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(a) t = 19

(b) t = 28

(c) t = 32

(d) t = 35

Figure 5.14: The figure shows snapshots of the simulation from figure 5.13. A simplifi-
cation of the USM has been drawn as the CAPs with lines between them. Each instant
in time is shown from three different viewpoints, identical with the viewpoints in 5.13
(d), (e) and (f).



Chapter 6

Conclusion

This thesis has presented path following and collision avoidance controllers for the
novel USM robot. The control systems were presented in chapter 4 and validated by
simulations in chapter 5. This chapter will summarize the main results of this thesis,
and discuss some thoughts on future extensions and improvements to the systems.

6.1 Results

Path following for autonomous underwater vehicles is a problem that has been solved
many times for a number of different vessel designs. The main difference between
earlier underwater vehicles and the USM is that the USM has a flexible body, giving it
the ability to change its shape. However, at a given instant in time the shape of the
USM is constant, and the robot can be considered as a rigid body in the same way as
most other underwater vehicles. In addition, being a highly actuated system the USM
enjoy 6-DOF movement in almost all possible body shapes.

The approach taken to designing the path following controller in this thesis was
thus to view the USM as a rigid body with the ability to change its shape. Path following
was solved using methods for rigid bodies, while the novel shape-shifting ability was
utilized to optimize the path following with respect to some desired properties. A 3D
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line-of-sight controller was created for the path following, while a controller termed
the configuration controller was created to manage the shape of the USM. When path
following is the robot’s sole objective it makes sense to optimize the task by minimizing
path deviation and energy consumption. The configuration controller was designed to
achieve this by shaping the USM’s body to reduce hydrodynamic drag.

The simulation results in section 5.3 shows that the path following controller tracks
paths with good accuracy, both simple straight line paths with turns and more complex
paths like the spiral. The effect of the configuration controller was investigated by
comparing simulations with the configuration controller activated in one case and
deactivated in another. It was found that by using the configuration controller both
thruster usage and path deviation decreased, implying that the controller does improve
the USM’s path following capabilities. For the path and control parameters used in
the comparing simulations, the decrease was approximately 15% in thruster actuation
and almost 20% in path deviation, which is a significant improvement. The numbers
can, of course, be less prominent for other paths or control parameters, but the large
improvement does serve as a testimony to the configuration controller’s effect, and to
the usage of the USM’s body shape to optimize task execution in general.

The collision avoidance controller developed in this thesis has been designed with
the novel properties of the USM inmind, namely the flexibility of the body and themany
degrees of freedom. To this end, the algorithm has been designed for environments
where these properties are most needed, in enclosed spaces with many obstacles and
little room for movement. The important observation was made that the USM can
be viewed as a floating manipulator arm, and as such well-known inverse kinematics
control methods from the field of land-based manipulator arms were applicable. These
methods are suitable for control when the USM is moving in cluttered environments, as
they take advantage of the robot’s available redundancy and enables solving complex
tasks by considering multiple simple tasks simultaneously.

The collision avoidance controller presented in this thesis uses inverse kinematics
to control points on the USM’s body called collision avoidance points. The CAPs are
chosen strategically, in the hope that by assuring collision avoidance of all the CAPs,
no part of the robot will collide. A number of inverse kinematic tasks are defined for
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the CAPs, and the collision avoidance controller works by activating the tasks when
needed. The SRMTP scheme is used to solve the active IK tasks in a prioritized order.

Several simulations have been run to test the proposed CA system, both with a
single obstacle and with multiple obstacles creating a tight and cluttered environment.
The simulations show that the CA system successfully avoids collisions for the CAPs,
even in narrow and confined spaces. This shows the potential of the method, and also
demonstrates the ability of the USM to reach locations inaccessible for other vehicle
designs.

6.2 Future Work

For the USM to be fully autonomous control systems are needed for a wide range of
different tasks. This thesis has proposed a solution for path following and collision
avoidance, which are essential building blocks for any autonomous mobile robotic
system. Natural extensions to this system are motion planning algorithms that generate
paths, algorithms for processing sensor data from cameras or sonars, localization and
mapping, controllers for specific tasks like pipe monitoring and many more. However,
the path following and collision avoidance controllers do have their limitations, and
some suggestions for improvements to these specifically will now be suggested.

The biggest drawback with the path following controller is that it is not designed
to handle any form of external disturbances like ocean currents. One way to remedy
this is by extending the 3D line-of-sight guidance law with integral effect, enabling it
to deal with constant irrotational ocean currents [5]. In the presence of currents, it
is likely that the USM’s configuration should be used differently to optimize for the
desired properties, and the configuration controller would also need to be extended to
handle this situation.

The collision avoidance controller works well but does not have any form of higher
level guidance. To avoid collisions all CA tasks are given priority above the positioning
task in the SRMTP scheme. This means that situations can arise where there is no
solution available through the null space of the collision avoidance tasks that bring the
USM closer to its desired position, effectively locking the robot in space and resulting
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in it never reaching its goal. An algorithm for handling these situations should be
developed to make the system more robust.

Several improvements can be made to the inverse kinematics solver. For instance,
a set-based SRMTP method is proposed in [2], where it is argued that including all the
tasks in the inverse kinematics solution does not always yield the optimal solution, and
an algorithm for finding the optimal solution that still does not break any constraints
is proposed. Another possible improvement could be a mechanism to better prioritize
CA tasks, as it in certain situations might be advantageous to for instance prioritize
CA of the base CAP over the end-effector CAP. As mentioned in the discussion of
control parameters for the CA system, having a mechanism that actively adapts the
parameters can also potentially lead to great performance improvements.
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