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Numerical analysis of fluid-added
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Abstract
The impact of fluid on the runner of a hydraulic turbine is a recurrent problem. Fully coupled fluid–structure simulations
are extremely time-consuming. Thus, an alternative method is required to estimate this interaction to perform a reliable
rotor dynamic analysis. In this article, numerical estimations of the added inertia, damping, and stiffness for a Kaplan tur-
bine model runner are presented using transient flow simulations. A single-degree-of-freedom model was assumed for
the fluid–runner interaction, and the parameters were estimated by applying a harmonic disturbance to the angular velo-
city of the runner. The results demonstrate that the added inertia and damping are important, whereas the stiffness is
negligible. The dimensionless added polar inertia is 23%–27% of the reference value (rR5). Damping significantly contri-
butes to the moment at low excitation frequencies, whereas the inertia becomes dominant at higher frequencies.
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Introduction

Hydraulic turbines are typically refurbished approxi-
mately every 40 years. A refurbishment typically
involves new parts, such as the runner, guide vanes,
bearings, and generator, whereas the water ways are
unmodified mainly due to the high cost of replacing
these components. To increase the power output of a
hydraulic turbine in addition to improving the effi-
ciency, the runner hub diameter is decreased to make a
larger amount of water move through the turbine. The
runners are also becoming lighter because of advance-
ments in materials technology. Developments in
numerical simulations and model testing have enabled
the design and installation of more efficient runners.
The changes in design alter the dynamics of the system,
and a rotor dynamic analysis must therefore be per-
formed to determine the natural frequencies of the sys-
tem to avoid potential resonance during operation. The

effect of the surrounding water, which adds mass,
damping, and stiffness to the system, is important for
the rotor dynamic analysis.

The added mass determines the kinetic energy that is
transferred from the structure motion to the fluid.1 In
other words, the added mass or apparent mass is
defined as a part of the surrounding fluid accelerated
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by the movement of the structure with respect to the
fluid.2 The added damping, which reduces the vibration
amplitude, is mainly expressed by the dissipated struc-
tural energy. For example, the bulk of the energy is
expended on generating the trailing edge vortices for a
runner blade, which can be considered as an unsteady
lifting surface.3 The last added parameter, called the
added stiffness, is similar to the added damping and
depends on the motion of the structure and surround-
ing flow.4

Due to recent technological advancements and
increased computational capacity, computational fluid
dynamics (CFD) can now be used to analyze the fluid–
structure interaction. In addition to the stiffness and
damping, the added mass has been studied for simple
objects5 and complex structures, such as pumps6,7 and
off-shore structures.8

Liang et al.9 investigated the fluid–structure interac-
tion of a Francis turbine runner with the finite element
method to determine the dynamic coefficients in still
water and air. The effect of added inertia was studied
by considering the natural frequency, frequency reduc-
tion, and mode shapes under both conditions. A com-
parison of the results can help to determine the
influence of surrounding water on the natural frequen-
cies, damping ratio, and added inertia. The results for
the natural frequencies and mode shapes were consis-
tent with those of earlier experiments.10

Structural analysis with CFD was also performed
for Francis and Pelton runners.11 These investigations9–12

focused on the vibration and mode shapes of the run-
ner instead of the dynamic properties of the entire rotor
system. Researchers have devoted considerable effort
to investigating Francis turbines,9,12–15 whereas Kaplan
turbines have received less attention. The deflection of
the Kaplan turbine runner for different Young’s mod-
uli was simulated using one-way and two-way coupled
fluid–structure interactions.16 De Souza Braga et al.17

performed a modal analysis and an experimental inves-
tigation of a Kaplan turbine runner. The mode shapes
and natural frequencies of the runner in still water and
air were presented and compared.

The rotor dynamic coefficients of hydraulic
machines, for example, Francis and Kaplan turbines,
are leading parameters that have not been comprehen-
sively identified. An experimental study of the effect of
the surrounding water on the hydraulic machines is
extremely challenging due to the size and complex
experimental implementation. Numerical and analytical
methods are useful for gaining insight into the fluid and
structure interactions while avoiding experimental diffi-
culties. Karlsson et al.18 studied the added polar inertia
and damping of a Kaplan turbine model at three differ-
ent operating points via CFD. Only four points were
evaluated at high perturbation frequencies, which were

at least 10 times larger than the rotational frequency of
the runner. The added polar inertia decreased, and the
added damping increased with increases in the pertur-
bation frequency at the off-design operating points.
Both added properties increased at the best efficiency
point (BEP). Both high and low excitation frequencies
are of interest for Kaplan turbines, for example, the
rotating vortex rope frequency is 0.2–0.4 times the run-
ner frequency.

Keto-Tokoi et al.19 presented an analytical method
based on Theodorsen’s unsteady thin-airfoil theory to
quantify the added mass and damping of various
Kaplan runners. The results from the finite element
(FE) simulation and the analytical method were com-
pared. The added mass increased with increases in the
number of blades and runner diameter. Puolakka
et al.20 used the same analytical method to examine
three Kaplan runners with variations in several charac-
teristics, such as the blade number, specific speed, tip
clearance, and hub ratio. The added mass and damping
in the polar, axial, and polar–axial directions for the
runners were compared with the FE simulations. An
increase in added mass in the polar, axial, and polar-
axial coordinates was observed in the studied frequency
range. However, the added damping tended to decrease
with increases in frequency. A similar method, namely,
two-dimensional (2D) thin-airfoil theory with lifting-
line theory, was used to determine the added mass and
damping of a marine propeller.21

The available literature on the influence of runner
rotation and the associated rotating flow field on the
fluid-added properties for torsional vibration is lim-
ited.19 Both numerical and experimental modal analy-
ses, which are used to determine the effect of the added
mass, are intended for stationary objects. Therefore, a
computational tool that considers the effect of the rota-
tion, turbulence, and flow unsteadiness would be useful.
In this work, a wide range of perturbation frequencies
was investigated using transient CFD for a Kaplan tur-
bine model.

This article presents the fluid-added properties for
the runner of a Kaplan turbine model. The runner is
assumed to be rigid, and the main objective is to iden-
tify the added properties that result from the fluid inter-
action. Then, these properties can be used in a rotor
dynamic analysis of the entire rotor system. The runner
operates at a constant rotational speed subjected to per-
turbation frequency, and 20 different perturbation fre-
quencies were considered here. This study considers a
wider range of perturbation frequencies than the study
of Karlsson.18 This study considers frequencies that are
0.5–10.1 times the runner operating frequency. An anal-
ysis method was developed with least squares fitting to
determine all the coefficients. The results are presented
as frequency-dependent coefficients.
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Numerical simulation

The Kaplan model investigated in this work is known
as the Porjus U9 model. The fluid part has been
experimentally and numerically investigated in detail
by Mulu and colleagues22–24, Jonsson et al.25 and
Amiri et al.26–28 This model is a 1:3.1 scale of the
10MW prototype turbine, which has a runner diameter
of 1550mm. The turbine is composed of 18 unequally
distributed stay vanes, 20 guide vanes, and 6 runner
blades. The model runner has a diameter of 500mm,
and its hub-to-tip ratio is 0.52. The runner shroud and
tip solidity are 0.87 and 1.2, respectively.

The computational model used in this study is pre-
sented in Figure 1, which was extracted from the
numerical simulations of Mulu et al.24 The spiral casing
and stay vanes are omitted because their presence is
not required to capture the flow near the runner.

As shown in Figure 1, the complete geometry of the
guide vanes and runner was used for the simulation.

The computational domain includes three domains,
which are connected to one another with general grid
interfaces (GGIs). The mesh used in the simulations
was selected based on the mesh study of Mulu et al.24

Hexahedral-type elements were used for all parts,
including the guide vanes, runner, and draft tube. The
mesh resolution at the hub clearance and tip clearance
is shown in Figure 2. The number of cells in both
regions was 5–10. The total number of elements in this
study was approximately 17million. A 2D view of the
mesh at the mid-span of the runner blade is shown in
Figure 3.

The simulations were performed at the BEP for the
U9 model. The operating parameters are presented in
Table 1.

In this study, the unsteady Reynolds-averaged
Navier–Stokes approach was applied to perform the
simulations using the commercial software ANSYS
CFX 16.2. This software uses an element-based finite
volume method that implements various discretization
schemes. The high-resolution discretization scheme was
applied for the continuity and momentum equation
advection term. Using a blend factor parameter, this
scheme can perform the first-order upwind in a high-
gradient region or the second-order scheme in a low-
gradient region.29 The first-order upwind scheme was
used for the advection terms in the turbulence equa-
tions. This solver is pressure-based and coupled, that is,
the continuity and momentum equations are solved in
a fully coupling manner. The mass flow was discretized
in a manner similar to that suggested by Majumdar,30

who presented a modified version of the Rhie and
Chow’s31 discretization. The simulations require a suf-
ficiently small time step to resolve various phenomena
in the flow. The time step was set to 3.6e24 s, which
corresponds to approximately 1.5� of the runner revo-
lution. The simulations were run until a periodic flow
was achieved at specific monitor points. After reaching

Figure 1. Computational domain comprising the guide vanes,
runner, and draft tube.

Figure 2. Mesh density at the hub clearance near the trailing edge (left) and the tip clearance near the leading edge (right). The
blade is shown in green.
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convergence, the data were recorded for evaluation in
the present investigation.

According to the numerical simulation of Mulu
et al.,24 who investigated many turbulence models
(k2e, re-normalisation group (RNG) k2e, shear stress
transport (SST) and scale-adaptive simulation–shear
stress transport (SAS-SST)) to simulate the Porjus U9
model at the BEP, the standard k2e model with a scal-
able wall function is suitable and was used to perform
the simulations. A scalable wall function can handle
fine meshes near the wall regardless of the Reynolds
number.29 To consider the transient flow characteris-
tics, a transient rotor–stator interface was selected as
the domain interface between the rotating and station-
ary domains. A sliding interface was used between the
domains to resolve the transient interactions. This
model is highly cost-effective because it includes all
transient features.

Modeling of the system

The runner of the Kaplan turbine is modeled as a rigid
disk to formulate the torsional vibration with 1 degree
of freedom. The equation that governs the forced tor-
sional vibration with a single degree of freedom is

Jf
€[ tð Þ+Cf

_[ tð Þ � v0

� �
+Kf [ tð Þ � v0tð Þ=M tð Þ ð1Þ

where [(t), v0, and M(t) are the angular displacement,
runner angular velocity, and torsional moment of the
turbine, respectively. The added polar inertia Jf , damp-
ing Cf , and stiffness Kf are parameters given by the
interaction of the runner with the surrounding water.
The added properties are parameters calculated using
the total moment of the turbine extracted from the fluid
simulation. As shown in equation (1), the added inertia,
damping, and stiffness are in phase with the accelera-
tion, velocity, and displacement, respectively.

We assume that the unsteady perturbations induced
by different sources can be characterized by a harmonic
perturbation with constant amplitude and frequency.
To investigate the added properties, a prescribed har-

monic perturbation
�_[ is applied to the constant angu-

lar velocity of the turbine
�_[. The total angular velocity

_[(t) of the turbine can be expressed as

_[ tð Þ= �_[ tð Þ+ �_[ tð Þ=v0 +A: sin k:v0:tð Þ ð2Þ

where A, k, and t are the perturbation amplitude, per-
turbation frequency factor, and time, respectively. In
the simulation, the perturbation frequency factor varies
in the range of 0.5–10.1, and the perturbation ampli-
tude is 0.5% of the constant angular velocity of the
runner.

A total of 21 transient simulations were performed
for the following values of the perturbation frequency
factor k: 0.5, 1, 1.5, 2, 2.5, 2.9, 3, 3.01, 3.1, 3.5, 4, 4.5, 5,
5.5, 6, 7, 8, 9, 9.9, 10, and 10.1. The perturbation fre-
quency factors used were spaced at intervals of 0.5 from
0.5 to 5.5 and at intervals of 1 from 6 to 10; five addi-
tional values were also included: 2.9, 3.01, 3.1, 9.9, and
10.1. Due to these harmonic disturbances, an additional
moment �M tð Þ will affect the turbine, and the governing
equation is

Jf
�€[ tð Þ+Cf

�_[ tð Þ+Kf
�f tð Þ= �M tð Þ ð3Þ

We assume that the additional torsional moment of
the turbine takes the following form

�M tð Þ=M1 sin v:tð Þ+M2 cos v:tð Þ ð4Þ

where v= k:v0 is the perturbation angular velocity.
The added properties can be obtained from equations
(1)–(4) as

v2Jf � Kf

� �
=

M2v

A
ð5Þ

Cf =
M1

A
ð6Þ

The added damping is independent of the added
inertia and stiffness. Because the added inertia and stiff-
ness appear in the same equation, an assumption is

Table 1. Operational condition parameters for the U9 model.

Parameter Value

Turbine head (m) 7.5
Flow rate (m3/s) 0.71
Runner angular velocity (rad/s) 72.92
Guide vane angle (�) 26
Blade shroud stagger angle (�) 42
Blade tip stagger angle (�) 21

Figure 3. Blade-to-blade view of the inter-blade channel mesh
at the mid-span of the runner blade.
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required to solve the set of equations. According to a
previous study,10 the effect of the added stiffness is neg-
ligible for a Francis turbine runner. In other studies,
the right-hand side of equation (5) is expressed using
only a frequency-dependent added inertia to obtain the
added mass of the Kaplan runner.20 The added inertia
and damping can be calculated directly without consid-
ering the added stiffness in the set of equations.

A simple method to obtain the added polar inertia is
to define it to be constant over the operational range.
According to equation (5), if the second-order polyno-
mial is fit on the right-hand side of the equation, the
added polar inertia can be easily obtained as approxi-
mately 0.277 (Figure 4).

In addition to the aforementioned method, an
approach is proposed to investigate the supposedly
negligible effect of the added stiffness. In this approach,
the added mass and stiffness are defined to be constant
over a frequency interval Dv; for instance,
Kf (v)= constant and Jf (v)= constant for
v� (Dv=2)�v�v+(Dv=2). Therefore, two equa-
tions are obtained for Jf and kf . An appropriate fre-
quency interval Dv should be selected. Theoretically, a
smaller interval will yield a better result. However, the
residuals of the simulations affect the results. Thus, a
sensitivity analysis was conducted for several perturba-
tion frequency factor intervals on the polar inertia for
k = 3. Figure 5 shows the polar inertia function of the
perturbation frequency factor interval. The polar iner-
tia initially converges to a value with slight variations
(below 1%). A further decrease in the frequency inter-
val interrupts the converging trend, likely because of
the numerical uncertainty. An interval of Dk =v0 was
selected.

Fluid simulations were performed for various per-
turbation frequencies to obtain the moment. Then, the
parameters were calculated using the zero-stiffness defi-
nition and developed method.

Results

The simulations were performed with ANSYS CFX,
and the total moment was extracted for the vibrational
analysis. Figure 6 shows the total moment and rota-
tional speed of the turbine. In this case, the perturba-
tion frequency is five times the runner frequency.

Figure 6 shows a phase shift between the angular
velocity and moment. As described in equations (5) and
(6), the phase shift plays a key role in the estimation of
fluid-added properties. The phase shift between the
forced rotational speed and obtained moment is shown
in Figure 7 with respect to the perturbation frequency.
With increasing perturbation frequency, the phase shift
increases to approximately 65�, which indicates that the
forced rotational speed and moment maintain a nearly
constant phase shift at higher frequencies greater than
40Hz. Therefore, the added properties depend more on
the moment amplitude than on the phase shift at higher
perturbation frequencies. A maximum value of 70�
occurs at 70Hz, which corresponds to a frequency fac-
tor of 6.

The last two periods are used to obtain the fitted
curve, and the phase and amplitude of the moment can
be solved. The moment function is estimated to a

Figure 4. Right-hand side of equation (5) as a function of the
perturbation frequency.

Figure 5. Polar inertia sensitivity analysis for the perturbation
frequency factor interval.

Figure 6. Moment and angular velocity for k= 5.

Soltani Dehkharqani et al. 5



harmonic signal using the least squares method in
MATLAB. The curve fitted to the moment is presented
with the input in Figure 8.

The moment is not a single harmonic function,
which indicates that the problem is nonlinear. At lower
frequencies, the deviation decreases, and the system is
linear, as shown in Figure 8. However, an error in the
estimation of added properties is expected at higher
perturbation frequencies because of the nonlinearity
and the inaccuracy of the curve-fitting.

Two methods for estimating the added properties,
which are used in this study, are briefly described
below:

� The added inertia and damping can be estimated
at various perturbation frequencies by defining
the added stiffness as zero. If any added stiffness
effectively exists due to the presence of the flow,
the estimated added inertia value will be underes-
timated with such assumption according to equa-
tion (5) (Figure 9).

� In the other method, the stiffness contribution is
considered in the equations. The influence of the
rotor dynamic parameters is defined as constant

within a small perturbation frequency interval.
Hence, the parameters are estimated by compar-
ing the data in an interval Dk =v0.

Although the change in the parameters is not negligi-
ble in the selected perturbation frequency interval, the
estimation error is low. The total error is higher when
the perturbation frequency factors are closer together,
for example, 2.9, 3.01, and 3.1 or 9.9 and 10.1, due to
the higher numerical errors. Therefore, the aforemen-
tioned simulations are not considered in the subsequent
analysis.

In Figure 9, the estimated polar inertia is shown and
compared with the zero-stiffness solution (solid line). If
a zero-added stiffness is assumed to determine the
added inertia, the added stiffness resulting from the
flow will influence the estimated value of the added
inertia (Jest) by

Jest = Jf �
Kf

v2
ð7Þ

where Jf and Kf are the correct added inertia and stiff-
ness without assumption. The results effectively show
an underestimated added inertia, indicated in Figure 9,
assuming a zero stiffness. However, there is only a
small change in polar inertia when the stiffness is
included (\8%), which indicates that the effect of stiff-
ness is negligible. In addition, the added polar inertias
obtained using the two methods are clearly consistent
with the calculated value (Figure 4).

Figure 10 presents the added damping as a function
of the perturbation frequency. As illustrated in
Figure 9, the added polar inertia increases more at the
lower perturbation frequencies than at higher ones
when assuming a stiffness of zero; conversely, the
added damping is constant at perturbation frequencies
below 35Hz and increases at higher frequencies. The
stiffness is shown as a function of the perturbation fre-
quency in Figure 11.

Figure 7. Phase shift as a function of the perturbation
frequency.

Figure 8. Moment and least squares fitted curve for k= 5.

Figure 9. Added polar inertia as a function of the perturbation
frequency.
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Following the zero-stiffness method presented
above, the obtained added polar and damping are com-
pared with the results of the study of Puolakka et al.20

and Karlsson et al.18 in Figures 12 and 13. The added
properties are presented in dimensionless form using
the reference values of rR5 and rR4U for the added

polar inertia and added damping, respectively.20 r, R,
and U are the flow density, runner radius, and blade
tip velocity, respectively. The added polar inertia is rea-
sonably consistent with the study of Puolakka et al.20

There is a significant discrepancy between the findings
of Karlsson et al.18 and our results, despite the similar
qualitative behaviors. This discrepancy may be due to
the smaller number of runner blades, lower head, and
lower flow rate of the investigated turbine.

The obtained added damping increases with the per-
turbation frequency. The results of the study of
Karlsson et al.18 have a similar trend but appear at
higher perturbation frequencies. Nonetheless, both our
results and those of Karlsson et al. have a similar over-
all trend. The magnitude of the added damping is in
good agreement with the findings of Puolakka et al.20

at lower frequencies (5–70Hz) but not at higher pertur-
bation frequencies (.70Hz). As the operating condi-
tions and geometry of the turbines in these two studies
differ from those in our case, differences in the results
are expected.

A comparison of the effect of each parameter in
terms of its relative contribution to the additional
moment indicates the significance of each. Figure 14
illustrates the relative contribution of the added polar
inertia Jf Av, damping Cf A, and stiffness Kf A=v. These
values are made dimensionless by dividing them by the
additional moment caused by the angular velocity
perturbation.

As noted above, similar to Francis turbines, the
added stiffness does not play a significant role in the
Kaplan turbine rotor dynamics, as confirmed by its
contribution to the total moment (Figure 14) compared
to the added polar inertia and damping.

The blade inflow condition significantly affects the
turbine performance and flow structure. For a given
guide vane and runner blade angle, a different rota-
tional speed of the turbine runner results in a different

Figure 10. Added damping as a function of the perturbation
frequency.

Figure 11. Added stiffness as a function of the perturbation
frequency.

Figure 12. Dimensionless added polar inertia as a function of
the perturbation frequency.

Figure 13. Dimensionless added damping as a function of the
perturbation frequency.
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angle of attack and a different blade-relative velocity
magnitude. Therefore, the time-dependent rotational
speed imposed in the simulation is expected to induce a
time-varying flow. The transient results with and
without a perturbation are compared to identify any
difference in the magnitude of the flow velocity in the
inter-blade channel. Figure 15 illustrates the blade-to-
blade velocity contour of the cases with and without
perturbation at the mid-span. The velocity contour of

the case with prescribed perturbation is presented at
three phases: mean value, peak value, and base value of
the perturbation amplitude. The perturbation frequency
is 81.3Hz.

The velocity contour remains qualitatively
unchanged with and without imposed perturbation. A
small difference is observed for the maximum flow
velocity, which occurs on the suction side of the runner
blade, between the cases without perturbation and with
maximal perturbation amplitude. This small velocity
variation does not change the flow field. Vortex shed-
ding behind the runner blade was not observed due to
either the high flow velocity and optimal blade angle at
the BEP, which force the flow to attach to the blade
and leave it smoothly, or/and the grid size, which is not
sufficiently fine behind the runner blade to capture the
vortex shedding. Further grid refinement to capture the
vortex shedding would increase the computational
complexity of the analysis considerably.

Discussion and conclusion

An alternative method to more accurately determine
rotor dynamic parameters is desired in the design of
hydro turbines. These parameters are important and
must be included in the dynamic analysis of

Figure 14. Relative contributions of the polar inertia, damping,
and stiffness to the additional moment.

Figure 15. Blade-to-blade velocity contour of the case with no perturbation (top left), mean value of the perturbation amplitude
(top right), peak value of the perturbation amplitude (bottom left), and base value of the perturbation amplitude (bottom right).
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hydropower rotors. Recent developments in computa-
tional resources, CFD codes, and turbulence modeling
have replaced the ‘‘rules of thumb’’ factors for deter-
mining the impact of added mass with more accurate
estimations.32 In this study, numerical simulations for
various perturbation frequencies have been performed
to estimate the added polar inertia, damping, and
stiffness of a Kaplan turbine model runner. A single-
degree-of-freedom model was assumed for the fluid–
runner interaction, and the added properties were
estimated by applying a harmonic perturbation in the
angular velocity. The resulting moment from the simu-
lations was assumed to be harmonic. This assumption
was shown to give a good approximation at low pertur-
bation frequencies, whereas the error in the assumed
harmonic moment increased at higher frequencies
because of nonlinear effects.

In general, all added properties increase with the
excitation frequency in the studied range. In addition,
nonlinear effects appear at high perturbation frequen-
cies (greater than 40Hz), as shown in Figure 8, which
causes the uncertainty in the determination of the added
proprieties. Furthermore, the parameter analysis indi-
cates that added stiffness is negligible in the model;
thus, the simplified estimation with zero stiffness is
applicable. Comparisons with the reference polar iner-
tia of the runner show that the fluid will add 23%–27%
more inertia depending on the excitation frequency.
The deviation from previous studies may be caused by
the different flow rate, head, and geometry. Therefore,
similar cases should be investigated to validate the
results.
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