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Summary

Whatever his strategy is, an investor has to know the risk he will deal with in tak-
ing a short or long position on an asset or a derivative. On the financial market,
the Value at Risk is one of the values used to evaluate the risk. The main goal of
this value is to know up to which amount we can invest without risking a shortfall.
Currently, the methods to calculate this rate are developed in using the classical
statistics. The three most famous methods are the Variance/Covariance, the histor-
ical and the Monte Carlo methods.
Nevertheless, the shortfall is usually caused by an unpredicted event, sometimes
coming with an unpredicted cost. Consequently, it could be more coherent to study
the Value at Risk inside the Extreme Values Theory. In this paper, we are dealing
with the Average Conditional Exceedance Rate (ACER) functions built to permit
us to work on the extreme values. However, this method seems to be accurate to
predict values in a short interval but presents some limits concerning the calcula-
tion of the Value at Risk.
The goal of this Master’s thesis is to compare this extreme value technique with
the classical ones. We will detail as much as possible the different steps needed to
create this method and to implement it.
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Chapter 1
Introduction

In finance, analysts sometimes work on temporally close data. This configuration
makes it difficult to assume the independent distribution. Thus, the assumption of
identically independent distribution cannot be chosen.

In this paper, we will have a look on unexpected event and more precisely on
the value at risk that means the maximum value we can invest up to a certain risk.
To deal with low probability events, the extreme value theory seems to be the most
efficient. Indeed, the studied distributions will deviate from the median one and
consequently the classical statistics may be used with some troubles. Moreover, in
extreme value theory, some important results are already documented especially
concerning the asymptotic behaviour of a distribution. We know that the extreme
distribution will converge to one of the three following model: the Gumbel, the
Weidel or the Frechet distribution. To avoid the choice of the model, one general-
ized them towards the Generalized Extreme Value (GEV) distribution.

Our mission is to fit the distribution of the maxima of our data. To do that,
we will study the peaks over a threshold, giving us a technique to extract the large
values and how we reach them. Indeed, more than the peaks over a threshold we
will develop a function giving us the behaviour of the distribution before being
higher than this value. Finally, in choosing a threshold large enough, we will get a
distribution whose the behaviour can be managed by the extreme value theory. In
reversing the fitted GEV distribution, we will be able to get the VaR which will be
a certain value of threshold.

This paper will present how to build these Average Conditional Exceedance
Rate functions, model them and then getting the VaR by reversing them. But more
important, it will compare this ACER method to the classical covariance/variance,
historical and Monte Carlo (MC) methods. Finally, we will show the limits of this
technique on a practical case, the asset of the bank Societe Generale.
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Chapter 2
Value at Risk and classical methods

2.1 A famous financial notion : the Value at Risk

In financial markets, the art of evaluating the risk is a key to have a control on
the safety of an investment [13]. The Value at Risk (VaR) is a notion essentially
used in market risk. It estimates the evolution of the amount of a position during a
time period in function of the general market movements. In ”Options, futures and
other derivatives” of John Hull, they define the VaR by: ”I am X percent certain
there will not be a loss of more than VaR dollars in the next N days.” [1]. One
famous used of this notion is to ensure that after an event the financial institution
will still be in business. In this document, we focus on the use of the VaR for a
financial institution that means we use the VaR as the maximal loss during a given
time for a given probability.
Now, we define the VaR through a probabilistic framework. Let t be the time index,
l be the number of periods and ∆V be the change in value of the asset. Then we
have :

p = Pr(∆V (l) ≤ V aR) = Fl(V aR) (2.1)

If the cumulative distribution function (CDF) of the distribution, Fl(x), is known,
then the VaR is the pth quantile, that means :

V aR = inf{x|Fl(x) ≥ p} (2.2)

So we essentially need to know the CDF of the distribution. In practice, it is
unknown and we have to estimate, predict it.
To sum up, the element we need to estimate is the CDF and we should know the
probability interest p, the time horizon l, the frequency of data and the amount of
the financial position.

3



Chapter 2. Value at Risk and classical methods

2.2 Classical methods

2.2.1 Time series model

Riskmetrics or Variance-Covariance method

This method was developed by J.P. Morgan in 1992 [16]. To make the calculation
of the VaR easier, it assumes that the continuously compounded daily return fol-
lows a conditional normal distribution. We denote the daily log return by rt and
the information available at t− 1 by Ft−1. The assumption is so :

rt|Ft−1 ∼ N(µt, σ
2
t )

where µt is the conditional mean and σ2t is the conditional variance of rt. This
method also assumes that :

µt = 0 (2.3)

σ2t = ασ2t−1 + (1− α)r2t−1, with 0 < α < 1 (2.4)

Finally, the logarithm of the daily price, pt = ln(Pt) satisfies the difference equa-
tion pt − pt−1 = at.
at = σtεt follows an IGARCH(1,1) process without a drift.

For a k-return period, denoted by [k], we got the following property for the log
return:

rt[k] = rt+1 + ...+ rt+k−1 + rt+k

Under the IGARCH(1,1) model assumption, the conditional distribution rt[k]|Ft
is normal with mean zero and variance σ2t [k]. Therefore, we use the equation Eq
(2.4) and the independence assumption of εt, and we get:

σ2t [k] = V ar(rt[k]|Ft) =
k∑
i=1

V ar(at+i|Ft) =
k∑
i=1

E(σ2t+i|Ft)

In using Eq.(2.4), we have σ2t+i = σ2t+i−1 + (1− α)σ2t+i−1(ε
2
t+i−1 − 1).

We know that E(ε2t+i−1 − 1|Ft) = 0 by definition of the IGARCH model. So we
get

E(σ2t+i|Ft) = E(σ2t+i−1|Ft), for i = 2, ..., k

Now, we have V ar(rt+1|Ft) = σ2t+1 so σt[k] = kσ2t+1, and rt[k]|Ft ∼ N(0, kσ2t+1).
Consequently, according to the IGARCH(1,1) model, the conditional standard de-
viation of a k-period horizon log return is

√
kσt+1.

Now, we want to use these results to find an expression of the VaR. First we
need to set the probability to a given level (5% usually). Then according to the

4



2.2 Classical methods

normal distribution statistics table, we get the coefficient needed to apply the Risk-
Metrics. For example, for a probability of 5%, we obtain the coefficient 1.645,
that means P (Z > 1.645) = 0.05 where Z follows a standard normal distribution.
Then, in this example, the Riskmetrics will use 1.645σt+1 to measure the risk of
the portfolio because σt+1 represents the volatility of the asset at the time t+1. In
fact, it is the one-sided 5% quantile of a normal distribution with mean zero and
standard deviation σt+1. Then according to the property of the variance and an
affine transformation, we get:

VaR = Amount of a position × 1.645σt+1

VaR(k) = Amount of a position × 1.645
√
kσt+1

And so VaR(k) =
√
k VaR

Thus the VaR of a k-day horizon can be deduced from the VaR of the day t. So to
get the VaR with this method, the recipe is:

• Collect price data

• Create return series by differencing

• Estimate variance of return series

• Take the square root of the variance to get volatility

• Multiply the volatility by 1.645 times position size to get the estimate of
95% worst case loss. This is the VaR.

If the investor has several positions, we use the definition of the variance:

σ2(

n∑
i=1

Xi) =

n∑
i=1

σ2(Xi) + 2
∑

1≤i<j≤n
cov(Xi, Xj)

and we get the generalized formula:

VaR =

√√√√ m∑
i=1

VaR2
i + 2

m∑
i<j

ρijVaRiVaRj

where ρij =
Cov(rit,rjt)√
var(rit)var(rjt)

is the cross-correlation coefficient between the returns

of the ith and jth positions.

5



Chapter 2. Value at Risk and classical methods

Econometric approach

The previous method is simple but requires some strong assumptions like the nor-
mal one. It is sometimes difficult to check them like for fat tails and then the
method returns an underestimated VaR. In the following method, we will still use
a GARCH model but we will make different hypotheses in order to be able to reach
a correct VaR in more cases.
We consider again the log return rt of an asset [8].
By choosing to fit our problem with a GARCH model, we get the following sys-
tem:

rt = φ0 +

p∑
i=1

φirt−i + at −
q∑
j=1

θjat−j (2.5)

at = σtεt

σ2t = α0 +

u∑
i=1

αia
2
t−i +

v∑
j=1

βjσ
2
t−j (2.6)

The equations (2.5) and (2.6) represent the mean and volatility equations for rt.
The k-step ahead forecasts of the conditional mean and variance of rt can be done
using these two equations if we already know the parameters of the GARCH model
by estimating them first. We get :

r̂t(1) = φ0 +

p∑
i=1

φirt+1−i −
q∑
j=1

θjat+1−j

σ̂2t (1) = α0 +

u∑
i=1

αia
2
t+1−i −

u∑
j=1

βjσ
2
t+1−j

where u and v are smaller than t.
Now, we need to guess the distribution of εt. Two cases seem to present the best
ratio complexity/efficiency. First, we can assume that εt is Gaussian, then the
conditional distribution of rt+1 follows N [r̂t(1), σ̂2t (1)]. Quantiles can easily be
obtained and so the VaR. For example, the 5% quantile is r̂t(1)− 1.645σ̂2t (1).
Secondly, one can assume that εt follows a standardized Student-t distribution with
υ degrees of freedom. Then the quantile used to get the VaR will be r̂t(1) −
t∗υ(p)σ̂2t (1) where t∗υ(p) is the pth quantile of a standardized Student-t distribu-
tion with υ degrees of freedom. We only need to determine the relation between
quantiles of a Student-t distribution with υ degrees of freedom, tυ, and those of its
standardized distribution, t∗υ. We know that:

P (X ≤ q) = P (X∗ ≤ q√
υ(υ − 2)

6



2.2 Classical methods

where υ > 2, X follows a Student-t distribution and X∗ a standardized one.
So if q is the pth quantile of a Student-t distribution with υ degrees of freedom,
then q√

υ(υ−2)
is the pth quantile of a standardized Student-t distribution with υ

degrees of freedom.
To conclude, the quantile used to calculate the 1-period horizon VaR at time t is:

r̂t(1)− tυ(p)σ̂2t (1)√
υ(υ − 2)

where tυ(p) is the pth quantile of a student-t distribution with υ degrees of free-
dom.
In this part, we want to extend the previous results for multiple periods forecasting.
Let Fh be the set of data known at time h. We provide more explanations about
the Time Series models in appendix.
We want to find the conditional mean E(rh[k]|Fh) = rh(1) + rh(2) + ...+ rh(k).
To obtain the forecast of rt we will transform the ARMA model of the Eq.(2.5) in
an infinite MA representation:

rt = µ+ at + ψ1at−1 + ψ2at−2 + ....

Moreover, we should find the forecast error to know how accurate is the result. We
can write the l-step ahead forecast error at the time origin h as:

eh(l) =rh+l − rh
=ah+l + ψ1ah+l−1 + ...+ ψl−1ah+1

And so the forecast error of the expected k-period return r̂h[k] is the sum of the
forecast errors of rt at the origin h up to h+ k. We have:

eh[k] =eh(1) + ...+ eh(k)

=ah+1 + (ah+2 + ψ1ah+1) + ...+
k−1∑
i=0

ψiah+k−i

=ah+k +

k−1∑
j=1

(

j∑
i=0

ψi)ah+k−j

where ψ0 = 1
We can try to guess the expected volatility. The volatility forecast of the k-period
return at origin h is the conditional variance of rh[k] given Fh. We will use the
independent assumption of εt+i with i = 1,...,k and the pseudo linear property of

7



Chapter 2. Value at Risk and classical methods

the variance.
We have:

var(eh[k]|Fh) =var(ah+k|Fh) + (1 + ψ1)
2var(ah+k−1|Fh) + ...

+(
k−1∑
i=0

ψi)
2var(ah+1|Fh)

=σ2h(k) + (1 + ψ1)
2σ2h(k − 1) + ...+ (

k−1∑
i=0

ψi)
2σ2h(1)

where ψ0 = 1 and σ2h(l) is the l-step ahead volatility forecast at the forecast origin
h.
If the volatility model is the GARCH model in Eq (2.6) then this volatility forecast
can be computed recursively. Indeed, we can directly get σh(1) from the equation
Eq (2.6).
If εt is Gaussian, then the conditional distribution of rh[k] given Fh is normal with
mean kµ and variance var(eh[k]|Fh). We can then get the quantiles needed in VaR
calculation.

2.2.2 The historical method

The historical method uses the past performance, data to forecast the new ones. In
fact, this method assumes that ”the past is a good indicator of the near-future.” We
can split this method of Full Valuation in 4 steps [8].

First, we have to calculate the returns, also called price changes, of all the
assets in the portfolio for each time interval. For example, if we have the past
year of daily data, we can choose a time interval of one day. This requirement can
show one weakness of this method. Indeed, Historical Simulations VaR requires a
long history to get a meaningful VaR. One year of monthly returns should not be
sufficient to get a VaR we can trust.

Then, we applied each calculated price changes to the current value of the
asset. We assume that these returns can appear with the same likelihood than
before. So for each time interval we get a new value of our asset and then we can
re-value our portfolio. For example, for a daily return with 365 data points, we
will get 365 simulations.

Finally, we have to sort our results from the lowest to the highest value. In
function of the wanted confidence level, we can now ”read” the value of the VaR.
Indeed the VaR at (1 − α)% confidence level is the mean of the simulated values
minus the α% lowest value because we are working with the returns. We have:

VaR1−α = µ(R)−Rα

8



2.2 Classical methods

where

• V aR1−α is the estimated VaR at the confidence level (1− α)

• µ(R) is the mean of the simulated returns

• Rα is the return of the simulated series that corresponds to the level of sig-
nificance α.

Another implementation of the historical method is to get again all the simula-
tions, sort them and then take the one corresponding to the 1− α percentile.
But now the ith simulation will be:

vin+1 = vn
vi
vi−1

where vn corresponds to the actual value of the asset, and i < n.

2.2.3 Monte Carlo method

In this subsection, we will explain one of the most famous and used method to cal-
culate the VaR : the Monte Carlo (MC) simulation. This method can be applied on
all portfolios and so we can calculate all VaR with it. Indeed, it uses no assumption
about the shape of the volatility or the response of the market about an event. MC
method will revalue the VaR in each scenario.

Work on the data

First to use the MC simulation [7], we have to identify our assets and to transform
their values in percentages of change. The horizon time, k, will be required to
know the data we will use. Indeed, the quantity of data is directly related to the
accuracy and the length of the forecast. If we want a solution more accurate or a
longer forecasting, we will have to use more data points. We can then calculate the
new data vector for each asset in using the following formula :

Vnew, asset i(t) =
Vold, asset i(t+ k)− Vold, asset i(t)

Vold, asset i(t)

Secondly, we have to get the covariance matrix Σ of the data where each col-
umn is a data vector. The classical formula using the mean can be used and so we
get :

Σ(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

n− 1
= Σ(Y,X)

where

9



Chapter 2. Value at Risk and classical methods

• X and Y are two different assets

• n is the number of data points.

• X̄ is the mean of X : X̄ =
∑n
i=1Xi
n

We can also use a more statistical definition of the covariance matrix:

Σ(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]

where E() is the expected value.
We know, by definition, that E(AX + a) = AE(X) + a where A is a matrix

q × p, X a vector p× 1 and a a vector q × 1.
Now we will discuss some important properties of the covariance matrix and

so of Σ. Obviously, we can notice that the matrix is symmetric by construction.
Another nice property for us is the possibility to reduce the number of studied
assets in using: {

Cov(X + Z, Y ) = Cov(X,Y ) + Cov(Z, Y )
Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z)

(2.7)

The covariance matrix can be directly modified in case of linear change of the
market. Indeed, we have:

Cov(AX + a,BY + b) = ACov(X,Y )BT . (2.8)

Now, we are giving a proof of the two previous results:

Cov(X + Z, Y ) =

∑n
i=1(Xi + Zi − X̄ − Z̄)(Yi − Ȳ )

n− 1

=

∑n
i=1(Xi − X̄)(Yi − Ȳ ) +

∑n
i=1(Zi − Z̄)(Yi − Ȳ )

n− 1

=

∑n
i=1(Xi − X̄)(Yi − Ȳ )

n− 1
+

∑n
i=1(Zi − Z̄)(Yi − Ȳ )

n− 1

= Cov(X,Y ) + Cov(Z, Y )

Cov(AX + a,BY + b) = E[(AX + a− E(AX + a))(BY + b− E(BY + b))T ]

= E[(AX + a−AE(X)− a)(BY + b−BE(Y )− b)T ]

= E[A(X − E(X))(B(Y − E(Y )))T ]

= E[A(X − E(X))(Y − E(Y ))TBT ]

= AE[(X − E(X))(Y − E(Y ))T ]BT

= ACov(X,Y )BT

10



2.2 Classical methods

Finally, with the previous properties, we will prove the semi definite positive-
ness of the covariance matrix. According to our linear algebra classes, Σ is positive
definite if and only if for all vector u, we have uΣuT ≥ 0. Let u be a vector.

uTΣu =
n∑
i=1

n∑
j=1

uiCov(Xi, Xj)uj

in using (2.8) because ui is a number so equal to his transpose,

=
n∑
i=1

n∑
j=1

Cov(uiXi, ujXj)

according to (2.7),

= Cov(
n∑
i=1

uiXi,
n∑
j=1

ujXj)

= V ar(

n∑
i=1

uiXi) ≥ 0

, by definition of the variance.

Thus, the covariance matrix is semi definite positive.
Nevertheless, we can face some difficulties if some data points are missing like

800 values for the asset 1 and 650 for the asset 2. Indeed, the covariance matrix
will not be diagonalizable as required for the next step. The best thing to do is to
approximate the missing values by an interpolation, a Brownian bridge or some
regressions.

Diagonalization of the covariance matrix

We know that Σ is diagonalizable and symmetric and so we want to write it as: Σ =
V DV T where D is a diagonal matrix with the eigenvalues of Σ on the diagonal and
V is the matrix containing the eigenvectors of Σ. We can write V T and notV −1

because Σ is symmetric:

Σ = ΣT ⇔ V DV −1 = (V −1)TDV T

by identification, we have: V T = V −1

11
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Then to build this matrix, we need the eigenvalues of Σ and the eigenvectors asso-
ciated. The function eigen(x, symmetric) on R will permit us to get them. [12]
How works this function?
First, Σ, a real symmetric matrix, is reduced to real tridiagonal matrix T. Then
we have: Σ = QTQT where Q is orthogonal and T tridiagonal. The goal of this
reduction is to make the research of the eigenvalues easier. Indeed, one can eas-
ily prove that the eigenvalues of Σ are the same as the ones of T (much easier to
analyse). To get the matrix T, the function eigen() uses the Householder algorithm.
The Householder reflection theorem is fundamental in this algorithm.

Theorem 2.2.1. If X and Y are vectors with the same norm, there exists an orthog-
onal symmetric matrix P such that:

Y = PX

where, P = I − 2WW T , W =
X − Y
‖X − Y ‖

P is called a Householder matrix, and is symmetric and orthogonal. That
means we can, for each step k, find a Householder matrix such that: Pkxk =
yk = (0, ..., 0, v, xk(k), v, 0, ..., 0)T where xk(k) is the kth element of the vec-
tor xk and v is chosen to validate the requirement of the Householder reflection
theorem. We can use this process for the n column vectors of Σ and so get a
sequence of Householder matrices. We complete the previous matrices by some
1 and 0 in order to not change the values of the other columns. Finally we get
T by multiplying on both sides Σ by the product of the Householder matrices:
T = PnPn−1...P1ΣP1...Pn−1Pn where Σ is a n×n matrix.
Now, we will apply the QR algorithm on the matrix T. The iterations are quite
simple, we will decompose the matrix A as a product of an orthogonal matrix Q
and an upper triangular one R, A = QR. Then A will get RQ. And we will iterate
that until all values of A below the diagonal will converge to 0. The values on the
diagonal of A will be equal to the eigenvalues of the original matrix. At the last
iteration, Q will contain the eigenvectors of A.

Finally, the eigenvectors’ matrix of Σ will be the multiplication ofPnPn−1...P1

by the matrix Q. The main advantage of the tridiagonalization is to reduce the com-
plexity of each step of the QR-algorithm from O(n3) to O(n).

Creation of the random vector

In parallel with the building of the covariance matrix, we need to generate a ran-
dom vector of length n. Of course, it is impossible to create an algorithm generat-
ing random numbers for the simple fact that is an algorithm. As we are working

12



2.2 Classical methods

with the software R, we will develop the algorithm used for MC simulation with
R. Obviously, producing a vector of n pseudo random numbers between 0 and 1
is done by R with the function: runif(n, min = 0, max = 1) But now the rele-
vant question is: which algorithm is used by this function? This function uses the
algorithm of Mersenne Twister [26] designed by Makoto Matsumoto and Takuji
Nishimura in 1997. It is a pseudorandom number generator (PRNG). Its period
length is equal to the Mersenne prime, 219937 − 1 (explaining its name). It is the
most common PRNG, efficient for a lot of simulations like MC simulation but not
enough secure to be used in cryptography. To understand this algorithm, we need
some background about bits’ operations and how a computer works:

• First of all, we need to know that computers write integers with bits that
means an integer X will be saved as (xw, ..., x0) where X is written as∑w

i=0 xi2
i where n depends also on the memory size of the device, X is

decomposed on the 2 basis.

• Secondly, the shift, ”XOR” and ”AND” operators are essential to deal with
computers and numbers. The left (right) shift operator can be symbolized
by� (�) and we have for a v bits shift:

X � v = (xw−v, ..., x0, 0, ..., 0)

X � v = (0, ..., 0, xw, ..., xv+1)

The ”XOR” and ”AND” operators are well known, symbolized by⊕ and⊗.
Let X be equal to

∑w
i=0 xi2

i and Y to
∑w

i=0 yi2
i. Then we have :

X ⊕ Y =

w∑
i=0

(xi ⊕ yi)2i, where xi ⊕ yi = xi + yi modulo 2

X ⊗ Y =

w∑
i=0

(xi ⊗ yi)2i, where xi ⊗ yi = xi × yi modulo 2

• Moreover, we have to introduce a new function A, key of the algorithm. Let
x be a number such as x = (xw, ..., x0) in bits’ notation.

A(x) =

{
(x� 1)⊕ 0 if x is even
(x� 1)⊕ a otherwise

where a is a given constant.

• Finally, we introduce to key values M r where the r first bits are equal to 1
and the others to 0 and M r where the r last bits are equal to 1 and the others
to 0.

13
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The algorithm of Mersenne Twister can be decomposed in two essential steps.
The recurrence operation is followed by a tempering one whose the goal is to create
more entropy. The recurrence operation can be written as :

Xk+n = Xk+m ⊕A[(Xk+1 ⊗M r)⊕ (Xk ⊗M r)]

where n, r, k are positive constant and 0 ≤ m ≤ n. The tempering process is
defined by:

Y ← Xk+n

Y ← Y ⊕ (Y � u)

Y ← Y ⊕ ((Y � s)⊗ b)
Y ← Y ⊕ ((Y � t)⊗ c)
Y ← Y ⊕ (Y � l)

where Xk+n is the result of the previous step and u, s, b, t, c, l are some given
constants. The main goal of this step is to mix the bits ofXk+n and so create some
entropy.

Now, we just need to apply a function to get a value between 0 and 1 :

Uk =
Yk + 0.5

2w

The most famous Mersenne Twister generator is the MT19937 generating
pseudorandom numbers Uk with the following parameters:

• ω = 32, word size

• n = 624, degree of recurrence

• r = 31, separation point of one word

• m = 397, middle word

• a = 2,567,483,615, coefficients of the rational normal form twist matrix

• u = 11 and l = 18, additional Mersenne Twister tempering bit shifts/masks

• s = 7 and t = 15, TGFSR(R) tempering bit shifts

• b = 2,636,928,640 and c = 4,022,730,752, TGFSR(R) tempering bitmasks

This choice of parameters permits us to maximize the period, equals to 2w×n−r−1
which is a Mersenne prime.
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2.2 Classical methods

Get the VaR

As Σ, the covariance matrix, is symmetric, positive semi definite, we know that it
is diagonalizable with positive eigenvalues according to the linear algebra. Thus,
we can write : Σ = V TΛV where Λ is a diagonal matrix with the eigenvalues of Σ
on its diagonal, and V is the eigenvectors’ matrix. As the eigenvalues are positive,
we can write: Σ = V TΛ

T
2 Λ

1
2V and notice that Σ = BTB where B = Λ

1
2V .

And now comes the interesting and surprising part. Let X be a vector of length
n and with values randomly distributed between 0 and 1: X ∼ N(0, 1).
We can first notice that XB ∼ N(0,Σ),

E(XB) = E(X)B = 0, because B is a constant matrix and E(X) = 0

V ar(XB) = BTV ar(X)B = BTB = Σ, because Var(X) = 1

We manage to generate for each asset, a vector of length n as big as we want,
with the same characteristics than the data vector. Or the Value at Risk is contained
in the tail of the curse. In increasing the number of values we are improving the
accuracy and so we are doing like a zoom on the tail. The value of the VaR will be
better.

For example with 100 values of the asset 1, we can generate a vector with
10,000 values with the same characteristics. And now the VaR at level 5% will not
be the 95th value but the 9500th.

2.2.4 Comparison of the three methods

The historical method and the Variance/Covariance method are limited by their
first assumption. Indeed, they use a well known distribution (normal one or t-
student one) to approximate the data or one statistics of the data.
The historical simulation method requires an important amount of data. The accu-
racy of this method is directly related to this amount.
The first problem that faced the MC method was the speed of the method. To deal
with that, one needed to speeding up each revaluation or sampling fewer scenario
or both. Indeed, a diagonalization of a matrix has a huge cost in time. Neverthe-
less, the biggest asset of this method is the accuracy we can get with a normal sized
set of data. Moreover, it allows for any distribution and securities (we do not need
to assume the distribution to be normal for example).
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Chapter 3
The ACER method

3.1 Extreme values theory

3.1.1 Description of the model

In extreme value theory, we focus on the minimal and maximal values of the
data set and in our study we will be more interested by the maximum to get the
VaR. In all the theoritical part, we used the followinf references: [3] [4] [15] [20]
[11]. So, the model’s goal is essentially to represent the statistical behaviour of
Mn = max{X1, ..., Xn} where X1, ..., Xn is a sequence of independent random
variables coming from our data and following a common distribution function F.
For example, if the Xis represent the hourly value of an asset, Mn could be the
daily return of this asset and so n would be equal to 12.
Theoretically, the distribution of Mn can be derived directly from all values of Xi

because:

Pr(Mn ≤ z) = Pr(X1 ≤ z, ...,Xn ≤ z)
= Pr(X1 ≤ z)× ...× Pr(Xn ≤ z)

because the Xi’s are independent,

Pr(Mn ≤ z) = [F (z)]n

But usually we do not know the distribution F. Indeed, when the data is col-
lected, we get just some values, points. Moreover, estimating F from the observed
data even with accurate techniques seems to not be efficient especially concerning
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Chapter 3. The ACER method

the accuracy.Indeed, a small error about F can be a big one for the distribution of
Mn because of the power function.
The only available solution is to study directly the distribution of Mn, which is
[F (z)]n, to avoid the use of the power function. It is for this purpose that the
theory of extreme value was developed. This theory will be really close to the
usual practice of approximating the distribution of sample means by the normal
distribution, that means the use of the central limit theorem.

In extreme value theory, we are looking the behaviour of Fn as n tending to
infinity. This raw analysis faces a problem of degeneration of Fn. For all z < z∗

we have Fn(z)→ 0 as n→∞, z∗ is defined by: z∗ = inf{z|F (z) = 1}.
To avoid this problem, we use a linear re-normalization of the variable Mn:

M∗n =
Mn − bn

an
(3.1)

where an is a sequence of strictly positive constants and bn is a sequence of con-
stants.Thanks to these two sequences, the location and scale of M∗n are stabilized.
Thus, now we will try to approximate the distribution of M∗n with good stabilizers
instead of working with Mn.

3.1.2 The extremal types theorems

This theorem, also called the Fisher-Tippett-Gnedenko theorem, gives us the entire
range of possible limit distributions for M∗n.
The most important theorem in this paper can be stated as:

Theorem 3.1.1. If there exist sequences of constants an > 0 and bn such that:

Pr(
Mn − bn

an
≤ z)→ G(z), as n→∞

, where G is a non-degenerate distribution function, then G belongs to one of the
following families:

1. G(z) = exp[− exp(− z−b
a )], −∞ < z <∞;

2. G(z) =

{
0, z ≤ b

exp[− z−b
a

−α
], z > b

3. G(z) =

{
exp[−(− z−b

a

α
)], z < b

1, z ≥ b

for parameters a > 0, b and α > 0.
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3.1 Extreme values theory

This theorem gives us three possible models for the distribution of Fn(z) for
a number of points big enough.
The three distributions are called the extreme value distributions. The first one is
the Gumber extreme value distribution, the second one is the Fréchet one and the
last one is the Weibull one.
a is the scale parameter, b the location one and α is the shape parameter when
it exists. The strength of this result is that when Mn is stabilized with suitable
sequences an and bn, then the normalized variable M∗n can only have one of the
three limiting distributions seen previously.

Figure 3.1: Limiting distributions

However, the choice of the model can become a big issue. As we can see on
the chart, the major difference between the three models takes place in the tail of
the plot, more precisely for z > z∗ , defined previously. The plot represents the
three distributions applied on a data composed of values following an uniform law
between 0 and 50.
If z∗ is finite, we should choose the Weibull distribution, if z∗ is infinite we can fit
the data by the Fréchet or the Gumbel model. This remark can easily be verified
with the formula of the three models.
Then to differentiate the Fréchet and the Gumbel model, we have to analyse the
decrease of the density of G, specially on the tail of the plot. If it decays exponen-
tially, the best fit will be the Gumbel distribution, if it is polynomially the best will
be the Fréchet one.
Even if it seems possible to choose rationally one of the three models, the need to
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use a technique to fit the data with a distribution brings at least one more step into
the calculation and consequently some inferences due to a tiny difference between
the models for a data set. Consequently, it is easier to reformulate the problem
and give a general formulation of the limiting distribution. So the Fisher-Tippett-
Gnedenko theorem becomes :

Theorem 3.1.2. If there exist sequences of constants an > 0 and bn such that:

Pr(
Mn − bn

an
≤ z)→ G(z), asn→∞

for a non-degenerate distribution function G, then G is a member of the General-
ized Extreme Value (GEV) family:

G(z) = exp[−(1 + ξ
z − µ
σ

)
− 1
ξ ] (3.2)

defined on {z|1 + ξ z−µσ > 0}, where −∞ < µ <∞, σ > 0 and −∞ < ξ <∞.

Now, we will show the equivalence between the two theorems.

• ξ < 0,
The defined set becomes {z|z < −σ

ξ + µ} which is well of the form z < b.
Moreover the general form with ξ < 0 is close to the Weibull distribution on
the varying part (that means for z < b).

• ξ > 0,
The defined set becomes {z|z > σ

ξ + µ} which is well of the form z > b.
Furthermore, the general form with ξ < 0 is close to the Fréchet distribution
on the varying part (that means for z > b).

• ξ → 0,
To show the similarity between the GEV distribution with ξ → 0 and the
Gumbel distribution we can work on the GEV distribution and show that the
Taylor expansion of order 1 is equal to the Gumbel distribution.

G(z) = exp[−(1 + ξ
z − µ
σ

)
− 1
ξ ]

= exp[− exp(−1

ξ
ln(1 + ξ

z − µ
σ

))]

= exp[− exp(−1

ξ
ln(1 + x)]
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, where x = ξ z−µσ , x→ 0 when ξ → 0

= exp[− exp(−1

ξ
(x+O(x2))]

∼
x→0

exp[− exp(−1

ξ
x)]

∼
x→0

exp[− exp(−1

ξ
ξ
z − µ
σ

)]

∼
x→0

exp[− exp(−z − µ
σ

)]

Thus, according to the defined set is {z|1 > 0} and it is the same as for the
Gumbel distribution: −∞ < z < ∞, we proved that the GEV distribution
for ξ = 0 is in fact the Gumbel distribution.

The equivalence between the two theorems is true and with the GEV family we
avoid the mistakes and the inferences bring by the choice of the model. Indeed,
the data itself determines directly the type of tail behaviour through the value of
ξ. Finally with ξ and more precisely the lack of certainty in the value of ξ, we can
measure the accuracy for the data to fit one of the three models.

The normalizing constants an and bn, unknown, seems to be a difficulty to
face. Nevertheless, for large value of n, if Pr(Mn−bn

an
≤ z) ≈ G(z) then we have:

Pr(Mn ≤ z) ≈ G(
z − bn
an

) = G∗(z)

Obviously, if G is a member of the GEV family, then G∗ is also a member of this
family.
We will give a sketch of the proof of the Fisher-Tippett-Gnedenko theorem. First
we need the definition of max-stable. A distribution G is max-stable if, for every
n=2, 3, ..., there are constants αn > 0 and βn such that Gn(αnz + βn) = G(z).
The following lemma will be assumed true because the proof requires complex
analysis knowledge:

Lemma 3.1.3. A distribution is max-stable if and only if it is a GEV distribution.

Thanks to this theorem the proof of the Fisher-Tippett-Gnedenko theorem is
much easier.

Proof. Let Mnk be the maximum random variable in a sequence of n × k identi-
cally distributed variables, n is large enough.
We can see Mnk as the maximum of a sequence of nk values or as the maximum
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of a sequence of k values where each value is the maximum of a sequence of n
observations.
Let G be the limit distribution of Mn−bn

an
.

As n is large enough, by the Fisher-Tippett-Gnedenko theorem, we have:

Pr(
Mn − bn

an
≤ z) ≈ G(z) (3.3)

So for any integer k, as nk is large, we get: Pr(Mnk−bnk
ank

≤ z) ≈ G(z) that means

Pr(Mnk ≤ z) ≈ G( z−bnkank
).

On the other hand, Mkn is the maximum of k variables, having the same distri-
bution as Mn, Pr(Mkn−bn

an
≤ z) = [Pr(Mn−bn

an
≤ z)]k. So Pr(Mnk ≤ z) ≈

Gk( z−bnan
. Now we are doing the change of variable : z∗ = z−bnk

ank
and we get:

G(z∗) ≈ Gk(ankz ∗+bnk − bn
an

) ≈ Gk(αkz ∗+βk)

where αk = ank
an

and βk = bnk−bn
an

.
Thus, G is max-stable and therefore a member of the GEV family by the previous
theorem.

Finally, in this last part, we will talk a bit about one classical estimation method,
the maximum likelihood estimation. This well-known technique requires some
regularity conditions satisfies when ξ > −0.5. In this case the maximum like-
lihood estimators are regular and we have the usual asymptotic results. For the
following part, we will work under this condition.
We are still assuming that the variables Z1, ..., Zn are independent ad follow a
GEV distribution. We have two cases to treat in function of the value of ξ:

• ξ 6= 0,
The log-likelihood for the GEV parameters is:

l(µ, σ, ξ) =− n log(σ)− (1 +
1

ξ

n∑
i=1

log(1 + ξ(
zi − µ
σ

))

−
n∑
i=1

(1 + ξ(
zi − µ
σ

)
− 1
ξ )

provided that,

1 + ξ(
zi − µ
σ

) > 0, for i = 1, ..., n.
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When the last condition is not respected, that means at least one of the ob-
served data falls beyond an end-point of the distribution, the log-likelihood
equals −∞.

• ξ = 0,
In using the Gumbel limit of the GEV distribution, we get the following
log-likelihood:

l(µ, σ) = −n log(σ)−
n∑
i=1

zi − µ
σ
−

n∑
i=1

exp(−zi − µ
σ

)

Thanks to this result, we have a technique to estimate the value of the parame-
ters in maximising the log-likelihood.

To illustrate the role of each parameters we will use a data vector X uniformly
distributed between 0 and 50: X = (0, 1, 2, ..., 50). As said previously, these
distributions have a behaviour inside the extreme value field quite similar to the
one of the normal distribution in the usual statistical field.
First the parameter b is a position parameter. When the value of b is modified, we
just translate the chart to the right or the left: it is a translation on the x axis.
This result is coherent with the following plot but also with the formula of the
limiting distribution. The role of b is similar to the one of the mean µ in the
normal distribution.

Figure 3.2: b as a location parameter

Secondly, the parameter a will have an influence on the scale of the curve.
Similarly to the variance for the cumulative distribution function of the normal
law, it will modify the angle of the change of curve explaining the name of scale
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parameter. Again, this can be seen on the following plot but also in the formula of
the limiting distributions (quite similar to the normal one).

Figure 3.3: a as a scale parameter

Finally, the parameters α or ξ, depending on if we use the GEV distribution or
the Fréchet/ Weibull distributions, will modify the shape of the graph, especially
on the tail. We can see that onto the following graphs.

Figure 3.4: alpha as a shape parameter
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3.2 ACER method

Now, we will develop the core of this paper, the estimation of extreme values by the
Average Conditional Exceedance Rate (ACER) method and more precisely how to
get the VaR from this method. The studied ACER method was explained in the
research article published in 2013 by A. Naess, O. Gaidai and O. Karpa [18].
The strength of this method is to take in consideration possible statistical depen-
dence between the data and to avoid to ensure the independence of the data, a
condition often needed in methods to estimate extreme values. The main goal of
this method is to offer more flexibility than the others like asymptotic extreme
value distributions.

3.2.1 Approximations to reach the ACER functions

We consider a stochastic process Z(t) (definition given in annexe) observed over
a time interval (0,T). From this process, values allocated to the discrete times in
(0,T) are derived to give us X1, ..., Xn. These values can be either Z(t) evaluated
in times t1, ..., tn inside the time interval (0,T), or a statistics of values of Z(t) in N
different points (like average values on interval of length T

N+1 ).
In this paper, we are studying the VaR and so we are working with the extreme

value theory. Consequently, we will focus on how to determine the distribution
of the extreme value Mn = max(X1, .., Xn) and more precisely how to estimate
P (η) = Pr(Mn ≤ η) for large values of η.
So by definition and some calculations, we get:

P (η) = Pr(Mn ≤ η)

= Pr(XN ≤ η, ..., X1 ≤ η)

= Pr(XN ≤ η|XN−1 ≤ η, ..., X1 ≤ η)× Pr(XN−1 ≤ η, ..., X1 ≤ η)

=

N∏
j=2

Pr(Xj ≤ η|Xj−1 ≤ η, ...,X1 ≤ η)× Pr(X1 ≤ η)

So,

P (η) =

N∏
j=2

Pr(Xj ≤ η|Xj−1 ≤ η, ...,X1 ≤ η)× Pr(X1 ≤ η) (3.4)

In this method, we are assuming that the variables Xj are statistically dependent
what is true most of the time. If we were under the assumption that all the Xj are
statistically independent we could get the classical approximation (often used in
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the other methods):

P (η) ≈ P1(η) =
N∏
j=1

Pr(Xj ≤ η).

For the ACER method, we will build a sequence of probabilities where the
value k will correspond to the number of steps memory approximation we will
account that means the number of points we will tale for the dependence between
the Xj’s. For example, if k =8, we will assume that the value of Xj is dependent
only of the values of Xj−i where i = 1,...,8. Consequently, Xj will be independent
of the values anterior toXj−8.We will show how to build recursively this sequence.
For k = 2 we have :

Pr(Xj ≤ η|Xj−1 ≤ η, ...,X1 ≤ η)

≈ Pr(Xj ≤ η|Xj−1 ≤ η) , for 2 ≤ j ≤ N

Then we get: P (η) ≈ P2(η) =
N∏
j=2

Pr(Xj ≤ η|Xj−1 ≤ η)Pr(X1 ≤ η)

We assume now that for a general k, 2 ≤ k ≤ N − 1, we have:

P (η) ≈Pk(η)

=

N∏
j=k

Pr(Xj ≤ η|Xj−1 ≤ η, ...,Xj−k+1 ≤ η)

k−1∏
j=2

Pr(Xj ≤ η|Xj−1 ≤ η, ...,X1 ≤ η)Pr(X1 ≤ η)

We want now show that we can get a similar formula for k̃ = k + 1. By condi-
tioning on one more data point, the one-step memory approximation is extended
to:

N∏
j=k

Pr(Xj ≤ η|Xj−1 ≤ η, ...,Xj−k+1 ≤ η)

≈
N∏

j=k+1

Pr(Xj ≤ η|Xj−1 ≤ η, ..., Xj−k ≤ η)Pr(Xk ≤ η|Xk−1 ≤ η, ...,X1 ≤ η)
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So,

P (η) ≈Pk̃
=Pk+1(η)

=

N∏
j=k+1

Pr(Xj ≤ η|Xj−1 ≤ η, ...,Xj−k ≤ η)Pr(Xk ≤ η|Xk−1 ≤ η, ..., X1 ≤ η)

k−1∏
j=2

Pr(Xj ≤ η|Xj−1 ≤ η, ..., X1 ≤ η)Pr(X1 ≤ η)

=
N∏

j=k+1

Pr(Xj ≤ η|Xj−1 ≤ η, ...,Xj−k ≤ η)

×
k∏
j=2

Pr(Xj ≤ η|Xj−1 ≤ η, ...,X1 ≤ η)Pr(X1 ≤ η)

With this construction, we can easily see that P (η) = PN (η).
Now, we will have a look on this sequence to find a relation between them and

so a technique to get them.
Let αkj(η) = Pr(Xj > η|Xj−1 ≤ η, ..., Xj−k+1 ≤ η) for 2 ≤ k ≤ j.
αkj denotes the exceedance probability conditional on k - 1 previous nonexceedances
that means the probability that the jth is bigger than η given that all the previous
values are smaller.∑N

j=k αkj(η) is the expected effective number of independent exceedance events
provided by conditioning on k - 1 previous observations.
With this notation, we have α1j(η) = Pr(Xj > η), j = 1, ..., N and so P1(η) =∏N
j=1(1− α1j(η)).∑N
j=1 α1j(η) represents the expected number of exceedances of the threshold η

during the time interval (0,T).
Moreover we know that the αkj’s are small enough when η is big to approximate
1−αkj by exp(−αkj) in using a Taylor expansion of the exponential function. So
we have:

P (η) ≈
η→∞

F1(η) = exp(−
N∑
j=1

α1j(η))

With the same process, we can approximate each member of the sequence Pk(η)
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Chapter 3. The ACER method

by:

P (η) ≈
η→∞

Fk(η) = exp(−
N∑
j=k

αkj(η)−−
k−1∑
j=1

αjj(η))

and Fk(η)→ P (η) as k → N

Then we reach the wanted result FN (η) = P (η) for η →∞.
This result is true under the simple assumption that : there is a value k̂ strictly
inferior to N such that Fk̂(η) = FN (η). That means there exists a value of k such
that the fact to add one step memory to the approximation will not really change
the result of the function F.
According to the previous assumption about a cut-off value, for k big enough,∑k−1

j=1 αjj(η) is negligible compared to
∑N

j=k αkj(η).
Consequently, we will simplify our function and get for stationary and nonstation-
ary data:

Fk(η) = exp(−
N∑
j=k

αkj(η)), k ≤ 1 (3.5)

3.2.2 The ACER functions

Now, we can introduce the average conditional exceedance rate (ACER) functions
of order k as follows:

εk(η) =
1

N − k + 1

N∑
j=k

αkj(η), k = 1, 2, ... (3.6)

where N is the number of data points. In practice, the process Z(t) can be either
stationary or ergodic. If it is stationary, the unconditional joint probability distri-
bution does not change when shifted in time. If it is ergodic, then its statistical
properties can be deduced from a single, sufficiently long, random sample of the
process. In fact we can see Z(t) as a process whose the variation in time of its
parameters can me modelled as an ergodic process.
For the following part, we will assume that Z(t) follows an ergodic, to model long-
term statistics.
Nevertheless, for both scenarios, the empirical estimation of the ACER function
εk(η) follows the same scheme. We start by counting the number of events satis-
fying the condition, that means a value larger than η followed by the at least the
good number of values smaller than the threshold. Then, we just have to divide
this amount by N − k + 1 ≈ N when k � N . One can show that this technique
is working for the long-term situation.
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3.2 ACER method

We will develop a bit more the numerical estimation of the ACER functions. First,
we introduce two functions which will make the description of our problem easier.

Akj(η) = 1{Xj > η,Xj−1 ≤ η, ...,Xj−k+1 ≤ η}
Bkj(η) = 1{Xj−1 ≤ η, ...,Xj−k+1 ≤ η}

where j = k, ..., N and k = 2, ....
1 is the indicator function and can be defined by:

1(C ) =

{
1, if C is true
0, otherwise

Then,

αkj(η) =
E[Akj(η)]

E[Bkj(η)]
, j = k, ..., N, k = 2, ... (3.7)

where E denotes the expected value.
If we assume that the process is ergodic, then by definition εk(η) = αkk(η) =
... = αkN (η) and so we get:

εk(η) =
E[Akj ]

E[Bkj ]

= lim
N→∞

∑N
j=k akj(η)∑N
j=k bkj(η)

where j > k, and akj(η) (respectively bkj(η)) are the realized values of Akj(η)
(respectively Bkj(η)).
Clearly, by definition, we have: limη→∞ E[Bkj(η)] = 1.
Let

ε̃k(η) =

∑N
j=k E[Akj(η)]

N − k + 1
(3.8)

Then we have: limη→∞
ε̃k(η)
εk(η)

= 1.
These new functions approximate well the ACER functions at the extreme levels
and are easier to use. Thus, as we focus on extreme levels (η), we can use these
functions.
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We can recognize that:

P (η) ≈ exp(−
N∑
j=k

αkj(η)

= exp(−
N∑
j=k

E[Akj(η)]

E[Bkj(η)]

'
η→∞

exp(−
N∑
j=k

E[Akj(η)])

We can draw a last approximation if the time series can be segmented into K
blocks where E[Akj(η)] remains constant within each block and

∑
j∈Ci E[Akj(η)] ≈∑

j∈Ci akj(η) for a sufficient range of η-values. Ci denotes the set of indices for
the block number i.
Consequently, we have

∑N
j=k E[Akj(η)] ≈

∑N
j=k akj(η) because this approxima-

tion hold on each block and so on the union of the blocks. Finally, we reach this
final relation:

P (η) ≈ exp(−(N − k + 1)ε̂k(η)) for large enough η (3.9)

where ε̂k(η) = 1
N−k+1

∑N
j=k akj(η).

3.2.3 The confidence intervals of the ACER functions

In this part, we will show three different techniques to get the 95% confidence
interval of ε̃k(η) assuming a stationary time series. For all the parts contening
information about time series, we used the following references : [24], [9].

Segmentation and normal distribution

Here, we assume that we can get R sets of realizations directly if it is available
or by segmenting our long realization into R subseries. Then we can estimate the
standard deviation by a classical technique:

ŝk(η)2 =
1

R− 1

R∑
r=1

(ε̂
(r)
k (η)− ε̂k(η))2 (3.10)

where ε̂(r)k (η) denotes the ACER function estimate from realization number r and
ε̂k(η) =

∑R
r=1 ε̂k(η)/R is the mean of the ACER function estimates.

If we assume also that for R big enough the realizations are independent, then
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3.2 ACER method

thanks to Eq.(3.10), we get the following 95% confidence intervalCI = (C−(η), C+(η))
for the value εk(η) where:

C± = ε̂k(η)± 1.96ŝk(η)√
R

(3.11)

where 1.96 corresponds to the value of the normal distribution to get 95% of the
curve. Indeed, we have because of the symmetry of the normal distribution:

Pr(−1.96 ≤ z ≤ 1.96) = 0.95

This technique requires strong assumptions with stationary of the serie and the
independence of the realizations. It will be used if the data set can be easily seg-
mented into independent realizations.

The idea of a Poisson process

The main idea of this technique, applicable to non-stationary series, is to assume
that the conditional exceedances over a threshold η constitute a Poisson process,
which can be non homogeneous. This process is a counting process characterised
by:

• The number of occurrences in non-joint time intervals are independent

• On a small enough time interval, the number of occurrence is negligible.

• On a small time interval, the probability of an occurrence is directly propor-
tional to the length of this interval.

Let Êk(η) =
∑N
j=k Akj(η)

N−k+1 be an estimator of ε̃k(η). Then as Akj(η) follows a
Poisson process, we have: V ar(Akj(η)) = E(Akj(η)). Thus,

V ar(Êk(η)) =
V ar(

∑N
j=k Akj(η))

N − k + 1

=
E[
∑N

j=k Akj(η)]

N − k + 1

= ε̃k(η)
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Finally, if we take η large enough, we have
∑N

j=k E[Akj(η)] ≈
∑N

j=k akj(η) and
so the following 95% confidence interval:

C±(η) = ε̂k(η)

1± 1.96
√
N − k + 1

√
V ar[Êk(η)]


= ε̂k(η)

(
1± 1.96
√
N − k + 1

√
ε̃k(η)

)

≈ ε̂k(η)

(
1± 1.96
√
N − k + 1

√
ε̂k(η)

)

Again, we have a quite strong assumption with the exceedances following a Pois-
son process.

Bootstrapping

The bootstrapping technique was published by Bradley Efron in ”Bootstrap meth-
ods: another look at the jackknife” in 1979. The main idea is to build a ran-
dom sampling with replacement from the empirical distribution function of the
observed data. [10]
This method is simple, stable (because a modification of the initial data will bring
the same change on the bootstrap vector), asymptotically accurate and really effi-
cient for unknown distributions. The major issue we can face with this method is
the need to assume that the samples are independent.

Now, we will show simple bootstrap algorithm used to get a confidence interval
for a statistics.
The first task is to create a data sample big enough and take the interesting interval.
In fact, we will take a random numbers of realizations and create the sampling with
them. In our case, we are working with replacement so the same value can appear
more than once. Then we have to sort the sample and only keep the wanted values.
For example, for a 95% confidence interval and a sorted sample X of length 1,000,
the confidence interval will be the 25th value of X and the 975th one: CI1,00095% =
(X[25], X[975]).
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1 2 3 4 5

3 1 2 4 4 1 5 1 3 2

1 1 1 2 2 3 3 4 4 5

Random
sampling with
replacement

Sorting

𝑉𝑎𝑅90% = 4, 𝑤𝑒 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 9𝑡ℎ 𝑣𝑎𝑙𝑢𝑒.

Figure 3.5: Scheme of a bootstrapping with replacement

3.2.4 Fitting to the Asymptotic Gumbel distribution

Up to now, we have seen that the ACER functions allow us to use all the data and
not just the asymptotic ones. This should be a true strength to improve the accuracy
of the result and to avoid us to prove that the observed extremes are asymptotic.
In this part, we will assume that the behaviour of the mean exceedance rate in the
tail and more precisely the ACER functions can be modelled by a Gumbel type
distribution that means:

εk(η) = qk(η) exp(−ak(η − bk)ck) , with η ≥ η1 (3.12)

where the function qk is slowly varying compared with the exponential function
and ak, bk and ck are suitable constants. In general all these constants are depend-
ing on k. η1 is a tail marker and permits us to work inside the extreme value theory.
Equation (3.12) becomes :

− log|log(
εk(η)

qk(η)
)| = −ck log(η − bk)− log(ak)

And so we should have a perfectly linear tail behaviour for the plot− log|log( εk(η)qk(η)
)|

versus log(η − bk).
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Chapter 3. The ACER method

In general, qk(η) is not a constant but it varies really slowly in the tail region
and so may be replace by a constant. Sometimes to bring more credit to this
assumption, we will just modify η1 the tail marker to reach a better area. Then, we
get our final equation:

εk(η) = qk exp(−ak(η − bk)ck) with η ≥ η1 (3.13)

Now, we will work for a chosen k so we will not write the index for each
function or constant. We want to find the values of a, b, c and q.
To do that the easiest way is to minimize a mean square error function, with respect
to all four arguments. We add a weight factor wj to give more or less importance
to our values. In our case, we want to give more importance to an reliable ε(η)
that means one which has a small confidence interval. So, the weights will permit
us to fit with more accuracy the first values of the regular part of the curve.
The function to minimize is:

F (a, b, c, q) =

J∑
j=1

wj |log(ε̂(ηj)− log(q) + a(ηj − b)c|2 (3.14)

, where η1 < ... < ηJ denotes the levels where the ACER function has been
estimated.
The new question should be how to find the weight factors wj . This choice is
arbitrary. For this paper, we took wj = [log(C+(ηj) − log(C−(ηj)]

−2. First,
the function logarithm permits us to create larger difference of value between the
estimates because these values are positive and inferior to 1.

Figure 3.6: Logarithm function
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Then, the reverse function creates the behaviour we want: if the length of the
confidence interval is large, then the weight is small. Finally the square function
makes the value positive.
Nevertheless, the use of the logarithm function can add some issues. Indeed, we
cannot have C− negative. One solution can be to stop the summation just before
having a negative C−. Another one can be to use the bootstrapping. This method
works only on the realizations themselves. In finance, we cannot have an asset
with a negative value. Thus, with the bootstrapping method, if the data values are
positive, we can only get:

C− ≥ 0

Finally, we need to give a set of constraints for the optimization problem.
We know that 0 < ε̂k(ηi) < 1 then according to the approximation of ε̂(ηi) =
q exp(−a(ηi − b)c), we can get the first two constraints: q > 0 and log(q) −
a(ηi − b)c ≤ 0. The second one will not be used in our problem because it is
always true.
Then, b should be inferior to η1 to be able to apply the function power by c and
superior to minj Xj to stay inside our set of realizations. Moreover, the function
ε̂k(ηi) should be decreasing in function of η (for η big enough). Indeed, it will be
harder to find an exceedance when we increase the threshold. Thus, a > 0. For c
we will give an arbitrary constraint : 0 < c < 5.
To conclude, we have the following set of constraints:

0 < q <∞
min
j
Xj < b ≤ η1

0 < a <∞
0 < c < 5

We will then use an optimization algorithm. To improve the robustness of the re-
sults, we may apply a non-linearly constrained optimization. We choose to work
with the weighted Levenberg-Marquardt (LM) algorithm discovered by Kenneth
Levenberg,then published by Donald Marquardt.
The LM algorithm is an optimization method between the gradient descent algo-
rithm and the Gauß-Newton one. Indeed, a weak value of the parameter makes the
algorithm looking like the Gauß-Newton one, and so a large one will transform the
algorithm to one similar to the gradient method. This algorithm is an iterative one.
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First, we should rewrite the problem to make the writing of the routine easier.

F (a, b, c, q) =
J∑
j=1

wj |log(ε̂(ηj)− log(q) + a(ηj − b)c|2

=
∑
i

wi|Yi − f(θ,Xi)|2

where Yi = log(ε̂(ηi), θ = (a, b, c, q) and Xi = ηi.
Now we can describe the routine:

θj+1 = θj − (JTJ +Dλ)−1JT (Y − f(θ,Xi)) (3.15)

where J is the Jacobian matrix of f respecting to θ andDlambda is a diagonal matrix
permitting to adjust the importance of each iteration.

In the end of this part, we will show one technique to simplify the optimization
problem.
When c is close to 1 we have approximately F (a, b, q) =

∑J
j=1wj |log(ε̂(ηj) −

log(q) + a(ηj − b)|2, that is F (a, b, c) = UUT where Uj =
√
wj |log(ε̂(ηj) −

log(q) + a(ηj − b)|. If we take small differences between the levels, we can see
that the columns of U are correlated, so our optimization problem is ill-conditioned
or close to. There is so an infinity of (b, q) values that gives the same value of F.
We have at least one useless parameter. We can solve that by choosing q = 1. In
our following studies, the values will not be so close so we can find an optimal
value for q.
To make the optimization problem easier, we can fix first b and c. The problem is
then reduced to a standard weighted linear regression problem.
Let xj = (ηj − b)c, yj = log(ε̂j(ηj) and b and c be fixed
Then,

F (a, b, c, q) =
∑
j

wj |yj − log(q) + axj |2 (3.16)

The function F is regular enough to allow us to deal with the gradient to find the
minima. So we want to find a∗ and log(q))∗ such as{

∂F (a∗,log(q)∗)
∂a∗ = 2

∑
j wjxj |yj − log(q)∗ + a∗xj | = 0

∂F (a∗,log(q)∗)
∂ log(q)∗ = −2

∑
j wj |yj − log(q)∗ + a∗xj | = 0

As 0 < q <∞, the second equation becomes,∑
i

wiyi + a∗
∑
i

wixi = log(q)∗
∑
i

wi

log(q)∗ = ȳ + a∗x̄
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where x̄ =
∑
i wixi∑
i wi

, ȳ =
∑
i wiyi∑
i wi

.
Then we introduce log(q)∗ inside the first equation and get:∑
j

wjxj |yj − ȳ − a∗x̄+ a∗xj | = 0

=⇒
∑
j

wjxj |yj − ȳ − a∗x̄+ a∗xj | −
∑
j

wj x̄|yj − ȳ − a∗x̄+ a∗xj |

+
∑
j

wj x̄|yj − ȳ − a∗x̄+ a∗xj | = 0

=⇒
∑
j

wj(xj − x̄)|yj − ȳ − a∗x̄+ a∗xj |+ x̄
∑
j

wj |yj − ȳ − a∗x̄+ a∗xj | = 0

∑
j

wj(xj − x̄)|yj − ȳ − a∗x̄+ a∗xj | = 0, because of the second equation.

=⇒ a∗ =

∑
iwi(xi − x̄)(yi − ȳ)∑

iwi(xi − x̂)2

To conclude we have:

a∗(b, c) =

∑
iwi(xi − x̄)(yi − ȳ)∑

iwi(xi − x̂)2
(3.17)

log(q)∗ = ȳ + a∗x̄ (3.18)

Finally, knowing a∗ and log(q)∗, we have reduced our optimization problem from
four variables to two variables: b and c. Thus, we will apply an optimization algo-
rithm, the Leverberg-Marquardt algorithm for example, on the function F̃ (b, c) =
F (a∗(b, c), b, c, log(q)∗) to get the optimal values b∗ and c∗. Then, we can calcu-
late a∗(b∗, c∗) and log(q(b∗, c∗))∗.

3.2.5 Fitting to a GEV distribution

To introduce this part, we remind the GEV distribution formula:

G(z) = exp[−(1 + ξ
z − µ
σ

)
−1
ξ ], defined on {z|1 + ξ

z − µ
σ

> 0}. (3.19)

Then the ACER function ε1(η) can be expressed asymptotically as

ε1(η) '
η→∞

[1 + ξ(a(η − b))]
−1
ξ (3.20)

because we are assuming that for a level large enough and independent data, ε1
follows a GEV distribution.
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Now, we want to extrapolate this result to the whole set of ACER functions. Thus,
we use a similar type of approximation for the behaviour of the mean exceedance
rate in the tail. This part of the curve is assumed to follow a function of the form
[1 + ξa(η − b)c]

−1
ξ where a > 0, η ≥ η1 ≥ b, c > 0 and ξ > 0 are suitable

constants and η1 is again a chosen tail level.
Then, with these assumptions we get:

εk(η) = qk(η)[1 + ξk(ak(η − bk)ck)]
−1
ξk , η ≥ η1 (3.21)

Again, in this case, qk(η) is weakly varying compared with the function [1 +

ξk(ak(η − bk)ck)]
−1
ξk and ak, bk, ξk are suitable constants depending on k. In gen-

eral, qk(η) is not a constant but it is possible to find a marker tail η1 such that for
bigger levels, its variations will be negligible.
From now on, we will work with a specific value of k and so we will write
ξ, a, b, c, q instead of ξk, ak, bk, ck, qk. The studied formula is so:

ε(η) = q[1 + ã(η − b)c]−γ (3.22)

where ã = aξ and γ = 1
ξ

We have so a new expression for the mean square error function that we want to
minimize:

F (a, b, c, q, ξ) =
∑
i

wi|log(ε̂(ηi))− log(q) +
1

ξ
log(1 + ξa(ηi − b)c))|2 (3.23)

where wi is a weighted factor previously defined. The set of constraints is:

0 < q <∞
min
j
Xj < b ≤ η1

0 < a <∞
0 < c < 5ξ > 0

Again, we can directly minimized this function in using the Levenberg-Marquardt
lest squares optimization method. Nevertheless, we can reduce the number of
variables up to 3 in using a trick similar to the one use for the Gumbel case.
Let xi = log(1 + ã(ηi − b)c) and yi = log(ε(ηi)).
The function F becomes:

F (ã, b, c, q, γ) =
∑
i

|yi − log(q) + γxi|2 (3.24)
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One can notice that, in fact, it is the equation (3.14) with γ instead of a. So we can
find γ∗ and log(q)∗ when ã, b and c are fixed.

log(q)∗(ã, b, c) = ȳ + γ∗(ã, b, c)x̄ (3.25)

γ∗(ã, b, c) = −
∑

iwi(xi − x̄)(yi − ȳ)∑
iwi(xi − x̄)2

(3.26)

where x̄ =
∑
i wixi∑
i wi

and ȳ =
∑
i wiyi∑
i wi

.

Then we will use the Levenberg-Marquardt algorithm on the function F̃ (ã, b, c) to
get ã∗, b∗, c∗. With these values we can calculate the two last variables: γ∗ and
log(q)∗.

3.2.6 How to choose η1 and get the VaR

First, we will deal with the choice of η1. This value can be directed read on the log
plot (η, log(ε̂k(η))). The tail marker corresponds to the beginning of the regular
tail behaviour. To illustrate that, we use the Pareto distribution with the parameter
β = 3. With this example, we can see that a tail marker of 3.5 permits us to be in

Figure 3.7: Epsilon in function of the threshold

regular tail behaviour. In fact a value of 4 can be acceptable. Moreover we can see
that to stay on the regular tail, we must choose a end marker. Indeed, because of
the value of k, the ACER function will be a strong piecewise function and so this
shape can make our fit less accurate. Here we could take 9 for end marker.
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Secondly, we want to rely this approximation of ε to the calculation of the VaR.
For the Gumbel case, we have:

ε(η) = q exp(−a(η − b)c), η ≥ η1

and,

P (η) = P (Mn ≤ η) ≈ exp(−Nε̂k(η))

The Value at Risk at α% will be equal to η such that: P (η) = 1− α.
Then,

P (η) ≈ exp(−Nε̂k(η)) = 1− α

⇒ ε̂k(η) ≈ − log(1− α)

N

⇒ q exp−a(η−b)
c ≈ − log(1− α)

N

⇒ a(η − b)c ≈ − log(
− log(1− α)

Nq
)

⇒ η ≈ b+ (−1

a
log(
− log(01− α)

Nq
))

1
c

One can notice that log(1− α) ≈ α for α small enough by Taylor expansion.
For the general case, we have:

ε(η) = q[1 + ã(η − b)c]−γ , η ≥ η1

and,

P (η) = P (Mn ≤ η) ≈ exp(−Nε̂k(η))

The Value at Risk at α% will be equal to η such that: P (η) = 1− α.
Then,

P (η) ≈ exp(−Nε̂k(η)) = 1− α

⇒ ε̂k(η) ≈ − log(1− α)

N

⇒ q[1 + ã(η − b)c]−γ ≈ − log(1− α)

N

⇒ ã(η − b)c ≈ (
− log(1− α)

Nq
)
− 1
γ − 1

⇒ η ≈ b+ (−1

ã
(
− log(1− α)

Nq
)
−1
γ − 1)

1
c
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To sum up, we have:

• For the Gumbel case, VaRα ≈ b+ (− 1
a log( α

Nq ))
1
c .

• For the general case, VaRα ≈ b+ (− 1
ã( α

Nq )
−1
γ − 1)

1
c .

Here log represents the natural logarithm that means the inverse of the expo-
nential function.

3.3 The R package

Now, in this section, we will describe all the functions used to create our R pack-
age. [2] [5] The explanations about how to create a R package can be found in
appendix. According to the last section, the sketch of our main function should be:

Get the peaks over threshold and calculate the ε

Get the confidence interval

Optimize the problem and return the VaR

3.3.1 Calculation of Epsilon

Let X be the data vector.
First, we have to count the number of exceedances the means the matrix A to get
the value

∑
aij , fundamental to calculate the ε.

The initial idea was to build directly the matrix A. Thus, we creates
building matrices . This function has the data and the level to test as inputs and
returns the matrix A. To proceed, we choose a k and we try to test for each j
such that k ≤ j ≤ N , where N is the length of the data vector. The matrix A
is initialized to 0N×N and each time we have X[j] > level and X[i] ≤ level for
i = j−k+1, ..., j−1 we modify the value of A[k−1, j−1] to 1. We can remark
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that we increment A[k − 1, j − 1] and not A[k, j] because in the true case k will
start at 2 and it is easier to start the matrix to 1 (small gain of space too).
The major problem of this method is the need of two loops with several compar-
isons. Moreover, to get the expected value we have to take the sum of each lines
of the matrix. All these defaults make our function really slow.

The first idea to improve this calculation time was to avoid to do the last sum
and doing that directly inside the loop. Besides, we don’t need to create and use a
matrix but just the final vector. Instead of modifying the value of A[k − 1, j − 1]
we will just increment of 1 the value of a[k− 1] where a[k− 1] represents the sum
of the k − 1th line of A.
This method sum peak works because in fact we do not need the full matrix but
only the sum of its lines.

Even with this trick, the counting of the peak over threshold was kind of slow.
The last thing to do to improve that was to try to avoid as much as possible the
number of loops. Indeed, especially in finance, we will work with data vector of at
least 300/400 values. Having a calculation time of order N2 like the two previous
functions is not an option.
Consequently, our last chance to make our project doable was to reduce this cal-
culation time to an order of N that means a linear calculation time. To do that, we
needed to change completely our way of thinking the problem. Instead of proceed-
ing directly with calculation of the vector a, we will now work on the data vector
X itself.
First, we use the R function which(X > level) on the data. This function will
return a vector with all the positions of X where the value is strictly bigger than
level. Already implemented on R, this function is really fast.
Then we just have to work with a vector a lot smaller. For each value of the
vector, we will subtract the previous one (or nothing for the first value) and in-
crement all the values of the vector a, the counting value, up to the value of this
difference. Let call the vector resulting from the which function by W. So for ex-
ample, if W [i] −W [i − 1] = 7, we will increase by 1 all the values of a up to 7 :
a[1 : 7] = a[1 : 7] + 1. Indeed, if W [i]−W [i− 1] = 7, that means that between
W [i− 1] and W [i], there are 6 values inferior to level. We can illustrate that with
the following example where level = 4.
Let X be : 1 8 3 4 1 9 10 2 5
Then after the use of the function which with level equal to 4, we get:
W = 2 6 7 9
And we have directly:
a = 4 3 1 1 0 ...
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Consequently, our function responsible of that, denoted sum validate data , is
a lot faster than the two previous ones. In the following chapter, we will show
on one chart, that the convergence seems to be linear. It is difficult to know the
complexity of this function because of the unknown one of which .

Finally, now we have the number of exceedances for each k and we just have
to divide by N − k + 2, again because k starts at 2 but it is easier to put the value
k=2 in the case one of our vector ε and so on. The function epsilon app takes
the result of sum validate data , the data vector to get its length and the maximal
value of k. The output of this method is so the vector epsilon.

3.3.2 Approximation of the confidence interval of the Epsilon

The goal of this subsection is to get a dataframe (equivalent to a dynamic table in
R) with two columns: one for the lower boundary and one for the upper one.

First, we implement the function a segmentation of the data and a normal dis-
tribution. This function, denoted CI block , uses the data vector and the threshold
as inputs.
To find a way to split our initial data vector, we try to fit the serie with an ARIMA
model (described in annexe). Moreover, we use the function auto.arima to get
directly the values of the parameter and we force this function to find a seasonality
in initializing D by 1. Then, we just save the value s of this seasonality to use it to
get our segmentation. Each block of data will be of length s.
After that, we just apply for k inferior to s the function epsilon app. Finally, we
calculate the variance of the distribution of ε modelled by a normal law:

ŝk(η)2 =
1

R− 1

R∑
r=1

(ε̂
(r)
k (η)− ε̂k(η))2 (3.27)

We just have to apply the following formula to get the confidence interval:

C± = ε̂k(η)± 1.96ŝk(η)√
R

(3.28)

The second used approach to get these confidence intervals, CI Poisson , is
to consider the ε’s distribution follows a Poisson process. Here, as seen in the
previous section, the computation is really easy and we just have to get the ε thanks
to the function epsilon app and apply the following formula:

C±(η) ≈ ε̂k(η)

(
1± 1.96
√
N − k + 1

√
ε̂k(η)

)
(3.29)
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where ε̂k(η) is the value of ε calculated with epsilon app for a k and a level equal
to η.

The third and last implemented method will be the most used and is based on
the bootstrapping method.
This function, CI boot , requires the data vector X, the level to test, the maximal
number of steps back we test and the number of samplings to do as inputs.
The idea behind this technique is kind of simple. We will create a vector of di-
mension the number of samplings. Then we will apply the function epsilon app
on this vector obtained by using the sample R function with replacement. All the
values of this vector are from the initial data but some initial values can not appear
in this vector.
Then we will take the 5% percentile, that means :

C− = M [floor(0.025 ∗ number of samplings)]

C+ = M [floor(0.975 ∗ number of samplings) + 1]

We use the function floor in order to validate the following conditions.
If 0.025∗number of samplings is not an integer, we take the biggest integer smaller
than it.
If 0.975∗number of samplings is not an integer, we take the smallest integer larger
than it it.

3.3.3 Choice of k and η1, ηf

These two constants are highly dependent on the data. More precisely, η1 depends
also on k but the opposite is not true. Nevertheless, we have to fix η1 before
choosing a good k.
First, when we increase the value of k, we translate the curve to the right. The
safest configuration to choose η1 is for a large k that is a curve translate to the right.
Indeed, we may be less accurate but we will take no point outside the regular tail
causing big fitting mistakes.
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Figure 3.8: Choice of eta 1 and evolution for different k

We can see that the choice of mu1 is arbitrary. For example, with this data, η1
equals to 4 seems to be a good choice.
At this point we can also decide to the value of ηf . Here, we have two choices:

• ηf = 9, This value permits us to take a maximum of data points without
having a too piecewise function.

• ηf = 7, This value is the safest one. On the one hand with have a smaller
level scale than the one with ηf = 9. On the other hand we have a function
close to be fully regular.

To choose k, we need to plot the ACER function and take the smallest k such
that the tail of the curve is the same (to a certain accuracy) as the one of a large k.
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Figure 3.9: ACER functions for different k

As expected, all charts have a similar shape. Nevertheless, we can divide the
results into four groups:

• k = 80, The plot for k = 80 is the reference one for this case (because it is
the biggest value of k). But we will try to find a correct smaller k. Indeed,
the smaller k is, the more data points we use.

• k = 70, The plot is really close to the one for k = 80. Nevertheless, the value
of k remains big.

• k = 40, 50, 60, The tails of the curves for these k are the same. Consequently,
if this accuracy is the one we choose we will take k = 40.

• k =10, 20, 30, The tails of the curves for these k are the same. But the curves
seem to be too different from the one with k=80.

In this case, we should choose k = 40.
In this part, we saw that the choice of the three main parameters (k, η1 and ηf )

is arbitrary. However, we will try to build a function doing this human process but
these three parameters will make our solution sensible. Indeed the fitting will be
different and so the VaR too.

3.3.4 The optimization part and the calculation of the VaR

As seen in the previous section, we have two different ways of working on the
optimization problem: the direct one by applying an algorithm on the complete
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function and one where we simplify the problem before. [21]
Moreover, we want to model the tail of the ε functions in the Gumbel case and the
general one.

The Gumbel case

We will build one function with 4 different possibilities for the optimization. First,
this function will find η1, ηf and k. Then we will decide how many levels we want
to study for which k. For each level, we will calculate with our function the values
of ε and the weights : wj = [log(C+(ηj)−log(C−(ηj)]

−2. We remove from these
vectors the values for the indexes where ε is equal to zero.
At this part we have two vectors of same length.

First, we will deal with the direct method. For this method, we can use two differ-
ent optimization R functions: constrOptim and nls.lm . The first function works
well but can sometimes not be enough robust.
The implementation of the functions to optimize will be different for the two meth-
ods: constrOptim requires a function returning a scalar and nls.lm a vector. So
for the scalar function, we use the formula:

result =
∑
i

wi|log(εi)− log(q) + a(level[i]− b)c|2

where a, b, c and q are the variables to optimize. Then we get the values of these
variables with:

θ ← constrOptim(c(1, 1,minit, 1.1), function,NULL,U,C)

U =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1


C = (0, 0,min(X),−η1, 0,−5)

where U × θ ≤ C represents the constraints and θ = (q, a, b, c).
For the vector function, we use:

result[i] =
√
wi|log(εi)− log(q) + a(level[i]− b)c|

θ ← nls.lm(c(1, 1,
min(X) + η1

2
, 1), lower = c(0, 0,min(X), 0),

upper = c(Inf, Inf, η1, 5), function)
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The second approach to this problem is the use of some simplification before the
optimization. For both of the optimization algorithms, we have to calculate outside
the function to optimize y = log(eps), where eps is the vector composed of the ε’s
values, and ȳ =

∑
i wi∗yi∑
i wi

. Then inside the function to optimize we will proceed to
the following computations:

x← (level− b)c

x̄←
∑

iwi ∗ xi∑
iwi

a← −
∑

iwi(xi − x̄)(yi − ȳ)∑
iwi(xi − x̄)2

q ← exp(ȳ + ax̄)

For the scalar function,

result←
∑
i

wi(y − log(q) + ax)2

For the vector function,

result[i]←
√

(wi)|y[i]− log(q) + a ∗ x[i]|

Finally, according to the wanted optimization, we use constrOptim or nls.lm to
get b and c. Now, we just have to calculate a and q:

x← (level− b)c

x̄←
∑

iwi ∗ xi∑
iwi

a← −
∑

iwi(xi − x̄)(yi − ȳ)∑
iwi(xi − x̄)2

q ← exp(ȳ + ax̄)

At this point, we model the tail of the log(ε) functions and we can get the VaR
with VaRα = b+ (− 1

a log( α
Nq ))

1
c for α small enough.
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The general case

The computation of the general case is similar to the one of the Gumbel case with
the add of one variable ξ. The only modifications are on the functions to optimize
and the inputs of the optimization functions.
For the direct case we will have now:

result←
∑
i

wi|log(εi)− log(q) + γ log(1 + ã(level[i]− b)c)|2

θ ← constrOptim(c(1, 1,
min(X) + η1

2
, 1, 1), function,NULL,U,C)

U =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 0 1


C = (0, 0,min(X),−η1, 0,−5, 0)

and

result[i]← w[i]|log(ε[i])− log(q) + γ log(1 + ã(level[i]− b)c)|

θ ← nls.lm(c(1, 1,
min(X) + η1

2
, 1, 1), lower = c(0.1, 1,min(X), 0.1, 1),

upper = c(Inf, Inf, η1, 5, Inf), function))

where θ = (q, ã, b, c, γ) with γ = 1/ξ and ã = ξa.

For the simplified case, we calculate first y ← log(eps) and ŷ ←
∑
i wiyi∑
i wi

. Then
inside the function we have:

x← 1 + ã(level− b)c

x̄←
∑

iwi ∗ xi∑
iwi

γ ← −
∑

iwi(xi − x̄)(yi − ȳ)∑
iwi(xi − x̄)2

q ← exp(ȳ + γx̄)

For the scalar function,

result←
∑
i

wi(y − log(q) + γ log(x))2
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For the vector function,

result[i]←
√

(wi)|y[i]− log(q) + γ log(x[i])|

Then we use constrOptim or nls.lm to find b, c, ã and we calculate the value of
γ and q:

x← 1 + ã(level− b)c

x̄←
∑

iwi ∗ xi∑
iwi

γ ← −
∑

iwi(xi − x̄)(yi − ȳ)∑
iwi(xi − x̄)2

q ← exp(ȳ + γx̄)

So we have modelled the tail of the ε functions and we can get the VaR with
VaRα = b+ (− 1

ã( α
Nq )

−1
γ − 1)

1
c .

Remark. One can notice that, in fact, we need only one function for each case.
Indeed, if we sum the square of the values of the vector function’s return we get
the result of the scalar function.
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Chapter 4
Analyses of results

4.1 Execution time and accuracy

Comparison of the three functions to get the exceedances rate

We create three different functions in order to count the number of exceedances
over a threshold. The first one should be the slowest one due to the building of
a full matrix and then the sum of each line. The second one should be in the
middle in term of execution time. We can see an illustration of this thought in the
following plot:

Figure 4.1: Execution times of the three methods in function of the number of data points
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A bit surprising, the fact of avoiding the final sum is not really important to
save some time. This may be a consequence of the use of the R function sum.
Indeed, already implemented, this function is really fast.
However, we can see that working directly on the data and not on the result is a big
improvement in term of execution time. The two first methods have an execution
time following an exponential tend whereas the last one seems to be linear or even
constant. In fact, as shown in the following chart, the execution time of the last
method follows a linear evolution but its values are too small to be seen on the
previous graph.

Figure 4.2: Execution time of the last method in function of the number of data points

To conclude this part, we can say that the implementation and the obtained
results are coherent with our expectation in the sense that the last method is really
more efficient and should be used.
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Comparison of the CI functions

In this part, we have three functions to study in terms of rapidity and accuracy. To
get the accuracy, we will specially focus on the size of the CI. To be accurate we
need a CI interval as small as possible.
First, we plot the speed in function of the number of data points for the three
methods.

Figure 4.3: Time executions of the three methods in function of the number of data points

We can see that the first method using the segmentation and the normal dis-
tribution is less stable and slower than the other. Moreover the difficulty to get a
segmentation value can be a big weakness.
Secondly, the second method is a lot faster than the two others. Nevertheless,
the function using a percentile bootstrapping is relatively fast and could be used.
Indeed, this method presents a big advantage with no negative value. We did a
bootstrapping with 100 samples, this number can be reduced.
Now, in a second step, we will compare the accuracy of the Poisson and bootstrap-
ping methods. To do that we will first plot the obtained values of ε.
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Figure 4.4: Epsilon values obtained with the two methods

The ε values obtained by the two methods are really close to each other. Con-
sequently, we cannot make a choice based on that. So we need to compare the size
of the CI.

Figure 4.5: CI intervals in function of the number of data points for both methods.

And now we can notice that the bootstrapping method with the use of no neg-
ative values gives us a CI approximately twenty times smaller.
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Now we need to choose a reasonable number of samples to get a stable CI and a
certain rapidity.

Figure 4.6: Time executions and accuracy of the bootstrapping method in function of the
number of samples

A number of samples around 50 gives us a good stability for the size of the
CI. In the following part, we will use 50 samples in order to improve the speed
convergence. Indeed, this function will be called a lot of times.

Nevertheless, for our program, we will decide to use the CI Poisson because
we really need to accelerate the process. The weakness of this function is the
possibility to get negative value for the lower bound of the confidence interval.
But it can happen only for large levels and thanks to ηf we will not work in this
part (the function is already too piecewise).

In the following parts, we will work with a Pareto distribution with β = 3 and
a VaR at 1%. We will in the next section study this distribution with our optimal
set up that the VaR should be equal to 10. The following parameters to set up have
a similar behaviour for the Gumbel or the general case. Consequently we will only
work with the Gumbel one.

The best optimization algorithm

First, we have to choose between the four different kinds of optimization : the use
of a linear optimization algorithm with constraints or the Levenberg-Marquardt
algorithm applied on the complete problem or a simplified version. [25]
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So for each case, we will get the average execution time and accuracy. For the
accuracy, we will fix the number of data points to 5000, the value of step back (k)
to 20 and the precision to 0.05. Finally, we will calculate the sum square difference
between the obtained log(ε) and the ones approximate by log(q)+(a(b− level)c).

Figure 4.7: Error for the four optimization algorithms in function of the level

To get this plot, we choose to take η1 = 3, ηf = 10, k = 30 and we calculate
for the Gumbel case the natural logarithm of the Mean Square Error that means:

log(MSE(η)) =
√

((log(ε(η))− εapp(η))(log(ε(η))− εapp(η))) (4.1)

where εapp is the one calculated with the parameters found by the optimization.
We can see that the shape of error is close to be the same for the three algorithms.
Moreover these error are really small (order of 1%) for all algorithms. However,
the Levenberg-Marquardt seems to be better for large level that means when we
are at the end of the tail (a major part for our study). Consequently, we will choose
tis algorithm. We get the following chart:

56



4.1 Execution time and accuracy

Figure 4.8: Execution time for the LM algorithm on the simplified and complete model

On this chart, we can clearly see that the LM algorithm is a lot more stable
for the simplified case. As recommended by the paper published by A. Naess, O.
Gaidai and O. Karpa, we will choose to work with the LM algorithm applied on
this case.

Figure 4.9: Calculated and approximate epsilons

We can see in the previous plot the efficiency of the fit on the tail. Indeed the
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red line is really close to the calculated ε in black. Besides, we can see that the fit
is close to be perfect for the lowest level and become less good on the end of the
tail. This behaviour is the one we wanted to create with the use of weights. Indeed,
for lower levels, the values of ε are more accurate and have to be fitted as good as
possible.

Parameters of the ACER optimized functions

In this part, we will try to find the best parameters. Here, we will study the influ-
ence of the amount of data points, the value of the tail marker η1 and the number
of levels to test.

First, we will focus on the influence of η1. The function mu1 detect calculates
the values of ε but for some levels. We know that the curve of ε reach a peak before
converging quickly to its tail. So, we detect the level where we are at the top and
we take for η1 this level’s value plus n steps. Then we get the following chart
where we were working with a Pareto distribution of parameter 3 and a precision
of 0.01 (so a VaR of 10):

Figure 4.10: Accuracy of the VaR in function of n

Two parts are clearly identifiable on the plot. First, when we increase n, the
result is becoming more and more accurate. Indeed, we are moving our tail marker
to a position close to the beginning of the tail. Consequently, we are selecting
really the efficient level and so get a better fit. Then after some n, our accuracy
grows up quickly. We took a tail marker too big and so we are working on a level’s
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scale too small: the used data do not permit us to reach an acceptable result.
Then for the following studies, we will work with n = 6.

To optimize the number of levels to test, we will use again a Pareto distribution
with 3 as parameter and a precision of 0.01 and we will obtain the accuracy in
comparing the VaR to 10 the theoretical one.

Figure 4.11: Accuracy and execution time in function of the number of levels

We can see that the number of levels does not have a big influence on the
accuracy or the execution time of our function. So we will choose a 60 as number
of tested levels.

Finally, we will plot the accuracy and the execution time for different amount
of points. We will use again a Pareto distribution with parameter β = 3 and a
precision of 0.01 (so an expected VaR of 10).
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Figure 4.12: Accuracy and execution time in function of the number of data points

Then we can see that a number of data points equal to 20th the inverse of the
precision seems kind of coherent. Indeed it seems to be the best execution time/
accuracy ratio. So:

number of data points =
20

α2

where α is the precision of the VaR.

Choice of k

To choose k, we need to deal between a lack of values to be really significant for
large k and a lack of accuracy for small values of k. Indeed, when k is large, we
require the values for k steps back inferior to the level. Consequently, a smaller
value of k will permit us to deal with more data points. The simplest solution seems
to take k as small as possible respecting a correct tail shape. In the following grpah,
we could choose k = 40 for example.
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Figure 4.13: ACER functions for different k

4.2 Tests on the Pareto distribution

Now, we will compare the accuracy of the ACER method on a Pareto Distribution
with the Monte Carlo method, the Variance/Covariance method and the historical
method.

4.2.1 The Pareto distribution

The Pareto distribution is essentially famous because of the ”Pareto principle” or
”80/20”. [17] [27] The first goal of this law was to bring a good model to describe
the distribution of wealth in a society. Its creator was an italian civil engineer,
economist and sociologist called Vilfredo Pareto. We will see later that the rela-
tion between the Pareto distribution and the ”80/20” rule is just a good choice of
parameter for the distribution.
In this paper, we will just use and so describe the Pareto distribution of type 1.
Let X be a random variable with a Pareto distribution of type 1.
Then we have the following function to define this distribution:

F (X) = Pr(X > x) (4.2)

=

{
(xmx )α, x ≥ xm
1, otherwise

(4.3)

where xm is the minimum possible value of X (positive), and is a positive param-
eter.
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This function is called the tail function. The Pareto distribution is really interesting
for us to test our model because of its characteristics of fat tail. Indeed, we can see
that asymptotically the function F is equivalent to a negative power function. The
advantage for our example of this kind of distribution is to have a consequent tail
permitting us to work on it.
The cumulative distribution function of a Pareto distribution is given by:

FX(x) =

{
1− ( x

xm
)α, x ≥ xm

0, x < xm
(4.4)

So to get the plot of the cumulative distribution function, we use the R function
ppareto and we get:

Figure 4.14: Pareto cumulative function with parameter alpha = 1.16

Finally, to create our set of data points, we will use rpareto and can get some
graphs similar to:
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Figure 4.15: 5,000 Pareto random data with beta = 3

Last step, we need to calculate theoretically the VaR of a Pareto distribution.
Let V be the VaR, X a random variable following a Pareto distribution with param-
eters β and xm and α the accuracy.
We will first use the definition of the VaR and then the cumulative distribution
function of a Pareto distribution.

P (X ≤ V ) = α

⇒(
xm
V

)β = α

⇒xm
V

= (α)
1
β

⇒V =
xm

(α)
1
β

In the following parts, we will take xm = 1. So we will have: VaR = ( 1
α)

1
β .

4.2.2 Test 10% error on the Pareto distribution of type 1

In this section we will use a Pareto distribution with β = 3, xm = 1 and α = 0.01.
According to the last part, we should get a VaR equal to 10.
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Moreover, we will take the parameters in agreement with the previous section:

k = 40

Amount of data points = 2, 000

Number of levels to test = 60

The goal is to test several times the ACER function for Pareto distributions with
the same parameters and get the VaR to study the accuracy of this method.
We will apply these tests directly on the general case. Indeed, working first with
the Gumbel one is not really relevant here. To get sensible values of VaR with the
Gumbel case, we need first a distribution we can fit with it.
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Figure 4.16: Error in percentage for each method

On this table, the values represent the error for each method. To calculate them
in percent, we use the theoritical value of the VaR for the Pareto distribution with
α = 0.05 and β = 3 as paramaters, we should get approximately 2.714. Then, the
error follows the formula:

e =
V aR− 2.714

2.714
× 100 (4.5)
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We used a data set of size 1,000 and an accuracy of 0.05. For the ACER method,
we have as parameters k = 10, η1 = 3 and ηf = 8.
The green values correspond to an error (in percent) between -10% and 10%, so
less than 10% in absolute value.
The orange values are the errors inferior to -10% and the red ones the errors bigger
than 10%.
These colors were chosen to differentiate the two kinds of mistakes. Indeed during
an investment, the VaR is used to control the taken. However, with a bigger VaR
than the correct one, the banker can invest more money than he should and so con-
duct the company to big troubles. A smaller VaR will ”just” bring an investment
smaller than the best one. So the banker will win less money but he will respect
the safety policy of the bank.

We can see that the ACER method is less accurate than the Econometric one
but safer. In a following section, we will try to explain why we have this lost of
accuracy. Nevertheless, the fact to get no red value over 30 samples is a really
interesting result to use this method in real life. Indeed, we can get with this
method a limit for an investment lower than the best doable investment but at least
safe. The main goal of the VaR is to check if the investment is safe enough to not
bring catastrophic damage.

4.3 The sensibility of this method and the accuracy for
the forecast of the VaR

4.3.1 VaR test on a financial data set

Finally, we will check on the asset’s values of the Société Générale (SG) if our
forecast of maximum is correct.
To do that we will test for each group of 1,000 data points, the next point is smaller
than the VaR and how close it can. Indeed, a value cannot be bigger than the
VaR otherwise the company’s risk is too important. Moreover, to make as much
money as possible, the value of the VaR should as close as possible of the value
of the VaR. This configuration permits to the banker to invest the biggest amount
of money without taking excessive risk and so to have the opportunity to create
wealth.
We choose to work on the asset of SG because the values of this asset were directly
available on the website of the french bank as an Excel spreadsheet.
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Figure 4.17: Values and approximative Values at Risk of the asset

We can see that the forecast is close to be perfect for up to 5 days. Afterwards,
it becomes less and less accurate due to the use of the approximate previous VaR.
A solution to keep having a correct VaR could be to do short prediction and use
the updated dataset.
Another solution to get a good VaR at one month for example should be to work
with a frequency of data seven times bigger than usual that means we will work
with data point every seven days in our case.

On the following example, we work with data taken every five days that mean
every weeks because we are working with working days.

Figure 4.18: Values and approximative Values at Risk of the asset every 5 days

67



Chapter 4. Analyses of results

Again, we can see that the values become less and less accurate according
to the time of prediction. Nevertheless, we get a correct VaR for a prediction of
one, two weeks. Thus we achieve to our goal and the degeneration of our results
is essentially due to the use of more approximative values at each step. Indeed,
similarly to the forecast of a time series by an ARIMA model, the error will be
multiplied by itself or a constant for each step.
Consequently, to keep getting a useful VaR (because a VaR twice bigger than the
maximum value is useless in the sense that it will allow all investment), we will
need more and more data. For example, to predict a VaR at one month, we will
need ten years of data. This need of data represents a limit. Nevertheless, in
assuming that the evolution in a long period of time will be just a dezoom of one
in a short period that means the asset will evolve quite regularly, the user will be
able to do a long forecasting in using the same amount of data but in using recent
data. In a nutshell, instead of using more than 10 years of data to predict monthly,
he will be able to use the data of the last 125 days. The result will be less accurate
but a lot better than the use of forecast data.

4.3.2 Limits

The ACER method seems to be quite efficient for the calculation of a 5% VaR.
[22]
Nevertheless, for more accurate VaR, this function may be limited. Indeed, with
the use of the natural logarithm, when we will reduce the taken risk in the calcula-
tion of the VaR, we will try to find the level for which the logarithm of the ACER
function is smaller in negative value or bigger in absolute value. Or, the tail of
the curve is really small, and the ACER functions are piecewise for large levels.
Consequently, we cannot find an accurate level on a piecewise part and the VaR
will not be close to the theoretical one. [6, 14]

Moreover, we can see that a small variation of the parameters k, η1 and ηf
can bring differences on the estimates of the parameters q, a, b, c and γ. This
difference will be more important on the calculation of the VaR.

To improve this method, one thing to do should be to find an optimal way to
get k, η1 and ηf . A technique using some ”machine learning” can be a good way
to implement that. Indeed the function will have to represent an human behaviour.
Finally, we can use a complement to this method in calculating the number of
peaks over a threshold on a row. This new value could be use in the weights
for example. Indeed, if the asset stays a long time over a value, that means the
probability to be over this value should be more important. Or in our calculation
we do not take this fact in consideration.
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Chapter 5
Conclusion

Through this paper, we have compared the ACER method to some classical ones
essentially to calculate the VaR.
After having defined the VaR, we have presented the three most famous method
for VaR calculation : the historical method, the variance/covariance method and
the Monte Carlo one. These methods are today used for their simplicity, accuracy
and stability.

However, extreme value statistics is the part of statistics dealing with extremely
large or small events. In our case, we are working on rare event happening with a
probability of 5%, 1% etc. Thus, the calculation of VaR is a concrete case where
we should use the extreme value theory.
To use this theory, after some assumptions, we have built some probabilistic func-
tions calculating the number of peaks over a level, threshold. We called them
ACER functions. Then we have fitted these functions with a GEV distribution.
Once fitted thanks to a non linear algorithm, the Levenberg-Marquart one, we have
reversed the cumulative distribution function to get the VaR.
In this paper, we have justified each step to get the ACER functions but also our
program and the made choices like the optimization algorithm.

Finally, we have tested the fitting of the ACER function but also how good
could be the ACER method. Comparing to the used one, the ACER methods can
sometimes be short of accuracy. Nevertheless, the need of few data and assump-
tions present a big advantage. Moreover, we can work with dependant data without
specified that. Because of these advantages, it should be interesting to go further
with the use of extreme value theory and so develop more complex functions to fit.
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Chapter 5. Conclusion
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Appendix A
Stochastic process

A.1 Definition

A stochastic process is simply a collection of random variables, indexed by the
time. To give a mathematical definition, we first need to define a probability space.

Definition 1. A probability space consists of three parts:

• A sample space, Ω , which is the set of all possible outcomes.

• A set of events F , where each event is a set containing zero or more out-
comes.

• The assignment of probabilities to the events; that is, a function P from
events to probabilities.

[28] Now, we can give a simple definition of a stochastic process.

Definition 2. Suppose that (Ω, F, P) is a probability space, and that I @ R is
of infinite cardinality. Suppose further that for each α ∈ I, there is a random
variable Xα : Ω→ R defined on (Ω, F, P). The function X : I ×Ω→ R defined by
X(α, ω) = Xα(ω) is called a stochastic process with indexing set I, and is written
X = {Xα, α ∈ I}.

[19]
Finally, we will define one last kind of stochastic, the counting processes. A

counting process is a stochastic process {N(t), t ≥ 0} whose N(t) represents the
number of events occurring by time t.
A counting process needs the following properties:
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• N(t) ≥ 0

• N(t) is an integer

• If s < t, then N(t) ≥ N(s).

• For s < t, N(t) - N(s) equals the number of events that occurs in the interval
(s,t].

A.2 The Poisson process

In this section, we will present the Poisson process used to get the CI of the ACER
functions. This process is a stochastic process with some strong properties.

Definition 3. A counting process {N(t), t ≥ 0} is said to be a Poisson process
with rate λ > 0 if:

• N(0) = 0

• {N(t), t ≥ 0} has independent increments

• P(N(t+h) - N(t) = 1) = λ h + o(h)

• P(N(t+h) - N(t) ≥ 2) = o(h)

[23]
We can see that the ACER functions are a counting process of conditional

exceedances and consequently it can be reasonable to calculate the CI in using a
Poisson process.
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Appendix B
Time Series Models

In this chapter of the appendix, we will briefly talk about some time series models.
A time serie is simply a data set where the points are indexed in time order. Con-
sequently, time series are discrete-time data sets. In finance for example (but also
in weather forecast ...), the main goal is to predict the following values in time. To
do that, the process is to fit the data with a known model and then use this model
to predict the following values.

We have to define two notions before presenting the ARMA and GARCH mod-
els.

Definition 4. A discrete time stochastic process at is called white noise if its mean
and its variance are finite. Moreover if at is normally distributed with zero mean
then at is a Gaussian white noise.

In the following parts, we will use B as index left shift that means: BXn =
Xn−1.

B.1 The ARMA model

An ARMA model gives us a description of a stationary stochastic process thanks
to two polynomials: one for the AR part and one for the MA part. This model was
discovered in 1951 by Peter Whittle nad popularized 19 years after by George E.
P. Box and Jenkins.

Let X be the data points.
Then the ARMA model follows:

Φp(B)X = Θq(B)at
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where Φp(B) = 1−
∑p

i=1 φiB
i, Θq(B) = 1−

∑q
i=1 θiB

i and atisaGaussianwhitenoise.
If Φp(B) = 1 then we have a MA model. Moreover if Φp(B) has no zero root

(it is invertible) then we can transform the ARMA model into a infinite MA model.
If Θq(B) = 1 then we have a AR model.

Finally, the error forecast for the ARMA model can easily be obtained after
the transform to the infinite MA process.
We assume that Φp has no zero root, then we can write:

Xt = µ+ at +

p−1∑
i=1

ψiat−i

Then the variance of the error forecast will be: V ar(at) ∗ (1 +
∑t

i=1 ψ
2
i ).

B.2 the GARCH model

The ARCH model is used to describe, in time series analysis, the error variance.
Besides if an ARMA model is assumed for the error variance then the model is a
GARCH model.

A GARCH(p,q) model follows:

Yt = µ+ εt = µ+ σtzt

εt|ψtÑ(0, σ2t )

σ2t = w +

q∑
i=1

αiε
2
t−i +

p∑
i=1

αiσ
2
t−i

where ε is the mean-corrected strictly stationary time series, zt an independent
identically distributed random variable ψt the set of all informations up to time t-1
and w is a positive constant.

The αi measures the short-term impact of εt on conditional variance and the
βi the long one.
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Appendix C
The R codes

C.1 The R main code

library(PtProcess)
library(minpack.lm)

#### Calulation of k ####

#This function f_k will count the number of different values
# of the ACER functions between eta_1 and eta_f
f_k<- function(X,k,eta1, etaf, alpha)
{

# aux <- CI_boot(X,mean(X),k, 50, alpha)
aux <- CI_Poisson(X, mean(X),k)
aux1 <- aux$epsilon
aux_eps <- aux1
nb_points <- 100
if(etaf != eta1){

pas <- abs(etaf - eta1)/(nb_points)
}
else{

pas <- 0
}

test_level <- seq(eta1, etaf, pas)
eps <- rep(0,nb_points)
for(level in test_level)
{
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# aux <- CI_boot(X, level,k, 100)
aux <- CI_Poisson(X, level,k)

aux1 <- aux$epsilon
eps <- c(eps, aux1)

}

v_dif <- length(unique(eps[eps!=0]))

return(v_dif)
}

#This function detect_k will choose a k to
# get a value of k as small as possible without
# having a lack of precision with long sequences
#of constant values
detect_k <- function(X, eta1, etaf, alpha)
{

N <- length(X)
M <- 105
m <- 5
bi <- f_k(X,m, eta1, etaf, alpha)

q <- floor(0.8*bi)
while((M-m) > 5){

m_aux <- floor((M+m)/2)
v <- f_k(X,m_aux, eta1, etaf, alpha)
if(v < q){

M <- m_aux
}
else{

m <- m_aux
}

}
return(m)

}

#### Calculation of etaf1, eta_f ####
#eta1 will represent the lowest level and eta_f the
#highest of our study
eta_detect <- function(X, k, alpha)
{

nb_values <- 200
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pas <- (max(X)-min(X))/nb_values
test_level <- seq(min(X),max(X),pas)
i <- 1
k_i <- k
aux_end <- rep(0,k_i)
for(level in test_level)
{

# aux <- CI_boot(X,level,k_i,100, alpha)
aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
if(aux1>0){

aux_end[i] <- (aux1)

}
else{

aux_end[i] <- 0
}
i = i+1

}
m <- max(aux_end)
ind <- max(which(aux_end == m))
v <- aux_end[ind:length(aux_end)]
mu1 <- test_level[ind]
w <- diff(log(v))
l <- which(w != 0)
r <- diff(l)

m <- min(which(r >8))
p <- l[m]
muf <- test_level[p]

return(c(mu1, muf))
}

#### Detection of exceedances ####
sum_validate_data <- function(X, level)
{

N <- length(X)
a <- rep(0, N-1)
# Calculation of a, number of exceedance respecting
# the condition
index <- which(X > level)
l <- length(index)
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if(l==0)
{

return(a)
}
### firt index
aux <- index[1]
if(aux > 0)
{

a[1:(aux)] <- a[1:(aux)] + rep(1,aux)
}
if(l >1)
{

for (i in 1:(l-1))
{

aux <- index[i+1] - index[i] - 1
if(aux >= 1)
{

a[1:(aux)] <- a[1:(aux)] + rep(1,aux)
}

}
}

return(a)
}

#### ACER values ####
epsilon_app <- function(X,aux_sum, k)
{

# Here we just divide the number of exceedance
# by approximately the number of points to get a probability
epsilon <- aux_sum[k]/(length(X)+1-k+1)
return(epsilon)
# }

}

#### Confidence intervals ####
CI_Poisson <- function(X, level, k)
{

#First we calculate the value of epsilon
x <- sum_validate_data(X, level)
N <- length(X)
eps_aux <- epsilon_app(X,x, k)
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# Then we apply the classical formula of a CI for a Poisson
#distribution
if(eps_aux == 0){

C_plus <- 1.96*sqrt((N-k+1))
C_minus <- -1.96*sqrt((N-k+1))

}
else{

C_plus <- eps_aux*(1 + 1.96/sqrt((N-k+1)*eps_aux))
C_minus <- eps_aux*(1 - 1.96/sqrt((N-k+1)*eps_aux))

}

C <- data.frame(C_plus, C_minus)
return(list("CI" = C, "epsilon" = eps_aux))

}

CI_boot <- function(X, level, k, nb, alpha)
{

nb_sampling <- nb
L <- rep(0, nb_sampling)
for(j in 1:nb_sampling){

# We calculate the value of epsilon for sample based on
# the initial data set.
x <- sum_validate_data(sample(X, replace = T), level)
L[j] <- epsilon_app(X,x, k)

}

# we take the alpha % confidence interval
aux <- sort(L)
C_minus <- aux[floor(alpha/2*length(aux))]
C_plus <- aux[floor((1-alpha/2)*length(aux))+1]

C <- list(C_plus, C_minus)
x <- sum_validate_data(X, level)
eps_aux <- epsilon_app(X,x, k)

return(list("CI" = C, "epsilon" = eps_aux))
}

#### ACER method ####
ACER_General <- function(X, alpha)
{
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#First we fixe k at a possible value
# and we find eta1 and eta_f. These two values
#do not vary too much with k
eta <- eta_detect(X, 2, alpha)
eta1 <- eta[1]
etaf <- eta[2]

#With eta1 and eta_f, we find k.
k <- detect_k(X, eta1, etaf, alpha)

#We calculate then the true values of eta1 and eta_f
eta <- eta_detect(X, k, alpha)
eta1 <- eta[1]
etaf <- eta[2]

nb_points <- 200

pas <- (etaf-eta1)/(nb_points)
test_level <- seq(eta1, etaf, pas)
aux_eps <- 0
aux_w <- 0
for(level in test_level)
{

# aux <- CI_boot(X, level,k, 100)
aux <- CI_Poisson(X, level, k)
aux1 <- aux$epsilon
aux2 <- unlist(aux$CI)
v <- 1/(log(abs(aux2[1])) -log(abs(aux2[2])))ˆ2

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}

eps <- aux_eps[2:length(aux_eps)]
w <- aux_w[2:length(aux_w)]

level <- test_level

y <- log(eps)
# plot(w)
y_m <- sum(w*y) / sum(w)

ACER_sim_vect <- function(param){
#we are creating now the function for the given k
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b <- param[2]
c <- param[3]
a_t <- param[1]
x <- log(abs(1 + a_t*abs(level - b)ˆc))
x_m <- sum(w*x)/sum(w)
gam <- -(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + gam*x_m)
result <- rep(0, length(w))
for(i in 1:length(w)){

result[i] <- as.double(sqrt(w[i])*abs(y[i] - log(q)
+ gam*log(abs(1 + a_t*abs(level[i] - b)ˆc))))

}
return(unlist(result))

}
#
#
m <- min(X)
# ## we need to find b, c
minit <- (m+eta1)/2

o <- nls.lm(c(1,minit, 1), lower = c(0,m, 0),
upper = c(Inf,eta1, 5), ACER_sim_vect, jac = NULL,
nls.lm.control(ftol = 0.001,maxiter = 1000))

param <- o$par
##Now, we need to find a, q_ln
a_t <- param[1]
b <- param[2]
c <- param[3]
x <- log((1 + a_t*abs(level - b)ˆc))
x_m <- sum(w*x)/sum(w)

gam <- -(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))

q <- exp((y_m + gam*x_m))

# print(c(a_t,b,c,q,gam))

lres <- rep(0, length(eps))

for(l in 1:length(eps)){
lres[l] <- log(q) - gam*log(1+a_t*abs(level[l] - b)ˆc)
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}

return(list(coef = c(a_t, b, c, q, gam), eps = eps,
level = level))

}

#### Calculation VaR ####
VaR <- function(X, alpha){

v <- ACER_General(X, alpha)
coef <- v$coef
coef <- unlist(coef)
a_t <- coef[1]
b <- coef[2]
c <- coef[3]
q <- coef[4]
gam <- coef[5]
# VaR <- b+abs(1/a_t*abs(alpha/q)ˆ(1/gam) - 1)ˆ(1/c)
VaR_new <- b + abs(((alpha/q)ˆ(-1/gam)-1)/a_t)ˆ(1/c)
while(VaR_new > max(X))
{

VaR_new <- VaR(X,alpha)
}
return(VaR_new)

}

C.2 The tests’ code

#### Libraries ####
library(minpack.lm)
library(optimx)
library(forecast)
library(PtProcess)
library(tseries)
library(formattable)
library(htmltools)
library(webshot)

#### Tests of functions to get the exceedance ####
# These functions work elementwise on the matrices to build
# Building of A_kj
building_matrices <- function(X, level)
{
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# initialisation
N <- length(x = X)
init <- rep(0, times = (N-1)*(N-1))
A = matrix(data = init ,nrow = N-1, ncol = N-1)
# N - 1 because k starts at 2

# Calculations
for(k in 2:N)
{

for(j in k:N)
{

if(max(X[(j-k+1):(j-1)]) <= level)
{

if(X[j] > level)
{

A[k-1,j-1] = 1
}

}
}

}
return(A)

}

# Just calculation of the expected values
sum_peak <- function(X, level)
{

# initialisation
N <- length(x = X)
a = rep(0,N-1)
# Calculations
for(k in 2:N)
{

for(j in k:N)
{

if(max(X[(j-k+1):(j-1)]) <= level)
{

if(X[j] > level)
{

a[k-1] <- a[k-1] + 1 #sum of a_kj for k fixed
}

}
}

}
return(a)
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}

# This function works on the data directly
sum_validate_data <- function(X, level)
{

N <- length(X)
a <- rep(0, N-1)
# Calculation of a and b
index <- which(X > level)
l <- length(index)
if(l==0)
{

return(a)
}
# firt index
aux <- index[1]
if(aux > 0)
{

a[1:(aux)] <- a[1:(aux)] + rep(1,aux)
}
if(l >1)
{

for (i in 1:(l-1))
{

aux <- index[i+1] - index[i] - 1
if(aux > 1)
{

a[1:(aux)] <- a[1:(aux)] + rep(1,aux)
}

}
}
return(a)

}

test_exceedance_funct <- function()
{

l <- 10
t_1 <- rep(0, l)
t_2 <- rep(0, l)
t_3 <- rep(0, l)
aux <- rep(0, l)
level <- 2
for(l in 1:l){

X <- rpareto(l*100, 3, 1)
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t <- Sys.time()
A <- building_matrices(X,level)
aux <- sum(A)
t_1[l] <- Sys.time()-t
t <- Sys.time()
a <- sum_peak(X,level)
t_2[l] <- Sys.time()-t
t <- Sys.time()
a <- sum_validate_data(X,level)
t_3[l] <- Sys.time()-t

}
x <- seq(100, l*100, 100)
plot(x = x, y = t_1, type = "l", col = "blue",

xlab = "Length of X", ylab = "Time in second")
lines(x = x, y = t_2, type = "l", col = "green" )
lines(x = x, y = t_3, type = "l", col = "red" )
legend("topleft", legend = c("building_matrices",
"sum_peak", "sum_validate_data"),
col=c("blue", "green", "red"), lty = c(1,1,1))

}

#### Tests on CI functions and calculation of ACER function ####
# Calculation of Epsilon
epsilon_app <- function(X,aux_sum, k)

{
# Here we just divide the number of exceedance
# by approximately the number of points to get
# a probability
epsilon <- aux_sum[k]/(length(X)+1-k+1)
return(epsilon)
# }

}

# Confidence interval

# Block method
CI_block <- function(X, level, k)
{

# First we test the seasonality best chance to get
# a block structure
model <- auto.arima(X, D=1)
# to force the auto.arima to find a seasonability
b <- model$arma
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s <- b[5] ### s get the seasonality
s <- 3
aux_mean <- rep(0, s-1)
# we have to share the data into blocks of
# length s and work on each blocks
N <- length(X)
R <- floor(N/s)
list_aux <- list()
x_aux <- rep(0, N)
for(i in 1:R)
{

x <- X[((i-1)*s+1) : (i*s)]
x_aux <- sum_validate_data(x, level)
list_aux[[i]] <- epsilon_app(X, x_aux, k)

}

# last block

x <- X[(R*s+1) : N]
x_aux <- sum_validate_data(x, level)
list_aux[[R+1]] <- epsilon_app(x_aux, length(x_aux), k)

eps_aux <- data.frame(t(sapply(list_aux,c)))
# Calculation of s_k
std_dev <- rep(0, s-1)
for(k in 1:(s-1))
{

l_aux <- list_aux[[k]]
aux <- unlist(l_aux)
aux[is.na(aux)] <- 0
aux_mean[k] <- mean(aux)
aux2 <- aux - rep(aux_mean[k], length(aux))
std_dev[k] <- (sum(aux2*aux2))/(R-1)

}

# Creation of the confidence interval
C_plus <- aux_mean + 1.96*sqrt(std_dev)/sqrt(R)
C_minus <- aux_mean - 1.96*sqrt(std_dev)/sqrt(R)
C <- data.frame(C_plus, C_minus)
return(list("CI" = C, "epsilon" = eps_aux))

}

CI_Poisson <- function(X, level, k)
{

#First we calculate the value of epsilon
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x <- sum_validate_data(X, level)
N <- length(X)
eps_aux <- epsilon_app(X,x, k)

# Then we apply the classical formula of a CI for a Poisson
#distribution
if(eps_aux == 0){

C_plus <- 1.96*sqrt((N-k+1))
C_minus <- -1.96*sqrt((N-k+1))

}
else{

C_plus <- eps_aux*(1 + 1.96/sqrt((N-k+1)*eps_aux))
C_minus <- eps_aux*(1 - 1.96/sqrt((N-k+1)*eps_aux))

}

C <- data.frame(C_plus, C_minus)
return(list("CI" = C, "epsilon" = eps_aux))

}

CI_boot <- function(X, level, k, nb)
{

nb_sampling <- nb
L <- rep(0, nb_sampling)
for(j in 1:nb_sampling){

#We calculate the value of epsilon for sample based on
# the initial data set.
x <- sum_validate_data(sample(X, replace = T), level)
L[j] <- epsilon_app(X,x, k)

}

# we take the alpha % confidence interval
aux <- sort(L)
C_minus <- aux[floor(0.025*length(aux))]
C_plus <- aux[floor(0.975*length(aux))+1]

C <- list(C_plus, C_minus)
x <- sum_validate_data(X, level)
eps_aux <- epsilon_app(X,x, k)

return(list("CI" = C, "epsilon" = eps_aux))
}

level <- 2
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k <- 6
nb_samp <- 50
len <- 20
t_1 <- rep(0, len)
t_2 <- rep(0, len)
e_k_2 <- rep(0, len)
a_2 <- rep(0, len)
t_3 <- rep(0, len)
e_k_3 <- rep(0, len)
a_3 <- rep(0, len)
level <- 2

test_CI_time <- function(){
# TIME
for(l in 1:len){

X <- rpareto(l*100, 3, 1)
t <- Sys.time()
b <- CI_block(X, level, k)
t_1[l] <- Sys.time()-t
t <- Sys.time()
c <- CI_Poisson(X, level, k)
t_2[l] <- Sys.time()-t
t <- Sys.time()
d <- CI_boot(X, level,k, nb_samp)
t_3[l] <- Sys.time()-t

}
x <- seq(100, len*100, 100)

plot(x = x, y = t_1, type = "l", col = "blue",
xlab = "Length of X", ylab = "time in second")

lines(x = x, y = 25*t_2, type = "l", col = "green" )
lines(x = x, y = t_3, type = "l", col = "red" )
legend("topleft", legend = c("CI_block", "25*CI_Poisson",
"CI_boot"), col=c("blue", "green", "red"), lty = c(1,1,1))

}

test_CI_acc <- function(){
# ACCURACY vs length
for(l in 1:len){

X <- rpareto(l*100, 3, 1)
t <- Sys.time()
a <- CI_Poisson(X, level, k)
e_k_2[l] <- (a$epsilon)[k]
diff_2 <- (a$CI)[1]- (a$CI)[2]
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a_2[l] <- sqrt(sum(diff_2*diff_2))
t_2[l] <- Sys.time()-t
t <- Sys.time()
b <- CI_boot(X, level,k, nb_samp)
e_k_3[l] <- (b$epsilon)[k]
diff_3 <- (b$CI)[1]- (b$CI)[2]
a_3[l] <- sqrt(sum(diff_3*diff_3))
t_3[l] <- Sys.time()-t

}
x <- seq(100, len*100, 100)
plot(x = x, y = a_2, type = "l", col = "blue",

xlab = "Length of X", ylab = "Accuracy")
lines(x = x, y = 20*a_3, type = "l", col = "red" )
legend("topleft", legend = c("CI_Poisson", "20*CI_boot"),

col=c("blue", "red"), lty = c(1,1,1))

plot(x = e_k_2, y = e_k_3, col = "blue",
xlab = "Epsilon by CI_Poisson", ylab = "Epsilon by CI_boot")
lines(e_k_2,e_k_2, col = "red" )

}

test_CI_boot_nb_sample <- function(){
# TIME and ACCURACY vs nb_sample
for(l in 1:len){

X <- rpareto(2000, 3, 1)
t <- Sys.time()
b <- CI_boot(X, level,k, l*10)
e_k_3[l] <- (b$epsilon)[k]
diff_3 <- (b$CI)[1]- (b$CI)[2]
a_3[l] <- sqrt(sum(diff_3*diff_3))
t_3[l] <- Sys.time()-t

}
x <- seq(10, len*10, 10)
par(mar=c(4,4,3,5))
plot(x = x, y = t_3, type = "l", col = "blue",

xlab = "Number of samplings", ylab = "Time")

par(new=T)
plot(x = x, y = a_3, type = "l", col = "red", axes=F,

xlab = "", ylab ="")
mtext("Length of the CI",side=4, line = 2.5)
axis(4)
legend(x="topleft",legend=c("Time","Length of the CI"),

col=c("blue","red"),lty = c(1,1))
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}

#### Tests optimization algorithms ####
# Detection of the tail marker eta1
eta_detect <- function(X, k, alpha)
{

nb_values <- 200
pas <- (max(X)-min(X))/nb_values
test_level <- seq(min(X),max(X),pas)
i <- 1
k_i <- k
aux_end <- rep(0,k_i)
for(level in test_level)
{

aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
if(aux1>0){

aux_end[i] <- (aux1)

}
else{

aux_end[i] <- 0
}
i = i+1

}
m <- max(aux_end)
ind <- max(which(aux_end == m))
v <- aux_end[ind:length(aux_end)]
mu1 <- test_level[ind]
return(mu1)

}

# Start research model

ACER_Gumble_1 <- function(X, k, alpha)
{

k_i <- k
mu1 <- eta_detect(X, k)
muf <- max(X)
nb_points <- 100
pas <- (muf - mu1)/(nb_points)
test_level <- seq(mu1, muf, pas)

aux <- CI_Poisson(X,mean(X),k_i)
aux1 <- aux$epsilon
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aux2 <- aux$CI
aux_eps <- aux1
print(aux)
aux_w <- 1/(log(aux2[1]-aux2[2]))ˆ2
for(level in test_level)
{

aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
v <- 1/(log(aux2[1] -aux2[2])ˆ2)

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}
aux_w <- aux_w[-1]
aux_eps <- aux_eps[-1]

# create the functions to optimize
eps <- aux_eps[aux_eps != 0]
w <- aux_w[aux_eps != 0]
test_level <- test_level[aux_eps != 0]
level <- test_level
ACER_funct_value <- function(param){

q <- param[1]
a <- param[2]
b <- param[3]
c <- param[4]
result <- 0
result <- sum(w*abs((log(eps) - log(q) + a*(test_level - b)ˆc))ˆ2)

return(result)
}

U <- matrix(data = c(1,0,0,0, 0, 1, 0, 0, 0, 0 ,1, 0, 0, 0 ,-1, 0,
0, 0, 0, 1, 0, 0, 0, -1), nrow = 6, ncol = 4, byrow = TRUE)

m <- min(X)
M <- max(X)
C <- c(0 ,0, m, -mu1, 0, -5)

minit <- (m+mu1)/2
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print(minit)
print(m)
print(mu1)
o <- constrOptim(c(1,1, minit, 2), ACER_funct_value, NULL, U, C,

outer.eps = 0.0001 )
param <- o$par
q <- param[1]
a <- param[2]
b <- param[3]
c <- param[4]

VaR <- b+(1/a*(abs(log(alpha/q))))ˆ(1/c)

return(list(q = q, a = a, b = b, c = c, VaR = VaR,
tl = test_level, eps = eps))

}

ACER_Gumble_2 <- function(X, k, alpha)
{

k_i <- k
mu1 <- eta_detect(X, k)
muf <- max(X)
nb_points <- 100
pas <- (muf - mu1)/(nb_points)
test_level <- seq(mu1, muf, pas)

aux <- CI_Poisson(X,mean(X),k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
aux_eps <- aux1
print(aux)
aux_w <- 1/(log(aux2[1]-aux2[2]))ˆ2
for(level in test_level)
{

aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
v <- 1/(log(aux2[1] -aux2[2])ˆ2)

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}
aux_w <- aux_w[-1]
aux_eps <- aux_eps[-1]
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# create the functions to optimize
eps <- aux_eps[aux_eps != 0]
w <- aux_w[aux_eps != 0]
test_level <- test_level[aux_eps != 0]
level <- test_level
ACER_funct_vect <- function(param){

q <- param[1]
a <- param[2]
b <- param[3]
c <- param[4]
result <- rep(0, length(w))
for(i in 1:length(w)){

result[i] <- as.double(sqrt(w[i])*abs(log(eps[i]) - log(q)
+ a*abs(test_level[i] - b)ˆc))

}
return(result)

}

m <- min(X)
M <- max(X)

minit <- (m+mu1)/2
o <- nls.lm(c(1,1, minit, 1), lower = c(0, 0, 0.99*m, 0),

upper = c(Inf, Inf, 1.01*mu1, 5),ACER_funct_vect,
jac = NULL,
nls.lm.control(ftol = 0.0001,maxiter = 1000))

param <- o$par
q <- param[1]
a <- param[2]
b <- param[3]
c <- param[4]
VaR <- b+(1/a*(-log(alpha/q)))ˆ(1/c)
return(list(q = q, a = a, b = b, c = c, VaR = VaR,

tl = test_level, eps = eps))
}

ACER_Gumble_3 <- function(X, k, alpha)
{

k_i <- k
mu1 <- eta_detect(X, k)
muf <- max(X)
nb_points <- 100
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pas <- (muf - mu1)/(nb_points)
test_level <- seq(mu1, muf, pas)

aux <- CI_Poisson(X,mean(X),k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
aux_eps <- aux1
print(aux)
aux_w <- 1/(log(aux2[1]-aux2[2]))ˆ2
for(level in test_level)
{

aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
v <- 1/(log(aux2[1] -aux2[2])ˆ2)

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}
aux_w <- aux_w[-1]
aux_eps <- aux_eps[-1]

# create the functions to optimize
eps <- aux_eps[aux_eps != 0]
w <- aux_w[aux_eps != 0]
test_level <- test_level[aux_eps != 0]
level <- test_level

y <- log(eps)
y_m <- sum(w*y) / sum(w)

ACER_sim <- function(param){
b <- param[1]
c <- param[2]

x <- (level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- -(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + a*x_m)
result <- sum(w*(y-log(q)+a*x)ˆ2)
return(as.double(result))

}
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#
#
# ## we need to find b, c
U <- matrix(data = c( 1, 0,-1, 0, 0, 1, 0, -1), nrow = 4,

ncol = 2, byrow = TRUE)
m <- min(X)
C <- c(0.99*m, -1.01*mu1, 0, -5)
minit <- (mu1+m)/2
o <- constrOptim(c(minit, 1), ACER_sim, NULL,

method = "Nelder-Mead",
U, C, outer.eps = 1e-07)

param <- o$par
b <- param[1]
c <- param[2]
x <- (level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- abs(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + a*x_m)

VaR <- b+(1/a*(-log(alpha/q)))ˆ(1/c)

return(list(q = q, a = a, b = b, c = c, VaR = VaR,
tl = test_level, eps = eps))

}

ACER_Gumble_4 <- function(X, k, alpha)
{

k_i <- k
mu1 <- eta_detect(X, k)
muf <- max(X)
nb_points <- 100
pas <- (muf - mu1)/(nb_points)
test_level <- seq(mu1, muf, pas)

aux <- CI_Poisson(X,mean(X),k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
aux_eps <- aux1
print(aux)
aux_w <- 1/(log(aux2[1]-aux2[2]))ˆ2
for(level in test_level)
{

99



aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
v <- 1/(log(aux2[1] -aux2[2])ˆ2)

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}
aux_w <- aux_w[-1]
aux_eps <- aux_eps[-1]

# create the functions to optimize
eps <- aux_eps[aux_eps != 0]
w <- aux_w[aux_eps != 0]
test_level <- test_level[aux_eps != 0]
level <- test_level
y <- log(eps)
y_m <- sum(w*y) / sum(w)

ACER_sim_vect <- function(param){
b <- param[1]
c <- param[2]

x <- abs(level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- abs((sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2))))
q <- exp(y_m + a*x_m)
result <- as.double(w*(y-q+a*x)ˆ2)
return(result)

}

# ## we need to find b, c
m <- min(X)
minit <- (mu1+m)/2

o <- nls.lm(c(minit, 1), lower = c(m, 1), upper = c(mu1, 5),
ACER_sim_vect, jac = NULL,
nls.lm.control(ftol = 0.001, maxiter = 1000))
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param <- o$par
#Now, we need to find a, q_ln
b <- param[1]
c <- param[2]
x <- abs(level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- abs(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + a*x_m)

VaR <- b+(1/a*(abs(log(alpha/q))))ˆ(1/c)

return(list(q = q, a = a, b = b, c = c, VaR = VaR))
}

X <- rpareto(2000, 3, 1)

## error optimization algo
test_error_opti_alg <- function(X){

v <- ACER_Gumble_1(X,20, 0.05)
ep <- v$eps
ep <- log(ep)
x <- v$tl
q <- v$q
a <- v$a
b <- v$b
c <- v$c
a_1 <- log(q) -a*abs(x-b)ˆc
e_1 <- sqrt((ep-a_1)*(ep-a_1))
plot(x=x[x>2], y=0.5*e_1[x>2], type = "l", xlab = "Level",

ylab = "Error", ylim = c(0,0.7))

v <- ACER_Gumble_2(X, 20, 0.05)
q <- v$q
a <- v$a
b <- v$b
c <- v$c
a_1 <- log(q) -a*abs(x-b)ˆc
e_1 <- sqrt((ep-a_1)*(ep-a_1))
lines(x[x>2], e_1[x>2], type = ’l’, col = "blue")

v <- ACER_Gumble_3(X, 20, 0.05)
q <- v$q
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a <- v$a
b <- v$b
c <- v$c
a_1 <- log(q) -a*abs(x-b)ˆc
e_1 <- sqrt((ep-a_1)*(ep-a_1))
lines(x[x>2], e_1[x>2], type = ’l’, col = "green")

v <- ACER_Gumble_4(X, 20, 0.05)
q <- v$q
a <- v$a
b <- v$b
c <- v$c
a_1 <- log(q) -a*abs(x-b)ˆc
e_1 <- sqrt((ep-a_1)*(ep-a_1))
lines(x[x>2], e_1[x>2], type = ’l’, col = "red")

legend(x="topright",
c("0.5*Lin_Comp","LM_Comp", "Lin_Simpl","LM_Simpl"),
col=c("black","blue", "green","red"),lty = c(1,1,1,1))

}

test_time_opti_alg <- function(){
# execution time algo
len <- 20
t_1 <- rep(0,len)
t_2 <- rep(0,len)
t_3 <- rep(0,len)
t_4 <- rep(0,len)

for(l in 1:len){
X <- rpareto(1000+100*l, 3, 1)
t <- Sys.time()
v <- ACER_Gumble_1(X,8,0.05)
t_1[l] <- Sys.time()-t
t <- Sys.time()
v <- ACER_Gumble_2(X,8,0.05)
t_2[l] <- Sys.time()-t
t <- Sys.time()
v <- ACER_Gumble_3(X,8,0.05)
t_3[l] <- Sys.time()-t
t <- Sys.time()
v <- ACER_Gumble_4(X,8,0.05)
t_4[l] <- Sys.time()-t

}
x <- seq(1100, 3000, 100)
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plot(x, t_1, col = "red", type = "l", ylab = "Time",
xlab = "Number of points")

lines(x, t_2, type = "l",col= "blue")
lines(x, t_3,type = "l", col= "green")
lines(x, t_4, type = "l",col = "black")
legend(x="topleft",

c("Lin_Comp","LM_Comp", "Lin_Simpl", "LM_Simpl"),
col=c("black","blue", "green","red"),lty = c(1,1,1,1))

}

## test_LM_algo_nbPoints
test_nb_points <- function(){

#here we will use LM_simpl and LM_Compl
len <- 20
t_1 <- rep(0,len)
t_2 <- rep(0,len)
t_3 <- rep(0,len)
t_4 <- rep(0,len)

for(l in 1:len){
X <- rpareto(500+200*l, 3, 1)
t <- Sys.time()
v <- ACER_Gumble_1(X,8,0.05)
t_1[l] <- Sys.time()-t
t <- Sys.time()
v <- ACER_Gumble_4(X,8,0.05)
t_2[l] <- Sys.time()-t

}
x <- seq(700, 4500, 200)
plot(x, t_1, col = "red", type = "l", ylab = "Time",

xlab = "Number of points")
lines(x, t_2, type = "l",col = "black")
legend(x="topleft",legend=c("Lin_Simpl", "LM_Simpl"),

col=c("black","red"),lty = c(1,1))
}

#Now we choose LM_simpl (ACER_gumbel_4)
test_nb_pts_time_acc <- function(){

#we want to test the influence of the number of points on
# the time and the accuracy with VaR

len <- 10
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t <- rep(0,len)
ac <- rep(0,len)
alpha <- 0.001

# X <- rpareto(1000, 3, 1)
# v <- ACER_Gumble_4(X,3,alpha)
# print(v$VaR)

for(l in 1:len){

for(i in 1:3){
X <- rpareto(300+300*l, 3, 1)
t_aux <- Sys.time()
v <- ACER_Gumble_4(X,3,alpha)
print(v)
t[l] <- t[l] + Sys.time()-t_aux
ac[l] <- ac[l] + v$VaR

}
ac[l] <- ac[l]/3
t[l] <- t[l]/3

}
ac <- abs(ac - 10)/10

x <- seq(300, len*300, 300)
par(mar=c(4,4,3,5))
plot(x = x, y = ac, type = "l", col = "blue",

xlab = "Number of points", ylab = "Accuracy")

par(new=T)
plot(x = x, y = t, type = "l", col = "red", axes=F,

xlab = "", ylab ="")
mtext("Time",side=4, line = 2.5)
axis(4)
legend(x="topleft",legend=c("Accuracy","Time"),

col=c("blue","red"), lty = c(1,1))
}

## test precision mu1
test_accur_eta <- function(){

eta_detect_test <- function(X,n){
nb_values <- 200
pas <- (max(X)-min(X))/nb_values
test_level <- seq(min(X),max(X),pas)
i <- 1
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k_i <- k
aux_end <- rep(0,k_i)
for(level in test_level)
{

aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
if(aux1>0){

aux_end[i] <- (aux1)

}
else{

aux_end[i] <- 0
}
i = i+1

}
m <- max(aux_end)
ind <- max(which(aux_end == m))
v <- aux_end[ind:length(aux_end)]
mu1 <- test_level[ind+n]

return(mu1)
}

ACER_Gumble_4_eta1 <- function(X, k, alpha,n)
{

k_i <- k
mu1 <- eta_detect_test(X,n)
muf <- max(X)
nb_points <- 100
pas <- (muf - mu1)/(nb_points)
test_level <- seq(mu1, muf, pas)

aux <- CI_Poisson(X,mean(X),k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
aux_eps <- aux1
print(aux)
aux_w <- 1/(log(aux2[1]-aux2[2]))ˆ2
for(level in test_level)
{

aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
v <- 1/(log(aux2[1] -aux2[2])ˆ2)
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aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}
aux_w <- aux_w[-1]
aux_eps <- aux_eps[-1]

# create the functions to optimize
eps <- aux_eps[aux_eps != 0]
w <- aux_w[aux_eps != 0]
test_level <- test_level[aux_eps != 0]
level <- test_level
y <- log(eps)
y_m <- sum(w*y) / sum(w)

ACER_sim_vect <- function(param){
b <- param[1]
c <- param[2]

x <- abs(level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- abs((sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2))))
q <- exp(y_m + a*x_m)
result <- as.double(w*(y-q+a*x)ˆ2)
return(result)

}

# ## we need to find b, c
m <- min(X)
minit <- (mu1+m)/2

o <- nls.lm(c(minit, 1), lower = c(m, 1),
upper = c(mu1, 5),ACER_sim_vect, jac = NULL,
nls.lm.control(ftol = 0.001, maxiter = 1000))

param <- o$par
#Now, we need to find a, q_ln
b <- param[1]
c <- param[2]

106



x <- abs(level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- abs(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + a*x_m)

VaR <- b+(1/a*(abs(log(alpha/q))))ˆ(1/c)

return(list(q = q, a = a, b = b, c = c, VaR = VaR))
}

len <- 10
ac <- rep(0,len)
alpha <- 0.01

# X <- rpareto(1000, 3, 1)
# v <- ACER_Gumble_4(X,3,alpha)
# print(v$VaR)
X <- rpareto(1500, 3, 1)
for(l in 1:len){

for(i in 1:1){

v <- ACER_Gumble_4_eta1(X,3,alpha,l)
print(v)
ac[l] <- ac[l] + v$VaR

}
ac[l] <- ac[l]/1

}
ac <- abs(ac - 10)/10

x <- seq(1, len, 1)
plot(x = x, y = ac, type = "l", col = "blue", xlab = "n",

ylab = "Accuracy")
}

## test nb levels
test_nb_lvl <- function(){

ACER_Gumble_4_lev <- function(X, k, alpha, nb_level)
{

k_i <- k
mu1 <- eta_detect(X,k)
muf <- max(X)
nb_points <- nb_level
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pas <- (muf - mu1)/(nb_points)
test_level <- seq(mu1, muf, pas)

aux <- CI_Poisson(X,mean(X),k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
aux_eps <- aux1
print(aux)
aux_w <- 1/(log(aux2[1]-aux2[2]))ˆ2
for(level in test_level)
{

aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
aux2 <- aux$CI
v <- 1/(log(aux2[1] -aux2[2])ˆ2)

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}
aux_w <- aux_w[-1]
aux_eps <- aux_eps[-1]

# create the functions to optimize
eps <- aux_eps[aux_eps != 0]
w <- aux_w[aux_eps != 0]
test_level <- test_level[aux_eps != 0]
level <- test_level
y <- log(eps)
y_m <- sum(w*y) / sum(w)

ACER_sim_vect <- function(param){
b <- param[1]
c <- param[2]

x <- abs(level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- abs((sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2))))
q <- exp(y_m + a*x_m)
result <- as.double(w*(y-q+a*x)ˆ2)
return(result)
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}

# ## we need to find b, c
m <- min(X)
minit <- (mu1+m)/2

o <- nls.lm(c(minit, 1), lower = c(m, 1),
upper = c(mu1, 5), ACER_sim_vect, jac = NULL,
nls.lm.control(ftol = 0.001, maxiter = 1000))

param <- o$par
#Now, we need to find a, q_ln
b <- param[1]
c <- param[2]
x <- abs(level - b)ˆc
x_m <- sum(w*x)/sum(w)
a <- abs(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + a*x_m)

VaR <- b+(1/a*(abs(log(alpha/q))))ˆ(1/c)

return(list(q = q, a = a, b = b, c = c, VaR = VaR))
}

len <- 20
t <- rep(0, len)
ac <- rep(0,len)
X <- rpareto(2000, 3,1)
k <- 8
alpha <- 0.01
for(i in 1:len){

t_aux <- Sys.time()
v <- ACER_Gumble_4_lev(X,k,alpha, 50*len)
t[i] <- Sys.time() - t_aux
ac[i] <- abs(v$VaR - 10)/10

}
x <- seq(50, len*50, 50)
par(mar=c(4,4,3,5))
plot(x = x, y = ac, type = "l", col = "blue",

xlab = "Number of levels", ylab = "Accuracy")

par(new=T)
plot(x = x, y = t, type = "l", col = "red", axes=F,
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xlab = "", ylab ="")
mtext("Time",side=4, line = 2.5)
axis(4)
legend(x="topleft",legend=c("Accuracy","Time"),

col=c("blue","red"), lty = c(1,1))
}

#### 10% test ####
test_ten_percentage <- function(){

## Calulation of k

#This function f_k will count the number of different values
# of the ACER functions between eta_1 and eta_f
f_k<- function(X,k,eta1, etaf, alpha)
{

# aux <- CI_boot(X,mean(X),k, 50, alpha)
aux <- CI_Poisson(X, mean(X),k)
aux1 <- aux$epsilon
aux_eps <- aux1
nb_points <- 100
pas <- abs(etaf - eta1)/(nb_points)

test_level <- seq(eta1, etaf, pas)
eps <- rep(0,nb_points)
for(level in test_level)
{

# aux <- CI_boot(X, level,k, 100)
aux <- CI_Poisson(X, level,k)

aux1 <- aux$epsilon
eps <- c(eps, aux1)

}

v_dif <- length(unique(eps[eps!=0]))

return(v_dif)
}

#This function detect_k will choose a k to
# get a value of k as small as possible without
# having a lack of precision with long sequences
#of constant values
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detect_k <- function(X, eta1, etaf, alpha)
{

N <- length(X)
M <- 105
m <- 5
bi <- f_k(X,m, eta1, etaf, alpha)

q <- floor(0.8*bi)
while((M-m) > 5){

m_aux <- floor((M+m)/2)
v <- f_k(X,m_aux, eta1, etaf, alpha)
if(v < q){

M <- m_aux
}
else{

m <- m_aux
}

}
return(m)

}

## Calculation of etaf1, eta_f
#eta1 will represent the lowest level and eta_f the
#highest of our study
eta_detect <- function(X, k, alpha)
{

nb_values <- 200
pas <- (max(X)-min(X))/nb_values
test_level <- seq(min(X),max(X),pas)
i <- 1
k_i <- k
aux_end <- rep(0,k_i)
for(level in test_level)
{

# aux <- CI_boot(X,level,k_i,100, alpha)
aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
if(aux1>0){

aux_end[i] <- (aux1)

}
else{

aux_end[i] <- 0
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}
i = i+1

}
m <- max(aux_end)
ind <- max(which(aux_end == m))
v <- aux_end[ind:length(aux_end)]
mu1 <- test_level[ind]
w <- diff(log(v))
l <- which(w != 0)
r <- diff(l)

m <- min(which(r >8))
p <- l[m]
muf <- test_level[p]

return(c(mu1, muf))
}

## ACER method
ACER_General <- function(X, alpha)
{

#First we fixe k at a possible value
# and we find eta1 and eta_f. These two values
#do not vary too much with k
eta <- eta_detect(X, 3, alpha)
eta1 <- eta[1]
etaf <- eta[2]

#With eta1 and eta_f, we find k.
k <- detect_k(X, eta1, etaf, alpha)

#We calculate then the true values of eta1 and eta_f
eta <- eta_detect(X, k, alpha)
eta1 <- eta[1]
etaf <- eta[2]

nb_points <- 200

pas <- (etaf-eta1)/(nb_points)
test_level <- seq(eta1, etaf, pas)
aux_eps <- 0
aux_w <- 0
for(level in test_level)
{
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# aux <- CI_boot(X, level,k, 100)
aux <- CI_Poisson(X, level, k)
aux1 <- aux$epsilon
aux2 <- unlist(aux$CI)
v <- 1/(log(abs(aux2[1])) -log(abs(aux2[2])))ˆ2

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}

eps <- aux_eps[2:length(aux_eps)]
w <- aux_w[2:length(aux_w)]

level <- test_level

y <- log(eps)
# plot(w)
y_m <- sum(w*y) / sum(w)

ACER_sim_vect <- function(param){
#we are creating now the function for the given k
b <- param[2]
c <- param[3]
a_t <- param[1]
x <- log(abs(1 + a_t*abs(level - b)ˆc))
x_m <- sum(w*x)/sum(w)
gam <- -(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + gam*x_m)
result <- rep(0, length(w))
for(i in 1:length(w)){

result[i] <- as.double(sqrt(w[i])*abs(y[i] - log(q)
+ gam*log(abs(1 + a_t*abs(level[i] - b)ˆc))))

}
return(unlist(result))

}
#
#
m <- min(X)
# we need to find b, c
minit <- (m+eta1)/2

o <- nls.lm(c(1,minit, 1), lower = c(0,m, 0),
upper = c(Inf,eta1, 5),
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ACER_sim_vect, jac = NULL,
nls.lm.control(ftol = 0.001, maxiter = 1000))

param <- o$par
#Now, we need to find a, q_ln
a_t <- param[1]
b <- param[2]
c <- param[3]
x <- log((1 + a_t*abs(level - b)ˆc))
x_m <- sum(w*x)/sum(w)

gam <- -(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))

q <- exp((y_m + gam*x_m))

lres <- rep(0, length(eps))

for(l in 1:length(eps)){
lres[l] <- log(q) - gam*log(1+a_t*abs(level[l] - b)ˆc)

}
return(list(coef = c(a_t, b, c, q, gam), eps = eps,

level = level))

}

## Calculation VaR
VaR <- function(X, alpha){

v <- ACER_General(X, alpha)
coef <- v$coef
coef <- unlist(coef)
a_t <- coef[1]
b <- coef[2]
c <- coef[3]
q <- coef[4]
gam <- coef[5]
# VaR <- b+abs(1/a_t*abs(alpha/q)ˆ(1/gam) - 1)ˆ(1/c)
VaR_new <- b + abs(((alpha/q)ˆ(-1/gam)-1)/a_t)ˆ(1/c)
M <- max(X)
if(is.na(VaR_new)){

print("There is a problem with the optimization")
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}
else{

if(VaR_new > M){
print("There is a problem with the optimization")

}
}
return(VaR_new)

}

## DATA FRAME ##
l <- 20
VaR_E <- rep(0,l)
VaR_hist <- rep(0,l)
VaR_R <- rep(0,l)
VaR_MC <- rep(0,l)
VaR_ACER <- rep(0,l)
e_E <- rep(0,l)
e_hist <- rep(0,l)
e_R <- rep(0,l)
e_MC <- rep(0,l)
e_ACER <- rep(0,l)

for(i in 1:l){
## DATA ##
N <- 800
X <- rpareto(N, 3, 1)
D <- X[2:N] - X[1:(N-1)]

## Riskmetrics ##
P <- log(X)
D_R <- P[2:N] - P[1:(N-1)]
VaR_R[i] <- mean(X)*1.645*sqrt(exp(var(D_R)))
e_R[i] <- (VaR_R[i]-2.7)*100/2.7

## Econometric approach ##
P <- log(X)
G <- garch(P)
coeff <- G$coef
VaR_E[i] <- exp(sum(coeff * P[(N-length(coeff)+1) : N]))

+ 1.645*exp(var(P))
e_E[i] <- (VaR_E[i]-2.7)*100/2.7

## Historical Method ##
D_hist <- sort(D)
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X_hist <- mean(X)+D_hist
VaR_hist[i] <- X_hist[0.95*N]
e_hist[i] <- (VaR_hist[i]-2.7)*100/2.7

## MC Method ##
D_MC <- D
Sigm <- var(D_MC)

l_r <- 10000
r <- runif(l_r, 0, 1)

X_MC <- X[N] + Sigm * r
X_MC <- sort(X_MC)
VaR_MC[i] <- X_MC[0.95*l_r]
e_MC[i] <- (VaR_MC[i]-2.7)*100/2.7

## ACER method ##
VaR_ACER[i] <- VaR(X,0.05)
e_ACER[i] <- (VaR_ACER[i]-2.7)*100/2.7

}

dt <- data.frame(Riskmetric = e_R, Econometric = e_E,
Historical = e_hist, MC = e_MC, ACER = e_ACER)

w <- formattable(dt)
sign_formatter <- formatter("span",

style = x ˜ style(color = ifelse(x > 10, "red",
ifelse(x < -10 | x == "NaN", "orange", "green"))))

w <- formattable(dt, list(Riskmetric = sign_formatter,
Econometric =sign_formatter, Historical =sign_formatter,
MC =sign_formatter, ACER =sign_formatter))

export_formattable <- function(f, file, width = "100%",
height = NULL,
background = "white", delay = 0.2)

{
w <- as.htmlwidget(f, width = width, height = height)
path <- html_print(w, background = background, viewer = NULL)
url <- paste0("file:///", gsub("\\\\", "/",

normalizePath(path)))
webshot(url,

file = file,
selector = ".formattable_widget",
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delay = delay)
}
export_formattable(w,
"C:/Users/Mala/Desktop/Master’s thesis/Latex/fig/w2.png")

}

#### test soge ####

#This function f_k will count the number of different values
# of the ACER functions between eta_1 and eta_f
f_k<- function(X,k,eta1, etaf, alpha)
{

# aux <- CI_boot(X,mean(X),k, 50, alpha)
aux <- CI_Poisson(X, mean(X),k)
aux1 <- aux$epsilon
aux_eps <- aux1
nb_points <- 100
pas <- abs(etaf - eta1)/(nb_points)
if(eta1 >= etaf){

etaf <- 2*eta1
}
test_level <- seq(eta1, etaf, pas)
eps <- rep(0,nb_points)
for(level in test_level)
{

# aux <- CI_boot(X, level,k, 100)
aux <- CI_Poisson(X, level,k)

aux1 <- aux$epsilon
eps <- c(eps, aux1)

}

v_dif <- length(unique(eps[eps!=0]))

return(v_dif)
}

#This function detect_k will choose a k to
# get a value of k as small as possible without
# having a lack of precision with long sequences
#of constant values
detect_k <- function(X, eta1, etaf, alpha)
{
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N <- length(X)
M <- 105
m <- 5
bi <- f_k(X,m, eta1, etaf, alpha)

q <- floor(0.8*bi)
while((M-m) > 5){

m_aux <- floor((M+m)/2)
v <- f_k(X,m_aux, eta1, etaf, alpha)
if(v < q){

M <- m_aux
}
else{

m <- m_aux
}

}
return(m)

}

## Calculation of etaf1, eta_f
#eta1 will represent the lowest level and eta_f the
#highest of our study
eta_detect <- function(X, k, alpha)
{

nb_values <- 200
pas <- (max(X)-min(X))/nb_values
test_level <- seq(min(X),max(X),pas)
i <- 1
k_i <- k
aux_end <- rep(0,k_i)
for(level in test_level)
{

# aux <- CI_boot(X,level,k_i,100, alpha)
aux <- CI_Poisson(X, level, k_i)
aux1 <- aux$epsilon
if(aux1>0){

aux_end[i] <- (aux1)

}
else{

aux_end[i] <- 0
}
i = i+1
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}
m <- max(aux_end)
ind <- max(which(aux_end == m))
v <- aux_end[ind:length(aux_end)]
mu1 <- test_level[ind]
w <- diff(log(v))
l <- which(w != 0)
r <- diff(l)

m <- min(which(r >8))
p <- l[m]
muf <- test_level[p]
if(muf <= mu1){

muf <- 2*mu1
}
return(c(mu1, muf))

}

## ACER method
ACER_General <- function(X, alpha)
{

#First we fixe k at a possible value
# and we find eta1 and eta_f. These two values
#do not vary too much with k
eta <- eta_detect(X, 3, alpha)
eta1 <- eta[1]
etaf <- eta[2]

#With eta1 and eta_f, we find k.
k <- detect_k(X, eta1, etaf, alpha)

#We calculate then the true values of eta1 and eta_f
eta <- eta_detect(X, k, alpha)
eta1 <- eta[1]
etaf <- eta[2]

nb_points <- 200
if(eta1 == etaf){

etaf <- 2*eta1
}
pas <- (etaf-eta1)/(nb_points)
test_level <- seq(eta1, etaf, pas)
aux_eps <- 0
aux_w <- 0
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for(level in test_level)
{

# aux <- CI_boot(X, level,k, 100)
aux <- CI_Poisson(X, level, k)
aux1 <- aux$epsilon
aux2 <- unlist(aux$CI)
v <- 1/(log(abs(aux2[1])) -log(abs(aux2[2])))ˆ2

aux_eps <- c(aux_eps, aux1)
aux_w <- c(aux_w, v)

}

eps <- aux_eps[2:length(aux_eps)]
w <- aux_w[2:length(aux_w)]

level <- test_level

y <- log(eps)
y_m <- sum(w*y) / sum(w)

ACER_sim_vect <- function(param){
#we are creating now the function for the given k
b <- param[2]
c <- param[3]
a_t <- param[1]
x <- log(abs(1 + a_t*abs(level - b)ˆc))
x_m <- sum(w*x)/sum(w)
gam <- -(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))
q <- exp(y_m + gam*x_m)
result <- rep(0, length(w))
for(i in 1:length(w)){

result[i] <- as.double(sqrt(w[i])*abs(y[i] - log(q)
+ gam*log(abs(1 + a_t*abs(level[i] - b)ˆc))))

}
return(unlist(result))

}
#
#
m <- min(X)
# we need to find b, c
minit <- (m+eta1)/2

o <- nls.lm(c(1,minit, 1), lower = c(0,m, 0),
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upper = c(Inf,eta1, 5), ACER_sim_vect,
jac = NULL,
nls.lm.control(ftol = 0.001, maxiter = 1000))

param <- o$par
#Now, we need to find a, q_ln
a_t <- param[1]
b <- param[2]
c <- param[3]
x <- log((1 + a_t*abs(level - b)ˆc))
x_m <- sum(w*x)/sum(w)

gam <- -(sum(w*(x-x_m)*(y-y_m))/sum((w*(x-x_m)ˆ2)))

q <- exp((y_m + gam*x_m))

lres <- rep(0, length(eps))

for(l in 1:length(eps)){
lres[l] <- log(q) - gam*log(1+a_t*abs(level[l] - b)ˆc)

}
return(list(coef = c(a_t, b, c, q, gam), eps = eps,

level = level))

}

## Calculation VaR
VaR <- function(X, alpha){

v <- ACER_General(X, alpha)
coef <- v$coef
coef <- unlist(coef)
a_t <- coef[1]
b <- coef[2]
c <- coef[3]
q <- coef[4]
gam <- coef[5]
# VaR <- b+abs(1/a_t*abs(alpha/q)ˆ(1/gam) - 1)ˆ(1/c)
VaR_new <- b + abs(((alpha/q)ˆ(-1/gam)-1)/a_t)ˆ(1/c)
M <- max(X)
if(is.na(VaR_new)){

print("There is a problem with the optimization")
}
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else{
if(VaR_new > M){

print("There is a problem with the optimization")
}

}
return(VaR_new)

}

### Every day
options(digits = 6)
data<-read.table(

"C:/Users/Mala/Desktop/Master’s thesis/R/final/quotes.csv",
sep=";")

op_a <- levels(data$V2)
op <- op_a[3:(length(op_a)-5)]
op <- sub(",", ".", op)
op <- as.numeric(op)
soge_test_everyday <- function(op){

D <- diff(op)
pts <- 1000
nb <- 30
frc <- rep(0,nb)
start <- 1100
frc[1] <- op[start+1]
for(i in 2:nb){

u <- VaR(D[(start+i-pts):(start+i)], 0.05)
D[start+i+1] <- u
frc[i] <- frc[i-1] + u

}
plot(op[(start+1):(start+nb)], ylim = c(44.6, 48),

ylab = "Values of the opening", xlab = "Days")
lines(frc, col = "red")

}

soge_test_week <- function(op){
aux <- seq(5,1405,5) #281 values
D <- diff(op[aux])
nb <- 7
frc <- rep(0,nb)
frc[1] <- op[1000]
for(i in 2:nb){

u <- VaR(D[i:(150+i)], 0.05)
D[start+i+1] <- u
frc[i] <- frc[i-1] + u

}
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aux <- seq(1000, 1000+(nb-1)*5,5)
plot(x = aux, op[aux], ylim = c(43,45),

ylab = "Values of the opening", xlab = "Days")
lines(aux,frc, col = "red")

}
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