
End-to-end learning and sensor fusion
with deep convolutional networks for
steering an off-road unmanned ground
vehicle

Johann Dirdal

Master of Science in Cybernetics and Robotics

Supervisor: Kristin Ytterstad Pettersen, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

Current autonomous driving policies based on deep learning are mostly learned from

images of roads within rural and city areas. In this master thesis more unconventional

settings are considered, such as off-road and forest terrain. Specifically, the goal is

to train an off-road vehicle to make autonomous steering predictions based on input

from a single camera and LiDAR scanner. To achieve this, we propose a fusion model

comprising two convolutional networks and a fully-connected network. The convolu-

tional nets are trained on images and LiDAR, respectively, whereas the fully-connected

net is trained on combined features from each of these networks. Our experimental

results show that fusing image and LiDAR information yields more accurate steering

predictions on our dataset, than considering each data source separately. Results

also show that training our networks on LiDAR and images individually produces

similar root mean squared error (RMSE), and that better generalization is achieved by

increasing the number of LiDAR features for training.

As a secondary task, we a propose a proof-of-concept verification model for steering

trustability. This model utilizes segmented images from a separately trained segmen-

tation network, and, using projective geometry, can determine if the path generated

from a given steering angle is valid or not. Combining this model with our fusion

network above, steering angle predictions from this network can be accepted or dis-

carded online. Experiments on a small test set show promising results, but additional

experimentation is needed to confirm validity.

i

Sammendrag

Autonome kjøreregler basert på dyp læring er for det meste lært fra bilder av vei i land-

og byområder. I denne masteroppgaven legges det heller vekt på ukonvensjonelle

kjøreomgivelser som offroad og skogsterreng. Målet er å trene et terrengkjøretøy til

å ta autonome styrebeslutninger basert bilder og LiDAR. For å oppnå dette foreslår

vi en fusjonsmodell som består av to konvolusjonsnett og et fullt-forbundet nettverk.

Konvolusjonsnettverkene er opplært på henholdsvis bilder og LiDAR, mens det fullt

forbundne nettet er trent på kombinerte features fra hver av konvolusjonsnettverkene.

Våre eksperimentelle resultater viser at fusjonering av bilde og LiDAR informasjon

gir mer nøyaktige styringsbeslutninger på vårt datasett enn å vurdere hver datakilde

separat. Resultatene viser også at opplæring på LiDAR og bilder individuelt produserer

tilsvarende effektivverdi (RMS), og at bedre generalisering er oppnådd ved å øke

antallet LiDAR kjennemerker i treningen.

I tillegg foreslår vi en verifikasjonsmodell for vurdering av styrepålitelighet. Denne

modellen benytter segmenterte bilder fra et separat opplært segmenteringsnettverk,

sammen med projektiv geometri, til å avgjøre om kjørebanen fra en gitt styringsvinkel

er gyldig eller ikke. Kombinerer vi denne modellen med fusjonsnettverket ovenfor,

kan predikterte styrevinkler fra dette nettverket aksepteres eller kastes online. Eksper-

imenter på et lite prøveset viser gode resultater, men ytterligere forsøk er nødvendig

for å bekrefte gyldigheten.

ii

Preface

This master thesis concludes a five year journey at the Norwegian University of

Science and Technology (NTNU). I am grateful to this institution and my supervisors,

Professor Kristin Y. Pettersen (NTNU) and Senior Scientist Narada Warakagoda (FFI),

for presenting me with the opportunity to pursue a thesis within the fascinating

research field of deep learning. The relevant background for the work that shall be

presented can be found in Sec. 1.3. The reader is assumed to have basic knowledge on

machine learning and neural networks, however, an appendix presenting an overview

and discussion of the most essential components for deep learning is included.

First, I would like to thank the Norwegian Defense and Research Establishment

(FFI) for providing me with the necessary resources to complete this task, and, Marius

Thoresen, for answering any questions regarding the dataset used. Second, I would like

to thank my supervisor, Narada Warakagoda, for his invaluable input and guidance

throughout this thesis and for answering all of my deep learning questions, no matter

how stupid. Finally, I would like to thank Erlend Faxvaag Johnsen for his continuous

collaboration and contributions on this project.

Kjeller, Johann A. Dirdal

11th of June 2018

iii

Contents

Abstract i

Sammendrag ii

Preface iii

1 Introduction 1

1.1 Motivation . 1

1.2 Objective, scope and contributions . 2

1.3 Background . 3

1.4 Outline . 4

2 Literature review 5

2.1 Autonomous driving paradigms . 5

2.2 End-to-end steering angle prediction 7

2.3 Improving learning with LiDAR . 8

3 Theory 9

3.1 Convolutional networks . 9

3.1.1 Motivation . 10

3.1.2 Convolution . 12

3.1.3 Pooling . 14

iv

3.1.4 Regularization . 15

3.1.5 The VGG net . 16

3.2 Transfer learning . 18

3.3 Pixel-wise segmentation . 18

3.3.1 Fully convolutional networks (FCN) 19

3.4 Perspective projection geometry . 21

3.4.1 Pinhole camera model . 21

3.4.2 Depth from stereo . 23

3.5 LiDAR . 25

3.5.1 Generating LiDAR images . 25

4 Methods 27

4.1 Generating datasets . 27

4.1.1 Data collection . 28

4.1.2 Data processing . 29

4.1.3 Data labeling . 31

4.2 Steering network . 33

4.2.1 Overview . 33

4.2.2 Architecture . 36

4.2.3 Training . 38

4.2.4 Evaluation . 39

4.3 Segmentation network . 40

4.3.1 Overview . 40

4.3.2 Architecture . 42

4.3.3 Training . 44

4.3.4 Evaluation . 44

4.4 Path verification . 45

4.4.1 Overview . 45

4.4.2 Steering angle verification . 46

4.4.3 Evaluation . 49

5 Results and discussion 51

v

5.1 Steering network . 51

5.1.1 Results . 51

5.1.2 Discussion . 56

5.2 Segmentation network . 59

5.2.1 Results . 59

5.2.2 Discussion . 60

5.3 Path verification . 61

5.3.1 Results . 61

5.3.2 Discussion . 62

6 Conclusion 65

A Neural network basics 67

A.1 The structure of neural networks . 68

A.2 Activation functions . 70

A.2.1 Sigmoid unit . 70

A.2.2 Softmax unit . 71

A.2.3 Rectified linear units . 72

A.3 Maximum likelihood estimation . 73

A.4 Loss functions . 74

A.4.1 Mean squared error (MSE) . 74

A.4.2 Binary cross-entropy . 75

A.4.3 Categorical cross-entropy . 76

A.5 Training a neural network . 77

A.5.1 Gradient based optimization 77

A.5.2 Back-propagation algorithm 79

A.5.3 Batch normalization . 80

References 83

vi

List of Figures

2.1 Autonomous driving paradigms. Mediated perception approaches

decompose the driving scene into several objects relevant for driving,

and use these objects for making driving decisions. Behavior reflex

approaches learn a direct mapping from driving scene to driving action. 6

3.1 Example digit from the MNIST dataset [34]. Left and right images

are identical except that pixels on the right have been randomly per-

muted. Applying the same permutation on all instances in the MNIST

dataset and training a fully-connected network on it, will yield identical

classification performance as on the original dataset. 10

3.2 (Left) In a fully-connected layer, each output node is affected by every

input node (shown in gray). (Center) Sparse connectivity. (Right)

Parameter sharing. 11

3.3 Convolution operation. A 3× 3 matrix is multiplied element-wise with

each corresponding image-pixel to produce a single output value. . . 12

3.4 3D convolution process. 14

3.5 2 × 2 Max pooling layer with stride 2. The maximum value in 2 × 2

image regions is returned after each stride. The result is a subsampled

image. 15

3.6 VGG-16 network . 17

vii

3.7 Transformation/convolutionaliztion of fully-connected layers into con-

volutional layers. The classification network outputs class scores,

whereas the FCN outputs a heatmap. The image was taken from [36]. 19

3.8 FCN structure. Image taken from [36]. 20

3.9 Segmentation detail improves when fusing information from lower

pooling layers. Leftmost image shows the result of upsampling from

only the final prediction layer with stride 32. The other images shows

results when combining outputs from lower layers with decreasing

pixel stride. Image taken from [36]. 20

3.10 Transforming a 3D world coordinate to the image plane of a pin-

hole camera. First, an extrinsic transformation transforms the world

coordinate pw to the camera coordinate system. Then, an intrinsic

transformation projects this coordinate onto the image plane. 21

3.11 Inferring depth information using two identical parallel cameras. A 3D

point is mapped onto the image plane of each camera. Using simple

geometry, an expression for Z can be found. 24

3.12 Data collection process. For each rotational step, 32 lasers emit light

and the reflected beams are processed by the scanner. 26

3.13 LiDAR data structure produced after a single horizontal scan (Ns =

of horizontal steps). The first channel contains distances to any

surrounding objects, while the second channel contains the intensities

of the reflected beams. 26

4.1 Vechicle used by FFI to collect data. 28

4.2 Examples of the road environment. 28

4.3 Some predefined colormaps. 30

4.4 Processed camera and LiDAR image. 30

4.5 Data collection and processing pipeline. 31

4.6 Labeling instances in the segmentation dataset. 32

viii

4.7 (Stage 1) Only camera images and steering angles are used for training.

We extract features from the fifth pooling layer of a pre-trained VGG-

16 model and use this as input to our CNN. The CNN outputs steering

predictions which are compared to the ground truths, and appropriate

weight adjustments are made to the Image network for a fixed number

of iterations. 34

4.8 (Stage 2) Only LiDAR and steering angles are used for training. We

extract features from the fifth pooling layer of a pre-trained VGG-16

model and use this as input to our CNN. The CNN outputs steering

predictions which are compared to the ground truths, and appropriate

weight adjustments are made to the LiDAR network for a fixed number

of iterations. 34

4.9 (Stage 3) Late fusion. The trained models from Figs. 4.7 and 4.8 are

combined, but with the final prediction layers removed such that each

network outputs key features instead. The features are combined by

late fusion, and used as input to a separate fusion network. Comparison

with ground truth value and appropriate weight adjustment is the same

as in Figs. 4.7 and 4.8. 35

4.10 After training the model in Fig. 4.9, it can be used to make online

steering predictions, which can be used as references by the vehicle

control system. 36

4.11 The segmentation network is trained by feeding it examples of the road

environment along with the corresponding labels. Features from the

3rd, 4th and 5th pooling layers from a pre-trained VGG-16 network are

used as input the FCN. Upsampling the result and yields a segmented

image with same dimensions as the original input image. Weight

updates based on the loss are performed a fixed number of iterations. 41

4.12 After the model in Fig. 4.11 is trained, it can be used to make segmen-

tations online. 42

4.13 The upsampling process performed in the upsampling block of Figs.

4.11 and 4.12. Figure not to scale. 43

ix

4.14 Trustability system. 46

4.15 Steering angle verification process. First, the segmented road image is

transformed by a perspective transformation into a bird’s eye perspec-

tive. Then, the trajectory of the vehicle is determined by drawing the

given steering angle (shown in green) on the transformed image. We

assume the vehicle is always in the road center, and therefore draw the

angle from the bottom center. Finally, the steering angle is accepted if

the trajectory lies within the road boundary for the distance threshold d . 47

5.1 Absolute error between predicted and ground truth steering angle

on all 28404 data instances in the validation set, for the respective

networks. The two highest errors from the Image and LiDAR networks

are marked Top 1 and Top 2, respectively. 52

5.2 Column (a) and (b) show the bar plots and data instances corresponding

to the Top 1 and Top 2 image errors from Fig. 5.1, respectively. Color

mapped images are shown below the bar plots. LiDAR images consists

of distance (top) and intensity (bottom) channels. 53

5.3 Column (a) and (b) show the bar plots and data instances corresponding

to the Top 1 and Top 2 LiDAR errors from Fig. 5.1, respectively. Color

mapped images are shown below the bar plots. LiDAR images consists

of distance (top) and intensity (bottom) channels. 54

5.4 Learning curves produced by the respective Image, LiDAR and Fusion

networks. The curves show the progression of training and validation

set errors as the number of training epochs increases. 55

5.5 Some segmentation results from the validation set. 60

5.6 Verification process on a single instance from the test set. The drawn

steering angle (shown in red) is outside the road boundary for the

distance threshold, which is chosen as the image height, and therefore

not accepted. 62

A.1 A simple feedforward neural network consisting of three layers. . . . 69

A.2 Logistic sigmoid. 71

x

A.3 Tanh. 71

A.4 Rectified linear unit. 72

A.5 Leaky rectified linear unit. 72

A.6 Batch normalization algorithm. Image taken from [25]. 80

xi

List of Tables

1.1 Comparison of driving datasets (inspired by [56]). 2

4.1 CNN architecture with image input. All Conv. layers use ReLU activation. 37

4.2 CNN architecture with LiDAR input. All Conv. layers use ReLU activa-

tion. 37

4.3 Fusion network architecture. All fully-connected layers use ReLU

activation. 38

4.4 The number of data instances used for training and validation. We use

the same training and validation sets for all networks. 39

4.5 FCN architecture. 43

4.6 Upsampling architecture. 43

4.7 Number of images used for training and validation in the respective

datasets. 44

4.8 Evaluation metrics. 45

4.9 Structure of the confusion matrix. Diagonal elements show correct pre-

dictions, while off-diagonal elements show false predictions (TP=True

Positives, FN=False Negatives, FP=False Positives, TN=True Negatives). 49

xii

5.1 Performance on the validation set by the Image, LiDAR and Fusion net-

works presented in Sec. 4.2. Values are based on the metrics discussed

in Sec. 4.2.4. Zero and Mean represent blind predictions of the steering

angle. The former always predicts a zero angle, while the latter always

predicts the mean angle based on the ground truth values. (RMSE =

Root Mean Squared Error, S.A = Steering Accuracy). 52

5.2 Top 1 and Top 2 Image and LiDAR errors from the respective bar plots

in Figs. 5.2 and 5.3 shown numerically. 55

5.3 Results from other steering models in the literature (reported from

[10]) compared to our model, which we call FusionNet (RMSE=Root

Mean Squared Error). 58

5.4 Results on the validation set. Values are based on the metrics intro-

duced in Sec. 4.3.4 (IoU = Intersection over Union, FW = Frequency

Weighted). 59

5.5 Confusion matrix (see Sec. 4.4.3) showing the output results from our

verification model (see Fig. 4.14) compared to the actual class labels,

as defined in Sec. 4.4.3. We use a test set containing only true data

instances (270). In this case, TP=225, TN=45, FP=0 and TN=0. 61

xiii

xiv

Chapter 1

Introduction

1.1 Motivation

Today, deep learning based autonomous driving systems are mainly trained on images

of roads within rural and city areas. This master thesis is motivated by the fact that

current deep learning approaches do not address autonomous driving in unconven-

tional settings, such settings include off-road terrain which may, e.g., be of military

application. However, training a deep learning system on images of off-road terrain

is more challenging when compared to city and rural environments. The images

often lack distinct road boundaries as well as having variable road texture, making

it difficult for a deep learning system to learn meaningful features. This motivates

the use of additional sensors to help detect road boundaries and avoid potential ob-

stacles. Although combining information from different sensors to improve driving

is not new, it is relatively unexplored in the context of deep learning when applied

to direct steering prediction. There are three main groups of sensor systems used for

autonomous driving today: camera, radar and LiDAR (short for Light Detection And

Ranging). LiDAR is a widely adopted sensing technology that can produce accurate

1

2 CHAPTER 1. INTRODUCTION

3D-point clouds of the surrounding environment. In this work, we use readings from

camera and LiDAR sensor systems, along with measured wheel angles, as input data

for learning.

Safety is paramount when it comes to evaluating the success of an autonomous

driving system. For trustability reasons, it is important that a deep learning system

learns to detect features that make sense from a human standpoint. Evidence has

shown that deep learning approaches do learn to recognize relevant driving-related

objects [2, 4, 10]. To show that this is indeed the case for our work, we design and

implement a separate path verification system to decide if the given steering predictions

are appropriate or not.

1.2 Objective, scope and contributions

The main objective of this research is end-to-end steering angle prediction for an

off-road vehicle using convolutional networks. By "end-to-end" we mean a direct

mapping from input to actuation is learned. It is worth stressing, however, that a

complete autonomous driving model is not intended; the task in question merely

involves steering. The technical contributions that this work offers are three-fold and

are as follows.

First, the driving setting introduced by our dataset differs significantly from other

conventional driving datasets (see Table 1.1). Specifically, the environment is made up

Table 1.1: Comparison of driving datasets (inspired by [56]).

Dataset Setting Type Diversity

KITTI city, rural area, highway real one city, one weather condition, daytime

Cityscape city real German cities, multiple weather conditions, daytime

Comma.ai mostly highway real highway, N.A., daytime and night

Oxford city real one city (Oxford), multiple weather conditions, daytime

Princeton Torcs highway synthesis N.A.

GTA city, highway synthesis N.A.

BDDV city, rural area, highway real multiple cities, multiple weather conditions, daytime and night

FFI (ours) dirt-roads, forest real multiple weather conditions, dawn, daytime and dusk

1.3. BACKGROUND 3

of isolated dirt-roads and other natural terrain (see Fig. 4.2), in many cases without

distinct road boundaries. We argue that learning from this dataset poses a greater

challenge than learning from other conventional driving datasets, which usually have

well-defined road boundaries and road texture.

Second, we propose an end-to-end learning approach similar to [1], but instead of

training solely on images and steering angles, we train our convolutional network

on fused sensor input comprising image and LiDAR information together with time-

synchronized steering commands. Since many industrial autonomous driving systems

include LiDAR as an essential sensory component, we believe that combining images of

the road environment along with corresponding LiDAR readings can improve learning.

To our knowledge, this approach has only been applied once to end-to-end steering

prediction, but in a different driving setting [8].

Third, we introduce a separate path verification model with the purpose of es-

tablishing end-to-end steering trustability. To do this, we implement an individual

segmentation network taking images of the road environment as input, and producing

images in which each image-pixel is categorized as either road or not-road as output.

Then, a separate decision model based on projective geometry uses these segmented

images and decides if the given steering angle is trustable or not.

1.3 Background

The template code used for training and evaluating our convolutional networks were

taken from the TensorFlow-Slim image classification model library1. The library

contains a lightweight high-level API called TF-Slim, which is used for defining,

training and evaluating complex models. This API makes data processing, in addition

to training- and testing models, significantly easier. The code, however, is actually

intended for image classification, whereas the task in question involves regression.

For this reason, appropriate adjustments had to be made to make the code compatible

1https://github.com/tensorflow/models/tree/master/research/slim

4 CHAPTER 1. INTRODUCTION

with regression.

The network architecture used for segmentation was taken from the following

github page2, and adapted to the segmentation task in question. In particular, the

number of segmentation classes, epochs and batch sizes, were altered.

The dataset used for learning contains data that has been collected in regular inter-

vals from 2015 to 2017 by an Unmanned Ground Vehicle (UGV) in association with

the Norwegian Defense Research Establishment (FFI). It is worth pointing out that the

data was not originally intended for deep learning applications when it was collected,

and therefore requires some processing. The data collection and processing steps are

explained in detail in Sec. 4.1.

1.4 Outline

The organization of this master thesis is as follows. Chapter 2 gives a literature review

of the current deep learning based approaches for autonomous driving, providing

context for the task in question. Chapter 3 discusses the underlying theory for the

tasks performed in Chapter 4. Chapter 4 introduces the general methodology. First, the

method for generating the appropriate datasets is described. Then, architecture design,

training and evaluation of our proposed network models is discussed. Finally, a model

for path verification is presented along with a method for evaluating performance.

In Chapter 5, the results on the training and test sets are presented, discussed, and

recommendations for future work is given. In Chapter 6, conclusive remarks and

further comments on future work are made.

2https://github.com/maxritter/SDC-Semantic-Segmentation

Chapter 2

Literature review

The main objective of this chapter is to review the literature on current deep learning

based approaches for autonomous steering. To achieve this goal, we start by discussing

the two main paradigms for autonomous driving today. Then, we narrow the scope by

considering end-to-end steering prediction and present the relevant literature on the

topic. Finally, the current use of LiDAR data for driving applications in the context of

deep learning is discussed.

2.1 Autonomous driving paradigms

To date, vision-based autonomous driving systems are mainly dominated by two

paradigms: mediated perception approaches and behavior reflex approaches (see Fig.

2.1).

Mediated perception approaches [52] decompose the driving scene into several

driving-related objects and use these objects to infer driving decisions. Such objects

include lanes, traffic signs, traffic lights, cars, pedestrians, etc., and are usually detected

5

6 CHAPTER 2. LITERATURE REVIEW

Driving Scene Mediated Perception
Driving Action

Driving Scene
Driving Action

Behavior Reflex

Figure 2.1: Autonomous driving paradigms. Mediated perception approaches decom-

pose the driving scene into several objects relevant for driving, and use these objects

for making driving decisions. Behavior reflex approaches learn a direct mapping from

driving scene to driving action.

and recognized separately using various perception models [60, 5, 38, 17]. However,

with the recent advances in deep learning research and computer hardware, many

driving-related objects can be detected and recognized simultaneously [7]. Today, most

industrial autonomous driving systems, including the state-of-the-art, use a mediated

perception approach [10, 4]. Despite its success, the level of total scene understanding

imposed may in some cases add unnecessary complexity to the task [4]. Indeed, only a

small portion of detected objects is needed in many situations to make adequate driving

decisions. Chen et. al [4] address this issue and show that convolutional networks can

be used to directly estimate the most important affordance indicators for driving. Such

indicators include heading angle, distance to lane markings, and distances to cars in

current and adjacent lanes. These indicators are then fed into pre-defined steering and

velocity models to compute the appropriate driving commands.

In contrast, behavior reflex approaches [1, 56, 10] learn a direct mapping from

driving scene to driving action. The model, usually a neural network, is trained on data

collected by a human driver and learns to emulate human maneuvers. This eliminates

the need for hand-coding driving rules and instead creates a system that learns from

2.2. END-TO-END STEERING ANGLE PREDICTION 7

observation alone. Despite the simplicity and elegance of this idea, it does present some

important challenges [4, 56]. First, drivers will make different driving decisions when

meeting similar or same situations (e.g., deciding whether to follow or pass a car) [4].

Presenting a neural network with similar input, but with differing target actions, will

cause confusion and can stall learning. Second, the learned model is vehicle-specific.

There are no guarantees that the trained model will work correspondingly well across

different automobiles since the actuation systems they employ are often different. Xu

et. al [56] address this issue and show that a convolutional network can produce a

direct mapping from image input to a discrete set of driving actions (such as go straight,

turn-left, turn-right, etc.), independent of the vehicle’s actuation system.

2.2 End-to-end steering angle prediction

In the late 1980s, Dean A. Pomerleau developed the pioneering work of ALVINN

(Autonomous Land Vehicle In a Neural Network) [42, 43], which is considered to be the

earliest attempt to map road pixels to steering angles using neural networks [1, 56, 10].

This approach falls under the behavior reflex category, and compared to more modern

deep networks, the network used was mostly made up of shallow, fully-connected,

layers. Despite its simple structure, it proved successful in a number of basic driving

situations. Inspired by this success, NVIDIA recently demonstrated that convolution

networks, combined with general purpose GPUs, are capable of performing more

complex steering tasks [1]. In particular, they show that it is indeed possible for an

end-to-end system to learn to drive in traffic on local roads with and without lane-

markings. A limitation of this approach, however, addressed by [56, 10], is that steering

predictions are made independently on each video frame, thus contradicting driving

as a stateful process. Chi et. al [10] proposed using a convolutional-LSTM (Long Short

TermMemory [23]) architecture to improve steering predictions by taking into account

historical vehicle states. Their results do in fact show that leveraging earlier driving

states leads to improved steering.

8 CHAPTER 2. LITERATURE REVIEW

2.3 Improving learning with LiDAR

The use of LiDAR scanners in autonomous vehicles is attractive for two reasons. First,

it can produce direct distance measurements of nearby objects, which in turn can be

used by various controllers and planners for driving [55]. Second, it is robust under

different lighting conditions; a problem most cameras suffer from. These properties

are appealing also for deep learning systems and several approaches have attempted

to benefit from this technology. Wu et. al [55] use a transformed 3D LiDAR point

cloud as input to a convolutional network in order to segment interesting road-objects

such as cars, pedestrians, cyclists, etc. Specifically, the task aims to isolate objects and

predict their respective categories using LiDAR input only. Their results show high

accuracy in addition to fast and stable runtime. Other approaches using convolutional

nets together with LiDAR for detection/segmentation include [35, 3, 59]. Despite the

increased interest for LiDAR, only one approach, to our knowledge, has attempted

fusing it with other sensor data to improve end-to-end steering. Chen and Wang

et. al [8] propose their own LiDAR-Video driving dataset and show that extra depth

information does indeed have a positive impact on driving. Their approach, however,

differs from ours in three areas. First, the dataset proposed comprises conventional

driving settings, similar to those in Table 1.1, whereas ours is unique in that we consider

off-road terrain. Second, the experimental framework used for learning is different.

Specifically, they adopt Resnet [22], Inception-v4 [51] and NVIDIA [1] architectures for

extracting features, whereas we use VGG [49]. Third, their strategy for preprocessing

LiDAR readings differs from ours. In particular, they adopt two techniques known as

Point Clouds Mapping [57] and PointNet [44] to create powerful depth representations,

whereas we simply reorganize the point cloud data into an image with two feature

channels (more details in Sec. 3.5).

Chapter 3

Theory

In this chapter we present the underlying theory relevant to the steering, segmentation

and path verification models in Chapter 4. Specifically, we consider convolutional

networks, and the more specific fully-convolutional networks for segmentation, transfer

learning, projective geometry, and finally, a simple strategy for preprocessing LiDAR

data. The reader is advised to consider reading Appendix A before studying this

chapter if unfamiliar with neural networks and deep learning.

3.1 Convolutional networks

In 2012 convolutional networks (also known as convolutional neural networks, or

CNNs) [33] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)1

by a wide margin, bringing down the (at the time) state-of-the-art error from 26.1% to

15.1% [30], and in many ways led to the rise of deep learning. Since then, convolutional

networks have shown great success in a number of different image classification tasks

[49, 50]. As we shall see, CNNs play a crucial role in the development of the steering-

1ILSVRC is held each year and is the largest contest in object recognition.

9

10 CHAPTER 3. THEORY

and segmentation networks presented in Chapter 4. It is therefore worthwhile to

study the underlying theory behind convolutional nets in order to get a grasp of the

operations involved.

3.1.1 Motivation

Although convolutional nets have experienced a great deal of success in tasks such

as voice recognition and natural language processing, they are mainly popularized for

their performance on complex visual recognition tasks. These problems usually require

a vast amount of image data in order to give adequate results. Given a large enough

training set, a fully-connected network could in principle yield a good solution to tasks

of this nature. However, such networks present two important issues when applied to

visual perception: (1) they have large memory requirements, and (2) they ignore any

structure in the input features, as will now be discussed.

Images are high-dimensional inputs, where each pixel is treated as a feature. This

means that a 100 × 100 input image would be treated as a 10 000 feature vector in the

input layer of a fully-connected network. Recall that in a traditional neural network

each output node is connected to every input nodewith a separate parameter describing

the interaction. If the first hidden layer comprises, say, 100 nodes, then this would

require 1 000 000 parameters in just this layer.

Figure 3.1: Example digit from the MNIST dataset [34]. Left and right images are

identical except that pixels on the right have been randomly permuted. Applying the

same permutation on all instances in the MNIST dataset and training a fully-connected

network on it, will yield identical classification performance as on the original dataset.

3.1. CONVOLUTIONAL NETWORKS 11

Fully-connected networks ignore a key property of images, namely that nearby

pixels are more strongely correlated than more distant pixels. Consequently, networks

of this type do not take into account the local spatial layout of features in the data.

Once a fully-connected net has learned to recognize a pattern in one location, it can

only recognize that pattern in that particular location (see Fig. 3.1).

The shortcomings above are addressed and incorporated into convolutional net-

works through three mechanisms: (1) sparse interactions, (2) parameter sharing, and

(3) equivariant representations. Mechanisms (1) and (2) are illustrated graphically in

Fig. 3.2. The figure shows the same number of input and output units in all three

examples but with differing configurations in terms of connectivity and the number of

weights (not shown in left and center). With sparse connectivity each output node

is only affected by the nodes in a local region of the input. The units influencing

the output z3 are known as the receptive field of z3 (shown in gray). With parameter

sharing, the same parameters are used at all input locations (shown as x1,x2, etc.),

which is illustrated by using the same color for each parameter. Fewer parameters

reduces the memory requirements imposed by the network. Fewer connections also

x1

x2

x3

x4

x5

z1

z2

z3

z4

z5

z1

z2

z3

z4

z5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

z1

z2

z3

z4

z5

Figure 3.2: (Left) In a fully-connected layer, each output node is affected by every input

node (shown in gray). (Center) Sparse connectivity. (Right) Parameter sharing.

12 CHAPTER 3. THEORY

reduce the number of operations needed to compute the output. Most importantly,

sparse connectivity and parameter sharing enables the network to recognize the same

patterns in different subregions of the image. This architecture allows the network

to concentrate on low-level features in the initial hidden layers, then assemble them

into higher-level features in the subsequent layers, which can then be used to detect

complex patterns in the image.

Convolution (discussed in the next section) is said to be equivariant to translation.

This means that if some input is translated, that is, shifted by some amount of pixels, the

convolution output will be translated in the same way. Mathematically, a function f is

equivariant to some transformation д if f (д(x)) = д(f (x)). This property is important

as it means that convolution can detect the same features (e.g., edges) at different

locations. It is worth stressing that convolution is not naturally equivariant to other

transformations such as scaling or rotation.

3.1.2 Convolution

Fig. 3.3 shows a 5×5 input image being convolved with a 3×3 kernel matrix (shown in

blue) to produce a 5×5 feature map. Studying the figure closely, we can see mechanisms

(1) and (2) in play. All output units have a 3 × 3 local receptive field defined by the size

0 0 0 0 0 0 0

0 1 1 0 2 0 0

0 2 2 2 2 1 0

0 0 0 0 2 1 0

0 2 2 2 2 1 0

0 2 0 2 2 1 0

0 0 0 0 0 0 0

5 × 5

1 0 1

0 1 0

1 0 1

3 × 3

3 5 4 5 2

3 3 7 3 5

4 8 8 8 5

2 6 6 6 5

4 4 6 5 3

5 × 5

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 3.3: Convolution operation. A 3 × 3 matrix is multiplied element-wise with

each corresponding image-pixel to produce a single output value.

3.1. CONVOLUTIONAL NETWORKS 13

of the kernel matrix, making interactions with the input units sparse. In addition, the

parameters associated with each output node are the same; the same kernel matrix is

applied to all subregions of the image. Each element in the kernel is multiplied with

the corresponding element in the local input region, and the products are summed to

produce the output. The kernel is then shifted horizontally to compute the next output

and continues in this manner until it reaches the edge. At this point, the kernel returns

to start but is shifted vertically downwards to compute the outputs on the next row,

and so on. The amount of pixels the kernel moves after each computation is called the

stride, and is not necessarily the same in both horizontal and vertical directions. In

the above example, the stride was set equal to 1 in both directions, which is common

whenever we want the feature map to have same dimensions as the input. In order

to process the edge pixels of the input, it is customary to coat the image with extra

rows and columns. This process is known as padding, and various strategies exist for

deciding the row- and column values. In Fig. 3.3 we have employed what is known

as zero-padding (shown in gray), which, as the name suggests, involves coating the

border with zeroes.

The discussion so far has, for simplicity, considered the input layer as 2D images

with one color channel and convolutional layers as a single feature map. In practice,

however, it is common to train a convolutional net on images comprising three color

channels (red, green and blue) in addition to using multiple kernels for each input

layer. Altering the image dimensions from 2D to 3D implies that the depth in the

local receptive field of each output unit be extended accordingly. This means that the

kernel matrix needs to be extended to 3 dimensions as well. Fig. 3.4 gives a graphical

illustration of the 3D convolution process. Each output unit, in each feature map of

the first convolutional layer, is computed by processing 3D volumes of pixel values

within the local receptive field of the output. More specifically, the parameters in the

first plane of the kernel matrix are multiplied with the corresponding pixel values

in the first color channel, the parameters in the second plane with the second color

channel, and so on, before summing the results to produce the output. It is common

to simultaneously apply multiple kernels to the input in order to detect different

features. This results in stacks of different feature maps (recall that each feature map

14 CHAPTER 3. THEORY

Figure 3.4: 3D convolution process.

is associated with a single kernel). The outputs in the next convolutional layer can

then be computed by processing 3D volumes of pixel values in the feature maps within

the local receptive field of each output unit. Combining features in this way enables

detection of more complex image patterns.

3.1.3 Pooling

In order to reduce computational load, memory usage and the number of parameters in

a network it is customary to subsample (i.e., shrink) the input using a pooling operation.

We usually distinguish between three types of pooling functions; average pooling, L2-

norm pooling and max pooling. Max pooling [62], which is the most common type of

pooling layer, is shown in Fig. 3.5. Just like convolution, each output unit is connected

to local regions of the input, in this case, by a 2 × 2 local receptive field (shown in

different colors). However, in contrast to convolution, pooling does not have any

3.1. CONVOLUTIONAL NETWORKS 15

5 7 2 6

1 9 3 1

2 4 2 0

0 3 8 5

9 6

4 8

2 × 2 max pooling

stride 2

Figure 3.5: 2 × 2 Max pooling layer with stride 2. The maximum value in 2 × 2 image

regions is returned after each stride. The result is a subsampled image.

weights associated with its nodes; it uses an aggregation function to aggregate the

inputs in each local region. With max pooling, the maximum value in each region is

returned. To make the output smaller, it is necessary to use a stride greater than 1

(given that the input has been padded accordingly).

In addition to the already mentioned attributes, pooling possesses a property known

as translation invariance. For small translations of the input, the output response

from pooling is (approximately) the same as before the image was shifted. Invariance

to local translation can be useful whenever we need to know whether a feature is

present rather than exactly where it is (e.g., detecting the presence of eyes for facial

recognition).

Lastly, we mention that pooling can be used to handle tasks with variable-sized

inputs. In the case of classification, the classification layer, which is fully-connected,

requires fix-sized inputs. By varying the stride between pooling regions in the final

pooling layer, the classification layer will in general receive the same number of inputs,

independent of input dimensions.

3.1.4 Regularization

To prevent our convolutional networks in Sec. 4.2 from overfitting the training data, we

consider four regularization techniques—weight-decay, Dropout, Batch Normalization,

16 CHAPTER 3. THEORY

and early stopping. With weight-decay a penalty is added to the loss function, thereby

restricting the size of how large the network parameters are allowed to be. In this way,

the network is prevented from assigning arbitrarily large parameter values in order to fit

the training data. With Dropout, a set of arbitrary nodes are "dropped" at each training

stage. This creates different networks at each stage, and prevents specific nodes from

overfitting the training data. Batch Normalization integrates normalization as part of

the model architecture and has proven to have a regularizing effect [25], sometimes

eliminating the need for Dropout. Finally, early stopping involves monitoring the

validation error as the number of training epochs go by, and stop training as soon as

the error reaches a minimum.

We use weight-decay and Dropout when training the VGG-16 network (discussed

in Sec. 3.1.5). In addition, we use Batch Normalization when training the Image and

LiDAR networks introduced in Sec. 4.2. Early stopping is not considered since the

learning curves presented in Sec. 5.1 indicate that overfitting is not an issue in our

trained models.

3.1.5 The VGG net

In 2015 the Visual Geometry Group2 (VGG) published a paper [49] investigating

the effect of depth in a convolutional network on the ILSVRC dataset. The dataset,

commonly referred to as ImageNet [13], consists of millions of images used for object

category classification and has a total of 1000 different categories. The VGG team

found that by steadily increasing depth (i.e., the number of convolution layers in the

network), top-1 and top-5 classification errors continued to decrease. The VGGNet, as

it is called, exists with various depth configurations (11, 13, 16 and 19 weight layers),

with the largest having best performance on ImageNet. Convolutional nets of this

size are feasible in terms of computation and memory because of the small kernels

involved (all kernels have a receptive field of 3 × 3 or smaller).

Fig. 3.6a gives graphical illustration of the network configuration for the VGG-16

2http://www.robots.ox.ac.uk/~vgg/

3.1. CONVOLUTIONAL NETWORKS 17

224
×
224

R
G
B

Im
ag
e

3
×
3
co
n
v,

64

3
×
3
co
n
v,

64

m
ax
p
o
o
l

3
×
3
co
n
v,

128

3
×
3
co
n
v,

128

m
ax
p
o
o
l

3
×
3
co
n
v,

256

3
×
3
co
n
v,

256

3
×
3
co
n
v,

256

m
ax
p
o
o
l

3
×
3
co
n
v,

512

3
×
3
co
n
v,

512

3
×
3
co
n
v,

512

m
ax
p
o
o
l

3
×
3
co
n
v,

512

3
×
3
co
n
v,

512

3
×
3
co
n
v,

512

m
ax
p
o
o
l

F
C
,
4096

F
C
,
4096

F
C
,
4096

so
ftm

ax

(a) VGG-16 layer description and configuration.

(b) VGG-16 layer configuration in 3D with input/output dimensions. Image taken from [31].

Figure 3.6: VGG-16 network

net. The network comprises 16 weight layers; 13 convolutional- and 3 Fully-Connected

(FC) layers (recall that pooling does not have any parameters). As we can see, the

number of feature maps in each convolution layer is increased by a power of 2, from

64 to 512, after each pooling operation. Max pooling is performed over a 2 × 2 pixel

window, with stride 2. Fig. 3.6b shows the same layer pipeline as in Fig. 3.6a but in

3D, in addition to showing the input/output dimensions of each layer. We see that the

spatial dimensions of the input image are initially fixed and gradually subsampled to

produce classification scores.

18 CHAPTER 3. THEORY

3.2 Transfer learning

Training a convolutional network from scratch is uncommon due to the lack of suffi-

ciently sized datasets [8, 10, 55]. In general, training a complex model on a relatively

small dataset is more likely to produce an overfitted model. To circumvent this, we use

already pre-trained VGG-16 layers as part of the steering and segmentation networks

presented in Sec. 4.2 and 4.3, and fine-tune the weights of these layers when training

on our data. This method is known as transfer learning and, as the name suggests,

involves transferring knowledge from a previously learned task to a new one. Dif-

ferent strategies for using transfer learning exists and depends on the dataset size in

addition to how similar the data is to the original in the transferred layers. A general

guideline is to use features from lower layers if the data is very different from the

original dataset, and use features from higher layers if the data is similar [58]. The

reason is that features in the earlier stages tend to be more generic than later on. We

experiment with different pre-trained VGG-16 layers for the fusion network in Sec.

4.2, and find (somewhat surprisingly) that features from higher layers produce the best

results.

3.3 Pixel-wise segmentation

The path verification model introduced in Sec. 4.4 uses segmented images of the road

to perform steering angle verification. These images are produced from a separate

segmentation network, as we shall see in Sec. 4.3. In this section, some of the most

important components of this network are studied.

Pixel-wise segmentation is the task of assigning each pixel in an image to a specific

category. In the application of self-driving cars, images of the road environment can

contain a multitude of categories—traffic signs, roads, pedestrians and sidewalks to

name a few. Prior approaches to pixel-wise segmentation include Texton Forests [47],

Random Forest based classifiers [48, 46] and Convolutional Networks [15, 41, 21, 20].

In this section we shall introduce a different paradigm known as Fully Convolutional

3.3. PIXEL-WISE SEGMENTATION 19

Networks (FCN) [36] which achieves state-of-the-art performance and exceeds the

aforementioned approaches on computational speed and efficiency.

3.3.1 Fully convolutional networks (FCN)

Although convolutional networks have experienced a great deal of success in image

classification, they have not shown the same degree of success in segmentation, which

is mainly due to their inherent structure. A convolution network generally has three

operations: convolution, activation and pooling. The convolution and activation op-

erations are important for detecting useful features, whereas pooling, in addition to

subsampling, introduces invariance to local translation of the input. However, for tasks

such as pixel-wise prediction, which relies on the preservation of the location of fea-

tures, invariance to translation poses some difficulty. Previous efforts using CNNs also

rely on a technique known as patchwise training [11, 15, 41], which involves training

on sub-images or patches instead of whole-images. Fully convolutional networks ad-

dress the structural shortcomings of CNNs by re-architecting and fine-tuning existing

classification networks to pixel-wise prediction. Re-architection involves discarding

the final classification layer of the classifier network and "convolutionalizing" the

fully-connected layers. This is achieved by simply viewing fully-connected layers as

Figure 3.7: Transformation/convolutionaliztion of fully-connected layers into convolu-

tional layers. The classification network outputs class scores, whereas the FCN outputs

a heatmap. The image was taken from [36].

20 CHAPTER 3. THEORY

Figure 3.8: FCN structure. Image taken from [36].

convolutions with kernels covering their entire input region. Fig. 3.7 gives a graphical

depiction of this transformation process. As the figure shows, the dimensions of the

output from the FCN has been reduced due to subsampling. To transform the subsam-

pled output to a segmented image with the same dimensions as the original image,

we can use interpolation, a process known as upsampling. However, upsampling is

typically performed in-network meaning that the interpolation-parameters are not

fixed but learned. Fig. 3.8 shows the overall structure of the fully convolution network.

A problem with this structure is that upsampling at the final prediction layer limits the

scale of detail in the upsampled output. Ref. [36] defines a skip architecture which fuses

information from lower layers to improve segmentation detail. More specifically, the

skip architecture uses the output from earlier pooling layers thereby preserving local

Figure 3.9: Segmentation detail improves when fusing information from lower pooling

layers. Leftmost image shows the result of upsampling from only the final prediction

layer with stride 32. The other images shows results when combining outputs from

lower layers with decreasing pixel stride. Image taken from [36].

3.4. PERSPECTIVE PROJECTION GEOMETRY 21

features and allows for upsampling with smaller strides. Fig. 3.9 shows segmentation

results when using information from lower layers with decreasing stride.

3.4 Perspective projection geometry

In Sec. 4.4, we design and implement a path verification model to assign trust to the

predicted steering angles generated from the trained steering network. This section

presents some of the underlying theory behind this model, and will serve as aid when

discussing limitations later on.

3.4.1 Pinhole camera model

The pinhole camera model is a mathematical model describing the process in which

rays of light are mapped onto the image plane. More specifically, the model describes

the transformations needed to take a 3D point from some object in the world coordinate

Xw

Zw

Yw

Y c

X c

Z c

pw

τ

X c

Y c

Z cY I

X I

pI

pc

Extrinsic transformation

Intrinsic

transformation

Figure 3.10: Transforming a 3D world coordinate to the image plane of a pinhole

camera. First, an extrinsic transformation transforms the world coordinate pw to the

camera coordinate system. Then, an intrinsic transformation projects this coordinate

onto the image plane.

22 CHAPTER 3. THEORY

system and project it onto the 2D image plane of an ideal pinhole camera. The overall

process can be explained in two steps. First, the 3D world point is transformed from the

world frame to the camera frame. Then, the point is transformed from the camera frame

to the image plane through a second transformation. Fig. 3.10 illustrates both processes.

Let (Xw , Yw , Zw) and (X c , Y c , Z c) be the coordinate systems of the world and camera

frames, respectively, and let pw be the coordinate of some object in the world frame.

The transformation from world to camera can be mathematically described by:

pc = Rcwp
w + τ , (3.1)

where Rcw is a 3×3 rotation matrix between the world and camera frame and τ is a 3×1

translation vector. The set {Rcw ,τ } is called the extrinsic parameters and describe the

position and orientation of the camera in the world. Before defining the transformation

from camera frame to image plane, some terminology is necessary. The origin of the

(X c , Y c , Z c) coordinate system is called the optical center, and defines pinhole of the

camera. Furthermore, the point at which the Z c axis, or optical axis, strikes the image

plane is known as the principal point. The distance between the optical center and

principal point is called the focal length. With these quantities defined, the camera

coordinate pc = [x ,y, z]T can be projected onto the image plane by the following

transformation:

xp = f
x

z
, yp = f

y

z

where f denotes the focal length. We have for simplicity assumed that the focal length

parameters are the same in the x- and y-directions. Most imaging systems consider

(0, 0) to be at the top-left corner of the image plane, rather than the optical center.

To cope with this, we add offset parameters δx and δy so that the transformation

becomes

xp = f
x

z
+ δx ,

yp = f
y

z
+ δy . (3.2)

3.4. PERSPECTIVE PROJECTION GEOMETRY 23

The set { f ,δx ,δy } is known as the intrinsic parameters, and is camera specific. Notice

that the transformation in (3.2) is nonlinear due to the division by z. Multipying

both sides of (3.2) with z and expressing the system in homogeneous coordinates,

yields

z

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xp

yp

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f 0 δx 0

0 f δy 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦︸��������������︷︷��������������︸
Intrinsic matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Letting PI denote the left-hand side, K the intrinsic matrix and Pc the homogeneous

camera coordinate, we get the linear system:

PI = KPc . (3.3)

Re-writing the extrinsic transformation in (3.1) in a similar manner, gives

Pc = [Rcw τ] Pw , (3.4)

where Pc = [pc , 1]T and Pw = [pw , 1]T . Finally, substituting (3.4) into (3.3), we get the

general transformation from 3D world to 2D image plane:

PI = K [Rcw τ] Pw . (3.5)

3.4.2 Depth from stereo

The real world depth of a 2D image point can be estimated from a stereo-pair image.

In other words, given two images depicting the same scene, the depth of a pair of

corresponding points in each image can be estimated given certain camera parameters.

In the subsequent derivations we assume (1) identically calibrated cameras, meaning

the intrinsic parameters are the same, and (2) the cameras are placed in parallel. A 3D

24 CHAPTER 3. THEORY

Ol Or

P = (X ,Y ,Z)

(xl ,yl) (xr ,yr)

Left image

plane

Right image

plane

(a) 3D perspective.

Ol Or

f f

L

Z

xl xr

P

(b) Bird’s eye perspective.

Figure 3.11: Inferring depth information using two identical parallel cameras. A 3D

point is mapped onto the image plane of each camera. Using simple geometry, an

expression for Z can be found.

view of the setup is illustrated in Fig. 3.11a. In particular, we have two pinhole cameras

(left and right) indicated by their respective optical centers, Ol and Or . The optical

axis from each center strikes the corresponding image plane at the origin. A world

coordinate denoted P is projected onto the image plane of each camera resulting in

image-plane coordinates (xl ,yl) and (xr ,yr), defined relative to the origin of the image

plane. Given the assumptions outlined above, it can be shown that yl = yr . Fig. 3.11b

shows a bird’s eye perspective of the setup in Fig. 3.11a. We introduce parameters f ,

denoting the focal length of each camera, and L, representing the baseline distance

between the cameras. Using similar triangles, we have that

Z

L
=

Z − f

L − xl + xr
.

After some rearranging, the depth Z of a 2D image point can be expressed as

Z = f
L

xl − xr
, (3.6)

3.5. LIDAR 25

where the difference, (xl − xr), is known as the disparity between the corresponding

image points.

3.5 LiDAR

LiDAR (also known as Lidar, LADAR or LIDAR) is a remote sensing technology that

uses light to infer the relative position of surrounding objects. Typically, rapid pulses

of light are emitted from a laser instrument and a sensor measures the time taken for

the reflected light to return. In ground-based LiDAR systems, the LiDAR instrument is

often mounted on a tripod in which it can rotate 360◦ around. By emitting pulses of

light and recording the corresponding time delays while rotating, the instrument can

build a complex map (known as a point-cloud) of the surrounding environment. Most

companies active in the self-driving car community, such as Uber, Waymo, Baidu, etc.,

include LiDAR as an essential sensory component in their vehicles. In this section, we

deviate from the conventional point-cloud based approaches, and instead look at how

LiDAR data can be exploited to operate directly with deep learning systems.

3.5.1 Generating LiDAR images

The test vehicle used for data collection in this thesis is equipped with a Velodyne

HDL-32E LiDAR sensor3. The instrument contains 32 lasers, has a measurement

range of 1-70m, and has a vertical and horizontal field of view (FOV) of 40◦ and 360◦,

respectively. The data collection process is illustrated in Fig. 3.12.

The scanner rotates horizontally and at each horizontal step, 32 vertical lasers

emit light and the reflected rays with corresponding time delays are processed by

the instrument. The processed data from each laser contains two important pieces of

information, namely the distance to any obstacle in the surrounding environment, and

the intensity of the reflected beam. This information can be conveniently expressed in

3For more information see: http://velodynelidar.com/hdl-32e.html

26 CHAPTER 3. THEORY

32

Figure 3.12: Data collection process. For each rotational step, 32 lasers emit light and

the reflected beams are processed by the scanner.

a 32×Ns × 2 matrix (see Fig. 3.13), where Ns represents the number of horizontal steps

needed to complete a single turn, and the first and second channel represents respective

distance and intensity measurements from each laser after one cycle. Since we are

more interested in the events taking place in front rather than behind the vehicle, only

the data associated with a 120◦ arc of the horizontal FOV is considered.

By reinterpreting LiDAR readings as multi-dimensional arrays with various distance

and intensity features, we can use this data to train a deep neural network.

32

Ns

Figure 3.13: LiDAR data structure produced after a single horizontal scan (Ns = # of

horizontal steps). The first channel contains distances to any surrounding objects,

while the second channel contains the intensities of the reflected beams.

Chapter 4

Methods

In this chapter, the general methodology is introduced. First, the strategy used for

generating the appropriate datasets is described. This process involves collecting,

processing and labeling data. Then, we describe the design, training and evaluation of

our proposed networks. Finally, a method for performing path verification is described

along with an appropriate evaluation metric.

4.1 Generating datasets

The primary goal of this section is to describe the underlying process involved in

generating the datasets used for end-to-end training of the steering- and road seg-

mentation networks. The data (comprised of images, LiDAR and steering angles) was

obtained by a test vehicle owned by the Norwegian Defense Research Establishment

(FFI). The vehicle, shown in Fig. 4.1, is mostly operated in the proximity of a small

village named Sessvollmoen in the municipality of Ullensaker, Norway. In this area

the driving environment is primarily made up of dirt roads and other natural terrain

(see Fig. 4.2). It is worth stressing that the data provided by FFI was not originally

27

28 CHAPTER 4. METHODS

intended for deep learning applications when it was collcted, and therefore requires

some processing.

Figure 4.1: Vechicle used by FFI to collect

data.
Figure 4.2: Examples of the road

environment.

4.1.1 Data collection

The vehicle is equipped with a left, right and center camera in addition to a LiDAR

scanner. Multiple cameras enable depth perception of the environment, which is useful

for measuring distances to various objects. In this task, however, the left and right

cameras are mainly used to provide examples of off-center road images. The reasons

for this will become clear in Sec. 4.1.3.

The vehicle employs an operating system known as Robot Operating System1, or

ROS for short. In this operating system, each sensory device (camera, LiDAR, etc.)

records information and sends it to a file known as a bag, which stores the serialized

data. More specifically, a bag stores ROS message data published by various ROS nodes.

Nodes are processes that perform some computation and can communicate with other

nodes by sending messages.

1Documentation and other resources can be found at: http://wiki.ros.org/.

4.1. GENERATING DATASETS 29

The dataset provided by FFI consists roughly of 1.4 TB of raw data amounting

to over 150 ROS bags and over 400 000 images in total. Since the dataset was not

originally intended for deep learning applications many of the bags lack measurements

of specific quantities (such as steering angle and LiDAR) thus making them irrelevant.

Additionally, many of the bags contain images which are poor in terms of learning

quality. For instance, some video sequences consist merely of images of the vehicle

remaining stationary for several minutes. We filter out such sequences as they can

stall learning.

4.1.2 Data processing

The sensory equipment in the vehicle operate at different frequencies. For instance,

the cameras capture images at 6 Hz, the LiDAR scanner rotates between 5-20 Hz,

and the steering-sensor records angles at 50 Hz. Consequently, image, LiDAR and

steering angle measurements are not time-synchronized which poses a problem since

each camera image and LiDAR reading should be associated with a steering angle

at which the information was recorded. Additionally, the time at which each image,

LiDAR reading and angle were recorded, and the time at which they were written to

memory, are different. The image-delay was estimated to be less than 50 ms using

a tool called rqt_bag. Since the steering data is significantly smaller than the image

data, it is reasonable to assume that the delay for this quantity is much less than 50

ms, and therefore negligible. Moreover, we only have have access to the time at which

the steering information was saved and not recorded. For this reason, we choose to

operate with save-time for the image data as well.

To synchronize the image, LiDAR and steering angle data, we simply select the

steering angle and LiDAR reading which is closest in time to the timestamp of a given

image, and use the angle as a corresponding label. This method works well provided

that the difference in time between initial recordings of sensory devices is small. For

the ROS bags that we have manually inspected, this appears to be the case.

The images generated from the left and right cameras are in grayscale, whereas the

30 CHAPTER 4. METHODS

(a) Original. (b) Hot. (c) HSV. (d) Jet. (e) Cool.

Figure 4.3: Some predefined colormaps.

center camera produces color-images. This becomes problematic since the VGG-16

network, which we use as a pre-trained model (see Sec. 3.2), is originally trained

on RGB images. To make this network compatible with our data, it is necessary

to convert the grayscale images to RGB. This can be achieved by using predefined

colormaps to alter the color scheme of the image. Fig. 4.3 shows some examples. It

is worth mentioning that a colormapped image contains exactly the same amount of

information as its grayscale counterpart, but differs in that it contains three channel

dimensions instead of one. From experimentation we found that the Hot colormap

array produced the most satisfactory results.

In Section 3.5, the general strategy used for constructing LiDAR image data was

outlined. Since the LiDAR scanner operates at varying scanning frequencies (5-20 Hz)

the number of horizontal steps varies for each scan, resulting in different image widths.

To overcome this issue, we (1) determine the most frequent output width from all

(a) Original. (b) Distance. (c) Intensity.

Figure 4.4: Processed camera and LiDAR image.

4.1. GENERATING DATASETS 31

LiDAR images generated, and (2) bilinearly interpolate all LiDAR images satisfying a

certain length threshold to this output width. Fig. 4.4 shows an example of a processed

camera image along with the corresponding LiDAR image. As discussed in Sec. 3.5,

the LiDAR image contains two feature-channels, namely distance and intensity. The

distance channel shows normalized distance measurements to objects in the front-

facing part of the vehicle. Likewise, the intensity channel shows normalized intensity

values of the reflected laser beams. A clear pattern is observed when comparing the

processed LiDAR images to the original. In particular, we see that the road ahead is

clearly visible with some noise in the form of trees and bushes on the sides.

The data collection and processing steps above are summarized in Fig. 4.5. The

test vehicle records the desired quantities at different frequencies, which are then

processed and time-synchronized into a data structure, which can be used for learning.

Time

synchronization

LiDAR

processing

Image

processing

6Hz grayscale video

5-20Hz

LiDAR

scanner

50Hz steering angle recordings Time synchronized

data structure

Figure 4.5: Data collection and processing pipeline.

4.1.3 Data labeling

In an end-to-end learning approach for driving, the network is taught to emulate

human maneuvers. This involves providing the network with data exemplifying

32 CHAPTER 4. METHODS

correct driving behaviour. However, with this approach, the system never learns how

to recover from mistakes. For example, if the vehicle finds itself away from the lane

center, it should quickly adjust itself to return back to the center position. Training

with data only from a human driver is therefore not sufficient and can cause the vehicle

to drift [1]. To lessen the effect of this issue, we present our steering network with

image examples simulating the vehicle in different positions from the road center,

along with the appropriate steering adjustment. Motivated by [1], we use images from

the left and right cameras on the vehicle as off-center examples. Inspired by [40], we

add/subtract a small offset value to the ground truth steering angle associated with the

vehicle’s actual position, and use this as an appropriate label for the off-center images.

This will cause the vehicle to slowly drift back towards the center of the road.

Recall from Sec. 3.3 that the task of a segmentation network is to assign each pixel in

an image to a specific category. For road-segmentation, the categories are comprised of

road and not-road. In order for the network to recognize these classes, it is necessary

to train it on sample images in which the pixels have been labeled to their respective

categories. We manually label each image in the dataset by blackening background

pixels and whitening road pixels. Fig. 4.6 shows some examples.

(a) Raw images. (b) Corresponding labels.

Figure 4.6: Labeling instances in the segmentation dataset.

4.2. STEERING NETWORK 33

4.2 Steering network

Up to now, we have considered strategies for preprocessing and labeling data. This

is perhaps one of the most important steps in building a successful deep learning

application. Spending weeks training a model on the back of weak quality data will

typically underperform a relatively simple model trained on high quality data. For

this reason, a significant portion of time was spent on generating a quality dataset for

learning.

In this section, the design, training and evaluation aspects of the steering model

will be examined in detail. As mentioned earlier, the main goal is to combine fea-

ture information from images and LiDAR and use this to make steering predictions.

Different strategies for accomplishing this can be found in the literature. The main

techniques include early fusion [26], late fusion [26, 16, 9, 14, 39, 54] and slow fusion

[26]. We adopt a late fusion approach as this is relatively easy to implement and has

shown good results in practice [9, 39, 54].

4.2.1 Overview

Late fusion involves merging features from the final layers of two separately trained

networks. For this reason, we divide the training process into three separate stages.

Fig. 4.7 shows a block diagram of the first stage. In this stage, a convolutional network

is trained to predict steering angles based solely on road images and time-synchronized

steering commands. The goal here is to train the CNN to learn to detect features from

the image input that are important for steering. To achieve this goal, it is beneficial to

feed the network with vast amounts of data. We augment the training set by mirroring

each image such that images of a left-turn become a right-turn, and vice versa. Note

that the steering angle corresponding to the mirrored image is adjusted by inverting the

sign. Images from this dataset are then selected at random, and fed into a pre-trained

VGG network (discussed in Sec. 3.1.5). For reasons discussed in Sec. 3.2, we extract

the features from the fifth max pooling layer of this network (denoted Pool5) and use

34 CHAPTER 4. METHODS

CNNVGG
Data

augmentation

−

Backpropagation

weight adjustment

Center camera

Left camera

Right camera

Adjust for

mirroring

Pool5

features

Predicted
steering
command

Error

Desired steering command

Weight update

Pre-trained

Image network

Figure 4.7: (Stage 1) Only camera images and steering angles are used for training. We

extract features from the fifth pooling layer of a pre-trained VGG-16 model and use

this as input to our CNN. The CNN outputs steering predictions which are compared to

the ground truths, and appropriate weight adjustments are made to the Image network

for a fixed number of iterations.

this as input to the CNN. The CNN produces an estimated steering angle which is

compared to the ground truth angle. The error between these angles is then used

to make a weight update to the network. After the weights have been updated, the

process is repeated a fixed number of iterations.

CNNVGGPreprocessing
−

Backpropagation

weight adjustment

LiDAR

Pool5

features

Predicted
steering
command

Error

Desired steering command

Weight update

Pre-trained

LiDAR network

Figure 4.8: (Stage 2) Only LiDAR and steering angles are used for training. We extract

features from the fifth pooling layer of a pre-trained VGG-16 model and use this as

input to our CNN. The CNN outputs steering predictions which are compared to the

ground truths, and appropriate weight adjustments are made to the LiDAR network

for a fixed number of iterations.

4.2. STEERING NETWORK 35

Fig. 4.8 shows a block diagram of the second stage. This stage is similar to the

former, except for two important changes. First, a separate convolutional network is

used to extract features from LiDAR images instead of RGB-images. Second, the data

augmentation block has been replaced by a preprocessing block. This is necessary

to ensure that the output dimensions from preprocessing agree with the dimensions

expected by the pre-trained VGG model. Although we use a separate CNN for this

stage, it has the exact same architecture as the CNN used in stage 1. The architecture

will be discussed in Sec. 4.2.2.

Fig. 4.9 shows a block diagram of the third and final stage. In this stage, the trained

models from stages 1 and 2 are used together with a new network, which we call

fusion network, to estimate steering commands. Notice that the CNNs above do not

output steering angles, as in stages 1 and 2, but instead output features. We remove

the final prediction layer from each CNN and concatenate the resulting image and

LiDAR features into a single vector and use this as input to the fusion network. The

process of updating the weights and biases in the fusion network is identical to the

CNN

CNN

VGG

VGG

Data

augmentation

Preprocessing

−

Backpropagation

weight adjustment

Center camera

Left camera

Right camera

LiDAR

Adjust for

mirroring

Pool5

features

Error

Desired steering command

Image

features

Weight update

Pool5

features

LiDAR

features

Predicted
steering
command

Trained models

Fusion

network

Figure 4.9: (Stage 3) Late fusion. The trained models from Figs. 4.7 and 4.8 are

combined, but with the final prediction layers removed such that each network outputs

key features instead. The features are combined by late fusion, and used as input to a

separate fusion network. Comparison with ground truth value and appropriate weight

adjustment is the same as in Figs. 4.7 and 4.8.

36 CHAPTER 4. METHODS

update-process discussed above for the Image and LiDAR networks.

Once the steering network has been trained, it can be used to make online steering

predictions, as Fig. 4.10 illustrates. Time-synchronized measurements from the camera

and LiDAR scanners are supplied as input to the trained steering network, which

outputs a predicted steering angle. This angle is then used as a reference by the vehicle

control system to steer the vehicle.

CNN

CNN

VGG

VGGPreprocessingLiDAR

Center camera

Control

system

Pool5

features

Image

features

Pool5

features

LiDAR

features

Trained steering network

Fusion

network

Figure 4.10: After training the model in Fig. 4.9, it can be used to make online steering

predictions, which can be used as references by the vehicle control system.

4.2.2 Architecture

Tables 4.1 and 4.2 show the network configurations of the CNN blocks in Figs. 4.7

and 4.8, respectively. Notice that the layer types and arrangement in both tables are

identical. The input dimensions differ because of different data used for training.

Additionally, we use stride 4 in the max-pooling layers in Table 4.2 to reduce the

number of parameters. The architecture below was inspired by [40], who also used

a convolutional network for steering angle prediction, but in a conventional driving

setting, and was able to achieve a root mean squared error (RMSE) of 0.0645.

As discussed in Sec. 3.1, the convolutional layers extract salient features and combine

them to form more complex features. The batch normalization layers simply normalize

the output from each convolution layer, while max-pooling subsamples the input to

reduce computational load in addition to providing local invariance to translation.

4.2. STEERING NETWORK 37

Finally, a fully-connected layer takes a flattened vector as input and outputs the

predicted steering angle.

Table 4.1: CNN architecture with image input. All Conv. layers use ReLU activation.

Layer Layer type Input dims Output dims #Filters Filter dims Stride

1 Conv2D 7 × 7 × 512 7 × 7 × 256 256 3 × 3 × 512 1

2 BatchNorm 7 × 7 × 256 7 × 7 × 256 - - -

3 Conv2D 7 × 7 × 256 7 × 7 × 128 128 1 × 1 × 256 1

4 BatchNorm 7 × 7 × 128 7 × 7 × 128 - - -

5 Conv2D 7 × 7 × 128 7 × 7 × 256 256 3 × 3 × 128 1

6 BatchNorm 7 × 7 × 256 7 × 7 × 256 - - -

7 Max-pool 7 × 7 × 256 4 × 4 × 256 - 2 × 2 2

8 Conv2D 4 × 4 × 256 4 × 4 × 128 128 3 × 3 × 256 1

9 BatchNorm 4 × 4 × 128 4 × 4 × 128 - - -

10 Max-pool 4 × 4 × 128 2 × 2 × 128 - 2 × 2 2

11 Conv2D 2 × 2 × 128 2 × 2 × 256 256 3 × 3 × 128 1

12 BatchNorm 2 × 2 × 256 2 × 2 × 256 - - -

13 Conv2D 2 × 2 × 256 2 × 2 × 512 512 4 × 4 × 256 1

14 BatchNorm 2 × 2 × 512 2 × 2 × 512 - - -

15 FC 2048 1 - - -

Table 4.2: CNN architecture with LiDAR input. All Conv. layers use ReLU activation.

Layer Layer type Input dims Output dims #Filters Filter dims Stride

1 Conv2D 7 × 22 × 512 7 × 22 × 256 256 3 × 3 × 512 1

2 BatchNorm 7 × 22 × 256 7 × 22 × 256 - - -

3 Conv2D 7 × 22 × 256 7 × 22 × 128 128 1 × 1 × 256 1

4 BatchNorm 7 × 22 × 128 7 × 22 × 128 - - -

5 Conv2D 7 × 22 × 128 7 × 22 × 256 256 3 × 3 × 128 1

6 BatchNorm 7 × 22 × 256 7 × 22 × 256 - - -

7 Max-pool 7 × 22 × 256 2 × 6 × 256 - 2 × 2 4

8 Conv2D 2 × 6 × 256 2 × 6 × 128 128 3 × 3 × 256 1

9 BatchNorm 2 × 6 × 128 2 × 6 × 128 - - -

10 Max-pool 2 × 6 × 128 1 × 2 × 128 - 2 × 2 4

11 Conv2D 1 × 2 × 128 1 × 2 × 256 256 3 × 3 × 128 1

12 BatchNorm 1 × 2 × 256 1 × 2 × 256 - - -

13 Conv2D 1 × 2 × 256 1 × 2 × 512 512 4 × 4 × 256 1

14 BatchNorm 1 × 2 × 512 1 × 2 × 512 - - -

15 FC 1024 1 - - -

38 CHAPTER 4. METHODS

The network configuration of the fusion network in Fig. 4.9 is shown in Table 4.3.

The archiecture is comprised of two fully-connected layers. The first layer takes a

concatenated vector of image and LiDAR features as input, which is reduced to size

100, while the final layer takes this as input and yields the final steering command.

The output dimensions and number of layers were selected with the intention of keep

the number of parameters low, due to overfitting concerns.

Table 4.3: Fusion network architecture. All fully-connected layers use ReLU activation.

Layer Layer type Input dims Output dims #Filters Filter dims Stride

1 FC 3072 100 - - -

2 FC 100 1 - - -

4.2.3 Training

We train the convolutional and fusion networks by minimizing a mean-squared loss

using mini-batch gradient descent with momentum. A batch size of 40 and momentum

of 0.9 was generally used. The learning rate was initially set to 0.00001, and after a

fixed number of steps, decayed by a factor of 0.94 until a learning rate of 0.0000001 was

reached. The numbers above were determined as a result of trial and error. The number

of iterations used for training were calculated using the following formula:

Iterations =
#Epochs × Training set size

Batch size × #GPUs
. (4.1)

One epoch represents a full pass through the training set, and the total number of

epochs was set to 100 when training the individual networks. The training and

validation set sizes are shown in Table 4.4. Notice that the networks use the same

training and validation sets for learning. This is to ensure that the performance of each

network can be compared on equal terms. We use a 80-20 dataset split (80% for training

and 20% for validation), which is common. The experiments were carried out using

two GeForce GTX TITAN X GPUs. Finally, weights in the convolutional and fusion

4.2. STEERING NETWORK 39

network layers were initialized using sampled values from a uniform distribution in

the (0,1) range.

Table 4.4: The number of data instances used for training and validation. We use the

same training and validation sets for all networks.

Image CNN LiDAR CNN Fusion network

Training 113 613 113 613 113 613

Validation 28 404 28 404 28 404

Total 142 017 142 017 142 017

4.2.4 Evaluation

The performance on the validation set is measured using a normalized root mean

squared error (RMSE). Specifically, the metric used is:

RMSE =

√
MSE

MSV
, (4.2)

where

MSE =
1

N

N∑
i=1

(yi − ŷi)
2, MSV =

1

N

N∑
i=1

y2i .

yi denotes the ground truth steering angle, while ŷi is the predicted value. We use

normalized RMSE as opposed to just MSE, because this is a common metric used

for evaluating regression tasks [10] and enables us to compare results with other

literature. A problem with using MSE or RMSE for driving, however, is that any

difference between predicted and true steering angles, will be accumulated, no matter

how small. Since it is not uncommon for human drivers to have small biases when

driving, we argue that predicted steering angles close to ground truth behavior should

be considered equally valid. For this reason, we use an additional metric for measuring

steering accuracy. In particular, a steering angle is considered correct if it is within

a certain tolerance threshold of the ground truth angle. Chen and Wang et. al [8]

40 CHAPTER 4. METHODS

perform a similar task, and uses an accuracy metric for evaluating performance. In

particular, they use a tolerance threshold of 6°. Motivated by this, we use the same

accuracy metric, which can be mathematically expressed as

Steering Accuracy =
1

N

N∑
i=1

[|yi − ŷi | < 6]. (4.3)

The brackets, known as Iverson Bracket2, convert any logical proposition to 1 if

satisfied, and 0 otherwise.

4.3 Segmentation network

In the previous section, a model for predicting steering angles based on image and

LiDAR data was considered. To determine whether predictions on future data are

trustworthy or not, we design and implement a separate path verification model in

Sec. 4.4. This model uses predicted steering angles along with segmented images of

the road environment to decide if the given steering angle is trustable or not.

In this section, the design, implementation and evaluation of a segmentation network

will be examined in detail. The goal of this network is to produce segmented road

images (i.e., images comprising only pixels of road and background) to be used by the

path verification model in the next section. The components of this model are based

on the theory presented in Sec. 3.3.

4.3.1 Overview

The main goal of the segmentation network is to produce segmented images of the road

environment. To achieve this goal, it is necessary to train the network to recognize

pixels of road vs. pixels of not-road. This is accomplished by presenting the network

with images of the road environment along with the segmented counterparts. In this

2https://en.wikipedia.org/wiki/Iverson_bracket

4.3. SEGMENTATION NETWORK 41

FCNVGG
Data

augmentation

Adjust for

mirroring

Upsampling Seg. loss

Backpropagation

weight adjustment

pool4

pool3

pool5

Segmentation network

conv4

conv3

conv7

Pre-trained

Ground truth

Weight update

Figure 4.11: The segmentation network is trained by feeding it examples of the road

environment along with the corresponding labels. Features from the 3rd, 4th and

5th pooling layers from a pre-trained VGG-16 network are used as input the FCN.

Upsampling the result and yields a segmented image with same dimensions as the

original input image. Weight updates based on the loss are performed a fixed number

of iterations.

way, the network eventually learns to detect features that are characteristic of road

and use this information to produce accurate segmentations.

Fig. 4.11 shows a block diagram of the strategy used for training the segmentation

network. This strategy was inspired by [36], which demonstrates state-of-the-art

results for several segmentation tasks. We utilize features from pre-trained VGG-16

layers as input to a fully convolutional network (FCN). Specifically, the outputs from

the 3rd, 4th and 5th max-pooling layers from a pre-trained VGG-16 model are used. The

FCN processes these inputs individually, and feeds them to an upsampling network.

This network fuses the features together and interpolates the result to produce a

segmented image, which is compared to the ground truth by means of a loss metric. A

weight adjustment is issued to the FCN and upsampling networks, as these contain

the learnable parameters. This process is then repeated a fixed number of iterations.

Similar to the steering network, we augment the training set by mirroring each image.

However, we also perform augmentation based on color by adding sampled values

42 CHAPTER 4. METHODS

FCNVGG Upsampling
pool4

pool3

pool5

Segmentation network

conv4

conv3

conv7

Pre-trained

Figure 4.12: After the model in Fig. 4.11 is trained, it can be used to make segmentations

online.

from a normal distribution to the hue and saturation of the original image.

Once the segmentation net has been trained, it can be used to segment raw images

online, as Fig. 4.12 illustrates. As we shall see, the segmented road-images is used

together with steering predictions to estimate the general path of the vehicle.

4.3.2 Architecture

Table 4.5 shows the network configuration of the FCN block in Fig. 4.11. Each convo-

lutional layer processes the corresponding pre-trained pooling layers (indicated by the

layer number) individually. This differs from the architectures introduced in Tables 4.1

and 4.2 where each output was sequentially fed as input to the next layer. Table 4.6

shows the network configuration of the upsampling block in Fig. 4.11. This configura-

tion uses a sequence of transposed convolutions to upsample the input dimensions.

Fig. 4.13 illustrates the process involved in turning the convolutional outputs from

the FCN into a segmented image. The first layer simply upscales the output of the

conv 7 layer. The output of this layer is summed element-wise with the output of the

conv 4 layer, which is then fed as input to the second layer. This input is upsampled,

and the same process is repeated until the ouput has the same spatial dimensions as

the original image used for training (in our case we use images of size 256 × 320 × 3).

The motivation behind combining features in this manner was discussed in Sec. 3.3.1,

and has proven to improve segmentation detail. The configurations below were taken

4.3. SEGMENTATION NETWORK 43

from the following github page3 and adapted to our own data.

Table 4.5: FCN architecture.

Layer Layer type Input dims Output dims #Filters Filter dims Stride

3 Conv2D 32 × 40 × 256 32 × 40 × 2 2 1 × 1 × 256 1

4 Conv2D 16 × 20 × 512 16 × 20 × 2 2 1 × 1 × 512 1

7 Conv2D 8 × 10 × 4096 8 × 10 × 2 2 1 × 1 × 4096 1

Table 4.6: Upsampling architecture.

Layer Layer type Input dims Output dims #Filters Filter dims Stride

1 Conv2D_transpose 8 × 10 × 2 16 × 20 × 2 2 4 × 4 × 2 2

2 Conv2D_transpose 16 × 20 × 2 32 × 40 × 2 2 4 × 4 × 2 2

3 Conv2D_transpose 32 × 40 × 2 256 × 320 × 2 2 16 × 16 × 2 8

Conv7 conv_transpose1

Conv4

conv_transpose2

Conv3 conv_transpose3

Upsample

Upsample

Upsample
Segmented image

Figure 4.13: The upsampling process performed in the upsampling block of Figs. 4.11

and 4.12. Figure not to scale.

3https://github.com/maxritter/SDC-Semantic-Segmentation

44 CHAPTER 4. METHODS

4.3.3 Training

The segmentation network is trained by minimizing a cross entropy loss using an

Adam optimizer [27], which is an extension to mini-batch gradient descent. A batch

size of 20 was chosen for this task. The learning rate was initially set to 0.0001 and

adaptively reduced by Adam during training. Again, the numbers above were chosen

as a result of trial and error. The iterations used for training were determined from

equation (4.1). A total of 50 epochs were used due to the size of the training set. Note

that for pixel-wise prediction tasks, each pixel has a label meaning that an input image

of size 256 × 320 × 3 actually amounts to 245 760 labeled examples. Table 4.7 shows

the training and validation set sizes used. The KITTI dataset [18] was used to pre-

train the network for segmentation. The dataset contains camera images along with

segmentations (and much more), recorded around Karlsruhe, Germany. After training

on this dataset, we train the network on our own data (labeled FFI). The experiments

were carried out on a single GeForce GTX TITAN X GPU. The network weights were

initialized using sampled values from a normal distribution with zero mean and 0.01

standard deviation.

Table 4.7: Number of images used for training and validation in the respective datasets.

KITTI FFI

Training 398 400

Validation 290 100

Total 688 500

4.3.4 Evaluation

The segmentation performance on the validation set is measured using four evaluation

metrics, which are displayed in Table 4.8. We use the same metrics from [36], as these

are commonly used in segmentation and scene parsing applications. ni j denotes the

number of pixels of class i predicted to belong to class j, ncl is the number of classes,

and ti =
∑

j ni j denotes the totalt number of pixels of class i . Pixel accuracy simply

4.4. PATH VERIFICATION 45

Table 4.8: Evaluation metrics.

Pixel Accuracy Mean Accuracy Mean IoU Frequency Weighted IoU

∑
i
nii /

∑
i
ti (1/ncl)

∑
i
nii /ti (1/ncl)

∑
i
nii /

(
ti +

∑
j
nji − nii

) (∑
k
tk

)−1 ∑
i
tinii /

(
ti +

∑
j
nji − nii

)

measures the ratio of correctly predicted pixels for each class to the total number

of pixels for each class. Mean accuracy is similar, but instead determines the pixel

accuracy of each class individually and computes the average. As the name implies,

intersection over union (IoU) computes the ratio of the number of intersecting pixels

between a predicted image and a ground truth image and the union of pixels between

these two, for some class i . Mean IoU just computes the mean of the IoUs for each

class. Finally, frequency weighted IoU is similar to IoU, but weights the ratio based on

the frequency of pixels in class i . For instance, a class with few pixels is weighted less

than a class with a great number of pixels.

4.4 Path verification

Up to now, we have considered steering and segmentation as two separate networks

performing individual tasks. In this section, we combine outputs from both networks

to tell whether a given steering angle should be trusted or not. A general overview

of the system is first presented, giving a basic idea of the task in question in addition

to showing the components involved. Then, the verification process is described in

detail, outlining and explaining the steps needed in order to accept or discard a given

steering angle. Finally, a metric for evaluating performance is described.

4.4.1 Overview

Fig. 4.14 shows a block diagram of our trustability system. We incorporate trained

steering and segmentation models, together with a verification system (treated as a

black box for now), to decide whether a given steering angle should be trusted or not.

46 CHAPTER 4. METHODS

Steering

network

Segmentation

network

Center camera

LiDAR
Steering angle

verification

Predicted

steering angle

Segmented

road image

yes/no

Figure 4.14: Trustability system.

Specifically, camera images and LiDAR measurements are fed into a steering network

which outputs a predicted steering angle. The same camera image is supplied to a

segmentation network, which produces a segmented road image. The outputs from

these networks are then used as input to verification, and a binary decision is made.

4.4.2 Steering angle verification

The predicted steering angle is accepted if the vehicle, with a given speed, remains

within the designated road boundary for a given distance threshold. Fig. 4.15 illustrates

the general verification process, which involves three steps. First, we transform the

segmented road image into a bird’s eye view image, using a perspective transformation.

Second, we use depth stereo vision to estimate the real world road length in the bird’s

eye view image, which can then be used to calculate pixel density. Third, with the

computed pixel density, the distance the vehicle moves after 1 second can be converted

to pixels, which is used as a verification threshold. Specifically, the steering angle is

accepted if the vehicle remains within the road boundary for a distance threshold d .

The details of the calibration steps 1 and 2 are described in the following paragraphs.

Perspective transformation. The transformation needed to take a segmented

road image and produce a corresponding bird’s eye view can be determined as follows.

Let Pw be a 3D world coordinate that is mapped to the image plane coordinates PI1

4.4. PATH VERIFICATION 47

and PI2 , in two different cameras. From (3.5) we have that

PI1 = T1P
w

PI2 = T2P
w ,

where Ti = Ki [R
c
wi τi]. Assuming that T1 and T2 are invertible, we can rewrite and

substitute the transformations above into the following expression

PI2 = DPI1 , (4.4)

where D = T2T
−1
1 , and is 4 × 4. Equation (4.4) denotes the transformation from a point

in the image plane of camera 1 to the image plane of camera 2, for some arbitrary 3D

world coordinate. If we let I1 represent the image plane associated with the segmented

road image, and let I2 represent the image plane associated with the bird’s eye view

Segmented road image Bird’s eye view

Perspective

transform

Not OK

OK

d

Figure 4.15: Steering angle verification process. First, the segmented road image is

transformed by a perspective transformation into a bird’s eye perspective. Then, the

trajectory of the vehicle is determined by drawing the given steering angle (shown in

green) on the transformed image. We assume the vehicle is always in the road center,

and therefore draw the angle from the bottom center. Finally, the steering angle is

accepted if the trajectory lies within the road boundary for the distance threshold d .

48 CHAPTER 4. METHODS

image, we can estimate the matrix D by finding 4 corresponding point pairs in each

image, and solve the resulting system of equations for the unknowns inD. In particular,

we select the four road corner points in each image as our corresponding point pairs,

and solve the resulting system of equations below for the entries in D:

PI21 = DPI11

PI22 = DPI12

PI23 = DPI13

PI24 = DPI14 .

The OpenCV Library for Python has geometric image transformation functions for

calculating the perspective transform D, thereby circumventing the need for a custom

implementation.

Estimating pixel density. The real world pixel resolution (i.e., pixels per meter)

can be determined by dividing the height in pixels of the bird’s eye view image by

the road length, assuming flat and straight road. The road length can be estimated

from equation (3.6), which requires two parallel and identical cameras with known

baseline and focal length in addition to two corresponding point pairs. As mentioned

earlier, the test vehicle is equipped with left, right and center cameras, which we

assume to be parallel and identical. The left and right cameras provide the needed

stereo-image pair and selecting one of the corner points in which the road vanishes,

in both images, as our corresponding point pair, the road length can be estimated. It is

worth stressing, however, that the calibration process above can only be performed

on images containing flat and straight road surfaces. Once the pixel density has been

computed, the distance threshold in pixels can be calculated by multiplying the pixel

density with the distance the vehicle travels in 1 second, or in other words, its speed. If

this threshold sounds small, remember that the process is repeated 6 times per second

(camera frequency is 6 Hz) and is done independently on each frame.

4.4. PATH VERIFICATION 49

4.4.3 Evaluation

The verification model presented in the previous section can be viewed as a classifier

since it outputs yes or no classes for each steering angle. A common way of evaluating

the performance of a classifier is to study the confusion matrix (see Table 4.9), which

presents a visual layout of the number of predicted vs. actual class labels. In this

matrix, diagonal elements represent correct predictions, while off-diagonal elements

represent false prediction. Specifically, we divide these elements into four categories:

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). Since

it is rare in practice for a classifier to produce only true positives and true negatives,

we need other metrics for evaluating classification performance. Equations (4.5), (4.6)

and (4.7) present three common metrics based on the categories above.

Precision =
TP

TP + FP
, (4.5)

Recall =
TP

TP + FN
, (4.6)

F1 =
TP

TP + FN+FP
2

. (4.7)

The output of these metrics will be valued differently depending on the classification

task in question. In our case, it is paramount that the verification system does not

classify any incorrect steering angles as correct (false positives). For this reason,

precision should be close to 100%, even if this means that acceptable steering angles

Table 4.9: Structure of the confusion matrix. Diagonal elements show correct predic-

tions, while off-diagonal elements show false predictions (TP=True Positives, FN=False

Negatives, FP=False Positives, TN=True Negatives).

Predicted

Yes No

A
ct
u
a
l

Yes TP FN

No FP TN

50 CHAPTER 4. METHODS

get rejected (low recall). The F1 score calculates the harmonic mean of precision and

recall, and favors classifiers that have similar precision and recall.

To evaluate classification performance of our verification system, we need to define

the actual class labels. We label any predicted steering angle as true if it satisfies the

following condition

|predicted steering angle − ground truth angle| < 6°,

and false otherwise. The tolerance threshold of 6° was inspired from [8].

Chapter 5

Results and discussion

In this chapter, we analyze the performance of the proposed models in Chapter 4.

For each model, we (1) present evaluation results on the validation set, and (2) give

a discussion involving: (i) most important findings, (ii) explanations, (iii) limitations,

and (iv) recommendations for future research.

5.1 Steering network

5.1.1 Results

Table 5.1 shows the evaluation results based on the metrics discussed in Sec. 4.2.4 for

the Image CNN, LiDAR CNN and Fusion network. In the following discussion, we

refer to these networks simply as Image network, LiDAR network and Fusion network.

Fig. 5.1 shows the absolute error between the predictions from the Image, LiDAR and

fusion networks and ground truth values, for all 28404 instances in the validation set.

Figs. 5.2 and 5.3 show the bar plots and data instances corresponding to the marked

Top 1 and Top 2 errors in Fig. 5.1. In addition, Table 5.2 shows the numerical errors

51

52 CHAPTER 5. RESULTS AND DISCUSSION

Table 5.1: Performance on the validation set by the Image, LiDAR and Fusion networks

presented in Sec. 4.2. Values are based on the metrics discussed in Sec. 4.2.4. Zero and

Mean represent blind predictions of the steering angle. The former always predicts a

zero angle, while the latter always predicts the mean angle based on the ground truth

values. (RMSE = Root Mean Squared Error, S.A = Steering Accuracy).

Metric Zero Mean Image LiDAR Fusion

RMSE 1.00 0.99 0.22 0.22 0.19

S.A 0.82 0.82 0.98 0.98 0.99

from these bar plots. Finally, 5.4 shows the respective learning curves produced by the

Image, LiDAR and fusion models from Sec. 4.2. These results shall now be discussed

in the following section.

Data instance
0

5

10

15

20

25

30

35

40

A
bs

ol
ut

e
st

ee
rin

g
er

ro
r

[d
eg

]

Steering error on each data instance

 Top 1 image error

 Top 2 image error

 Top 1 LiDAR error
 Top 2 LiDAR error

Image error
LiDAR error
Fusion error

Figure 5.1: Absolute error between predicted and ground truth steering angle on all

28404 data instances in the validation set, for the respective networks. The two highest

errors from the Image and LiDAR networks are marked Top 1 and Top 2, respectively.

5.1. STEERING NETWORK 53

Image LiDAR Fusion
0

5

10

15

20

25

30

35

A
bs

ol
ut

e
st

ee
rin

g
er

ro
r

[d
eg

]

Top 1 image error

Image LiDAR Fusion
0

5

10

15

20

25

30

35

A
bs

ol
ut

e
st

ee
rin

g
er

ro
r

[d
eg

]

Top 2 image error

(a) (b)

Figure 5.2: Column (a) and (b) show the bar plots and data instances corresponding to

the Top 1 and Top 2 image errors from Fig. 5.1, respectively. Color mapped images

are shown below the bar plots. LiDAR images consists of distance (top) and intensity

(bottom) channels.

54 CHAPTER 5. RESULTS AND DISCUSSION

Image LiDAR Fusion
0

5

10

15

20

25

30

35

A
bs

ol
ut

e
st

ee
rin

g
er

ro
r

[d
eg

]

Top 1 LiDAR error

Image LiDAR Fusion
0

5

10

15

20

25

30

35

A
bs

ol
ut

e
st

ee
rin

g
er

ro
r

[d
eg

]

Top 2 LiDAR error

(a) (b)

Figure 5.3: Column (a) and (b) show the bar plots and data instances corresponding to

the Top 1 and Top 2 LiDAR errors from Fig. 5.1, respectively. Color mapped images

are shown below the bar plots. LiDAR images consists of distance (top) and intensity

(bottom) channels.

5.1. STEERING NETWORK 55

Table 5.2: Top 1 and Top 2 Image and LiDAR errors from the respective bar plots in

Figs. 5.2 and 5.3 shown numerically.

Column Image error LiDAR error Fusion error

Fig. 5.2a 33.45 9.40 27.86

Fig. 5.2b 29.75 1.13 23.06

Fig. 5.3a 4.80 33.23 10.62

Fig. 5.3b 3.02 32.12 7.51

10 20 30 40 50 60 70 80 90 100

Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M
S

E

Training set
Validation set

(a) Image.

10 20 30 40 50 60 70 80 90 100

Epoch

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

M
S

E

Training set
Validation set

(b) LiDAR.

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
S

E

Training set
Validation set

(c) Fusion.

Figure 5.4: Learning curves produced by the respective Image, LiDAR and Fusion

networks. The curves show the progression of training and validation set errors as the

number of training epochs increases.

56 CHAPTER 5. RESULTS AND DISCUSSION

5.1.2 Discussion

The main goal of this master thesis is end-to-end steering angle prediction for an off-

road vehicle using convolutional networks, and to evaluate the potential improvement

of using fused image and LiDAR data for steering. Studying Table 5.1, we see that

training on fused image and LiDAR features produces better generalization on this

dataset, than training on each data source separately. This result agrees with Chen and

Wang et. al [8], who also use fused image and LiDAR input for driving, but in a different

setting, and show that extra depth information does indeed improve learning.

To understand why fusion outperforms the individual networks on this dataset, it

is worth examining some data examples where each network has made particularly

bad predictions. Studying the plots in Figs. 5.2 and 5.3, as well as the corresponding

errors in Table 5.2, closely, the following is observed: when images generalize poorly,

LiDAR does better, and vice versa. This result indicates that the respective networks

have learned to recognize different features from the input data. Examining the plots

in Figs. 5.2 and 5.3 in addition to Table 5.2 again, we see from the fusion error that

combining image and LiDAR features leads to improvement when compared to the

worst performing data source. However, from the plots it is clear that fusion performs

better when LiDAR generalizes poorly than when images generalize poorly. It appears

that fusion places a higher emphasis on image features than LiDAR features when

making predictions. This is not surprising since we employ twice as many image

features as LiDAR features when training the fusion network in Sec. 4.2 (see final layer

in Tables 4.1 and 4.2).

After studying the processed camera and LiDAR images in Fig. 4.4, it makes intuitive

sense that regular camera images should contain more information about the road

environment than LiDAR, which is why we utilize more image features for training our

fusion model. However, judging from the results in Table 5.1, LiDAR shows comparable

generalization performance to that of images on this dataset. This result suggests that

LiDAR may be underrated compared to images, and that better generalization results

may be achieved by placing a higher emphasis on LiDAR features for learning. We

5.1. STEERING NETWORK 57

increase the number of LiDAR features with 512 (reducing the stride from 4 to 2 in

first max-pooling layer in Table 4.2) and train the same fusion model on the extended

feature input. With this modification, we achieve an RMSE of 0.18, thus confirming

better generalization.

In addition to the bar plots in Figs. 5.2 and 5.3, we also provide the actual image and

LiDAR instances corresponding to the Top 1 and Top 2 errors. The exact reasons as to

why the Image network performs badly on the instances in Figs. 5.2a and 5.2b, and

why LiDAR performs better, is difficult to state with certainty. Studying Figs. 5.2a and

5.2b closely, and comparing them with Figs. 5.3a and 5.3b, we observe more sun glare

in the former, than the latter. As mentioned before, LiDAR scanners are invariant to

lighting conditions, which can explain why LiDAR images generalize better in these

cases. Studying the LiDAR instances in Figs. 5.3a and 5.3b, and comparing them to

the LiDAR instances in Figs. 5.2a and 5.2b, we observe more noise in the former, than

the latter. Recall from Sec. 4.1.2 that we bilinearly interpolate all LiDAR images less

than or greater than the most frequent output width. If the original LiDAR width is

significantly smaller than the target output width, interpolation can explain the noise

observed in Fig. 5.3.

Fig. 5.4 presents the learning curves produced by the respective image, LiDAR and

fusion networks. These curves are useful for evaluating the general learning trends

and, in particular, to detect if the models are overfitting the data. This is typically

identified in the curves by the training error getting smaller in addtion to the validation

error getting larger. Studying Figs. 5.4a, 5.4b and 5.4c closely, we see that this is not

the case. The validation errors have stabilized and appear to be more or less constant,

thereby ruling out overfitting as an issue in our trained models.

Table 5.3 compares our RMSE result from Table 5.1 with other steering models in the

literature. As demonstrated above, RMSE can be reduced further by utilizing additional

LiDAR features for learning. From Table 5.3, we see that our proposed fusion model is,

in terms of RMSE, close in proximity to PilotNet [1], which is the network proposed

by NVIDIA. NVIDIA showed that this network is capable of driving in traffic on local

roads with or without lane markings and on highways [1]. Although the dataset used

58 CHAPTER 5. RESULTS AND DISCUSSION

Table 5.3: Results from other steering models in the literature (reported from [10])

compared to our model, which we call FusionNet (RMSE=Root Mean Squared Error).

FusionNet PilotNet AlexNet VGG-16 ST-Conv+ConvLSTM+LSTM

RMSE 0.19 0.16 0.13 0.10 0.06

by NVIDIA differs significantly from ours, the reported RMSE can be used as an overall

indication of good driving performance. We therefore reason that the reported RMSE

result on our dataset is an indication of good steering performance.

There are several reasons as to why our fusion model does not equal or surpass the

models in Table 5.3. First and foremost, we use a dataset significantly different from the

one used in the models presented. In particular, the models use a dataset representing a

conventional driving setting with well-defined road boundaries and road texture. This

is not always the case for our data, and makes the task in question more challenging.

Second, a significant portion of poor image and LiDAR examples were filtered out

during preprocessing, thereby reducing the size of the effective training and validation

sets. In fact, the models above use a dataset comprising almost twice the amount of

images as we use. Third, due to grayscale images from the left and right cameras, our

model was not trained on real RGB images, which typically contain more information.

In addition to the reasons above, we list two further potential improvements for

future research. First, in this thesis we have treated steering angle prediction as a

regression problem, where the goal is to predict the exact real valued angle for each

video frame. However, as discussed in Sec. 4.2.4, human drivers usually have small

biases when driving, meaning that several steering angles can be considered valid

for steering. For this reason, the task in question can be redefined as a classification

problem, where the range of possible steering angles are divided into bins, e.g., 1 degree

apart, and the goal is to classify them correctly. Classification is generally viewed as

an easier task than regression, and could be more suitable for steering angle prediction.

Second, our steering model makes steering predictions independently on each video

frame. This is somewhat unintuitive since driving is widely considered a stateful

5.2. SEGMENTATION NETWORK 59

process (drive straight, turn left, turn right, etc.). Several approaches address this issue

[10, 8, 56], and have adopted a recurrent network structure to account for historical

vehicle states when making future predictions. In particular, these works have included

recurrent units, such as LSTM and Conv-LSTM, at specific network layers, which have

shown superior driving performance (see right side of Table 5.3). Converting our

steering model into a recurrent network would be an interesting application for future

inquiry.

5.2 Segmentation network

5.2.1 Results

Table 5.4 shows the accuracy and intersection over union results on validation, using

the evaluation metrics from Table 4.8. The numbers indicate that the segmentation

network has, for the most part, learned to recognize pixels of road. Fig. 5.5 presents

positive and negative segmentation results from the validation set. It is clear that for

certain images, segmentation can be improved. The results are discussed in detail in

the next section.

Table 5.4: Results on the validation set. Values are based on the metrics introduced in

Sec. 4.3.4 (IoU = Intersection over Union, FW = Frequency Weighted).

Pixel Accuracy Mean Accuracy Mean IoU FW IoU

0.966 0.936 0.917 0.906

60 CHAPTER 5. RESULTS AND DISCUSSION

(a) Positive results. (b) Negative results.

Figure 5.5: Some segmentation results from the validation set.

5.2.2 Discussion

The goal of the segmentation network is to provide accurate segmentations of the road

environment to the path verification model. Since our verification model operates

under the assumption that the images from segmentation are correctly segmented,

it is important to ensure that output from this network is acceptable. Judging from

the results presented in Table 5.4, it is clear that segmentation performance is well

within tolerance. Despite the low error values, it is worth pointing out that higher

errors are expected on examples with significant differences from those seen during

training. Such examples may include images of snowy and icy roads, glaring sunlight,

wet roads, etc. Nevertheless, it is not necessary to train the segmentation network on

all types of road conditions in order to demonstrate path verification.

Although segmentation is generally satisfying (see Fig. 5.5a), there are instances

where segmentation can be improved (see Fig. 5.5b). The segmentation results in these

examples are mainly caused by poor road boundaries and variable road texture. For

instance, some roads contain pixels of grass and stone, which are labeled as background

in other images. These sort of inconsistencies can be considered a source of noise in the

network, and can stall learning. A statistical modeling method known as Conditional

5.3. PATH VERIFICATION 61

Random Fields (CRFs) have shown widespread success in improving accuracy for pixel

labeling tasks [29, 32]. In particular, CRFs are appealing as they leverage context more

than other methods when making predictions. This is useful in our case as neighboring

pixels give a good indication of whether, e.g., grass or stone should be considered

part of the road. Some approaches have utilized CRFs as a separate post-processing

step to enhance segmentation detail from a CNN [6], while other approaches have

approximated CRFs as recurrent neural networks (RNN), achieving top results [61].

Increasing the training set size to cover more examples where inconsistencies, such

as grass and stone, are present, could also lead to improved segmentation detail. We

leave these potential improvements as fruitful areas for future inquiry.

5.3 Path verification

5.3.1 Results

Table 5.5 shows the confusion matrix (see Sec. 4.4.3) of the results from our verification

model on a test set containing 270 data instances. The matrix shows the yes/no

predictions made from verification, and how many of these were actually correct. Fig.

5.6 illustrates the verification process and result on a single test instance. In particular,

Fig. 5.6a shows the output from the segmentation network, and Fig. 5.6b shows the

bird’s eye perspective of this image along with the predicted steering angle.

Table 5.5: Confusion matrix (see Sec. 4.4.3) showing the output results from our

verification model (see Fig. 4.14) compared to the actual class labels, as defined in Sec.

4.4.3. We use a test set containing only true data instances (270). In this case, TP=225,

TN=45, FP=0 and TN=0.

Predicted

Yes No

A
ct
u
a
l

Yes 225 45

No 0 0

62 CHAPTER 5. RESULTS AND DISCUSSION

(a) Segmented image. (b) Bird’s eye view of (a).

Figure 5.6: Verification process on a single instance from the test set. The drawn

steering angle (shown in red) is outside the road boundary for the distance threshold,

which is chosen as the image height, and therefore not accepted.

5.3.2 Discussion

The goal of path verification is to determine if online steering predictions from the

steering model can be trusted or not. A perfect verification model can therefore be

used as an evaluation metric for measuring steering performance online. This can be

useful for detecting weaknesses in the model and can thereby identify which areas

of the model are subject to improvement. Designing and implementing a verification

model that is free of error is, however, outside the scope of this thesis. The goal here

is to demonstrate a proof of concept, namely to show that our verification system is

capable of reasonable decision making. Studying Table 5.5 closely, and applying the

metrics in (4.5), (4.6) and (4.7), we get: precision = 1.00, recall = 0.83 and F1 = 0.91.

For safety reasons, the verification model should not produce any false positives and

should therefore have a precision close to 100%. From the results above, it clear that

this is indeed the case. However, since the dataset does not contain any false steering

angles, it is difficult to state with certainty whether this precision value is accurate

or not. Further experimentation was not possible due to limited test data and time.

From Table 5.5 (and the recall value above), we see that the verification model rejects

some steering angles which are actually appropriate. To understand why the model

5.3. PATH VERIFICATION 63

makes these decisions, it is necessary to examine the ground truth steering angles in

the test set. Inspection reveals that the majority of angles are close to zero, meaning

that most of them will be represented as vertical line segments in the bird’s eye view

image (see Fig. 5.6b). A fundamental assumption of our verification model is that

the vehicle is assumed to be in the road center for each video frame, meaning that

the predicted steering angle is always drawn from the bottom center in bird’s eye

image. In reality, this is not always true and can explain why some of the actually

valid steering predictions get rejected. For instance, assuming the vehicle position

is slightly to the left of the road center in Fig. 5.6b, the drawn steering angle will be

within the road boundary of the distance threshold.

Verification can potentially be improved by modifying some of the assumptions

made in Sec. 4.4.2. In particular, the cameras on the test vehicle are not parallel

and identical, and the vehicle is not always in the center of the road. The former

can be handled by using a more general depth estimation algorithm, such as using

triangulation based on different camera orientations. The issues related to the latter

can be addressed by generating curved vehicle paths, instead of using straight line

segments. This can be achieved by using either a simple bicycle model [28], or a more

advanced Ackermann model [53]. In addition to experimenting with more test data,

we leave such improvements for future work.

64 CHAPTER 5. RESULTS AND DISCUSSION

Chapter 6

Conclusion

In this thesis, end-to-end steering angle prediction using deep convolutional networks

in an off-road setting was studied. Our experimental results show an RMSE of 0.19,

close in value to what NVIDIA achieved [1], indicating that autonomous steering based

on deep learning is possible off-road. In particular, we demonstrate that fusing camera

and LiDAR information together leads to a smaller RMSE, than training on each data

source separately. Intuitively, we expect images to contain more salient features for

learning, than LiDAR. However, experimental results show that training on LiDAR and

images individually yields similar RMSE, which suggests that LiDAR may perhaps be

somewhat underestimated in the research community. To support this, we conduct a

small experiment showing that our fusion model achieves better generalization when

trained on an increased number of LiDAR features. Due to limitations in data, data

quality and time, this result was not pursued further, but still represents an interesting

topic for future inquiry.

Finally, we demonstrated a proof-of-concept verification model for steering. This

model is based on projective geometry and utilizes segmented images from a separate

segmentation network to determine steering trustability. Our experimental results

65

66 CHAPTER 6. CONCLUSION

are promising on a small test set, yielding precision, recall and F1 values of 1.00, 0.83

and 0.91, respectively. For future research we suggest further experimentation with

more test data, in addition to using a more accurate depth estimation technique and

utilizing curved steering paths instead of straight line segments.

Appendix A

Neural network basics

The universal approximation theorem [24, 12] states that simple neural networks can

be used to represent a variety of functions when given appropriate parameters. For

instance, if we have labeled training data of the form (x,y) and assume there exists

a function f ∗ such that y = f ∗(x), then by the universal approximation theorem

there should exist a neural network fθ with parameters θ that can approximate the

target function f ∗. Determining the optimal set of parameters that makes fθ ≈ f ∗

is one of the main challenges of a neural network, a problem we attempt to address

in this appendix. The goal of this appendix is not to give a comprehensive study of

neural networks, but rather give a broad overview and discussion of the most essential

components involved in learning θ .

67

68 APPENDIX A. NEURAL NETWORK BASICS

A.1 The structure of neural networks

In this section, the general structure of a simple kind of neural network called feed-

forward neural networks, also known as multilayer perceptrons (MLPs), is presented.

These types of networks consists of multiple layers, where each layer is comprised

of a vector of nodes (also called units). Fig. A.1a shows a simple feedforward neural

network consisting of three layers. The nodes in each layer are connected to each node

in the next layer by edges, represented by lines in the figure. A neural network contains

three types of layers; input, hidden and output layers. The input layer maintains the

input data that is to be processed by the network. This could for instance be a vector

of features in an image. The top node would correspond to the first feature in the

vector, the second node to the second feature etc. In general, the data in each node is

passed along its edges to nodes in the next layer. Fig. A.1b shows how each node in the

hidden layer processes data from the input layer. Each edge between connecting nodes

has a quantity called a weight that is multiplied with the data on the edge. The sum of

all contributions from the incoming edges constitutes the input of the node. The bias

b is not included in Fig. A.1a, but is common in most feedforward networks.

The hidden layer performs the most crucial function—finding patterns in the data.

For instance, if the objective is to detect cats and dogs in an image, the hidden layer(s)

will find prominent features (shape, intensities, etc.) that are characteristic for each

of the animals. Whenever a cat is present in an image, the node corresponding to a

detected cat-feature will typically output a high value indicating the presence of a cat.

It is worth pointing out that the task above would be handled better by a convolutional

neural network (CNN) than a feedforward network (CNNs are discussed in Sec. 3.1).

As Fig. A.1b illustrates, the input to a node is a weighted sum that is mapped to an

output by a mapping f called an activation function. Each layer, execpt the input layer,

has an activation function associated with it. There are several choices of activation

functions, which will be discussed in the next section. The output layer outputs the

result of the network, which can be a probability or real value depending on the task

in question. For instance, if only a cat is present in an image the first node in the

A.1. THE STRUCTURE OF NEURAL NETWORKS 69

x1

x2

x3

h1

h2

h3

z1

z2

In
p
u
ts

Input

layer
Hidden

layer

O
u
tp
u
ts

Output

layer

(a) A neural network has three types of layers.

hix2

x1

xn

b

. .
.

w1

w2

wn

hi = f
(
b +

∑n
i=1 xiwi

)

(b) A single node computes a weighted sum of

inputs.

Figure A.1: A simple feedforward neural network consisting of three layers.

output layer will have a high value (probability of cat) and the second node a low value

(probability of dog). The network in Fig. A.1 is known as a shallow neural network

since it only consist of a single hidden layer. Deep neural networks, on the other hand,

are characterized by multiple hidden layers.

The structure presented above provides an easy way to visualize neural networks.

An alternative way to represent these networks is as a series of matrix multiplications.

Consider the network in Fig. A.1a which has three inputs {x1,x2,x3}, three hidden

outputs {h1,h2,h3} and two outputs {z1, z2}. If we merge these values into vectors

x ∈ R3, h ∈ R3, z ∈ R2 and denote each weight between node i and j in layer l byw (l)
i j ,

the ouput of the network can be computed as follows

z = д(W (2)h)

h = f (W (1)x) (A.1)

where

W (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w (1)
11 w (1)

21 w (1)
31

w (1)
12 w (1)

22 w (1)
32

w (1)
13 w (1)

23 w (1)
33

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, W (2) =

⎡⎢⎢⎢⎢⎣
w (2)

11 w (2)
21 w (2)

31

w (2)
12 w (2)

22 w (2)
32

⎤⎥⎥⎥⎥⎦
(A.2)

70 APPENDIX A. NEURAL NETWORK BASICS

and denotes all the weights in layers 1 and 2, respectively (the input layer is considered

layer 0). The activation functions f and д are applied element-wise to the vectors.

Different choices of activation functions are discussed next.

A.2 Activation functions

In the previous section we saw that each node maps input to output through a mapping

called the activation function, and that each layer has an activation associated with

it. It is common practice to consider separate classes of functions for hidden and

output units. In Secs. A.2.1 and A.2.2 common activation functions for output units

are presented, while Sec. A.2.3 presents the default choice for hidden units.

A.2.1 Sigmoid unit

We mentioned earlier that the objective of the hidden layers is to find a set of features

that describe the data. The role of the output layer is to transform the set of features

provided by the hidden layers to a number that can tell us how well the network has

performed. If the task in question requires us to predict the value of a binary variable

the number should be a probability. Such tasks could involve predicting whether or

not a cat is present in an image, or the probability of a patient having a heart attack

given his/hers medical record. For binary classification problems it is common to use

a logistic sigmoid function, defined as

σ (x) =
1

1 + e−x
. (A.3)

The logistic sigmoid function is plotted in Fig. A.2 and maps x to the range (0, 1).

A.2. ACTIVATION FUNCTIONS 71

Figure A.2: Logistic sigmoid. Figure A.3: Tanh.

The derivative of (A.3) is

σ ′(x) = σ (x)(1 − σ (x)), (A.4)

which will come in hand later when we discuss the backpropagation algorithm in Sec.

A.5.2. The hyperbolic tangent function is similar to the logistic sigmoid ("s"-shaped)

but maps inputs to the range (−1, 1), as illustrated in Fig. A.3.

A.2.2 Softmax unit

The softmax activation function can be used to represent a categorical distribution

over K possible classes. It can be viewed as a generalization of the sigmoid, which

was used to represent a probability distribution of a binary variable. The output is

instead treated as a discrete variable representing the probability of each class K . For

instance, the output layer from the cat and dog example in the previous section would

typically employ a softmax function. The softmax function of a real value xi is defined

as

softmax(x)i =
exi∑
j e

x j
, (A.5)

72 APPENDIX A. NEURAL NETWORK BASICS

which is simply a normalized exponential function. The function transforms a vector

x ∈ Rn of arbitrary real values to a vector softmax(x) ∈ Rn of real values in the range

(0,1) that all add up to 1.

A.2.3 Rectified linear units

In general, there are no guided principles for the choice of hidden unit activations [19].

While there are many possible choices, including the aforementioned, predicting in

advance which will work better is challenging. Rectified linear units (ReLUs) have

proven sucessful in practice, which have made them the default choice in many neural

networks [19]. The rectified linear unit uses the activation function

д(x) = max{0,x}. (A.6)

It is similar to a linear unit except that it outputs zero in half of its domain (see Fig. A.4).

This makes the gradient non-zero whenever the unit is active and zero whenever the

unit is inactive. As we will see in Sec. A.5, this property is useful when training neural

networks. Notice, however, that (A.6) is not differentiable at x = 0. Most software

implementations overcome this issue by returning one of the one-sided derivatives

instead of raising an error. In cases where it is desirable for training to continue on

Figure A.4: Rectified linear unit. Figure A.5: Leaky rectified linear unit.

A.3. MAXIMUM LIKELIHOOD ESTIMATION 73

inactive units, a leaky ReLU function may be used instead. The Leaky ReLU [37]

employs a small gradient α whenever x < 0 and is given by

д(x) =

⎧⎪⎪⎨
⎪⎪⎩
x , x > 0

αx , otherwise.
(A.7)

Fig. A.5 shows a plot of the Leaky ReLU function for α = 0.1.

A.3 Maximum likelihood estimation

In this section we introduce the principle of maximum likelihood which will be used to

motivate the various loss functions presented in the Sec. A.4. Maximum likelihood es-

timation (MLE) finds the parameters of a statistical model that maximize the likelihood

of a given set of observations. Consider a set of i.i.d.1 observations {x(1), x(2), . . . , x(N)}

sampled from an unknown data distribution pdata(x). Suppose that pdata(x) belongs to

a parametric family of distributions denoted by pmodel(x|θ), with θ being a vector of

parameters for this family. Then the ML estimate for θ can be defined as

θ̂ML = argmax
θ

N∏
i=1

pmodel(x
(i) |θ). (A.8)

This product is, however, prone to numerical underflow2. To overcome this problem,

we utilize the fact that the solution to (A.8) is the same as the solution to

θ̂ML = argmax
θ

log

N∑
i=1

pmodel(x
(i) |θ). (A.9)

The logarithm is an increasing function and consequently doesn’t alter the solution.

We can interpret the ML estimate in (A.9) as the parameter estimate that minimizes

1independent and identically distributed.
2Numbers near zero are rounded to zero.

74 APPENDIX A. NEURAL NETWORK BASICS

the dissimilarity between the empirical data distribution p̂data(x), defined by the set of

observations, and the model distribution.

A.4 Loss functions

It was mentioned earlier that the output layer returns the output or result of the

network. How do we know if the result is any good? This question can be answered by

studying the loss (also called cost) function of the network. The loss function measures

the performance of the network by comparing the output to the desired value. The

desired value y(i) is provided together with the input data x(i) as a pair (x(i), y(i)). The

set {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))} is known as labeled training data and is the

basis of supervised learning. The shape of y depends on the task in question. For scalar

outputs such as binary classification then y ∈ {0, 1}, while for linear regression, y ∈ R.

The importance of the loss function will be highlighted in Sec. A.5, where it will play

a crucial role in training neural networks. In this section, some common loss metrics

used to measure performance are introduced. As we shall see, the functions are not

arbitrary, but derived based on the principle of maximum likelihood.

A.4.1 Mean squared error (MSE)

The goal of a neural network is to approximate a target function f ∗(x) by a function

fθ (x), where θ denotes the parameters (weights and biases) of the network. How-

ever, due to noise in the data, the relationship between x and y is not necessarily

deterministic (the same x could produce different y). For this reason, it becomes more

natural for the neural network to approximate a target distribution p(y|x) rather than

a deterministic function. To do this we need to make an assumption about what kind

of probability distribution p(y|x) is. Once that assumption is made, MLE can be used

to find the parameters of the model.

Consider a set of labeled training examples {(x(1),y(1)), (x(2),y(2)), . . . , (x(N),y(N))}

A.4. LOSS FUNCTIONS 75

where y(i) ∈ R. Further let ŷ(i)
θ

be the the scalar output of a neural network with

parameters θ for a training example (x(i),y(i)). Assuming a normal distribution,

p(y |x) = Ny (ŷθ (x),σ
2), where ŷθ and σ 2 is the mean and variance, respectively, we

can use (A.9) to compute the parameter estimates. The conditional log-likelihood is

given by

log

N∑
i=1

pθ (y
(i) |x(i)) = −N logσ −

N

2
log(2π) −

N∑
i=1

(y(i) − ŷ(i)
θ
)2

2σ 2
, (A.10)

where the right hand side was obtained by taking the natural logarithm of the prob-

ability density function of Ny (ŷθ (x),σ
2). Comparing (A.10) with the mean squared

error,

MSE =
1

N

N∑
i=1

(ŷ(i) − y(i))2, (A.11)

we see that maximizing (A.10) will produce the same parameter estimate as minimizing

(A.11) w.r.t θ . This result justifies the use of MSE as a loss function for real valued data.

If y ∈ Rn we would have to use a multivariate Gaussian distribution instead, but the

result would nonetheless be the same.

A.4.2 Binary cross-entropy

We consider the case wherey is a binary variabley ∈ {0, 1}. In such cases it is natural to

model the target distribution as a Bernoulli distribution, namely p(y |x) = Berny [ŷθ (x)].

The probability density function of a Bernoulli distribution with data point (x(i),y(i))

is

pθ (y
(i) |x(i)) = [ŷ(i)

θ
(x(i))]y

(i)

(1 − ŷ(i)
θ
(x(i)))1−y

(i)

, (A.12)

where ŷθ is the output of the neural network with parameters θ . For notational

simplicity we omit the dependence on x in the output. Assuming the training examples

are i.i.d., we can use (A.9) to compute the parameter estimates. The conditional log-

76 APPENDIX A. NEURAL NETWORK BASICS

likelihood is given by

log

N∑
i=1

pθ (y
(i) |x(i)) =

N∑
i=1

y(i) log ŷ(i)
θ
+ (1 − y(i)) log(1 − ŷ(i)

θ
). (A.13)

Comparing (A.13) with the binary cross entropy,

Hθ (y, ŷ) = −
1

N

N∑
i=1

y(i) log ŷ(i)
θ
+ (1 − y(i)) log(1 − ŷ(i)

θ
), (A.14)

we see that maximizing (A.13) will produce the same parameter estimate as minimizing

(A.14) w.r.t θ . This justifies the use of binary cross entropy as a loss function for a

binary variable y.

A.4.3 Categorical cross-entropy

In the case of multiclass classification problems, the input x can be assigned to one

of K mutually exclusive classes. The label y is therefore a discrete variable such that

y ∈ {1, 2, . . . ,K}. The categorical distribution generalizes the Bernoulli distribution

and is natural to consider in this case. The target distribution can be written as

p(y |x) = Caty [ŷθ1(x), ŷθ2(x), . . . , ŷθK (x)], where ŷθ j represents the value in the j-th

output node of the network. The probability density function is given by

pθ (y
(i)
1 ,y

(i)
2 , . . . ,y

(i)
K
|x(i)) =

K∏
j=1

(ŷ(i)
θ j
)
y
(i)
j , (A.15)

where y(i)j ∈ {0, 1} and
∑K

j ŷ
(i)

θ j
= 1. We have for notational simplicity omitted writing

the dependence of the input data x. Assuming the training examples are i.i.d., we can

use (A.9) to compute the parameter estimates. The conditional log-likelihood is given

by

log

N∑
i=1

pθ (y
(i)
1 , . . . ,y

(i)
K
|x(i)) =

N∑
i=1

K∑
j=1

y(i)j log ŷ(i)
θ j
. (A.16)

A.5. TRAINING A NEURAL NETWORK 77

Comparing (A.16) with the categorical cross entropy,

Lθ (y1, . . . ,yK , ŷ) = −

N∑
i=1

K∑
j=1

y(i)j log ŷ(i)
θ j
, (A.17)

we see that maximizing (A.16) will produce the same parameter estimate as minimizing

(A.17) w.r.t θ . This justifies the use of categorical cross entropy as a loss function for a

discrete variable y.

A.5 Training a neural network

The loss functions presented in the previous section provide information about the

distance between the output of the network and the desired value. The next step is

to figure out how this distance can be minimized by increasing/decreasing various

weights and biases in the network. We call the procedure of minimizing a loss function

by adjusting the parameters of the network for training. Training a neural network is

in general a nonconvex optimization problem meaning we cannot expect a solution

of parameters that globally minimizes the loss. In this section, we shall introduce an

important algorithm for training called stochastic gradient descent (SGD), which is

an extension of gradient descent. As we shall see, the gradient in this algorithm is

computed by another important algorithm called backpropagation. Finally, a popular

technique for speeding up the optimization is considered.

A.5.1 Gradient based optimization

Gradient descent is a simple optimization algorithm which can be used to train neural

networks. It iteratively updates the parameters in the network by following a small

step in the direction of the negative gradient of the loss function. The update rule is

given by

θn+1 = θn − η∇θ J (θn), (A.18)

78 APPENDIX A. NEURAL NETWORK BASICS

where η > 0 denotes the learning rate and J represents the function that is to be

minimized. The loss functions discussed in Sec. A.4 have a common property; they all

decompose as a sum over training examples3. If we express the quantities inside the

summation as a per-example loss function, L(x(i), y(i),θ), then the overall loss can be

written as

J (θ) =
1

N

N∑
i=1

L(x(i), y(i),θ). (A.19)

Taking the gradient of (A.19) at a fixed point, θn , we get

∇θ J (θn) =
1

N

N∑
i=1

∇θL(x
(i), y(i),θn). (A.20)

A significant drawback of (A.20) is that for each weight update in (A.18) the entire

training set must be used to compute the gradient. For training sets comprising billions

of examples, this computation can be quite expensive. The stochastic gradient descent

(SGD) algorithm overcomes this problem by using a small set of training examples

in each iteration. We call this set a minibatch and the size is typically chosen to be a

relatively small number ranging from one to a few hundred [19]. The estimate of the

gradient in (A.20) with batch sizem is formed as

∇θ Ĵ (θn) =
1

m

m∑
i=1

∇θL(x
(i), y(i),θ), (A.21)

and replaces (A.20) in (A.18). The gradient estimate in (A.21) is unbiased if the training

examples are drawn i.i.d. from the data-generating distribution. In practice, however,

training a neural network usually proceeds over several passes through the training

set (we call these passes epochs) meaning that the same examples are reused. Only

in the first epoch will the gradient be unbiased, while the other epochs will have an

element of bias. At each epoch it is common to shuffle the training examples such that

each minibatch of examples is random. Despite some of the gradients being biased,

SGD is still capable of finding a very low value of the cost function.

3In fact, all loss functions derived from the principle of maximum likelihood have this property.

A.5. TRAINING A NEURAL NETWORK 79

A.5.2 Back-propagation algorithm

In the previous section we looked at an efficient algorithm for training a neural network.

The stochastic gradient descent optimization method finds the average gradient over

all the examples in the minibatch and uses this to update the parameters of the network.

Notice, however, that it was never mentioned how the gradient of the per-example

loss function is computed. Finding an analytical expression for the gradient is a

straightforward task for many software packages, but numerically evaluating the

derivatives is usually computationally expensive. The back-propagation algorithm

[45] provides a computationally efficient way of computing the gradient of the loss.

The equations of the back-propagation algorithm in component form:

∂L

∂w l
i j

= δ lja
l−1
i (A.22)

∂L

∂blj
= δ lj (A.23)

δLj =
∂L

∂aLj

∂aLj

∂zLj
(A.24)

δ lj =
∑
i

w l+1
i j δ l+1i σ ′(zli) (A.25)

alj = σ (zlj), zlj =
∑
i

w l
i ja

l−1
i + bli (A.26)

The quantities are defined as follows: L is the per-example loss function,w l
i j denotes

the weights between node i and j in layer l , δ lj =
∂L
∂zlj

and is called the error, alj denotes

the output of unit j in layer l , aLj is the output of the network (the same as ŷ), zlj
represents the weighted sum of inputs to node j in layer l , σ is an arbitrary activation

function and blj is a bias term. The back-propagation procedure is summarized in

Algorithm 1.

For each training example information is propagated forward in the network, which

allows us to obtain numerical values for the input and output of each unit. The error

80 APPENDIX A. NEURAL NETWORK BASICS

Algorithm 1 Back-propagation algorithm

1: Apply the input vector x(i) to the network and forward propagate through the network by computing

(A.26) for each l = 2, 3, . . . , L.
2: Evaluate (A.24) for all j output units.

3: For each l = L − 1, L − 2, . . . , 2 compute (A.25) for each hidden unit j in l .

4: Use (A.22) and (A.23) to evaluate the required derivatives.

δLj is evaluated for each output unit j in the output layer L (not to be confused with

the loss function). The errors δ lj for each hidden unit is back-propagated until (A.22)

or (A.23) (depending on which is desired) can be computed.

A.5.3 Batch normalization

Training a neural network is complicated by the fact that the inputs to a layer are

affected by the parameters of all the preceding layers. For instance, any small change

in one weight will impact the inputs to the subsequent layers. Formally, we say that

the distribution of each layer’s input is changed. This forces higher layers to adapt

to the drift in inputs, thus slowing down training. We define the Internal Covariate

Shift as the change in distribution of a network inputs/activations due to a change

Figure A.6: Batch normalization algorithm. Image taken from [25].

A.5. TRAINING A NEURAL NETWORK 81

in network parameters during training. Batch normalization (BN) [25] provides a

way of reducing the internal covariate shift thus speeding up training. The method

consists of two stages. The first stage involves transforming the inputs to have zero

mean and unit variance, also called whitening. The second stage applies scaling and

shifting to allow the normalized inputs to be reversed back to their original form

when needed. Fig. A.6 presents the batch normalization algorithm. For a particular

activation x , the mini-batch B comprises a set of m values of this activation. The

mean and variance of this mini-batch is calculated and applied to each activation

in the mini-batch resulting in a normalized value. The transformation with learned

parameters γ and β allow the normalized inputs to be scaled and shifted whenever

needed. For instance, γ =
√
σ 2
B
+ ϵ and β = μB recovers the original activations. The ϵ

is a constant and provides numerical stability to the variance.

82 APPENDIX A. NEURAL NETWORK BASICS

References

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving

cars. CoRR, abs/1604.07316, 2016. URL http://arxiv.org/abs/1604.07316.

[2] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski,

Bernhard Firner, Lawrence Jackel, and Urs Muller. Explaining how a deep neural

network trained with end-to-end learning steers a car. 04 2017.

[3] Luca Caltagirone, Samuel Scheidegger, Lennart Svensson, and Mattias Wahde.

Fast lidar-based road detection using fully convolutional neural networks. CoRR,

abs/1703.03613, 2017. URL http://arxiv.org/abs/1703.03613.

[4] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning affordance for

direct perception in autonomous driving. In 2015 IEEE International Conference on

Computer Vision (ICCV), pages 2722–2730, Dec 2015. doi: 10.1109/ICCV.2015.312.

[5] L. Chen, Q. Li, M. Li, and Q. Mao. Traffic sign detection and recognition for

intelligent vehicle. In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 908–

913, June 2011. doi: 10.1109/IVS.2011.5940543.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille. Semantic image segmentation with deep convolutional nets and

83

84 REFERENCES

fully connected crfs. CoRR, abs/1412.7062, 2014. URL http://arxiv.org/abs/

1412.7062.

[7] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object

detection network for autonomous driving. CoRR, abs/1611.07759, 2016. URL

http://arxiv.org/abs/1611.07759.

[8] Yiping Chen, Jingkang Wang, Jonathan Li, Cewu Lu, Zhipeng Luo, Han Xue, and

Cheng Wang. Lidar-video driving dataset: Learning driving policies effectively.

2018. URL http://dspace.xmu.edu.cn/handle/2288/161007.

[9] Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. P-CNN: pose-based CNN

features for action recognition. CoRR, abs/1506.03607, 2015. URL http://arxiv.

org/abs/1506.03607.

[10] Lu Chi and Yadong Mu. Deep steering: Learning end-to-end driving model

from spatial and temporal visual cues. CoRR, abs/1708.03798, 2017. URL http:

//arxiv.org/abs/1708.03798.

[11] Dan Ciresan, Alessandro Giusti, Luca M. Gambardella, and Jürgen Schmid-

huber. Deep neural networks segment neuronal membranes in electron

microscopy images. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 25, pages

2843–2851. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4741-deep-neural-networks-segment-neuronal-membranes-in-electron-microscopy-images

pdf.

[12] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-

matics of Control, Signals and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X.

doi: 10.1007/BF02551274. URL https://doi.org/10.1007/BF02551274.

[13] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, June 2009. doi: 10.1109/CVPR.2009.5206848.

REFERENCES 85

[14] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-

hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent con-

volutional networks for visual recognition and description. CoRR, abs/1411.4389,

2014. URL http://arxiv.org/abs/1411.4389.

[15] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features

for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35(8):1915–1929, Aug 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.231.

[16] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-

stream network fusion for video action recognition. CoRR, abs/1604.06573, 2016.

URL http://arxiv.org/abs/1604.06573.

[17] Li-Chen Fu and Cheng-Yi Liu. Computer vision based object detection and

recognition for vehicle driving. In Proceedings 2001 ICRA. IEEE International

Conference on Robotics and Automation (Cat. No.01CH37164), volume 3, pages

2634–2641 vol.3, 2001. doi: 10.1109/ROBOT.2001.933020.

[18] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets

robotics: The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning (Adaptive

Computation and Machine Learning series). The MIT Press, 2016.

[20] Saurabh Gupta, Ross B. Girshick, Pablo Arbelaez, and Jitendra Malik. Learning

rich features from RGB-D images for object detection and segmentation. CoRR,

abs/1407.5736, 2014. URL http://arxiv.org/abs/1407.5736.

[21] Bharath Hariharan, Pablo Arbelaez, Ross B. Girshick, and Jitendra Malik. Si-

multaneous detection and segmentation. CoRR, abs/1407.1808, 2014. URL

http://arxiv.org/abs/1407.1808.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/

abs/1512.03385.

86 REFERENCES

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. 9:1735–80,

12 1997.

[24] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approxima-

tion of an unknown mapping and its derivatives using multilayer feedforward

networks. Neural Networks, 3(5):551 – 560, 1990. ISSN 0893-6080. doi: https://

doi.org/10.1016/0893-6080(90)90005-6. URL http://www.sciencedirect.com/

science/article/pii/0893608090900056.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

URL http://arxiv.org/abs/1502.03167.

[26] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-

scale video classification with convolutional neural networks. In 2014 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1725–1732, June

2014. doi: 10.1109/CVPR.2014.223.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[28] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and dynamic vehicle

models for autonomous driving control design. In 2015 IEEE Intelligent Vehicles

Symposium (IV), pages 1094–1099, June 2015. doi: 10.1109/IVS.2015.7225830.

[29] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected

crfs with gaussian edge potentials. CoRR, abs/1210.5644, 2012. URL http://

arxiv.org/abs/1210.5644.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-

cation with deep convolutional neural networks. In Proceedings of the 25th

International Conference on Neural Information Processing Systems - Volume 1,

NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc. URL http:

//dl.acm.org/citation.cfm?id=2999134.2999257.

REFERENCES 87

[31] T L I Sugata and C K Yang. Leaf app: Leaf recognition with deep convolutional

neural networks. 273:012004, 11 2017.

[32] L’ubor Ladicky, Chris Russell, Pushmeet Kohli, and Philip Torr. Associative

hierarchical crfs for object class image segmentation, 11 2009.

[33] Yann Lecun. Generalization and network design strategies. Elsevier, 1989.

[34] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL

http://yann.lecun.com/exdb/mnist/.

[35] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3d lidar using fully

convolutional network. CoRR, abs/1608.07916, 2016. URL http://arxiv.org/

abs/1608.07916.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. CoRR, abs/1411.4038, 2014. URL http://arxiv.org/

abs/1411.4038.

[37] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities

improve neural network acoustic models. 2013.

[38] Guo Mu, Zhang Xinyu, Li Deyi, Zhang Tianlei, and An Lifeng. Traffic light

detection and recognition for autonomous vehicles. The Journal of China

Universities of Posts and Telecommunications, 22(1):50 – 56, 2015. ISSN 1005-

8885. doi: https://doi.org/10.1016/S1005-8885(15)60624-0. URL http://www.

sciencedirect.com/science/article/pii/S1005888515606240.

[39] Joe Yue-Hei Ng, Matthew J. Hausknecht, Sudheendra Vijayanarasimhan, Oriol

Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep

networks for video classification. CoRR, abs/1503.08909, 2015. URL http:

//arxiv.org/abs/1503.08909.

[40] Øyvind Kjeldstad Grimnes. End-to-end steering angle prediction and object

detection using convolutional neural networks. Master’s thesis, Norwegian

University Of Science and Technology, Høgskoleringen 1, 2017.

88 REFERENCES

[41] Pedro H. O. Pinheiro and Ronan Collobert. Recurrent convolutional neural

networks for scene parsing. CoRR, abs/1306.2795, 2013. URL http://arxiv.

org/abs/1306.2795.

[42] Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network.

In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 1,

pages 305–313. Morgan-Kaufmann, 1989. URL http://papers.nips.cc/paper/

95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf.

[43] DeanA. Pomerleau. Neural Network Perception forMobile Robot Guidance. Kluwer

Academic Publishers, Norwell, MA, USA, 1993. ISBN 0792393732.

[44] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-

net: Deep learning on point sets for 3d classification and segmentation. CoRR,

abs/1612.00593, 2016. URL http://arxiv.org/abs/1612.00593.

[45] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neurocomputing:

Foundations of research. chapter Learning Representations by Back-propagating

Errors, pages 696–699.MIT Press, Cambridge, MA, USA, 1988. ISBN 0-262-01097-6.

URL http://dl.acm.org/citation.cfm?id=65669.104451.

[46] Florian Schroff, Antonio Criminisi, and Andrew Zisserman. Object class seg-

mentation using random forests. In Proc. British Machine Vision Conference

(BMVC), January 2008. URL https://www.microsoft.com/en-us/research/

publication/object-class-segmentation-using-random-forests/.

[47] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image cate-

gorization and segmentation. In 2008 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–8, June 2008. doi: 10.1109/CVPR.2008.4587503.

[48] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,

and A. Blake. Real-time human pose recognition in parts from single depth images.

In CVPR 2011, pages 1297–1304, June 2011. doi: 10.1109/CVPR.2011.5995316.

REFERENCES 89

[49] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.

org/abs/1409.1556.

[50] Christian Szegedy,Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. CoRR, abs/1409.4842, 2014. URL http://arxiv.org/

abs/1409.4842.

[51] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-

resnet and the impact of residual connections on learning. CoRR, abs/1602.07261,

2016. URL http://arxiv.org/abs/1602.07261.

[52] S. Ullman. Against direct perception. Behavioral and Brain Sciences, 3(3):373–381,

1980. doi: 10.1017/S0140525X0000546X.

[53] A. J. Weinstein and K. L. Moore. Pose estimation of ackerman steering vehicles

for outdoors autonomous navigation. In 2010 IEEE International Conference on In-

dustrial Technology, pages 579–584, March 2010. doi: 10.1109/ICIT.2010.5472738.

[54] Philippe Weinzaepfel, Zaïd Harchaoui, and Cordelia Schmid. Learning to track

for spatio-temporal action localization. CoRR, abs/1506.01929, 2015. URL http:

//arxiv.org/abs/1506.01929.

[55] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Con-

volutional neural nets with recurrent CRF for real-time road-object segmen-

tation from 3d lidar point cloud. CoRR, abs/1710.07368, 2017. URL http:

//arxiv.org/abs/1710.07368.

[56] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of

driving models from large-scale video datasets. CoRR, abs/1612.01079, 2016. URL

http://arxiv.org/abs/1612.01079.

[57] Bisheng Yang, Zheng Wei, Qingquan Li, and Jonathan Li. Automated extraction

of street-scene objects from mobile lidar point clouds. International Journal of

90 REFERENCES

Remote Sensing, 33(18):5839–5861, 2012. doi: 10.1080/01431161.2012.674229. URL

https://doi.org/10.1080/01431161.2012.674229.

[58] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable

are features in deep neural networks? CoRR, abs/1411.1792, 2014. URL http:

//arxiv.org/abs/1411.1792.

[59] Mohammed Yousefhussien, David J. Kelbe, Emmett J. Ientilucci, and Carl Sal-

vaggio. A fully convolutional network for semantic labeling of 3d point clouds.

CoRR, abs/1710.01408, 2017. URL http://arxiv.org/abs/1710.01408.

[60] K. Zheng, G. Sun, Q. Fan, X. Wang, Q. Zhang, and L. Jia. A lane recognition

system based on priority. In 2013 IEEE Global High Tech Congress on Electronics,

pages 183–186, Nov 2013. doi: 10.1109/GHTCE.2013.6767269.

[61] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,

Zhizhong Su, Dalong Du, Chang Huang, and Philip H. S. Torr. Conditional

random fields as recurrent neural networks. CoRR, abs/1502.03240, 2015. URL

http://arxiv.org/abs/1502.03240.

[62] Y. T. Zhou and R. Chellappa. Computation of optical flow using a neural network.

In IEEE 1988 International Conference on Neural Networks, pages 71–78 vol.2, July

1988. doi: 10.1109/ICNN.1988.23914.

