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Abstract

Crack control is an important part of design of reinforced concrete shell struc-
tures in the serviceability limit state. Crack width calculations are performed in
accordance with design codes, which are based on beams and columns, and thus,
challenging subjective interpretations are necessary for application to shell sec-
tions. In addition, inherent physical inconsistencies in the formulas available in the

present building codes, complicate the crack width expressions.

This thesis has aimed at contributing to an improved description of the crack width
development in concrete shell structures. A new method was thus proposed, with
purpose of providing more accurate response predictions where the physical nature
of the problem is better reflected in the formulas. In that context, the cracked
membrane model (Kaufmann & Marti 1998) combined with a layered approach was
employed for crack width calculations of shell structures. The iteration method
(Overli & Sgrensen 2012) gives the distribution of forces across the shell cross
section, while the cracked membrane model estimates the response at the cracked

surface.

The investigations performed in this thesis indicate that the cracked membrane
model formulation contributes to an enhanced physical description of the crack
development, both for one-dimensional beams and two-dimensional shells with or-
thogonal reinforcement. Experimental verification also showed that the cracked
membrane model and the new approach for shell structures proposed in this the-
sis provide considerable improvements in crack width estimates compared to the
current design codes. Also a simplified version of the cracked membrane model
showed to provide accurate response predictions for loading in the serviceability

limit state.

Based on the findings of this thesis it is recommended that the cracked mem-
brane model formulation is used as basis for new crack width formulas in design
codes. Although more research and verification of the new proposed method is nec-
essary, it can potentially be implemented in post-processing analysis of concrete

shell structures.
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Sammendrag

Begrensning av rissvidde utgjor en viktig del av prosjekteringen av skallkonstruk-
sjoner av armert betong i bruksgrensetilstanden. Rissviddeberegninger utfares i
henhold til prosjekteringsstandarder som er basert pa bjelker og sgyler, og det
kreves dermed utfordrende, subjektive tilpasninger for & kunne anvende formlene
for skallkonstruksjoner. I tillegg inneholder formlene i prosjekteringsstandardene

fysiske inkonsistenser, som gjgr beregningene av rissvidde mindre intuitive.

Denne avhandlingen har hatt som mal a bidra til en forbedret beskrivelse av
rissviddeutviklingen i skallkonstruksjoner. En ny metode har blitt foreslatt, der
formalet er a gi mer presise responsprediksjoner, i tillegg til at formlene bedre
reflekterer den fysiske oppforselen de forsgker a beskrive. Det har blitt foreslatt
a benytte ”cracked membrane model” (Kaufmann & Marti 1998) i kombinasjon
med en lagdelt tilnserming for & estimere rissvidder. Iterasjonsmetoden (Qverli &
Serensen 2012) gir fordelingen av krefter over skalltverrsnittet, og ”cracked mem-

brane model” gir responsen ved den rissede overflaten.

Undersgkelsene utfert i denne oppgaven har vist at uttrykkene i ”cracked mem-
brane model” bidrar til en forbedret fysisk beskrivelse av rissutviklingen, bade for
endimensjonale bjelker og for todimensjonale ortogonalt armerte betongskall. Ver-
ifikasjon mot eksperimentelle resultater har vist at ”cracked membrane model” og
den nye metoden for skallkonstruksjoner som er foreslatt i denne oppgaven, gir en
betydelig forbedring av rissviddeestimatene sammenlignet med de gjeldende pros-
jekteringsstandardene. En forenklet versjon av ”cracked membrane model” har

ogsa gitt ngyaktige responspredikasjoner for last i bruksgrensetilstanden.

Basert pa funnene i oppgaven anbefales det at uttrykkene i ”cracked membrane
model” benyttes som et grunnlag i arbeidet med & utvikle nye beregningsregler
for rissviddebegrensning i prosjekteringsstandarder. Selv om det er behov for mer
forskning pa og verifisering av den nye foreslatte metoden, har den potensiale til a

kunne bli implementert i etterprosesseringsanalyser av skallkonstruksjoner i betong.
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1 Introduction

1.1 Defining the Problem

Serviceability design is an important part of the design process for concrete struc-
tures. Contrary to other types of structures, concrete structures will crack because
of concrete’s inherent properties. It is generally accepted that some cracking will
occur, and trying to avoid it would lead to improper design and excessive use of
materials. However, crack control is important in the design process. Excessive
cracking may lead to drawbacks in service, and must be kept within reasonable lim-
its. As a part of the serviceability design, the crack width is therefore a significant

parameter to keep track of.

In design of large concrete shell structures the serviceability limit state (SLS) often
becomes governing in determining of required proportions, dimensions and detail-
ing of reinforcement and concrete. However, the methods used for design in SLS
today seem to be overly conservative (Karagiannis & Kaufmann 2016). Many of
them are based on improper assumptions and involve an inconsistent physical for-
mulation, which limits their general applicability (Tan et al. 2017). Obtaining a
more suitable method for design of shell structures might significantly reduce the

necessary amounts of material used in such structures.

The design process should be conducted in accordance with regulations provided by
design codes. The design codes, however, are mostly based on beams, columns and
one-way plates. The one-directional beam formulas must therefore be translated
in order to fit two-directional elements, such as plates and shells. Calculation of
crack widths and the corresponding code checks in orthogonally reinforced shell
structures thus demand subjective interpretations and choices, which cause higher
risk of erroneous calculations. Furthermore, different interpretations will lead to

various results for the same problem.
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1.2 Scope

This thesis aims at contributing to a new and improved method for estimation
of crack widths in reinforced concrete shell structures. Current design regulations
(CEN (2004), fib (2013)) are incomplete when it comes to crack width assessment
for shell and membrane elements, and it is desirable to develop a better methodol-
ogy to handle the problem. Therefore, the goal of this thesis is to provide a realistic
model that is able to determine the response of a reinforced concrete shell section on

whose basis current design provision can be critically reviewed and supplemented.

The cracked membrane model is proposed as a tool to solve the problems associ-
ated with SLS design of concrete shell structures. The cracked membrane model
is capable of fulfilling compatibility and equilibrium requirements, and gives a re-
alistic physical estimate of the behaviour of a cracked concrete panel. The model
has proven to give good response predictions compared to experimental results
(Kaufmann 1998).

However, the cracked membrane model is developed for cases of plane stress, while
shell structures generally are subjected to a combination of moments, membrane
forces and transverse shear forces. Adapting a shell model with a layered approach,
the basic concepts of the cracked membrane model could be extended to shell
structures. If the shell is divided into different layers, each layer can be considered
to be in a state of plane stress. That way, the cracked membrane model can be

implemented for calculation of shell structures.

Although the cracked membrane method could be used for design both in ultimate
limit state and serviceability limit state, this thesis will be limited to serviceability
considerations only. Furthermore, cracks are assumed to occur as a result of ex-
ternal loading, and the effects of creep, shrinkage and restrained deformations are
neglected. Only the effect of normal reinforcement is considered throughout the

thesis.

1.3 Objectives

The main objectives of this thesis are:

e Review current crack width formulas relevant for shell design in Eurocode 2
(CEN 2004) and Model Code 2010 (fib 2013).




1.4 Overview

e Present and derive contents of the cracked membrane model (Kaufmann &
Marti 1998).

e Present and derive contents of the iteration method (@verli & Sgrensen 2012).

e Propose a new method for crack width estimation of shell sections, based on

the cracked membrane model and the iteration method.

e Verify the methods presented in this thesis with experimental results, and

compare with results obtained with the design codes.

1.4 Overview

In the first part of this thesis, chapter 2, previous work on plane stress problems
will be briefly reviewed. Most attention is given to the modified compression field
theory, which is the main precursor of the cracked membrane model. In addition,
crack calculations according to current design methods will be reviewed and their
shortcomings when it comes to membrane and shell structures are mentioned. The
post-processing program MultiCon is briefly described, to exemplify how design of

concrete shell structures is conducted in the industry today.

The second part covers the methods of the thesis. First, in chapter 3, the cracked
membrane model is presented. Assumptions, derivations and obtained equations
are all included. Furthermore, an algorithm is proposed for calculation with the
model. Some modifications that have been suggested after the model was intro-
duced in 1998 are included. Secondly, in chapter 4, the iteration method is de-
scribed. The iteration method is employed to shell sections to determine the strain
state that ensures equilibrium between external and internal forces. All necessary
equations are presented, and the algorithm is explained. Based on the cracked
membrane model and the iteration method, a new procedure is proposed in chap-

ter 5 for response predictions of reinforced concrete shell structures.

In the third part, chapter 6, the models described in the second part of this thesis
are employed at different examples. The results are compared with experimental
observations. Results are also obtained with the building codes described in the
first part, and compared with the results of the presented methods.

In the fourth and last part, the observations and results of the first three parts of
this thesis are summarized and discussed, along with a set of recommendations for

future work.
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2 Literature Review

2.1 Work on Plane Stress Problems: Compression

Field Approaches

2.1.1 General

Membrane elements are structural elements subjected to in-plane stresses only, i.e.
in-plane shear and normal stresses, also denoted membrane stresses. Figure 2.1
shows examples of some concrete structures that carry load primarily through the
action of in-plane stresses, which make membrane elements suitable for modelling.

Shell structure \ \{

Containment /
structure /

Shear wall

Oftshore [
plattorm

Bﬁﬁ@ﬁﬂﬁi\
)

._l .

Membrane element

Figure 2.1: Structures with load primarily carried as in-plane stresses (Vecchio & Collins
1986)




Chapter 2. Literature Review

Analysis of reinforced concrete membrane elements have been a topic of research
for a long time. Diverse approaches have been proposed to determine their response
when subjected to 2D-plane stress. However, it has proven to be difficult to develop
a model that takes into account all the factors that affect the response of such
elements (Collins et al. 1985). The main difficulty is that the behaviour of a cracked
panel is completely different from an uncracked one (Vecchio & Collins 1986). For
an increasing load, new cracks will form and old cracks may both propagate and
close. External forces are resisted by the combined action of reinforcement and
concrete. At the cracks concrete may transfer compressive and lateral stresses
due to aggregate interlocking. Concrete may carry some tensile stresses in between

cracks, but at the crack all tensile stresses must be transferred by the reinforcement.

In an international competition, where 43 leading researchers within the field of
reinforced concrete structures attended, it was attempted to predict the response
of four reinforced concrete panels tested by Collins et al. (1985). The different
approaches proposed by the researchers resulted in a wide scatter of response pre-
dictions, and it was made clear that non of them could accurately predict the

response of the four panels tested.

The international competition showed that a better method was needed to solve
the problem. As a result, the modified compression field model was developed
(Vecchio & Collins 1986). The model made an important contribution both when
it was presented and the following years, and is a natural model to compare the
cracked membrane model with. The most basic parts of the modified compression

field theory are addressed in a qualitative fashion.

2.1.2 Modified Compression Field Theory

The modified compression field theory (Vecchio & Collins 1986) was considered
to be revolutionary within the field of concrete technology when it was presented.
Unlike earlier models, the modified compression field theory was able to accu-
rately predict both the strength and the load-deformation response of a reinforced
concrete element exposed to in-plane stresses. The model is used in multiple post-
processing programs of concrete structures in the industry today, e.g. ShellDesign
(Nyhus 2014) developed by Dr.techn. Olav Olsen.

In the modified compression field theory, cracked concrete is treated as a new ma-
terial with its own stress-strain relationship. Equilibrium, compatibility and mate-

rial laws are formulated in terms of average strains and average stresses (Vecchio &

6
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Collins 1986). Based on the relations established, a set of equations is formulated,

that must be solved with a suitable algorithm.

In order to determine the material laws for cracked concrete, an experimental pro-
gram was initiated (Vecchio & Collins 1986). Based on the results, empirical ex-
pressions for the principal tensile and compressive concrete stresses were proposed.
For the reinforcement, a bilinear uniaxial stress-strain relation is assumed, and the
contribution from the reinforcement to the shear resistance is neglected. In reality,
the average stress-average strain relationships for concrete and reinforcement are
not completely independent. However, this is assumed in the model for simplicity.

The modified compression field theory is based on the original compression field
theory. The difference between the two models is that the contribution of tensile
stresses in the cracked concrete is neglected in the original compression field theory.
Hence, deformations are overestimated and capacity underestimated. By including
this effect (tension stiffening) in the modified compression field theory, a more
physical and accurate estimate is obtained (Vecchio & Collins 1986).

Locally at cracks, the stresses will be different from the average values calculated.
This is due to the fact that concrete stresses vary in between cracks. Therefore,
local stresses at cracks are handled separately, and an equilibrium formulation at
the crack is established. The ability of the crack to transfer shear forces is included,

with an empirical relation developed based on the work of Walraven (1981).

2.1.3 Previous Work with the Cracked Membrane Model

The cracked membrane model (Kaufmann & Marti 1998) has a number of good
features, which makes it relevant for several implementations. For cracked concrete
panels subjected to a state of plane stress, it obtains excellent response predictions
and is capable of predicting the correct failure mode (Kaufmann 1998). Further-
more, the model is based on simple, physical relations. The model will be described
in more detail in chapter 3, while this section is devoted to previous work and im-
plementations of the model.

Since the model was presented, multiple researchers have suggested adjustments
in order to eliminate inconsistencies of the original version. Seelhofer (2009) in-
troduced an additional steel stress-strain relation in order to take into account the
crack formation stage where slip is not occurring over the entire crack. Dabbagh
& Foster (2006) presented expressions to solve crack spacing analytically on closed

form. Furthermore, they derived new equations and boundaries for situations where

7
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the crack angle direction is approaching the direction of one of the reinforcement

directions.

The cracked membrane model is suitable for implementation in finite element mod-
elling of orthogonally reinforced structural elements in-plane stress. Foster & Marti
(2003) developed the CMM into a finite element formulation, where the contribu-

tion of tension stiffening is added to the material elasticity matrix that gives
Dmy :Dcmy+Dcts+Ds (21)

where D, is the concrete component, D, is the concrete tension stiffening
component and D is the reinforcing steel component. Dabbagh & Foster (2006)
and Pimentel et al. (2010) have proposed more complex finite element formulations
where CMM is extended to account for fixed cracks and incorporate aggregate
interlock effects.

In this thesis the idea is to extend the applicability of the cracked membrane model
into problems related to plate structures, which are generally subjected to combined
moments, membrane forces and transverse shear forces. This idea was proposed by
Kaufmann (1998) as recommendation for future research. Seelhofer (2009) exam-
ined this in a general way in his dissertation. Recently, Karagiannis & Kaufmann
(2016, 2018) have considered the approach for a more specific problem. They have
looked into the shear strength of hollow-box bridge girder webs, which are subjected
to transverse bending moments in addition to in-plane shear. In relation with the
research, a series of large-scale experiments will be performed in the Large Univer-
sal Shell Element Tester (Kaufmann et al. 2018), which is a new testing facility.
The new testing facility will enable the application of well controlled arbitrary load
combinations that produce 8 independent stress resultants, and thus contribute to

an improved basis for the development of current shell response formulations.




2.2 Crack Width Calculations

2.2 Crack Width Calculations

2.2.1 Cracking Theory

The basic cracking behaviour of reinforced concrete can be illustrated by consid-
eration of a prismatic reinforced concrete bar, subjected to axial tension as shown
in Figure 2.2. Cracks develop in concrete when the tensile strength of the con-
crete is exceeded. Once cracking initiates, the structure will not fail because of
the reinforcement that transfers the forces across the crack. At the cracks, all of
the load will therefore be carried by the reinforcement. Due to bond between the
concrete and the reinforcement, parts of the load are transferred to the concrete
between cracks. The tensile stresses in the concrete are increasing with the dis-
tance from the crack until full compatibility between concrete and reinforcement is
re-established. This distance is called the transfer length, and is indicated by the

shaded grey area denoted ”discontinuity area” in Figure 2.2.

Discontinuity area

[+ Al

Figure 2.2: Basic cracking behaviour of a reinforced prismatic bar subjected to axial
tension (fib 2013)

When the cause of cracking is external loading, the structure will in principle
experience two different stages, a crack formation stage and a stabilized cracking
stage. If the crack spacing and bond properties are adequate, the concrete stress
will reach the tensile strength of concrete, and a new crack will form. When new
cracks keep on forming, the structure is said to be in the crack formation stage.
This process continues until the spacing between adjacent cracks is so small that
no new cracks may form, and the stabilized cracking stage is reached. In this stage
the crack spacing is not sufficient to transfer stresses equal to the tensile strength
of concrete to the concrete. If the loading is further increased, existing cracks will

widen. The loading can be increased until the steel starts to yield.
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Four stages of a reinforced concrete bar subjected to axial tension are though
distinguished. The different stages are illustrated in a simplified manner with the
load - deformation relation in Figure 2.3. Note that the dotted line illustrates the
behaviour of naked steel. Since the tensile stresses in concrete between cracks are

accounted for, a stiffer response is observed. This effect is called tension stiffening.

N
A crack

formation stabilized
stage cracking stage

»!
- . r‘

z '({5-0_‘.4 WE,

1 = uncracked stage

2 = crack formation stage

3 = stabilized cracking stage
4 = naked steel

5 = yielding of reinforcement

>

Alll

Figure 2.3: Simplified load - strain relation for a centrically reinforced member subjected
to tension (fib 2013)

2.2.2 Code Regulations

Crack control is an important part of design of reinforced concrete structures. The
purpose is to ensure that functionality, durability and appearance of the structure
are maintained. Wide cracks are aesthetically undesirable and may cause the public
to believe that there are structural problems. In addition, problems related to
durability are a major concern when cracks form. Cracking causes the concrete
cover to open that cause easier penetration of harmful substances. This may lead
to corrosion of rebars and thus structural deterioration. Loss of functionality may
occur, for instance, in containment structures where wide cracks lead to leakage
problems. In order to meet the serviceability requirements mentioned above, the
crack width should be limited.

As a designer you have to act in accordance with given laws and regulations when

10



2.2 Crack Width Calculations

you are designing a structure. The guidelines considered in this thesis are

e EN 1992-1-1:2004, Eurocode 2: Design of concrete structures, Part 1-1: Gen-
eral rules and rules for buildings (CEN 2004)

e fib Model Code for Concrete Structures 2010 (fib 2013)

For countries within the European Union the Eurocodes provide the technical rules
on how structural design should be conducted. In Norway, Eurocode 2 (EC2) (CEN
2004) is used as standard for design of concrete structures. The International
Federation for Structural Concrete, fib, is a worldwide association with purpose of
advancing the performance of concrete structures. As a result of their work the fib
Model Code 2010 (MC10) was released (fib 2013), with objective to serve as basis
for future guidelines within the field of concrete structures.

In the following, the formulas for crack width calculation from these two references
will be briefly presented. For a more thorough investigation and for more details,
the design codes themselves should be examined.

Calculation of Crack Width in Eurocode 2

Chapter 7.3 in Eurocode 2 (CEN 2004) deals with crack control of concrete struc-
tures. The expression for crack width is given as

Wg = S’r,mam(gsm - Ecm) (22)

where Sy mqz is the maximum crack spacing equal to twice the maximum transfer
length to each side of the crack, 4, is the mean strain in the reinforcement, and
€em 18 the mean strain in the concrete between cracks. The mean strain in the

reinforcement should take into account the effect of tension stiffening (CEN 2004).
The relative strain (s, — €cm) may be calculated from the expression
_k feters 1
Os y cetell ( +aep576ff)

. _ Ps,eff N Os 9
Esm — Ecm E. > O.GES (2.3)

where o, is the stress in the tensile reinforcement, ae = Es/Ecp,, psefs is the
effective reinforcement ratio and k; is a factor dependent on the duration of the
load. The effective reinforcement ratio is dependent of the effective height given

by Eq. (2.4), where x is the height of the compressive zone

11
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hc,eff_min{2.5(h—d); h;x; h/2} (2.4)

The maximum crack spacing in the uniaxial case is calculated as in Eq. (2.5). This
expression is semi-empirical, with constants ki, ko, k3 and k4 adjusted to match
experimental results. k; and k, are determined based on the bond properties of
the reinforcement and the strain distribution, respectively. Furthermore, c is the

concrete cover, ¢ is the bar diameter and p; .y is the reinforcement ratio.

¢
Ps,eff

Sr.maz = kac + kikaky (2.5)
In an orthogonally reinforced shell structure, cracks will generally not form per-
pendicular to the reinforcement direction. In such cases, where the angle between
the axes of principal stress and the direction of the reinforcement, 6, is significant
(> 15°), the crack spacing can be determined by Eq. (2.6). Sy mazz and Symag,»
are the uniaxial crack spacings calculated in the x and z directions respectively.

Sr,max = cos 6 sin 6 (26)

Sr.maz,e  Sromaz,z

As shown above, Eurocode 2 provide Eq. (2.3) for determination of the mean
strain difference between reinforcement and concrete. However, this expression is
derived based on beams and bars. No formulas or recommendations describes how
the relative strain in Eq. (2.2) should be determined for a two-directional plate
problem. Hence, the formula is difficult to employ when it comes to crack width
design for orthogonally reinforced membrane and shell structures, at which the

direction of the maximum principle strain no longer is aligned with reinforcement.

Calculation of Crack Width in Model Code 2010

Chapter 7.6.4.4 in fib Model Code 2010 (fib 2013) considers the calculation of
crack width in reinforced concrete members. The expression for crack width may
be calculated by Eq. (2.7).

Wq = 2ls,maz(55m - 6mn) (27)

The relative mean strain term is given in Eq. (2.8). The expression is equal to

12



2.2 Crack Width Calculations

Eq. (2.3) from EC2, only differing in the way they are presented. Note also that a

lower limit is not included here.

Os — ﬂasr
sm — Eem = 2.8
Esm — € o (2.8)

In Eq. (2.8) 8 is a coefficient depending on the type of loading and oy, is the
maximum steel stress in a crack in the crack formation stage. For pure tension this

is equal to

_ fctm (

L+ acps,esr) (2.9)
Ps.eff

Osr
The factor l5 ;,q2 denotes the distance where slip between concrete and steel occurs,
and twice this length is equal to the maximum crack spacing. The slip length is
determined with Eq. (2.10), which consists of two parts. The first part takes
the influence of the concrete cover into consideration. The other part describes
the transfer of shear bond stresses between steel and concrete. k& and 73,,s are

empirically adjusted factors.

1 fetm s
ls,maw:kc"'_*ft (b
4 Toms Ps,eff

(2.10)

In the case of cracking of members reinforced in two orthogonal directions, where
the crack angle is expected to differ substantially (> 15°) from the reinforcement
directions, the transfer length of bond forces is adjusted by Eq. (2.11). This
equation looks similar to Eq. 2.6, but with slippage lengths [, ; and I, ; instead
of crack spacings in the reinforcement directions. Furthermore, the crack spacing
perpendicular to the crack Sy, is replaced by the length I ;,45,6. While the crack
spacing perpendicular to the crack indeed has a physical interpretation, the length
ls,maz,0 may be regarded as the slippage length for an imaginary reinforcement in

the direction perpendicular to the crack.

0 sing\ -l
Lo maz,o = (COS + 2 ) (2.11)
lsz,k: lsy,k:

While Eurocode 2 provides no proposal on how the relative mean strain term of
the crack width equation should be obtained in case of an crack angle that differs
from the reinforcement direction, MC10 gives Eq. (2.12). The expression is quite

similar to Eq. (2.7) for the uniaxial case, however it is adjusted to account for skew

13
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cracks with regard to the reinforcement. e, and e. ; represent the mean strain
and the mean concrete strain evaluated in the direction orthogonal to the crack,
as indicated in Figure 2.4.

Wq = 215,ma1‘,9(5j_ - 8c,J_) (212)

Eq. (2.11) and (2.12) are both formulated for the case of reinforced concrete mem-
bers with orthogonal reinforcement. However, the provision provides no proposed

procedure to determine the strains perpendicular to the crack.

Sy
srm_\'

3 rmx

Figure 2.4: Basis for calculation of crack width for orthogonally reinforced membranes
(fib 2013)

2.2.3 MultiCon

MultiCon is a design and post-processing program for analysis and design of com-
plex concrete structures (Multiconsult 2016). Although the program is applicable
for all kinds of concrete structures, it is particularly suitable for marine concrete
structures. The program has been the market leading design program for concrete
platforms for the last 30 years. In the beginning of the 1990s MultiCon was, for
instance, used in the design of the Troll A platform, which is the biggest gravity
based concrete platform ever installed.

MultiCon includes state of the art design for concrete shell sections based on a num-
ber of international codes, including codes for offshore concrete structures. Over
the last 30 years the program has continuously been updated and improved, for

example with the implementation of new standards and regulations. As mentioned

14



2.2 Crack Width Calculations

in subsection 2.2.2, the equations given for crack control are not easy to interprete
in the case of shell structures. However, in MultiCon an approach is proposed to
deal with the problem. In the following, this approach will be presented.

MultiCon Approach

Crack width estimation in MultiCon is based on the regulations of Eurocode 2
(CEN 2004) and guidelines of Model Code 2010 (fib 2013). However, to make
the equations suitable for shell sections with orthogonal reinforcement layout, sub-
jective assumptions and choices are required. Below it is shown how MultiCon
transformes the crack width formulas of EC2 and MC10, Eq. (2.2) and (2.7), into

a more suitable expression for cracking in shell structures.

Wg = ST,maac,G (5sm - €cm) (213&)
Os — POsyr
= Or,max,0 <Ef) (213b)
g Ogr
= Sr,maac,éfs <1 - B - > (2130)
s Os
= Sr,nzax,955(1 - ﬂk) (213(1)

Here Sy maz,0 is calculated in the same way as in Eq. (2.6) and (2.5) in EC2, or
with Eq. (2.11) and (2.10) in MC10 where Sy maz,6 = 205 maz,0. The crack angle

is determined at the outermost face and kept constant throughout the thickness.

The fraction os/Fs is equal to the steel strain. However, in a shell section with
orthogonal reinforcement, the maximum principal stress direction is generally not
aligned with the reinforcement directions. In the MultiCon approach, this is han-
dled by considering the maximum principal strain as the strain of a fictive rein-
forcement perpendicular to the crack direction. The maximum principal strain is
determined at the reinforcement level.

When it comes to the determination of the k factor it is assumed that the section
is uncracked (stadium I) with linear elastic stiffness. This implies that the stress
distribution is linear over the cross-sectional height. With this assumption, the ratio
osr/0s 18 equal to the ratio f.;/o.r since the neutral axis will not move. Figure
2.5 shows the situations. f.; is the tensile strength of concrete that is just reached

for the steel stress og,.. Similarly, o.; is the maximum principal concrete stress at
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the outermost point of the cross section corresponding to the steel stress os. Note
that this concrete stress is calculated as if the section is uncracked regardless of

whether o.; > f. or not.

Crack load Current
streﬁs stresses
nooo M I A /A .
oo 0 0'sr GS
L]

/b;bﬁ( fCt GCI
Figure 2.5: Basis for determination of k-factor in MultiCon approach

With these considerations and assumptions, the crack width can be determined
for situations where the crack angle differs from the direction of the reinforcement.

The result is summarized below.

Wg = Sr,maz,0511(1 - 6k)
u (2.14)

Ocl

where k=

To determine the crack width with Eq. (2.14), the values of the maximum principal
strain at level of the reinforcement e and the maximum principal stress direction 6,
need to be determined in stadium II, i.e. for a cracked cross section. The values are
obtained from a layered approach where, in general, a few iterations are necessary.
The maximum principal concrete stress at the outermost point of the uncracked face
oc1 is determined in stadium I. The internal response of a shell section is determined
by a layered approach also in this case, but due to the assumption of uncracked
concrete with linear elastic material properties no iterations are necessary in order

to reach equilibrium with the external loads.
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3 Response of a
Cracked Membrane

In this thesis the cracked membrane model (Kaufmann & Marti 1998) is proposed
as tool to estimate the response of reinforced concrete panels in a state of plane
stress, and its applicability will be extended to analysis of shell sections. The
model has been chosen as it has proven to give good response predictions (Kauf-
mann 1998) for plane stress panels, and as it has been proposed for shell section
applications before (Kaufmann 1998, Seelhofer 2009, Karagiannis & Kaufmann
2018), see subsection 2.1.3.

In the following the basis for the model is presented, section 3.1, before the cracked

membrane model is introduced, section 3.2.

3.1 Basis for the Cracked Membrane Model

3.1.1 Material Properties for Steel

Steel has a relatively high tension capacity compared to concrete. In a reinforced
concrete structure this is taken advantage of by letting the steel carry tension
and concrete carry compression. In design it is common practice to choose steel
amounts that governs a failure mode by yielding of the reinforcement rather than
crushing of concrete. This gives the structure improved ductility, which permits
forces to be redistributed.

Steel can be processed both as hot or cold rolled at the mill. In Figure 3.1 (a) and
(b) the stress-strain curves for both types are schematically illustrated. Both have

an almost linear elastic behaviour up to yield stress, f,, and strain, 5,. Then
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Figure 3.1: Stress-strain curves for reinforcement: (a) hot-rolled, (b) cold-worked, (c)
bilinear idealization (Kaufmann 1998)

they exhibit a nonlinear behaviour up to the ultimate load, f,, with corresponding
strain, e4,. These characteristics can be approximated by a bilinear idealization
of the stress-strain response as shown in Figure 3.1 (¢). The modulus of elasticity,
E, is used for the linear elastic part, while the strain hardening modulus, Egp, is

used for the yield part. The strain hardening modulus is given as

B, = fou=Toy (3.1)
Esu — 5sy
The effect of unbonded prestressed reinforcement can easily be included in the
cracked membrane method. Prestressing steel exhibits a similar behaviour as ordi-
nary reinforcement, and the same bilinear idealization shown in Figure 3.1 (c) can
be used.

3.1.2 Material Properties for Concrete

Concrete is one of the most popular construction materials, due to its high strength
relative to price and formability. The behaviour of concrete is very dependent
on the loading, concrete exhibits significantly different properties in tension and

compression.

The tension capacity, f., of concrete is relatively low. Hence, when assessing
the strength of a concrete section, tension capacity is often neglected without re-
markable impact on the results. On the other hand, tension stresses provide an
important contribution to the performance of a member in serviceability calcula-
tions, such as for crack spacings, crack widths and deformations. In this thesis the
serviceability calculations are the scope of interest, and the tension capacity of the

concrete is therefore included. The value of f.; is based on the concrete mixture
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3.1 Basis for the Cracked Membrane Model

used, and can be found in Eurocode 2 (CEN 2004). The stress-strain curve for

concrete in tension can be assumed to be linear up to the limit f;.

The main advantage of concrete is the high compressive strength. When a concrete
structure is designed, we make sure that most of the concrete is in compression.
By doing this, the compressive properties of the concrete are exploited, while the

disadvantages related to the tension properties are avoided.

The values for compressive strength are found in Eurocode 2 (CEN 2004). Most
properties of a specific concrete mix are determined by means of the compres-
sive cylinder strength, denoted f.. This value is obtained from tests of uniaxial

compression applied to a concrete cylinder.

However, in a cracked concrete element exposed to a biaxial stress state, the com-
pressive strength will be influenced. The reason is the deviation of lateral tensile
strains, €1, in the two cases. In the uniaxial case, only small amounts of tensile
strains occur as a result of Poisson’s effect. Between cracks in a cracked member on
the other hand, considerable tensile stresses perpendicular to the compressive di-
rection will develop and cause bigger tensile strains. As a result, the concrete strut
in a cracked concrete membrane will exhibit a weaker response than a uniaxially

compressed cylinder.

The lateral influence of cracking on the compressive strength has been studied
by different researchers. Based on the results of many of the tests, the following
relation for the concrete compressive strength of a cracked concrete member is
proposed (Kaufmann & Marti 1998)

04430 ~ 7€ '
The compressive stress-strain response for the pre-peak behaviour can be approxi-
mated by a parabolic curve given as

€2 + 2e3¢.0

0c3 = fc (33)

2
€co

where 0.3 = the concrete stress, 5 = the concrete strain, f. = the peak compressive

stress from Eq. (3.2), and e., = the concrete strain at peak compressive stress.
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3.1.3 Bond

In a reinforced concrete structure there is interaction between concrete and steel.
This interaction is called bond and allows stresses to be transferred from one ma-
terial to the other. When relative displacements between concrete and steel occur,
bond stresses will develop at the concrete-steel interface. Some of the bond stresses
are a result of pure friction, but most of them originates from the interlocking be-
tween the ribs of the steel and the concrete (Kaufmann 1998). Hence, the magni-
tude of the bond stresses depend on the size and shape of the reinforcement, but
also other factors such as relative displacement, concrete strength, cover, boundary
conditions and state of load.

(a) (b) (c)

s % (AR
T . _T_ _f:_ Thnp e il
f hmax dx l 4 . & u, : r
|| ’ Lum H ‘FR
e — =2 Tl {_f
IR IEERE] N o, +da, it
o, +da,

Figure 3.2: Shear bond stress: (a) pull out, (b) shear bond stress-slip relationship, (c)
differential element (Kaufmann 1998)

Figure 3.2 (a) shows a reinforcement bar that is pulled out of a concrete section
with a force N. In order for the average shear bond stresses, 73, to be in equilibrium
with the applied force over an embedment length, [, the following expression has

to be fulfilled
N

~ Dl

Here it is assumed that the shear bond stresses are evenly distributed over the

Ty (34)

nominal steel diameter, D. Furthermore, knowing that the total force in each section

must equal the total force applied, we get the following relations

N = Ao, + Aco. (3.5a)

N _ (1-p)
A73 =05+ TUC (35b)

where A, = A, - A, As = cross sectional area of steel, A, = gross cross section of

concrete, and p = A;/A. = geometrical reinforcement ratio.
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3.1 Basis for the Cracked Membrane Model

By consideration of the differential element in Figure 3.2 (c) and Eq. (3.4), we find

the change of steel stresses over the differential length dx

dosA, = dN = 7,Drdz, A, = %DQ
giving
dog 47y
i@~ D (36)

Similarly, the change of concrete stresses over the differential length becomes

do. i, p

dr D (1-p)

(3.7)

The relative displacement, §, can be expressed in terms of the displacement of the
steel, ug, and concrete, u., which gives 6 = ug - u.. Differentiation over the relative

displacements gives

dd d
= [us —uc] =e5 —ec (3.8)
where €5 = steel strain and €, = concrete strain. By differentiation of this expres-
sion once more, a second order differential equation for slip is obtained, which gen-
erally has to be solved in an iterative manner. Assuming linear elastic behaviour,

os = Fses and 0. = F.e., we get

25 1 do, 1 do,

@2 "B dr B dr (39)
which by insertion of Eq. (3.6) and (3.7) gives
& _ Ao (1——2) (3.10)

dz? ~ DE, 1—p
where n = F/E. = modular ratio. This expression can be solved analytically for
certain bond shear stress-slip relations. This is the case for the tension chord model

(Sigrist et al. 1998) which is addressed in the next section.
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3.1.4 Tension Stiffening

The term ”tension stiffening” refers to the tension carrying contribution of concrete
between cracks, as described in subsection 2.2.1. As a result of the concrete contri-
bution, the response of a member in a reinforced concrete structure is stiffer than
naked reinforcement. However, tension stiffening will not influence the strength of
the member directly, since the strength still is bounded by the steel stress at the
crack.

By assuming that concrete carries tension between the cracks only, the entire axial
load at the crack must be carried by the reinforcement. Between cracks, a part
of the load is transferred to the concrete through bond shear stresses, so that the
tension is carried both by concrete and steel. If sufficient amount of stresses are
transferred so that the concrete tensile strength is exceeded, a new crack will form.

Figure 3.3 illustrates the distribution of concrete and steel stresses between two
cracks for a symmetric case of uniaxial tension. The figure illustrates the remarks
above. Steel stresses are at their maximum at cracks and decrease to their minimum
in the centre between cracks. In contrary, concrete tensile stresses reach their
maximum in the centre between cracks and vanish at cracks. The figure also
includes the bond shear stresses, which typically have a distribution like the one
sketched.

Figure 3.3: Stresses of a chord element between two cracks (Kaufmann 1998)

By assessment of the Figure 3.3 and Eq. (3.7), an expression for the maximum
concrete stresses can be established. Since the tensile concrete stress cannot exceed

its tensile capacity, the following limit must be fulfilled

Srmo/2 i, p
0 = [ do. = — dr < f.
o= fam= [ Pttt
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3.1 Basis for the Cracked Membrane Model

Here, all parameters in the integral are constant except for the bond shear stresses.
This gives

4 p ‘/Srm,()/2
- Todx < fo 3.11
D9 oo t (3.11)

where S0 is maximum crack spacing for the fully developed crack pattern. The
minimum crack spacing, Symo/2, is the necessary length for tensile stresses equal
the capacity of concrete to be transferred to the concrete (Sigrist et al. 1998).
Through the considerations of the crack pattern, the crack spacing will be con-
strained by the following boundary

SrmO/2 S Srm S S’rmO

often expressed on the form

0.5<A<1 (3.12a)
S,

A= —2 3.12b

SrmO ( )

The real distribution of bond shear stresses is nonlinear, and is complicated to
solve analytically. However, Sigrist et al. (1998) has proposed a simplified approx-
imation of the shear stress-slip relation, which match the overall real behaviour
satisfyingly. The simplified idealization is the stepped, rigid-perfectly plastic bond
shear stress-slip relation. Here a constant bond shear stress of 7,9 = 2f. and 71
= fq is assumed before and after yielding of the reinforcement respectively. This
idealization of bond shear stress combined with bilinear stress-strain relationship
for reinforcement, forms the basis of the tension chord model (TCM) (Sigrist et al.
(1998), Kaufmann (1998)).

With this shear bond stress model established, the maximum crack spacing in
uniaxial tension can be determined from Eq. (3.11)

4 1Y /Srm0/2 da = 4 1Y ToSrmo _ fct

DU-p) oy "7 DA—p) 2

With some rearranging this can be written as

_ JaD(1=p)

Srmo = 3.13
T om0 p (3.13)
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The assumption of constant bond shear stresses also yields that steel and concrete
stresses between cracks vary linearly. This result can be seen by consideration of
Eq. (3.6) and (3.7). If the maximum steel stresses at the crack are known, the
distribution of bond shear, steel and concrete stresses can be determined. This

situation is illustrated in Figure 3.4 (a).

(a) (b)
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Figure 3.4: Tension chord model: (a) General distribution of stresses and strains (Kauf-
mann 1998), (b) distribution of stresses and strains for steel stresses lower than yield
stress

The average strain, €,,, which describes the overall behaviour in the direction of
the reinforcement, can be used to determine the maximum steel stresses at the
crack (Sigrist et al. 1998). The expression depends on whether the steel stresses

are higher, lower or both higher and lower than the yield strength between cracks.

For steel stresses below yield stress over the whole element, oy, < fs,, the shear
bond stress, steel stress and steel strain distributions are given in Figure 3.4 (b).
Since the stresses are below yield stress over the whole element we use the modulus
of elasticity, Fs, and the constant shear bond stress, 1,9, to describe the elastic
behaviour. The steel stress at crack is now easily obtained from the average stress

and the change of steel stress over the embedment length S,.,,/4
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Srm [4
Ogr = Oy, + / dog
x

=0
Srm /4 4
= Biem + / 4700 4 (3.14)
=0 D
TbOS’I"’ITL
= Es m
Em + D

When steel stresses are higher than yield stress over the whole element, f,, <
Os,min, the distribution of stresses is similar to Figure 3.4 (b). However, we now
use the constant shear bond stress 7,;. Furthermore, the average steel stress is
determined from a combination of elastic and plastic behaviour. The expression is

given as

Srnl/4
Osr = O + / dog
xT

=0
51 Semld 41
= fsy + (em — :};{: VEsp + /120 %dl' (3.15)
fs( TbISr'm
= fsy + (5m - EZ)Esh + T

Similar considerations can be performed for the case of steel stresses partially above

and below yield stress, s min < foy < 0sr. The expression becomes

Osr :fsy
. S2
QTbong _ \/(fsy _ Esgm)Tblng(% _ EE;Sh) + %TbOTbl g (316)
+ Tvo _ _Lis
Th1 sh

Noting that the average stresses between cracks must be in equilibrium with the

stresses at crack, the following relation can be established

17
Tsm + ( i

)Gcm = Osr (317)

where oy, = the average steel stresses, and o.,, = the average concrete stresses.

The maximum concrete tensile stress in the middle between two cracks becomes
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Afet. Since the concrete stresses are zero at cracks, the mean concrete tensile stress

between cracks becomes

Oem = Ag ot (3.18)

It should be noted that all relations presented here are based on the assumption
of stabilized cracking stage. To take into account situations of low loading values
where slip is not occurring over the entire element, Seelhofer (2009) adjusted the
steel stress formulas Eq. (3.14), (3.15) and (3.16).

Thk Esk Tk Esk
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Figure 3.5: General distribution of bond stress and and steel strain in crack formation
stage. (a) Steel stresses below yield stress, (b) steel stresses partially below and above
yield stress (Seelhofer 2009). Note: subscript k indicate coordinate x or z.

Figure 3.5 (a) shows the situation where slip is occurring only over the length
x1. This length is smaller than half the crack spacing S;,,, and thus compatibility
between steel and concrete is re-established at the distance x; from the crack. Since
the steel stresses are below yield over the entire crack length in Figure 3.5 (a), the

following relations can be established

where Eq. (3.7) is used to determine the change of concrete stresses over the
distance 7 (assume 1 — p ~ 1) and n = E;/E.. With Eq. (3.6), the steel stress at
crack is easily obtained
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Osr = Os min + /das

4 14
T %np—k »/:DZO %dw

47
= 301#(1 +np)

The transfer length z; is determined based on the average strain e,,, with the
following relation

S. ; S.
ngs% = L;S,mlnml + Os,min <;Tn - $1>

4 4
esEsSpm = x%%(l +np) + 1 %np(&m — 1)

Solving with respect to x; produce a quadratic equation, with solution

rm ES m D
T, = 5 \/n2p2 —+ Zstm —np for 0 <a; < Srm/2 (319)
2 o Srm

Below the modifying expressions are given as they are presented in Seelhofer (2009).
For steel stresses below the yield stress over the entire element, Eq. (3.20) is applied

as derived above.

4
- $1%(1 + np) where
3.20)
Srm E"‘ m D (
o = 2™ \/n2p2_|_‘€ —np| [0< 21 < S /2]
2 Tv0 Srm

For steel stresses exceeding the yield stress, Eq. (3.21) is applied. This expression
is derived with similar consideration as for Eq. (3.20), based on Figure 3.5 (b).

47
Osr = fsy + u% where

Es Srmel (OéEsgm > Th1 3.21
1+ 4« —np | — } -1 (3.21)
\/ E,p, |: Dfsy fsy p daTyy

where a = 1+ np [0 <29 <50 /2)

_ DfsyEsh

Tog =
4Tb1aE5
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Chapter 3. Response of a Cracked Membrane

3.1.5 Compatibility

Compatibility relations in a cracked orthogonally reinforced concrete membrane
can simplified be derived based on the average total strains. From Mohr’s cir-
cle of strains, Figure 3.6, the necessary relations are easily obtained by simple,

geometrical considerations.
y/2

X
|-

o
N
Q

Figure 3.6: Mohr’s circle of strains (Kaufmann 1998)

First, we see that

€1+e3=¢€5+¢&, (3.22)

for the average total strains in the principal, x- and z-directions respectively. Fur-
thermore, the relation between the crack angle and the average strains is (Kauf-
mann & Marti 1998)

E, — €3
cot?f, = ===

3.23
p—— (3.23)

where the crack angle is given by the angle between the crack direction and the
x-axis. Rearranging Eq. (3.23) we get an equation solved with respect to the crack

angle

6, = arctan ( o 83) (3.24)
Ey, — €3

However, these equations are not completely general. Due to the squared term on
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3.2 The Cracked Membrane Model

the left side of Eq. (3.23) information is lost. For a given combination of strains
€z, €, and €3 the equations are not capable of determining in which quadrant the
crack angle will appear. It is in this thesis suggested to make an initial estimate,
to determine the correct quadrant for the crack angle. The procedure is presented

in a proposed algorithm in Appendix A.

3.2 The Cracked Membrane Model

3.2.1 General

The cracked membrane model was developed by Kaufmann & Marti (1998) for
analysis of reinforced concrete panels. The model combines the basic concepts
of the compression field theory (Vecchio & Collins 1986) with a two-dimensional
representation of the tension chord model (Sigrist et al. 1998).

In the cracked membrane model we consider a set of parallel, uniformly distributed
cracks in an orthogonally reinforced concrete panel. The panel is subjected to a
set of membrane forces, which are axial stresses in the x- and z-direction and shear
stress. The situation is illustrated in Figure 3.7 (a). Equilibrium is satisfied at the
crack and tension stiffening effects are accounted for by the tension chord model.

For a given state of external loading on a predefined membrane section, the model
will predict the internal steel and concrete stresses. Or, more generally, the model
can determine the complete load-deformation response. The designer can check the
capacity of a given section, and the associated deformations. In addition, the model

obtains the necessary information to estimate crack widths and crack spacing.

The underlying assumptions of the cracked membrane model are that cracks are
stress free and able to rotate, and the concrete principal stress and principal strain

directions are coincident. Furthermore, it is assumed that the section is cracked.

Note that a XZ-axis system is chosen for the derivation of the model to be consistent
with the the way it was presented by Kaufmann & Marti (1998). Also note that
the sign convention used for shear stress is opposite of most other models.
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Chapter 3. Response of a Cracked Membrane

3.2.2 Equilibrium

In the cracked membrane model equilibrium is obtained at the cracks. Figure 3.7
(b) shows the stress situations at the crack. By consideration of the elements in
Figure 3.7 (b), we can relate the external stresses 0., o, and 7., = 7., to the
internal reinforcement and concrete stresses at the crack oz, 055 and oc3,. Since
the cracks are assumed to be stress free, oo, = 0 and Tepny = Tentr = 0. It is
assumed that the reinforcement bars are well distributed, allowing us to model
their effect by equivalent stresses over the element face. Concrete stress in the
strut at a crack use the notation o = oc3-. Now, equilibrium at the cracks yields
(Kaufmann & Marti 1998)

Op = PaOsar + Oegrc0520, (3.25a)
O = P20szr + Oezrsinf, (3.25b)
Tur = —0c3r8in0,.c080, (3.25¢)

Rearranging, we get the following equations for reinforcement and concrete stresses

at the crack

Osxr = (Uac + szcatar)/px (326&)
Oszr = (Uz + Tmztaner)/pz (326b)
Oegr = —Tzz(cotl, + tanb,.) (3.26¢)

In the cracked membrane model the concepts of the tension chord model are ex-
tended to the two-dimensional case of cracked panels. This allows us to use Eq.
(3.14)-(3.16) to determine the steel stresses at the crack for known average strains
in the in the x- and z-directions, ¢, and €,. Furthermore, Eq. (3.2) and (3.3) are
used to determine the concrete stress at the cracks for a given set of maximum and
minimum principal strains, e; and €3. The crack angle 6, is given by the angle
between the crack direction and the x-axis (in the range —7/2 and 7/2), and is
determined by Eq. (3.24).
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Figure 3.7: Cracked membrane model: (a) cracked membrane section, (b) stress equi-

librium at crack (Kaufmann 1998)
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Chapter 3. Response of a Cracked Membrane

3.2.3 Crack Spacings

Figure 3.8 shows crack spacing in the directions of the reinforcement, S, and
Srmz, in addition to the diagonal crack spacing S,.,,. For a given crack inclination,

0,-, the following relations are easily obtained

Srm = Srmasinb, = Spp.cos0, (3.27)

In subsection 3.1.4, an expression for the maximum crack spacing in the uniaxial
case was derived, Eq. (3.13). By extending the tension chord model to the present
biaxial case, the maximum crack spacing in the x- and z-direction is obtained
(Kaufmann & Marti 1998)

fcth ]- - px

0 27—bO Px ( a)
D,1-p,
Srmz0 = fcyﬁiip (328b)
27—1)0 Pz
And, similarly as we did in subsection 3.1.4, we introduce
Srm:r
Ag = 3.29
ST"ITLJ)O ( a)
Srmz
A = 3.29b
Srsz ( )

If A\, = 1, the crack spacing in the x-direction is equal to the maximum crack
spacing. In this case the stress transferred to the concrete at the centre between
two cracks will be equal to the tensile strength of the concrete. For a smaller crack
spacing however, the maximum concrete stress will not reach the tensile capacity.
The same reasoning applies for the z-direction. This can be expressed as Ao,=
Az fer and Ao,= A, fe, where Ao, and Ao, denote the change of concrete stresses
between cracks, see Figure 3.8. Combining these relations with Eq. (3.27) and
(3.29), gives

Aoy Srm

A = = : .
fCt SrmxoSZne,« (3 308‘)
Ao, Sy

A, = = 30b
fet  SrmzocosO, (3.30Db)
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Figure 3.8: Crack spacings and concrete stresses (Kaufmann 1998)

Now, we want to determine the maximum diagonal crack spacing, S,,,o. First we
consider Figure 3.9, which sketches Mohr’s circle for stresses at cracks and at the
centre between cracks. From simple geometrical considerations of the situation at

crack we find the following relations

Oc3r = Tuz(cotl, + tanb,.)

Oy + 0O o T
i 5 2 —_ CQST = — ;z (cotb,. + tanb,.)
27,
O, — Oyf = tan;ZGT = Ty (coth, — tanb,)

In the last relation, the identity tan26, = % is used. With these relations
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Chapter 3. Response of a Cracked Membrane

in mind, the centre and radius of Mohr’s circle of the situation at centre between
cracks become

o (Uac+)\$fct)+(az+/\zfct) o Oy + 02 &
¢= 2 T T

(A +A2)

2

- 0, —Og fct 2
- \/|:2 - 7(>\z - )\z):| +7_.’EZ

R— \/[(Uz + Ao fet) = (02 +)\xfct)]2 +T12'z

at centre
between
cracks

7\’: f;t

Figure 3.9: Mohr’s circle of concrete stresses: total stresses at crack and at centre
between cracks (Kaufmann 1998)

We want to find the maximum principle stress oy at centre between cracks. oy is
located at the rightmost point of the dashed circle in Figure 3.9. This stress cannot
exceed the tensile capacity of concrete. With the observations above we obtain the
following equation

C+R=o01< fa
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3.2 The Cracked Membrane Model

fut
2

Ao+ X)) — T;Z (coth,. + tanb,)

2
+ \/ {%(cotﬁr — tanb,) — %(/\x - Az)} 172 < f (3.31)

which is how the formula is presented in Kaufmann & Marti (1998). This equation
may be used to find the maximum crack spacing. Solving Eq. (3.31) at the limit, a
solution for the maximum crack spacing S,.,,0 is obtained on closed form (Dabbagh
& Foster 2006)

a+ ’f]b — \/776+ d+ Sr2mz0 + 772(57%771100 B d)

5 (3.32)

Srm(] =

where n = |7,,|/ fer and the parameters a, b, ¢ and d given by

@ =Symz0 S0 0] + Spmzo cos [0,
b =Sma0 €08 |0,| + Srmzosin |0, ]
¢ =2(S7 00 + Stmzo) Sint 0] 08 [0, — 27m00Srmzo
d=(S?

0 — Sfmzo) sin? 0] — 2S7maz0Srmzo0 sin |0, cos |0,

The derivation of Eq. (3.32) is given in Appendix C. Note however that stabilized
cracking stage is assumed for both Eq. (3.31) and (3.32).

The minimum crack spacing is determined in the same way as for uniaxial tension.
Tensile stresses equal to the concrete tensile strength have to be transferred to
the concrete in order to form a new crack. Therefore, the minimum crack spacing
equals Symo/2, and the crack spacing is limited by 0.5<A<1 for the fully developed
crack pattern, where A = Sy, /Srmo-

Calculations based on Eq. (3.32) have been implemented in a Matlab-script. The
output from the program is a plot of the maximum crack spacing for different
crack inclinations. The result is shown in Figure 3.10. As seen from the plot, the
maximum crack spacing follow a curly shape for small ratios of |7, |/ f.:. For higher

ratios, a linear upper bound is approached.

However, Eq. (3.31) and Eq. (3.32) are not valid for small values of applied
shear stress (crack angle close to 0 or ). Considering Eq. (3.30a) it is clear
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Figure 3.10: Plot of maximum crack spacing S,ymo. Upper bound calculated with Eq.
(3.36).

that difficulties arise for the special case of 6, = 0. In that case, the solution
should reduce to the known solution of uniaxial tension in the z-direction, where
A =0, A\, =1 and S, = Spmz0- However, as elaborated by Dabbagh & Foster
(2006), the problem occures due to an over-calculation of the bond stress in the
x-reinforcement. The tension chord model assumes that the limiting bond stress
is 7, = Ty, while for the special case of 6, = 0 the force in the x-reinforcement is
zero, and thus the shear bond stress should also be zero in the x-direction. The

same reasoning applies for the limit case of |0,.| = £7/2.

If Eq. (3.32) is solved for n with S,.,;, = Sym-0 for the limit case 6, = 0, one obtains
the result 7 = Sym20/Srmzo. Similarly, with Sy, = Srmzo for |6, = £7/2 gives
N = Srmz0/Srmz0. Generally, in order for the solutions of Eq. (3.31) and (3.32) to
satisfy the boundary limits, Dabbagh & Foster (2006) present the following limiting

condition

fOI'gr < 9)\12,\2 n > Srsz/STm:rO (333&)
forf, > Ox.—x. 1> Svmzo/Srms0 (3.33b)

For values of n that are not fulfilling the conditions of Eq. (3.33), the shear bond
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3.2 The Cracked Membrane Model

stress in either the x- or z-direction is smaller than 7,9. Or in other words, the

stabilized cracking stage is not reached in one of the directions.

To deal with situations where the conditions of Eq. (3.33) are not met, Dabbagh &
Foster (2006) have proposed a solution procedure that handles all cases. For more
details about this procedure, see the article of Dabbagh & Foster (2006).

Simplified Expression for Max. Crack Spacing

In the modified compression field theory (Vecchio & Collins 1986) a simple expres-
sion was proposed for the maximum crack spacing. This is similar to the expressions
given in Eurocode 2 (CEN 2004) and Model Code 2010 (fib 2013):

sinl6,|  cos|0,|\ "
rmQ — .34
S 0 ( Srsz * Srsz (3 3 )

Eq. (3.34) may be used as a simple, approximate solution, and in the following the

derivation of the expression is shown.

Once again, the Mohr circle shown in Figure 3.9 is considered. The stresses trans-
ferred to the concrete are divided into two parts, one symmetric and one anti-
symmetric part. The concrete stresses at cracks are now expressed with two new
Mohr circles, as illustrated in Figure 3.11 (a) and (b).

(a) (b)

(A +2.) T
2 fcr

(A1)
T

Figure 3.11: Mohr’s circle of concrete stresses divided into (a) symmetric and (b) anti-
symmetric parts (Kaufmann 1998)
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Chapter 3. Response of a Cracked Membrane

The symmetric part moves the circle of stresses at crack to the right by fgt Azt+A2),

while the anti-symmetric part expands its radius by f; (A — Az)cos(20,.). Now the

maximum principle stresses at centre between cracks become

Ocl = %(/\I + ) — %(/\I — A;)cos(20,.) (3.35)

Noting the identity cos26, = 2c0s?0, — 1 = 1 — 2sin26,, the relation becomes

& fct

5 [/\x — A (1 — 2$in29,-)] + 5 [)\z + . (2c05%0, — 1)]

or
fet [)\z $in20, + \, 00529@

Setting this expression equal to f. A, we get the relation

A = A\sin?6, + \.cos?0,

Recalling Eq. (3.12) and (3.27), the approximate solution of the maximum crack

spacing simplifies to

([ sin]0.]  cos|f,| !
STmO B (Srmxo N Srsz (336)

This expression is not dependent on loading. Comparing it with Eq. (3.31) we see
that the factor |7,.| is omitted. Therefore this method only gives an approximate
solution. However, it coincides with Eq. (3.31)/(3.32) for large ratios of |7,.|/ fet,
and for A\, = A,. The upper boundary obtained from Eq. (3.36) is included in
Figure 3.10. Furthermore, the problems related to low values of |7,.| disappears.

3.2.4 Solution Methods

With all derivations and relations presented so far, a solution can be obtained.
The material, compatibility and equilibrium equations provide the tools to find
the solution where the internal forces are in equilibrium with the applied external

forces.

In the general solution, the average strains €,, €, and €3 are considered as the

primary unknowns. All necessary relations can be determined as functions of these
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3.2 The Cracked Membrane Model

three unknowns. For a given set of applied loads, equilibrium between external and

internal forces is determined through iterations.

If complete load-deformation response is to be determined, Kaufmann & Marti
(1998) advice to increment €3 instead of 7,,. The response curve is deformation
controlled in order to avoid difficulties related to the post peak behaviour of con-
crete (post-peak behaviour not included in this thesis). For each increment of €3,
the values of €, and €, are determined in an iterative manner for the corresponding
external loads.

In Appendix A an algorithm is proposed to find the internal response corresponding
to a given set of applied loads o,, o, and 7., based on the cracked membrane
model. If instead we are interested in the complete load-deformation response or
the response corresponding to a given set of known steel and shear stresses (o,

Oszr and 7,.), the algorithm is easily adjusted.

In the algorithm, Newton-Raphson iterations are performed in order to solve the
system of non linear equations. This leads to a robust procedure, where conver-
gence in general is obtain after few iterations. Since all the equations of the model
are on closed form, analytical expressions of the derivatives are obtained. The
derivatives are given in Appendix B. Below, Step 12-15 of the algorithm are re-
peated. These steps shows how Newton-Raphson iterations are implemented in the
solution procedure.

Step 12 - Calculate the function value for current estimates of ,, €, and e3

fl =0gx — Ogext
f2 =0z — Ozext

f3 = Txz — Txzext

f1
F=1r2
f3
Step 13 - Check convergence according to chosen tolerance 3

e If max(f) < beta, convergence obtained and calculation can be terminated.

e If max(f) > beta, no convergence obtained and calculation must proceed
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Chapter 3. Response of a Cracked Membrane

Step 14 - Calculate the Jacobian matrix. The derivatives of function fi, fo andf3
must be calculated with respect to €., £, and e3.

Ofh  Ofi Of1
Oz Oe., Oes
J= |0k of of
G Oe, Oes
Ofs Ofs Ofs
Oey Oe, Oes

The elements of the matrix, and details of the derivations are given in Appendix B.

Step 15 - Calculate new estimations of €,, €, and €3 (Newton-Raphson step).

gip1 =i — J(e) ' flei)

of  of on !t

— 2 9Jj2 g2
Ez = |&z g€$ ggz 253 f2
f3 fs  Ofs
€3 i+l €3], Oe, Oe. Oezd f3 i

3.3 Approximate Analytical Solution

A simplified, approximate solution has also been proposed by Kaufmann (1998).
Here it is assumed that the stresses and strains at the quarter points between cracks
are representative for the total response of the element.

Now we combine Eq. (3.26a) and (3.26b) for the relation between steel stresses
at cracks and external loading, Eq. (3.30a) and (3.30b) for the change of concrete
stresses between cracks, and Eq. (3.17) and (3.18) for the relation between stresses
at crack and average stresses. This gives steel stresses at the quarter points between
cracks expressed as

PrOsy = Op + Typocotl, — %)\1(1 - pz) (3.37a)
_ fct
P05, = Oy + Tytanl, — 7)\,2(1 —p2) (3.37b)

Assuming, as we did in subsection 3.2.3, that the tensile stresses transferred to the

concrete are divided into one symmetric and one anti-symmetric part, the minimal
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3.3 Approximate Analytical Solution

principal stress of the concrete at the centre between cracks is

— Tz (tanb, + cotb,.) + %()\g; + )+ %()\g; — \,)cos20,

This can be seen from Figure 3.11 and with the same considerations as in sub-
section 3.2.3. The minimum and maximum principal stresses are assumed to vary
linearly between the cracks, and Eq. (3.35) gives the maximum principal concrete
stress at the centre between cracks. Using these equations, the minimum principal

stress at the quarter points is derived as

Oc3 = — Ty (tanb, + cotb,.) + %()\I +A— ) (3.38)
If linear elastic response is assumed and Poisson’s ratio is set to zero, the strains

s, €, and g3 are determined with Eq. (3.37) and (3.38) as

Osy Oz + TuocOtl,. — fet Ax(1 = pg)

o T 2 3.39
) P b (3.3%)
Osy Oz + Ty tand, — f; A (1—p)
£, = 2% = 3.39b
ES szs ( )
x(tanb, + cotf,) — Lt (N, + X, — A
e e I 2

If the results of Eq. (3.39) are substituted into the relation cot?6, = =% we

Ex—E€3
obtain the following equation

Oz _ fct

Tez  2Tgz

= cot?0,p.(1 +np,) + cot@rpz{aw — Jet

[Az Fnps(Ap + — lAz —A)]}

tan?0,p. (1 +np.) + tcm@rpx{ -

vz 2Tz n

[)\w Fnpe( + 1, - )\)}}

This result can be used to find the crack angle ,.. However, the solution is obtained

through iterations since A, and A\, depend on 6,..

A way to avoid iterations is to neglect the tensile capacity of concrete. Then, the

equation simplifies to
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o o
tan®0,p. (1 + np.) + tanb,p,—— = cot*0,.p. (1 + np,) + cotb,p, —— (3.41)
TCEZ TiEZ
Another solution is obtained if the maximum principal direction is assumed con-
stant between the cracks and maximum principal stresses varying linearly with

direction perpendicular to the cracks. Noting that this causes \,=\,=\, gives

tan20,p, (1 + np.) + tan&rpx{gz e

Tez 2Tz

A{1+(n—1)pz}}

= cot?*0,p.(1 + npy) + cot@rpz{aac - A)\[l +(n— l)pm] } (3.42)

Tez  2Taz

Figure 3.12 shows a plot of the crack angle cotf, for varying reinforcement ratios,
obtained from a Matlab-script with a given set of geometrical and material inputs.
Here the three equations above are included, in addition to the general solution.
The different methods give the same result for equal reinforcement amounts in both
x- and z-direction. However, for increasing difference of the p,/p. ratio the results
deviate more. According to Kaufmann (1998) both Eq. (3.40) and Eq. (3.41) seem
to provide a good estimation of the crack angle, as they follow the behaviour of
the general method closely. Eq. (3.42) on the other hand deviate more from the

general solution.

With known crack angle from one of the equations above, steel and concrete stresses
at cracks can easily be determined from Eq. (3.26). These stresses can be controlled

for failure criteria of reinforcement and concrete.

3.4 Crack Width

Based on the response predictions obtained with either the general or the approx-
imate method, we can get an estimate of the crack widths of a cracked concrete

panel. The crack width, w,., is determined by the tensile strain at crack, denoted

agr), and the crack spacing, S;n,. The expression is (Kaufmann 1998)

Wy = Spmet” (3.43)

The overall maximum principal strain, €1, consists of two parts, the tensile strain

(r) (e)
1

at crack, €7 7, and the tensile concrete strains, ;. If linear elastic behaviour is
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Figure 3.12: Plot of estimated crack angle for varying reinforcement ratios with the
different approaches

assumed, we can estimate the tensile concrete strain as follows

(¢)  Ocl —V130c3

§ - (3.44)

where 143 is the Poisson’s ratio. According to Kaufmann (1998), a value of v13 ~
0.15 gives satisfying results for moderate concrete compressive stresses. Further-
more, Kaufmann (1998) recommends using the values of 0.1 and 0.3 at the quarter
points between the cracks. Note that for stabilized cracking stage, oo = Afer/2
at the quarter point, while o.3/FE. = €3, if concrete stresses are assumed to vary
linearly between cracks.

Recalling the compatibility relation of average strains from Eq. (3.22), where e,
€, and €3 are known from the solution of the cracked membrane model, we obtain
an estimate for the crack width

Wy = Spm(ex + €, — €3 — s§c)) (3.45)
Ae
= Srm (51 + v13€3 — 22;) (3.46)
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As a simple estimate of the crack width, the mean tensile strain can be used instead
of the tensile strain at crack in Eq. (3.43).
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4 Analysis of Reinforced

Concrete Shell Elements

4.1 Introduction

A shell element is defined based on its geometry and the way load is carried. Gen-
erally, a shell element is a three-dimensional solid with a small thickness compared
to the other two directions. Furthermore, a shell section can be part of both plane
and curved structures. A shell section can resist a combination of in-plane forces
and bending forces.

Figure 4.1 shows a shell element with corresponding force resultants along the edges.
In total, 8 different force resultants are acting on the shell element. These are three
membrane forces N, N, and Ny, two bending moments M, and M,, torsional
moment M,,,, and two transverse shear forces V, and V,,. All forces and moments
are given in units per length. It is assumed that Ny,=Ny, and My,=M,,.

J—

—.}I'
a VY‘
Wy ——
t . 4 Ny Myy
h Xy ¥
e Mx‘?l:'
x* N,
Mx},

Figure 4.1: Shell element with force resultants (@verli & Sgrensen 2012)
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Typically, a structural analysis is carried out with a finite element program to find
the distribution of the stress resultants defined above. Based on these resultants, a
suitable reinforcement amount is determined by a design procedure, like for instance
the sandwich method. The determination of the external forces and reinforcement

amounts will not be discussed any further in this thesis, but assumed given.

The iteration method (@Dverli & Sgrensen 2012) is a tool which can be implemented
to obtain the internal response of a reinforced concrete structure, where geometry
and reinforcement amounts are given. Equilibrium between external and internal
forces is achieved through an iterative process. Transversal shear forces V, and V,,

are not considered in the iteration method, and must be handled separately.

Briefly summarized, the approach of the iteration method is to find the strain dis-
tribution of the shell section that ensure equilibrium between external and internal
forces. The shell section is divided into layers, where each layer is handled as mem-
branes with in-plane forces only. The internal response of each layer, corresponding
to the strain distribution, is found by implementing orthotropic material models
in the directions of the principal stresses. By summing the force contributions of
each layer, the internal force resultants are found. The material stiffness matrix
and the strain distribution are updated at each iteration step until convergence
is obtained. The derivation of the model is described below, in accordance with
Overli & Sgrensen (2012). Furthermore, the algorithm of the model is given in
Appendix D.

4.2 Derivation of the Iteration Method

4.2.1 Constitutive Relations

In order to determine the response in concrete and reinforcement for a given strain,

constitutive relations must be formulated.

Concrete has a non-linear behaviour in compression, and will crack for moderate
tension stresses. An orthotropic material model in the directions of the principal

stresses can be employed to account for these effects. The expression is

o1 Ecq1 vE2 0 €1
op=|02| =C¢-€p= PR vEqa2  Eeoo 0 Tl €2 (4.1)
1 -V (1—D)E 12
T12 0 0 — Y12
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4.2 Derivation of the Iteration Method

where o, and €, are the stress and strain vectors in the principal stress direction,
and Ec1p = (Eei1 + Eeo2)/2.

FE.11 and E.9y are secant moduli in the principal stress directions, and may be
determined by

B = 22 (4.2)

g

In order to transfer concrete stresses, strains and stiffness matrices from local prin-
cipal directions to the global xy-directions, a transformation matrix is needed. The

transformation of strains from global axes to principal axes is defined as

e, =T(0) - 4y (4.3)

where 6 is the angle of the principal strain direction given as

0= %tan_l <%y> (4.4)

€z — Ey

and the transformation matrix is given as

cos? 6 sin® sin @ cos 6
TO) = sin” 0 cos? 6 —sinf cos (4.5)

—2sinfcosf 2sinfcosh cos?h —sin’0

Assuming that the principal stresses have the same direction as the principal
strains, the principal stresses and the material stiffness matrix are transferred to
the global axes by

Oewy =T (0) 00y =T (0) Cep-p =T () Cep-T(0) €2y = Cr- sy (4.6)

C.=T"(0)-Cep-T(6) (4.7)

For reinforcement, it is assumed that the direction of the reinforcement is coincident
with the global xy-direction. The constitutive relation for the reinforcement is given
as
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Chapter 4. Analysis of Reinforced Concrete Shell Elements

Osoy =Cs-€zy=| 0 Eg 0]|-]|¢g (4.8)

where F,, and E,, are secant moduli for reinforcement in the global xy-directions.

Hence, the two reinforcement directions are uncoupled.

4.2.2 Displacement Formulation

The goal of the iteration method is to find the state where the internal forces are
equal to the external forces, which means that the correct strain distribution must

be determined to provide equilibrium. The following equation must be fulfilled

R=S(e.,) (4.9)
F N ] e T
N, Eym
[N ’ e, = [eml _ | Vaym
M, K Ky
M, Ry
[ My | L Ray |

where R is the external load vector, S is the internal load vector and &; is a vector

containing the strains and curvatures at the middle plane of the shell section.

Kirchoff’s hypothesis of linear strain distribution over the thickness of the shell is
assumed, and gives the situation illustrated in Figure 4.2. The in-plane strains at

a distance z from the middle plane of the shell section are now given as

€z
€y
Ex 1 0 0 —2 O 0
oy =|c, | =€m—2k=A-e,=10 1 0 0 —2 0 T:y (4.10)
Yz O 0 1 0 0 —Zz £
Ky
LRy |
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h/2

h/2
!

Figure 4.2: Strain distribution over shell thickness (@verli & Sgrensen 2012)

The correlation between strains and stresses of the internal response S(g; ) in Eq.
(4.9) is non-linear. In serviceability calculations this is due to cracking of concrete
in tension and the non-linear behaviour of concrete in compression. The internal
force vector must therefore be determined by a displacement formulation as shown

below

S(err) = K(etr) - €141 (4.11)

where K (g, ,) is the stiffness of the section at iteration number r.

4.2.3 Stiffness Matrix

The stiffness matrix may be established by employing the principal of virtual work.
The displacement vector r is given below, and a is defined in Figure 4.1.

T

Ty
r=a-e=a [E’”] = "oy (4.12)

K 0

Oy

02y |
The virtual displacement vector becomes

or =a-de; (4.13)

External virtual work is given as

49



Chapter 4. Analysis of Reinforced Concrete Shell Elements

6Acps =0T -a- R (4.14)

where a-R is total force. The internal work is given as

6Amt:/ sel o -av (4.15)
|4

For the derivation, a material model C is introduced for the combined contribution
of concrete and reinforcement. If external and internal virtual work are equated,

the following may be shown

h/2
R= AT.C-A-dz-e, =K -¢ (4.16)
—h/2

The stiffness matrix is therefore given by

h/2 _
K = Ol (4.17)
—h/2 —zC ZQC

The stiffness matrix may be solved numerically by dividing the thickness of the shell
section into layers, and summing up the contribution of each layer. If the cross
section is divided into n layers, each layer has thickness Ah = % For an increasing
number of layers, the numerical integration will approach the exact integral. The
stiffness contributions of concrete and steel are handled separately, and the total

stiffness is a summation of the two contributions.

The concrete stiffness expression becomes

" Cu  —2Cl
Ko=AhY l o ' ] (4.18)
i=1 —zC

2
ci Z; Cci

and the reinforcement stiffness expression becomes

Csa:j _Zsta:j
2 + A
*chsrj Zj Cszj

sYj

Kg = i (Aswj
j=1

Covi  —2iCow ] ) (419)

. . 2 .
—2;C sy, Zj Csyj

where A,,; and A,,; are the cross sectional area of the reinforcement in the two
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4.2 Derivation of the Iteration Method

directions at layer j. The total stiffness is

K=Kc+Kg (4.20)

The strain distribution is now easily determined by

=K 'R (4.21)

4.2.4 Internal Stress Resultant

With constitutive relations established and the strain distribution determined above,
the internal stress resultants may be calculated. The internal stress vector is given

as

Ny
Ny
Ny
s=|5n| = [New (4.22)
Sm M,
M,
[ My |
The vector may be expressed as the integrals shown below
R/2
Sy = / o-dz (4.23)
—h/2
h/2
SM:/ —z-0-dz (4.24)
—h/2

Similar as for the stiffness matrix, these integrals may be solved numerically by a
summation of the contributions from the concrete and reinforcement layers. The

expressions become

n m Aszj * Osxj
Sy = Ahz Ocryi T Z Asyj  Osyj (425)
i=1 j=1 0
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n m _ZjAsa:j * Oszxj
SM = —AhZzl * O cayi + Z —ZjAsyj * Osyj (426)
i=1 j=1 0

where o .4y are the concrete stresses at layer i, and 04, and ogy; are the reinforce-
ment stresses at layer j.

When the internal stress resultants are determined, they are compared with the
external force resultants. If the deviation between the internal and external force is
smaller than a convergence criteria for all of the six force components, an acceptable
equilibrium is reached. If not, the iterations proceed with a new estimate of the

stiffness matrix based on the strains found in the previous iteration step.
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5 New Method for Design
of Shells in SLS

5.1 General

The goal of this thesis is to develop and propose a new approach for crack width
estimation of shell sections in serviceability design. Both the external forces applied
to the shell section, and the geometry and reinforcement layout are assumed given.
These values are subsequently used as input in a post processing control where this

new approach is implemented.

The iteration method and the cracked membrane model presented in chapter 3
and chapter 4, constitute the tools that will be used in the new method. For a
given shell section and applied force, the iteration method is used to obtain global
equilibrium between external and internal forces. With global equilibrium satisfied,
the cracked membrane model is used to determine the response of the cracked face
of the shell.

The collaboration between the iteration method and the cracked membrane model
forms the new proposed method, referred to as ”cracked shell model” throughout
the rest of this thesis. In the following, two different approaches for the cracked

shell model are proposed.

5.2 Approach

Before the calculations of the method can begin, the designer needs to provide all
necessary input values. Therefore, external loading, section geometry and proper-

ties, and reinforcement layout must all be determined prior to the implementation
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Chapter 5. New Method for Design of Shells in SLS

of the method. With input values determined, the iteration method is employed to
find the strain distribution that ensure equilibrium between external and internal
forces. In the iteration method the height of the cross section is divided into layers,
see Figure 5.1. Through the strain distribution, average in-plane strains €., €, and
Yay are found for each layer. With known strains and constitutive relations, the

steel and concrete stresses in each layer can be determined.

The stresses determined from the iteration method are used as input values for
the cracked membrane model, where three values are necessary to solve the system
of equations. One possibility is to use the steel stresses in the two reinforcement
directions and the concrete shear stress. Another approach is to use the average
axial stress in x- and z-direction and the concrete shear stress. The two possible

approaches are explained in more detail below.

h/2

X

Figure 5.1: Cracked shell section illustrating the effective panel

Approach 1
In the first approach, the stresses in the x- and y-reinforcement, o, and os,, and
the concrete shear stress, 7.y, are used as input to the cracked membrane model.

The steel stresses obtained from the iteration method are constant in each layer

since tension stiffening effects between cracks are neglected. At a cracked surface,
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5.2 Approach

the steel stresses must therefore be equal to the stresses at a crack. This is due
to the fact that at a cracked surface, all tensile stresses must be transferred by
the reinforcement across the crack. The steel stresses obtained from the iteration
method can therefore directly be compared with the reinforcement stresses in the

cracked membrane model, 05z = 04zr and o5y = 057

In the iteration method, all shear stresses are a result of concrete shear stresses
since shear contribution from the reinforcement is neglected. The concrete shear
loading can therefore be compared with the external shear loading used in the
cracked membrane model, 7.yy = 7,,. However, only the concrete shear stresses
from the layers of interest, i.e. the layers within an effective height h..rs at the

cracked surface, must be considered. The situation is illustrated in Figure 5.1

It is not obvious how the effective height should be determined in order to trans-
late the problem to a cracked membrane that is suitable for implementation in
the cracked membrane model. The effect of different choices should be studied
and compared to experimental results. However, as a first estimate, the effective
height will be calculated in accordance with Eurocode 2 (CEN 2004). Thus, it is
determined by Eq. (2.4).

Based on the shear stresses from all the layers within the effective height, a mean
value for the shear stresses is determined

Neff
1
= — E h; i 5.1
Tcwy hcﬁff i=1 ’LTcwyl ( )

where n.y¢ is the number of layers within the effective height, h; is the height of

layer i and 7¢zy; is the concrete shear stress at layer i.

The values obtained from the iteration method used as input in the cracked mem-
brane model are therefore:

Alternative 1
Input:

Osz; Osy, Texy

Compared to:

Oszr Osyr Txy
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Approach 2

In the second approach, mean external axial stresses in the x- and y-direction, o,
and oy, are determined from steel and concrete stresses obtained from the iteration
method. These values becomes the first two input values in the cracked membrane
model. In addition, and similarly as in approach 1, the concrete shear stress, T.qy,
is used as the third input value.

The total internal axial forces of a reinforced concrete shell section originates from
a combination of reinforcement and concrete stresses. In order to translate the
internal forces into an equivalent external force, mean values of steel and concrete
stresses must be determined within the area of interest. The effective height, over
which the stresses are averaged, is determined by Eq. (2.4) similarly as for the
shear stress. The mean axial stresses in x- and y-direction becomes

1 Neff Meff
Oy = hio Aszio (5.2)
x hc7eff ; cx b hc eff Z sx] ST
1 Neff Meff
= ; RiGey + T hc - Z AuyiOay (5.3)

The mean shear stress over the effective height is calculated the same way as in
approach 1.

The values obtained from the iteration method used as input in the cracked mem-
brane model are therefore:

Alternative 2
Input:

Oz, Oyy Texy
Compared to:

Oz, Oy, Tzy

The cracked shell model is schematically illustrated by the flowchart in Figure 5.2.

56



5.2 Approach

External load Material properties
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membrane
model

Crack width w, Crack angle 6, Crack spacing Srm

Figure 5.2: Flowchart describing the chain of events in the cracked shell model
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6 Results

6.1 Verification of the Cracked Membrane Model

Based on the algorithm proposed for the cracked membrane model shown in Ap-
pendix A, estimates of the response of a reinforced concrete membrane may be
obtained. To verify that the algorithm provides reasonable results, it is compared
with the results obtained for shear panel PP1 tested by Marti & Meyboom (1992).

Table 6.1 summarizes the main specimen properties for panel PP1. In Figure 6.1,
the results predicted by the cracked membrane model are compared with results ob-
served from the experimental tests, and show good agreement between the response
predictions of the model and the real behaviour. In addition to demonstrating the
ability of CMM to accurately predict the response of a panel, the example also
shows that the proposed algorithm works properly. The results of the simplified
version of CMM are also included, and show that this approach indeed is capable of
predicting the response before yielding in a satisfactory manner. For serviceability
considerations with steel stresses below yielding of reinforcement, the simplified

method seems to provide reasonable results.

Considering the plot in Figure 6.1 (a), a more or less linear behaviour is observed,
before the deformations increase more rapidly for shear stresses above 4 MPa.
From plot (d) in the figure it appears that this is due to yielding of the weaker
z-reinforcement. The x-reinforcement on the other hand, stays in the elastic do-
main. After the onset of yielding of the z-reinforcement, it is seen from plot (c)
that the crack direction rotates towards the x-axis. The plots show that all these

characteristics of the panel behaviour are accurately predicted by CMM.

Kaufmann (1998) employed the cracked membrane model to several other panels
as well. In general, very good agreement between experimentally observed and

predicted behaviour was obtained. Furthermore, even though not considered in this
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Table 6.1: Main properties of panel PP1

Reinforcement:| D, [mm] 19.5
pe (%] 1.942
foye [MPa] | 479
fsua [MPa] 667

Esuz [1077] 90
D. [mm)] 11.3
ps %] 0.647

foy= [MPa] | 480
fous [MPa] | 640

€suz [1077] 91
E. [GPa] | 200
Concrete: i [MPal 27.0

fer  [MPa] 1.71
€eo [1077] 2.12
E. [GPa] | 25.98
G. [GPa] | 11.13

b
. (b)
@
o
=
R
.
0 4 8 12
©
o
=
N Nl — CMM
s 2 ———CMM Appr.
— -G - Experiment
0
1 1.2 1.4 1.6 1.8 0 2 4 6 8
COt(Gr) € €, [%0]

Figure 6.1: Comparison of predicted and observed response for shear panel PP1 tested
by Marti & Meyboom (1992)
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6.1 Verification of the Cracked Membrane Model

thesis, the correct failure mode was predicted by CMM for almost all experiments.

Note that in the cracked membrane model it is assumed that cracking has occurred.
Thus, CMM is not able to describe the uncracked behaviour of panel PP1, which is
seen from the deviation between the predicted and the observed behaviour for low
values of 7, in all four plots in Figure 6.1. The load and strain values (7, and
~zz) in the panel when the first crack occurs are calculated below, in accordance
with Marti & Meyboom (1992). The cracking point is indicated in Figure 6.1 (a).

For the uncracked stage, the panel is in a state of pure shear. Therefore, it is
assumed that all load is carried by concrete (e, = €, = 0), and that shear strains
are proportional to shear stresses (7., = G¢7Vs.). Furthermore, cracking occurs

when the tensile strength of concrete is exceeded. The cracking load becomes

1 Ec
2 2
_ Ex + €z Ex — €&z Yxz _ Yz
o= () (5) -
2Gcfct
xz:chz:
T, Y. Ec

- Tez = 1.5 MP&, Yoz = 0.13 - 1073

The response of panel VBI tested by Zhang & Hsu (1998), with high strength
concrete f! = 98.2 MPa, is also predicted by CMM algorithm developed in this
thesis. Again, good correspondence between the predictions and the experimental
observations is obtained, as shown in Figure 6.2 (a). However, in contrary to
panel PP1, panel VBI is calculated to be in the crack formation stage up to the
onset of yielding in the reinforcement, which is indicated in Figure 6.2 (b) and (c).
This observation seems to contradict the real physical behaviour, since stabilized
cracking stage generally is obtained for steel stress levels considerably below the
yield limit. This inconsistency must be attributed to Eq. (3.21) proposed by
Seelhofer (2009), which is derived under the assumption of steel stresses above the
yield limit. However, the modifications proposed by Seelhofer (2009) seem to be

important for the robustness and efficiency of the proposed algorithm.

The original version of CMM (Kaufmann & Marti 1998) assumes that stabilized
cracking stage is reached. While Seelhofer (2009) tried to modify the formulation in
order to account for the crack formation stage, the elastic domain of the curve still
seems to be the biggest weakness in the model. For SLS considerations this is the

part of interest, and the possibilities for making changes here should be examined.
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(a) Comparison of predicted and observed response for shear
panel VBI tested by Zhang & Hsu (1998)
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(b) Steel stress distribution with indication of crack formation stage for VB1
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(c) Steel stress distribution with indication of crack formation stage for PP1

Figure 6.2: Response of panel VBI1, and comparison of crack formation stage in panel
VBI1 and PP1.
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6.2 Benchmark of Reinforced Concrete Ties

The cracked membrane model is developed for analysis of orthogonally reinforced
concrete structures. However, in the special case where the crack angle is perpen-
dicular to one of the reinforcement directions, the situation reduces from a two-
directional to a one-directional problem. In this situation, the cracked membrane

model is reduced to the uniaxial tension chord model (Sigrist et al. 1998).

In the following, crack width calculations are performed based on the cracked mem-
brane model, Eurocode 2 (CEN 2004) and Model Code 2010 (fib 2013) formulations.
The results will be compared with the results of virtual experiments conducted by
Tan et al. (2018), where four cylindrical reinforced concrete ties were analyzed us-
ing non-linear finite element analysis. The ties considered were denoted ¢20c40,
$32c40, ¢$20c90 and ¢32c90, where ¢ indicates the steel bar diameter and c indi-
cates the cover. For the range of steel stresses considered, the steel is modelled
as linear elastic with E-modulus 200 000 MPa. Concrete grade C35 is used for all
experiments, with concrete properties in accordance with Model Code 2010.

In Figure 6.3, the crack width development for increasing steel stresses obtained
from the virtual experiments of Tan et al. (2018) are compared with the results
from EC2, MC10 and CMM. The results show that CMM closely predicts the ex-
perimental observations for all four ties. Furthermore, CMM yields significantly
better estimates than both EC2 and MC10, independent of bar diameter and con-
crete cover. However, it is seen that the response predictions are more accurate for
#2040 and ¢$32c¢40 compared to ¢20c90 and $32¢90, which deviates more from the
experimental findings. The same effect is observed for EC2 and MC10.

In Table 6.2, the relative strains predicted by CMM, EC2 and MC10 are compared
for steel stress equal to 400 MPa. Not surprisingly, EC2 and MC10 obtain the
same results, since they are based on the same formula. For ¢20c90, however,
the results deviate due to the lower bound given in EC2, which is not included in
MC10. The relative strain estimate of CMM is determined based on the formulas
for steel stresses at cracks, derived in subsection 3.1.4. The results of CMM closely
match the relative strain predictions of EC2 and MC10. This suggests that the
deviations in crack width estimations, observed in Figure 6.3, occur due to different

crack spacing predictions.

In Table 6.3, the crack distance observed in the virtual experiments is compared
with the crack distances estimated by CMM, EC2 and MC10. Again, it is shown
that the tension chord model provides much better results than both EC2 and
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Figure 6.3: Comparison of development of crack widths of virtual experiments ((Tan
et al. 2018)), Eurocode 2, Model Code 2010 and the cracked membrane model

Table 6.2: Comparison of relative strains for steel stress equal to 400 MPa

Relative strain [1077]
Tie element | CMM| EC2 [ MC10

$20c40 1.8 1.7 1.7
$32c40 1.9 1.8 1.8
$20c90 1.2 1.2 0.99
$32c90 1.7 1.5 1.5
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6.3 Benchmark of Shear Wall

MC10. For all three approaches, it is seen that the accuracy decrease for increasing
concrete cover, which is particularly the case for the EC2 and MC10 approaches.
This suggests that all three are less suitable for large scale concrete structures, and
measures should be taken to improve their accuracy in such situations. In addition,
it is seen that all three approaches fail at consistently accounting for the dependency
of cover size and bar diameter in the predictions of crack spacing. However, the
cracked membrane model seems to provide a considerable improvement of crack

spacing predictions compared to EC2 and MC10.

Table 6.3: Comparison of crack spacings

Crack spacing [mm]
Tie element | Experiment | CMM| EC2 | MC10

¢20c40 105 120 306 219
$32c40 109 90 269 189
#20c90 260 495 986 736
$32c90 272 343 784 570

6.3 Benchmark of Shear Wall

The main purpose of this thesis is to explore the applicability of the cracked mem-
brane model for design of concrete shell structures in the serviceability limit state.
Currently, there are no good experimental results available for crack width devel-
opment in shell sections. However, examining large reinforced concrete structures
in the serviceability limit state is a good alternative. In that context, CMM is used
for benchmark of a shear-wall examined in the framework of the French national
research project CEOS.fr (Rospars & Chauvel 2014).

The shear wall considered, denoted SHW3, was designed to accurately reproduce
reinforced thick shear walls used in industrial buildings. A horizontal load was
applied to the upper corner of the wall to create a shear force, as shown in Figure 6.4
(a). The dimensions of the wall ensured that diagonal shear cracking is prevailing
over cracks as a result of bending. Furthermore, beams with high reinforcement
ratio were connected to the upper and bottom part of the wall to allow a better
redistribution of shear forces in the wall. The test body was instrumented in order
to measure crack widths and crack spacing during loading. The dimensions of the
wall were 4200 mm of length, 1050 mm of height and 150 mm of thickness. Class
C40 concrete was used, and reinforced with bars of 10 mm diameter and 100 mm

spacing in both horizontal and vertical directions on both faces of the wall. For
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more information about the test setup and material properties, see Rivillon & Gabs
(2011).

A linear finite element (FE) analysis is performed with the FE-program DIANA
FEA (2017) in order to estimate the load distribution in the wall. A relatively
coarse mesh with element size of approximately 150 mm is used, and the influence
of reinforcement is neglected in the analysis. Plots of the stress distribution in
the wall are given in Figure 6.4 (b)-(d). It is seen from the plots that the stress
distribution is not homogeneous in the wall. Therefore, results of the central part of
the wall are considered, where mainly a state of homogeneous shear and horizontal
compression are present. The results of an integration point from the FE-analysis
in the center of the wall are used for the analytical calculations. The stresses o, =
-1.155e-6 MPa, o, = -2.333e-7 MPa and 7., = 1.517e-6 MPa are obtained for the
load level P = 1 N. Due to the linear elastic model, these stresses can simply be
scaled to the load level of interest.

Based on results from the linear analysis, the cracked membrane model is used
to estimate the response of the shear wall. In addition, calculations according to
Eurocode 2 (CEN 2004) are performed with the MultiCon approach described in
subsection 2.2.3. Since the FE-analysis provided the stresses for an integration
point, an iterative approach is used to determine o.; and ¢y for the membrane
element. This approach is similar to the iteration method, except that it is not
necessary to divide the cross-sectional height into layers since there are no bending

present.

In Table 6.4 the crack spacing and crack inclinations observed in the experiment are
compared with those obtained from the analytical approaches, for an applied force
P = 4200 kN. The theoretically predicted crack angles differ quite distinctively
from the experimental observations. Omne possible reason for this may be that
both the CMM and the EC2 estimates are based on the results of a rather simple
FE-analysis. A more sophisticated analysis, taking into consideration the effect of
reinforcement and the stiffness difference between the wall and the upper and lower
beam, could yield better results. Additionally, the cracked membrane model is a
rotating crack model, and is thus not path dependent. A fixed crack model could

possibly provide better crack angle estimates.

Crack spacing results are obtained for both the horizontal and vertical components
Srma and Syp,y, as well as the one perpendicular to the crack direction S,,,. For
crack angles significantly lower than 45°, the crack spacing in the horizontal di-

rection S, may be much larger than S,,,. The crack spacing in the vertical
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Figure 6.4: Experimental setup and results from FE-analysis
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Table 6.4: Crack spacing and direction in shear wall for P = 4200 kN. Note: Experi-
mental values are averaged, while theoretical are characteristic.

Crack spacing [mm]
Angle [°]| Srme | Semy | Sem
Experiment 28.4 206.0 111.0 98.0
CMM 39.5 174.6 143.8 111.0
CMM - Simplified 38.6 178.3 142.1 111.1
EC2 40.4 250.6 284.5 190.0

direction Sy, should, however, be more comparable to S,,,. These remarks are
met by the experimental observations. CMM also achieves this result, although
with inaccurate results compared to the experiments. These inaccuracies can be
attributed to the overestimation of the crack angle. The results of Sy, and Symy
obtained for EC2, however, give values conflicting the considerations above, and
lack a physical interpretation. Finally, the crack spacing S, is quite accurately
determined by both the general and the approximate version of CMM, despite a
poor crack angle estimate. EC2 on the other hand overestimates both the crack

spacing and its components, and is less accurate than CMM.

In Figure 6.5, the measured crack widths from the experiment are compared with
the ones obtained from the analytical methods for increasing applied load. Once
again, the central part of the wall is considered and the same integration point is
used for the analytical calculations. Both mean and maximum values (the standard
deviation) of the experimentally observed crack widths are included in the plot.
The analytical results are given as characteristic values, and should therefore be
compared to the maximum values from the experiment. During the test, new
cracks were observed to keep on forming until P ~ 2700 kN, which is indicated in
the figure.

From Figure 6.5, it is seen that the cracked membrane model predicts the observed
crack width development quite accurately. The experimental values show that the
crack width increases rapidly after the first cracking occurs, while the deformation
rate seems to decrease gradually until a linear growth is experienced when stabilized
cracking stage is reached. Neither the general nor the approximate version of CMM
captures the observed rapid crack width growth rate initially after a crack is formed.
However, both estimates approach the linear path observed for the last part of the
experimental curve. EC2 on the other hand, considerably overestimates the crack

width for the complete load interval, and thus provides very conservative estimates.

A possible reason for the inaccuracies in the predictions of the CMM is that forces
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Figure 6.5: Comparison of crack width development. Experimental results obtained
from Ruocci et al. (2012)

in the wall are redistributed during the loading. This is particularly the case
when cracks are formed. The test setup, with heavily reinforced upper and lower
beam and a steel frame, may significantly affect the deformation and crack width
development. These effects are not captured by the simple FE-analysis and the
cracked membrane model, which may explain the differing results.

Additionally, as discussed in section 6.1, CMM is derived based on the assumption
that cracks are developed. Consequently the uncracked behaviour and the crack
initiation are therefore not accounted for in the expressions. For loads of higher
magnitude than P = 2700 kN, where a stabilized crack pattern is observed, the
accuracy of the predictions is improved. This suggests that CMM is quite accurate
for the stabilized cracking stage, which it was originally derived for. The crack
formation stage, on the other hand, gives more inaccurate results, and it should be
investigated whether it is possible to improve this part of the model. However, the
FE-analysis combined with the CMM provides much better results than EC2 for
the whole loading story.
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Chapter 6. Results

As a rule of thumb, simplified methods should always produce more conservative
results than more sophisticated methods. From Figure 6.5 it is seen that the sim-
plified version of CMM provides less conservative results than the more complex
CMM calculation. Thus, the results contradict the principle of simple methods be-
ing more conservative. This might reduce the general applicability of the simplified

approximate version of CMM.

6.4 Verification of Iteration Method
for Shell Section

Based on the algorithm for the iteration method shown in Appendix D, the response
of a reinforced concrete shell section may be estimated, excluding the tension stiff-
ening effect. In order to control that the algorithm provides reasonable results, it

will in the following be compared with the results of a reliable reference.

Figure 6.6 shows an example of a top slab in a box girder bridge, where properties
of the longitudinal reinforcement, geometry and material characteristics are given.
The example is taken from Sgrensen (2013), where a computer program with the
iteration method implemented, was used to analyze the problem. The results from
the analysis are presented in Sgrensen (2013).

z

'l Ay : n Stress resultants:
— N — ITC:75 n, =4127kN/m m, =-38 kNm/m
L s : . n, = 250kN/m my, = 70 kNm/m
h=350 I A Iy Ny =-464 kN/m my= 3 kNm/m

Le _ el o
f I} c= 75
| A1 I

Concrete: B65 Ag = 5570 mm*/m

Reinforcement: BSOONC Ay = 1289 mm*/m

Ago = 5365 mm*/m
Ayn = 1241 mm?>m

Figure 6.6: Shell section example with loading, geometry and material properties
(Sgrensen 2013)

The same input values are used in a Matlab-script developed for this thesis in accor-
dance with Appendix D. The results of the reinforcement response predicted by the
two different programs are presented in Table 6.5. Both stresses and strains in the

reinforcement closely correspond between the two programs. Similarly, results of
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6.5 Calculation Example for Shell Section

the maximum compressive concrete stress and strain are shown in Table 6.6. Also
here, the stress and strain values obtained from the two programs closely match.
These results show that the program provides correct estimates, and indicate that

the program functions properly.

Table 6.5: Stresses and strains in reinforcement

Results from Results from
Sgrensen (2013) Matlab-script
Reinforcement Stress Strain Stress Strain

[mm?/m] [MPa] [107?] [MPa] [107?]

Asz1 5570 401 2.0 401.7 2.01
Asyr 1289 435 3.1 434.8 3.20
Asa2 5365 435 4.1 434.8 4.22
Asy2 1241 262 1.3 262.4 1.31

Table 6.6: Maximum compressive stress and strain in concrete

Stress Strain
[MPa) [1077]
Sgrensen (2013) 12 0.4
Matlab-script
”Iteration_method.m” 11.1 0.50

In the derivations of the iteration method in chapter 4, the Poisson’s ratio is in-
cluded to take into account the fact that two principal directions are not indepen-
dent of each other. However, this is neglected in the calculations, and thus, the
results correspond to uncoupled principal directions (v = 0).

6.5 Calculation Example for Shell Section

In chapter 5, a new approach was proposed for determination of the response
of reinforced concrete shell elements. In the following, a demonstration of the
calculation process will be performed. Calculations in accordance with Eurocode
2 (CEN 2004) will also be performed, and the results will be compared with the
cracked shell model. The same example as in section 6.4 will be considered, with

details given in Figure 6.6.

The results of the iteration method are the basis for the calculation of the new
method where the cracked membrane model is included. Therefore, the first step

of the approach is to employ the iteration method in order to obtain a strain
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state over the cross-sectional height that ensures equilibrium between external and
internal forces. The iteration method is employed similarly as in section 6.4, with
the only exception that safety factors are excluded in the calculations since a SLS
problem is considered.

With the results obtained from the iteration method, the cracked membrane model
is used to determine the internal response at the cracked face, by consideration of
an effective cracked panel. The effective area of the panel is determined by the
effective height hc sy, and the panel is assumed to be in a state of plane stress.
The two approaches described in chapter 5 are both considered, and the values of
the necessary input parameters are given in Table 6.7. For alternative 1, steel and
shear stresses (0sqr, 0syr and 7,,) are used to obtain the internal response, while
axial and shear stresses (0, o, and 74,) are used for alternative 2. Note that the
diameter of the reinforcement bars is assumed to be 25 mm in x-direction and 16

mm in y-direction.

Table 6.7: Calculated values for input in the cracked membrane model

l [ Alternative 1 [ l [ Alternative 2
heeff [mm] 111.8 he,eff [mm] 111.8

Oszr |MPa] 443.3 Oz [MPa| 20.1

osyr [MPa 195.7 oy MPa -1.6

Tay MPa -2.1 Tay MPa -2.1

The EC2 approach follows the description in subsection 2.2.3. First, o7 is de-
termined in stadium I based on the assumption of linear elastic materials. The
iteration method is employed, similarly as in the cracked shell model, to obtain the
crack angle at the face, ,., and the maximum principal strain at the reinforcement
level, e;7. The values underlying the calculations are shown in Table 6.8.

Table 6.8: Calculated values used in EC2 approach

heefr  [mm] 111.8
Sr.maz,z |[mm] 389.2
Srmasy |mm] | 472.8
€ ] 0.0032
oot [MPa]|  12.0
fet [MPa] 4.5
3B -] 0.6

In Table 6.9 the crack angle, crack spacing, relative strain and crack width esti-
mations of the different approaches are compared. The crack angle is given as the

angle between the x-axis and the crack direction. In the crack width calculations
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6.5 Calculation Example for Shell Section

based on CMM, the effect of Poisson’s ratio is neglected.

Table 6.9: Comparison between values obtained with the cracked shell model and the
EC2/MultiCon approach

Cracked shell model
Alternative 1[Alternative 2| Eurocode 2

Crack angle, 6, [°] 63.5 62.2 65.1
Crack spacing, S, [mm)] 117.8 118.0 310.5
Relative strain [1077] 2.4 2.5 2.5

Crack width, w, [mm)] 0.284 0.291 0.764

The results show that the two alternative versions of the cracked shell model provide
practically identical response estimates. This is as expected, since they are based
on the same assumptions and the same model. Thus both alternatives are equally

applicable to response predictions of shell sections.

The relative strains predicted by the EC2 approach match the cracked shell esti-
mates closely. This result has been observed in the previous examples as well, and
suggests that the different approaches for tension stiffening calculations in CMM
and EC2 give the same result. However, the crack spacing determined by EC2
differs quite distinctively from the CMM predictions. The crack spacing estimates
are therefore the cause of the major deviations in crack width estimates. With
almost three times as high crack spacing estimate, the EC2 approach yields very
large crack widths compared to the cracked shell model. Since no experimental re-
sults are included for comparison, it can not be concluded which of the approaches
that produces the best estimate. Based on the previous examples, however, there
is much evidence that suggests that cracked shell section provides the best crack
width predictions of the two approaches.

The Large Universal Shell Element Tester (Kaufmann et al. 2018), described in
subsection 2.1.3, can potentially provide experimental results needed to verify the
cracked shell model. If experimental results verify that the cracked shell model
produces accurate predictions, it will lead to a huge improvement of crack width
estimates in large concrete shell structures. This is illustrated by this example,
where the cracked shell model predicts the crack widths to be less than 40 % of
the EC2 estimate.
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7 Discussion

7.1 Comparison of Design Codes and
the Cracked Membrane Model

In the first part of this thesis, design provisions of Eurocode 2 (CEN 2004) and
Model Code 2010 (fib 2013) are presented for crack width calculations. Although
formulated a bit differently, the formulas include the same parameters and are
formulated on the same basis. The crack width formula consists of two factors, the
crack spacing and the relative strain. The crack width, crack spacing and relative

stain formulas from MC10 are repeated below.

Wq = 2ls7maa:(55m - Ecm>

where
1
lomas = e+ 322
Toms Ps,ef f
Esm — Ecm = 0s = Bosr
sm cm ES

Crack Spacing

The crack spacing formula consists of two terms, taking into account the effect of
concrete cover and bond respectively. This involves the merging of two different
theories (Tan et al. 2017), and yields a rather unphysical formulation. Further-
more, the crack spacing formulas of both EC2 and MC10 are empirically adjusted
to fit experimental results on beams of relatively small size. This reduces the ap-

plicability of the formulas. However, since no other formulas are provided for crack
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width calculations, also elements outside the scope of applicability are calculated

according to the same formulas.

The tension chord model is developed for reinforced concrete members subjected to
axial stress in the reinforcement direction, and is therefore appropriate for compar-
ison with the EC2 and MC10 formulas. The crack spacing formula in the tension
chord model Eq. (3.13) looks virtually the same as the last term of Is ;4. above.
The shear bond stress in the MC10 and EC2 formulation is given as an empirically
adjusted factor, while in the tension chord model it is based on the proposed shear
bond stress - slip relation. However, both are assumed to be proportional to the

tensile strength of the concrete, and thus they are practically equal.

The concrete cover term in the EC2 and MC10 formulas is, on the other hand,
excluded from the tension chord model formulation. Based on the discussion above,
the tension chord model seems to provide a more physically consistent description
when it does not include the concrete cover in the crack spacing formula. The
results in chapter 6 also show that the tension chord model provides much better
crack spacing estimates, and thus a considerable improvement of the current code

regulations.

Relative Strains

The relative strain formula in EC2 and MC10 includes the effect of tension stiff-
ening, and is determined from the difference between the mean strains in the rein-
forcement and the concrete. The factor § is an integration factor that takes into
account the distribution of concrete stresses, and it is adjusted for crack forma-
tion stage and stabilized cracking stage, respectively. The tension chord model is
formulated based on the same ideas. However, the mean strains are determined
as a function of crack spacing. Furthermore, the change of concrete stresses is
determined based on the idealized shear bond stress-slip relation rather than an
integration constant. In total, the tension chord model formulations seem to be
more physical with the inclusion of crack distance and the shear bond stress. Based
on the findings in chapter 6, however, both approaches seem to provide approxi-

mately the same estimates of the relative strain term.

The relative strain formula in EC2 and MC10 is derived based on beams in bending
and tension, which makes the formula applicable only for cases where the maxi-
mum principle stress direction is coincident with the direction of the reinforcement.

Since no provisions are provided for other cases, each designer must make subjec-
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tive interpretations of the formula in order to adjust it for other situations. This
may result in inconsistent choices and implementations. The MultiCon approach
described in this thesis is an example of a interpretation of the formula for shell
sections, where simplified assumptions and considerations are performed. Even
though the assumptions included in the MultiCon seem reasonable, the approach
is still based on an improper formula derived for beams and columns. The effect
of the simplifications should therefore be examined in detail. In addition, the Mul-
tiCon approach considers a fictive reinforcement bar in direction of the maximum

principal strain, which weakens the physical description of the situation.

7.2 Remarks for the Cracked Membrane Model

The cracked membrane model is a development of the modified compression field
theory. Both models are based on the basic concepts of the original compression
field approaches. However, they differ in the way the tension stiffening is accounted
for. CMM implements the tension chord model, where equilibrium is expressed in
terms of stresses at the cracks rather than average stresses between the cracks
as in MCFT. The cracked membrane model therefore yields a much more physical
description of the tension stiffening effect, compared to the MCFT that accounts for
the effect through empirical relations between average strains and average stresses.

As a major and significant simplification, stress-free rotating cracks are considered
in CMM. Rotating cracks cause the directions of principal stress and strain to
be coincident, and the direction of the cracks are perpendicular to the maximum
principal direction of average strains. This results in no shear stresses across the
crack and greatly simplifies the calculations, since models describing aggregate
interlock and dowel action are not needed. The alternative is to consider the crack
as fixed, which leads to a path dependent crack direction (Dabbagh & Foster 2006).
Although this provides a wider range of applicability, it leads to more complex
formulations. Note however, that in the case of reversed cyclic loads, where a
multi-directional cracking pattern occurs, the path dependency can provide an
important impact on the results (Dabbagh & Foster 2006). As a designer, one
must therefore always assess whether the assumptions of a model are appropriate

for a given problem.

The tension chord model that is implemented in CMM, uses a stepped rigid plas-
tic bond shear stress-slip relationship to estimate the transfer of bond stresses in

between cracks. This gives simple steel stress distributions over the crack distance,

T
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and allows steel stresses at cracks to be obtained from average strains. Further-
more, the crack spacing is determined by a closed form expression. However, actual
bond shear stress-slip relationships observed from tests are much more complicated
than the proposed method. More sophisticated idealizations are possible, but with
the cost of a more complex calculation without closed form solution (Kaufmann
1998). The results in chapter 6 have shown that the crack formation stage formu-
lations are a potential area for improvement, and a more sophisticated bond shear

stress-slip relation is certainly of interest in that context.

7.3 Remarks for Shell Calculations

The iteration method is used to determine the strain state that ensures equilibrium
between internal and external stresses in a shell section. The method can be
adjusted to provide more or less sophisticated predictions of the internal behaviour,
based on the material models used in the model. For instance, the most simple
estimate is achieved if linear elastic behaviour is assumed for both concrete and
reinforcement. This method is used in the MultiCon approach for the determination
of o.7. In that case, equilibrium is obtained without iterations. Models taking
into account the non-linear behaviour of concrete and the yield characteristics
of reinforcement may provide better results, but with the cost of more complex
calculations where iterations are necessary. In the proposed new approach for
calculation of shell sections, the constitutive relations follow the recommendations
of EC2. CMM could also be included as a material model in the iteration method,
and in that way include directly tension stiffening in the layered approach estimates.
This would, however, lead to even more complicated calculations and was not found

expedient in this introductory examination.

The results of the iteration method provide the necessary results to calculate the
response of a shell with the cracked membrane model. However, an effective panel
must be chosen over which the response shall be determined. The choice of effective
height might influence the final result considerably. In this thesis the effective
height is determined according to the effective height used in crack calculations
in EC2, since there are no known experimental results to use as a basis for other
choices. Further studies should look into how different parameters influence the

final result, and formulate an expression that provides the best estimates.

The crack width is generally bigger at the concrete surface than at the reinforcement

level, and leads to a discussion about where crack width should be measured. The
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relative strain formula specifies the strains of the reinforcement, and thus indicates
that material deformations are determined at level with the reinforcement. On
the other hand, the concrete cover term (kc) in the crack spacing formulas of EC2
and MC10 can be considered as a measure to include the contribution of the cover
deformation to determine the size of the crack width at the surface. In MC10 it is
given that the crack width is determined at the concrete surface for pure tension
and at level of the reinforcement for bending, while no information is provided in
EC2. Note also that for beams and columns the crack width can be physically
measured both at level of the reinforcement and at the concrete surface, while

results in practice only can be obtained at the surface for plate and shell elements.
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8 Recommendations for
Future Research

The findings in this thesis are promising, and provide an introductory examination
of use of the cracked membrane model in large scale concrete shell structures. Based

on the work with this thesis, recommendations for future research are:

e Experimental evidence should be applied in order to verify and, possibly,

modify the proposed cracked shell section.

e In order to improve the accuracy of the SLS predictions in the cracked mem-
brane model, a more sophisticated bond shear stress-slip relation may be
implemented, which provides a more physically consistent and accurate de-

scription of the crack formation stage.

e The approximate simplified version of the cracked membrane model can be
further examined in order to develop a simple approach for crack width cal-

culations that is suitable for implementation in code provisions.

e The cracked shell method can be translated into a finite element formulation
that is more convenient for practical design analysis, along the same lines as
Foster & Marti (2003).
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9 Conclusion

Based on the presentation and discussion of crack width calculations in Eurocode
2 and Model Code 2010, it is clear that the current formulas are unsuitable for
large scale and orthogonally reinforced concrete structures. The empirically ad-
justed factors lead to inaccurate results for large scale structures, and the physical
description of the one-dimensional problem can not directly be translated into the
two-dimensional case without introducing unphysical assumptions. Therefore, it
is necessary to adjust the current formulas or propose new methods, in order to

obtain better estimates and an improved physical description of such problems.

In this thesis, the cracked membrane model is proposed as a method to predict the
behaviour of shell elements together with the iteration method. The main findings

that can be drawn from the investigations and the results are:

e The cracked membrane model has proven its ability to accurately predict the
load-deformation response of reinforced concrete panels subjected to plane

stress, and is derived on a clear mechanical basis.

e Based on benchmarks conducted for concrete ties with different cover sizes
and a large scale shear wall, the cracked membrane model has shown to
yield a considerable improvement of crack spacing and crack width estimates
compared to Eurocode 2 and Model Code 2010, for both normal size and

large scale structures modelled with one- and two-dimensional elements.

e Review of the current design provisions and the theoretical background of the
cracked membrane model formulations has demonstrated that the cracked
membrane model introduces more physical and consistent formulas when it

comes to crack width calculations.

e Although not verified with experimental results, the cracked shell method

proposed in this thesis seems to provide better crack width predictions than
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Eurocode 2 in terms of the MultiCon approach, which in turn can reduce the

current overly conservative estimates

In sum, the cracked membrane model can be a good basis for development
of new crack width formulas in code regulations, and in that context, the
approximate simplified version of the cracked membrane model yields an in-
triguing contribution with its simple, yet accurate response predictions for

loads in the serviceability state.
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A Algorithm - Cracked
Membrane Model

In the following, an algorithm is suggested, that solves the equations of the cracked
membrane model in order to determine the response of an orthogonally reinforced
concrete membrane. The average total strains €,, €, and €3 are considered as the
primary unknowns and are the main output of the program. For a given state of
external loading, the equilibrium, compatibility and material models of the cracked
membrane model are satisfied to obtain the correct response of a reinforced concrete

membrane.

Iterations must be performed to obtain the correct solution. In the suggested

algorithm Newton-Raphson iterations are performed.

Step 1 - Decide the external load 04 eqt, 04 ext aNd Tyz eqr (from FEM analysis,

iteration method for shell layers etc.). Geometry and material properties given.

Step 2 - Determine if crack angle is positive or negative
1 —2r,
0,1 = - arctan <m>
2 Ox.ext — Ozext

9p71 — g, for 0,,,1 2 0

ar,est -
0p71 + g, for 9P~,1 <0

Step 3 - Determine max uniaxial crack spacing in x- and z-direction

fctDac (]- - px)

Srmm =
0 2Tpo Pz
S _ fctDz (1_pz)
rmz0 — S5
27—[)0 Pz
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Step 4 - Prepare for Newton-Raphson iterations: Define max number of itera-

tions, convergence tolerance S and initial guess for €,, €, and €3

Step 5 - Calculate maximum principal strain ¢,

€1 =€z +E, —€3

Step 6 - Calculate crack angle 6,

€, —¢€
6] :arctan< z 3)
Ex —E3

|0T|7 fOI‘ ar,est Z 0

—0,], for O, est <O

Step 7 - Calculate concrete compressive stresses at crack o.g,

2/3
P H

= e — < f!
0.4+30e; — "¢

5% + 2€3€¢0
Oc3r = fcf
€co

Step 8 - Calculate shear stresses 7.,

Tuz = —0e378i00,.c086,

Step 9 - Calculate crack spacing Sy,
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_ |7l
fct

a = SmnxO sin |0r| + SmnzO COosS |0r|

b = Srmz0 €08 |0 + Srmzo sin |6,

c= 2(5’3,,”60 + ngzO) sin |0,| cos |0, — 2Srma0Srmz0

T

d=(S%,.0— S%..0) 0% |0,] = 2S,1m20Srm=0sin |0,| cos |6,
g atmb— /et d+ S+ 02 (Shng — d)
rm0 — 2
Srm = /\SrmO
STm
S =
" sin |6,
Srm
Srmz =
cos |0,

Step 10 - Calculate steel stresses at crack o, and oy,

b S ;

Esem + bODTm if Osr < fsy
750 S Tp1 Sr T E Eg S2

Gur = Y B T G B B e e
s fsy + b0 _ _Eas elsell 05 min = fsy < Oy
b1 Esh
fs T ST :
fsy + (5m - E:)Esh + le - elseif Os,min > fsy

Must check if slip occurs over whole crack spacing, if not modify expressions (crack
S, E D
2 Tbh0 Srm

DfsyEsh Es |:Srm7-b1 aEsem Th1
= LsuZsh g 4 da —np) — } ~1
\/ Eqn Dfsy ( fsy p) daTy

- 4Tb1aES
where n = g—i and a =1+ np.

formation stage)

T2

Ifz; <0.5 Sm

11—43"0[ if ¢ —43004 < foy
Osr =

4
foy + 2273 else
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Note: S,.,, is the crack spacing in the direction of the reinforcement considered.

Step 11 - Calculate axial stresses in x- and z-direction, o, and o,

2
Oz = Pg0sgr T Oc3rCOS 0,

.2
Oy = P20szr + 0c3r 81N 97“

Step 12 - Calculate the function value for current estimates of ¢,, €, and e3

fl = Oz — Og.ext
f2 =0z — Ozext

f3=Toz — Txz,ext

1
=12
3

Step 13 - Check convergence according to chosen tolerance 3
e If max(f) < beta, convergence obtained and calculation can be terminated.
e If max(f) > beta, no convergence obtained and calculation must proceed

Step 14 - Calculate the Jacobian matrix. The derivatives of function fi, fo andf3
must be calculated with respect to €., £, and e3.

ofi 9ofi Ofr
Oey Oe Oes
J— |2 of o
Oey Oe, Oes
Ofs Ofs Ofs
Oz Oe., Oes

The elements of the matrix, and details of the derivations are given in Appendix B.

Step 15 - Calculate new estimations of €,, €, and €3 (Newton-Raphson step).

giv1 =g — (&) fei)
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o ofr 9n7 Tt

Ex Ex ‘?)iﬂ g?z g? fl
_ 2 9Jj2 gj2
Ez = |&z g§$ g? g? f2
3 3 Ofs
€3l €l e, 0= oesd; L3,

Step 16 - Use new estimates of ¢;, €, and €3 and return to Step 5
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B Derivatives

B.1 Crack Angle

o0, (g2 —e3)y/ =2

Oe;  2(ex —€3)(ex + e, — 2e3)

Ex—E3
00, \ e.—es

Oz, 2(ep +e. — 2e3)

0, (ea—cn) /2=

8753 B 2(67; - 53)(61' +e— 263)

B.2 Average Tensile Strains

861 861

_— = 1
O, Oe,
851 o
9y
B.3 Concrete Stresses
of.  0fe 30(f1)*/3

s, Oc.  (0.4430e;)2
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aacST

Oey

80'037- _

853 N 863

B.4

8003r

_ Ofeci+ 265
882 8€$ Ego

ofe _

883

(0.4 + 30e1)?

ofe 5% + 2€3€¢0
2
560

€3+ Eco

2
€co

+2fe

Shear Stress

%?: _ aaagjr Sin 0, cos 0, — 03y COS> gr% + 0,5 sin2 0,
?9?; - ag;:”" sin 0, cos 0, — 03y cos” Grg—gz 4 0oz sin? 0,
%T;; = - a;;zr sin 6, cos 0, — o3, cos® GTZ—Z + 03 8in? 6,
B.5 Crack Spacing
38;1 = —Srmgo Sin gr% + Sy;m=0 COS 97“2—?:
O S+ S e, —sin? ) 2
gi = (S7mz0 = Stm=0)25in 0y cos b, af;
+ 28,mz0Srm=0(cos? 8, — sin?6,.) gz:

00,
Oe,

00,

€z

T

863
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on 1 0ty

859: B fct ag:c
OSpm 1| 0a | On ob 1 2 2 2 _%
Oe, 2 85m+8sxb+ am_Z(nc—d-l-Srmwo-i-ﬁ(d+5rmzo)

an ac ad 67’] 2 2 8d
. e _g¢ od
<6Ezc+n85m Oey + nagm (d+S7’sz) +n D,

da r . 97"
8781 = Srm:vO COos eraigm - STsz sin 97” aé‘m
b . 00, 00,
Oes = —Srmao sin 97”8781; + Spmzo cos 0, e,
Oc 00
—_— =9 2 2 2 w2 T
861 (Srm:cO + Srsz) (COS 97“ S1I 97“) 851
od ) 0,
e, = (82, .0 — 52, .0)2sin 6, cos b, oz,

— 28,205 rmz0(cos® 0, — sin®6,.) ger
Ex

on 1 07

8693 B fct agw
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Oeg 2| Oey + 87%

: on c+ ﬁ +
Oey ”agz

1
2

0Sym 1|0 0 1
— la U] - = (770 +d+ Srsz + n (Srer )>

877 5 0d
6 (Srme ) 77 a&w >]

9Srm i _
OSrmz 0 sin 6, SrmcosérasT
Oey sin? 0,
O9Srm
OSrm= e cos 6, + Sy, sin 6,22 5e-
Oy

cos2 0,

The derivatives of the crack spacing wrt £, and 3 are obtained similiarly

B.6 Reinforcement Stresses

Derivative of reinforcement stresses in x-direction wrt to e,

If 05or < fsyz (Regime 1)

80’s$r o Esw + T%aggfw7 lf Eswg:r + Tbﬂg;wlm < 2Esw€:1:
Oz 2B,

otherwise

Elseif 05y min < foys < 0szr (Regime 2)

8Jszr o 2 [Tbo aS’r‘m:b
Th E D
Oey oo e | Dy Oey
1
1 Th1 Srmx Tbh0 Esz Esz 52 2
a syr Es:r x) T o~ (7 ) 2
2 { (f Y c ) Dac Tb1l Eshac * Eshx ThoTbL DE
Tblsrmm Th1 aSrmz Th0 Esa:
: *Esmi sz*Esmzi )(7* )
{ ( Dw * (f v c )Dw 851 Tvl Eshw
E

+ ST 2Srmz 8Srm:c
TbO T
Ege O D2 0e,
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Elseif fsys < 0sz,min (Regime 3)

6Uszc'r' Tb1l aSrmw
- Es zt+ —
8€z h Dz} 851

Must check if slip is not occuring over the whole element (crack formation stage),
and in that case use other equations.

If 21 < %Srmm (crack formation stage)

If 24 451;0 (14 ngpe) < foya

axl _ lasrmx \/TL2 2 + Esa:gz Dm —-n
Oey 2 Oey 2 Tho zpa

Srm:c
_1 ]
SrmesxDa: 2 2 Esach Dx 2 Srmz_&-z@ggmm
4 SIS (2 p2 e
470 o0 Srma Sz
00spr  Oxq 4T
sTr 1 b0 (1+n9cpx)

Oe,  Oey Dy

Else
8952 _ 1 |:1 + 4amEsa:{Srma:Tb1 (awEswE:r _ nmpm) _ Th1 }:| 7%
Oez 2 Espy D, fsy:c fsyac 4oy Tho
|:asrma: (C%Eszf‘:x ) + S a:vEs:r:|
- nxp:v rmx
6€z fay»L fsya,
00szr  Oxg 4T
e,  Oey Dy

Derivative of reinforcement stresses in x-direction wrt to &:

If Osar < fsyz (Reglme 1)

9Srma Srma
00sar ) BE5Ems, if Egpe, + 07mme < 2Eg,e,
0,

Oz otherwise
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Elseif 05 min < fsyz < 0sar (Regime 2)

agz Too _ Esx Da: agz

Tbl

aasmr o 2 [Tbo aSrmz
Esha

Dw Tbl Eshm Eshx D2

1
T Srmm T Es:c Esz ngm 2
{(fsyac — Ege m)bli(ﬂ - ) + Tv0Tbl }
Th1 aSrm:c (TbO Esa: ) + Esz 2Srmw aS’Mna: }‘|

Th1 Esne

: syr — Esr )~
{(f v =)D, 0. Eone D2 o,

Elseif foye < Oszmin (Regime 3)

aasmr o Easrm:c
de, D, Oe,

Must check if slip is not occuring over the whole element (crack formation stage),

and in that case use other equations.
If 1 < %S’mm (crack formation stage)

If 21 52 (1 + nape) < foye

a-/L'l 1 8srma: Esxgw Da:
=35 nip% + — NgpPz

652 2 352 Tbv0 Srma
Srma sz Dy 2 2 Egrer Dy % Ex aS’rmm
- nypy +
47-bO ’ Tb0 S’rma: ng;p agz
ﬁasw 8301 47‘1,0
= 1 zPx
Oe, Oe, D, (1 n2ps)

Else

Nl=

ax? _ 1|:1 + 4awEsa:{Srmwal (axEswEw _ nngp) _ Th1 }:|

Oe. 2 Espy D feym fsyrc 4oy Tho
8ST777,;E $ES:E€$
Oe, ( fsyz B na:pw)
00 szr - Oxg 4Ty
de,  Oe, D,

The expression for g“’ look similar to "“' , and the expressions for g;:”‘, %,
w

ags” look similar to %.
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B.7 Axial Stresses

Jo Jo Jo3 . 00
—L =, 4 T o5 B, — 2043y Sin B, cos O, —
Oe, Oey Oey Oey
The expressions for 2%= and 22« are similar to 22z
p Oe Oesz ? Oeg *
Oo do 0ocar . . 00
3 z :pZ%—i— acT51n29T+2063T81n9,,C089T87T
Ex Ex Ex Ex
The expressions for 22z and 22z are similar to 22=
p Oe., Oeg ! ey *

B.8 Jacobian Matrix

where
oft 0oy oft  Ooy, oft 0o,
de,  Ocy’ e, Oe,’ de3  Oeg
8f2 - 60’2 afg o (90'2 afg - 3%
O, Ocy Oe, Oe.’ O3 Oeg
Ofs _ Osz ofs 07, ofs 07,
Oy Oy Oe,  Oe,’ Oe3  Oey
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C Derivation of Crack

Spacing Formula

In the following the derivation of the crack spacing formula (3.32) is shown. The
formula is similar to the one shown in (Dabbagh & Foster 2006).

The derivation is based on (3.31)

Jut
2

TIZ

5 (cotf,. + tan,.)

(/\w + /\Z) -

2
+ \/[T;Z (coth, — tanb,) — %(/\m —A)| < fa (G

At the limit, Eq. (C.1) can be solved on closed form. The equality may be written

as

SrmO 1 1 n
- = t 6, + tan 6
2 (S'rma:(] sin 6, + Srmz0 COS 9T> 2 (CO +tan T)

n SrmO 1 1
— t6, —tanf, | — - —
+ \J 2 (CO an > 2 <S”m0 sinf,  S;m0cos0, >

where the following relations are used

+nt=1

(C.2)
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Srm()
e =
Srmaz0 Sin 0,
SrmO
Ay = om0
Srsz COos 97"
_ |TwZ|

fct

Now, the square root is left on one side and the other terms on the other side

of the equal sign. Furthermore, the squared expression inside the square root is
calculated

0>
v (Cot2 6, + tan? 6, — 2>

L S 1 . 1 2
4 S2 o0 sin?0,  S%,.0c0820,  Spmz0Srmzo sin 6, cos 6,

1/2
NS rmo cos 0, 1 1 n sin 0, .
- - — 7
2 SrmzoSin 0, Spmzosin€.  Spmzocosl.  Spmuocos? 6, !

SrmO 1 1 n
=1- — t 6, + tan 6,
2 (Srmz() sin 6, + Srmz0 COS GT) + 2 (CO +tan )

(C.3)

If both sides of the equality are squared, and all the terms organized, the following
is obtained

1 1 1
2 _
Srm() |:S'rmx0 Srsz sin 97‘ COs 6r:| STmo |:Srma:O sin 07‘ * STsz COs er :|

(C.4)
+ ! + ! +
K Srmao cos 0. Srmz0sin 0,

1+n(cot0r+tanﬁr>} =0

To simplify the expression, multiply with S;.:0Sm-0 sin ;- cos 8,., which gives
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ngo - S’r‘mO |:Srm10 sin 97” + Srsz COos 97" +n (Srmxo COs 97” + Srsz sin 9r):|

_|_

SrmwOSrmzo sin 97" COS er + nSrmwOSrsz] =0
(C.5)

Now, a quadratic equation with respect to S,.,,0 is obtained, and it can be solved

with the quadratic formula

S2 oA+ SrmoB + SpmoC =0

—B++vB? —4AC
2A

STmO =

Syrmao SN 6, + S0 cos 0, n n(Srmaz0 €0s 0, + Spmzosind,.)
2 2

Srm(] =

1
+ 3 {ngmo sin? 6, + S’?‘mzo 082 0, + 28,mz0Srmz0 Sin 0, cos 6,

(C.6)
+ 172 (Sfmro cos? 0, + S’:%mz() sin? 0, + 25,m20Srm=0 Sin 6, cos 0,)

1/2
+2n (Sfmmo sin 0, cos 6, + S’?sz sin 0, cos 0, — Srmosrmzo}

To make the expression easier to read, and reduce the risk of errors, the following

parameters is introduced

a =SymzoSin @, + Sym.0 cos O,
b =S5,mz0 €080, + Sym-0sinb,
c=2(S% .o+ S%..0)sinb,cos b, — 28,20 rm=0
d=(S? S?2

2 i X
w0 — Simz0) SIN° 0 — 28,00 Srm 20 sin 0, cos 6,

The expression for the maximum crack spacing becomes
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a + nb B \/770 + d + ngzo + nz(sgmfo — d)
2

Srmo = (C.7)
This expression and the parameters a,b,c and d look almost similar to the expres-
sion given in Dabbagh & Foster (2006), but with a few small modifications. The
differences occur because of the choice of crack angle basis, where there is 90 de-
gree shift between the basis here and in the article of Dabbagh & Foster (2006).
However, the same approach may be applied for the other crack angle basis, to
obtain the result presented in Dabbagh & Foster (2006).
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D Algorithm - The Iteration
Method

In the following a step by step algorithm is shown for the iteration method. It is
based on the derivations shown in section 4.2, and in accordance with @Qverli &
Sgrensen (2012). The algorithm is implemented in a Matlab program developed
for this thesis, called ”Iteration_method.m”.

Step 1 - Decide the external load R (from FEM analysis). Also determine

geometry and necessary reinforcement amounts.

Step 2 - Calcuate the stiffness matrix K. For the initial iteration step assume
isotropic, linear elastic behaviour for concrete and linear elastic behaviour for re-

inforcement.

= C. —2;C
Kc=AhY [_ZiCCi 20, ]

i=1

Csmj _Zstmj

+ Ay,
2 SYJ
_Zstzzzj Zstzj

K= Zm: (Asas
j=1

Coyj  —2Cy )
. . 2 .
—2;Csy; Zj Csy;

K=K+ Kg
Step 8 - Determine strains and curvatures at the middle plane of the shell

ee=K 'R

Step 4 - Determine the in-plane strains of each concrete and reinforcement layer

in the global xy-axes
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Exyi = Ai “ &

Step 5 - Determine the principal strains and principal directions in each concrete

layer

Step 6 - Calculate the principal concrete stresses in each concrete layer

Ocpi = Ccpi “Epi

Step 7 - Transform the principal concrete stresses in each concrete layer to the

global xy-system

Ocxyi = TT (92) * O cpi

Step 8 - Calculate reinforcement stresses in each reinforcement layer

Osayj = Csj - Eayj

Step 9 - Calculate the internal force vector

As;cj * Oszj
Asyj - Osy;
n oo m 0
cxyi
S =Ah E Y + E
i=1 —Zi " Ocgyi j=1 _ZjAsa:jUswj
—2jAsyjOsy;
L O -

Step 10 - Determine maximum relative deviation between components of internal

and external force resultants
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Mazdif f = maaz(RkR_Sk>; k=1,2,..,n
k

Step 11 - Check convergence according to tolerance g
o If Maxdiff < § equilibrium obtained, iterations may be terminated
o If Maxdiff > § equilibrium not obtained, calculations proceed

Step 12 - Find new secant moduli for all concrete and reinforcement layers

oL B (Bei1 + Ecoa)
cit — e ) cl2 — 2
)
Oszj Osyj
Esa:j = ) Esyj =
Esxj Esyj

Step 13 - Calculate new material matrix for concrete

1 E.1 vEao 0
Ccpi = ﬁ VE(:12 Ec22 0
v 0 O (17V2)E612

Step 14 - Transform local stiffness matrix to global xy-system for each concrete

layer

Step 15 - Return to step 2
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