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Over the last decades, various measures have been introduced to assess stability

during walking. All of these measures assume that gait stability may be equated with

exponential stability, where dynamic stability is quantified by a Floquet multiplier or

Lyapunov exponent. These specific constructs of dynamic stability assume that the

gait dynamics are time independent and without phase transitions. In this case the

temporal change in distance, d(t), between neighboring trajectories in state space is

assumed to be an exponential function of time. However, results from walking models

and empirical studies show that the assumptions of exponential stability break down in

the vicinity of phase transitions that are present in each step cycle. Here we apply a

general non-exponential construct of gait stability, called fractional stability, which can

define dynamic stability in the presence of phase transitions. Fractional stability employs

the fractional indices, α and β, of differential operator which allowmodeling of singularities

in d(t) that cannot be captured by exponential stability. The fractional stability provided an

improved fit of d(t) compared to exponential stability when applied to trunk accelerations

during daily-life walking in community-dwelling older adults. Moreover, using multivariate

empirical mode decomposition surrogates, we found that the singularities in d(t), which

were well modeled by fractional stability, are created by phase-dependent modulation of

gait. The new construct of fractional stability may represent a physiologically more valid

concept of stability in vicinity of phase transitions and may thus pave the way for a more

unified concept of gait stability.

Keywords: Lyapunov exponent, walking dynamics, accidental falls, aged 65 and over, fractional calculus

INTRODUCTION

The number of studies on gait stability has rapidly increased during the last two decades (as
evidenced by two review papers Hamacher et al., 2011; Bruijn et al., 2013). Despite this increase
in interest, a lack of consensus remains regarding the definition of gait stability and the numerical
operationalization. Current definitions of gait stability refer to the resistance of the gait kinematics
to disturbances or the ability to recover gait kinematics after perturbations, e.g., “the ability to
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maintain functional locomotion despite the presence of small
kinematic disturbances or control errors” (p. 172, England and
Granata, 2007) and “gait that does not lead to falls in spite of
perturbations” (p. 2, Bruijn et al., 2013). Thus, the main aim
of most studies is to develop or utilize numerical measures
that allow detecting instability during walking among fall-prone
older persons and patients with neurodegenerative diseases (e.g.,
Dingwell and Cusumano, 2000; Toebes et al., 2012).

There are two dominant theoretical approaches of stability
called dynamic stability and structural stability. Dynamic stability
is based on the theory of stability of dynamical systems created
by Alexandr M. Lyapunov in 1892, and published in his thesis
“General problem of the stability of motion” (Lyapunov, 1992).
Lyapunov’s constructs of dynamic stability assesses the sensitivity
of a mechanical system to small perturbations and is often used
to quantify how kinematics of our walking pattern change in
response to small perturbations. A particular part of Lyapunovs’
framework of dynamic stability, called exponential stability, has
been used in gait analysis to assess the “local dynamic stability”
of gait kinematics (Dingwell and Cusumano, 2000). According
to the construct of exponential stability, the reaction size d(t) of
the gait dynamics to an infinitesimal perturbation of size d(0)
is an exponential function of time t, d(t) = d(0)exp(λt). The
reaction size d(t) and the corresponding Lyapunov exponent
λ can be assessed for each degree of freedom of the gait
dynamics (i.e., each direction of the state space), but usually
the largest Lyapunov exponent is assessed. A positive Lyapunov
exponent, λ > 0, indicates that initially small perturbations
grow exponentially with t (i.e., an instable system), whereas a
negative exponent, λ < 0, indicates that small perturbations
decrease exponentially with t (i.e., a stable system). The concept
of exponential stability has been used to assess gait stability
in several patient groups, experimental perturbation studies,
walking models, and daily-life walking (Dingwell et al., 2000;
Buzzi et al., 2003; Su and Dingwell, 2007; Kurz et al., 2010;
McAndrew et al., 2011; Roos and Dingwell, 2011; van Schooten
et al., 2011; Bruijn et al., 2012; Hamacher et al., 2016; van
Schooten et al., 2016; de Melker Worms et al., 2017).

A second theoretical approach of stability of dynamical
systems, called structural stability, was introduced by Andronov
and Pontrjagin (1937). It was further implemented as a main
theory of human motor control by Kelso (1995), inspired by
Haken’s (1977) framework of synergetics, and Thom’s (1975)
theory of structural instabilities and morphogenesis. This theory
considers gait dynamics to be structurally unstable when its
intrinsic exponential stability characteristics change by a small
perturbation of its topology (i.e., structure). The changes of
the exponential stability characteristics are referred to as phase
transitions and appear at λ = 0, when λ switches to either
negative or positive (i.e., stable or unstable, respectively).
Haken (1977) and later Kelso (1995) suggested that the
degrees of freedom (DOFs) of the human neuromuscular
system couple into coordinative structures, or synergies, to
adapt the movements to heterogeneous and ever changing
surroundings. Haken (1977, 1983) and Kelso (1995) conjectured
that coordinated motion observed in nature is generated by
structurally unstable systems. In structurally unstable systems, a

small number of observable DOF with λ close to 0, called order
parameters, will enslave all other DOFs with λ > 0 and λ < 0.
According to Lyapunov’s theory of dynamic stability above, DOFs
with λ > 0 will diverge exponentially into highly complicated
and irregular movement, whereas DOFs with λ < 0 will
converge exponentially into a very simplistic periodic motion,
neither of which represent human movement. Thus, according
to theoretical approach of structural stability, transitions in
exponential stability are important to allow the gait dynamics to
adapt to changing walking contexts.

According to the bifurcation theory of structurally unstable
systems, the reaction size d(t) to a small perturbation will be a
non-exponential function of time (Kuznetsov, 2004). Thus, the
construct of exponential stability will no longer be valid. The
presence of a non-exponential reaction size d(t) was shown in
several previous studies on gait stability including Figure 7 in
the original work by Dingwell and Cusumano (2000) (see also
van Schooten et al., 2013). Eventhough Kelso (1995) introduced
a methodology to investigate structural changes in the dynamics
of bimanual coordination tasks, no consistent methodology has
been introduced to assess stability of coordinative patterns, such
as human gait, displaying phase transitions. Such methodology
would have to generalize the construct of exponential
stability to be valid in both structurally stable and unstable
dynamics and thereby obtain a single coherent concept of gait
stability.

The main aim of the present article is to apply a new
and general construct of stability to gait. This concept, called
fractional stability, extends the construct of exponential stability
to structurally unstable systems in the presence of phase
transitions. We will illustrate how the construct of fractional
stability can be applied to real-life walking data obtained with a
trunk-worn accelerometer in community-dwelling older adults.

METHODS

In this extended methods section, we first shortly review the
construct of exponential stability and discuss how exponential
stability is usually assessed in gait analysis (Section Dynamic
stability of human gait). Then we explain how exponential
stability breaks down in the presence of phase transitions and
how the general construct of fractional stability could still
quantify dynamic stability (Section Fractional stability and phase
transitions in human gait). Finally, we show a proof-of-concept
on how the construct of fractional stability can be employed to
trunk accelerometer data of daily-life walking in community-
dwelling older adults (Sections Fractional stability in trunk
acceleration dynamics of community dwelling older persons: A
proof-of-concept study).

Dynamic Stability of Human Gait
Gait dynamics could be mathematically expressed by the solution
of an unknown and complex equation of motion. In gait analysis,
the gait dynamics is reconstructed from the measured movement
kinematics x(t) by delayed coordinate embedding (Takens, 1980;
Sauer et al., 1991):
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x(t) =
[

x(t), x(t + l), x(t + 2l), ..., x(t +ml)
]

(1)

where x(t) could be displacement and velocity of segment centers
of mass (CoM) or joint angles and angular velocities. The
time delay l of the movement kinematics is set such that the
state space coordinates are uncorrelated and dimension m is
set such that the trajectories in the state space do not overlap.
The first local minimum of the average mutual information
function is often considered as time delay l and the minimum
number of false nearest neighbors is used to find the correct
number m of delays (Abarbanel, 1996; Kantz and Schreiber,
2004).

Lyapunov’s theory of dynamic stability indicates how the
gait dynamics x(t) react to a perturbation (Lyapunov, 1992).
The size of a perturbation is assessed as the distance d(0)
= ||x(0) – xe(0)|| between the perturbed point x(0) and
unperturbed point xe(0) in the reconstructed state space (see
upper red vertical arrow in Figure 1B). The reaction to the
perturbation is numerically defined as the temporal change,
d(t) = ||x(t) – xe(t)||, of the initial distance d(0) between
the perturbed gait trajectory x(t) and the unperturbed gait
trajectory xe(t). The theory of dynamic stability defines the
three constructs according to the temporal change in d(t);
ordinary stability, asymptotic stability, and exponential stability
(see Figure 1).

Exponential stability is by far the most used stability
construct in modeling and signal processing in general and
in gait analysis in particular, because it provides a measure,
called Lyapunov exponent, to parameterize d(t) (Dingwell
and Cusumano, 2000; Bruijn et al., 2013; van Schooten
et al., 2013). The exponential stability, d(t) = d(0)exp(λt),
can be estimated as the linear regression slope, λ, of the
log(d(t))-curve in each direction of the reconstructed state
space. The exponent λi is most reliably estimated for the
most unstable direction of the reconstructed state space,
where it is referred to as the maximum finite size Lyapunov
exponent (Rosenstein et al., 1993; see Figure 2). Furthermore,
in gait analysis, the short-range exponent λS computed
across a single step or stride is considered to be most
representative for dynamic stability of human gait (van Schooten
et al., 2011; Bruijn et al., 2013; see Figures 2C,D). The gait
dynamics are referred to as local dynamically stable or unstable
when λS < 0 or λS > 0, respectively, indicating that the
average distance d(t) between the perturbed trajectory x(t)
and the unperturbed trajectory xe(t) decreases or increases
exponentially.

Several reports suggest that λS is one of the most valid
measures of gait stability (cf. Bruijn et al., 2013). To the authors’
knowledge, all studies have reported λS > 0 for gait dynamics,
irrespective of the measurement device and patient group. λS
has shown to predict the risk of falling in gait models (Su and
Dingwell, 2007; Kurz et al., 2010; Roos andDingwell, 2011; Bruijn
et al., 2012), discriminate between fallers and non-fallers in an
older population (Lockhart and Liu, 2008; Toebes et al., 2012),
and reflect the reaction to experimentally induced perturbations
(Chang et al., 2010; McAndrew et al., 2011; Sloot et al., 2011; Hak
et al., 2012).

FIGURE 1 | A schematic representation of the construct of stability of motion.

(A) The unperturbed gait dynamics xe(t) is represented as a red orbit with a ε

radius torus around. The ε-boundary represents a small distance for which the

perturbed gait dynamics x(t) for a small perturbation of size d(0) < δ remain

within. (B) A schematic representation of ordinary stability (green line),

asymptotic stability (yellow line), and exponential stability (red line) within a

section of the torus (blue dashed lines). The distance d(t) between the

unperturbed xe(t) and the perturbed gait dynamics x(t) has to be within the

ε < radius for the dynamics to be stable. In addition, the yellow arrow has to

approach the unperturbed trajectory xe(t) (red center line) as t → ∞ when the

gait dynamics is asymptotic stable. Moreover, the red arrow has to approach

the red arrow exponential fast where d(t) ≤ d(0)exp(λt) and the Lyapunov

exponent λ < 0, when the dynamics is exponentially stable.

Fractional Stability and Phase Transitions
in Human Gait
Exponential stability λS of the gait kinematics will only define
the degree of dynamic stability when no phase transitions are
present in the gait dynamics. The human gait cycles involve
multiple phases; a single support phase initiated by a push-off
where the body’s center of mass (CoM) moves as an inverted
pendulum, and a double support phase initiated by a heel-
strike which decelerates the body’s CoM displacement in the
propulsion direction. Even very simple biomechanical models
have to include transformations of the equation of motion
between the single and double support phase, thereby changing
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FIGURE 2 | (A) Example of a reconstructed state space of the anterioposterior, mediolateral, and vertical trunk acceleration during daily life walking. (B) The reaction

size d(t) is estimated as the distance between the two nearest neighbor trajectories in the reconstructed state space. (C) The maximum finite size Lyapunov exponent

λS is estimated as the linear regression slope of
〈

lnd(t)
〉

where the brackets indicates the mean of logarithm of d(t) across all points in the reconstructed state space.

(D) The short-range exponent λS is estimated for the range of one step to one stride and the long range exponent λL is estimated 4–10 steps.

dynamic stability properties (Norris et al., 2008; Srinivasan et al.,
2008; Huang et al., 2012). At the transformation, reaction size d(t)
is a non-exponential function of time and cannot be estimated
by an exponential function (Andronov and Pontrjagin, 1937;
see intersection in Figure 3). It has been hypothesized that the
human neuromuscular system remains in the close vicinity of
the critical points of phase transitions where the system is highly
adaptable to changing influx of energy, information, and matter
(Haken, 1977, 1983; Bak et al., 1988; Kelso, 1995).

Several reports indicate that the distance d(t) assessed for
the computation of exponential stability has a non-exponential
shape (e.g., Figure 1 in Bruijn et al., 2009; Figure 7 in Dingwell
and Cusumano, 2000; Figure 5 in Dingwell and Marin, 2006;
Figure 2 in Lockhart and Liu, 2008; Figure 1 in Sloot et al.,
2011). Singularities appear in the reaction distance d(t) at t =
l, 2l, ..., ml where l is the lag size and m is the number of lags
chosen for the state space reconstruction according to Equation
(1) (van Schooten et al., 2013). In Figure 4, we show an example
of reaction distance d(t) for unfiltered and 3 Hz low-pass filtered
trunk acceleration signals of a community-dwelling older adult
during daily life walking. The singularities in d(t) vanish with
low-pass filtering for cut-offs less than 3 Hz, which is close to
the 2 Hz frequency of the step cycle. Thus, the singularities in
d(t) seem to be generated by the high frequency, intra-stride,

details around the periodic low frequency gait cycle and not
by noise-related errors in the signal as previously suggested
(van Schooten et al., 2013). Figure 4 indicates that exponential
stability, d(t) = d(0)exp(λt), may not accurately fit these high
frequency transitions in the acceleration signal generated by
intra-step events, like push-off and heel strike, or transitions in
the walking circumstances, like turning corners, walking stairs or
doing additional tasks while walking.

Fractional calculus has been suggested as a mathematical tool
to define equations of motion of structurally unstable dynamics
with phase transitions (see Figure 3; Hilfer, 1995; Podlubny,
1998, 2002; Zaslavsky, 2005; West, 2006). In fractional calculus,
the Newtonian operators, d/dt and d/dx, are special cases of the
fractional order operators, dα/dtα and dβ /dxβ for α = 1 and β =

1. The fractional indices, α and β , of the differential operators
are considered to describe the universal class of the dynamics
in the presence of phase transition (Zaslavsky, 2005). Assuming
that the unknown gait dynamics can be described by an equation
of motion with fractional order operators, dα/dtα and dβ /dxβ ,
the construct of exponential stability, d(t) = d(0)exp(λt) can
be extended by the following construct of fractional stability
introduced by Yu et al. (2013):

d(t) ≤ Ctβ−1Eα,β (λf t
α) (2)
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FIGURE 3 | Schematic illustration of a trajectory (red line) in function space where each point on the trajectory represents a specific equation of motion f (x). The gait

dynamics is structural stable when the stability properties (red arrow within the ε-radius) does not change by changes from f1(x) to f2(x) or from f3(x) to f4(x). The gait

dynamics f1(x) and f2(x) as well as f3(x) and f4(x) is structural equivalent with the same set of positive and negative λ. However, the gait dynamics is structural

unstable when the unstable dynamics (i.e., λ > 0) of f2(x) changes to stable dynamics (i.e., λ < 0) of f3(x). In the close vicinity of the critical point of phase transition

(red point on the two-dimensional intersection), the stability property of the gait dynamics f (x) is no longer defined by the exponential d(t) = d(0)exp(λt).

where Eα,β (λf t
α) is the generalizedMittag-Leffler function which

is the generalization of an exponential function defined by the
following equation:

Eα,β (λf t
α) =

∞
∑

k=0

(λf t
α)k

Ŵ(kα + β)
(3)

The stability of the dynamics is quantified by the fractional
Lyapunov exponent, λf , which has to be considered in relation
to the fractional indices, α and β , of the differential operator. A
structurally unstable system is fractionally stable when λf < 0, or
fractionally unstable when λf > 0. The left and middle panels in
Figure 5 show that reaction size d(t) are scaled along the time and
space dimension by α and β leading to different non-exponential
shapes of d(t) for the same λf . Thus, in contrast to exponential
stability, the reaction size d(t) defined by Equation (2) may
change non-monotonically depending on λf in combination with
α and β (see Figure 5). The additional advantage of fractional
stability (i.e., Equation 2) is that it is a general stability construct
that contains exponential stability, d(t)= d(0)exp(λt), as a special
case when α = 1 and β = 1 where the generalized Mittag-Leffler
function (i.e., Equation 3) reduces to the exponential function,
tβ −1 = 1, and C = d(0).

Fractional Stability in Trunk Acceleration
Dynamics of Community Dwelling Older
Persons: A Proof-of-Concept Study
Participants and Measurement Device
Inertial sensor data recorded during daily-life walking in
172 community-dwelling older adults (the FARAO study; van
Schooten et al., 2011) were re-analyzed. A summary of the
participant characteristics is provided in Table 1. Participants
wore a small inertial sensor (DynaPort Hybrid, McRoberts, The
Hague, Netherlands; 87 × 45 × 14mm, 74 g) with a belt over
the lower back during 1 week in daily life. The inertial sensor
sampled 3D accelerations at 100 samples/s and has range of±6 g
and resolution of±1mg. Participants were instructed to wear the
inertial sensor at all times, except during aquatic activities which
may damage the device. The original study was approved by the
medical ethics committee of the VU Medical Center (protocol
2010/290) and all participants had provided written informed
consent to partake in the study.

Pre-processing of Data
The following procedure was used to identify daily-life walking:
First, the 3D acceleration signals for walking bouts with ≥ 3 s
duration were identified by the McRoberts activity detection
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FIGURE 4 | A representative example of the influence of within-step transitions in the gait dynamics on the non-exponential singularities in the reaction size d(t). (A)

The trunk acceleration signal (blue trace) and low-pass filtered signal (red trace) for the anterioposterior (AP; upper left), mediolateral (ML; upper middle), and vertical

direction (V; upper right). The green traces in the lower panels shows the corresponding high frequency residuals with step-to-step modulations generated by

heel-strikes and push-offs (dashed vertical lines). (B) The reconstructed state space including AP, ML, and V direction for the trunk acceleration (blue trace in left) and

the low frequency filtered signal (red trace in right). (C) The mean reaction distance,
〈

lnd(t)
〉

, and the regression line, d(t) = d(0)exp(λt), for the trunk acceleration (blue

dots and line) and the low-pass filtered signal (red dots and line) for reconstructed state space by Equations (4–6) for m = 1, 2, and 3 lags, respectively. The

singularities in
〈

lnd(t)
〉

vanish in the low-pass filtered signal when the within-step transitions are removed. Notice that the singularity for the trunk acceleration for each

of the m lags appears at time t = ml/∆t where l is the lag size of the state space reconstruction and ∆t is the sampling frequency.

algorithm (McRoberts bv, the Hague, the Netherlands). Second,
the 3D acceleration signals for walking bouts with duration of
≥30 s were extracted to provide a sufficient number of steps
in each bout for the computation of gait stability. Third, all
included walking bouts were converted into equal sized 30-
s epochs (i.e., 3,000 samples) to provide a consistent sample

size for the computation of the gait stability measures. Fourth,
all included epochs were visually checked and non-walking
activity was excluded based on lack of periodicity of the trunk
acceleration in the vertical and anterioposterior direction. A total
of 42,431 walking epochs were identified across 172 older adults
(median number of epochs: 210.5, range: 21 to 906).
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FIGURE 5 | Illustration of non-exponential shapes of reaction size d(t) defined by fractional stability (see Equation 2). (Left) Changes in d(t) when fractional order α is

varied and β = 1.5 λf = –50, and C =16 are fixed. (Middle) Changes in d(t) when fractional order β is varied and α = 1.5, λf = −50, and C = 16 are fixed. (Right)

Changes in d(t) when fractional Lyapunov exponent is varied and α = 1.5, β = 1.5, and C = 16 are fixed.

TABLE 1 | Demographic variables and clinical tests of the community-dwelling

older persons.

Community-dwelling older adults (N = 172)

Gender (% female) 50

Age (yrs, mean ± SD) 75.7 ± 6.7

Height (cm, mean ± SD) 171.0 ± 8.5

Weight (kg, mean ± SD) 73.7 ± 11.8

Assisted living (%) 5.8

Residential care (%) 1.7

Walking aid (%) 17.4

MMSE (median/range) 28/10

≥1 falls in past 6 months (%) 41.9

Computation of Fractional Stability
The trunk acceleration dynamics was reconstructed by the
following equation:

x(t) =
[

xAP(t), xAP(t + l), xML(t), xML(t + l), xV (t), xV (t + l)
]

(4)
where lag size l is the mean of the first minimum of the
average mutual information function across the AP, ML, and V
direction. The minimum percentage of false nearest neighbors
was obtained for a single lag. The reaction size d(t) to initial
perturbation d(0) was assessed as an average across all state space
points x(t) following the method introduced by Rosenstein et al.
(1993). Fractional stability was estimated for a short range of
d(t) between the initial perturbation and the first singularity.
Equation (2) was fitted to a five-time up-sampled version of

d(t) in this range using a non-linear least square optimization
procedure. We used the lsqcurvefit function in Matlab for this
procedure, where α and β parameters were assumed to be in the
interval [0, 5] and [0, 3], respectively, with C > 0 and no bounds
assumed for λf . Initial conditions α = 2, β = 2, λf = 1 and C
= d(0) were set for optimization but all optimizations converged
to the same minima irrespective of initial condition and upper
boundary conditions of α and β . We also tested the mlffit2 script
released by Podlubny et al. (2012) and it produced similar results.

The present study also included double (Equation 5) and
triple lags (Equation 6) to investigate the relationship between
fractional stability metrics, α, β , and λf of the first singularity in
d(t) of different number of lags:

x(t) =

[

xAP(t), xAP(t + l), xAP(t + 2l), xML(t), xML(t+l),
xML(t + 2l), xV (t), xV (t + l), xV (t + 2l)

]

(5)

x(t) =





xAP(t), xAP(t + l), xAP(t + 2l), xAP(t + 3l),
xML(t), xML(t + l), xML(t + 2l), xML(t + 3l),
xV (t), xV (t + l), xV (t + 2l), xV (t + 3l)



 (6)

The state space reconstructions of Equation (5) and Equation (6)
are included in the figures in the results section Results below to
illustrate how d(t) changes with the number of lags.

Surrogate Test for Phase Transitions
A surrogate test based on multivariate empirical mode
decomposition (MEMD) was used to assess the influence
of phase-dependent changes of the trunk acceleration dynamics
on the estimated fractional stability parameters α, β , and λf .
MEMD defines the components of the gait dynamics, called
intrinsic mode functions (IMF), in an iterative way from high to
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low frequency modes, where the frequency range is dependent
on intrinsic properties of the dynamics (Rehman and Mandic,
2010). Thus, IMFs are more related to the process measured
than conventional Fourier functions for predefined frequency
ranges. In contrast to univariate EMD, MEMD are able to
detect common spectral modalities across all dimensions of
the reconstructed gait dynamics. The sum of intrinsic mode
functions assessed by MEMD for level 5 and above reconstructed
the main periodicity of the gait dynamics, and the sum of IMFs
for level 1 to 4 reconstructed the high frequency intra-step details
of the gait dynamics (see Figure 6). Iterated amplitude adjusted
Fourier transform (IAAFT) was used to generate surrogates
for the high frequency details that were subsequently added to
the main periodicity of the gait dynamics (i.e., IMF for level 5
and above). IAAFT preserves the distribution and the power
spectral density of the high frequency details of the original
dynamics, while the phasic behavior of these details is removed
(Schreiber and Schmitz, 1996). Thus, this surrogate procedure
can test the influence of intra-step phase-dependent changes in
the trunk acceleration dynamics on the fractional stability. A
MEMD surrogate was created for the dynamics of each walking
epoch. Further technical details for the MEMD surrogate test are
provided in Appendix A.

Statistics
The median of fractional stability parameters, λf , α, β , and
C, for Equation (2) were computed across all 30-s epochs for
each person. In addition, the conventional short-term Lyapunov
exponent, λS,was assessed for the same d(t) using Rosenstein
et al.’s (1993) method. The goodness of fit of fractional stability
(Equation 2) was compared to exponential stability by the AICc
criterion, which penalizes the goodness of fit of fractional stability
according to the additional number of parameters in Equation 2.
The differences in the goodness of fit were statistically tested by
the relative likelihood, RL = exp([AICc1–AICc2]/2) (Burnham
et al., 2011) and fractional stability was considered as a superior
model when RL < 0.05. Pearson correlation with Bonferroni
correction for multiple comparisons were used to assess the
relationship between fractional stability, as median values of
λf , α, β , and exponential stability, as median values of λS.
Furthermore, Pearson correlations of fractional stability metrics,
alpha, β , and λf between different number of lags (i.e., Equations
4–6) were calculated to assess the consistency of α, β , and λf
across changes in the state space reconstruction method. The
difference between λf , α, and β , of the original dynamics and
λsurr
f

,αsurr ,βsurr of the MEMD surrogate dynamics were tested

with paired samples t-tests.

RESULTS

Figure 7 shows fractional stability (red line) and exponential
stability (dashed blue line) fitted to a representative example of
distance d(t). The goodness-of-fit statistics (RL< 0.00001) was in
favor of fractional stability for all walking epochs, which indicates
that fractional stability provided a considerably improved fit
compared to exponential stability. All walking epochs had a
negative λf (i.e., λf ǫ [−1094.5, −8.7]) indicating that the gait

dynamics were fractionally stable (see median λf in Figure 7B).
The finding of fractionally stable gait was in contrast with
the positive λS , which indicate exponential instability of gait
dynamics for all epochs (λS ǫ [0.41, 2.10]). The operator α

and β had a range of α ǫ [0.91, 3.79] and β ǫ [1.23, 2.42],
while median values for all participants were larger than the
special case of exponential stability, α = 1 and β = 1 (see
Figure 7B). In addition, no significant correlation (R < 0.17) was
found between exponential stability λS and fractional stability
parameters (i.e., α, β , and λf in Equation 2) as shown in
Figure 8. A highly significant correlation (R > 0.83, p < 0.0001)
was found between the fractional stability parameters of the
different state space reconstruction methods (i.e., Equations 4–
6) indicating robustness of the parameters to the choice of state
space reconstruction method.

Figure 9 shows that the singularity in d(t) vanished for the
MEMD surrogates. This indicates that the phase-dependent
high frequency modulations in the trunk acceleration, probably
related to push-off and heel-strike events, are the origin of
the singularities in d(t). Compared to actual data, the MEMD
surrogates had significantly more negative values of λf and larger
values of β which, in combination, led to a smaller decrease of
d(t) toward the first singularity (see Figure 9B). These findings,
based on fractional stability, suggest that the gait dynamics
destabilizes when the phase-dependent modulation of trunk
accelerations is removed. In contrast to fractional stability, the
conventional short-term Lyapunov exponent λS decreased for
the MEMD surrogates indicating more stable dynamics based on
exponential stability (see Figure 9A).

DISCUSSION

The present paper proposes the application of the concept of
fractional stability to the analysis of gait. Fractional stability is
able to quantify stability in the presence of intra-step phase
transitions. The application of fractional stability to trunk
acceleration data of daily-life walking in community-dwelling
older adults showed that fractional stability was a better model
of d(t) compared to exponential stability for all walking epochs.
Interestingly, fractional stability indicated that gait dynamics
are stable. This result is in contrast to exponential stability,
which in earlier studies indicated that gait dynamics are unstable
(Dingwell and Cusumano, 2000; Toebes et al., 2012; Bruijn et al.,
2013; Terrier and Reynard, 2015; Hamacher et al., 2016; van
Schooten et al., 2016; de Melker Worms et al., 2017).

Ever since Dingwell and Cusumano (2000) introduced
exponential stability to gait analysis, this stability construct
has been applied to a wide variety of walking conditions and
populations. The short-term Lyapunov exponent, λS, was shown
to distinguish well between elderly fallers and non-fallers, to be
sensitive to experimentally induced balance perturbations, and
to describe the stability of simple models of human walking well
(Lockhart and Liu, 2008; Kurz et al., 2010; Roos and Dingwell,
2011; Sloot et al., 2011; van Schooten et al., 2011; Toebes et al.,
2012; Bruijn et al., 2013; Terrier and Reynard, 2015; de Melker
Worms et al., 2017). However, the construct of exponential
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FIGURE 6 | Schematic representation of the generation of multivariate empirical mode decomposition (MEMD) surrogates. MEMD splits the acceleration signals into a

low frequency periodic motion (red trace) and high frequency intra-step motion (blue trace). The phase-dependent modulation of the high frequency motion is

removed in iterated amplitude adjusted fourier transform (IAAFT) surrogates (red trace) whereas a the distribution and power spectral density remain unaltered. Finally,

MEMD surrogates are composed as the sum of high frequency IAAFT surrogates (red trace) and low frequency periodic motion assessed by the MEMD.

stability is not applicable in the presence of phase transitions
as detailed by Section “Fractional stability in trunk acceleration
dynamics of community dwelling older persons: A proof-of-
concept study”. The MEMD surrogate tests indicated that d(t)
is sensitive to phasic intra-step changes of trunk acceleration,
likely due to heel-strikes and toe-offs. The surrogate tests further
showed that these phasic changes generated the singularity in
d(t) that was shown in several previous studies of gait stability
(e.g., see Figure 1 in Bruijn et al., 2009; Figure 7 in Dingwell and
Cusumano, 2000; Figure 5 in Dingwell and Marin, 2006; Figure
2 in Lockhart and Liu, 2008; Figure 1 in Sloot et al., 2011). The
construct of exponential stability does not allow modeling these
singularities, while fractional stability may be a more applicable
construct with respect to describing cyclic movement patterns
like gait.

The construct of fractional stability may also yield other
conclusions when compared to exponential stability. As an
example, λS was shown to increase with walking speed, indicating
more unstable gait dynamics at faster walking speeds (Stergiou
et al., 2004; Dingwell and Marin, 2006; England and Granata,
2007). However, these results may be biased by the inability of
exponential stability to model the influence of the singularities
in d(t). Faster walking speeds would likely increase the presence
of high frequency changes in the trunk acceleration at heel-
strike and push-off and, consequently, increase the depth of
the singularities in d(t). These alterations in the singularities of
d(t) with increase walking speed should theoretically lead to an
increase in λf and β, indicating improved stability with increased

walking speed. Thus, further studies might be warranted to
reassess if fractional stability solves these issues with exponential
stability of gait dynamics.

The presence of phase transitions within the gait cycle violates
the assumptions for exponential stability. Ihlen et al. (2012a,b,
2015) repeatedly showed that stability fluctuates during the
different phases of the gait cycle in both in-lab gait performance
and daily-life walking. In addition, Norris et al. (2008) showed
differences of the local exponential stability for different phases of
the gait cycle perpendicular to the flow direction of the state space
trajectory. Even though these studies provide initial evidence
for phase-dependent changes in stability, they all assume that
the construct of exponential stability is valid in all phases of
the gait cycle. We now actually tested for the presence of
exponential stability and showed that this is not the case due
to singularities in d(t) created by phase transitions within the
step cycle. Fractional stability was able to model these non-
exponential singularities in d(t) which supports the conjecture
that the gait dynamics operates in the vicinity of critical points
in the function space facilitating interactions with heterogeneous
and complex surroundings (Kelso, 1995).

The singularities in d(t) may emerge as artifacts of (1) high-
frequency motion of the sensor relative to the person during the
bouts of daily-life walking and (2) insufficient reconstruction of
the state space of structurally stable systems. The singularity in
d(t) are created by phase-dependent modulation above the step
periodicity of 2 Hz which contain∼50% of the signal energy. It is
highly unlikely that such a substantial component of the signal
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FIGURE 7 | (A) Representative example of fractional stability in Equation (2) (bold red lines) fitted to the d(t) (blue dots) for state space reconstruction in Equation (4)

(left), Equation (5) (middle), and Equation (6) (right). Fractional stability in Equation (2) represented a considerable improved model of d(t) compared to exponential

stability d(t) = d(0)exp(λSt) (dashed blue lines) for all state space reconstruction methods. (B) Boxplots of the median values of the fractional stability parameters, α

(upper left), β (upper right), and λf (lower left) together with median values of exponential stability λS (lower right). Note that the center of the box represents the

median and the upper and lower borders of the box represent the 75th and 25th percentile, respectively. The whiskers represent the most deviating values within 1.5

times the interquartile range from the median value whereas values outside this range are represented as outliers.

is entirely caused by the first abovementioned type of artifact.
In the case of the second type of artifact, too small lag size l
and dimension m are chosen for the state space reconstruction,
which would lead to improperly unfolded gait dynamics and
false recurrence of the state space trajectory which results in
spurious singularities in d(t) (see Figures 4, 6 in Rosenstein et al.,
1993). We used the minimum of the average mutual information
function as lag size l and the minimum portion of false nearest
neighbors as dimension m to ensure a properly unfolded gait
dynamics and we also manipulated lag size l and dimension m
further than Equations (4–6) to ensure that singularities in d(t)
appeared at t = l, 2l, ..., ml, irrespective of the choice of m and
l. Our results indicate that the singularities in d(t) are indeed

intrinsic properties of the gait dynamics created by intra-step
phase-dependentmodulation of trunk acceleration. Nevertheless,
potential artifacts created by a combination of (1) and (2) will
affect the parameters of fractional and exponential stability in
an unknown way, as it will for other non-linear analyses. Thus,
further studies should include in-lab 3D motion analysis of gait
kinematics to isolate the signal component caused by the motion
of the sensor relative to the person to investigate the influence
of these artifacts and the choice of state space reconstruction
methods on non-linear metrics.

The biological origin of phase-dependent changes or
singularities in gait is not well known. The influence of phase
transitions on gait stability has been studied as shifts in coupling
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FIGURE 8 | Scatterplot of the relationship between the median values of the fractional stability parameters, α, (upper row of panels), β (middle row of panels), λf

(lower row of panels), and the median values of the exponential stability parameter λS for state space reconstruction method of Equation (4) (left column of panels),

Equation (5) (middle column of panels), and Equation (6) (right column of panels). The scatterplots are shown with corresponding Pearson correlation coefficients.

strength between the knee, ankle, and hip joints angles during
gait (Ihlen, 2014). These shifts showed age-related differenced
during the push-off phase as being possible impairments in joint
coordination in this particular phase of the gait cycle (Ihlen,
2014). The MEMD surrogate test indicates that the singularities
in d(t) are generated by intra-step phasic changes in the trunk
accelerations and that the fractional stability is highly dependent
on the characteristics of these singularities. TheMEMD surrogate
test further indicates that an increase in the negative values of
λf and decrease in operator β is generated by a loss of intra-step
high frequency modulation of trunk acceleration. This suggests
that the singularities in d(t) may be due to alteration in the
timing of heel-strikes and push-offs. Studies with transcranial
magnetic stimulation (TMS) have shown that activation of
inhibitory circuits in the motor cortex leads to lower activation
of plantar- and dorsiflexors during the push-off phase (Schubert
et al., 1997, 1999; Capaday et al., 1999; Christensen et al., 2001;
Petersen et al., 2001). Thus, increased activity of these inhibitory
circuits may lead to less pronounced phase-dependent changes
during foot contact and shallower singularities in d(t). However,
further studies are needed to assess the relationship between
TMS induced changes in parameters of fractional stability, λf , α,
and β , and corticomuscular coherence.

It remains to be shown whether this new concept of
gait stability is related to balance impairment and fall risk.
The present study did not compare fallers and non-fallers to
validate the suggested construct of gait stability. Furthermore,

the present study did not assess the relationship between the
parameters of fractional stability and other fall risk factors such
as medication, urinary control, vision, footwear, environmental
hazards, physical and cognitive function, fall history, and fear
of falling. However, defining an older person as a faller or non-
faller based on retrospective or prospective self-reports is prone
to recall errors, and validating a stability construct by its ability to
classify or predict falls is by itself an improper validation. Further
studies should use a combination of approaches, including the
assessment of fractional stability in biomechanical models of
human walking and associations of fractional stability with
reactions to experimentally induced perturbations, to validate the
parameters of fractional stability, λf , α, and β.

The construct validity of all measures of dynamic stability in
humans depends on how well they assess the ability of a walking
person to recover from a perturbation. According to constructs
within stability theory of dynamical systems (see Figure 1), the
gait dynamics have recovered from a perturbation when the
distance between the perturbed and unperturbed cycle is below
a small distance ε [i.e., d(t) < ε]. As an example, it follows
from the definition “gait that does not lead to falls in spite of
perturbations” (p. 2, Bruijn et al., 2013) that the ε-distance in
Figure 1 defines a volume around the state space trajectory of
walking dynamics where no fall will occur. The construct of
fractional stability indicated that all walking epochs are stable
(i.e., λf < 0), in accordance with the definition of gait stability
above. In contrast, the positive λS of exponential stability found
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FIGURE 9 | (A) A representative example of the difference between d(t) of the original trunk acceleration (blue trace) and d(t) of the MEMD surrogates (red trace)

where the regression line used to calculate λS is a bold blue and red line, respectively. (B) The up-sampled d(t) from initial perturbation d(0) to the first singularity of the

original trunk acceleration (blue trace) and d(t) of the MEMD surrogates (red trace) where the nonlinear least square fit of Equation (2) is shown as a bold blue and red

curve, respectively. (C) Boxplots of the median difference between fractional stability of the original trunk acceleration and the MEMD surrogates; median (α − αsurr )

(left), median (β − βsurr ) (middle left), median (λf − λsurr
f

) (middle right), and median difference between exponential stability of the original trunk acceleration and the

MEMD surrogates; median (λS − λsurr
S

). Note that the center of the box represents the median and the upper and lower borders of the box

(Continued)
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FIGURE 9 | Continued

represent the 75th and 25th percentile, respectively. The whiskers represent the most deviating values within 1.5 times the interquartile range from the median value

whereas values outside this range are represented as outliers.

for all walking epochs indicates unstable gait and would imply,
by definition, that all walking epochs would pass the ε-distance
and end in a fall. With the knowledge of the ε, the difference,
ε–d(t) > 0, can be considered as a margin of dynamic stability
and the time for d(t) to reach ε can be computed by the rate
of change in d(t) quantified by λf , α, and β . The ε separating
a fall and a non-fall can be evaluated for walking models where
ε can be estimated as the threshold of d(0), where values above
this threshold diverge to a fall and values below this threshold
converge to walking (Karssen and Wisse, 2009; Huang et al.,
2012). The value of ε may depend on anthropometric factors,
like segment mass, length and inertia, and environmental factors,
like walking surface. However, ε may also be dependent on age-
and disease-related changes of the neuromuscular system, which
would be difficult to implement in a simple walking model. An
alternative approach would be to determine ε experimentally.
Series of experimentally induced perturbations of various kinds
could serve to approximate ε of people walking under different
contexts and with different abilities, but an extensive use of
experimentally induced perturbations in older persons and
patients could be considered unethical. In summary, it may be
problematic to equate the mathematical construct of dynamic
stability with an absence-of-fall-based definition of gait stability
without knowledge of ε separating a fall from a successful
balance recovery. Nevertheless, daily-life measurements where
perturbations and falls occur naturally may help to tune our
definition of gait stability.

The present introduction of fractional stability in gait analysis
is a proof-of-concept more than an actual validation, because
our application only shows the ability of the method to fit
the dynamics of trunk acceleration during gait in community-
dwelling older persons. Furthermore, measures of dynamic
stability, including fractional stability, lack physiological and
functional correlates, and require standardization in the selection
of the variables and parameters for the reconstruction of the
gait dynamics. Further studies should apply the present method
by reconstructing the dynamics of other segments and replicate
the present study on other populations including different age
groups, patients with balance impairments during walking and
different neurodegenerative diseases and associate fractional
stability with physiological and functional characteristics of these
populations.

CONCLUSION

We introduced a novel approach toward gait stability, based
on fractional stability, because gait dynamics with its phase
transitions violates the assumptions for exponential stability.
Fractional stability allows modeling the reaction distance d(t) by
introducing fractional indices, α and β , of differential operator
and contains the commonly used exponential stability as a

special case when α = 1 and β = 1. This stability construct
provided an improved model of reaction distance d(t) of gait
dynamics in our sample of older community-dwelling people.
Thus, fractional stability represents a more unified concept of
gait stability when compared to the conventional construct of
exponential stability. Our surrogate tests further indicated that
the phase transitions often observed in gait dynamics are caused
by intra-step variations, likely during heel strike and push off.
Further validation of the fractional stability measures, λf , α, and
β , needs to assess difference in the gait dynamics of fallers and
non-fallers and differences in the known stability properties of
walking models. Further studies need also to assess the test-retest
reliability of the fractional stability measures and investigate how
these measures are affected by age, balance impairments during
walking, and different neurodegenerative diseases.
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