical map in
the clutter map implementation also contributes to a lower estimated clutter effect,
as discussed in Section 5.2. The bias of clutter cells near the edge of a mapped out
area can be compared to cells being close to cells close to a lower clutter density
region, demonstrated in Figure 4.4.

The results from the Spatial estimator improved significantly when it was com-
bined with the removal of estimated target measurements technique proposed in
Section 3.6. The measurements from targets moving in low clutter areas can affect
many surrounding Spatial clutter cells by raising their estimated density values,
which then lowers the estimated existence of the target in the parametric IPDA
algorithm. Hence, removing estimated target measurements made the IPDA able
to initiate these tracks at a higher threshold and simultaneously filter other false
tracks initiated at the previous threshold. Improving the target measurement re-
moval technique further might therefore improve the estimator results even more.

The runtime of the Spatial estimator was by far the slowest of the three estimators.
Including a KD-tree for the measurement set, as mentioned in Section 2.4.2, accel-
erated the simulations in Chapter 4, but the estimator was still noticeably slower
than the other two in the real data simulations in Chapter 5.
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6.3 Temporal clutter estimator

Even though the Temporal estimator converges towards no bias given long enough
time and a big enough averaging window, the bias demonstrated in Section 4.1 can
have a considerable impact on the performance of a parametric IPDA. The results
from simulations did not show Temporal as favorable compared to the Classic es-
timator except for slightly better track initiation time in some tests. Furthermore,
it was only better than Spatial for high PFT values in the scenario with 80 scans
of map initialization (Figure 4.11). Without initialization it did not show much
improvement to the non parametric IPDA, which could be explained by the esti-
mator’s high variance and bias during initial scans of a simulation. In Figure 4.17
Temporal is the only estimator to have several cells with significantly higher clutter
estimation than the real clutter density after 40 scans of initialization.

The high bias and variance of the Temporal estimator during initial estimation
of a clutter area, can explain why the estimator shows so poor results compared to
the non parametric IPDA in the real scenarios in Chapter 5. The changes in clut-
ter densities as the ownship moves around on the map, creates a situation where
Temporal does not have sufficient time to converge towards an unbiased estimate
before a new clutter density is present in the cell. This effect would especially be
problematic if a target moves into a previously high clutter area which now has a
lower clutter density, as old inter-arrival times τk remains in the averaging window
and are not propagated out due to little or no following clutter. Spatial and Clas-
sic are more adaptable in this sense as they add and remove data in the averaging
window in each step.

6.4 Overall discussion

All simulated test scenarios in this thesis clearly represent a cleaner and more
uniform clutter distribution than the real world scenarios presented in Chapter 5.
Comparing Figure 3.2 with Figure 5.3 we see that the squared clutter density re-
gions in the simulated test scenario are not completely comparable to the oddly
shaped and distributed clutter in the ‘Seatex Drone’ scenario. The implementation
of the clutter map in this thesis is based on square regions making it more fit to
handle the clutter from the test scenario. Even from one real scenario to another,
false measurements are unequally distributed and appear more dynamic over time
and it is hard to predict any pattern beforehand. Consequently, we get signifi-
cantly better results from the simulated testing than from the recorded data from
Trondheimsfjorden. When the estimated clutter densities in the clutter map are
too far from the truth, they misguide the tracking system more than they assist it,
leading to poorer results from the parametric IPDA than the non parametric IPDA.

As previously stated, the relative variance of all three estimators and the bias of
the Temporal estimator decrease over time if the averaging window is not full. The
downside of having too long averaging window is that all estimates become nearly
static. If any real changes occur in the clutter density some time after startup,
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they will propagate slower in the averaging window and thus affect the density
estimates slower. In other words, there is some trade off between the amount of
bias and variance in the estimated map, and responsiveness to real clutter density
changes. The final choice depends on how static or shifting one expects the real
clutter densities to be.

Since many ships and vessels move close to shore only as they enter or leave a
harbor, one could argue that a stationary radar could be set up in such locations
to provide measurement data for passing ships. The stationary radar would hope-
fully have a more stationary and slowly changing clutter distribution than a radar
on board a ship, making clutter maps more fit for clutter estimation. In such a
radar set up, the Temporal estimator may be preferable since it would have time
to converge towards its full potential of zero bias. Otherwise, for radar on board a
moving vessel, the Classic estimator appears to be the most suitable clutter map
estimator based on the real measurement sets in this thesis.

The parametric IPDA’s could beneficially be tested with a nautical map to see
their true potential. As a lot of false tracks were initiated near the mapped out
coast line, it would be interesting to see if such tracks are filtered when a nautical
map implementation is in place.

Although the focus in this thesis has been on a parametric IPDA with clutter
map, the non parametric IPDA performs very well on its own in the real scenarios.
It also shows promising results compared to other track initiation techniques in
[19] which is added in Appendix B.
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Chapter 7
Conclusion

Track initiation is an important part of a tracking system for autonomous vehicles.
There are many ways of implementing the initiation process, including M/N [2],
IPDA [15] and SPRT [9]. Clutter among radar measurements may lead a tracking
system to initiate false tracks, and in many real world scenarios, certain areas of
the map are more likely to return clutter than others, e.g. near-shore areas [20].
Track initiation methods can therefore beneficially be combined with a clutter map
for improved initiation time and accuracy.

The three clutter estimators for clutter maps featured in [17] improve the results of
an IPDA in simulations. The Spatial estimator is preferred for short initialization
time and in general for relatively uniform clutter. Though, its heavy bias for cells
near discontinuities in real clutter density make it unfavorable in many situations.
The real data sets tested in this thesis had nonuniform clutter, and Spatial showed
the poorest results of the three estimators. Its shape expansion is also more dif-
ficult to implement correctly for real scenarios where the radar has masked out
measurements from land. The runtime was also significantly slower for the Spatial
estimator compared to the other two, making it less desirable.

For a non stationary radar and thus possibly a non stationary clutter distribu-
tion, the Classic estimator is to prefer and the only one to perform just as good or
better than the non parametric IPDA. In spite of its relative bias, Classic shows al-
most the same results as Temporal in simulations, and outperforms all other IPDA
editions in the ‘Near Munkholmen and Approach’ scenario (Section 5.2). Still, the
Temporal estimator can be preferable for a stationary radar setup when the clutter
distribution is more stable.

The suggested method for excluding estimated target measurements showed to
be beneficial for track initiation time and somewhat for filtering false tracks.
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7.1 Future work

Real world testing

Clutter maps have so far had limited documented real world testing. Even though
some scenarios were tested in this thesis, more experiments are needed to draw
any full conclusions. This entails testing in various locations, noise conditions,
maritime traffic conditions and so on.

Other tracking methods

This thesis has focused on using a clutter map in combination with the IPDA to
improve single-target tracking, but clutter maps can also be paired with a range of
other tracking methods. It would be especially interesting to see a comparison of
parametric methods of single-target tracking against multi-target tracking methods
both in simulations and real world testing. The multi-target edition JIPDA [14] of
IPDA would be an interesting place to start.

Excluding target measurements

A difficulty with the implementation of clutter maps was how to avoid target mea-
surements from clutter estimation. One suggestion was presented in Section 3.6,
yet there might exist other solutions and approaches to this challenge. Additional
testing of techniques for estimating and removing target measurements would be
useful for future implementations of clutter maps. A suggestion for improving
the presented technique in this thesis, is to set an acceptance threshold for the
conditional probability βik of the selected target measurement. Furthermore, the
threshold could depend on the existence value P{xk|Zk} of the track.

Map layout and reference frame

The clutter map implementation in this thesis used an earth-fixed reference frame,
though it is also possible to use a body-fixed reference frame. This may introduce
different implementational challenges than the earth-fixed solution, but could pro-
vide improvements to other issues in the field of target tracking. There was also
no attempt to relocate the clutter map position during the simulated tests, which
would be a more equivalent approach to the real scenarios presented in Chapter 5.

Other clutter dispersal

One can also attempt to simulate other dispersal of clutter density with more
randomly created shapes and sizes of high clutter density regions. This could
perhaps be a closer approximation of real clutter than what was presented in the
simulation scenario for this thesis. It could also be more suitable for testing a
clutter map with dynamic decision of clutter cell sizes and positions.
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Appendix A
Additional SOC results

Figure A.1, Figure A.2 and Figure A.3 demonstrate further how initialization time
impacts each clutter estimator, which was discussed in Section 4.3. Spatial does
not improve noticeably after 20 scans, but Classic and Temporal do.
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Figure A.1: A comparison of SOC results for all tested initialization lengths for
the Classic estimator running the test scenario (Section 3.4).
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Figure A.2: A comparison of SOC results for all tested initialization lengths for
the Spatial estimator running the test scenario (Section 3.4).
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Figure A.3: A comparison of SOC results for all tested initialization lengths for
the Temporal estimator running the test scenario (Section 3.4).
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Abstract—Reliable track initiation is an important component
of a tracking system, especially when it is used as part of a
more general collision avoidance (COLAV) system. Some tracking
methods (e.g., IPDA) come with an in-built track initiation capa-
bility, while other methods (e.g., JPDA) lack this capability, which
in such cases typically is taken care of by heuristic rules such
as the M/N logic. Although Reid’s multiple hypothesis tracker
(MHT) is capable of track initiation, many implementations do
not include track initiation in the MHT framework due to the
increased complexity. While MHT is fundamentally Bayesian,
the non-Bayesian sequential probability ratio test (SPRT) of Van
Keuk is often used for track initiation.

In this paper we derive a Bayesian SPRT for track initiation
based on Reid’s MHT. The approach is compared with the
classical SPRT, both from a theoretical perspective and using
simulations. Furthermore, the paper provides a comparison
between the two SPRT versions, the IPDA and the M/N logic
in terms of system operating characteristic (SOC) curves and
track initiation time. The initiation methods are also tested on
real radar data recorded during full-scale maritime COLAV
experiments.

I. INTRODUCTION

Target tracking is a key ingredient in collision avoidance
(COLAV) for autonomous surface vehicles (ASVs). Com-
mercial vessels may use the automatic identification system
(AIS) system, but exteroceptive sensors such as radars are
still needed to track objects without AIS and in case of
transmission failure. Track management is a vital part of the
target tracking system, and track initiation in particular is an
important piece. The main priority is to initiate tracks such that
collision can be avoided. However, if a false track is present, it
may cause unnecessary maneuvers which confuse other ships,
or in worst case cause a collision with a real target. On the
other hand, if the target is detected too late, collision may be
imminent. Thus, the false alarm rate and track initiation time
must be weighted against each other.

There are two main approaches to track initiation. Soft
methods, such as the integrated probabilistic data association
(IPDA) may in principle maintain a track based on a measure
such as existence probability without making a decision on
whether a target is present or not. Another example of such
soft methods are trackers designed from the related concept of
perceivability [7]. Hard methods such as the M/N logic-based
method [1] and the sequential probability ratio test (SPRT)
[6] will declare a target present or not. When hard decisions

have to be made with basis in the tracking results (e.g., to
start a COLAV maneuver), the soft methods are thresholded to
declare tracks either present or absent. Choosing this threshold
is neither straightforward nor inconsequential. To the authors’
knowledge, there are few documented real-world results for
the IPDA, but it was successfully applied to tracking divers
in [3]. Methods based on finite set statistics (FISST) [10] are
also considered soft, as they also evaluate the probability that
a target is present.

Experimental validation of target tracking systems in mar-
itime environments have been reported previously in e.g. [16],
[5], [4]. In [16], the M/N method was used, which resulted
in several false tracks from returns close to land. In [5], the
SPRT was used to track static objects with an automotive
radar, from a high-speed vehicle. The SPRT has also been
successfully applied in the P-MHT framework [14], and in
the perceivability framework [8].

The remainder of the paper is organized as follows: In sec-
tion II, we summarize the existing methods for track initiation.
In section III, we introduce a Bayesian SPRT based on the
equations of Reid’s multiple hypothesis tracker (MHT) [12].
In section IV, we present simulation results, and experimental
results are presented in section V.

II. SUMMARY OF EXISTING METHODS

A. Assumptions
Assumption 1: Clutter is modelled as a Poisson process,

such that the number of clutter measurements mc in an area
V for a single scan has the distribution

Pc(m
c) =

(�(z)V )mc

mc!
e��(z)V (1)

where �(z) is the clutter density in V , in general spatially
varying. The concept of “new targets” can be further separated
as newborn targets, and undiscovered targets [15]. However,
they are highly related [2], and the distinction will not be
discussed in this work.

Assumption 2: The number of new targets mb in an area V
has the distribution

Pb(m
b) =

(�(z)V )mb

mb!
e��(z)V (2)

where the parameter �(z) is the new target density in V . As
the clutter density, this may also be spatially varying.



Assumption 3: The target motion model is assumed to be
linear-Gaussian, i.e. if the target exist, it moves according to

p(xk+1|xk) = N (xk+1; Fkxk, Qk) (3)

where xk is the state of the system at time k, and Fk and
Qk are the state transition and process noise covariance,
respectively.

Assumption 4: If the target exist, it is observed indepen-
dently over scans with constant detection probability PD,
according to

p(zk|xk) = N (zk; Hxk, Rk) (4)

The prior and posterior estimates of the target state at time
k are denoted x̂k|k�1 and x̂k|k, respectively. The data, which
is the sequence of scans from time k0 to k, are denoted Zk:

Zk = (Zk0
, Zk0+1, . . . , Zk), Zi =

n
zj
i

omi

j=1
(5)

where the scan Zi is the set of measurements at time i.

B. Single-target tracking

Given an initial target estimate, the target can be tracked
by a probabilistic data association filter (PDAF). First, the
measurements in the surveillance region are gated, according
to

⌫j
k

T S�1
k ⌫j

k < �G (6)

where ⌫j
k = Hx̂k|k�1 � zj

k is the innovation of measurement
j, Sk is the innovation covariance and the threshold �G can
be found from the �2-distribution by specifying the gate
probability PG [1, p. 96]. Gating ensures only measurements
close to the existing track will be considered in estimating
x̂k|k. Not only does this save computational resources, it also
lets us track several targets in parallel, as long as they remain
well separated.

After gating measurements by using the prior estimate, the
posterior estimate x̂k|k is calculated based on a weighted
sum of the measurement innovations. These weights, called
association probabilities, are given by

P (✓j
k|Zk) /

(
p(zj

k|✓j
k, Zk�1) j 2 (1, . . . mk)

2(1�PDPG)
PD�G

�jVk j = 0
(7)

where ✓j
k is the event that the measurement zj

k is target-
originated, and p(zj

k|✓j
k, Zk�1) is the likelihood of measure-

ment zj
k being target-originated, given the prior estimate

x̂k|k�1. The event ✓0
k represents a misdetection, i.e. that all

the measurements in the gate are clutter. If the clutter density
�j = �(zj

k) is not available, the nonparametric version of the
PDAF can be obtained by setting �j = mk/Vk, i.e. the number
of measurements in the gate [1].

C. M/N-based track initiation

The simplest form of track initiation is arguably M/N-based
track initiation [1]. The initiation test starts with any measure-
ment not associated with any existing tracks, which are set up
as tentative tracks. In the following scan, the measurements
within a certain range of the tentative track are used to initiate
a preliminary track. The range is determined by the assumed
maximum velocity of the targets and measurement covariance.
The preliminary track is then tracked using a PDAF for
maximally the next N scans. If the PDAF gates measurements
in at least M of these scans, the target is confirmed. If not,
the track is terminated.

D. Integrated PDA

The IPDA was introduced in [11]. It extends the PDAF by
a discrete existence variable Ek, which can attain two values,
Ok: The target exists at time k, and Nk: The target does not
exist at time k. Some versions of the IPDA let Ek attain a
third value, Ik: target exists, but cannot be detected at time k.
This is more suited for track management than track initiation
[11], and will not be used here. This means Ok and Nk are
mutually exclusive and exhaustive, thus P (Nk) = 1�P (Ok).
The target existence is assumed to follow a Markov chain
according to

P (Ok) = ⇡11P (Ok�1) (8)

where ⇡11 is often called the survival probability of the target.
After gating measurements, the probability of target existence
is updated according to

P (Ok|k) =
(1 � ⇣k)P (Ok|k�1)

1 � ⇣kP (Ok|k�1)
(9)

where P (Ok|k�1) is short-hand for P (Ek = Ok|Zk�1), and

⇣k =

(
PDPG mk = 0

PDPG

⇣
1 �Pmk

j=1
1
�j

p(zj
k|Zk�1)

⌘
mk > 0

(10)

The nonparametric IPDA is obtained by setting

�j =
mk � PDPGP (Ok|k�1)

Vk
(11)

which means the expected number of clutter measurements are
the total number of measurements in the gate, compensated for
the existence probability of the target. In order to compare the
IPDA with the other methods, the tracks are confirmed if the
existence probability exceeds a threshold PC , and terminated
when it is below PT .

E. Sequential tests

A sequential probability ratio test (SPRT) is a statistical test
where the sample size is not fixed in advance. Instead, data
are accumulated, and a likelihood ratio (LR) of the form

LR(k) =
p(Zk|H1)

p(Zk|H0)
(12)

is evaluated [6]. For track initiation, the hypotheses are defined
as



• H0: The data Zk consists only of clutter
• H1: The data Zk contains measurements from a target.

At a given time step, there are three possible outcomes of the
SPRT,

• Accept H0 if LR(k) < LRmin

• Accept H1 if LR(k) > LRmax

• Make no decision if LRmin  LR(k)  LRmax.
In the last case, the test waits for additional measurements
at scan k + 1, and calculates the LR based on the new
measurements. The limits LRmin and LRmax are related to
the error probabilities of the test by

LRmin � 1 � P1

1 � P0

1

LRmax
� P0

P1
(13)

where P0 and P1 are the probabilities of rejecting H0 when
it is true, and accepting H1 when it is true, respectively [13].

In [6], an SPRT is derived for track initiation using (12).
The main idea is that, under H1, there is a sequence of mea-
surements in the data that are target-originated. The likelihood
of each of these sequences, called data interpretations in [6],
can be summed to obtain the total likelihood of H1:

p(Zk|H1) =
X

⌦j
k2H1

p(Zk|⌦j
k)P (⌦j

k) (14)

where ⌦j
k is a measurement association hypothesis, i.e. it de-

fines what measurements in Zk that are target-originated, and
what measurements are clutter. It is similar to the hypothesis
structure of Reid [12]. The likelihood ratio then takes the form

LR(k) =

P
⌦j

k2H1
p(Zk|⌦j

k)P (⌦j
k)

p(Zk|H0)
(15)

which is initialized by selecting a single measurement, which
is to be tested whether it is target-originated or not. The
likelihood of the first scan is calculated by “assuming that
the target exist anywhere in V ” [6], and leads to the initial
LR

LR(k0) =
PD

�Vk0

(16)

where Vk0
is the area of the initial search area. A small search

area means that the initial likelihood ratio will be large. The
reason for this is that if it is assumed that a target exists
“anywhere in Vk0

”, and then a measurement is found in that
very region, the likelihood that it is target-originated is very
large. Although practical aspects are discussed in [6], selecting
the gate area for the SPRT is not in one of them. Our approach
for this gate will be presented in the following section.

F. Choosing the data set area

As mentioned, the only way of choosing the gate of an
SPRT in [6] is to select the region containing all the measure-
ments in the surveillance area. For the same reasons as we gate
established tracks, we want to restrict the data of the SPRT to a
subset of the measurements from the surveillance area, close to
the initial measurement zj

k0
of the SPRT. Initial measurements

are chosen when they are not associated with any previous

z1
k0

z1
k

z2
k

z3
k

rk

Fig. 1. The SPRT gates measurements according to (19). The measurements
z1
k and z2

k are within range of z1
k0

, and will be used in the test started by
z1
k0

. A new test will be started at z3
k .

gates or confirmed tracks. If zj
k0

is target-originated, the true
target position zT

k is found in a region around zj
k0

with
probability PG according to

(zj
k0

� zT
k )T R�1(zj

k0
� zT

k ) < �G (17)

where �G is found in the same way as for the track gate,
namely by specifying the gate probability PG. This region is in
general ellipsoidal, and in the following, we will approximate
it by a circle, since in the subsequent scans, this radius will
increase according to the maximum velocity and sampling
time. A circular gate for selecting the measurements that
will be included in the test is simpler than maintaining the
direction and length of the ellipsoid major and minor axes.
The maximum range rk0

from the measurement to the true
target position is given by

r2
k0

eig(R)�1
max = �G ) rk0 =

p
�Geig(R)max (18)

where eig(R)max is the maximum eigenvalue of the measure-
ment covariance matrix R. The corresponding initial area Vk0

is given by ⇡r2
k0

. If R is very ellipsoidal, this approximation
may result in very large search regions.

In the following scans, the gate will grow in radius accord-
ing to

rk = 2rk0
+ (tk � tk0

)vmax (19)

where vmax is the presumed maximum velocity of the targets.
This gating strategy is illustrated in Fig. 1. The corresponding
gate area is given by Vk = ⇡r2

k.
This gating strategy also allows us to develop a nonpara-

metric version of the SPRT. Under H0, all the measurements
in Vk at time k are clutter, and under H1, all but one of the
measurements in Vk are clutter, unless the hypothesis is that
the target is not detected. The resulting expression is

� =
mk � �k

Vk
(20)

where �k = 1 if ⌦j
k declares that a measurement is target-

originated, and �k = 0 if the target is not present or undetected.



III. A BAYESIAN SEQUENTIAL TEST

The main result in Reid’s seminal paper [12] is the recursive
calculation of the data association hypothesis probability given
the data, denoted by P (⌦j

k|Zk). In general, the data associ-
ation hypothesis ⌦j

k contains information on what measure-
ments originate from existing targets, new targets and clutter.
It is given by

P (⌦j
k|Zk) =

1

ck
p(Zk|⌦i

k�1, !
j
k, Zk�1)

· P (!j
k|⌦i

k�1, Z
k�1)P (⌦i

k�1|Zk�1) (21)

where ⌦i
k�1 is the parent hypothesis from the previous scan,

and the association hypothesis !j
k associates all the measure-

ments in Zk with either targets from ⌦i
k�1, new targets or

clutter. The constant ck = p(Zk|Zk�1) is independent of the
hypotheses. Given Assumptions 1 to 4, the recursion is shown
in [12] to be

P (⌦j
k|Zk) =

mc
k!mn

k !

ckmk!
P

md
k

D (1 � PD)mt
k�md

kPc(m
c
k)Pb(m

n
k )

·
md

kY

l=1

p(zl
k|⌦j

k, Zk�1)V
�(mc

k+mn
k )

k P (⌦i
k�1|Zk�1) (22)

where mc
k and mn

k is the number of clutter measurements
and new targets, mt

k is the number of targets given by
⌦i

k�1, of which md
k are detected. This expression is suited

to handle an arbitrary number of existing and new targets.
The computational burden can be significant, but (22) can
be simplified in the context of single-target track initiation,
according to the hypotheses H0 and H1.

According to H0, all of the measurements are clutter. This
leads to a single data association hypothesis given by

p(H0|Zk) = Pc(mk)Pb(0)V �mk

k p(H0|Zk�1) (23)

=
1

c⇤k

mkY

i=1

�i · p(H0|Zk�1) (24)

where the product of clutter densities of the measurements
replaces �mk due to nonstationary clutter. The normalization
constant c⇤k contains all the factors that will cancel in the
calculation of the LR, and includes the constant ck of (22),
along with other constants of (23). The recursion is initialized
by

p(H0|Zk0) =
1

ck0

Qmk0
i=1 �i

mk0 !
e�(�+�)Vk0 (25)

For H1, as in the previous section, there are several possible
data association hypotheses that may support the existence of
a track. Summing over all of these gives

p(H1|Zk) =
X

⌦j
k2H1

P (⌦j
k|Zk) (26)

where each hypothesis may be seen as leaf nodes of a tree
structure. In order to calculate the probability P (⌦j

k|Zk), it is
useful to separate the cases k = k0 and k > k0. For the first

scan under H1, a new target is present in the data Zk0 . This
gives

P (⌦j
k0

|Zk0) =
1

ck0

1

mk0

Pc(mk0
� 1)Pb(1)V

�mk0

k (27)

=
1

ck0

Qmk�1
i=1 �i

mk0
!

�e�(�+�)Vk0 p(H1) (28)

where it is assumed that the measurement z
mk0

k0
is the target-

originated measurement. For the second scan and onwards, we
assume that there is a single existing target, and no other new
targets is entering the surveillance region. This leads to

P (⌦j
k|Zk) =

1

ck

(mk � �k)!

mk!
P �k

D (1 � PD)1��kPc(mk � �k)

·Pb(0)p(zl
k|⌦j

k)V mk��kP (⌦i
k�1|Zk�1)

=

(
1
c⇤k

PD

Qmk�1
i=1 �ip(zl

k|⌦j
k)P (⌦i

k�1|Zk�1) �k = 1
1
c⇤k

(1 � PD)
Qmk

i=1 �iP (⌦i
k�1|Zk�1) �k = 0

(29)

where the first case means that measurement l is target-
originated, and the second case means that the target is not
detected at time k. Comparing (24) and (29), we see that all
the constants concerning the gate area Vk are cancelled in the
evaluation of (12), as well as the term c⇤k. The LR at the initial
scan k0 is found from (25) and (28), and is given by

LR(k0) =
�

�
(30)

where the new target density parameter � replaces the ratio
PD/Vk0 in the initial likelihood ratio of [6], given by (16).

After the test confirms that a target is present in the data,
the most likely hypothesis is extracted as the track. This is
similar to how a decision is made in a typical MHT, where the
maximum a posterior (MAP)-hypothesis often is chosen when
a track is needed. In addition to extracting the MAP estimate,
the SPRT additionally requires the LR test to be successful.

IV. SIMULATION RESULTS

A. Test setup
The test scenario is set up to mimic challenges in maritime

tracking scenarios. The two main challenges with respect to
varying clutter densities comes from land and shallows. The
scenario in Fig. 2 is set up to reflect both these challenges.
Two targets are generated in the surveillance area. One is
representing a target leaving berth, starting in the lower high-
clutter region and moving north. The other target represents
a passing ship, and moves from west to east along the high-
clutter square in the surveillance area. The initial position,
velocity and course is generated uniformly in certain intervals
according to Table I. After the initial state has been deter-
mined, the targets move according to a nearly constant velocity
(NCV) model [9], given by Assumption 3 where

Fk =


F1 022

022 F1

�
F1 =


1 T
0 1

�
(31)

Qk =


Q1 022

022 Q1

�
Q1 = q


T 4/4 T 3/2
T 3/2 T 2

�
(32)



TABLE I
TARGET PARAMETERS FOR THE TEST SCENARIO

Parameter Lower target Upper target

N0 U(�500 m,�300 m) U(350 m, 450 m)
E0 U(�500 m, 500 m) U(�400 m, 0 m)
V0 U(5 m s�1, 10 m s�1) U(5 m s�1, 12 m s�1)
�0 U(�30�, 30�) U(70�, 110�)

TABLE II
TRACKING SYSTEM PARAMETERS

Sampling time T 2.5 s
Process noise covariance parameter q (0.05 m s�2)2

Measurement noise covariance R (6 m)2I2
Probability of detection PD 0.9
low clutter density �low 10�5 m�2

high clutter density �high 5 ⇥ 10�5 m�2

where T = tk � tk�1 is the time between two scans, and q is
the target maneuvering parameter. 022 denotes the 2 ⇥ 2 zero
matrix. Test scenario parameters are found in Table II, which
are common for both of the targets.

To avoid initiating multiple tracks on the same target, all
confirmed targets will be tracked by a regular PDAF. The
measurements that are gated by these confirmed tracks are not
used in the track initiation methods, and confirmed tracks are
terminated if it gates no measurements for the next 5 scans.
The life and death of these confirmed tracks have no impact
on the track initiation, except for the measurements they are
confiscating. In settings where new targets appear close to each
other, another tracking method may be applied. All the tests
are done on track confirmation, such that the future trajectory
of these tracks do not impact the results.

In the following scenarios, we analyse the probability of
target detection, PDT , and the probability of a false track,

Fig. 2. Scenario setup with 10 sample trajectories of each target. The gray
areas are high-clutter areas, while the dashed boxes show the initial positions
of each target.

Fig. 3. The likelihood ratio for two SPRTs from the test scenario, one from a
target, and one from clutter. The parameter �high corresponds to using PD/Vk

as the new target density parameter.

PFT . The probability of target detection is calculated based
on how many of the targets described above are detected in
total, i.e.

PDT =
number of targets detected

number of total targets
(33)

over the course of 1000 tests for each target. A target is
considered detected if at least one of the measurements used
to confirm the track is target-originated. The probability of a
false track is calculated based on how often the track initiation
method confirms a track that is started on a clutter-originated
measurement, and is defined as

PFT =
number of false confirmed tracks

number of confirmed and terminated tracks
(34)

where the test is conducted without the targets present, such
that all confirmed tracks must be false. This is to avoid
evaluating ambiguities, for example when tests are started on
clutter measurements, but associate target measurements, and
vice versa.

B. Evaluation of new target density

We investigate the impact of the new target density parame-
ter �, and its effect is only seen in the initial LR as illustrated
in (30). The parameter � can thus be seen as a way to adjust
the initial likelihood, as seen in Fig. 3. Choosing � high will
confirm the true track after three scans, but the false track
is also confirmed. If � is chosen lower, but still above the
lower limit, the false track is terminated after five scans. This,
however, comes at the expense of confirming the true track at
scan four.

The new target density was varied logarithmically between
the values which places the initial LR on the lower and upper
bound, respectively. These bounds are chosen according to
(13) by changing the inequalities to equality signs, ensuring
the bounds on P0 and P1 are satisfied. The test was carried
out for three different parameter sets and by spanning over the



Fig. 4. Performance characteristic for varying new target density.

TABLE III
PARAMETER VARIATIONS FOR THE PERFORMANCE TEST

Method Parameter Value

M/N N, M 1 to 7, 1 to N
IPDA PC , PT 0.95 to 0.999, 0.1
SPRTs P0, P1 10�2 to 10�5, 0.99

different values of the new target density �. The performance
curves can be seen in Fig. 4, which compares the probability
of target detection to the probability of a false track. All
the curves are rapidly increasing in detection probability, and
flattens out as the detection probability approaches unity. The
performance increase when P1 increases and P0 decreases.
From (13), we see that the increasing P1 or decreasing P0

increase the upper bound and decrease the lower bound. As
the limits move apart from each other, the more certain the
SPRT need to be to conclude. This means that the choices
of P0 and P1 will change the track confirmation or rejection
time.

C. Performance comparison of track initiation methods

The tests are conducted as described in section IV-A, where
1000 simulations were run for clutter only, in order to evaluate
PFT , and 1000 simulations on each of the targets in order to
evaluate PDT . The threshold parameters were varied according
to Table III. In the following, we will denote the SPRT
with new target density as N-SPRT, to separate it from the
traditional SPRT. Both the parametric versions, using the true
clutter density, and the nonparametric versions were tested. For
the SPRT with new target density, the value � = 10�5 m�2

was chosen.
Fig. 5 shows the probability of target detection and false

target for the M/N, IPDA and the two SPRTs. The results have
been sorted in increasing PFT , and plotted against 1 � PDT .
The y-axis have been reversed, such that a result higher up
on the y-axis means higher track detection rate. Some of the

Fig. 5. Track initiation performance. The prefix “P” or “NP” denotes the
parametric and nonparametric versions, respectively. N-SPRT is the SPRT in
section III.

Fig. 6. Track initiation time. The prefix “P” or “NP” denotes the parametric
and nonparametric versions, respectively. N-SPRT is the SPRT in section III.

methods failed to give any false tracks, and have been put at
zero false track rate. Fig. 6 shows the average number of scans
needed to confirm a true track.

The initiation method that sticks out the most is the M/N
test. It is the only method that, despite the benign conditions in
this test scenario, is able to achieve a target detection probabil-
ity below 95%. It also have a very high false alarm rate. This is
not surprising, as it is the only method that does not consider
the possibility of the measurement being clutter. The SPRT
with new target density and the IPDA performs similarly in
their parametric versions, achieving excellent target detection
probabilities for all the test values. The classical parametric
SPRT also performs very well on target detection, but has a
higher false alarm rate. The main difference can be seen in
track initiation time, where the SPRT with new target prior



is approximately half a scan faster than the IPDA and the
classical SPRT, which performs equally well.

The nonparametric versions all have slightly lower perfor-
mance than their parametric counterparts. The difference is
the lowest for the IPDA. This is also the only nonparametric
method that contains the probability of track existence. The
other methods do a hard count of the number of measurements,
which makes the clutter density estimate potentially more
fluctuating.

Although M/N only considers whether a measurement falls
inside the validation gate or not, there is a notable difference
between the parametric and nonparametric versions. Although
the clutter density is not explicitly part of the track initiation
evaluations, it enters through the association probabilities of
the PDAF. The association probability of a misdetection,
P (✓0

k|Zk), depends on the clutter density �, while the others
do not. In the nonparametric version, the clutter density is re-
placed by the ratio mk/Vk. The total number of measurements
in the validation gate mk may contain the target-originated
measurement as well as any clutter measurements, which
makes the clutter density estimate too high. This increases
P (✓0

k|Zk), which in turn increases the posterior covariance
Pk|k of the estimate through the state update equation. This
will make the gate for the next scan larger, and prone to
gating more clutter measurements, increasing the probability
of reaching the test variable M.

V. REAL DATA RESULTS

The data used in the experiments are shown in Fig. 7. In
addition to the ownship, shown in grey, it shows two ships
that entered the range of the radar during the experiment. The
lower target were part of a COLAV experiment, hence the
ownship maneuver to starboard. The target moving west was
a ferry that exited a channel just as the experiment started. The
targets are shown in Fig. 8. The total time of the experiment
was three and a half minute. The bottom right half of the
surveillance area have been masked out due to being close to
land, which is why there are no measurements in that region.
The rest of the region shows notable difference in amount of
clutter. At the end of the experiment, the lower target does
a sharp starboard maneuver to avoid the other target moving
west. The ferry moving west also have an extended period
when it is undetected, possibly due to obstructions from the
other ship.

The nonparametric trackers were tested on the measure-
ments from this scenario. The tracking results of the two
SPRTs are show in Figures 9 and 10, and results from all
the tracking methods are summarized in Table IV. The tracks
from the real targets are similar in all the tests. Since the
tracking system assumes a NCV model and has no interacting
multiple model (IMM) capabilities, the lower target is lost
after doing the hard maneuver. The track is initialized again
after this maneuver, which results in two true tracks from the
lower target. Additionally, the period of detection of the lower
target also results in two true tracks for the ferry, in total four
true tracks. All other targets have been labeled false.

Fig. 7. Radar measurements and AIS tracks from the experiments. The
measurements are shaded such that the darker measurements are from later
in the experiments. The grey track is the ownship, on which the radar is
mounted.

Fig. 8. The two targets present in the scenario. The top is the target of a
coordinated COLAV experiment, KSX ocean space drone. The bottom is a
passing ferry, Vesteraalen.

Fig. 9. Tracking results from the SPRT with new target density. The red dots
mark the final target position estimate.



Fig. 10. Tracking results from the SPRT without new target density. The
green dots mark the final target position estimate.

TABLE IV

Method Number of false tracks true track conf. time (scans)

M/N 3 [5, 5, 5, 5]
IPDA 0 [4, 5, 5, 5]
SPRT 5 [4, 5, 5, 9]
N-SPRT 1 [4, 5, 5, 6]

The IPDA has the best performance of the tested methods,
while the classical SPRT has both the highest number of
false tracks, and also takes very long to confirm a true track.
Between the SPRTs, the main benefit of adding a new target
density seems to be mostly beneficial for reducing the amount
of false tracks, although track initiation times are also slightly
improved.

The reason M/N gives fewer false tracks than the classical
SPRT may be that M/N require two measurements close in
successive scans in order to initiate a track, the SPRT allows
for no measurements in the gate as long as the LR does not go
below the termination threshold. Although this allows for more
misdetections, it may enable more false tracks. Also recall
from Fig. 5 that the nonparametric classical SPRT had a very
high PFT .

VI. CONCLUSION

A Bayesian formulation of the classical SPRT of Van Keuk
using a new target density akin to the one used in Reid’s
MHT can improve track initialization when tracks are started
in areas with small initial areas. The M/N, IPDA and two
SPRTs have been compared, and all have a high probability
of detection overall due to the good conditions in which the
target is tracked. However, M/N is vastly outperformed on
the amount of false tracks. The classical SPRT does slightly
better, and SPRT with a new target density seems to perform
comparably to the IPDA. The nonparametric versions of the
track initiation methods performs slightly worse than their

parametric counterparts, where the IPDA show the lowest
difference. This is also reflected in tests on real data, where
the IPDA had the lowest number of false tracks.

The non-parametric IPDA does a kind of implicit clutter
estimation and the investigation of similar clutter estimation
techniques for the MHT is a topic for future research. Also
important is the success rate of track extraction from an SPRT,
which has not been considered in this paper.
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[16] E. F. Wilthil, A. L. Flåten, and E. F. Brekke, “A target tracking system
for ASV collision avoidance based on the PDAF,” in Sensing and
Control for Autonomous Vehicles: Applications to Land, Water and Air
Vehicles, T. I. Fossen, K. Y. Pettersen, and H. Nijmeijer, Eds. Springer
International Publishing, 2017, pp. 269–288.



Chapter B. Track Initiation for Maritime Radar Tracking with and without Prior
Information

98



Bibliography

[1] O. Asplin. Performance evaluation of track initiation methods. Norwegian
University of Science and Technology, Specialization Project, 2017.

[2] Y. Bar-Shalom and X. Li. Multitarget-Multisensor-Tracking: Principles And
Techniques. YBS, 1995.

[3] E. Brekke, O. Hallingstad, and J. Glattetre. The signal-to-noise ratio of human
divers. In Proceedings of OCEANS’10, Sydney, Australia, May 2010.

[4] R. Brown and P. Hwang. Introduction to Random Signals and Applied Kalman
Filtering. John Wiley & Sons, Inc, 2012.

[5] P. Chanzy, L. Devroye, and C. Zamora-Cura. Analysis of range search for
random k-d trees. Acta Informatica, 37(4):355–383, Jan 2001.

[6] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21–27, January 1967.

[7] Y. Cui, J. Yang, Y. Yamaguchi, G. Singh, S. Park, and H. Kobayashi. On semi-
parametric clutter estimation for ship detection in synthetic aperture radar
images. IEEE Transactions on Geoscience and Remote Sensing, 51(5):3170–
3180, May 2013.

[8] International Maritime Orginization. AIS transponders - Regulations for car-
riage of AIS.

[9] G. Keuk. Sequential track extraction. IEEE Transactions on Aerospace and
Electronic Systems, 34(4):1135–1148, 1998.

[10] T. Kirubarajan and Y. Bar-Shalom. Probabilistic data association techniques
for target tracking in clutter. Proceedings of the IEEE, 92(3):536–557, Mar
2004.

[11] N. Levanon. Radar signals. Wiley, Hoboken, N.J, 2004.

[12] N. Li and X. Li. Target perceivability and its applications. IEEE Transactions
on Signal Processing, 49(11):2588–2604, 2001.

99



Bibliography

[13] X. Li and V. Jilkov. Survey of maneuvering target tracking. part I. dynamic
models. IEEE Transactions on aerospace and electronic systems, 39(4):1333–
1364, 2003.

[14] D. Musicki and R. Evans. Joint integrated probabilistic data association:
Jipda. IEEE Transactions on Aerospace and Electronic Systems, 40(3):1093–
1099, July 2004.

[15] D. Musicki, R. Evans, and S. Stankovic. Integrated probabilistic data associ-
ation. IEEE Transactions on Automatic Control, 39(6):1237–1241, 1994.

[16] D. Musicki and M. Morelande. Non parametric target tracking in non uniform
clutter. In 2005 7th International Conference on Information Fusion, July
2005.

[17] D. Musicki, S. Suvorova, M. Morelande, and B. Moran. Clutter map and
target tracking. In 2005 7th International Conference on Information Fusion,
July 2005.

[18] D. Reid. An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control, 24(6):843–854, December 1979.

[19] E. Wilthil, E. Brekke, and O. Asplin. Track initiation for maritime radar track-
ing with and without prior information. In 2018 21st International Conference
on Information Fusion, Accepted for publication at Fusion 2018, Cambridge,
UK.

[20] E. Wilthil, A. Fl̊aten, and E. Brekke. A target tracking system for asv collision
avoidance based on the PDAF. Sensing and Control for Autonomous Vehicles,
pages 269–288, 2017.

100


