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Abstract

Crack control is an important part of design of reinforced concrete shell struc-

tures in the serviceability limit state. Crack width calculations are performed in

accordance with design codes, which are based on beams and columns, and thus,

challenging subjective interpretations are necessary for application to shell sec-

tions. In addition, inherent physical inconsistencies in the formulas available in the

present building codes, complicate the crack width expressions.

This thesis has aimed at contributing to an improved description of the crack width

development in concrete shell structures. A new method was thus proposed, with

purpose of providing more accurate response predictions where the physical nature

of the problem is better reflected in the formulas. In that context, the cracked

membrane model (Kaufmann & Marti 1998) combined with a layered approach was

employed for crack width calculations of shell structures. The iteration method

(Øverli & Sørensen 2012) gives the distribution of forces across the shell cross

section, while the cracked membrane model estimates the response at the cracked

surface.

The investigations performed in this thesis indicate that the cracked membrane

model formulation contributes to an enhanced physical description of the crack

development, both for one-dimensional beams and two-dimensional shells with or-

thogonal reinforcement. Experimental verification also showed that the cracked

membrane model and the new approach for shell structures proposed in this the-

sis provide considerable improvements in crack width estimates compared to the

current design codes. Also a simplified version of the cracked membrane model

showed to provide accurate response predictions for loading in the serviceability

limit state.

Based on the findings of this thesis it is recommended that the cracked mem-

brane model formulation is used as basis for new crack width formulas in design

codes. Although more research and verification of the new proposed method is nec-

essary, it can potentially be implemented in post-processing analysis of concrete

shell structures.
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Sammendrag

Begrensning av rissvidde utgjør en viktig del av prosjekteringen av skallkonstruk-

sjoner av armert betong i bruksgrensetilstanden. Rissviddeberegninger utføres i

henhold til prosjekteringsstandarder som er basert p̊a bjelker og søyler, og det

kreves dermed utfordrende, subjektive tilpasninger for å kunne anvende formlene

for skallkonstruksjoner. I tillegg inneholder formlene i prosjekteringsstandardene

fysiske inkonsistenser, som gjør beregningene av rissvidde mindre intuitive.

Denne avhandlingen har hatt som m̊al å bidra til en forbedret beskrivelse av

rissviddeutviklingen i skallkonstruksjoner. En ny metode har blitt foresl̊att, der

form̊alet er å gi mer presise responsprediksjoner, i tillegg til at formlene bedre

reflekterer den fysiske oppførselen de forsøker å beskrive. Det har blitt foresl̊att

å benytte ”cracked membrane model” (Kaufmann & Marti 1998) i kombinasjon

med en lagdelt tilnærming for å estimere rissvidder. Iterasjonsmetoden (Øverli &

Sørensen 2012) gir fordelingen av krefter over skalltverrsnittet, og ”cracked mem-

brane model” gir responsen ved den rissede overflaten.

Undersøkelsene utført i denne oppgaven har vist at uttrykkene i ”cracked mem-

brane model” bidrar til en forbedret fysisk beskrivelse av rissutviklingen, b̊ade for

endimensjonale bjelker og for todimensjonale ortogonalt armerte betongskall. Ver-

ifikasjon mot eksperimentelle resultater har vist at ”cracked membrane model” og

den nye metoden for skallkonstruksjoner som er foresl̊att i denne oppgaven, gir en

betydelig forbedring av rissviddeestimatene sammenlignet med de gjeldende pros-

jekteringsstandardene. En forenklet versjon av ”cracked membrane model” har

ogs̊a gitt nøyaktige responspredikasjoner for last i bruksgrensetilstanden.

Basert p̊a funnene i oppgaven anbefales det at uttrykkene i ”cracked membrane

model” benyttes som et grunnlag i arbeidet med å utvikle nye beregningsregler

for rissviddebegrensning i prosjekteringsstandarder. Selv om det er behov for mer

forskning p̊a og verifisering av den nye foresl̊atte metoden, har den potensiale til å

kunne bli implementert i etterprosesseringsanalyser av skallkonstruksjoner i betong.
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1 — Introduction

1.1 Defining the Problem

Serviceability design is an important part of the design process for concrete struc-

tures. Contrary to other types of structures, concrete structures will crack because

of concrete’s inherent properties. It is generally accepted that some cracking will

occur, and trying to avoid it would lead to improper design and excessive use of

materials. However, crack control is important in the design process. Excessive

cracking may lead to drawbacks in service, and must be kept within reasonable lim-

its. As a part of the serviceability design, the crack width is therefore a significant

parameter to keep track of.

In design of large concrete shell structures the serviceability limit state (SLS) often

becomes governing in determining of required proportions, dimensions and detail-

ing of reinforcement and concrete. However, the methods used for design in SLS

today seem to be overly conservative (Karagiannis & Kaufmann 2016). Many of

them are based on improper assumptions and involve an inconsistent physical for-

mulation, which limits their general applicability (Tan et al. 2017). Obtaining a

more suitable method for design of shell structures might significantly reduce the

necessary amounts of material used in such structures.

The design process should be conducted in accordance with regulations provided by

design codes. The design codes, however, are mostly based on beams, columns and

one-way plates. The one-directional beam formulas must therefore be translated

in order to fit two-directional elements, such as plates and shells. Calculation of

crack widths and the corresponding code checks in orthogonally reinforced shell

structures thus demand subjective interpretations and choices, which cause higher

risk of erroneous calculations. Furthermore, different interpretations will lead to

various results for the same problem.

1



Chapter 1. Introduction

1.2 Scope

This thesis aims at contributing to a new and improved method for estimation

of crack widths in reinforced concrete shell structures. Current design regulations

(CEN (2004), fib (2013)) are incomplete when it comes to crack width assessment

for shell and membrane elements, and it is desirable to develop a better methodol-

ogy to handle the problem. Therefore, the goal of this thesis is to provide a realistic

model that is able to determine the response of a reinforced concrete shell section on

whose basis current design provision can be critically reviewed and supplemented.

The cracked membrane model is proposed as a tool to solve the problems associ-

ated with SLS design of concrete shell structures. The cracked membrane model

is capable of fulfilling compatibility and equilibrium requirements, and gives a re-

alistic physical estimate of the behaviour of a cracked concrete panel. The model

has proven to give good response predictions compared to experimental results

(Kaufmann 1998).

However, the cracked membrane model is developed for cases of plane stress, while

shell structures generally are subjected to a combination of moments, membrane

forces and transverse shear forces. Adapting a shell model with a layered approach,

the basic concepts of the cracked membrane model could be extended to shell

structures. If the shell is divided into different layers, each layer can be considered

to be in a state of plane stress. That way, the cracked membrane model can be

implemented for calculation of shell structures.

Although the cracked membrane method could be used for design both in ultimate

limit state and serviceability limit state, this thesis will be limited to serviceability

considerations only. Furthermore, cracks are assumed to occur as a result of ex-

ternal loading, and the effects of creep, shrinkage and restrained deformations are

neglected. Only the effect of normal reinforcement is considered throughout the

thesis.

1.3 Objectives

The main objectives of this thesis are:

• Review current crack width formulas relevant for shell design in Eurocode 2

(CEN 2004) and Model Code 2010 (fib 2013).

2



1.4 Overview

• Present and derive contents of the cracked membrane model (Kaufmann &

Marti 1998).

• Present and derive contents of the iteration method (Øverli & Sørensen 2012).

• Propose a new method for crack width estimation of shell sections, based on

the cracked membrane model and the iteration method.

• Verify the methods presented in this thesis with experimental results, and

compare with results obtained with the design codes.

1.4 Overview

In the first part of this thesis, chapter 2, previous work on plane stress problems

will be briefly reviewed. Most attention is given to the modified compression field

theory, which is the main precursor of the cracked membrane model. In addition,

crack calculations according to current design methods will be reviewed and their

shortcomings when it comes to membrane and shell structures are mentioned. The

post-processing program MultiCon is briefly described, to exemplify how design of

concrete shell structures is conducted in the industry today.

The second part covers the methods of the thesis. First, in chapter 3, the cracked

membrane model is presented. Assumptions, derivations and obtained equations

are all included. Furthermore, an algorithm is proposed for calculation with the

model. Some modifications that have been suggested after the model was intro-

duced in 1998 are included. Secondly, in chapter 4, the iteration method is de-

scribed. The iteration method is employed to shell sections to determine the strain

state that ensures equilibrium between external and internal forces. All necessary

equations are presented, and the algorithm is explained. Based on the cracked

membrane model and the iteration method, a new procedure is proposed in chap-

ter 5 for response predictions of reinforced concrete shell structures.

In the third part, chapter 6, the models described in the second part of this thesis

are employed at different examples. The results are compared with experimental

observations. Results are also obtained with the building codes described in the

first part, and compared with the results of the presented methods.

In the fourth and last part, the observations and results of the first three parts of

this thesis are summarized and discussed, along with a set of recommendations for

future work.

3



Chapter 1. Introduction
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2 — Literature Review

2.1 Work on Plane Stress Problems: Compression

Field Approaches

2.1.1 General

Membrane elements are structural elements subjected to in-plane stresses only, i.e.

in-plane shear and normal stresses, also denoted membrane stresses. Figure 2.1

shows examples of some concrete structures that carry load primarily through the

action of in-plane stresses, which make membrane elements suitable for modelling.

Figure 2.1: Structures with load primarily carried as in-plane stresses (Vecchio & Collins
1986)

5



Chapter 2. Literature Review

Analysis of reinforced concrete membrane elements have been a topic of research

for a long time. Diverse approaches have been proposed to determine their response

when subjected to 2D-plane stress. However, it has proven to be difficult to develop

a model that takes into account all the factors that affect the response of such

elements (Collins et al. 1985). The main difficulty is that the behaviour of a cracked

panel is completely different from an uncracked one (Vecchio & Collins 1986). For

an increasing load, new cracks will form and old cracks may both propagate and

close. External forces are resisted by the combined action of reinforcement and

concrete. At the cracks concrete may transfer compressive and lateral stresses

due to aggregate interlocking. Concrete may carry some tensile stresses in between

cracks, but at the crack all tensile stresses must be transferred by the reinforcement.

In an international competition, where 43 leading researchers within the field of

reinforced concrete structures attended, it was attempted to predict the response

of four reinforced concrete panels tested by Collins et al. (1985). The different

approaches proposed by the researchers resulted in a wide scatter of response pre-

dictions, and it was made clear that non of them could accurately predict the

response of the four panels tested.

The international competition showed that a better method was needed to solve

the problem. As a result, the modified compression field model was developed

(Vecchio & Collins 1986). The model made an important contribution both when

it was presented and the following years, and is a natural model to compare the

cracked membrane model with. The most basic parts of the modified compression

field theory are addressed in a qualitative fashion.

2.1.2 Modified Compression Field Theory

The modified compression field theory (Vecchio & Collins 1986) was considered

to be revolutionary within the field of concrete technology when it was presented.

Unlike earlier models, the modified compression field theory was able to accu-

rately predict both the strength and the load-deformation response of a reinforced

concrete element exposed to in-plane stresses. The model is used in multiple post-

processing programs of concrete structures in the industry today, e.g. ShellDesign

(Nyhus 2014) developed by Dr.techn. Olav Olsen.

In the modified compression field theory, cracked concrete is treated as a new ma-

terial with its own stress-strain relationship. Equilibrium, compatibility and mate-

rial laws are formulated in terms of average strains and average stresses (Vecchio &

6



2.1 Work on Plane Stress Problems: Compression Field Approaches

Collins 1986). Based on the relations established, a set of equations is formulated,

that must be solved with a suitable algorithm.

In order to determine the material laws for cracked concrete, an experimental pro-

gram was initiated (Vecchio & Collins 1986). Based on the results, empirical ex-

pressions for the principal tensile and compressive concrete stresses were proposed.

For the reinforcement, a bilinear uniaxial stress-strain relation is assumed, and the

contribution from the reinforcement to the shear resistance is neglected. In reality,

the average stress-average strain relationships for concrete and reinforcement are

not completely independent. However, this is assumed in the model for simplicity.

The modified compression field theory is based on the original compression field

theory. The difference between the two models is that the contribution of tensile

stresses in the cracked concrete is neglected in the original compression field theory.

Hence, deformations are overestimated and capacity underestimated. By including

this effect (tension stiffening) in the modified compression field theory, a more

physical and accurate estimate is obtained (Vecchio & Collins 1986).

Locally at cracks, the stresses will be different from the average values calculated.

This is due to the fact that concrete stresses vary in between cracks. Therefore,

local stresses at cracks are handled separately, and an equilibrium formulation at

the crack is established. The ability of the crack to transfer shear forces is included,

with an empirical relation developed based on the work of Walraven (1981).

2.1.3 Previous Work with the Cracked Membrane Model

The cracked membrane model (Kaufmann & Marti 1998) has a number of good

features, which makes it relevant for several implementations. For cracked concrete

panels subjected to a state of plane stress, it obtains excellent response predictions

and is capable of predicting the correct failure mode (Kaufmann 1998). Further-

more, the model is based on simple, physical relations. The model will be described

in more detail in chapter 3, while this section is devoted to previous work and im-

plementations of the model.

Since the model was presented, multiple researchers have suggested adjustments

in order to eliminate inconsistencies of the original version. Seelhofer (2009) in-

troduced an additional steel stress-strain relation in order to take into account the

crack formation stage where slip is not occurring over the entire crack. Dabbagh

& Foster (2006) presented expressions to solve crack spacing analytically on closed

form. Furthermore, they derived new equations and boundaries for situations where

7
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the crack angle direction is approaching the direction of one of the reinforcement

directions.

The cracked membrane model is suitable for implementation in finite element mod-

elling of orthogonally reinforced structural elements in-plane stress. Foster & Marti

(2003) developed the CMM into a finite element formulation, where the contribu-

tion of tension stiffening is added to the material elasticity matrix that gives

Dxy = Dcxy +Dcts +Ds (2.1)

where Dcxy is the concrete component, Dcts is the concrete tension stiffening

component and Ds is the reinforcing steel component. Dabbagh & Foster (2006)

and Pimentel et al. (2010) have proposed more complex finite element formulations

where CMM is extended to account for fixed cracks and incorporate aggregate

interlock effects.

In this thesis the idea is to extend the applicability of the cracked membrane model

into problems related to plate structures, which are generally subjected to combined

moments, membrane forces and transverse shear forces. This idea was proposed by

Kaufmann (1998) as recommendation for future research. Seelhofer (2009) exam-

ined this in a general way in his dissertation. Recently, Karagiannis & Kaufmann

(2016, 2018) have considered the approach for a more specific problem. They have

looked into the shear strength of hollow-box bridge girder webs, which are subjected

to transverse bending moments in addition to in-plane shear. In relation with the

research, a series of large-scale experiments will be performed in the Large Univer-

sal Shell Element Tester (Kaufmann et al. 2018), which is a new testing facility.

The new testing facility will enable the application of well controlled arbitrary load

combinations that produce 8 independent stress resultants, and thus contribute to

an improved basis for the development of current shell response formulations.
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2.2 Crack Width Calculations

2.2 Crack Width Calculations

2.2.1 Cracking Theory

The basic cracking behaviour of reinforced concrete can be illustrated by consid-

eration of a prismatic reinforced concrete bar, subjected to axial tension as shown

in Figure 2.2. Cracks develop in concrete when the tensile strength of the con-

crete is exceeded. Once cracking initiates, the structure will not fail because of

the reinforcement that transfers the forces across the crack. At the cracks, all of

the load will therefore be carried by the reinforcement. Due to bond between the

concrete and the reinforcement, parts of the load are transferred to the concrete

between cracks. The tensile stresses in the concrete are increasing with the dis-

tance from the crack until full compatibility between concrete and reinforcement is

re-established. This distance is called the transfer length, and is indicated by the

shaded grey area denoted ”discontinuity area” in Figure 2.2.

Figure 2.2: Basic cracking behaviour of a reinforced prismatic bar subjected to axial
tension (fib 2013)

When the cause of cracking is external loading, the structure will in principle

experience two different stages, a crack formation stage and a stabilized cracking

stage. If the crack spacing and bond properties are adequate, the concrete stress

will reach the tensile strength of concrete, and a new crack will form. When new

cracks keep on forming, the structure is said to be in the crack formation stage.

This process continues until the spacing between adjacent cracks is so small that

no new cracks may form, and the stabilized cracking stage is reached. In this stage

the crack spacing is not sufficient to transfer stresses equal to the tensile strength

of concrete to the concrete. If the loading is further increased, existing cracks will

widen. The loading can be increased until the steel starts to yield.
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Four stages of a reinforced concrete bar subjected to axial tension are though

distinguished. The different stages are illustrated in a simplified manner with the

load - deformation relation in Figure 2.3. Note that the dotted line illustrates the

behaviour of naked steel. Since the tensile stresses in concrete between cracks are

accounted for, a stiffer response is observed. This effect is called tension stiffening.

Figure 2.3: Simplified load - strain relation for a centrically reinforced member subjected
to tension (fib 2013)

2.2.2 Code Regulations

Crack control is an important part of design of reinforced concrete structures. The

purpose is to ensure that functionality, durability and appearance of the structure

are maintained. Wide cracks are aesthetically undesirable and may cause the public

to believe that there are structural problems. In addition, problems related to

durability are a major concern when cracks form. Cracking causes the concrete

cover to open that cause easier penetration of harmful substances. This may lead

to corrosion of rebars and thus structural deterioration. Loss of functionality may

occur, for instance, in containment structures where wide cracks lead to leakage

problems. In order to meet the serviceability requirements mentioned above, the

crack width should be limited.

As a designer you have to act in accordance with given laws and regulations when
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you are designing a structure. The guidelines considered in this thesis are

• EN 1992-1-1:2004, Eurocode 2: Design of concrete structures, Part 1-1: Gen-

eral rules and rules for buildings (CEN 2004)

• fib Model Code for Concrete Structures 2010 (fib 2013)

For countries within the European Union the Eurocodes provide the technical rules

on how structural design should be conducted. In Norway, Eurocode 2 (EC2) (CEN

2004) is used as standard for design of concrete structures. The International

Federation for Structural Concrete, fib, is a worldwide association with purpose of

advancing the performance of concrete structures. As a result of their work the fib

Model Code 2010 (MC10) was released (fib 2013), with objective to serve as basis

for future guidelines within the field of concrete structures.

In the following, the formulas for crack width calculation from these two references

will be briefly presented. For a more thorough investigation and for more details,

the design codes themselves should be examined.

Calculation of Crack Width in Eurocode 2

Chapter 7.3 in Eurocode 2 (CEN 2004) deals with crack control of concrete struc-

tures. The expression for crack width is given as

wk = Sr,max(εsm − εcm) (2.2)

where Sr,max is the maximum crack spacing equal to twice the maximum transfer

length to each side of the crack, εsm is the mean strain in the reinforcement, and

εcm is the mean strain in the concrete between cracks. The mean strain in the

reinforcement should take into account the effect of tension stiffening (CEN 2004).

The relative strain (εsm − εcm) may be calculated from the expression

εsm − εcm =
σs − kt fct,effρs,eff

(1 + αeρs,eff )

Es
≥ 0.6

σs
Es

(2.3)

where σs is the stress in the tensile reinforcement, αe = Es/Ecm, ρs,eff is the

effective reinforcement ratio and kt is a factor dependent on the duration of the

load. The effective reinforcement ratio is dependent of the effective height given

by Eq. (2.4), where x is the height of the compressive zone
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hc,eff = min

{
2.5(h− d);

h− x
3

; h/2

}
(2.4)

The maximum crack spacing in the uniaxial case is calculated as in Eq. (2.5). This

expression is semi-empirical, with constants k1, k2, k3 and k4 adjusted to match

experimental results. k1 and k2 are determined based on the bond properties of

the reinforcement and the strain distribution, respectively. Furthermore, c is the

concrete cover, φ is the bar diameter and ρs,eff is the reinforcement ratio.

Sr,max = k3c+ k1k2k4
φ

ρs,eff
(2.5)

In an orthogonally reinforced shell structure, cracks will generally not form per-

pendicular to the reinforcement direction. In such cases, where the angle between

the axes of principal stress and the direction of the reinforcement, θ, is significant

(> 15◦), the crack spacing can be determined by Eq. (2.6). Sr,max,x and Sr,max,z

are the uniaxial crack spacings calculated in the x and z directions respectively.

Sr,max =
1

cos θ
Sr,max,x

+ sin θ
Sr,max,z

(2.6)

As shown above, Eurocode 2 provide Eq. (2.3) for determination of the mean

strain difference between reinforcement and concrete. However, this expression is

derived based on beams and bars. No formulas or recommendations describes how

the relative strain in Eq. (2.2) should be determined for a two-directional plate

problem. Hence, the formula is difficult to employ when it comes to crack width

design for orthogonally reinforced membrane and shell structures, at which the

direction of the maximum principle strain no longer is aligned with reinforcement.

Calculation of Crack Width in Model Code 2010

Chapter 7.6.4.4 in fib Model Code 2010 (fib 2013) considers the calculation of

crack width in reinforced concrete members. The expression for crack width may

be calculated by Eq. (2.7).

wd = 2ls,max(εsm − εcm) (2.7)

The relative mean strain term is given in Eq. (2.8). The expression is equal to
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Eq. (2.3) from EC2, only differing in the way they are presented. Note also that a

lower limit is not included here.

εsm − εcm =
σs − βσsr

Es
(2.8)

In Eq. (2.8) β is a coefficient depending on the type of loading and σsr is the

maximum steel stress in a crack in the crack formation stage. For pure tension this

is equal to

σsr =
fctm
ρs,eff

(1 + αeρs,eff ) (2.9)

The factor ls,max denotes the distance where slip between concrete and steel occurs,

and twice this length is equal to the maximum crack spacing. The slip length is

determined with Eq. (2.10), which consists of two parts. The first part takes

the influence of the concrete cover into consideration. The other part describes

the transfer of shear bond stresses between steel and concrete. k and τbms are

empirically adjusted factors.

ls,max = kc+
1

4

fctm
τbms

φs
ρs,eff

(2.10)

In the case of cracking of members reinforced in two orthogonal directions, where

the crack angle is expected to differ substantially (> 15◦) from the reinforcement

directions, the transfer length of bond forces is adjusted by Eq. (2.11). This

equation looks similar to Eq. 2.6, but with slippage lengths lsx,k and lsy,k instead

of crack spacings in the reinforcement directions. Furthermore, the crack spacing

perpendicular to the crack Srm is replaced by the length ls,max,θ. While the crack

spacing perpendicular to the crack indeed has a physical interpretation, the length

ls,max,θ may be regarded as the slippage length for an imaginary reinforcement in

the direction perpendicular to the crack.

ls,max,θ =

(
cos θ

lsx,k
+

sin θ

lsy,k

)−1
(2.11)

While Eurocode 2 provides no proposal on how the relative mean strain term of

the crack width equation should be obtained in case of an crack angle that differs

from the reinforcement direction, MC10 gives Eq. (2.12). The expression is quite

similar to Eq. (2.7) for the uniaxial case, however it is adjusted to account for skew
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cracks with regard to the reinforcement. ε⊥ and εc,⊥ represent the mean strain

and the mean concrete strain evaluated in the direction orthogonal to the crack,

as indicated in Figure 2.4.

wd = 2ls,max,θ(ε⊥ − εc,⊥) (2.12)

Eq. (2.11) and (2.12) are both formulated for the case of reinforced concrete mem-

bers with orthogonal reinforcement. However, the provision provides no proposed

procedure to determine the strains perpendicular to the crack.

Figure 2.4: Basis for calculation of crack width for orthogonally reinforced membranes
(fib 2013)

2.2.3 MultiCon

MultiCon is a design and post-processing program for analysis and design of com-

plex concrete structures (Multiconsult 2016). Although the program is applicable

for all kinds of concrete structures, it is particularly suitable for marine concrete

structures. The program has been the market leading design program for concrete

platforms for the last 30 years. In the beginning of the 1990s MultiCon was, for

instance, used in the design of the Troll A platform, which is the biggest gravity

based concrete platform ever installed.

MultiCon includes state of the art design for concrete shell sections based on a num-

ber of international codes, including codes for offshore concrete structures. Over

the last 30 years the program has continuously been updated and improved, for

example with the implementation of new standards and regulations. As mentioned
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in subsection 2.2.2, the equations given for crack control are not easy to interprete

in the case of shell structures. However, in MultiCon an approach is proposed to

deal with the problem. In the following, this approach will be presented.

MultiCon Approach

Crack width estimation in MultiCon is based on the regulations of Eurocode 2

(CEN 2004) and guidelines of Model Code 2010 (fib 2013). However, to make

the equations suitable for shell sections with orthogonal reinforcement layout, sub-

jective assumptions and choices are required. Below it is shown how MultiCon

transformes the crack width formulas of EC2 and MC10, Eq. (2.2) and (2.7), into

a more suitable expression for cracking in shell structures.

wk = Sr,max,θ(εsm − εcm) (2.13a)

= Sr,max,θ

(
σs − βσsr

Es

)
(2.13b)

= Sr,max,θ
σs
Es

(
1− β σsr

σs

)
(2.13c)

= Sr,max,θεs(1− βk) (2.13d)

Here Sr,max,θ is calculated in the same way as in Eq. (2.6) and (2.5) in EC2, or

with Eq. (2.11) and (2.10) in MC10 where Sr,max,θ = 2ls,max,θ. The crack angle

is determined at the outermost face and kept constant throughout the thickness.

The fraction σs/Es is equal to the steel strain. However, in a shell section with

orthogonal reinforcement, the maximum principal stress direction is generally not

aligned with the reinforcement directions. In the MultiCon approach, this is han-

dled by considering the maximum principal strain as the strain of a fictive rein-

forcement perpendicular to the crack direction. The maximum principal strain is

determined at the reinforcement level.

When it comes to the determination of the k factor it is assumed that the section

is uncracked (stadium I) with linear elastic stiffness. This implies that the stress

distribution is linear over the cross-sectional height. With this assumption, the ratio

σsr/σs is equal to the ratio fct/σcI since the neutral axis will not move. Figure

2.5 shows the situations. fct is the tensile strength of concrete that is just reached

for the steel stress σsr. Similarly, σcI is the maximum principal concrete stress at
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the outermost point of the cross section corresponding to the steel stress σs. Note

that this concrete stress is calculated as if the section is uncracked regardless of

whether σcI > fct or not.

Figure 2.5: Basis for determination of k-factor in MultiCon approach

With these considerations and assumptions, the crack width can be determined

for situations where the crack angle differs from the direction of the reinforcement.

The result is summarized below.

wk = Sr,max,θεII(1− βk)

where k =
fct
σcI

(2.14)

To determine the crack width with Eq. (2.14), the values of the maximum principal

strain at level of the reinforcement εII and the maximum principal stress direction θ,

need to be determined in stadium II, i.e. for a cracked cross section. The values are

obtained from a layered approach where, in general, a few iterations are necessary.

The maximum principal concrete stress at the outermost point of the uncracked face

σcI is determined in stadium I. The internal response of a shell section is determined

by a layered approach also in this case, but due to the assumption of uncracked

concrete with linear elastic material properties no iterations are necessary in order

to reach equilibrium with the external loads.
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Cracked Membrane

In this thesis the cracked membrane model (Kaufmann & Marti 1998) is proposed

as tool to estimate the response of reinforced concrete panels in a state of plane

stress, and its applicability will be extended to analysis of shell sections. The

model has been chosen as it has proven to give good response predictions (Kauf-

mann 1998) for plane stress panels, and as it has been proposed for shell section

applications before (Kaufmann 1998, Seelhofer 2009, Karagiannis & Kaufmann

2018), see subsection 2.1.3.

In the following the basis for the model is presented, section 3.1, before the cracked

membrane model is introduced, section 3.2.

3.1 Basis for the Cracked Membrane Model

3.1.1 Material Properties for Steel

Steel has a relatively high tension capacity compared to concrete. In a reinforced

concrete structure this is taken advantage of by letting the steel carry tension

and concrete carry compression. In design it is common practice to choose steel

amounts that governs a failure mode by yielding of the reinforcement rather than

crushing of concrete. This gives the structure improved ductility, which permits

forces to be redistributed.

Steel can be processed both as hot or cold rolled at the mill. In Figure 3.1 (a) and

(b) the stress-strain curves for both types are schematically illustrated. Both have

an almost linear elastic behaviour up to yield stress, fsy, and strain, εsy. Then
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Figure 3.1: Stress-strain curves for reinforcement: (a) hot-rolled, (b) cold-worked, (c)
bilinear idealization (Kaufmann 1998)

they exhibit a nonlinear behaviour up to the ultimate load, fsu, with corresponding

strain, εsu. These characteristics can be approximated by a bilinear idealization

of the stress-strain response as shown in Figure 3.1 (c). The modulus of elasticity,

Es, is used for the linear elastic part, while the strain hardening modulus, Esh, is

used for the yield part. The strain hardening modulus is given as

Esh =
fsu − fsy
εsu − εsy

(3.1)

The effect of unbonded prestressed reinforcement can easily be included in the

cracked membrane method. Prestressing steel exhibits a similar behaviour as ordi-

nary reinforcement, and the same bilinear idealization shown in Figure 3.1 (c) can

be used.

3.1.2 Material Properties for Concrete

Concrete is one of the most popular construction materials, due to its high strength

relative to price and formability. The behaviour of concrete is very dependent

on the loading, concrete exhibits significantly different properties in tension and

compression.

The tension capacity, fct, of concrete is relatively low. Hence, when assessing

the strength of a concrete section, tension capacity is often neglected without re-

markable impact on the results. On the other hand, tension stresses provide an

important contribution to the performance of a member in serviceability calcula-

tions, such as for crack spacings, crack widths and deformations. In this thesis the

serviceability calculations are the scope of interest, and the tension capacity of the

concrete is therefore included. The value of fct is based on the concrete mixture
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used, and can be found in Eurocode 2 (CEN 2004). The stress-strain curve for

concrete in tension can be assumed to be linear up to the limit fct.

The main advantage of concrete is the high compressive strength. When a concrete

structure is designed, we make sure that most of the concrete is in compression.

By doing this, the compressive properties of the concrete are exploited, while the

disadvantages related to the tension properties are avoided.

The values for compressive strength are found in Eurocode 2 (CEN 2004). Most

properties of a specific concrete mix are determined by means of the compres-

sive cylinder strength, denoted f ′c. This value is obtained from tests of uniaxial

compression applied to a concrete cylinder.

However, in a cracked concrete element exposed to a biaxial stress state, the com-

pressive strength will be influenced. The reason is the deviation of lateral tensile

strains, ε1, in the two cases. In the uniaxial case, only small amounts of tensile

strains occur as a result of Poisson’s effect. Between cracks in a cracked member on

the other hand, considerable tensile stresses perpendicular to the compressive di-

rection will develop and cause bigger tensile strains. As a result, the concrete strut

in a cracked concrete membrane will exhibit a weaker response than a uniaxially

compressed cylinder.

The lateral influence of cracking on the compressive strength has been studied

by different researchers. Based on the results of many of the tests, the following

relation for the concrete compressive strength of a cracked concrete member is

proposed (Kaufmann & Marti 1998)

fc =
(f ′c)

2/3

0.4 + 30ε1
≤ f ′c (3.2)

The compressive stress-strain response for the pre-peak behaviour can be approxi-

mated by a parabolic curve given as

σc3 = fc
ε23 + 2ε3εco

ε2co
(3.3)

where σc3 = the concrete stress, ε3 = the concrete strain, fc = the peak compressive

stress from Eq. (3.2), and εco = the concrete strain at peak compressive stress.
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3.1.3 Bond

In a reinforced concrete structure there is interaction between concrete and steel.

This interaction is called bond and allows stresses to be transferred from one ma-

terial to the other. When relative displacements between concrete and steel occur,

bond stresses will develop at the concrete-steel interface. Some of the bond stresses

are a result of pure friction, but most of them originates from the interlocking be-

tween the ribs of the steel and the concrete (Kaufmann 1998). Hence, the magni-

tude of the bond stresses depend on the size and shape of the reinforcement, but

also other factors such as relative displacement, concrete strength, cover, boundary

conditions and state of load.

Figure 3.2: Shear bond stress: (a) pull out, (b) shear bond stress-slip relationship, (c)
differential element (Kaufmann 1998)

Figure 3.2 (a) shows a reinforcement bar that is pulled out of a concrete section

with a force N. In order for the average shear bond stresses, τb, to be in equilibrium

with the applied force over an embedment length, lb, the following expression has

to be fulfilled

τb =
N

Dπlb
(3.4)

Here it is assumed that the shear bond stresses are evenly distributed over the

nominal steel diameter, D. Furthermore, knowing that the total force in each section

must equal the total force applied, we get the following relations

N = Asσs + Âcσc (3.5a)

N

As
= σs +

(1− ρ)

ρ
σc (3.5b)

where Âc = Ac - As, As = cross sectional area of steel, Ac = gross cross section of

concrete, and ρ = As/Ac = geometrical reinforcement ratio.
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By consideration of the differential element in Figure 3.2 (c) and Eq. (3.4), we find

the change of steel stresses over the differential length dx

dσsAs = dN = τbDπdx, As =
π

4
D2

giving
dσs
dx

=
4τb
D

(3.6)

Similarly, the change of concrete stresses over the differential length becomes

dσc
dx

= −4τb
D

ρ

(1− ρ)
(3.7)

The relative displacement, δ, can be expressed in terms of the displacement of the

steel, us, and concrete, uc, which gives δ = us - uc. Differentiation over the relative

displacements gives

dδ

dx
=

d

dx

[
us − uc

]
= εs − εc (3.8)

where εs = steel strain and εc = concrete strain. By differentiation of this expres-

sion once more, a second order differential equation for slip is obtained, which gen-

erally has to be solved in an iterative manner. Assuming linear elastic behaviour,

σs = Esεs and σc = Ecεc, we get

d2δ

dx2
=

1

Es

dσs
dx
− 1

Ec

dσc
dx

(3.9)

which by insertion of Eq. (3.6) and (3.7) gives

d2δ

dx2
=

4τb
DEs

(
1− nρ

1− ρ
)

(3.10)

where n = Es/Ec = modular ratio. This expression can be solved analytically for

certain bond shear stress-slip relations. This is the case for the tension chord model

(Sigrist et al. 1998) which is addressed in the next section.
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3.1.4 Tension Stiffening

The term ”tension stiffening” refers to the tension carrying contribution of concrete

between cracks, as described in subsection 2.2.1. As a result of the concrete contri-

bution, the response of a member in a reinforced concrete structure is stiffer than

naked reinforcement. However, tension stiffening will not influence the strength of

the member directly, since the strength still is bounded by the steel stress at the

crack.

By assuming that concrete carries tension between the cracks only, the entire axial

load at the crack must be carried by the reinforcement. Between cracks, a part

of the load is transferred to the concrete through bond shear stresses, so that the

tension is carried both by concrete and steel. If sufficient amount of stresses are

transferred so that the concrete tensile strength is exceeded, a new crack will form.

Figure 3.3 illustrates the distribution of concrete and steel stresses between two

cracks for a symmetric case of uniaxial tension. The figure illustrates the remarks

above. Steel stresses are at their maximum at cracks and decrease to their minimum

in the centre between cracks. In contrary, concrete tensile stresses reach their

maximum in the centre between cracks and vanish at cracks. The figure also

includes the bond shear stresses, which typically have a distribution like the one

sketched.

Figure 3.3: Stresses of a chord element between two cracks (Kaufmann 1998)

By assessment of the Figure 3.3 and Eq. (3.7), an expression for the maximum

concrete stresses can be established. Since the tensile concrete stress cannot exceed

its tensile capacity, the following limit must be fulfilled

σc1 =

∫
dσc =

∫ Srm0/2

x=0

4τb
D

ρ

(1− ρ)
dx ≤ fct
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Here, all parameters in the integral are constant except for the bond shear stresses.

This gives

4

D

ρ

(1− ρ)

∫ Srm0/2

x=0

τbdx ≤ fct (3.11)

where Srm0 is maximum crack spacing for the fully developed crack pattern. The

minimum crack spacing, Srm0/2, is the necessary length for tensile stresses equal

the capacity of concrete to be transferred to the concrete (Sigrist et al. 1998).

Through the considerations of the crack pattern, the crack spacing will be con-

strained by the following boundary

Srm0/2 ≤ Srm ≤ Srm0

often expressed on the form

0.5 ≤ λ ≤ 1 (3.12a)

λ =
Srm
Srm0

(3.12b)

The real distribution of bond shear stresses is nonlinear, and is complicated to

solve analytically. However, Sigrist et al. (1998) has proposed a simplified approx-

imation of the shear stress-slip relation, which match the overall real behaviour

satisfyingly. The simplified idealization is the stepped, rigid-perfectly plastic bond

shear stress-slip relation. Here a constant bond shear stress of τb0 = 2fct and τb1

= fct is assumed before and after yielding of the reinforcement respectively. This

idealization of bond shear stress combined with bilinear stress-strain relationship

for reinforcement, forms the basis of the tension chord model (TCM) (Sigrist et al.

(1998), Kaufmann (1998)).

With this shear bond stress model established, the maximum crack spacing in

uniaxial tension can be determined from Eq. (3.11)

4

D

ρ

(1− ρ)

∫ Srm0/2

x=0

τbdx =
4

D

ρ

(1− ρ)

τbSrm0

2
= fct

With some rearranging this can be written as

Srm0 =
fctD

2τb0

(1− ρ)

ρ
(3.13)
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The assumption of constant bond shear stresses also yields that steel and concrete

stresses between cracks vary linearly. This result can be seen by consideration of

Eq. (3.6) and (3.7). If the maximum steel stresses at the crack are known, the

distribution of bond shear, steel and concrete stresses can be determined. This

situation is illustrated in Figure 3.4 (a).

Figure 3.4: Tension chord model: (a) General distribution of stresses and strains (Kauf-
mann 1998), (b) distribution of stresses and strains for steel stresses lower than yield
stress

The average strain, εm, which describes the overall behaviour in the direction of

the reinforcement, can be used to determine the maximum steel stresses at the

crack (Sigrist et al. 1998). The expression depends on whether the steel stresses

are higher, lower or both higher and lower than the yield strength between cracks.

For steel stresses below yield stress over the whole element, σsr ≤ fsy, the shear

bond stress, steel stress and steel strain distributions are given in Figure 3.4 (b).

Since the stresses are below yield stress over the whole element we use the modulus

of elasticity, Es, and the constant shear bond stress, τb0, to describe the elastic

behaviour. The steel stress at crack is now easily obtained from the average stress

and the change of steel stress over the embedment length Srm/4
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3.1 Basis for the Cracked Membrane Model

σsr = σm +

∫ Srm/4

x=0

dσs

= Esεm +

∫ Srm/4

x=0

4τb0
D

dx

= Esεm +
τb0Srm
D

(3.14)

When steel stresses are higher than yield stress over the whole element, fsy <

σs,min, the distribution of stresses is similar to Figure 3.4 (b). However, we now

use the constant shear bond stress τb1. Furthermore, the average steel stress is

determined from a combination of elastic and plastic behaviour. The expression is

given as

σsr = σm +

∫ Srm/4

x=0

dσs

= fsy + (εm −
fsy
Es

)Esh +

∫ Srm/4

x=0

4τb1
D

dx

= fsy + (εm −
fsy
Es

)Esh +
τb1Srm
D

(3.15)

Similar considerations can be performed for the case of steel stresses partially above

and below yield stress, σs,min ≤ fsy ≤ σsr. The expression becomes

σsr =fsy

+ 2

τb0Srm
D −

√
(fsy − Esεm) τb1SrmD ( τb0τb1 −

Es
Esh

) + Es
Esh

τb0τb1
S2
rm

D2

τb0
τb1
− Es

Esh

(3.16)

Noting that the average stresses between cracks must be in equilibrium with the

stresses at crack, the following relation can be established

σsm + (
1− ρ
ρ

)σcm = σsr (3.17)

where σsm = the average steel stresses, and σcm = the average concrete stresses.

The maximum concrete tensile stress in the middle between two cracks becomes
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Chapter 3. Response of a Cracked Membrane

λfct. Since the concrete stresses are zero at cracks, the mean concrete tensile stress

between cracks becomes

σcm =
λfct

2
(3.18)

It should be noted that all relations presented here are based on the assumption

of stabilized cracking stage. To take into account situations of low loading values

where slip is not occurring over the entire element, Seelhofer (2009) adjusted the

steel stress formulas Eq. (3.14), (3.15) and (3.16).

Figure 3.5: General distribution of bond stress and and steel strain in crack formation
stage. (a) Steel stresses below yield stress, (b) steel stresses partially below and above
yield stress (Seelhofer 2009). Note: subscript k indicate coordinate x or z.

Figure 3.5 (a) shows the situation where slip is occurring only over the length

x1. This length is smaller than half the crack spacing Srm, and thus compatibility

between steel and concrete is re-established at the distance x1 from the crack. Since

the steel stresses are below yield over the entire crack length in Figure 3.5 (a), the

following relations can be established

σc,max = x1
4τb0
D

ρ

σs,min = nσc,max

where Eq. (3.7) is used to determine the change of concrete stresses over the

distance x1 (assume 1− ρ ' 1) and n = Es/Ec. With Eq. (3.6), the steel stress at

crack is easily obtained
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3.1 Basis for the Cracked Membrane Model

σsr = σs,min +

∫
dσs

= x1
4τb0
D

nρ+

∫ x1

x=0

4τb0
D

dx

= x1
4τb0
D

(1 + nρ)

The transfer length x1 is determined based on the average strain εm, with the

following relation

εmEs
Srm

2
=
σsr + σs,min

2
x1 + σs,min

(
Srm

2
− x1

)
εsEsSrm = x21

4τb0
D

(1 + nρ) + x1
4τb0
D

nρ(Srm − x1)

Solving with respect to x1 produce a quadratic equation, with solution

x1 =
Srm

2

(√
n2ρ2 +

Esεm
τb0

D

Srm
− nρ

)
for 0 ≤ x1 ≤ Srm/2 (3.19)

Below the modifying expressions are given as they are presented in Seelhofer (2009).

For steel stresses below the yield stress over the entire element, Eq. (3.20) is applied

as derived above.

σsr = x1
4τb0
D

(1 + nρ) where

x1 =
Srm

2

(√
n2ρ2 +

Esεm
τb0

D

Srm
− nρ

)
[0 ≤ x1 ≤ Srm/2]

(3.20)

For steel stresses exceeding the yield stress, Eq. (3.21) is applied. This expression

is derived with similar consideration as for Eq. (3.20), based on Figure 3.5 (b).

σsr = fsy + x2
4τb1
D

where

x2 =
DfsyEsh
4τb1αEs

[√
1 + 4α

Es
Esh

[
Srmτb1
Dfsy

(
αEsεm
fsy

− nρ
)
− τb1

4ατb0

]
− 1

]
where α = 1 + nρ [0 ≤ x2 ≤ Srm/2]

(3.21)
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3.1.5 Compatibility

Compatibility relations in a cracked orthogonally reinforced concrete membrane

can simplified be derived based on the average total strains. From Mohr’s cir-

cle of strains, Figure 3.6, the necessary relations are easily obtained by simple,

geometrical considerations.

Figure 3.6: Mohr’s circle of strains (Kaufmann 1998)

First, we see that

ε1 + ε3 = εx + εz (3.22)

for the average total strains in the principal, x- and z-directions respectively. Fur-

thermore, the relation between the crack angle and the average strains is (Kauf-

mann & Marti 1998)

cot2θr =
εz − ε3
εx − ε3

(3.23)

where the crack angle is given by the angle between the crack direction and the

x-axis. Rearranging Eq. (3.23) we get an equation solved with respect to the crack

angle

θr = arctan

(√
εx − ε3
εz − ε3

)
(3.24)

However, these equations are not completely general. Due to the squared term on
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3.2 The Cracked Membrane Model

the left side of Eq. (3.23) information is lost. For a given combination of strains

εx, εz and ε3 the equations are not capable of determining in which quadrant the

crack angle will appear. It is in this thesis suggested to make an initial estimate,

to determine the correct quadrant for the crack angle. The procedure is presented

in a proposed algorithm in Appendix A.

3.2 The Cracked Membrane Model

3.2.1 General

The cracked membrane model was developed by Kaufmann & Marti (1998) for

analysis of reinforced concrete panels. The model combines the basic concepts

of the compression field theory (Vecchio & Collins 1986) with a two-dimensional

representation of the tension chord model (Sigrist et al. 1998).

In the cracked membrane model we consider a set of parallel, uniformly distributed

cracks in an orthogonally reinforced concrete panel. The panel is subjected to a

set of membrane forces, which are axial stresses in the x- and z-direction and shear

stress. The situation is illustrated in Figure 3.7 (a). Equilibrium is satisfied at the

crack and tension stiffening effects are accounted for by the tension chord model.

For a given state of external loading on a predefined membrane section, the model

will predict the internal steel and concrete stresses. Or, more generally, the model

can determine the complete load-deformation response. The designer can check the

capacity of a given section, and the associated deformations. In addition, the model

obtains the necessary information to estimate crack widths and crack spacing.

The underlying assumptions of the cracked membrane model are that cracks are

stress free and able to rotate, and the concrete principal stress and principal strain

directions are coincident. Furthermore, it is assumed that the section is cracked.

Note that a XZ-axis system is chosen for the derivation of the model to be consistent

with the the way it was presented by Kaufmann & Marti (1998). Also note that

the sign convention used for shear stress is opposite of most other models.
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3.2.2 Equilibrium

In the cracked membrane model equilibrium is obtained at the cracks. Figure 3.7

(b) shows the stress situations at the crack. By consideration of the elements in

Figure 3.7 (b), we can relate the external stresses σx, σz and τxz = τzx to the

internal reinforcement and concrete stresses at the crack σsxr, σszr and σc3r. Since

the cracks are assumed to be stress free, σcnr = 0 and τctnr = τcntr = 0. It is

assumed that the reinforcement bars are well distributed, allowing us to model

their effect by equivalent stresses over the element face. Concrete stress in the

strut at a crack use the notation σctr = σc3r. Now, equilibrium at the cracks yields

(Kaufmann & Marti 1998)

σx = ρxσsxr + σc3rcos
2θr (3.25a)

σz = ρzσszr + σc3rsin
2θr (3.25b)

τxz = −σc3rsinθrcosθr (3.25c)

Rearranging, we get the following equations for reinforcement and concrete stresses

at the crack

σsxr = (σx + τxzcotθr)/ρx (3.26a)

σszr = (σz + τxztanθr)/ρz (3.26b)

σc3r = −τxz(cotθr + tanθr) (3.26c)

In the cracked membrane model the concepts of the tension chord model are ex-

tended to the two-dimensional case of cracked panels. This allows us to use Eq.

(3.14)-(3.16) to determine the steel stresses at the crack for known average strains

in the in the x- and z-directions, εx and εz. Furthermore, Eq. (3.2) and (3.3) are

used to determine the concrete stress at the cracks for a given set of maximum and

minimum principal strains, ε1 and ε3. The crack angle θr is given by the angle

between the crack direction and the x-axis (in the range −π/2 and π/2), and is

determined by Eq. (3.24).
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3.2 The Cracked Membrane Model

Figure 3.7: Cracked membrane model: (a) cracked membrane section, (b) stress equi-
librium at crack (Kaufmann 1998)
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Chapter 3. Response of a Cracked Membrane

3.2.3 Crack Spacings

Figure 3.8 shows crack spacing in the directions of the reinforcement, Srmx and

Srmz, in addition to the diagonal crack spacing Srm. For a given crack inclination,

θr, the following relations are easily obtained

Srm = Srmxsinθr = Srmzcosθr (3.27)

In subsection 3.1.4, an expression for the maximum crack spacing in the uniaxial

case was derived, Eq. (3.13). By extending the tension chord model to the present

biaxial case, the maximum crack spacing in the x- and z-direction is obtained

(Kaufmann & Marti 1998)

Srmx0 =
fctDx

2τb0

1− ρx
ρx

(3.28a)

Srmz0 =
fctDz

2τb0

1− ρz
ρz

(3.28b)

And, similarly as we did in subsection 3.1.4, we introduce

λx =
Srmx
Srmx0

(3.29a)

λz =
Srmz
Srmz0

(3.29b)

If λx = 1, the crack spacing in the x-direction is equal to the maximum crack

spacing. In this case the stress transferred to the concrete at the centre between

two cracks will be equal to the tensile strength of the concrete. For a smaller crack

spacing however, the maximum concrete stress will not reach the tensile capacity.

The same reasoning applies for the z-direction. This can be expressed as ∆σx=

λxfct and ∆σz= λzfct, where ∆σx and ∆σz denote the change of concrete stresses

between cracks, see Figure 3.8. Combining these relations with Eq. (3.27) and

(3.29), gives

λx =
∆σx
fct

=
Srm

Srmx0sinθr
(3.30a)

λz =
∆σz
fct

=
Srm

Srmz0cosθr
(3.30b)
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3.2 The Cracked Membrane Model

Figure 3.8: Crack spacings and concrete stresses (Kaufmann 1998)

Now, we want to determine the maximum diagonal crack spacing, Srm0. First we

consider Figure 3.9, which sketches Mohr’s circle for stresses at cracks and at the

centre between cracks. From simple geometrical considerations of the situation at

crack we find the following relations

σc3r = τxz(cotθr + tanθr)

σx + σz
2

= −σc3r
2

= −τxz
2

(cotθr + tanθr)

σz − σx =
2τxz
tan2θr

= τxz(cotθr − tanθr)

In the last relation, the identity tan2θr = 2tanθr
1−tan2θr

is used. With these relations

33



Chapter 3. Response of a Cracked Membrane

in mind, the centre and radius of Mohr’s circle of the situation at centre between

cracks become

C =
(σx + λxfct) + (σz + λzfct)

2
=
σx + σz

2
+
fct
2

(λx + λz)

R =

√[
(σz + λzfct)− (σx + λxfct)

2

]2
+ τ2xz

=

√[
σz − σx

2
− fct

2
(λx − λz)

]2
+ τxz

Figure 3.9: Mohr’s circle of concrete stresses: total stresses at crack and at centre
between cracks (Kaufmann 1998)

We want to find the maximum principle stress σ1 at centre between cracks. σ1 is

located at the rightmost point of the dashed circle in Figure 3.9. This stress cannot

exceed the tensile capacity of concrete. With the observations above we obtain the

following equation

C +R = σ1 ≤ fct
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3.2 The Cracked Membrane Model

fct
2

(λx + λz)−
τxz
2

(cotθr + tanθr)

+

√[τxz
2

(cotθr − tanθr)−
fct
2

(λx − λz)
]2

+ τ2xz ≤ fct (3.31)

which is how the formula is presented in Kaufmann & Marti (1998). This equation

may be used to find the maximum crack spacing. Solving Eq. (3.31) at the limit, a

solution for the maximum crack spacing Srm0 is obtained on closed form (Dabbagh

& Foster 2006)

Srm0 =
a+ ηb−

√
ηc+ d+ S2

rmz0 + η2(S2
rmx0 − d)

2
(3.32)

where η = |τxz|/fct and the parameters a, b, c and d given by

a =Srmx0 sin |θr|+ Srmz0 cos |θr|

b =Srmx0 cos |θr|+ Srmz0 sin |θr|

c =2(S2
rmx0 + S2

rmz0) sin |θr| cos |θr| − 2Srmx0Srmz0

d =(S2
rmx0 − S2

rmz0) sin2 |θr| − 2Srmx0Srmz0 sin |θr| cos |θr|

The derivation of Eq. (3.32) is given in Appendix C. Note however that stabilized

cracking stage is assumed for both Eq. (3.31) and (3.32).

The minimum crack spacing is determined in the same way as for uniaxial tension.

Tensile stresses equal to the concrete tensile strength have to be transferred to

the concrete in order to form a new crack. Therefore, the minimum crack spacing

equals Srm0/2, and the crack spacing is limited by 0.5≤λ≤1 for the fully developed

crack pattern, where λ = Srm/Srm0.

Calculations based on Eq. (3.32) have been implemented in a Matlab-script. The

output from the program is a plot of the maximum crack spacing for different

crack inclinations. The result is shown in Figure 3.10. As seen from the plot, the

maximum crack spacing follow a curly shape for small ratios of |τxz|/fct. For higher

ratios, a linear upper bound is approached.

However, Eq. (3.31) and Eq. (3.32) are not valid for small values of applied

shear stress (crack angle close to 0 or ±π). Considering Eq. (3.30a) it is clear
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Figure 3.10: Plot of maximum crack spacing Srm0. Upper bound calculated with Eq.
(3.36).

that difficulties arise for the special case of θr = 0. In that case, the solution

should reduce to the known solution of uniaxial tension in the z-direction, where

λx = 0, λz = 1 and Srm = Srmz0. However, as elaborated by Dabbagh & Foster

(2006), the problem occures due to an over-calculation of the bond stress in the

x-reinforcement. The tension chord model assumes that the limiting bond stress

is τb = τb0, while for the special case of θr = 0 the force in the x-reinforcement is

zero, and thus the shear bond stress should also be zero in the x-direction. The

same reasoning applies for the limit case of |θr| = ±π/2.

If Eq. (3.32) is solved for η with Srm = Srmz0 for the limit case θr = 0, one obtains

the result η = Srmz0/Srmx0. Similarly, with Srm = Srmx0 for |θr| = ±π/2 gives

η = Srmx0/Srmz0. Generally, in order for the solutions of Eq. (3.31) and (3.32) to

satisfy the boundary limits, Dabbagh & Foster (2006) present the following limiting

condition

forθr < θλx=λz η ≥ Srmz0/Srmx0 (3.33a)

forθr > θλx=λz η ≥ Srmx0/Srmz0 (3.33b)

For values of η that are not fulfilling the conditions of Eq. (3.33), the shear bond
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stress in either the x- or z-direction is smaller than τb0. Or in other words, the

stabilized cracking stage is not reached in one of the directions.

To deal with situations where the conditions of Eq. (3.33) are not met, Dabbagh &

Foster (2006) have proposed a solution procedure that handles all cases. For more

details about this procedure, see the article of Dabbagh & Foster (2006).

Simplified Expression for Max. Crack Spacing

In the modified compression field theory (Vecchio & Collins 1986) a simple expres-

sion was proposed for the maximum crack spacing. This is similar to the expressions

given in Eurocode 2 (CEN 2004) and Model Code 2010 (fib 2013):

Srm0 =

(
sin|θr|
Srmx0

+
cos|θr|
Srmz0

)−1
(3.34)

Eq. (3.34) may be used as a simple, approximate solution, and in the following the

derivation of the expression is shown.

Once again, the Mohr circle shown in Figure 3.9 is considered. The stresses trans-

ferred to the concrete are divided into two parts, one symmetric and one anti-

symmetric part. The concrete stresses at cracks are now expressed with two new

Mohr circles, as illustrated in Figure 3.11 (a) and (b).

Figure 3.11: Mohr’s circle of concrete stresses divided into (a) symmetric and (b) anti-
symmetric parts (Kaufmann 1998)
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The symmetric part moves the circle of stresses at crack to the right by fct
2 (λx+λz),

while the anti-symmetric part expands its radius by fct
2 (λz−λx)cos(2θr). Now the

maximum principle stresses at centre between cracks become

σc1 =
fct
2

(λx + λz)−
fct
2

(λx − λz)cos(2θr) (3.35)

Noting the identity cos2θr = 2cos2θr − 1 = 1− 2sin2θr, the relation becomes

fct
2

[
λx − λx(1− 2sin2θr)

]
+
fct
2

[
λz + λz(2cos

2θr − 1)
]

or

fct
[
λxsin

2θr + λzcos
2θr
]

Setting this expression equal to fctλ, we get the relation

λ = λxsin
2θr + λzcos

2θr

Recalling Eq. (3.12) and (3.27), the approximate solution of the maximum crack

spacing simplifies to

Srm0 =

(
sin|θr|
Srmx0

+
cos|θr|
Srmz0

)−1
(3.36)

This expression is not dependent on loading. Comparing it with Eq. (3.31) we see

that the factor |τxz| is omitted. Therefore this method only gives an approximate

solution. However, it coincides with Eq. (3.31)/(3.32) for large ratios of |τxz|/fct,
and for λx = λz. The upper boundary obtained from Eq. (3.36) is included in

Figure 3.10. Furthermore, the problems related to low values of |τxz| disappears.

3.2.4 Solution Methods

With all derivations and relations presented so far, a solution can be obtained.

The material, compatibility and equilibrium equations provide the tools to find

the solution where the internal forces are in equilibrium with the applied external

forces.

In the general solution, the average strains εx, εz and ε3 are considered as the

primary unknowns. All necessary relations can be determined as functions of these
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three unknowns. For a given set of applied loads, equilibrium between external and

internal forces is determined through iterations.

If complete load-deformation response is to be determined, Kaufmann & Marti

(1998) advice to increment ε3 instead of τxz. The response curve is deformation

controlled in order to avoid difficulties related to the post peak behaviour of con-

crete (post-peak behaviour not included in this thesis). For each increment of ε3,

the values of εx and εz are determined in an iterative manner for the corresponding

external loads.

In Appendix A an algorithm is proposed to find the internal response corresponding

to a given set of applied loads σx, σz and τxz, based on the cracked membrane

model. If instead we are interested in the complete load-deformation response or

the response corresponding to a given set of known steel and shear stresses (σsxr,

σszr and τxz), the algorithm is easily adjusted.

In the algorithm, Newton-Raphson iterations are performed in order to solve the

system of non linear equations. This leads to a robust procedure, where conver-

gence in general is obtain after few iterations. Since all the equations of the model

are on closed form, analytical expressions of the derivatives are obtained. The

derivatives are given in Appendix B. Below, Step 12-15 of the algorithm are re-

peated. These steps shows how Newton-Raphson iterations are implemented in the

solution procedure.

Step 12 - Calculate the function value for current estimates of εx, εz and ε3

f1 = σx − σx,ext
f2 = σz − σz,ext
f3 = τxz − τxz,ext

f =

f1

f2

f3


Step 13 - Check convergence according to chosen tolerance β

• If max(f) ≤ beta, convergence obtained and calculation can be terminated.

• If max(f) > beta, no convergence obtained and calculation must proceed
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Step 14 - Calculate the Jacobian matrix. The derivatives of function f1, f2 andf3

must be calculated with respect to εx, εz and ε3.

J =


∂f1
∂εx

∂f1
∂εz

∂f1
∂ε3

∂f2
∂εx

∂f2
∂εz

∂f2
∂ε3

∂f3
∂εx

∂f3
∂εz

∂f3
∂ε3


The elements of the matrix, and details of the derivations are given in Appendix B.

Step 15 - Calculate new estimations of εx, εz and ε3 (Newton-Raphson step).

εi+1 = εi − J(εi)
−1f(εi)

εxεz
ε3


i+1

=

εxεz
ε3


i

−


∂f1
∂εx

∂f1
∂εz

∂f1
∂ε3

∂f2
∂εx

∂f2
∂εz

∂f2
∂ε3

∂f3
∂εx

∂f3
∂εz

∂f3
∂ε3


−1

i

f1f2
f3


i

3.3 Approximate Analytical Solution

A simplified, approximate solution has also been proposed by Kaufmann (1998).

Here it is assumed that the stresses and strains at the quarter points between cracks

are representative for the total response of the element.

Now we combine Eq. (3.26a) and (3.26b) for the relation between steel stresses

at cracks and external loading, Eq. (3.30a) and (3.30b) for the change of concrete

stresses between cracks, and Eq. (3.17) and (3.18) for the relation between stresses

at crack and average stresses. This gives steel stresses at the quarter points between

cracks expressed as

ρxσsx = σx + τxzcotθr −
fct
2
λx(1− ρx) (3.37a)

ρzσsz = σz + τxztanθr −
fct
2
λz(1− ρz) (3.37b)

Assuming, as we did in subsection 3.2.3, that the tensile stresses transferred to the

concrete are divided into one symmetric and one anti-symmetric part, the minimal
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principal stress of the concrete at the centre between cracks is

−τxz(tanθr + cotθr) +
fct
2

(λx + λz) +
fct
2

(λx − λz)cos2θr

This can be seen from Figure 3.11 and with the same considerations as in sub-

section 3.2.3. The minimum and maximum principal stresses are assumed to vary

linearly between the cracks, and Eq. (3.35) gives the maximum principal concrete

stress at the centre between cracks. Using these equations, the minimum principal

stress at the quarter points is derived as

σc3 = −τxz(tanθr + cotθr) +
fct
2

(λx + λz − λ) (3.38)

If linear elastic response is assumed and Poisson’s ratio is set to zero, the strains

εx, εz and ε3 are determined with Eq. (3.37) and (3.38) as

εx =
σsx
Es

=
σx + τxzcotθr − fct

2 λx(1− ρx)

ρxEs
(3.39a)

εz =
σsz
Es

=
σz + τxztanθr − fct

2 λz(1− ρz)
ρzEs

(3.39b)

ε3 =
σc3
Ec

= −
τxz(tanθr + cotθr)− fct

2 (λx + λz − λ)

Ec
(3.39c)

If the results of Eq. (3.39) are substituted into the relation cot2 θr = εz−ε3
εx−ε3 we

obtain the following equation

tan2θrρx(1 + nρz) + tanθrρx

{
σz
τxz
− fct

2τxz

[
λz + nρz(λx +

n− 1

n
λz − λ)

]}
= cot2θrρz(1 + nρx) + cotθrρz

{
σx
τxz
− fct

2τxz

[
λx + nρx(λz +

n− 1

n
λx − λ)

]}
(3.40)

This result can be used to find the crack angle θr. However, the solution is obtained

through iterations since λx and λz depend on θr.

A way to avoid iterations is to neglect the tensile capacity of concrete. Then, the

equation simplifies to
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Chapter 3. Response of a Cracked Membrane

tan2θrρx(1 + nρz) + tanθrρx
σz
τxz

= cot2θrρz(1 + nρx) + cotθrρz
σx
τxz

(3.41)

Another solution is obtained if the maximum principal direction is assumed con-

stant between the cracks and maximum principal stresses varying linearly with

direction perpendicular to the cracks. Noting that this causes λx=λz=λ, gives

tan2θrρx(1 + nρz) + tanθrρx

{
σz
τxz
− fct

2τxz
λ
[
1 + (n− 1)ρz

]}
= cot2θrρz(1 + nρx) + cotθrρz

{
σx
τxz
− fct

2τxz
λ
[
1 + (n− 1)ρx

]}
(3.42)

Figure 3.12 shows a plot of the crack angle cotθr for varying reinforcement ratios,

obtained from a Matlab-script with a given set of geometrical and material inputs.

Here the three equations above are included, in addition to the general solution.

The different methods give the same result for equal reinforcement amounts in both

x- and z-direction. However, for increasing difference of the ρx/ρz ratio the results

deviate more. According to Kaufmann (1998) both Eq. (3.40) and Eq. (3.41) seem

to provide a good estimation of the crack angle, as they follow the behaviour of

the general method closely. Eq. (3.42) on the other hand deviate more from the

general solution.

With known crack angle from one of the equations above, steel and concrete stresses

at cracks can easily be determined from Eq. (3.26). These stresses can be controlled

for failure criteria of reinforcement and concrete.

3.4 Crack Width

Based on the response predictions obtained with either the general or the approx-

imate method, we can get an estimate of the crack widths of a cracked concrete

panel. The crack width, wr, is determined by the tensile strain at crack, denoted

ε
(r)
1 , and the crack spacing, Srm. The expression is (Kaufmann 1998)

wr = Srmε
(r)
1 (3.43)

The overall maximum principal strain, ε1, consists of two parts, the tensile strain

at crack, ε
(r)
1 , and the tensile concrete strains, ε

(c)
1 . If linear elastic behaviour is
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3.4 Crack Width

Figure 3.12: Plot of estimated crack angle for varying reinforcement ratios with the
different approaches

assumed, we can estimate the tensile concrete strain as follows

ε
(c)
1 =

σc1 − ν13σc3
Ec

(3.44)

where ν13 is the Poisson’s ratio. According to Kaufmann (1998), a value of ν13 ≈
0.15 gives satisfying results for moderate concrete compressive stresses. Further-

more, Kaufmann (1998) recommends using the values of σc1 and σc3 at the quarter

points between the cracks. Note that for stabilized cracking stage, σc1 = λfct/2

at the quarter point, while σc3/Ec = ε3, if concrete stresses are assumed to vary

linearly between cracks.

Recalling the compatibility relation of average strains from Eq. (3.22), where εx,

εz and ε3 are known from the solution of the cracked membrane model, we obtain

an estimate for the crack width

wr = Srm(εx + εz − ε3 − ε(c)1 ) (3.45)

= Srm

(
ε1 + ν13ε3 −

λfct
2Ec

)
(3.46)
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Chapter 3. Response of a Cracked Membrane

As a simple estimate of the crack width, the mean tensile strain can be used instead

of the tensile strain at crack in Eq. (3.43).
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4 — Analysis of Reinforced

Concrete Shell Elements

4.1 Introduction

A shell element is defined based on its geometry and the way load is carried. Gen-

erally, a shell element is a three-dimensional solid with a small thickness compared

to the other two directions. Furthermore, a shell section can be part of both plane

and curved structures. A shell section can resist a combination of in-plane forces

and bending forces.

Figure 4.1 shows a shell element with corresponding force resultants along the edges.

In total, 8 different force resultants are acting on the shell element. These are three

membrane forces Nx, Ny and Nxy, two bending moments Mx and My, torsional

moment Mxy, and two transverse shear forces Vx and Vy. All forces and moments

are given in units per length. It is assumed that Nxy=Nyx and Mxy=Myx.

Figure 4.1: Shell element with force resultants (Øverli & Sørensen 2012)
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Chapter 4. Analysis of Reinforced Concrete Shell Elements

Typically, a structural analysis is carried out with a finite element program to find

the distribution of the stress resultants defined above. Based on these resultants, a

suitable reinforcement amount is determined by a design procedure, like for instance

the sandwich method. The determination of the external forces and reinforcement

amounts will not be discussed any further in this thesis, but assumed given.

The iteration method (Øverli & Sørensen 2012) is a tool which can be implemented

to obtain the internal response of a reinforced concrete structure, where geometry

and reinforcement amounts are given. Equilibrium between external and internal

forces is achieved through an iterative process. Transversal shear forces Vx and Vy

are not considered in the iteration method, and must be handled separately.

Briefly summarized, the approach of the iteration method is to find the strain dis-

tribution of the shell section that ensure equilibrium between external and internal

forces. The shell section is divided into layers, where each layer is handled as mem-

branes with in-plane forces only. The internal response of each layer, corresponding

to the strain distribution, is found by implementing orthotropic material models

in the directions of the principal stresses. By summing the force contributions of

each layer, the internal force resultants are found. The material stiffness matrix

and the strain distribution are updated at each iteration step until convergence

is obtained. The derivation of the model is described below, in accordance with

Øverli & Sørensen (2012). Furthermore, the algorithm of the model is given in

Appendix D.

4.2 Derivation of the Iteration Method

4.2.1 Constitutive Relations

In order to determine the response in concrete and reinforcement for a given strain,

constitutive relations must be formulated.

Concrete has a non-linear behaviour in compression, and will crack for moderate

tension stresses. An orthotropic material model in the directions of the principal

stresses can be employed to account for these effects. The expression is

σcp =

σ1σ2
τ12

 = Ccp · εp =
1

1− ν2

 Ec11 νEc12 0

νEc12 Ec22 0

0 0 (1−ν)Ec12
2

 ·
 ε1ε2
γ12

 (4.1)
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4.2 Derivation of the Iteration Method

where σcp and εp are the stress and strain vectors in the principal stress direction,

and Ec12 = (Ec11 + Ec22)/2.

Ec11 and Ec22 are secant moduli in the principal stress directions, and may be

determined by

Ecii =
σci
εi

(4.2)

In order to transfer concrete stresses, strains and stiffness matrices from local prin-

cipal directions to the global xy-directions, a transformation matrix is needed. The

transformation of strains from global axes to principal axes is defined as

εp = T (θ) · εxy (4.3)

where θ is the angle of the principal strain direction given as

θ =
1

2
tan−1

(
γxy

εx − εy

)
(4.4)

and the transformation matrix is given as

T (θ) =

 cos2 θ sin2 θ sin θ cos θ

sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ

 (4.5)

Assuming that the principal stresses have the same direction as the principal

strains, the principal stresses and the material stiffness matrix are transferred to

the global axes by

σcxy = T T (θ) · σcp = T T (θ) ·Ccp · εp = T T (θ) ·Ccp · T (θ) · εxy = Cc · εxy (4.6)

Cc = T T (θ) ·Ccp · T (θ) (4.7)

For reinforcement, it is assumed that the direction of the reinforcement is coincident

with the global xy-direction. The constitutive relation for the reinforcement is given

as
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σsxy = Cs · εxy =

Esx 0 0

0 Esy 0

0 0 0

 ·
 εxεy
γxy

 (4.8)

where Esx and Esy are secant moduli for reinforcement in the global xy-directions.

Hence, the two reinforcement directions are uncoupled.

4.2.2 Displacement Formulation

The goal of the iteration method is to find the state where the internal forces are

equal to the external forces, which means that the correct strain distribution must

be determined to provide equilibrium. The following equation must be fulfilled

R = S(εt,r) (4.9)

R



Nx

Ny

Nxy

Mx

My

Mxy


, εt =

[
εm

κ

]
=



εxm

εym

γxym

κx

κy

κxy


where R is the external load vector, S is the internal load vector and εt is a vector

containing the strains and curvatures at the middle plane of the shell section.

Kirchoff’s hypothesis of linear strain distribution over the thickness of the shell is

assumed, and gives the situation illustrated in Figure 4.2. The in-plane strains at

a distance z from the middle plane of the shell section are now given as

εxy =

 εxεy
γxz

 = εm − zκ = A · εt =

1 0 0 −z 0 0

0 1 0 0 −z 0

0 0 1 0 0 −z

 ·


εx

εy

γxy

κx

κy

κxy


(4.10)
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4.2 Derivation of the Iteration Method

Figure 4.2: Strain distribution over shell thickness (Øverli & Sørensen 2012)

The correlation between strains and stresses of the internal response S(εt,r) in Eq.

(4.9) is non-linear. In serviceability calculations this is due to cracking of concrete

in tension and the non-linear behaviour of concrete in compression. The internal

force vector must therefore be determined by a displacement formulation as shown

below

S(εt,r) = K(εt,r) · εt,r+1 (4.11)

where K(εt,r) is the stiffness of the section at iteration number r.

4.2.3 Stiffness Matrix

The stiffness matrix may be established by employing the principal of virtual work.

The displacement vector r is given below, and a is defined in Figure 4.1.

r = a · εt = a

[
εm

κ

]
=



rx

ry

rxy

θx

θy

θxy


(4.12)

The virtual displacement vector becomes

δr = a · δεt (4.13)

External virtual work is given as
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δAext = δrT · a ·R (4.14)

where a·R is total force. The internal work is given as

δAint =

∫
V

δεT · σ · dV (4.15)

For the derivation, a material model C is introduced for the combined contribution

of concrete and reinforcement. If external and internal virtual work are equated,

the following may be shown

R =

∫ h/2

−h/2
AT ·C ·A · dz · εt = K · εt (4.16)

The stiffness matrix is therefore given by

K =

∫ h/2

−h/2

[
C −zC
−zC z2C

]
· dz (4.17)

The stiffness matrix may be solved numerically by dividing the thickness of the shell

section into layers, and summing up the contribution of each layer. If the cross

section is divided into n layers, each layer has thickness ∆h = h
n . For an increasing

number of layers, the numerical integration will approach the exact integral. The

stiffness contributions of concrete and steel are handled separately, and the total

stiffness is a summation of the two contributions.

The concrete stiffness expression becomes

KC = ∆h

n∑
i=1

[
Cci −ziCci

−ziCci z2iCci

]
(4.18)

and the reinforcement stiffness expression becomes

KS =

m∑
j=1

(
Asxj

[
Csxj −zjCsxj

−zjCsxj z2jCsxj

]
+Asyj

[
Csyj −zjCsyj

−zjCsyj z2jCsyj

])
(4.19)

where Asxj and Asyj are the cross sectional area of the reinforcement in the two
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4.2 Derivation of the Iteration Method

directions at layer j. The total stiffness is

K = KC +KS (4.20)

The strain distribution is now easily determined by

εt = K−1 ·R (4.21)

4.2.4 Internal Stress Resultant

With constitutive relations established and the strain distribution determined above,

the internal stress resultants may be calculated. The internal stress vector is given

as

S =

[
SN

SM

]
=



Nx

Ny

Nxy

Mx

My

Mxy


(4.22)

The vector may be expressed as the integrals shown below

SN =

∫ h/2

−h/2
σ · dz (4.23)

SM =

∫ h/2

−h/2
−z · σ · dz (4.24)

Similar as for the stiffness matrix, these integrals may be solved numerically by a

summation of the contributions from the concrete and reinforcement layers. The

expressions become

SN = ∆h

n∑
i=1

σcxyi +

m∑
j=1

Asxj · σsxjAsyj · σsyj
0

 (4.25)
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SM = −∆h

n∑
i=1

zi · σcxyi +

m∑
j=1

−zjAsxj · σsxj−zjAsyj · σsyj
0

 (4.26)

where σcxyi are the concrete stresses at layer i, and σsxj and σsyj are the reinforce-

ment stresses at layer j.

When the internal stress resultants are determined, they are compared with the

external force resultants. If the deviation between the internal and external force is

smaller than a convergence criteria for all of the six force components, an acceptable

equilibrium is reached. If not, the iterations proceed with a new estimate of the

stiffness matrix based on the strains found in the previous iteration step.

52



5 — New Method for Design

of Shells in SLS

5.1 General

The goal of this thesis is to develop and propose a new approach for crack width

estimation of shell sections in serviceability design. Both the external forces applied

to the shell section, and the geometry and reinforcement layout are assumed given.

These values are subsequently used as input in a post processing control where this

new approach is implemented.

The iteration method and the cracked membrane model presented in chapter 3

and chapter 4, constitute the tools that will be used in the new method. For a

given shell section and applied force, the iteration method is used to obtain global

equilibrium between external and internal forces. With global equilibrium satisfied,

the cracked membrane model is used to determine the response of the cracked face

of the shell.

The collaboration between the iteration method and the cracked membrane model

forms the new proposed method, referred to as ”cracked shell model” throughout

the rest of this thesis. In the following, two different approaches for the cracked

shell model are proposed.

5.2 Approach

Before the calculations of the method can begin, the designer needs to provide all

necessary input values. Therefore, external loading, section geometry and proper-

ties, and reinforcement layout must all be determined prior to the implementation
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of the method. With input values determined, the iteration method is employed to

find the strain distribution that ensure equilibrium between external and internal

forces. In the iteration method the height of the cross section is divided into layers,

see Figure 5.1. Through the strain distribution, average in-plane strains εx, εy and

γxy are found for each layer. With known strains and constitutive relations, the

steel and concrete stresses in each layer can be determined.

The stresses determined from the iteration method are used as input values for

the cracked membrane model, where three values are necessary to solve the system

of equations. One possibility is to use the steel stresses in the two reinforcement

directions and the concrete shear stress. Another approach is to use the average

axial stress in x- and z-direction and the concrete shear stress. The two possible

approaches are explained in more detail below.

Figure 5.1: Cracked shell section illustrating the effective panel

Approach 1

In the first approach, the stresses in the x- and y-reinforcement, σsx and σsy, and

the concrete shear stress, τcxy, are used as input to the cracked membrane model.

The steel stresses obtained from the iteration method are constant in each layer

since tension stiffening effects between cracks are neglected. At a cracked surface,

54



5.2 Approach

the steel stresses must therefore be equal to the stresses at a crack. This is due

to the fact that at a cracked surface, all tensile stresses must be transferred by

the reinforcement across the crack. The steel stresses obtained from the iteration

method can therefore directly be compared with the reinforcement stresses in the

cracked membrane model, σsx = σsxr and σsy = σszr.

In the iteration method, all shear stresses are a result of concrete shear stresses

since shear contribution from the reinforcement is neglected. The concrete shear

loading can therefore be compared with the external shear loading used in the

cracked membrane model, τcxy = τxz. However, only the concrete shear stresses

from the layers of interest, i.e. the layers within an effective height hc,eff at the

cracked surface, must be considered. The situation is illustrated in Figure 5.1

It is not obvious how the effective height should be determined in order to trans-

late the problem to a cracked membrane that is suitable for implementation in

the cracked membrane model. The effect of different choices should be studied

and compared to experimental results. However, as a first estimate, the effective

height will be calculated in accordance with Eurocode 2 (CEN 2004). Thus, it is

determined by Eq. (2.4).

Based on the shear stresses from all the layers within the effective height, a mean

value for the shear stresses is determined

τcxy =
1

hc,eff

neff∑
i=1

hiτcxyi (5.1)

where neff is the number of layers within the effective height, hi is the height of

layer i and τcxyi is the concrete shear stress at layer i.

The values obtained from the iteration method used as input in the cracked mem-

brane model are therefore:

Alternative 1

Input:

σsx, σsy, τcxy

Compared to:

σsxr, σsyr, τxy
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Approach 2

In the second approach, mean external axial stresses in the x- and y-direction, σx

and σy, are determined from steel and concrete stresses obtained from the iteration

method. These values becomes the first two input values in the cracked membrane

model. In addition, and similarly as in approach 1, the concrete shear stress, τcxy,

is used as the third input value.

The total internal axial forces of a reinforced concrete shell section originates from

a combination of reinforcement and concrete stresses. In order to translate the

internal forces into an equivalent external force, mean values of steel and concrete

stresses must be determined within the area of interest. The effective height, over

which the stresses are averaged, is determined by Eq. (2.4) similarly as for the

shear stress. The mean axial stresses in x- and y-direction becomes

σx =
1

hc,eff

neff∑
i=1

hiσcx +
1

byhc,eff

meff∑
j=1

Asxjσsx (5.2)

σy =
1

hc,eff

neff∑
i=1

hiσcy +
1

bxhc,eff

meff∑
j=1

Asyjσsy (5.3)

The mean shear stress over the effective height is calculated the same way as in

approach 1.

The values obtained from the iteration method used as input in the cracked mem-

brane model are therefore:

Alternative 2

Input:

σx, σy, τcxy

Compared to:

σx, σy, τxy

The cracked shell model is schematically illustrated by the flowchart in Figure 5.2.
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Figure 5.2: Flowchart describing the chain of events in the cracked shell model

57



Chapter 5. New Method for Design of Shells in SLS

58



6 — Results

6.1 Verification of the Cracked Membrane Model

Based on the algorithm proposed for the cracked membrane model shown in Ap-

pendix A, estimates of the response of a reinforced concrete membrane may be

obtained. To verify that the algorithm provides reasonable results, it is compared

with the results obtained for shear panel PP1 tested by Marti & Meyboom (1992).

Table 6.1 summarizes the main specimen properties for panel PP1. In Figure 6.1,

the results predicted by the cracked membrane model are compared with results ob-

served from the experimental tests, and show good agreement between the response

predictions of the model and the real behaviour. In addition to demonstrating the

ability of CMM to accurately predict the response of a panel, the example also

shows that the proposed algorithm works properly. The results of the simplified

version of CMM are also included, and show that this approach indeed is capable of

predicting the response before yielding in a satisfactory manner. For serviceability

considerations with steel stresses below yielding of reinforcement, the simplified

method seems to provide reasonable results.

Considering the plot in Figure 6.1 (a), a more or less linear behaviour is observed,

before the deformations increase more rapidly for shear stresses above 4 MPa.

From plot (d) in the figure it appears that this is due to yielding of the weaker

z-reinforcement. The x-reinforcement on the other hand, stays in the elastic do-

main. After the onset of yielding of the z-reinforcement, it is seen from plot (c)

that the crack direction rotates towards the x-axis. The plots show that all these

characteristics of the panel behaviour are accurately predicted by CMM.

Kaufmann (1998) employed the cracked membrane model to several other panels

as well. In general, very good agreement between experimentally observed and

predicted behaviour was obtained. Furthermore, even though not considered in this
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Table 6.1: Main properties of panel PP1

Reinforcement: Dx [mm] 19.5
ρx [%] 1.942
fsyx [MPa] 479
fsux [MPa] 667
εsux [10−3] 90
Dz [mm] 11.3
ρz [%] 0.647
fsyz [MPa] 480
fsuz [MPa] 640
εsuz [10−3] 91
Es [GPa] 200

Concrete: f ′c [MPa] 27.0
fct [MPa] 1.71
εco [10−3] 2.12
Ec [GPa] 25.98
Gc [GPa] 11.13

Figure 6.1: Comparison of predicted and observed response for shear panel PP1 tested
by Marti & Meyboom (1992)
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thesis, the correct failure mode was predicted by CMM for almost all experiments.

Note that in the cracked membrane model it is assumed that cracking has occurred.

Thus, CMM is not able to describe the uncracked behaviour of panel PP1, which is

seen from the deviation between the predicted and the observed behaviour for low

values of τxz in all four plots in Figure 6.1. The load and strain values (τxz and

γxz) in the panel when the first crack occurs are calculated below, in accordance

with Marti & Meyboom (1992). The cracking point is indicated in Figure 6.1 (a).

For the uncracked stage, the panel is in a state of pure shear. Therefore, it is

assumed that all load is carried by concrete (εx = εz = 0), and that shear strains

are proportional to shear stresses (τxz = Gcγxz). Furthermore, cracking occurs

when the tensile strength of concrete is exceeded. The cracking load becomes

ε1 =
fct
Ec

ε1 =
εx + εz

2
+

√(
εx − εz

2

)2

+

(
γxz
2

)2

=
γxz
2

τxz = Gcγxz =
2Gcfct
Ec

=⇒ τxz = 1.5 MPa, γxz = 0.13 · 10−3

The response of panel VB1 tested by Zhang & Hsu (1998), with high strength

concrete f ′c = 98.2 MPa, is also predicted by CMM algorithm developed in this

thesis. Again, good correspondence between the predictions and the experimental

observations is obtained, as shown in Figure 6.2 (a). However, in contrary to

panel PP1, panel VB1 is calculated to be in the crack formation stage up to the

onset of yielding in the reinforcement, which is indicated in Figure 6.2 (b) and (c).

This observation seems to contradict the real physical behaviour, since stabilized

cracking stage generally is obtained for steel stress levels considerably below the

yield limit. This inconsistency must be attributed to Eq. (3.21) proposed by

Seelhofer (2009), which is derived under the assumption of steel stresses above the

yield limit. However, the modifications proposed by Seelhofer (2009) seem to be

important for the robustness and efficiency of the proposed algorithm.

The original version of CMM (Kaufmann & Marti 1998) assumes that stabilized

cracking stage is reached. While Seelhofer (2009) tried to modify the formulation in

order to account for the crack formation stage, the elastic domain of the curve still

seems to be the biggest weakness in the model. For SLS considerations this is the

part of interest, and the possibilities for making changes here should be examined.

61



Chapter 6. Results

(a) Comparison of predicted and observed response for shear
panel VB1 tested by Zhang & Hsu (1998)

(b) Steel stress distribution with indication of crack formation stage for VB1

(c) Steel stress distribution with indication of crack formation stage for PP1

Figure 6.2: Response of panel VB1, and comparison of crack formation stage in panel
VB1 and PP1.
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6.2 Benchmark of Reinforced Concrete Ties

The cracked membrane model is developed for analysis of orthogonally reinforced

concrete structures. However, in the special case where the crack angle is perpen-

dicular to one of the reinforcement directions, the situation reduces from a two-

directional to a one-directional problem. In this situation, the cracked membrane

model is reduced to the uniaxial tension chord model (Sigrist et al. 1998).

In the following, crack width calculations are performed based on the cracked mem-

brane model, Eurocode 2 (CEN 2004) and Model Code 2010 (fib 2013) formulations.

The results will be compared with the results of virtual experiments conducted by

Tan et al. (2018), where four cylindrical reinforced concrete ties were analyzed us-

ing non-linear finite element analysis. The ties considered were denoted φ20c40,

φ32c40, φ20c90 and φ32c90, where φ indicates the steel bar diameter and c indi-

cates the cover. For the range of steel stresses considered, the steel is modelled

as linear elastic with E-modulus 200 000 MPa. Concrete grade C35 is used for all

experiments, with concrete properties in accordance with Model Code 2010.

In Figure 6.3, the crack width development for increasing steel stresses obtained

from the virtual experiments of Tan et al. (2018) are compared with the results

from EC2, MC10 and CMM. The results show that CMM closely predicts the ex-

perimental observations for all four ties. Furthermore, CMM yields significantly

better estimates than both EC2 and MC10, independent of bar diameter and con-

crete cover. However, it is seen that the response predictions are more accurate for

φ20c40 and φ32c40 compared to φ20c90 and φ32c90, which deviates more from the

experimental findings. The same effect is observed for EC2 and MC10.

In Table 6.2, the relative strains predicted by CMM, EC2 and MC10 are compared

for steel stress equal to 400 MPa. Not surprisingly, EC2 and MC10 obtain the

same results, since they are based on the same formula. For φ20c90, however,

the results deviate due to the lower bound given in EC2, which is not included in

MC10. The relative strain estimate of CMM is determined based on the formulas

for steel stresses at cracks, derived in subsection 3.1.4. The results of CMM closely

match the relative strain predictions of EC2 and MC10. This suggests that the

deviations in crack width estimations, observed in Figure 6.3, occur due to different

crack spacing predictions.

In Table 6.3, the crack distance observed in the virtual experiments is compared

with the crack distances estimated by CMM, EC2 and MC10. Again, it is shown

that the tension chord model provides much better results than both EC2 and
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Figure 6.3: Comparison of development of crack widths of virtual experiments ((Tan
et al. 2018)), Eurocode 2, Model Code 2010 and the cracked membrane model

Table 6.2: Comparison of relative strains for steel stress equal to 400 MPa

Relative strain [10−3]
Tie element CMM EC2 MC10

φ20c40 1.8 1.7 1.7

φ32c40 1.9 1.8 1.8

φ20c90 1.2 1.2 0.99

φ32c90 1.7 1.5 1.5
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MC10. For all three approaches, it is seen that the accuracy decrease for increasing

concrete cover, which is particularly the case for the EC2 and MC10 approaches.

This suggests that all three are less suitable for large scale concrete structures, and

measures should be taken to improve their accuracy in such situations. In addition,

it is seen that all three approaches fail at consistently accounting for the dependency

of cover size and bar diameter in the predictions of crack spacing. However, the

cracked membrane model seems to provide a considerable improvement of crack

spacing predictions compared to EC2 and MC10.

Table 6.3: Comparison of crack spacings

Crack spacing [mm]
Tie element Experiment CMM EC2 MC10

φ20c40 105 120 306 219

φ32c40 109 90 269 189

φ20c90 260 495 986 736

φ32c90 272 343 784 570

6.3 Benchmark of Shear Wall

The main purpose of this thesis is to explore the applicability of the cracked mem-

brane model for design of concrete shell structures in the serviceability limit state.

Currently, there are no good experimental results available for crack width devel-

opment in shell sections. However, examining large reinforced concrete structures

in the serviceability limit state is a good alternative. In that context, CMM is used

for benchmark of a shear-wall examined in the framework of the French national

research project CEOS.fr (Rospars & Chauvel 2014).

The shear wall considered, denoted SHW3, was designed to accurately reproduce

reinforced thick shear walls used in industrial buildings. A horizontal load was

applied to the upper corner of the wall to create a shear force, as shown in Figure 6.4

(a). The dimensions of the wall ensured that diagonal shear cracking is prevailing

over cracks as a result of bending. Furthermore, beams with high reinforcement

ratio were connected to the upper and bottom part of the wall to allow a better

redistribution of shear forces in the wall. The test body was instrumented in order

to measure crack widths and crack spacing during loading. The dimensions of the

wall were 4200 mm of length, 1050 mm of height and 150 mm of thickness. Class

C40 concrete was used, and reinforced with bars of 10 mm diameter and 100 mm

spacing in both horizontal and vertical directions on both faces of the wall. For
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more information about the test setup and material properties, see Rivillon & Gabs

(2011).

A linear finite element (FE) analysis is performed with the FE-program DIANA

FEA (2017) in order to estimate the load distribution in the wall. A relatively

coarse mesh with element size of approximately 150 mm is used, and the influence

of reinforcement is neglected in the analysis. Plots of the stress distribution in

the wall are given in Figure 6.4 (b)-(d). It is seen from the plots that the stress

distribution is not homogeneous in the wall. Therefore, results of the central part of

the wall are considered, where mainly a state of homogeneous shear and horizontal

compression are present. The results of an integration point from the FE-analysis

in the center of the wall are used for the analytical calculations. The stresses σx =

-1.155e-6 MPa, σy = -2.333e-7 MPa and τxy = 1.517e-6 MPa are obtained for the

load level P = 1 N. Due to the linear elastic model, these stresses can simply be

scaled to the load level of interest.

Based on results from the linear analysis, the cracked membrane model is used

to estimate the response of the shear wall. In addition, calculations according to

Eurocode 2 (CEN 2004) are performed with the MultiCon approach described in

subsection 2.2.3. Since the FE-analysis provided the stresses for an integration

point, an iterative approach is used to determine σcI and εII for the membrane

element. This approach is similar to the iteration method, except that it is not

necessary to divide the cross-sectional height into layers since there are no bending

present.

In Table 6.4 the crack spacing and crack inclinations observed in the experiment are

compared with those obtained from the analytical approaches, for an applied force

P = 4200 kN. The theoretically predicted crack angles differ quite distinctively

from the experimental observations. One possible reason for this may be that

both the CMM and the EC2 estimates are based on the results of a rather simple

FE-analysis. A more sophisticated analysis, taking into consideration the effect of

reinforcement and the stiffness difference between the wall and the upper and lower

beam, could yield better results. Additionally, the cracked membrane model is a

rotating crack model, and is thus not path dependent. A fixed crack model could

possibly provide better crack angle estimates.

Crack spacing results are obtained for both the horizontal and vertical components

Srmx and Srmy, as well as the one perpendicular to the crack direction Srm. For

crack angles significantly lower than 45◦, the crack spacing in the horizontal di-

rection Srmx may be much larger than Srm. The crack spacing in the vertical
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6.3 Benchmark of Shear Wall

(a) Loads and boundary conditions

(b) Distribution of horizontal stresses σx

(c) Distribution of vertical stresses σy

(d) Distribution of shear stresses τxy

Figure 6.4: Experimental setup and results from FE-analysis
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Table 6.4: Crack spacing and direction in shear wall for P = 4200 kN. Note: Experi-
mental values are averaged, while theoretical are characteristic.

Crack spacing [mm]
Angle [◦] Srmx Srmy Srm

Experiment 28.4 206.0 111.0 98.0

CMM 39.5 174.6 143.8 111.0

CMM - Simplified 38.6 178.3 142.1 111.1

EC2 40.4 250.6 284.5 190.0

direction Srmy should, however, be more comparable to Srm. These remarks are

met by the experimental observations. CMM also achieves this result, although

with inaccurate results compared to the experiments. These inaccuracies can be

attributed to the overestimation of the crack angle. The results of Srmx and Srmy

obtained for EC2, however, give values conflicting the considerations above, and

lack a physical interpretation. Finally, the crack spacing Srm is quite accurately

determined by both the general and the approximate version of CMM, despite a

poor crack angle estimate. EC2 on the other hand overestimates both the crack

spacing and its components, and is less accurate than CMM.

In Figure 6.5, the measured crack widths from the experiment are compared with

the ones obtained from the analytical methods for increasing applied load. Once

again, the central part of the wall is considered and the same integration point is

used for the analytical calculations. Both mean and maximum values (the standard

deviation) of the experimentally observed crack widths are included in the plot.

The analytical results are given as characteristic values, and should therefore be

compared to the maximum values from the experiment. During the test, new

cracks were observed to keep on forming until P ≈ 2700 kN, which is indicated in

the figure.

From Figure 6.5, it is seen that the cracked membrane model predicts the observed

crack width development quite accurately. The experimental values show that the

crack width increases rapidly after the first cracking occurs, while the deformation

rate seems to decrease gradually until a linear growth is experienced when stabilized

cracking stage is reached. Neither the general nor the approximate version of CMM

captures the observed rapid crack width growth rate initially after a crack is formed.

However, both estimates approach the linear path observed for the last part of the

experimental curve. EC2 on the other hand, considerably overestimates the crack

width for the complete load interval, and thus provides very conservative estimates.

A possible reason for the inaccuracies in the predictions of the CMM is that forces
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6.3 Benchmark of Shear Wall

Figure 6.5: Comparison of crack width development. Experimental results obtained
from Ruocci et al. (2012)

in the wall are redistributed during the loading. This is particularly the case

when cracks are formed. The test setup, with heavily reinforced upper and lower

beam and a steel frame, may significantly affect the deformation and crack width

development. These effects are not captured by the simple FE-analysis and the

cracked membrane model, which may explain the differing results.

Additionally, as discussed in section 6.1, CMM is derived based on the assumption

that cracks are developed. Consequently the uncracked behaviour and the crack

initiation are therefore not accounted for in the expressions. For loads of higher

magnitude than P = 2700 kN, where a stabilized crack pattern is observed, the

accuracy of the predictions is improved. This suggests that CMM is quite accurate

for the stabilized cracking stage, which it was originally derived for. The crack

formation stage, on the other hand, gives more inaccurate results, and it should be

investigated whether it is possible to improve this part of the model. However, the

FE-analysis combined with the CMM provides much better results than EC2 for

the whole loading story.
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As a rule of thumb, simplified methods should always produce more conservative

results than more sophisticated methods. From Figure 6.5 it is seen that the sim-

plified version of CMM provides less conservative results than the more complex

CMM calculation. Thus, the results contradict the principle of simple methods be-

ing more conservative. This might reduce the general applicability of the simplified

approximate version of CMM.

6.4 Verification of Iteration Method

for Shell Section

Based on the algorithm for the iteration method shown in Appendix D, the response

of a reinforced concrete shell section may be estimated, excluding the tension stiff-

ening effect. In order to control that the algorithm provides reasonable results, it

will in the following be compared with the results of a reliable reference.

Figure 6.6 shows an example of a top slab in a box girder bridge, where properties

of the longitudinal reinforcement, geometry and material characteristics are given.

The example is taken from Sørensen (2013), where a computer program with the

iteration method implemented, was used to analyze the problem. The results from

the analysis are presented in Sørensen (2013).

Figure 6.6: Shell section example with loading, geometry and material properties
(Sørensen 2013)

The same input values are used in a Matlab-script developed for this thesis in accor-

dance with Appendix D. The results of the reinforcement response predicted by the

two different programs are presented in Table 6.5. Both stresses and strains in the

reinforcement closely correspond between the two programs. Similarly, results of
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the maximum compressive concrete stress and strain are shown in Table 6.6. Also

here, the stress and strain values obtained from the two programs closely match.

These results show that the program provides correct estimates, and indicate that

the program functions properly.

Table 6.5: Stresses and strains in reinforcement

Results from Results from
Sørensen (2013) Matlab-script

Reinforcement Stress Strain Stress Strain
[mm2/m] [MPa] [10−3] [MPa] [10−3]

Asx1 5570 401 2.0 401.7 2.01

Asy1 1289 435 3.1 434.8 3.20

Asx2 5365 435 4.1 434.8 4.22

Asy2 1241 262 1.3 262.4 1.31

Table 6.6: Maximum compressive stress and strain in concrete

Stress Strain
[MPa] [10−3]

Sørensen (2013) 12 0.4

Matlab-script
”Iteration method.m” 11.1 0.50

In the derivations of the iteration method in chapter 4, the Poisson’s ratio is in-

cluded to take into account the fact that two principal directions are not indepen-

dent of each other. However, this is neglected in the calculations, and thus, the

results correspond to uncoupled principal directions (ν = 0).

6.5 Calculation Example for Shell Section

In chapter 5, a new approach was proposed for determination of the response

of reinforced concrete shell elements. In the following, a demonstration of the

calculation process will be performed. Calculations in accordance with Eurocode

2 (CEN 2004) will also be performed, and the results will be compared with the

cracked shell model. The same example as in section 6.4 will be considered, with

details given in Figure 6.6.

The results of the iteration method are the basis for the calculation of the new

method where the cracked membrane model is included. Therefore, the first step

of the approach is to employ the iteration method in order to obtain a strain
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state over the cross-sectional height that ensures equilibrium between external and

internal forces. The iteration method is employed similarly as in section 6.4, with

the only exception that safety factors are excluded in the calculations since a SLS

problem is considered.

With the results obtained from the iteration method, the cracked membrane model

is used to determine the internal response at the cracked face, by consideration of

an effective cracked panel. The effective area of the panel is determined by the

effective height hc,eff , and the panel is assumed to be in a state of plane stress.

The two approaches described in chapter 5 are both considered, and the values of

the necessary input parameters are given in Table 6.7. For alternative 1, steel and

shear stresses (σsxr, σsyr and τxy) are used to obtain the internal response, while

axial and shear stresses (σx, σy and τxy) are used for alternative 2. Note that the

diameter of the reinforcement bars is assumed to be 25 mm in x-direction and 16

mm in y-direction.

Table 6.7: Calculated values for input in the cracked membrane model

Alternative 1

hc,eff [mm] 111.8

σsxr [MPa] 443.3

σsyr [MPa] 195.7

τxy [MPa] -2.1

Alternative 2

hc,eff [mm] 111.8

σx [MPa] 20.1

σy [MPa] -1.6

τxy [MPa] -2.1

The EC2 approach follows the description in subsection 2.2.3. First, σcI is de-

termined in stadium I based on the assumption of linear elastic materials. The

iteration method is employed, similarly as in the cracked shell model, to obtain the

crack angle at the face, θr, and the maximum principal strain at the reinforcement

level, εII . The values underlying the calculations are shown in Table 6.8.

Table 6.8: Calculated values used in EC2 approach

hc,eff [mm] 111.8

Sr,max,x [mm] 389.2

Sr,max,y [mm] 472.8

εII [-] 0.0032

σcI [MPa] 12.0

fct [MPa] 4.5

β [-] 0.6

In Table 6.9 the crack angle, crack spacing, relative strain and crack width esti-

mations of the different approaches are compared. The crack angle is given as the

angle between the x-axis and the crack direction. In the crack width calculations
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based on CMM, the effect of Poisson’s ratio is neglected.

Table 6.9: Comparison between values obtained with the cracked shell model and the
EC2/MultiCon approach

Cracked shell model
Alternative 1 Alternative 2 Eurocode 2

Crack angle, θr [◦] 63.5 62.2 65.1

Crack spacing, Srm [mm] 117.8 118.0 310.5

Relative strain [10−3] 2.4 2.5 2.5

Crack width, wr [mm] 0.284 0.291 0.764

The results show that the two alternative versions of the cracked shell model provide

practically identical response estimates. This is as expected, since they are based

on the same assumptions and the same model. Thus both alternatives are equally

applicable to response predictions of shell sections.

The relative strains predicted by the EC2 approach match the cracked shell esti-

mates closely. This result has been observed in the previous examples as well, and

suggests that the different approaches for tension stiffening calculations in CMM

and EC2 give the same result. However, the crack spacing determined by EC2

differs quite distinctively from the CMM predictions. The crack spacing estimates

are therefore the cause of the major deviations in crack width estimates. With

almost three times as high crack spacing estimate, the EC2 approach yields very

large crack widths compared to the cracked shell model. Since no experimental re-

sults are included for comparison, it can not be concluded which of the approaches

that produces the best estimate. Based on the previous examples, however, there

is much evidence that suggests that cracked shell section provides the best crack

width predictions of the two approaches.

The Large Universal Shell Element Tester (Kaufmann et al. 2018), described in

subsection 2.1.3, can potentially provide experimental results needed to verify the

cracked shell model. If experimental results verify that the cracked shell model

produces accurate predictions, it will lead to a huge improvement of crack width

estimates in large concrete shell structures. This is illustrated by this example,

where the cracked shell model predicts the crack widths to be less than 40 % of

the EC2 estimate.
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7 — Discussion

7.1 Comparison of Design Codes and

the Cracked Membrane Model

In the first part of this thesis, design provisions of Eurocode 2 (CEN 2004) and

Model Code 2010 (fib 2013) are presented for crack width calculations. Although

formulated a bit differently, the formulas include the same parameters and are

formulated on the same basis. The crack width formula consists of two factors, the

crack spacing and the relative strain. The crack width, crack spacing and relative

stain formulas from MC10 are repeated below.

wd = 2ls,max(εsm − εcm)

where

ls,max = kc+
1

4

fctm
τbms

φ

ρs,eff

εsm − εcm =
σs − βσsr

Es

Crack Spacing

The crack spacing formula consists of two terms, taking into account the effect of

concrete cover and bond respectively. This involves the merging of two different

theories (Tan et al. 2017), and yields a rather unphysical formulation. Further-

more, the crack spacing formulas of both EC2 and MC10 are empirically adjusted

to fit experimental results on beams of relatively small size. This reduces the ap-

plicability of the formulas. However, since no other formulas are provided for crack

75



Chapter 7. Discussion

width calculations, also elements outside the scope of applicability are calculated

according to the same formulas.

The tension chord model is developed for reinforced concrete members subjected to

axial stress in the reinforcement direction, and is therefore appropriate for compar-

ison with the EC2 and MC10 formulas. The crack spacing formula in the tension

chord model Eq. (3.13) looks virtually the same as the last term of ls,max above.

The shear bond stress in the MC10 and EC2 formulation is given as an empirically

adjusted factor, while in the tension chord model it is based on the proposed shear

bond stress - slip relation. However, both are assumed to be proportional to the

tensile strength of the concrete, and thus they are practically equal.

The concrete cover term in the EC2 and MC10 formulas is, on the other hand,

excluded from the tension chord model formulation. Based on the discussion above,

the tension chord model seems to provide a more physically consistent description

when it does not include the concrete cover in the crack spacing formula. The

results in chapter 6 also show that the tension chord model provides much better

crack spacing estimates, and thus a considerable improvement of the current code

regulations.

Relative Strains

The relative strain formula in EC2 and MC10 includes the effect of tension stiff-

ening, and is determined from the difference between the mean strains in the rein-

forcement and the concrete. The factor β is an integration factor that takes into

account the distribution of concrete stresses, and it is adjusted for crack forma-

tion stage and stabilized cracking stage, respectively. The tension chord model is

formulated based on the same ideas. However, the mean strains are determined

as a function of crack spacing. Furthermore, the change of concrete stresses is

determined based on the idealized shear bond stress-slip relation rather than an

integration constant. In total, the tension chord model formulations seem to be

more physical with the inclusion of crack distance and the shear bond stress. Based

on the findings in chapter 6, however, both approaches seem to provide approxi-

mately the same estimates of the relative strain term.

The relative strain formula in EC2 and MC10 is derived based on beams in bending

and tension, which makes the formula applicable only for cases where the maxi-

mum principle stress direction is coincident with the direction of the reinforcement.

Since no provisions are provided for other cases, each designer must make subjec-
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tive interpretations of the formula in order to adjust it for other situations. This

may result in inconsistent choices and implementations. The MultiCon approach

described in this thesis is an example of a interpretation of the formula for shell

sections, where simplified assumptions and considerations are performed. Even

though the assumptions included in the MultiCon seem reasonable, the approach

is still based on an improper formula derived for beams and columns. The effect

of the simplifications should therefore be examined in detail. In addition, the Mul-

tiCon approach considers a fictive reinforcement bar in direction of the maximum

principal strain, which weakens the physical description of the situation.

7.2 Remarks for the Cracked Membrane Model

The cracked membrane model is a development of the modified compression field

theory. Both models are based on the basic concepts of the original compression

field approaches. However, they differ in the way the tension stiffening is accounted

for. CMM implements the tension chord model, where equilibrium is expressed in

terms of stresses at the cracks rather than average stresses between the cracks

as in MCFT. The cracked membrane model therefore yields a much more physical

description of the tension stiffening effect, compared to the MCFT that accounts for

the effect through empirical relations between average strains and average stresses.

As a major and significant simplification, stress-free rotating cracks are considered

in CMM. Rotating cracks cause the directions of principal stress and strain to

be coincident, and the direction of the cracks are perpendicular to the maximum

principal direction of average strains. This results in no shear stresses across the

crack and greatly simplifies the calculations, since models describing aggregate

interlock and dowel action are not needed. The alternative is to consider the crack

as fixed, which leads to a path dependent crack direction (Dabbagh & Foster 2006).

Although this provides a wider range of applicability, it leads to more complex

formulations. Note however, that in the case of reversed cyclic loads, where a

multi-directional cracking pattern occurs, the path dependency can provide an

important impact on the results (Dabbagh & Foster 2006). As a designer, one

must therefore always assess whether the assumptions of a model are appropriate

for a given problem.

The tension chord model that is implemented in CMM, uses a stepped rigid plas-

tic bond shear stress-slip relationship to estimate the transfer of bond stresses in

between cracks. This gives simple steel stress distributions over the crack distance,
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and allows steel stresses at cracks to be obtained from average strains. Further-

more, the crack spacing is determined by a closed form expression. However, actual

bond shear stress-slip relationships observed from tests are much more complicated

than the proposed method. More sophisticated idealizations are possible, but with

the cost of a more complex calculation without closed form solution (Kaufmann

1998). The results in chapter 6 have shown that the crack formation stage formu-

lations are a potential area for improvement, and a more sophisticated bond shear

stress-slip relation is certainly of interest in that context.

7.3 Remarks for Shell Calculations

The iteration method is used to determine the strain state that ensures equilibrium

between internal and external stresses in a shell section. The method can be

adjusted to provide more or less sophisticated predictions of the internal behaviour,

based on the material models used in the model. For instance, the most simple

estimate is achieved if linear elastic behaviour is assumed for both concrete and

reinforcement. This method is used in the MultiCon approach for the determination

of σcI . In that case, equilibrium is obtained without iterations. Models taking

into account the non-linear behaviour of concrete and the yield characteristics

of reinforcement may provide better results, but with the cost of more complex

calculations where iterations are necessary. In the proposed new approach for

calculation of shell sections, the constitutive relations follow the recommendations

of EC2. CMM could also be included as a material model in the iteration method,

and in that way include directly tension stiffening in the layered approach estimates.

This would, however, lead to even more complicated calculations and was not found

expedient in this introductory examination.

The results of the iteration method provide the necessary results to calculate the

response of a shell with the cracked membrane model. However, an effective panel

must be chosen over which the response shall be determined. The choice of effective

height might influence the final result considerably. In this thesis the effective

height is determined according to the effective height used in crack calculations

in EC2, since there are no known experimental results to use as a basis for other

choices. Further studies should look into how different parameters influence the

final result, and formulate an expression that provides the best estimates.

The crack width is generally bigger at the concrete surface than at the reinforcement

level, and leads to a discussion about where crack width should be measured. The
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relative strain formula specifies the strains of the reinforcement, and thus indicates

that material deformations are determined at level with the reinforcement. On

the other hand, the concrete cover term (kc) in the crack spacing formulas of EC2

and MC10 can be considered as a measure to include the contribution of the cover

deformation to determine the size of the crack width at the surface. In MC10 it is

given that the crack width is determined at the concrete surface for pure tension

and at level of the reinforcement for bending, while no information is provided in

EC2. Note also that for beams and columns the crack width can be physically

measured both at level of the reinforcement and at the concrete surface, while

results in practice only can be obtained at the surface for plate and shell elements.
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8 — Recommendations for

Future Research

The findings in this thesis are promising, and provide an introductory examination

of use of the cracked membrane model in large scale concrete shell structures. Based

on the work with this thesis, recommendations for future research are:

• Experimental evidence should be applied in order to verify and, possibly,

modify the proposed cracked shell section.

• In order to improve the accuracy of the SLS predictions in the cracked mem-

brane model, a more sophisticated bond shear stress-slip relation may be

implemented, which provides a more physically consistent and accurate de-

scription of the crack formation stage.

• The approximate simplified version of the cracked membrane model can be

further examined in order to develop a simple approach for crack width cal-

culations that is suitable for implementation in code provisions.

• The cracked shell method can be translated into a finite element formulation

that is more convenient for practical design analysis, along the same lines as

Foster & Marti (2003).
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9 — Conclusion

Based on the presentation and discussion of crack width calculations in Eurocode

2 and Model Code 2010, it is clear that the current formulas are unsuitable for

large scale and orthogonally reinforced concrete structures. The empirically ad-

justed factors lead to inaccurate results for large scale structures, and the physical

description of the one-dimensional problem can not directly be translated into the

two-dimensional case without introducing unphysical assumptions. Therefore, it

is necessary to adjust the current formulas or propose new methods, in order to

obtain better estimates and an improved physical description of such problems.

In this thesis, the cracked membrane model is proposed as a method to predict the

behaviour of shell elements together with the iteration method. The main findings

that can be drawn from the investigations and the results are:

• The cracked membrane model has proven its ability to accurately predict the

load-deformation response of reinforced concrete panels subjected to plane

stress, and is derived on a clear mechanical basis.

• Based on benchmarks conducted for concrete ties with different cover sizes

and a large scale shear wall, the cracked membrane model has shown to

yield a considerable improvement of crack spacing and crack width estimates

compared to Eurocode 2 and Model Code 2010, for both normal size and

large scale structures modelled with one- and two-dimensional elements.

• Review of the current design provisions and the theoretical background of the

cracked membrane model formulations has demonstrated that the cracked

membrane model introduces more physical and consistent formulas when it

comes to crack width calculations.

• Although not verified with experimental results, the cracked shell method

proposed in this thesis seems to provide better crack width predictions than
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Eurocode 2 in terms of the MultiCon approach, which in turn can reduce the

current overly conservative estimates

• In sum, the cracked membrane model can be a good basis for development

of new crack width formulas in code regulations, and in that context, the

approximate simplified version of the cracked membrane model yields an in-

triguing contribution with its simple, yet accurate response predictions for

loads in the serviceability state.
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A — Algorithm - Cracked

Membrane Model

In the following, an algorithm is suggested, that solves the equations of the cracked

membrane model in order to determine the response of an orthogonally reinforced

concrete membrane. The average total strains εx, εz and ε3 are considered as the

primary unknowns and are the main output of the program. For a given state of

external loading, the equilibrium, compatibility and material models of the cracked

membrane model are satisfied to obtain the correct response of a reinforced concrete

membrane.

Iterations must be performed to obtain the correct solution. In the suggested

algorithm Newton-Raphson iterations are performed.

Step 1 - Decide the external load σx,ext, σz,ext and τxz,ext (from FEM analysis,

iteration method for shell layers etc.). Geometry and material properties given.

Step 2 - Determine if crack angle is positive or negative

θp,1 =
1

2
arctan

(
−2τxz,ext

σx,ext − σz,ext

)

θr,est =

θp,1 − π
2 , for θp,1 ≥ 0

θp,1 + π
2 , for θp,1 < 0

Step 3 - Determine max uniaxial crack spacing in x- and z-direction

Srmx0 =
fctDx

2τb0

(1− ρx)

ρx

Srmz0 =
fctDz

2τb0

(1− ρz)
ρz
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Step 4 - Prepare for Newton-Raphson iterations: Define max number of itera-

tions, convergence tolerance β and initial guess for εx, εz and ε3

Step 5 - Calculate maximum principal strain ε1

ε1 = εx + εz − ε3

Step 6 - Calculate crack angle θr

|θr| = arctan

(√
εz − ε3
εx − ε3

)

θr =

|θr|, for θr,est ≥ 0

−|θr|, for θr,est < 0

Step 7 - Calculate concrete compressive stresses at crack σc3r

fc =
(f ′c)

2/3

0.4 + 30ε1
≤ f ′c

σc3r = fc
ε23 + 2ε3εco

ε2co

Step 8 - Calculate shear stresses τxz

τxz = −σc3rsinθrcosθr

Step 9 - Calculate crack spacing Srm
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η =
|τxz|
fct

a = Srmx0 sin |θr|+ Srmz0 cos |θr|

b = Srmx0 cos |θr|+ Srmz0 sin |θr|

c = 2(S2
rmx0 + S2

rmz0) sin |θr| cos |θr| − 2Srmx0Srmz0

d = (S2
rmx0 − S2

rmz0) sin2 |θr| − 2Srmx0Srmz0 sin |θr| cos |θr|

Srm0 =
a+ ηb−

√
ηc+ d+ S2

rmz0 + η2(S2
rmx0 − d)

2

Srm = λSrm0

Srmx =
Srm

sin |θr|

Srmz =
Srm

cos |θr|

Step 10 - Calculate steel stresses at crack σsxr and σszr

σsr =


Esεm + τb0Srm

D if σsr ≤ fsy

fsy + 2

τb0Srm
D −

√
(fsy−Esεm)

τb1Srm
D (

τb0
τb1
− Es
Esh

)+ Es
Esh

τb0τb1
S2
rm
D2

τb0
τb1
− Es
Esh

elseif σs,min ≤ fsy < σsr

fsy + (εm − fsy
Es

)Esh + τb1Srm
D elseif σs,min > fsy

Must check if slip occurs over whole crack spacing, if not modify expressions (crack

formation stage)

x1 =
Srm

2

(√
n2ρ2 +

Esεm
τb0

D

Srm
− nρ

)

x2 =
DfsyEsh
4τb1αEs

[√
1 + 4α

Es
Esh

[
Srmτb1
Dfsy

(αEsεm
fsy

− nρ
)
− τb1

4ατb0

]
− 1

]

where n = Es
Ec

and α = 1 + nρ.

If x1 < 0.5 Srm

σsr =

x1 4τb0
D α if x1

4τb0
D α ≤ fsy

fsy + x2
4τb1
D else
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Note: Srm is the crack spacing in the direction of the reinforcement considered.

Step 11 - Calculate axial stresses in x- and z-direction, σx and σz

σx = ρxσsxr + σc3rcos
2θr

σz = ρzσszr + σc3rsin
2θr

Step 12 - Calculate the function value for current estimates of εx, εz and ε3

f1 = σx − σx,ext
f2 = σz − σz,ext
f3 = τxz − τxz,ext

f =

f1

f2

f3



Step 13 - Check convergence according to chosen tolerance β

• If max(f) ≤ beta, convergence obtained and calculation can be terminated.

• If max(f) > beta, no convergence obtained and calculation must proceed

Step 14 - Calculate the Jacobian matrix. The derivatives of function f1, f2 andf3

must be calculated with respect to εx, εz and ε3.

J =


∂f1
∂εx

∂f1
∂εz

∂f1
∂ε3

∂f2
∂εx

∂f2
∂εz

∂f2
∂ε3

∂f3
∂εx

∂f3
∂εz

∂f3
∂ε3


The elements of the matrix, and details of the derivations are given in Appendix B.

Step 15 - Calculate new estimations of εx, εz and ε3 (Newton-Raphson step).

εi+1 = εi − J(εi)
−1f(εi)
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εxεz
ε3


i+1

=

εxεz
ε3


i

−


∂f1
∂εx

∂f1
∂εz

∂f1
∂ε3

∂f2
∂εx

∂f2
∂εz

∂f2
∂ε3

∂f3
∂εx

∂f3
∂εz

∂f3
∂ε3


−1

i

f1f2
f3


i

Step 16 - Use new estimates of εx, εz and ε3 and return to Step 5
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B — Derivatives

B.1 Crack Angle

∂θr
∂εx

=
(εz − ε3)

√
εx−ε3
εz−ε3

2(εx − ε3)(εx + εz − 2ε3)

∂θr
∂εz

= −

√
εx−ε3
εz−ε3

2(εx + εz − 2ε3)

∂θr
∂ε3

=
(εx − εz)

√
εx−ε3
εz−ε3

2(εx − ε3)(εx + εz − 2ε3)

B.2 Average Tensile Strains

∂ε1
∂εx

=
∂ε1
∂εz

= 1

∂ε1
∂ε3

= −1

B.3 Concrete Stresses

∂fc
∂εx

=
∂fc
∂εz

= − 30(f ′c)
2/3

(0.4 + 30ε1)2
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∂σc3r
∂εx

=
∂σc3r
∂εz

=
∂fc
∂εx

ε23 + 2ε3εco
ε2co

∂fc
∂ε3

=
30(f ′c)

2/3

(0.4 + 30ε1)2

∂σc3r
∂ε3

=
∂fc
∂ε3

ε23 + 2ε3εco
ε2co

+ 2fc
ε3 + εco
ε2co

B.4 Shear Stress

∂τxz
∂εx

= −∂σc3r
∂εx

sin θr cos θr − σc3r cos2 θr
∂θr
∂εx

+ σc3r sin2 θr
∂θr
∂εx

∂τxz
∂εz

= −∂σc3r
∂εz

sin θr cos θr − σc3r cos2 θr
∂θr
∂εz

+ σc3r sin2 θr
∂θr
∂εz

∂τxz
∂ε3

= −∂σc3r
∂ε3

sin θr cos θr − σc3r cos2 θr
∂θr
∂ε3

+ σc3r sin2 θr
∂θr
∂ε3

B.5 Crack Spacing

∂a

∂εx
= −Srmx0 sin θr

∂θr
∂εx

+ Srmz0 cos θr
∂θr
∂εx

∂b

∂εx
= Srmx0 cos θr

∂θr
∂εx
− Srmz0 sin θr

∂θr
∂εx

∂c

∂εx
= 2(S2

rmx0 + S2
rmz0)(cos2 θr − sin2 θr)

∂θr
∂εx

∂d

∂εx
= (S2

rmx0 − S2
rmz0)2 sin θr cos θr

∂θr
∂εx

+ 2Srmx0Srmz0(cos2 θr − sin2 θr)
∂θr
∂εx
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∂η

∂εx
=

1

fct

∂τxz
∂εx

∂Srm
∂εx

=
1

2

[
∂a

∂εx
+

∂η

∂εx
b+ η

∂b

∂εx
− 1

2

(
ηc− d+ S2

rmx0 + η2(d+ S2
rmz0)

)− 1
2

·
(
∂η

∂εx
c+ η

∂c

∂εx
− ∂d

∂εx
+ 2η

∂η

∂εx
(d+ S2

rmz0) + η2
∂d

∂εx

)]

∂a

∂εx
= Srmx0 cos θr

∂θr
∂εx
− Srmz0 sin θr

∂θr
∂εx

∂b

∂εx
= −Srmx0 sin θr

∂θr
∂εx

+ Srmz0 cos θr
∂θr
∂εx

∂c

∂εx
= 2(S2

rmx0 + S2
rmz0)(cos2 θr − sin2 θr)

∂θr
∂εx

∂d

∂εx
= (S2

rmx0 − S2
rmz0)2 sin θr cos θr

∂θr
∂εx

− 2Srmx0Srmz0(cos2 θr − sin2 θr)
∂θr
∂εx

∂η

∂εx
=

1

fct

∂τxz
∂εx
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∂Srm
∂εx

=
1

2

[
∂a

∂εx
+

∂η

∂εx
b+ η

∂b

∂εx
− 1

2

(
ηc+ d+ S2

rmz0 + η2(S2
rmx0 − d)

)− 1
2

·
(
∂η

∂εx
c+ η

∂c

∂εx
+

∂d

∂εx
+ 2η

∂η

∂εx
(S2
rmx0 − d)− η2 ∂d

∂εx

)]

∂Srmx
∂εx

=
∂Srm
∂εx

sin θr − Srm cos θr
∂θr
∂εx

sin2 θr

∂Srmz
∂εx

=
∂Srm
∂εx

cos θr + Srm sin θr
∂θr
∂εx

cos2 θr

The derivatives of the crack spacing wrt εz and ε3 are obtained similiarly.

B.6 Reinforcement Stresses

Derivative of reinforcement stresses in x-direction wrt to εx:

If σsxr ≤ fsyx (Regime 1)

∂σsxr
∂εx

=

Esx + τb0
Dx

∂Srmx
∂εx

, if Esxεx + τb0Srmx
Dx

< 2Esxεx

2Esx, otherwise

Elseif σsx,min ≤ fsyx < σsxr (Regime 2)

∂σsxr
∂εx

=
2

τb0
τb1
− Esx

Eshx

[
τb0
Dx

∂Srmx
∂εx

− 1

2

{
(fsyx − Esxεx)

τb1Srmx
Dx

(τb0
τb1
− Esx
Eshx

)
+

Esx
Eshx

τb0τb1
S2
rmx

D2
x

}− 1
2

·
{(
− Esx

τb1Srmx
Dx

+ (fsyx − Esxεx)
τb1
Dx

∂Srmx
∂εx

)(τb0
τb1
− Esx
Eshx

)
+

Esx
Eshx

τb0τb1
2Srmx
D2
x

∂Srmx
∂εx

}]
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Elseif fsyx < σsx,min (Regime 3)

∂σsxr
∂εx

= Eshx +
τb1
Dx

∂Srmx
∂εx

Must check if slip is not occuring over the whole element (crack formation stage),

and in that case use other equations.

If x1 <
1
2Srmx (crack formation stage)

If x1
4τb0
Dx

(1 + nxρx) < fsyx

∂x1
∂εx

=
1

2

∂Srmx
∂εx

(√
n2xρ

2
x +

Esxεx
τb0

Dx

Srmx
− nxρx

)
+
SrmxEsxDx

4τb0

(
n2xρ

2
x +

Esxεx
τb0

Dx

Srmx

)− 1
2
(
Srmx − εx ∂Srmx∂εx

S2
rmx

)
∂σsxr
∂εx

=
∂x1
∂εx

4τb0
Dx

(1 + nxρx)

Else

∂x2
∂εx

=
1

2

[
1 + 4

αxEsx
Eshx

{Srmxτb1
Dxfsyx

(αxEsxεx
fsyx

− nxρx
)
− τb1

4αxτb0

}]− 1
2

[
∂Srmx
∂εx

(αxEsxεx
fsyx

− nxρx
)

+ Srmx
αxEsx
fsyx

]
∂σsxr
∂εx

=
∂x2
∂εx

4τb1
Dx

Derivative of reinforcement stresses in x-direction wrt to εz:

If σsxr ≤ fsyx (Regime 1)

∂σsxr
∂εz

=

 τb0
Dx

∂Srmx
∂εz

, if Esxεx + τb0Srmx
Dx

< 2Esxεx

0, otherwise
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Elseif σsx,min ≤ fsyx < σsxr (Regime 2)

∂σsxr
∂εz

=
2

τb0
τb1
− Esx

Eshx

[
τb0
Dx

∂Srmx
∂εz

− 1

2

{
(fsyx − Esxεx)

τb1Srmx
Dx

(τb0
τb1
− Esx
Eshx

)
+

Esx
Eshx

τb0τb1
S2
rmx

D2
x

}− 1
2

·
{

(fsyx − Esxεx)
τb1
Dx

∂Srmx
∂εz

(τb0
τb1
− Esx
Eshx

)
+

Esx
Eshx

τb0τb1
2Srmx
D2
x

∂Srmx
∂εz

}]

Elseif fsyx < σsx,min (Regime 3)

∂σsxr
∂εz

=
τb1
Dx

∂Srmx
∂εz

Must check if slip is not occuring over the whole element (crack formation stage),

and in that case use other equations.

If x1 <
1
2Srmx (crack formation stage)

If x1
4τb0
Dx

(1 + nxρx) < fsyx

∂x1
∂εz

=
1

2

∂Srmx
∂εz

(√
n2xρ

2
x +

Esxεx
τb0

Dx

Srmx
− nxρx

)
− SrmxEsxDx

4τb0

(
n2xρ

2
x +

Esxεx
τb0

Dx

Srmx

)− 1
2 εx
S2
rmx

∂Srmx
∂εz

∂σsxr
∂εz

=
∂x1
∂εz

4τb0
Dx

(1 + nxρx)

Else

∂x2
∂εz

=
1

2

[
1 + 4

αxEsx
Eshx

{Srmxτb1
Dxfsyx

(αxEsxεx
fsyx

− nxρx
)
− τb1

4αxτb0

}]− 1
2

∂Srmx
∂εz

(αxEsxεx
fsyx

− nxρx
)

∂σsxr
∂εz

=
∂x2
∂εz

4τb1
Dx

The expression for ∂σszr
∂εz

look similar to ∂σsxr
∂εx

, and the expressions for ∂σsxr
∂ε3

, ∂σszr∂εx
,

∂σszr
∂ε3

look similar to ∂σsxr
∂εz

.
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B.7 Axial Stresses

∂σx
∂εx

= ρx
∂σsxr
∂εx

+
∂σc3r
∂εx

cos2 θr − 2σc3r sin θr cos θr
∂θr
∂εx

The expressions for ∂σx
∂εz

and ∂σx
∂ε3

, are similar to ∂σx
∂εx

.

∂σz
∂εx

= ρz
∂σszr
∂εx

+
∂σc3r
∂εx

sin2 θr + 2σc3r sin θr cos θr
∂θr
∂εx

The expressions for ∂σz
∂εz

and ∂σz
∂ε3

, are similar to ∂σz
∂εx

.

B.8 Jacobian Matrix

J =


∂f1
∂εx

∂f1
∂εz

∂f1
∂ε3

∂f2
∂εx

∂f2
∂εz

∂f2
∂ε3

∂f3
∂εx

∂f3
∂εz

∂f3
∂ε3


where

∂f1
∂εx

=
∂σx
∂εx

,
∂f1
∂εz

=
∂σx
∂εz

,
∂f1
∂ε3

=
∂σx
∂ε3

∂f2
∂εx

=
∂σz
∂εx

,
∂f2
∂εz

=
∂σz
∂εz

,
∂f2
∂ε3

=
∂σx
∂ε3

∂f3
∂εx

=
∂τxz
∂εx

,
∂f3
∂εz

=
∂τxz
∂εz

,
∂f3
∂ε3

=
∂τxz
∂ε3
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C — Derivation of Crack

Spacing Formula

In the following the derivation of the crack spacing formula (3.32) is shown. The

formula is similar to the one shown in (Dabbagh & Foster 2006).

The derivation is based on (3.31)

fct
2

(λx + λz)−
τxz
2

(cotθr + tanθr)

+

√[τxz
2

(cotθr − tanθr)−
fct
2

(λx − λz)
]2

+ τ2xz ≤ fct (C.1)

At the limit, Eq. (C.1) can be solved on closed form. The equality may be written

as

Srm0

2

(
1

Srmx0 sin θr
+

1

Srmz0 cos θr

)
− η

2

(
cot θr + tan θr

)

+

√√√√[η
2

(
cot θr − tan θr

)
− Srm0

2

(
1

Srmx0 sin θr
− 1

Srmz0 cos θr

)]2
+ η2 = 1

(C.2)

where the following relations are used
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λx =
Srm0

Srmx0 sin θr

λx =
Srm0

Srmz0 cos θr

η =
|τxz|
fct

Now, the square root is left on one side and the other terms on the other side

of the equal sign. Furthermore, the squared expression inside the square root is

calculated

{
η2

4

(
cot2 θr + tan2 θr − 2

)
+
S2
rm0

4

(
1

S2
rmx0 sin2 θr

+
1

S2
rmz0 cos2 θr

− 2

Srmx0Srmz0 sin θr cos θr

)

− ηSrm0

2

(
cos θr

Srmx0 sin2 θr
− 1

Srmz0 sin θr
− 1

Srmx0 cos θr
+

sin θr
Srmz0 cos2 θr

)
+ η2

}1/2

= 1− Srm0

2

(
1

Srmx0 sin θr
+

1

Srmz0 cos θr

)
+
η

2

(
cot θr + tan θr

)
(C.3)

If both sides of the equality are squared, and all the terms organized, the following

is obtained

S2
rm0

[
1

Srmx0Srmz0 sin θr cos θr

]
− Srm0

[
1

Srmx0 sin θr
+

1

Srmz0 cos θr

]
+ η

(
1

Srmx0 cos θr
+

1

Srmz0 sin θr

)]
+

[
1 + η

(
cot θr + tan θr

)]
= 0

(C.4)

To simplify the expression, multiply with Srmx0Srmz0 sin θr cos θr, which gives
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S2
rm0 − Srm0

[
Srmx0 sin θr + Srmz0 cos θr + n

(
Srmx0 cos θr + Srmz0 sin θr

)]
+

[
Srmx0Srmz0 sin θr cos θr + nSrmx0Srmz0

]
= 0

(C.5)

Now, a quadratic equation with respect to Srm0 is obtained, and it can be solved

with the quadratic formula

S2
rm0A+ Srm0B + Srm0C = 0

Srm0 =
−B ±

√
B2 − 4AC

2A

Srm0 =
Srmx0 sin θr + Srmz0 cos θr

2
+
n(Srmx0 cos θr + Srmz0 sin θr)

2

± 1

2

{
S2
rmx0 sin2 θr + S2

rmz0 cos2 θr + 2Srmx0Srmz0 sin θr cos θr

+ η2
(
S2
rmx0 cos2 θr + S2

rmz0 sin2 θr + 2Srmx0Srmz0 sin θr cos θr

)
+ 2η

(
S2
rmx0 sin θr cos θr + S2

rmz0 sin θr cos θr − Srmx0Srmz0

}1/2

(C.6)

To make the expression easier to read, and reduce the risk of errors, the following

parameters is introduced

a =Srmx0 sin θr + Srmz0 cos θr

b =Srmx0 cos θr + Srmz0 sin θr

c =2(S2
rmx0 + S2

rmz0) sin θr cos θr − 2Srmx0Srmz0

d =(S2
rmx0 − S2

rmz0) sin2 θr − 2Srmx0Srmz0 sin θr cos θr

The expression for the maximum crack spacing becomes
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Srm0 =
a+ ηb−

√
ηc+ d+ S2

rmz0 + η2(S2
rmx0 − d)

2
(C.7)

This expression and the parameters a,b,c and d look almost similar to the expres-

sion given in Dabbagh & Foster (2006), but with a few small modifications. The

differences occur because of the choice of crack angle basis, where there is 90 de-

gree shift between the basis here and in the article of Dabbagh & Foster (2006).

However, the same approach may be applied for the other crack angle basis, to

obtain the result presented in Dabbagh & Foster (2006).
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D — Algorithm - The Iteration

Method

In the following a step by step algorithm is shown for the iteration method. It is

based on the derivations shown in section 4.2, and in accordance with Øverli &

Sørensen (2012). The algorithm is implemented in a Matlab program developed

for this thesis, called ”Iteration method.m”.

Step 1 - Decide the external load R (from FEM analysis). Also determine

geometry and necessary reinforcement amounts.

Step 2 - Calcuate the stiffness matrix K. For the initial iteration step assume

isotropic, linear elastic behaviour for concrete and linear elastic behaviour for re-

inforcement.

KC = ∆h

n∑
i=1

[
Cci −ziCci

−ziCci z2iCci

]

KS =

m∑
j=1

(
Asxj

[
Csxj −zjCsxj

−zjCsxj z2jCsxj

]
+Asyj

[
Csyj −zjCsyj

−zjCsyj z2jCsyj

])

K = KC +KS

Step 3 - Determine strains and curvatures at the middle plane of the shell

εt = K−1R

Step 4 - Determine the in-plane strains of each concrete and reinforcement layer

in the global xy-axes
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εxyi = Ai · εt

Step 5 - Determine the principal strains and principal directions in each concrete

layer

εpi = T (θi) · εxyi

θi =
1

2
tan−1

(
γxy,i

εx,i − εy,i

)

Step 6 - Calculate the principal concrete stresses in each concrete layer

σcpi = Ccpi · εpi

Step 7 - Transform the principal concrete stresses in each concrete layer to the

global xy-system

σcxyi = T T (θi) · σcpi

Step 8 - Calculate reinforcement stresses in each reinforcement layer

σsxyj = Csj · εxyj

Step 9 - Calculate the internal force vector

S = ∆h

n∑
i=1

[
σcxyi

−zi · σcxyi

]
+

m∑
j=1



Asxj · σsxj
Asyj · σsyj

0

−zjAsxjσsxj
−zjAsyjσsyj

0


Step 10 - Determine maximum relative deviation between components of internal

and external force resultants

108



Maxdiff = max

(
Rk − Sk
Rk

)
; k = 1, 2, .., n

Step 11 - Check convergence according to tolerance β

• If Maxdiff ≤ β equilibrium obtained, iterations may be terminated

• If Maxdiff > β equilibrium not obtained, calculations proceed

Step 12 - Find new secant moduli for all concrete and reinforcement layers

Ecii =
σci
εi
, Ec12 =

(Ec11 + Ec22)

2

Esxj =
σsxj
εsxj

, Esyj =
σsyj
εsyj

Step 13 - Calculate new material matrix for concrete

Ccpi =
1

1− ν2

 Ec11 νEc12 0

νEc12 Ec22 0

0 0 (1−ν)Ec12
2


Step 14 - Transform local stiffness matrix to global xy-system for each concrete

layer

Cci = T T (θi) ·Ccpi · T (θi)

Step 15 - Return to step 2
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