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The following paragraph describes the implementation and code the author has
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implemented by Grøtte in [1]. The code required to solve the Quadratic Program-
ming problem is mainly created by Mattingley and Boyd [2].

The remaining code is created solely by the author of this thesis. Moreover, an
informative summary of this thesis’ contributions is outlined in Chapter 3.
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Abstract

This thesis presents the study and implementation of a virtual security net for a
cooperative robotic manipulator. The input to the security net includes a goal-
position and orientation for the end-effector paired with the desired approach di-
rection. The security net ensures that the corresponding output is a safe trajectory
from start pose to goal pose that the end-effector successfully tracks. Moreover,
the security net consists of a global path planning and obstacle avoidance method,
a trajectory generation technique based on waypoints, and a reliable soft motion
controller that possesses considerable tuning capabilities. Comprehensive litera-
ture studies have been made in several relevant fields, and this has formed a basis
for the development process of the security net. In brief details, the path planning
algorithm is based on a distance transform (DT) on a three-dimensional workspace
to avoid obstacles and control the speed of the robot. Moreover, the graph search
algorithm A∗ is used in conjunction with the DT to calculate an optimal path for
the robot in cluttered environments. The trajectory generation technique creates
cubic a B-spline which satisfies C2 continuity, which a velocity guidance logic is
built on. Finally, the soft motion controller is defined as a Quadratic Programming
problem in order to conveniently minimize tracking errors and induce penalties on
undesirable behaviors, as well as providing a reliable and simple way to handle
robot constraints.

Keywords: robotic manipulator, obstacle avoidance, path planning, distance
transform, A* algorithm, motion control, trajectory generation, guidance system.
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Chapter 1

Introduction

1.1 Motivation and objective

The two paragraphs antecedent to the block diagram in this section are inspired by
[1].

Robotic systems have been used in the industry for decades. Hence, robots have
become an integral part of modern society. Until recently, they were primarily
designed to complete programmed, repetitive tasks. The reasons for expanding the
workspace of which robots can operate are many, including economic and human
safety; it is desirable to have intelligent robots that can cooperate with humans
and operate without imposing a health risk to humans within the robot’s physical
reach. For these reasons, numerous strategies have been developed for robots to
help them process information and adapt to dynamic environments. Aspects of
these strategies include perception and modeling, decision making, collision avoid-
ance and path planning, and motion control.
The term robot can convey many different meanings in the mind of the reader. In
this report, it means an industrial robot, conventionally denoted a robotic manipu-
lator, see Figure 1.1. In the case of robotic manipulators, the structure of the robot
adds to the complexity of the proposed strategies in the literature. Consequently,
the scope of this thesis commences with the main focus on the manipulator’s end-
effector, and how it can be safely moved to its destination. Moreover, the manip-
ulator’s joints are currently not considered in the obstacle avoidance problem.
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Figure 1.1: Example of a 7 joint robotic manipulator [3]

This thesis is part of SINTEF’s Neodroid project, where the long-term goal is to
create a reality-ready robot brain in virtual reality. Moreover, the Neodroid project
wants to train a neural network AI in virtual reality first, and then continue training
on an actual robot. After this transition, it is desirable to have a robust virtual
security net to safely develop the AI on. The remaining parts of this paragraph
attempt to introduce some desired behavioral attributes of such a security net.
A learning robot that can perceive its surroundings in 3D needs to be able to
explore and learn safely in its environment, even in the presence of perception
errors and action errors. Perception errors include inaccurate 3D mapping and
mapping obstacles where none exist. Action errors include deciding upon grasping
actions at erroneous positions, due to errors in interpretation by the robot brain.
To safely handle all of these types of errors, the robot will operate with a virtual
security net consisting of a 3D perception and action components that move the
robot efficiently and safely to the target pose, with minimal risk of collision. The
robot shall move slowly near potential obstacles, so that a sensitive torque limit
may be used to determine whether there actually is an obstacle worth stopping for.

The block diagram in Figure 1.2 presents a descriptive overview of how the different
parts of the security net are implemented and how they form the total system when
combined.
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Figure 1.2: Block diagram of system

1.2 Outline

The thesis is organized as follows. The reader interested in the background ma-
terial, consisting of an extensive literature study followed by a description of the
robotic manipulator used, as well as relevant theory can read Chapters 1 and 2, re-
spectively. Otherwise, the reader is encouraged to continue from Chapter 3. Chap-
ter 3 is a terse summary of this thesis’s contributions to the scientific field. Chapter
4 thoroughly describes the implementation procedure for all methods found in the
block diagram in Figure 1.2. These methods include path planning and obstacle
avoidance in Section 4.1, trajectory generation in Section 4.2, motion guidance in
Section 4.3, and the motion controller in Section 4.4. Chapter 5 introduces ex-
periments and results for the security net, in addition to particular methods that
deserved individual testing. All experiments and results are discussed in Chapter
6. Chapter 7 and 8 describes future work that can be looked into and concluding
remarks, respectively. Finally, some appendices with both pertinent and obsolete
contents can be found in the end part of this thesis.

1.3 Related work

1.3.1 Path planning and obstacle avoidance

Most work related to path-planning and obstacle avoidance for the robot’s end-
effector was made by the same author that conducted this report. A detailed
description of that work can be found in [1]. The idea is to implement the procedure
derived there and test the robot’s ability to safely move the end-effector from a
starting pose to a goal pose. Consequently, no literature study is made for the path
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planning and obstacle avoidance fields in this report. A summarized description of
the method is outlined in chapter 4.

1.3.2 Position vs Velocity Control for end-effector

The following study is outlined to form the basis towards an opinion regarding
whether position or velocity control is best suited for this thesis.

Foka and Trahanias introduce a methodology for avoiding obstacles by controlling
the robot’s velocity in [8]. They argue that without velocity control, the robot has
to make detours or follow a suboptimal path in order to avoid collision avoidance
with obstacles. On the other hand, especially considering dynamic environments,
they state that the robot can in many cases avoid making the aforementioned
suboptimal actions if it can either increase its speed to bypass the obstacle or
decrease its speed to let the obstacle move away from the robot. They use a
Partially Observable Markov Design Process to control the movement of the robot
and provide several results of their proposed methodology.

In [9], Wardani et al. try to optimize trajectory length and energy consumption
when avoiding obstacles. Additionally, they consider nonconstant velocity to make
the problem more substantial and connected to real-life scenarios. They argue that
in order to avoid obstacles smoothly, the robot needs to control its velocity. The
report’s main results showcase that their application of penalty parameters play an
important role in obtaining optimal results; there exist penalty parameter values
that are the most optimal for different systems.

In [10], Belkhouche states that navigation in dynamic environments requires the
knowledge of obstacles’ velocities. Furthermore, the paper says that for dynamic
environments it a necessity to control the speed of the robot. He tries to solve
the path planning problem in dynamic environments by reducing arbitrary moving
objects to stationary objects. His solution combines linear navigation laws with
the notion of the virtual plane1 and velocity, as well as orientation windows.

Owen and Montano address the motion planning challenge for dynamic environ-
ments by mapping it into a velocity space in [11]. The method is applied to robots
subject to both kinematic- and dynamic constraints. An immediate benefit of us-
ing velocity space is that it yields the opportunity to directly calculate velocity
commands for the robot. They provide several experiments and their results show
promise.

In [12], Zelanak et al. argue why velocity control is the clear choice for reactive
robot motion: Velocity control provides smoother motion, is more suitable for low
control frequencies, more robust to control signal variation, and it reduces colli-
sion forces more effectively. The primary advantage of position control is inherent
safety with regards to signal delays. To support these points, the paper presents

1The virtual plane is a transformation of an observer that allows the mapping of moving
obstacles to stationary obstacles.
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several experiments based on a cooperative manipulation task performed by a stiff
robotic manipulator. They conclude their paper by stating that velocity control is
more natural than position control when humans interact with compliant robots;
it reduces contact forces, and it is shown to be highly robust to slow or randomly-
delayed control signals. In addition, they mention one drawback with velocity
control: If a software glitch or a severe network delay occurs, it’s possible for the
hardware-level servo controllers to continue moving the robot, posing a danger both
to the robot and its environment. Under position control, the robot will stop at
the last commanded position, which is inherently safer.

The following paragraph is a terse discussion based on the preceding study. Fur-
thermore, a decision regarding control method is made.

Considering the fact that the long-term goal of the Neodroid project is to develop
a cooperative robot, in addition to the preceding study, it seems that velocity
control is best suited for this thesis. Furthermore, when controlling velocity it is
straightforward to control the kinetic energy the robot has, utilizing the formula

Ek =
1

2
mv2. (1.1)

This becomes especially important when humans consistently are within the robot’s
physical reach.

1.3.3 Trajectory generation

The following literature study presents popular methods of trajectory generation to
achieve continuous profiles for the robot motion. Commencing is a terminology
lecture describing the difference between a path and a trajectory in this context,
inspired by Hlavác’s presentation [13].

A path consists of ordered waypoints in the space2, which the robot’s end-effector
should follow. Moreover, a path is usually planned globally taking into account
obstacle avoidance similar to what was done in [1], outlined in section 4.1. On the
other hand, a trajectory ”approximates” the desired path waypoints, usually by a
class of polynomial functions. Trajectories do not need global information. Fur-
thermore, it is specified and designed locally, often with parts of the path covered
by individual trajectories. In this context, it is desired that pieces of trajectories
join smoothly, which induces that a single trajectory design takes into account only
neighboring trajectories from the path. It is desirable to have a continuous profile
in position, velocity, acceleration, and jerk.

In [14], Horsch and Jüttler describe an algorithm for interpolation of Cartesian
positions by a rational spline motion. They propose an interpolation scheme based

2here: operational space = Cartesian space
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on cubic spline functions and possesses the following important features: Each seg-
ment of the spline motion results from a local construction of neighboring positions
(waypoints) and all computations are constructed to support real-time calculations.
Moreover, the construction yields a rational C1-spline motion, which produces con-
tinuous velocity profiles. Their research focuses on industrial robots, in which it is
often desirable to set intermediate end-effector poses between start- and goal pose.
The spline segments are constructed by using cubic Bernstein polynomials, which
are represented in B-spline form.

In [15], Sencer and Shamoto propose a trajectory for Cartesian motion systems
that utilizes a corner-smoothing algorithm in order to satisfy C2 continuity transi-
tions and minimum curvature geometry at junction points of consecutive segments.
Moreover, their proposed method is designed to allow smooth movements between
linear so-called G01−segments, without having to temporarily stop the motion at
sharp corners. The algorithm fits minimum curvature quintic (5th order) B-splines
to blend adjacent straight lines together. Additionally, the cornering error is con-
trolled analytically allowing the user to set the desired cornering tolerance. To
generate smooth feed motion along the entire path, the feed rate is reduced on the
fly at high curvature sections. The jerk profile is utilized in this work.

Svejda et al. [16] deals with the problem of interpolation of generated end-effector
paths for application in robotics. Their paper discusses two interpolation meth-
ods: Line interpolation with polynomial blending and cubic spline interpolation
with recalculated feed rate. The latter method’s ability to recalculate feed rate
reduces undesirable peaks in acceleration and ensures demanded position, velocity
and acceleration profiles along the trajectories. The authors argue that the for-
mer method is not very suitable for coincident points that are too close to each
other when high precision is of greater importance (e.g. arc welding); it is more
convenient for pick and place applications.

Gasparetto and Zanotto [17] present an analysis of an algorithm for optimal tra-
jectory planning of robot manipulators where two possible primitives for building
the trajectory are considered: cubic splines and fifth order (quintic) B-splines.
Moreover, the proposed technique that was tested allows to set constraints on the
robot motion, expressed as upper bounds on the absolute values of velocity, accel-
eration, and jerk. Their results suggest that it might be inferred that the cubic
spline trajectory would be slightly preferable if very strict requirements are set on
mean and maximum values of velocities, acceleration, and jerk of the robot joints.
On the other hand, they remark that the behavior of the higher-order derivatives
(acceleration and jerk) of the joints’ trajectories turns out to be smoother when
fifth-order B-splines are employed to generate the trajectory. Furthermore, the
trajectory based on cubic splines features a discontinuous jerk of the robot joints.
Hence, if very strict requirements are set on the trajectory smoothness, fifth-order
B-splines are preferable with respect to cubic splines.

The following paragraph is a terse discussion based on the preceding study.

Based on the preceding study it seems that creating splines that ensure C3 conti-
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nuity (i.e. continuous jerk profile) is quite ambitious; the number of waypoints N
used for the splines varies every time the path planning algorithm is run. Popular
ways of obtaining C3 continuity include creating up to C2 continuity splines and
reducing feed rate levels wherever necessary (e.g. in high curvature sections). It
is also important to note that creating a CN−1 continuous curve has several insta-
bilities for a high amount of waypoints N . Moreover, requirements placed on one
stretch of high degree curves can have a very strong effect some distance away [7].
Hence, methods generating very high-degree curves are neglected. Consequently,
this thesis develops a method that combines several cubic Bézier curves based on a
controlled design (yielding a piecewise cubic curve called a B-spline) to ensure C2

continuity for the entire spline. This stitching process is outlined in section 4.2.

1.3.4 Motion control

The following literature study presents prevalent methods of motion control for
robotic manipulators, which will serve as a foundation for this thesis’s implemen-
tation. Furthermore, the decision to use velocity control, derived in section 1.3.2,
narrows the study. Commencing is a prerequisite theoretical description of the
inverse-kinematics relationship for robotic manipulators, inspired by [18].

A conventional way of controlling robotic manipulators is to exploit the inverse-
kinematics relationship. Consider the equation

ẋ =

[
v
ω

]
= Jq̇, (1.2)

where v ∈ R3 is the translational velocity of the end-effector, ω ∈ R3 is the
rotational velocity of the end-effector, q̇ ∈ Rn contains the velocity of each joint.
For future references, the dimension of x will be denoted m. The matrix J is called
the manipulator Jacobian or Jacobian in short. At each robot configuration, it
maps the joint velocity vector into the corresponding velocity of the end-effector.
Multiplying both sides of (1.2) with the inverse of the Jacobian yields the inverse-
kinematics relationship

q̇ = J−1

[
v
ω

]
, (1.3)

which is valid only when the Jacobian is a square matrix. For manipulators with
n 6= 6 joints, the inverse Jacobian would have to be approximated. This is the
case for redundant manipulators, which is when a manipulator has more than
the minimal number of degrees of freedom required to complete a set of tasks.
Consequently, the inverse kinematics problem for a redundant manipulator is ill-
posed: there may exist infinitely many configurations of the robot which give the
desired end-effector configuration. Since there may be an infinite number of joint
trajectories which give the requisite end-effector path, additional criteria are used
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to choose among them. One common solution is to choose the minimum joint
velocity which gives the desired workspace velocity. This is achieved by choosing

q̇ = J+

[
v
ω

]
, (1.4)

where J+ = JT (JJT )−1 is the Moore-Penrose generalized inverse of J . [18]

In [19], Siciliano presents a comprehensive tutorial of the literature on kinematic
control of redundant manipulators. Most of the proposed approaches are based on
the instantaneous or local resolution of redundancy at the velocity level through
the use of the manipulator’s Jacobian matrix. Global optimization techniques have
also been proposed in the literature. However, Siciliano argues that they involve
increased computational complexity which rules them out in practical real-time
implementation for which the end-effector is continuously modified based on sensory
feedback information. Another important point in purposely adopting redundancy
is the avoidance of kinematic singularities, which occur when the Jacobian, at
some configuration q, has a rank less than m. In this case, the manipulator loses
its ability to move along or rotate about some direction of the task space, meaning
that its manipulability is reduced.

The Moore-Penrose generalized inverse of the Jacobian defined in (1.4) might
seem attractive in that it has a least squares property that generates the mini-
mum norm join velocities. However, kinematic singularities are not avoided in any
practical sense, since joint velocities are minimized only instantaneously and can
then become arbitrarily large near singular configurations. To overcome this draw-
back, one might use the damped least-square inverse of the Jacobian in the form
J∗ = JT (JJT + λ2I)−1, which is nonsingular in the whole workspace. Under this
control, the problem becomes finding suitable values of λ which sets the weight of
the minimum norm solution, ‖q̇‖, with respect to the minimum task tracking error
‖ẋ− Jq̇‖.
In addition to the foregoing, a closed-loop algorithmic version of the open-loop
solution (1.3) can be obtained if the task space vector ẋ is replaced by ẋ = ẋd+Λe,
where e = ẋd − ẋ denotes the error between the desired task trajectory ẋd and
the actual trajectory ẋ, and Λ is a positive definite (diagonal) matrix that suitably
shapes the error convergence.
Moreover, a computationally cheaper solution is devised on the transpose of the
Jacobian matrix, i.e.

q̇ = JTΛe. (1.5)

A simple Lyapunov argument can show that (1.5) guarantees limited tracking errors
and null steady-state (ẋd = 0) errors. An intrinsic advantage of this solution is that
it may avoid numerical instabilities near singularities because the pseudoinverse is
not required. [19]

In [20], Bi et al. try to control a redundant manipulator in consideration of multi-
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ple performance criteria3. Moreover, the method is based on the classical gradient
projection method, where different criteria are weighed by combining a task pri-
ority strategy with fuzzy inference. The authors explain the gradient projection
method as follows: ”on the basis of pseudo-inverse of the Jacobian matrix, a term
proportional to the gradient of the criterion (a cost function H) is projected onto
the null space of the Jacobian matrix so that the end-effector task is not affected.”
Furthermore, they argue that the gradient projection method has been proven to
be the most popular and influential control strategy for kinematically redundant
manipulators. Their fuzzy inference yields varying weighing criteria depending
on changing urgency and importance. Hence, the task priority method becomes
real-time and the resulting joint angle space is qualified to handle dynamic envi-
ronments. The method is applied to a 10 DOF manipulator in a numerical study,
where three performance criteria are taken into account: singularity avoidance,
obstacle avoidance, and joint limitation avoidance.

Schuetz et al. [21] present a motion planning technique for redundant manipula-
tors in uncertain environments based on tactile feedback. They argue that motion
planning solely based on visual information performs poorly in cluttered environ-
ments because contacts with obstacles might be inevitable and thus a distinction
between hard and soft objects has to be made. They try to use the tactile informa-
tion (resulting force and torque) for minimizing contact forces while simultaneously
pursuing the end-effector tasks as long as reasonable. Moreover, they project the
external forces to their point of application to derive a one-dimensional system
equation (per resulting force), from which they develop a suitable controller us-
ing feedback linearization with second-order dynamics. They test their proposed
method on a 9 DOF manipulator with their control strategies in null space and can
show a fast reaction to external forces and their significant reduction by evasive
nullspace motion of the manipulator.

Chiaverini [22] presents a paper that commences by studying the application of
existing singularity-robust methods to the case of kinematically redundant ma-
nipulators. Then, a new task-priority redundancy resolution (TPRR) technique
is developed that, in addition to handling kinematic singularities, overcomes the
effects of algorithmic singularities4 that commonly plague kinematic singularity-
robust methods. For the kinematic singularities, it is recognized that the damped
least-squares solution with numerical filtering represents a good compromise be-
tween accurate tracking performance of the pseudoinverse solution and the capa-
bility of providing feasible joint velocities of the damped least-squares solution.
Nevertheless, special care must be taken to handle the case of multiple kinematic
singularities. As for algorithmic singularities, the TPRR technique avoids the in-
version of the Jacobian matrix which is ill-conditioned in the neighborhood of the
singularity, which yields continuous joint velocity solutions and accurate tracking
of the end-effector task. Furthermore, it is computationally advantageous with re-

3e.g. maximization of joint availability, obstacle avoidance or minimization of joint torques.
4singular configurations at which the end-effector task and the constraint task conflict despite

the redundant degrees of freedom. [22]
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spect to classical TPRR techniques. Nevertheless, the paper recognizes that the
use of damped least-squares inverse is problematic when both kinematic- and algo-
rithmic singularities are expected. The method is tested on a 7 DOF manipulator
to demonstrate its effectiveness.

1.4 Franka Emika’s Panda robot

The robotic manipulator used in this thesis is the Panda robot created by Franka
Emika, showcased in Figure 1.3. The robot arm is lightweight with impressive
measurement opportunities and precision, and its design displays thought towards
real-time human-robot interaction. In Franka Emika’s own words: ”The Arm is
inspired by the agility, dexterity and sensitivity of the human arm. It is able to
recognize and process even the slightest contacts to react within milliseconds. The
Hand can grasp firmly and quickly for high performance manipulation. The Fingers
can automatically be exchanged to optimally grasp a wide variety of objects.”

Figure 1.3: Franka Emika’s Panda 7 DOF robot with control box [4]
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1.4.1 Control parameters specifications

The following section and all its subsections describe the physical requirements
the Panda robot needs to obey. Most parts are extracted from the Franka Con-
trol Interface[5]. If a controller attempts to perform control without satisfying
the underlying requirements, a fail-safe system will exit the control-loop without
warning.

1.4.1.1 Joint trajectory requirements

The necessary conditions are

qmin < q < qmax,

− q̇max < q̇ < q̇max,

− q̈max < q̈ < q̈max,

−
...
qmax <

...
q <

...
qmax.

(1.6)

The recommended conditions are

qmin,soft < q < qmax,soft,

− q̇max,soft < q̇ < q̇max,soft,

− τjmax < τjd < τjmax,

− τ̇jmax < τ̇jd < τ̇jmax.

(1.7)

At the beginning of the trajectory, the following conditions should be fulfilled:

q = qd,

q̇ = 0,

q̈ = 0.

(1.8)

At the end of the trajectory, the following conditions should be fulfilled:

q̇ = 0,

q̈ = 0.
(1.9)
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1.4.1.2 Cartesian trajectory requirements

The necessary conditions are

− ṗmax < ṗ < ṗmax,

− p̈max < p̈ < p̈max,

−
...
pmax <

...
p <

...
pmax,

qmin < q < qmax,

− q̇max < q̇ < q̇max,

− q̈max < q̈ < q̈max,

(1.10)

where the latter three conditions are derived from inverse kinematics.

The recommended conditions for Cartesian trajectories are equivalent to (1.7).

The start- and end trajectory requirements for Cartesian control, in addition to
Cartesian space limit values, are omitted here because joint space trajectory is the
more relevant one in this thesis.

1.4.1.3 Joint space limits

Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Unit
qmax 2.9671 1.8326 2.9671 0.0873 2.9671 3.8223 2.9671 rad
qmin -2.9671 -1.8326 -2.9671 -3.1416 -2.9671 -0.0873 -2.9671 rad
qmax,soft 2.8973 1.7628 2.8973 0.0175 2.8973 3.7525 2.8973 rad
qmin,soft -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973 rad

q̇max 2.3925 2.3925 2.3925 2.3925 2.871 2.871 2.871 rad
s

q̇max,soft 2.1750 2.1750 2.1750 2.1750 2.6100 2.6100 2.6100 rad
s

q̈max 16.5 8.25 13.75 13.75 16.5 22 22 rad
s2...

qmax 50000 50000 50000 50000 50000 50000 50000 rad
s3

Table 1.1: Joint space limits

1.4.1.4 Denavit-Hartenberg parameters

Franka Emika uses the Denavit-Hartenberg convention to select frames of reference.
They are as follows:
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Figure 1.4: Panda’s kinematic chain [5]

Joint a(m) d(m) α(rad) θ(rad)
Joint 1 0 0.333 0 θ1

Joint 2 0 0 −π2 θ2

Joint 3 0 0.316 π
2 θ3

Joint 4 0.0825 0 π
2 θ4

Joint 5 -0.0825 0.384 −π2 θ5

Joint 6 0 0 π
2 θ6

Joint 7 0.088 0 π
2 θ7

Flange 0 0.107 0 0

Table 1.2: Denavit-Hartenberg (DH) parameters

1.5 Assumptions

Similar to the assumption made in [1], this thesis assumes that the occupancy grid
mapping obstacles in three-dimensional space is manually filled with obstacles.
The long-term goal of the Neodroid project5 is to use Computer Vision to detect
obstacles automatically, also in real-time operations.

5A SINTEF project this thesis contributes to.
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Chapter 2

Theory

Sections 2.1-2.4 are taken from [1].

2.1 Occupancy-grid maps

Occupancy-grid maps represent environments as an array of cells. Each cell corre-
sponds to an area in the physical environment and holds an occupancy value which
indicates whether that area is occupied or free. The value representation in each
cell can either be deterministic or stochastic. The former specifically states that a
cell is occupied or available, regardless of how certain it is. This yields a boolean
representation, e.g. one of the integers from the set I = {0, 1}. Conversely, the
stochastic representation uses a probabilistic representation which could include
sensor noise, environment knowledge etc. to weigh the probability value. Thus, its
occupancy value could be all decimals in the range pi ∈ [0, 1].

For the 2D case, an occupancy grid has representation similar to that of an image.
Hence, each cell can be considered as a pixel. In 3D, each pixel becomes a voxel.

2.2 Distance transformation

The distance transform (DT) of an occupancy-grid map provides a metric of the
distance from each cell to the nearest denoted obstacle. Moreover, the DT is
primarily performed on binary images or similar grid-based structures.

Multiple algorithms exist for calculating the DT of an image. This section summa-
rizes the algorithm presented by Saito and Toriwaki [23] with the optimization pro-
posed by Meijster et al. [24], where the Euclidean metric for computing distances
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is used. Moreover, the two-dimensional Euclidean DT (EDT) problem will be de-
scribed for a boolean occupancy-grid map M . Consequently, the problem of the
EDT is to assign to every grid point (x, y) the distance to the nearest (here) obsta-
cle in M . Thus, the two-dimensional output array becomes dt[x, y] =

√
EDT (x, y),

where

EDT (x, y) = MIN(i, j : 0 ≤ i < m ∧ 0 ≤ j < n ∧ b[i, j] : (x−i)2+(y−j)2). (2.1)

The notation ”MIN(k : P (k) : f(k)) for the minimal value of f(k) when k ranges
over all values that satisfy P (k)” is used. The minimum of the empty set is defined
to be ∞, and the rule z +∞ =∞ ∀ z is used. Then, some calculation yields

EDT (x, y) = MIN(i : 0 ≤ i < m : (x− i)2 +G(i, y)2), (2.2)

where G(i, y) = MIN(j : 0 ≤ j < n ∧ b[i, j] : |y − j|).
Using those definitions, the algorithm can be summarized as follows: In a first phase
each column Cx (defined by points (x, y) with x fixed) is separately scanned. For
each point (x, y) on Cx, the distance G(x, y) of (x, y) to the nearest obstacle point
on Cx ∩M is determined. In a second phase each row Ry (defined by points (x, y)
with y fixed) is separately scanned, and for each point (x, y) on Ry the minimum
of (x− x′)2 +G(x′, y) is determined, where (x′, y) ranges over row Ry. For a more
detailed description, see Meijster et al. in [24]. Furthermore, the authors argue
that the time complexity of their proposed algorithm is O(n), if n is the total
number of pixels.

The problem can be expanded to higher dimensions. Specifically, for a d−dimensional
EDT, the problem must be separated into d phases, each solving a one-dimensional
problem.

2.3 Graph theory

A mathematical graph is a set of nodes and edges. The nodes (also called vertices)
are connected together by edges (also called links). Hence, for any graph, it is
necessary to describe

• A set of all nodes.

• A set of all edges from each node.

For the graph in Figure 2.1 this becomes

• A set of all nodes {A,B,C,D,E}.

• A set of all edges from each node:

– A : {A→ B, A→ C}
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– B : {B → A, B → C, B → D}

– C : {C → A, C → B, C → E}

– D : {D → B, D → E}

– E : {E → C, E → D}

Figure 2.1: Unweighted graph with edges

A graph can also be weighted, where each edge has a respective weight (also called
cost) assigned to it.

2.4 A* shortest path algorithm

A* is one of the most popular choices for pathfinding because it is fairly flexible
and can be used in a wide range of contexts. It is similar to Dijkstra’s algorithm in
that it is guaranteed to find the shortest path. Furthermore, it utilizes a heuristic
to select vertices closer to the goal, similarly to what Greedy Best-First-Search
does.

A* starts off with a weighted graph G, the starting node start and the goal node
goal as inputs. With start as the root node, A* creates a set frontier that holds
all nodes that are candidates for examining. Additionally, A* creates a set closed
containing the nodes that have already been examined. A* keeps track of the
generated path(s) by assigning parent-successor pairs for each node examined.

There is a loop that repeatedly pulls out the best node n from frontier and ex-
amines it. If n is the goal node, A* is finished. If not, n is added to the closed set
and its neighbors are examined. If a neighbor node a is already in closed, the cost
calculated for the current path is compared with the previous cost assigned to a.
If the new cost is better, a is added to or updated in frontier with the improved
cost. The cost function f(n) in conventional A* is defined as

f(n) = g(n) + h(n), (2.3)

where g(n) represents the exact cost of the path from start to any node n (Dijkstra’s
cost function) and h(n) represents the heuristic estimated cost (usually Euclidean
distance) from n to goal (cost function in Greedy Best-First-Search).

As a preface to the following in-depth pseuedocode the following definitions are
made:
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• frontier A priority queue that stores pairs consisting of a node with a
corresponding priority. It is ordered such that it returns the node with the
lowest1 priority value.

• closed A dictionary containing nodes that have been visited as keys and the
current best (lowest) cost of the nodes as values.

• camefrom A dictionary storing parent-successor pairs for all nodes. Used
to recalculate the shortest path found.

• start The starting node.

• goal The goal node.

A* shortest path

Initialize frontier, closed and camefrom with start;
while frontier not empty do

current = lowest priority item from frontier;
if current is goal then

break;
for neighbors of current do

cost = g(current) +movementcost(current, neighbor);
if neighbor not in closed OR cost less than closed(neighbor) then

closed(neighbor) = cost;
priority = cost+ h(neighbor, goal);
frontier(neighbor) = priority;
camefrom(neighbor) = current;

end

end
Algorithm 1: In-depth psuedocode for A* shortest path (general implementation)

After the algorithm has converged, the suggested path is reconstructed using came-
from.

2.5 Bézier curves

The following theory is inspired by [25] and [6].

In short, Bézier curves are the result of linear interpolation2. In mathematical
terms, Bézier curves are a form of parametric functions. Furthermore, they are

1i.e. the best candidate.
2In mathematics, linear interpolation is a method of curve fitting using linear polynomials to

construct new data points within the range of a discrete set of known data points.
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polynomials of s, with the value of s fixed being between 0 and 1.3 A Bézier curve
of order n (n = 1 for linear, n = 2 for quadratic etc.) is composed of Bernstein
basis polynomials of degree n in addition to a set of n+1 control points P0 through
Pn (see Figure 2.2). The first and last control points are always the endpoints of
the curve; however, the intermediate points (if n > 1) generally do not lie on the
curve. The explicit forms of a Bézier curve of order 1, 2 and 3 are as follows

B(s) = (1− s)P0 + sP1, (2.4)

B(s) = (1− s)2P0 + 2(1− s)tP1 + s2P2, (2.5)

B(s) = (1− s)3P0 + 3(1− s)2tP1 + 3(1− s)s2P2 + s3P3, (2.6)

where s ∈ [0, 1]. The general definition can be expressed explicitly as follows:

B(s) =

n∑
i=0

(
n

i

)
(1− s)n−isiPi, (2.7)

where
(
n
i

)
are binomial coefficients.

Figure 2.2: Example of two Bézier curves of degree 3.[6]

2.6 B-splines

The following theory is inspired by [25] and [7].

B-splines (or basis-splines) are piecewise continuous polynomial interpolation curves
where the ”single curve” is built by performing polynomial interpolation over a set
of points. For instance, a cubic B-spline defined by twelve points will have its curve

3Usually t is used as a parameter. Here s is used to avoid confusion between function parameter
and time parameter t.
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built by evaluating the polynomial interpolation of four points, and the curve can
be treated as a lot of different sections, each controlled by four points at a time,
such that the full curve consists of smoothly connected sections defined by points
{1, 2, 3, 4}, {2, 3, 4, 5}, ..., {8, 9, 10, 11}, and finally {9, 10, 11, 12}, for eight sec-
tions. In order to properly distinguish Bézier curves and B-splines, consider the
difference to be this:

• for Bézier curves, the curve is defined as an interpolation of points

• for B-Splines, the curve is defined as an interpolation of curves.

Figure 2.3: A relaxed4uniform cubic B-spline curve based on points B0 through B5.
Moreover, this particular spline is interpolated by using two cubic Bézier curves
[7].

4A cubic spline is relaxed if its second derivative is zero at each endpoint.
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Chapter 3

Contributions

In this section, a summarized version of this thesis’s contributions to the field is
presented. There is a request for a reliable and fail-safe implementation regarding
path planning, obstacle avoidance and motion control for robotic manipulators.
The purpose of this thesis’s implementation is to create a robust virtual security
net that can make the robot cooperate in complex environments without posing
a significant threat to anyone or anything within its range. The challenges were
significant; for redundant manipulators, in particular, the research concerning ve-
locity control is more limited than that of position control. Several reasons exist
for this. Of huge importance is the fact that redundant manipulators have infinite
joint configurations for a single end-effector pose. In summary, it is desired to have
a solution that can handle practical tasks like ”pick and place” operations, while
simultaneously cooperating with a complex environment.

To obtain a cooperative robot that can also handle specific pick and place oper-
ations, this thesis suggests a solution that combines several methods to obtain a
security net that successfully and safely moves the robot end-effector from a start-
ing pose to a goal pose. With the block diagram depicted in Figure 1.2 in mind,
the contributions of this thesis are summarized as follows:

• Path planning and obstacle avoidance

– Utilizes a Euclidean distance transform (EDT), which calculates the
distance to obstacles for all defined points of a volume surrounding the
robot.

– A special version of the A∗ shortest path algorithm uses the EDT as
input and finds respective waypoints the end-effector should follow.

• Trajectory generation

– Based on the waypoints from the path planning, a relaxed cubic B-spline
that satisfy C2 continuity on the entire spline is generated.
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– The spline contains a curve parameter s that informs how long the entire
trajectory is in addition to how far the end-effector has traveled on it.

• Motion guidance

– The direction of the translational velocity- and the rotational velocity
references are inspired by line-of-sight (LOS) guidance and are depen-
dant on the trajectory by using the curve parameter s to calculate most
references.

– The magnitude of the velocity is dependant on the value of the EDT at
the end-effector’s positions.

• Motion controller

All the preceding bullet points are combined to form an input to the most
significant contribution of this thesis, namely the motion controller. It en-
sures that a proper motion is exerted on the respective joints when following
the trajectory. Furthermore, the controller solves a Quadratic Programming
problem for each iteration, defined as

minimize Jc = γ
∥∥v − vref∥∥2

2
+ κ
∥∥ω − ωref∥∥2

2
+ µq̇T q̇ + χg(q̇, q)

subject to

[
v
ω

]
= Jq̇,

− q̇max ≤ q̇ ≤ q̇max,
− q̈max ≤ q̈ ≤ q̈max,
−

...
qmax ≤

...
q ≤

...
qmax.

(3.1)

There are several terms in the cost function that deserve an explicit explana-
tion. The solver calculates the most optimal change in the robot’s joint veloc-
ities that allows the end-effector to follow desired velocity references in Carte-

sian space. This concludes the purpose of the γ
∥∥v − vref∥∥2

2
+ κ

∥∥ω − ωref∥∥2

2
terms in the cost function, where γ and κ are weighting constants. µ and χ
are also weighting constants. The µq̇T q̇ term is added to impose restrictions
on the joint motions. The final term χg(q̇, q) is included to guarantee that
the physical joint limits of the respective joints are not violated. This term
was necessary because the joint position constraint qmin ≤ q ≤ qmax does
not work in practice when optimizing with respect to joint velocities. 1 By

defining the optimization variable as z :=
[
vT ωT q̇T

]T
, the QP problem

can be put on standard form, which yields

1The reason for this is clarified in section 4.4.3.
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minimize
z

zTQz + q0z

subject to Aeqz = 0,

Aineqz ≤ b.

The observant reader quickly realizes that q, q̈ and
...
q have to be approximated

using q̇. This is part of the reason the joint angle constraint fails.

A detailed implementation description of all methods, as well as necessary experi-
ments and discussions, follow in the upcoming chapters.
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Chapter 4

Implementation

4.1 Path planning

The following section frequently use terms that have been thoroughly described in
sections 2.1-2.4.

In order to minimize the end-effector’s risk of colliding with its environment, a
natural way to commence is to create a reference path that is safe yet effective.
This thesis set out to test the path planning algorithm developed by Grotte in [1].
The method starts with defining a deterministic occupancy-grid around the robot
and maps corresponding obstacles into it. Another term for such a construct is a
voxel grid. The method proceeds by calculating the squared Euclidean Distance
Transform (SEDT) for the entire voxel grid. Figure 4.1 displays a graphical rep-
resentation of the output from the SEDT algorithm in 2D. The SEDT output is
used to control the velocity of the end-effector; it is based on the distance to the
closest obstacle at every given time.
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Figure 4.1: 2D grid example of calculated SEDT for all pixels. [1] Obstacles are
marked black.

In order to create a path between a start coordinate and a goal coordinate, the A∗

shortest path algorithm is used. Algorithms like A∗ are convenient to run on graph-
based structures. Hence, the voxel grid is transformed to a graph structure with a
maximum of 26 neighbors per voxel, which yields much more optimal paths than
using only 8 neighbors [1]. The A∗ version used takes the time of traversing into
account in its cost function. As previously mentioned, the SEDT is used to control
the velocity of the end-effector. Consequently, if the cost function for A∗ is defined
in such a way as to maximize the time efficiency of traversing, the trajectory will
prioritize paths that are further away from obstacles, because there the robot is
allowed to move at greater speeds. Formulated in mathematical terms, in addition
to the Euclidean distance heuristic term h(n) defined in section 2.4, where n is a
node in the graph, the cost function f(n) will include the term

t(n) = K × time = K
distance

speed
= K

1

v
=

K

min(vmax, vmin + dobj(n))
, (4.1)

which represents the time of traversing at each node in the graph. vmax and vmin
are the maximum and minimum allowed speeds, respectively, and dobj(n) is the
distance to the closest obstacle from node n. The final cost function thus becomes

f(n) = t(n) + c× h(n) =
K

min(vmax, vmin + dobj(n))
+ c× h(n), (4.2)
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where K and c are weighting terms.

4.1.1 This thesis’s contributions to the path planning pro-
cedure

The implementation of the path planning algorithm in [1] only supports finding a
path from a starting node to a single goal node. For this thesis, it is of interest
to connect multiple temporary goals before a final main goal is reached. Hence,
this expansion had to be developed in this thesis. The incentive for adding this
extension is that it might help the robotic manipulator to avoid joint limits and
in general cumbersome, ineffective joint configurations. Consider the base joint of
the robot being rotated 2.35 radians ≈ 135◦, and that the end-effector is in the
lower-right plane, see Figure 4.2. Now imagine specifying the end-effector goal
coordinate at the blue circle. Without clever path planning, this might set the
desired end-effector path as the shortest path to the goal coordinate, giving a high
probability that the base joint will move towards its max joint limit defined in
Table 1.1. With the new feature of allowing multiple goals, the path could utilize
the arbitrarily positioned intermediate waypoints 1 and 2 in Figure 4.2 to avoid
unnecessary joint pressure. In terms of Figure 4.2, the desired end-effector path
would be similar to the green path in opposition to the undesired, red path.
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Figure 4.2: Task space of robot and coordinate axes of robot’s base frame seen
from above; the z-axis points upwards (out of paper).

4.2 Trajectory generation

The following sections frequently use terms that have been introduced and described
in sections 2.5-2.6.

4.2.1 Motivation

During early development of the security net, a now obsolete motion guidance was
created that used discrete waypoints as input, see appendix A. It quickly became
apparent that the velocity guidance based solely on discrete waypoint positions
made the task of ensuring smooth robot movements excessively cumbersome. If
a sufficiently smooth parametrically-defined trajectory C(s) is generated, where
s is the curve parameter, the velocity guidance can be simplified to making the
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end-effector follow a (desirably) continuous trajectory, where multiple techniques
exist in the literature. Furthermore, the s parameter can be utilized to calculate
the distance of the entire trajectory the end-effector has traveled, and the distance
remaining.

4.2.2 B-splines with continuous acceleration profile

The trajectory generation technique implemented is inspired by Baker’s lecture at
UCLA1 [7], where a C2 continuous B-spline is generated by combining piecewise
relaxed cubic Bézier curves. A cubic spline curve is relaxed if its second derivative
is zero at each endpoint. The reason for imposing the relaxed end conditions
on the Bézier curves is to ensure that the final B-spline satisfies C2 continuity
(i.e. continuous acceleration profile). In order to explain the technique, start by
considering two cubic Bézier curves that can be glued together but otherwise are
not well matched. Let the first and the second curve have control points P0−3 and
Q0−3, respectively. Moreover, let P3 = Q0 := S. The result is shown in Figure 4.3.

Figure 4.3: Matching endpoints: A coarse gluing. [7]

Now impose the condition that the first derivative match at the point of gluing.
This is satisfied with the requirement S − P2 = Q1 − S, or equivalently, that S is
the midpoint of the line segment P2Q1. The result is shown in Figure 4.4.

1University of California, Los Angeles.
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Figure 4.4: Matching endpoints and first derivative: An improved gluing. [7]

This certainly looks more smooth. On the other hand, to obtain an even smoother
join, the curvature should be continuous. Because the curvature can be expressed in
terms of the first and second derivatives, continuity of curvature can be achieved by
matching second derivatives, as well as first derivatives, at the point of gluing. At S,
the second derivatives of the Bézier curves are 6(P1 +2P2 +S) and 6(S−2Q1 +Q2).
Set the terms equal to each other, and negate both sides to obtain

2P2 − P1 = 2Q1 −Q2. (4.3)

The left-hand side corresponds to a particular point A+ on the line through P1

and P2. In fact, A+ = 2P2 − P1 = P2 + (P2 − P1), as displayed in Figure 4.5.
Similarly, A− = 2Q1 −Q2. A+ and A− will be called the right- and the left apex,
respectively.

Figure 4.5: A gluing almost matching second derivatives. [7]

The Figure displays that the two apexes are not equal, and thus (4.3) is not sat-
isfied. Conversely, Figure 4.6 shows the respective gluing where (4.3) is satisfied.
Moreover, an A−frame is a figure with points as indicated, in which S is the mid-
point of the line P2Q1, P2 is the midpoint of the line P1A, and Q1 is the midpoint
of Q2A. This is the foundation for the observation: If two Bézier curves are joined
at a point S, both their first and second derivatives match at S if and only if their
control polygons fit an A−frame.
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Figure 4.6: Matching endpoints, first- and second derivative: A satisfactory gluing.
[7]

Now that the requirements for joining two cubic Bézier curves have been outlined,
a general requirement for creating a B-spline that joins multiple relaxed cubic
Bézier splines is necessary. The method is as follows: Specify a control polygon
of B0, B1, ..., Bn. Divide each leg of the control polygon into thirds by marking
two ”division” points. At each Bi except the first and last, draw the line segment
between the two nearest ”division” points, and call the midpoint Si. This creates
an A−frame with Bi at the apex, see Figure 4.7. Finally, sketch a cubic Bézier
curve from each point Si to the next, using as Bézier control points the four points
Si, two ”division” points”, and Si+1.

Figure 4.7: Control polygon with respective ”division” points, Si and relaxed cubic
B-spline. [7]

A computer method can be summarized as follows:
Given B − spline control points B0, ..., Bn, calculate Si = 1

6Bi−1 + 2
3Bi + 1

6Bi+1,
for i = 1, ..., n− 1, and let S0 = B0, Sn = Bn. There are n cubic Bézier curves to
plot. Curve #i has control points Si−1,

2
3Bi−1 + 1

3Bi,
1
3Bi−1 + 2

3Bi and Si. The
resolution of the respective Bézier curves is determined by the user. Reasonable
starting values could be s = {0, 0.05, 0.10, ..., 0.95, 1}.
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Finally, let pi(s) be the ith Bézier curve (0 ≤ s ≤ 1). These N curves can be
combined into a single curve P (t) for 0 ≤ s ≤ N by letting

P (t) = pi(s− (i− 1)) for i− 1 ≤ s ≤ i, where i = 1, ..., N. (4.4)

Then P (t) is a relaxed cubic spline curve. Furthermore, P (t) is called a uniform
curve because its domain 0 ≤ s ≤ N was made from intervals all of length 1.

4.2.3 Closest point on a spline curve

In order to design proper velocity guidance based on the trajectory, it is essential to
know which point on the B-spline curve is closest to the end-effector position at all
times. Furthermore, the computation needs to be applicable in real-time, in addi-
tion to being robust. Obtaining an optimal s∗ that minimizes the distance between
an arbitrary linear function and the end-effector is straightforward. However, for
the nonlinear cubic B-spline, this is an incredibly complex problem and the easiest
solution is a numerical approach. Several methods exist in the literature; Kamer-
mans [25] uses a binary search method, Chen et al. [26] use an algebraic method
with a complex root-finding algorithm. Here, a solution inspired by Wang et al. in
[27] is implemented due to its promising robustness and real-time design criteria.
The procedure uses a two-step method that exploits the complementary strengths
of two optimization techniques: Newton’s method and quadratic minimization.

4.2.3.1 The problem

Let the cubic B-spline curve in three-dimensional space be expressed as

(x(s), y(s), z(s)), 0 ≤ s ≤ L, (4.5)

where s denotes the arc length, L is the arc length of the entire spline curve, and
x(s), y(s), and z(s) are the cubic spline functions with equally spaced breakpoints
{s0, s1, ..., sn} with s0 = 0 and sn = L. At each time step of the motion control, the
end-effector attains a new position in Cartesian coordinates. Let p0 = (x0, y0, z0)
be the position of the end-effector. The square Euclidean distance between p0 and
position (x(s), y(s), z(s)) on the spline curve is

D(s) = (x(s)− x0)2 + (y(s)− y0)2 + (z(s)− z0)2. (4.6)

The value s∗ that minimizes D(s) determines p1 = (x(s∗), y(s∗), z(s∗)), the closest
point to p0 on the cubic spline curve.
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4.2.3.2 Quadratic minimization method

Quadratic minimization uses quadratic interpolation to minimize a one-variable
function. Suppose that s̃1, s̃2, and s̃3 are given initial estimates of s∗. The quadratic
polynomial that interpolates D(s) at these estimates is given by

P (s) =
(s− s̃2)(s− s̃3)

(s̃1 − s̃2)(s̃1 − s̃3)
D(s̃1) +

(s− s̃1)(s− s̃3)

(s̃2 − s̃1)(s̃2 − s̃3)
D(s̃2)

+
(s− s̃1)(s− s̃2)

(s̃3 − s̃1)(s̃3 − s̃2)
D(s̃3).

(4.7)

The minimum of P (s) is used to approximate the minimum of D(s), and it is given
by

s∗,k =
1

2

y23D(s̃1) + y31D(s̃2) + y12D(s̃3)

s23D(s̃1) + s31D(s̃2) + s12D(s̃3)
, k = 1, 2, 3, ..., (4.8)

where sij = s̃i−s̃j and yij = s̃2
i−s̃2

j for i, j = {1, 2, 3}. Three values are picked from

s̃1, s̃2, s̃3, and s∗,k by eliminating the value which gives the largest P (s) among
the 4 values. In our implementations, the algorithm continues three iterations so
that all initial estimates s̃1, s̃2, and s̃3 have an opportunity to be replaced by a
better estimate. Then the optimal estimate is used as initial estimate for Newton’s
method.

4.2.3.3 Newton’s method

The value s∗ that minimizes D(s) in (4.6) satisfies

D′(s∗) = 0. (4.9)

Newton’s method can be used to find a root of this equation. This leads to the
iteration formula

s∗,m+1 = s∗,m − D′(s∗,m)

D′′(s∗,m)
, m = 0, 1, 2, ... (4.10)

As previously mentioned, the initial estimate for s∗,0 is based on the optimal value
returned by the Quadratic minimization.
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4.2.3.4 The combined method

Neither Newton’s method nor quadratic minimization perform satisfactory for real-
time simulation.2 However, both methods possess individual strengths that com-
pliment each other. Quadratic minimization is good at refining coarse estimates.
Newton’s method is good at converging to the optimal value with a good initial
estimate. The composite algorithm begins with quadratic minimization method to
find a rough estimate that serves as an initial guess for Newton’s method.

Their method has undergone rigorous testing in a real-time ground vehicle simula-
tor. Wang et al. argue that in 10 months of daily runs they have had no failures.
This is used as a foundation for their robustness argument.

4.3 Motion guidance

In order to properly test the motion controller, there had to be established a way to
generate reliable and executable reference signals to the controller. Furthermore,
it is desirable to generate reference signals in such a way that the movement of the
robot is sufficiently smooth. This avoids unnecessary jerk and acceleration for the
robot. Moreover, it is safer, makes the robot movement more predictable and is less
damaging to the robot joints. During early development, the trajectory generation
was missing. Hence, there were only discrete waypoints to follow. Consequently,
there were higher difficulties with creating suitable motion guidance, more precisely
regarding the direction of the translational velocity, and the rotational velocity.
This section presents the current version of the motion guidance in details. Obsolete
versions are mentioned in a terse summary. For detailed description of the obsolete
versions, visit appendix A.

4.3.1 Translational velocity

4.3.1.1 Direction

The direction of the translational velocity depends on the cubic B-spline described
in the previous section. Moreover, the method developed here is inspired by the
line-of-sight (LOS) guidance with a lookahead-based steering (see pages 257-262 in
[28] for a detailed description). The translational velocity is given by

vref = c1ve(s
∗) + v̂t(sahead), (4.11)

where ve is the velocity given by the cross-track error, c1 is a weighting constant,
and v̂t is the tangent directional vector where the hat indicates a unit vector3.

2occurrence of divergence, slow behavior.
3a vector of length 1.
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Furthermore, s∗ is the trajectory parameter closest to the end-effector and sahead
is the s-parameter defined a number of steps ahead of s∗. For clarity, Figure 4.8
displays the vectors in 2D space for sahead = s∗. The idea behind sahead is to ensure
that the end-effector can follow high-curvature sections without excessive overshoot.
Moreover, c1 is used to ensure that the cross-track error stays within acceptable
measures. After vref has been calculated through (4.11), it is transformed to a
unit vector to let the velocity magnitude reference be the main deciding factor of
the end-effector speed.

1 1.5 2 2.5

x

0.6

0.8

1

1.2

1.4

1.6

1.8

y

Figure 4.8: Cross-track error vector and tangent vector with trajectory. The tan-
gent vector illustrated in this figure is not a unit vector.

4.3.1.2 Outdated implementations

The outdated version of this motion guidance was also inspired by the line-of-sight
(LOS) guidance. It differs by having the vectors point to- and between discrete
waypoints, instead of to a continuous spline curve. Furthermore, the waypoints
were too close to each other to properly implement the procedure. The procedure
worked to a certain extent, although it suffered from the relatively large discrete
jump in the closest waypoint reference. A detailed description can be found in
appendix A.

4.3.1.3 Magnitude

The magnitude of the translational velocity is directly given by the Euclidean
distance transform of the security net. The idea is to allow movement at a standard
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maximum operation speed vmax if the end-effector is further away from obstacles
than a distance dsafe. If the distance to the closest obstacle is smaller than the
safe distance, i.e. dobj(n) < dsafe, the velocity magnitude will linearly decrease
from vmax until the lowest allowed velocity vmin is reached. This is visualized in
Figure 4.9 for a linear decrease. Future implementations should consider replacing
the linear decrease with more a thoughtful reduction function, e.g. an exponential
decrease.

Figure 4.9: Velocity magnitude as a function of the Euclidean distance transform

4.3.2 Rotational velocity

The orientation of the end-effector is of huge importance. Based on the way the
orientation guidance is performed, it may aid or counteract the robot’s ability to
move into cumbersome, ineffective joint configurations.

As previously mentioned, the goal orientation is set by the user or AI before the
motion is initiated. Currently, a simple yet effective guidance for the rotational
velocity is given by

ωref = κ(Θ−Θgoal), (4.12)
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where Θ is the current orientation of the end-effector, Θgoal is the goal orientation,
and κ is the tunable constant for the motion controller, defined in (3.1). Further-
more, all orientations are currently expressed using the Euler angle representation,
i.e. roll, pitch, yaw = [φ, θ, ψ] .

The effectiveness of the proposed solution is obtained by specifying κ to be depen-
dant on the trajectory parameter s. Moreover, it is given by

κ(s) =

√
s∗∑n=sn
n=s0

1
, (4.13)

where s∗ is the trajectory parameter closest to the end-effector, and
∑n=sn
n=s0

1
denotes the total number of s used for the trajectory. Hence, κ(s) is given by
the square root of the percentage of the trajectory length traveled. Linear and
quadratic exponents were also tested. However, it is more important that the ori-
entation error is limited as s∗ goes towards sn, i.e. when the end-effector reaches the
goal position. Hence, a more rapid increase in κ(s) is desirable and the exponent
1
2 is the better choice, illustrated in Figure 4.10.
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Figure 4.10: κ(s) displayed for different exponent values.

4.3.2.1 The obsolete implementation

There exist two outdated versions for the rotational velocity. Method 1 was the
first one, where the idea was to make the manipulator mimic the movements of
a snake. Method 2 swapped between a rough and a fine path. During the rough
path the orientation set to hold the roll and pitch zero while changing the yaw to
make the end-effector point away from the base. During the fine path, the motion
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guidance set to obtain the goal orientation before the end goal position was reached.
Detailed descriptions can be found in A.

4.4 Motion control

Once the first versions of path planning and guidance system were implemented,
making the end-effector follow the respective reference signals became the next
challenge.

The following introductory paragraphs briefly explain the user design- requirements
and possibilities for the Panda robot introduced in section 1.4.

In Franka Emika’s provided C + + API4, the robot can move by using a motion
generator, where one of the four interfaces can be utilized:

• Joint position

• Joint velocity

• Cartesian position

• Cartesian velocity

The interfaces concerning the joints request the user to return a desired position
or velocity for all joints. In the Cartesian interfaces, the user is requested to return
a position and orientation (6 DOF) or a translational- and rotational velocity.
Furthermore, all the control parameters are required to be fed to the robot every
1ms. Hence, the definition

∆t = 0.001 (4.14)

is made in advance to coming derivations.

The control parameter requirements are best explained by Franka Emika: ”The
control parameters fed into the robot should fulfill necessary and recommended
conditions.5 If necessary conditions are not met then the motion will be aborted.
Recommended conditions should be fulfilled to ensure optimal operation of the
robot.

The final robot trajectory is the result of processing the user-specified trajectory
ensuring that recommended conditions are fulfilled. As long as the necessary con-
ditions are met, the robot will try to follow the user-provided trajectory, but it will
only match the desired trajectory if it also fulfills the recommended conditions.
If the necessary conditions are violated, an error will abort the motion: if, for
instance, the first point of the user defined joint trajectory is very different from
qstart, a velocity limits violation error will abort the motion.” [5]

4Application Programming Interface
5See section 1.4.
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4.4.1 Constraint handling

Because the C + + library does not include a soft controller6, the challenge with
satisfying the constraints had to be addressed. The original goal was to use the
Cartesian velocity interface. As previously mentioned, if the control parameters
violate the constraints, the robot will stop. Consequently, the initial idea was to
set a limitation on the subsequent velocity control parameters by requiring the
acceleration between time steps to be within the requirements. Let the desired
Cartesian velocity at time t be denoted vt, and let the actual input to the robot at
time t is denoted ṽt. Then, the Cartesian acceleration can be approximated as

at =
‖ṽt − ṽt−1‖

∆t
. (4.15)

Moreover, let the Cartesian input velocity be given by the equation

ṽt = ṽt−1 + c(vt − ṽt−1). (4.16)

Inserting (4.16) into (4.15), and squaring both sides yields

a2
t =

c2‖vt − ṽt−1‖2

(∆t)2
. (4.17)

Solving for c yields

c =

√
(∆t)2a2

t

‖vt − ṽt−1‖2
, (4.18)

and by setting at < p̈max the theory was that the former two equations in (1.10)
were satisfied. It quickly became clear that although the Cartesian acceleration
problem was fixed in theory, the Franka Emika robot continually aborted the mo-
tion due to violations; the debugging procedure was also unnecessary cumbersome.
Furthermore, it was less intuitive to continue with a similar procedure to satisfy the
constraints not yet addressed in (1.10). Consequently, using the Cartesian space
interface was scrapped, and a proper constraint handling procedure was developed.

In addition to having the opportunity to minimize the joint velocity, a formulation
which weighs this cost versus the respective errors in translational and rotational
velocities is proposed. This yields an optimization problem on the Quadratic Pro-
gramming (QP) form. To ensure that the kinematic relationship is satisfied, (1.2)

6A controller handling all constraints, regardless of input.
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is included as an equality constraint for the problem. In addition, the respective
joint constraints in (1.6) are included as inequality constraints. This yields

minimize Jc = γ
∥∥v − vref∥∥2

2
+ κ
∥∥w − wref∥∥2

2
+ µq̇T q̇

subject to

[
v
w

]
= Jq̇,

qmin < q < qmax,

− q̇max < q̇ < q̇max,

− q̈max < q̈ < q̈max,

−
...
qmax <

...
q <

...
qmax,

(4.19)

where γ, κ and µ are weighting constants. Hence the idea is an adaptive soft
controller where a trade-off between reducing errors in translational- or rotational
velocity and reducing overall joint velocity can be dynamically adjusted in real-time
operation. This is on top of the fact that, in theory, all constraints are satisfied. An
immediate advantage with this cost function is that it linearly separates the differ-
ent optimization criteria, where the optimization variable contains both Cartesian-
and joint space. Hence, it provides an easy way to weigh between Cartesian- and
joint space criteria.

4.4.2 QP standard form and boxed inequality constraints

In order to implement the QP problem, it needs to be transformed to canonical
standard form. By defining the optimization variable as

z :=
[
vT ωT q̇T

]T
, (4.20)

this can be achieved. The canonical standard form is

minimize
z

zTQz + q0z

subject to Aeqz = 0,

Aineqz ≤ b.

(4.21)

Consequently, the joint- position, acceleration and jerk have to be approximated
by using the joint velocity, q̇.

Position
For the joint position, the approximation

q ≈ qprev + ∆tq̇d (4.22)
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is used. Inserting that into the corresponding constraint in (4.19), and solving for
q̇ yields

qmin − qprev
∆t︸ ︷︷ ︸

:=q̇d1min

< q̇d <
qmax − qprev

∆t︸ ︷︷ ︸
:=q̇d1max

. (4.23)

Velocity
The joint velocities already satisfy the standard form. The following definitions are
made

q̇d2min := −q̇max (4.24)

q̇d2max := q̇max. (4.25)

Acceleration
For the joint acceleration, the approximation

q̈d ≈
q̇end − q̇beginning

∆t
=
q̇d − q̇prev

∆t
(4.26)

is used. As before, it is inserted into the corresponding constraint in (4.19), and
solved for q̇. The resulting equation becomes

−∆tq̈max + q̇prev︸ ︷︷ ︸
:=q̇d3min

< q̇d < ∆tq̈max + q̇prev︸ ︷︷ ︸
:=q̇d3max

(4.27)

Jerk
For the joint jerk, the approximation becomes slightly more complicated. Jerk

...
q

is the relative change in acceleration, and thus we have the relationship

...
q d ≈

aend − abeginning
∆t

=
q̇d−q̇prev

∆t − q̇prev−q̇prevprev

∆t

∆t

=
q̇d − 2q̇prev + q̇prevprev

(∆t)2
,

(4.28)

where (4.26) was used. Inserting (4.28) into the corresponding constraint in (4.19),
and solving for q̇ yields

−(∆t)2...
qmax + 2q̇prev − q̇prevprev︸ ︷︷ ︸

q̇d4min

< q̇d < (∆t)2...
qmax + 2q̇prev − q̇prevprev︸ ︷︷ ︸

q̇d4max

. (4.29)
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This will bring the inequality constraints on the form

q̇d1min < q̇d < q̇d1max

q̇d2min < q̇d < q̇d2max

q̇d3min < q̇d < q̇d3max

q̇d4min < q̇d < q̇d4max.

(4.30)

An immediate benefit that can be exploited from this is that (4.30) can be boxed,
effectively reducing the number of inequality constraints the QP problem has to
satisfy from 8× 7 = 56 (7 joints), to 2× 7 = 14. This is achieved by defining

q̇dmin := max(q̇d1min, q̇d2min, q̇d3min, q̇d4min) (4.31)

q̇dmax := min(q̇d1max, q̇d2max, q̇d3max, q̇d4max). (4.32)

The final inequality becomes

εq̇dmin ≤ q̇d ≤ εq̇dmax, (4.33)

where 0 < ε < 1 is included to handle approximation errors in addition to ensuring
that the constraints satisfy the QP canonical form.

Using the boxed constraint formulations, transforming (4.19) to the canonical stan-
dard form in (4.21) using (4.20) as the optimization variable yields the following
matrices

Q =

γI3x3 0 0
0 κI3x3 0
0 0 µI7x7

 , q0 =
[
−2γvref −2κwref 0

]
,

Aeq =
[
I6x6 −J

]
,

Aineq =

[
01x3 01x3 I7x7

01x3 01x3 −I7x7

]
, b =

[
εq̇dmax
εq̇dmin

]
.

(4.34)

4.4.3 Joint limit

It quickly became apparent that the joint limit in (4.23) does not work in practice.
To understand why this is the case, consider the following illustration. Say joint
number k is approaching its positive joint limit and q̇k > 0. The controller will
in many cases continue with positive joint velocity until the joint limit constraint
inhibits further increase in joint velocity. This happens approximately one iteration
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before the violation occurs. At this point, the only way to avoid violating the
joint limit would be to severely decrease q̇k. However, this would violate the joint
acceleration constraint, unless q̇k is unlikely small at that instant. Hence, either the
QP formulation becomes infeasible or the Franka robot’s fail-safe procedures abort
the motion control. Nevertheless, this is a flaw that had to be addressed. To obtain
a behavior that hinders joints from approaching their respective limits, a term that
penalizes operations away from qmid is suggested. qmid will be defined as the joint
configuration that is in the middle of qmin and qmax in (1.6). In mathematical
terms, consider adding the following term to the cost function Jc

‖q − qmid‖22 . (4.35)

The idea is to increase the cost of operations further from the joint’s mid values
qmid. Intuitively, this could display the desired effect with correct tuning. To
fit the QP formulation, the approximation (4.22) is used again. Inserting the
approximation into (4.35) and removing constant terms yield

(qprev + ∆tq̇d − qmid)T (qprev + ∆tq̇d − qmid) = 2∆tqTprev q̇d − 2∆tqTmidq̇d + (∆t)2q̇Td q̇d.

This will alter the following matrices to

Q =

γI3x3 0 0
0 κI3x3 0
0 0 (µ+ (∆t)2)I7x7

 , q0 =
[
−2γvref −2κwref 2∆t(qTprev − qTmid)

]
.

It quickly became apparent that including (4.35) severely impaired the normal
operation of the controller. Extensive tuning of the control parameters would
perhaps yield the desired effect. However, that would probably require a trade-
off where the other elements in the cost function become shunned. Additionally,
tuning the controller with the new term was no longer intuitive. Hence, the idea
was not further investigated and a more thought-through solution was pursued.

The main theory as to why (4.35) did not provide desired results is because it ex-
cessively affected the normal operation of the controller. Hence, a natural approach
was to create a term that only has an impact when it is truly necessary, which is
when a joint is close to either of its limits. Furthermore, the expression in (4.35)
increases quadratically. Having a term with a slope that increases more rapidly
would produce a quicker response from the soft controller. The natural exponential
function ex has a promising slope. In addition, the function is relatively easy to
modify in order to obtain desired performance in terms of activation region, penalty
weighting etc.
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Figure 4.11: Various versions of exponential function

Observing Figure 4.11, it becomes clear that increasing the slope and shifting the
curve on the x-axis is relatively easy. Consequently, consider the function

g(q) = c(e−λ(q−qmin) + e−λ(qmax−q)), (4.36)

where c and λ are constants used for tuning, e is the natural exponential function, q
is the joint angle for the respective joints, qmin and qmax are from (1.6). Figure 4.12
shows the behavior of the function for different tuning values. With the exception
of the c = 1, λ = 1 curve, the cost function term displays desired performance; it
has zero impact during normal joint-safe operations.
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Now that a promising mathematical term has been derived, it is necessary to
transform it to fit the QP problem formulation. For openers, the optimization
variable contains q̇ and not q. Hence, the approximation (4.22) is used again. This
yields

g1(q) = c(e−λ(qprev+∆tq̇−qmin) + e−λ(qmax−qprev−∆tq̇)). (4.37)

Moreover, q̇ must be represented in linear or quadratic terms only in order to satisfy
the QP canonical form. The natural exponential function can be defined as the
value of the power series

ex =

∞∑
n=0

xn

n!
= 1 + x+

1

2
x2 +

1

3
x3 +

1

4
x4 + ... (4.38)

If possible, it is desired to use only linear terms in the optimization variable z. This
is because quadratic terms will affect the Q matrix, which complicates the tuning
of the soft controller. This was seen to be the case with the qmid formulation.
Therefore, the approximation

ex ≈ 1 + x (4.39)
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is used, and the quadratic term 1
2x

2 is omitted analogous to the larger nonlinear
terms. Furthermore, the properties of the natural exponential function are directly
related to properties of simple power series. Hence, the following property will be
utilized

ex+y = exey. (4.40)

Utilizing (4.39) and (4.40) for g1(q) in (4.37) yields

g2(q) = c((1− λ∆tq̇)e−λ(qprev−qmin) + (1 + λ∆tq̇)e−λ(qmax−qprev)). (4.41)

For the QP problem, constant terms are omitted from the cost function, because
they do not have any effect on the optimal solution. Hence, the approximated
function becomes

g(q̇, q) = c(−λ∆te−λ(qprev−qmin) + λ∆te−λ(qmax−qprev))q̇, (4.42)

which is linear in q̇. Thus, only the linear term matrix q0 in the cost function needs
adjustment. The cost function matrices become

Q =

γI3x3 0 0
0 κI3x3 0
0 0 µI7x7

 ,
q0 =

[
−2γvref −2κwref c(−λ∆te−λ(qprev−qmin) + λ∆te−λ(qmax−qprev))

]
.

The behavior of (4.42) needs to be analyzed to assert that the desired performance
is preserved after the approximations have been made. There are two variable
terms that dynamically and uncontrollably adjusts the value of g( ˙q, q), specifically
qprev and q̇, which both can have positive and negative values. Hence, there are
four cases that need to be investigated.
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Figure 4.13: Approximated g(q) plotted for positive and negative q̇.

By observing Figure 4.13 we can discuss the four cases.

Case (i): q̇ > 0 ∧ qprev > 0
Because q̇ > 0, the angle q will increase, and hence move further to the right and
away from q = 0. At q ≈ 2, the penalty term will increase exponentially until it
accumulates a significant cost value. Then the QP solver will decrease q̇ within
the accepted acceleration limits until it surpasses q̇ = 0 and becomes negative.
Consequently, the positive joint limit is avoided in theory.

Case (ii): q̇ < 0 ∧ qprev < 0
By symmetry, the negative joint limit is also avoided.

Case (iii): q̇ > 0 ∧ qprev < 0
If the joint angle q < −2, one might expect the QP solver to dislike having q̇ > 0,
because this will increase the g( ˙q, q) term and thus might also increase the total
cost function. Hence, local minima exist in theory, where the QP solver is switching
rapidly between cases (i) and (iv) or cases (ii) and (iii), respectively.

Case (iv): q̇ < 0 ∧ qprev > 0
By symmetry, see case (iii).

Several experiments in section 5.4 and the experiment in section 5.2 showcase the
result of including g( ˙q, q) in the cost function.
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Chapter 5

Experiments and results

This chapter presents four experiments. Section 5.1 displays the security net’s abil-
ity to prevent obstacle collisions for the end-effector. Section 5.2 demonstrates the
security net’s ability to reach a goal pose when having an extraordinary cumber-
some initial joint configuration. Furthermore, it is the most extensive experiments
because most relevant parts of the security net are also presented. The additional
plots are omitted from the other experiments to keep the thesis concise. Section
5.3 analyzes the end-effector’s ability to follow a trajectory for different velocity
magnitudes. Finally, section 5.4 analyzes the joint limit term g(q̇, q) derived in
section 4.4.3 in several practical experiments.

Figure 5.1 displays the setup used for the experiments in sections 5.1, 5.2, and 5.3
with the exception of some obstacles in front of the robotic manipulator. Figure 5.2
displays the full environment seen by the voxel grid. Moreover, in sections 5.1, 5.2,
and 5.3 the plots do not display all the relevant obstacles. This is done to only show
the relevant parts. However, the objects and the manipulator base are mapped in
the voxel grid for all experiments. The reason for mapping the manipulator as
an obstacle is to prevent the path planning algorithm from creating paths that go
through the manipulator’s base. Additionally, the ground is mapped as an obstacle.
However, it is not displayed in Figure 5.2.
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Figure 5.1: Real display of the setup used in several experiments.

Figure 5.2: Voxel grid display of mapped obstacles used in several experiments. The
blue objects represent a euro pallet and the robot control box, the green object
represents the base of the robot, and the red objects represent two boxes of similar
size and a pole. Axes are in robot coordinates.
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The experiments in section 5.1 and 5.2 used the following parameter values for the
motion controller: γ = 1, κ(s) as in (4.13), µ = 0.002, χ = 11. Moreover, the tuning
parameters for g(q̇, q) in (4.23) satisfy λ = 8 and c = 1000. The maximum and
minimum velocity magnitudes were set to vmax = 0.15m/s and vmin = 0.04m/s,
respectively. Section 5.3 used the same parameters, with the additional test using
vmax = 0.3m/s. Finally, section 5.4 used the same parameter values with the
exception of vmax = 0.3m/s, and κ = 1. Most of these values were chosen based on
the comprehensive experience acquired from extensive testing of the security net
during the development process.

5.1 Security net with- and without obstacles

This section compares two experiments. The first experiment demonstrates the
security net’s ability to reach an end-effector goal pose in an environment without
significant obstacles. Following is a similar experiment with the same start- and
goal pose, only with new obstacles present and mapped in the voxel grid. The new
obstacles are placed in such a way that the path generated in the first experiment
would result in a collision.

5.1.1 Experiment without significant obstacles

Figures 5.3 and 5.4 display the real life setup for this experiment.

(a) Start configuration (b) Intermediate configuration

Figure 5.3: Start- and intermediate configurations of a pick and place operation in
an environment without significant obstacles.

1Except for the final part of the trajectory, where it is set to zero. This is explained in details
in section 6.4.1
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Figure 5.4: End configuration of a pick and place operation in an environment
without significant obstacles.

Figure 5.5 displays that the security net creates and traverses a short and simple
trajectory when the environment allows it. Moreover, the reference trajectory
keeps a safe distance to all obstacles and the end-effector successfully tracks the
trajectory.

52



(a) View from left side

(b) View from right side

Figure 5.5: End-effector trajectory tracking of cubic B-spline without significant
obstacles
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5.1.2 Experiment with significant obstacles

Figures 5.6 and 5.7 display the real life setup for this experiment.

(a) Start configuration (b) Intermediate configuration

Figure 5.6: Start- and intermediate configurations of a pick and place operation in
an environment with significant obstacles.

Figure 5.7: End configuration of a pick and place operation in an environment with
significant obstacles.

By observing Figure 5.8 it is clear that when the additional obstacles are properly
mapped in the voxel grid, the security net performs necessary adjustments to the
trajectory and is still able to successfully execute the pick and place task. Further-
more, the reference trajectory keeps a safe distance to all obstacles in the cluttered
environment, and the end-effector’s cross-track errors relative to the reference tra-
jectory are kept minimal.
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(a) View from left side

(b) View from right side

Figure 5.8: End-effector trajectory tracking of cubic B-spline with significant ob-
stacles
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5.2 Security net with cumbersome initial joint con-
figuration

As previously mentioned, this section includes an experiment that demonstrates
the security net’s ability to perform a simple pick operation when the robot is
manually positioned into a cumbersome initial joint configuration. Figures 5.9 and
5.10 display the real-life setup for this experiment.

(a) Start configuration (b) Intermediate configuration 1

Figure 5.9: Start- and intermediate configurations of an experiment when the initial
configuration is extraordinary cumbersome.

(a) Intermediate configuration 2 (b) End configuration

Figure 5.10: Intermediate- and end configurations of an experiment when the initial
configuration is extraordinary cumbersome.

Figure 5.11 displays the security net’s ability to follow the trajectory when an ex-
traordinary cumbersome initial joint configuration is manually set in advance. The
end-effector has two noticeable deviations from the reference trajectory: one at the
start of the motion and a smaller one following soon after. The magnitude of these
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deviations are displayed in detail in Figure 5.12 (a), with the largest deviation
reaching almost 14 cm and the second deviation reaching almost 6 cm. Further-
more, these noticeable cross-track errors are neutralized within 2.5s, respectively.
The remaining parts of the end-effector trajectory satisfy approximately zero cross-
track error. Figure 5.12 (b) suggests that the larger deviation at the beginning is
caused by the joint correction term, and that the second deviation is not. Moreover,
the joints at the highest risk of reaching their limits are joints 5 and 2.
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Figure 5.11: End-effector trajectory when the initial configuration is extraordinary
cumbersome.
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Figure 5.12: Cross-track error and joint limit term g(q̇, q) when the initial config-
uration is extraordinary cumbersome.

Figures 5.13 (a) and (b) display the translational- and rotational velocity refer-
ences, respectively, generated by the motion guidance. The translational refer-
ences are slightly oscillating with the exception of the first 2.5 seconds where they
are smooth. The rotational references are continuous for the entire experiment
with the exception that the rotational velocity reference in the x−direction has a
critical discontinuity at ≈ 4s. This discontinuity is likely to be the cause of the
second tracking deviation. Moreover, a detailed description of the reason for the
discontinuity is derived in Section 6.3.
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Figure 5.13: Translational- and rotational velocity references when the initial con-
figuration is extraordinary cumbersome.

Figures 5.14 (a) and (b) display the joint- and joint velocity trajectories. The former
demonstrates a high change in joint values at the beginning of the experiment,
where most joints are moved away from their respective limits. The latter figure
shows that high joint velocities are required during both the noticeable cross-track
error incidents. Furthermore, when the cross-track errors are small the velocities
oscillate.
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Figure 5.14: Joint- and joint velocity trajectories when the initial configuration is
extraordinary cumbersome.

Figure 5.15 demonstrates the effectiveness of the algorithm used to calculate the
curve parameter s∗ that is closest to the end-effector (depicted in section 4.2.3). The
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algorithm’s output and the actual s∗ are almost indistinguishable. Consequently, a
zoomed view is necessary to display that there are minor differences between them.
The actual s∗ is calculated with the brute force method, which was run subsequent
to the experiment.
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Figure 5.15: Calculated s∗ versus actual s∗ when the initial configuration is ex-
traordinary cumbersome.
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5.3 Robot trajectory tracking with different ve-
locity magnitudes

The experiment in this section attempts to test the motion guidance’s ability to
follow the trajectory for different levels of velocity magnitude. Moreover, the plots
presented in this section are from the final trajectory in the video attached to
this thesis, i.e. when the manipulator carries two objects. For clarity, Figure 5.16
displays the start- and end configurations.

(a) Start configuration (b) End configuration

Figure 5.16: Start- and end configuration for this experiment.

Figure 5.17 presents the end-effector trajectory for vmax = 0.3m/s with the cor-
responding reference trajectory as a B-spline, and waypoints. For straight line
spline segments, the end-effector successfully follows the reference trajectory. On
the other hand, it obtains noticeable cross-track errors when encountering high-
curvature sections. Figure 5.18 presents the same plot, only with a lower velocity
magnitude vmax = 0.15m/s. In comparison, it shows that all the major cross-track
errors are overcome when using a lower velocity magnitude.

The observant reader might notice that the final part of the trajectories in the
aforementioned figures have a shortage of waypoints. The explanation for this can
be found in section 6.1.
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Figure 5.17: End-effector trajectory with cubic B-spline and waypoints for a high
velocity magnitude vmax = 0.3m/s.
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Figure 5.18: End-effector trajectory with cubic B-spline and waypoints for a low
velocity magnitude vmax = 0.15m/s.
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5.4 Joint limit term

The experiments in this section were performed antecedent to the development of
the trajectory generation in section 4.2. Hence, the obsolete methods described it
appendices A.1.1 and A.2.2 were used as motion guidance.

The effect of adding g(q̇, q) to the cost function needs to be analyzed. Forthcoming
are two experiments where the robot is manually put in a start joint configuration,
paired with a specific goal position for the end-effector. The pairs are designed in
such a way that without the additional g(q̇, q) term, the robot reaches a specific
joint limit and the internal fail-safe mechanism of the robot inhibits further control.
The idea is to observe if the joint limits are avoided the additional term is included.
A discussion regarding the acquired results is derived in section 6.4.1. Moreover,
two supplementary experiments are presented in Appendix B to keep the main
report tidy.

5.4.1 Experiment - Negative limit joint 1

Comparing Figure 5.19 and Figure 5.20 it is clear that joint 1 avoids its negative
joint limit when including (4.42) in the cost function. Furthermore, looking at time
t > 2000ms (because this is the time where joint 1 acquires a significant disparity
between the respective figures), it seems that joints 3, 5, and 2 correct for most of
the necessary adjustment in joint 1. Figures 5.21 and 5.22 show that (especially
after time t > 2000ms) only minor adjustments are required with respect to joint
velocities to avoid the joint limit.
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Figure 5.19: Joint trajectories where joint 1 reaches its limit.
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Figure 5.20: Joint trajectories where joint 1 avoids its limit.
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Figure 5.21: Joint velocity trajectories where joint 1 reaches its limit.
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Figure 5.22: Joint velocity trajectories where joint 1 avoids its limit.
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5.4.2 Experiment - Positive limit joint 1

Comparing Figure 5.23 and Figure 5.24 it is clear that joint 1 exemplary avoids
it positive joint limit with the joint term g(q̇, q) added to the cost function. Fur-
thermore, joints 3 and 4 perform the largest adjustments to achieve this avoidance.
Figures 5.25 and 5.26 show somewhat large increases in joint velocities with the
additional joint term in the cost function.
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Figure 5.23: Joint trajectories where joint 1 reaches its limit.
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Figure 5.24: Joint trajectories where joint 1 avoids its limit.
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Figure 5.25: Joint velocity trajectories where joint 1 reaches its limit.
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Figure 5.26: Joint velocity trajectories where joint 1 avoids its limit.
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Chapter 6

Discussion

The following chapter presents a discussion for all main parts of the security net.
Moreover, it attempts to explain all results from the preceding chapter that are
not self-evident.

6.1 Path planning

By comparing Figure 5.5 with Figure 5.8 in section 5.1, it is indicated that the
path planning successfully finds alternative waypoints that effectively allows the
end-effector to execute the same place operation when newly present objects are
impeding the shortest path. Nevertheless, the current implementation of the path
planning is not without flaws. Figure 5.17 (a) in section 5.3 demonstrates an ineffec-
tive waypoint placement signified by the waypoints drawn in red. It is self-evident
that a more optimal placement procedure would make the waypoints form a diago-
nal line, which would yield a straight line segment in the reference trajectory, which
in return would make the tasks of the motion guidance and the motion controller
significantly easier. The path planning procedure also supports modification of
several parameters, i.e. c, K, vmax and vmin in (4.2), to weigh how far away from
obstacles the waypoints should be [1].

It should also be clarified that the security net finds waypoints from the end-effector
to a point A, placed at a certain distance away from the final goal. The operator
of the security net specifies the Euclidean distance between point A and the goal
position, in addition to the corresponding direction the end-effector should arrive
from. Moreover, all experiments in the preceding chapter used a distance of 10cm.
The final path is then formed by temporary, evenly spaced waypoints on a line
between point A and the goal position. A consequence of this mechanism is that
it eliminates a conversion error between the voxel grid and the robot coordinates,
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which allows the goal pose to be reached with minimal position errors1.

6.2 Trajectory generation

The relaxed cubic B-spline successfully creates a C2 continuous curve [7] based
on the waypoints generated. Moreover, the algorithm that finds the closest curve
parameter s∗ shows effectiveness and robustness, as was promised in [27]. This
makes the curve a reliable input to the motion guidance. Moreover, the curve
parameter s turned out to be severely advantageous as it can be used to calculate
the arc length of the trajectory, determine accurate cross-track errors, calculate
distance traveled on the trajectory, and tune the motion controller.

6.3 Motion guidance

The motion guidance has significant room for improvement. For starters, the trans-
lational velocity references suffer from continual oscillations. A comparison between
the translational velocity references in Figure 5.13 (a) and the cross-track error in
Figure 5.12 (a) suggests that the references’ oscillations seem to occur mostly when
the cross-track error is minimal, i.e. when the linear combination between vt and
ve in (4.11) has reached some sort of unstable equilibrium. Conversely, Figure 5.14
(b) displays the rotational velocity references as sufficiently smooth with the ex-
ception of the discrete jump in ωxref from −π to π at ≈ 4s. For the clarity of
the following explanation, keep in mind that the goal orientation Θgoal was set to
[φ, θ, ψ] = [0, 0, 0] in that experiment. Hence, ωref = Θ2 (see (4.12)) in Figure 5.14
(b). Consequently, it is clear that the measurements provided by the Panda robot
regarding roll φ jump from −π to π instead of continuing towards −2π, and vice
versa. Nevertheless, with exceptional help from the redundant motion controller,
the current motion guidance successfully moves the end-effector to its goal pose
based on the B-spline trajectory. Furthermore, this thesis work has not conducted
an extensive literature study on motion guidance and thus it should not be expected
to be completely optimal.

6.4 Motion controller

For clarification, the soft motion controller in (3.1) is sometimes granted the word
”soft” due to its ability to handle references that would, without limitation, violate
one or more of the robot’s constraints. Moreover, with the nonoptimal velocity
references (depicted in Figure 5.14) as input, the motion controller is still able

1In the experiments the maximum position error was set to 1mm. Smaller errors were not
tested.

2Θ is the end-effector’s orientation
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to output joint velocities q̇ that best follow the references without triggering the
fail-safe mechanisms of the Panda robot. Figure 5.14 (b) in section 5.2 displays
the output from the controller. Notice that for the second peak at ≈ 4s, the one
likely caused by the discrete jump in the rotational velocity reference, some joint
trajectories seem moderately discrete. However, this is probably an effective way
to return the robot to the trajectory while simultaneously satisfying a reduction
in the rotational velocity error without violating the robotic manipulator’s con-
straints. Moreover, oscillations in the controller output are most likely induced by
the oscillations in the references from the motion guidance.

For the convenience of this discussion, the motion controller depicted in (3.1) is
restated here with the tuning constants κ(s) and χ(s) as functions of the curve
parameter s:

minimize Jc = γ
∥∥v − vref∥∥2

2
+ κ(s)

∥∥ω − ωref∥∥2

2
+ µq̇T q̇ + χ(s)g(q̇, q)

subject to

[
v
ω

]
= Jq̇,

− q̇max ≤ q̇ ≤ q̇max,
− q̈max ≤ q̈ ≤ q̈max,
−

...
qmax ≤

...
q ≤

...
qmax.

Considering the individual terms of the cost function, they all fulfill their pur-
pose and are weighed in a linear combination through their respective constants,
which support real-time tuning. The first two terms regard minimizing the errors
in Cartesian translational- and rotational velocity. They make the end-effector fol-
low the trajectory with the output from the motion guidance. Furthermore, the
constant κ(s) is tuned real-time with a continuous and smooth (see Figure 4.10)
increase in order to avoid large cross-track errors when the rotational velocity er-
ror is large.3 The controller also avoids the computationally extensive calculation
(here: approximation) of the Jacobian inverse, see (4.34) for clarity. In section
1.3.4 it was discovered that several methods benefit from the least square property
of the pseudo-inverse, in that this yields the minimum joint velocity required to
obtain the respective velocities v and ω. The motion controller in (3.1) can also
achieve this by weighing µ high. Moreover, it can weigh each individual joint inde-
pendently of the others.4 The final term handling joint limits is granted a separate
subsection due to its uniqueness and the compelling analysis it has received.

3Having a high, discrete increase in κ would cause noticeably large cross-track errors because
the controller would weigh the rotational velocity errors over the translational velocity errors, due
to how the motion guidance is constructed.

4If this is not clear consider the fact that q̇T q̇ is a vector multiplication and thus µ should be
set as a diagonal matrix between them, with each element in the diagonal weighing the individual
joints. In mathematical terms, this looks like q̇TMq̇.
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6.4.1 Joint limit term

This discussion also relates to the supplementary experiments in Appendix B

By observing the cross-track error in Figure 5.12 (a) (from the experiment in Section
5.2) it is clear that the correction procedure caused by the joint limit term produces
a noticeable cross-track error, reaching ≈ 13cm at its peak. On the other hand,
the error is eliminated within ≈ 2.5s. Hence, unless the area surrounding the end-
effector at that particular moment is especially cluttered this is an acceptable trade-
off. Furthermore, it is important to clarify that the initial joint configuration of the
robot in that experiment was manually constructed to be particularly cumbersome
with respect to the joint limits. Hence, the probability that the end-effector will
have to deal with similar configurations without manual intervention is relatively
small. The experiment could also be reconstructed with adjustments to the tuning
parameters λ and c in (4.42). This might yield even better performance.

The figures comparing joint velocities in Section 5.45 display that in some cases a
significant increase in joint velocities is necessary to perform the joint correction
while still following the waypoints. On the other hand, to expect that no trade-off
would be necessary when including the joint limit term would be a naive prediction.
To limit the required increase in joint velocities, a helping factor might be to
increase µ in the cost function, which will impose a larger cost of having large joint
velocities when g(q̇, q) overrides the other terms. Furthermore, when the motion
controller is governed mainly by g(q̇, q), i.e. when a joint correction maneuver is
required, the security net does not take obstacles into account. Hence, the tuning
constant χ(s) is set to zero at the final part of each trajectory. Although not
optimal, this is done because the final parts of the robot trajectory usually involve
a close encounter between the end-effector and arbitrary objects.

To summarize, the joint correction term fulfills its purpose by correcting the joints
only when necessary. Furthermore, the increased tracking error required is quickly
neutralized and the whole procedure satisfies a desired continuous behavior. Nev-
ertheless, a safety check should run in advance of a joint correction procedure, in
order to ensure that the correction does not produce a collision that would other-
wise not happen.

5And Appendix B.
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Chapter 7

Future work

The following chapter discusses several possible future improvements to this thesis’
contributions in order to better realize a cooperative robotic manipulator.

As previously mentioned, the experiments presented in this thesis suggest that
the motion guidance should be improved. For instance, the LOS -inspired method
developed should receive further testing and be tuned to achieve more stable trans-
lational velocity references. One improvement to the translation velocity guidance
would be to take the curvature of the spline into account. The curvature data can
be computed for the entire spline when it is constructed, i.e. outside of the control
loop. Additionally, there should be conducted an extensive literature study similar
to the ones conducted in section 1.3, as they have proved extremely helpful for
their respective implementations in this thesis.

An investigation regarding the Panda robot’s ability to return orientation measure-
ments for the end-effector should be conducted. Moreover, it should be verified that
singularities are handled for the Euler angles. An alternative representation to the
Euler angles would be to use unit quaternions. Unit quaternions use a four pa-
rameter representation to avoid the representation singularity of the Euler angles
(chapter 2 in [28]).

The current implementation of the security net only considers obstacle avoidance
for the end-effector. However, when the end-effector is carrying an object, this
object’s collision avoidance should also be considered. The object’s size can be es-
timated using computer vision1. The problem can thus be described as temporarily
having a larger end-effector size and form. A way to handle this problem might be
to tune the parameters of the path planning algorithm, that can be weighed such
that the waypoints form a path further away from obstacles.

The tuning of the motion controller deserves additional analysis. An interesting

1As previously mentioned, the Neodroid project will include computer vision for the robot, in
order to properly map obstacles.
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solution to test would be to weigh the optimization criteria of the cost function
by combining a task priority strategy with fuzzy interference, similar to what was
done by Bi et al.[20].

Collision avoidance for the end-effector is an important feature of this thesis’s im-
plementation. In order to satisfy the requirements of a robot that can cooperate
with humans in the same configuration space, all 7 joints’ respective positions and
velocities should be considered. As previously mentioned, the redundancy feature
of the manipulator allows infinite joint configurations for a given end-effector pose.
This redundancy can be exploited to change the robot configuration (joint coordi-
nates) to safely react to external forces while still following the desired end-effector
trajectory. Two intuitive methods will be suggested here. The former method is
to generate virtual, repulsive forces around the obstacles, creating a 3D potential
field, and imposing these forces on the respective joints of the robot. This technique
can be considered to be a global obstacle avoidance technique. The latter method
is more tilted towards a response behavior when a collision has occurred for one of
the robot- joints or links. The idea is to utilize the properties of the joint limit term
g(q̇, q), defined in (4.42). Consider the case when joint 3 has a rotational velocity
in the direction displayed in Figure 7.1, which leads to a collision with the human
hand. For simplicity, assume all other joint velocities are 0. Moreover, assume that
the collision occurs when θ3 = 1.0rad. Temporarily modifying qmax,soft in table
1.1 for joint 3 from 2.8973 to a value below 1.0 rad might, with proper parameter
tuning in the soft controller, enforce joint 3 to reduce in size, consequently moving
the link/joint at impact away from the obstacle.2 From this point, multiple correc-
tion procedures exist. The robot could recalculate the reference path with a larger
penalty for traversing close to obstacles. This is easily achieved by altering certain
parameters in the path planning algorithm [1]. Another possibility is to increase
the magnitude of the repulsive forces the impacted obstacle emits, assuming that
the aforementioned potential field method is implemented.

2This joint enforcement technique has been tested, and the robot obtains the new joint space
configuration. On the other hand, the collision avoidance ability while the correction procedure
is executing has not been sufficiently tested.
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Figure 7.1: Robot collision with human hand. Original image taken from [4]

The current implementation sets the joint term’s constant χ to zero for the final
part of the trajectory. This is done because the joint correction procedure does
not consider obstacle avoidance. This is not optimal and was made as a temporary
safety mechanism until an appropriate procedure has been implemented. A better
solution might be to use a passive joint limit term for the final part of the trajectory:
if the cost term g(q̇, q) becomes too large during the final traversal part, the robot
should reverse the movement to a safe spot, then perform the correction on the
joint at risk, before it continues its original task.

Another important thing that should be addressed in future work would be to
test the stability of the security net. Moreover, a detailed stability analysis should
be conducted for the motion controller. This would also provide a basis for the
tuning of the controller parameters, which is a desired alternative to simply using
experience.
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Chapter 8

Concluding remarks

The presented thesis has developed a complete system to control a robotic manip-
ulator. Moreover, the system is applicable as a virtual security net that includes
path planning and obstacle avoidance, trajectory generation on the generated way-
points combined with a velocity guidance, and a unique soft motion controller with
high potential in the robotics field. Most features were developed based on ex-
tensive literature studies, where multiple popular methods were compared, and a
choice concerning which method(s) to adapt followed. Furthermore, the thesis has
presented several experiments and results of the security net that helped in forming
a self-critical discussion. Nevertheless, several improvements can be made to the
security net, which have been thoroughly discussed.
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Appendix A

Outdated motion guidance

As previously mentioned, the velocity guidances described in this appendix were
developed antecedent to the development of the continuous spline trajectory de-
scribed in section 4.2.

A.1 Translational velocity

A.1.1 Direction

First, assume that all waypoints are enclosed by spherical zones with a radius equal
to the size of each voxel in the grid, see ”Circle of acceptance” in Figure A.1. Let
waypoint n be defined as the waypoint that has the smallest Euclidean distance
from its waypoint center to the end-effector position. In Figure A.1 this would be
waypoint n = 1. Furthermore, vi is defined as the vector pointing from waypoint
i to the subsequent waypoint center i + 1. If the reference waypoint for the end-
effector is always defined as waypoint n+ 1, and the vector ve is pointing from the
end-effector position towards the reference waypoint, the reference velocity for the
end-effector is given by

v(t) = c1(t)ve + c2(t)vn+1, (A.1)

where t ∈ [0, 1] is a line parameter formed by a straight line between waypoints
n and n + 1. The varying constants c1(t) and c2(t) have to satisfy the equality
constraint

c1(t) + c2(t) = 1, ∀ t. (A.2)
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If the end-effector position is outside the circle of acceptance of waypoint n, then
c1(t) = 1 and thus c2(t) = 0. On the other hand, if the end-effector position is
within the circle of acceptance of waypoint n, the values of the constants satisfy
the linear relationship in Figure A.2. In theory, this would create relatively smooth
reference signals for the velocity of the end-effector.

Figure A.1: Example of waypoints with corresponding vertices between the centers

84



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

distance parameter t  [0 1]

0

0.5

1

1.5

Linear constraint relationship between c
i
 and c

i+1

c
i+1

c
i
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A.2 Rotational velocity

A.2.1 Method 1

During early testing of the security net, the workspace of the manipulator was
restricted to a limited area in front of the manipulator for safety reasons. Further-
more, it was limited to a rectangular cuboid in front of the robot. An orientation
guidance using biomimicry1 was suggested. Moreover, the movement of a snake
was the inspiration for the desired end-effector behavior. To obtain this behavior,
the guidance separated between moving the end-effector in positive and negative
x-direction. If the path moved in positive x-direction (away from the robot base),
the end-effector should behave like the head of a snake. Conversely, for movements
in the negative x-direction the end-effector should behave like the tail of a snake.
Consequently, the desired roll is given by

φd = 0. (A.3)

Looking at Figure A.3, ”θneg” implies that the showcased angle is in the negative
rotation wrt. to the y-axis, implying that the y-axis is pointing out of the figure
(right-hand-rule). Therefore, the desired pitch angle is given by

1Biomimicry is a ”new” science that studies nature’s best ideas and then imitates these de-
signs and processes to solve human problems. Studying a leaf to invent a better solar cell is an
example.[29]
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θd =

{
−arctan( ∆z

|∆x| ), if ∆x 6= 0

−sgn(∆z)π2 , if ∆x = 0,
(A.4)

where sgn(·) is the signum function defined as

sgn(x) =


−1 for x < 0,

0 for x = 0,

1 for x > 0.

(A.5)

Figure A.3: Franka Emika Panda seen from side. The dashed red line represents
a trajectory formed by creating linear segments between waypoints, arbitrarily
chosen.

Looking at Figure A.4 and applying similar logic, the desired yaw angle is given by

ψd =

{
arctan( ∆y

|∆x| ), if ∆x 6= 0

sgn(∆y)π2 , if ∆x = 0.
(A.6)
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Figure A.4: Arbitrary robotic manipulator seen from top. The dashed red line
represents a trajectory formed by creating linear segments between waypoints,
arbitrarily chosen.

By utilizing the absolute value around ∆x, the formulas work independently of
which x-direction the end-effector is traveling.

A.2.2 Method 2

As previously mentioned, this method distinguished between a longer, rough path
and a shorter, fine path. The longer part had the following Euler angle references

φd = 0, (A.7)

θd = 0, (A.8)

ψd = arctan(
y

x
), (A.9)

where φ and θ are roll and pitch, respectively, and ψ is the yaw given by the x
and y positions of the end-effector, see Figure A.4. Hence, the end-effector would
ideally face away from the base of the robot. The idea was that this would help
prevent excessive turning on the base joint. For the shorter path, the reference was
similar to the current method, i.e. (4.12). The difference is that κ was a constant
set to a larger number than γ in (3.1).
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Appendix B

Joint term supplementary
experiments

B.1 Experiment - Positive limit joint 3

Comparing Figure B.1 and Figure B.2, it is clear that joint 3 avoids its positive
joint limit when including (4.42) in the cost function. The comparison between the
joint trajectories implies that joint 5 might be compensating for joint 3, allowing
joint 3 to reduce while simultaneously attempting to follow the reference path for
the end-effector. Figure B.3 and Figure B.4 display that, at least in terms of
magnitude, the joint limit avoidance procedure did not require large shifts in joint
acceleration.
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Figure B.1: Joint trajectories where joint 3 reaches its limit.
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Figure B.2: Joint trajectories where joint 3 avoids its limit
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Figure B.3: Joint velocity trajectories where joint 3 reaches its limit.
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Figure B.4: Joint velocity trajectories where joint 3 avoids its limit.
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B.2 Experiment - Positive limit joint 4

Comparing Figure B.5 and Figure B.6 joint 4 is seen to avoid its limit with the joint
term in (4.42) added to the cost function. Moreover, it seems that all joints except
joint 5 are adjusted to compensate for the necessary change. Figures B.7 and B.8
show that only minor velocity adjustments are required in terms of magnitude.
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Figure B.5: Joint trajectories where joint 4 reaches its limit.
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Figure B.6: Joint trajectories where joint 4 avoids its limit.
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Figure B.7: Joint velocity trajectories where joint 4 reaches its limit.
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Figure B.8: Joint velocity trajectories where joint 4 avoids its limit.
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