
An Easier Predictive Display Based on
Image Transformation for Low Cost
Teleoperation of Vehicles With Time
Delay

Martin Løland

Master of Science in Mechanical Engineering

Supervisor: Martin Steinert, MTP

Department of Mechanical and Industrial Engineering

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

Teleoperation of remotely operated vehicles has become an increasingly viable so-

lution in many fields as technology has improved and the requirements for risk and

cost reduction has increased. When operating vehicles, especially at long distances,

unwanted latency is introduced to the system. As a result, cognitive workload in-

crease and performance is degraded. Predictive technology has proven to be an

effective method to reduce these effects. But many of the current implementations

rely on expensive equipment or extensive knowledge of the robotic system.

A new type of predictive display based on image transformation has been developed

as part of this thesis. It does not require any additional hardware and can be

implemented on a wide range of vehicles without much configuration. This thesis

aimed to investigate H1: a simple predictor display based on image transformation

can increase the operator performance. And H2: a simple predictor display based

on image transformation will decrease the operator’s subjective workload.

An experiment was performed where the 58 participants were given a modified

”peg-in-hole” task. During a test time of 90 seconds the subjects had to move

the vehicle and score as many hits as possible. This was performed using three

different conditions. Condition one using a 750ms delay, condition two having a

750ms delay with predictor screen and condition three with a 250ms long delay but

no predictive screen.

The results showed that participants performed on average 20.6% better on condi-

tion two with the predictive display versus condition one with no predictive display.

The results also showed that particpants who play games weekly or more, got al-

most twice the benefit from the predictive display. Gamers had a 30.13% increase

while non-gamers only gained a 16.91% performance increase. The participants

reported no statistical difference in their mental, physical and temporal demand.

The predictive display did therefore not reduce the subjective workload.

ii

Sammendrag

Fjernstyring av roboter har blitt et stadig mer populært alternativ til tradisjonelle

operasjoner etter hvert som teknologien har blitt tilgjengelig og kravene til sikker-

het og økonomistyring har økt. N̊ar roboter fjernstyres, spesielt fra lange dis-

tanser, oppst̊ar det uønsket tidsforsinkelse i systemet. Som et resultat øker den

kognitive p̊akjennelsen og operasjonseffektiviteten synker. Prediktiv teknologi har

vist seg å være et bra alternativ for å minske de negative effektene. Mange av de

n̊aværende løsningene har dog krav til avansert utstyr eller omfattende informasjon

om roboten.

En ny type prediktivt grensesnitt basert p̊a forskyvning og skalering av video har

blitt utviklet. Dette grensesnittet krever ikke ekstra utstyr og kan anvendes p̊a

en rekke forskjellige robotkonfigurasjoner. Denne masteroppgaven ønsket å un-

dersøke følgende p̊astander. H1: et prediktivt grensesnitt basert p̊a forskyvning og

skalering av video kan øke operasjonseffektiviteten og H2: et prediktivt grenses-

nitt basert p̊a forskyvning og skalering av video vil senke den subjektive kognitive

p̊akjennelsen.

Et eksperiment ble utført hvor 58 deltakere ble gitt en oppgave hvor de m̊atte styre

en robot inn i en rekke hull i løpet av 90 sekunder. Denne testen ble gjennomført

under tre forskjellige betingelser. Første inneholdt en tidsforsinkelse p̊a 750ms, den

andre inneholdt den samme tidsforsinkelsen, men med det prediktive grensesnittet.

Den siste betingelsen hadde en forsinkelse p̊a 250ms og ingen ekstra hjelp.

Resultatene viste at deltakerne utførte oppgaven 20.6% bedre under betingelsen

som inneholdt det prediktive grensesnittet kontra den samme tidsforsinkelsen uten

prediktivt grensesnitt. Resultatene viste ogs̊a at personer som spiller videospill

p̊a en ukentlig basis gjorde det bedre enn resten. De hadde en positiv økning p̊a

30.13%, mens resten av deltakerne oppn̊adde 16.91%. Deltakerne rapporterte ingen

statistisk forskjell n̊ar det kom til fysisk, mental eller stressende p̊akjenning. Det

prediktive grensesnittet hadde derfor ingen reduksjon p̊a den subjektive kognitive

p̊akjennelsen.

iii

Preface

This document represents the final dissertation of Martin Løland in connection

with the master thesis written in the spring of 2018 at the Norwegian University

of Science and Technology, Department of Mechanical and Industrial Engineer-

ing.

eduROV is a project started in Trondheim which aims to create an affordable and

open-source remotely operated vehicle for use by students and hobbyists. During

the spring of 2018 work was done on this project as part of this dissertation. In

addition, it became evident that there was a lack of solutions for predictive displays

that would suit the open source project of eduROV.

During the semester a new python package for robot control and video feed was

developed. In addition, a simple predictive display that can be applied to many

remotely operated vehicles was created and tested. This was the first encounter

with an experiment including people. It provided many interesting challenges con-

cerning experiment design and statistical analysis.

I would like to thank PhD Candidate Kristoffer B Sl̊attsveen for his feedback

on the development of the python package and thesis. I also want to thank my

supervisor Professor Martin Steinert who has been very helpful with pointing me

in the right direction for interesting research topics. Lastly, PhD Candidate Achim

Gerstenberg has provided helpful information about statistical analysis and robot

experiments.

Martin Løland

Trondheim 10.06.2018

iv

Table of Contents

Abstract ii

Sammendrag iii

Preface iv

List of Figures vi

List of Tables ix

1 Introduction and Theory 1

1.1 Thesis Structure . 1

1.2 Teleoperation . 2

1.2.1 Telepresence . 3

1.2.2 Time delay . 3

1.2.3 Delay compensation . 5

1.3 Predictive Technology . 6

1.3.1 Superimposed predictive information 7

1.3.2 3D graphic models . 8

1.3.3 Video manipulation . 9

1.4 Problem Statement . 10

2 eduROV Python Package 11

2.1 Current Alternatives . 12

2.2 Development . 13

2.3 Architecture . 15

2.4 Graphical User Interface . 16

2.5 Application Programming Interface 17

2.6 Documentation . 18

2.7 Performance and Novelty Features 19

3 Predictive Display Scheme 21

3.1 Robot Configuration . 21

3.2 Predictive Visualization . 23

3.3 Implementation . 24

3.4 Extending and Generalizing . 26

v

vi TABLE OF CONTENTS

4 Experiment 27

4.1 Participants . 27

4.2 Experimental Design . 28

4.2.1 Task . 29

4.3 Procedure . 30

4.4 Data Recording and Analysis . 31

5 Results and Discussion 33

5.1 Performance . 33

5.2 Gaming . 36

5.3 Task Load Index . 37

5.4 Subjective Delay . 39

5.5 Learning Effect . 41

5.6 Key Presses . 44

5.7 Limitations . 44

6 Conclusion and Summary 45

6.1 Future Work . 46

References 53

Appendices 55

A eduROV Documentation . 57

B eduROV Package Code . 89

C Predictive Display Code . 119

D Experiment Info Page . 123

E Experiment Questionnaire . 125

F Data Analysis Code . 127

G Collected Experiment Data . 155

List of Figures

2.1 User interface for the original eduROV software. 11

2.2 GitHub eduROV issues overview. 15

2.3 System architecture of the eduROV software. 16

2.4 The graphical user interface in the eduROV package. 17

2.5 eduROV documentation at readthedocs.io. 18

2.6 Video latency for eduROV 0.0.5 30fps for multiple resolutions. . . . 19

3.1 Two wheeled robot before and after counter clockwise rotation. . . . 21

3.2 Operator view. Outer box total screen size, inner box video feed. . . 23

3.3 Visible angular rotation and horizontal image pixel displacement as

a function of time. 24

3.4 Predictor display visualization. 25

4.1 Experimental setup. The computer (left), is used to control the ROV

into holes in wooden box (right). 28

4.2 Three wheeled robot used in experiment. 29

5.1 Normalized score all participants, N=57. 33

5.2 Performance of gamers n=17, versus non-gamers n=40. Outliers

indicated by plus sign. 36

5.3 NASA TLX (task load index) results for each display type, N=57.

Lower is better. 37

5.4 Normalized reported subjective latency in seconds. 39

5.5 Normalized subjective delay versus frustration. 40

5.6 Score categorized after display order. 41

5.7 The number of key presses performed during 90 seconds. 44

vii

viii LIST OF FIGURES

List of Tables

1.1 Task completion time increase factor for different delays. N = num-

ber of participants. 4

1.2 Predictive technology experiments with task time reduction. Or-

dered by date. 6

4.1 Demographic details on participants in experiment. 27

5.1 Normalized mean scores and standard deviation (SD). 34

5.2 Mean difference, paired samples t-test and Cohen’s d effect size for

display pair scores. Gamers = plays weekly or more often. 35

5.3 Rated NASA TLX values and standard deviation (SD), N=57. Lower

is better. 38

5.4 Mean score and standard deviation (SD) for each group. 42

5.5 Mean difference, paired samples t-test and Cohen’s d effect size for

display pair scores. Seperated by experiment display order. 43

ix

x LIST OF TABLES

1 Introduction and Theory

The eduROV project started as an idea at Trondheim Maker Faire in 2014. From

there on it has been developed into a ”functioning Open-Source ROV project at a

new level of affordability.”1. The project is now managed by Norwegian University

of Science and Technology (NTNU) and in specific the engage project by Centre

for Engaged Education through Entrepreneurship.

I, the author of this thesis, joined the project in December 2017 to improve the

software. My objective was to decrease the video latency which had a negative effect

on the user experience. In addition, more objectives such as increased functionality

surfaced during the development period.

It also became interesting to look at how video latency effects user performance

and what previous research in the field has done to compensate for it. Predictive

displays arose as the most popular method. As many of the predictive algorithms

rely on advanced hardware, none were found to be applicable to the open source

eduROV project.

A new type of predictive display based on image transformation was therefore

created. In addition to the eduROV software, this thesis will present the developed

predictive display, the experiment and its results.

1.1 Thesis Structure

Chapter 1: The current chapter will present the applications and challenges re-

lated to teleoperation. In addition, it included an introduction to the most

popular methods in predictive technology.

Chapter 2: Dedicated to the development of the eduROV python package. For

those only concerned with predictive technology and relevant research, this

chapter can be omitted.

1https://www.edurov.no/

1

https://www.edurov.no/

2 CHAPTER 1. INTRODUCTION AND THEORY

Chapter 3: Presents the developed predictor display based on image transforma-

tion.

Chapter 4: Describes experimental design and procedure of the experiment used

to test the developed predictive display.

Chapter 5: Results and discussion, will present the findings of the performed

experiment and its discussion.

Chapter 6: Conclusion and summary with respect to the hypotheses.

1.2 Teleoperation

Teleoperation, the operation of controlling vehicles from a remote location, has

gained popularity since it first became possible. This includes underwater, ground,

aerial and space vehicles. The controlled vehcicle is referred to as a remotely oper-

ated vehicle (ROV). The word robot will also be used interchangeably with ROV

throughout this thesis. There are many locations and tasks where ROVs are useful.

These includes places that are to risky for people, like post disaster areas, under-

water operations, space, conflict zones etc. Other times, using humans is to costly

or just impossible. Offshore maintenance and heavy duty mining are some of the

tasks.

The focus of this thesis has been on human-in-the-loop teleoperation between ROV

(slave) and remote human operator (master), by the means of video feedback. The

operator views a video feed of the ROV in a remote environment and controls it

by control input. This form of teleoperation can be effective because it is easy for

the operator to understand and simple to implement. Other forms of teleoperation

can be achieved by increasing the level of autonomy (LOA). In such situations, the

human operator can be excluded from the control loop. By using other sensory

input than camera feed, such as radars, a different kind of teleoperation is also

attained. None of these will any focus in this thesis.

1.2. TELEOPERATION 3

Although an unmanned ground vehicle (UGV) has been used in the experiment,

the findings can be applied to teleoperation of all types of vehicles, that be aerial,

ground, underwater and space. It does however not apply to situations where the

camera is overlooking the environment from a fixed position while the robot is free

to move. This configuration is often used in telemedicine (Kumcu et al., 2017) or

robot arm manipulation (Bejczy et al., 1990).

1.2.1 Telepresence

Draper et al. (1998) defined telepresence as ”the perception of presence within a

physically remote or simulated site”. He also stated that ”telepresence is generally

hypothesized to improve efficiency or reduce user workload” and that telepresence

is beneficial to mission performance.

Chen et al. (2007) went through 150 papers and checked different teleoperation

factors and how they influence user performance. They found eight main factors;

Field of view (FOV), orientation, camera viewpoint, depth perception, video qual-

ity and frame rate (FR), time delay, and motion. FOV describes the amount of

environment that is visible in the video. Orientation is the rotation of the robot

in the environment, and can be difficult to perceive if there is a lack of known

reference points. Camera viewpoint is often egocentric (robot view) or exocentric

(birds view), which can lead to tunneling or loss of true ground view respectively.

Lack of depth perception can cause wrong estimation of distances and video quality

can reduce target identification. Time delay effects are very task dependent but

often cause reduced driving performance. Motion describes the situation where the

operator itself is moving and can cause motion sickness.

1.2.2 Time delay

Among the factors mentioned above, time delay or latency has been found to impose

large impacts one teleoperation performance (Chen et al., 2007). Chen noted that

latencies as low as 10 − 20 ms can be detected by people. Arthur et al. (1993)

found that latencies (ranging from 50 to 550 ms) to be a more important factor

than frame rate (30, 15, or 10 fps) on human performance.

4 CHAPTER 1. INTRODUCTION AND THEORY

Time delay introduces a situation where the commands of the operator does not

correspond to the visual feedback he or she is getting. Because of this, human

drivers tend to over steer and oscillate with their correcting steering commands

(Appelqvist et al., 2007). This increases the cognitive workload as the operator has

to remember the input already given when giving new control commands (Matheson

et al., 2013). Ricks et al. (2004) found that the mental load required to keep track

of the robot pose adversely affects the operator’s ability to effectively control the

robot. A principle of reducing the workload is therefore to maintain correlation

between commands issued by operator and changes in the interface (Nielsen et al.,

2007).

Some of the research that has investigated the effect of video latency on human

performance can be seen in Table 1.1. It shows the increase factor for different

tasks and delay times. An increase factor of 1.40 is equal to a 40% increase in task

completion time. The actual detrimental effect of latency is very task dependent.

In the table, an increase factor of 1.5 can be found at 100ms for a needle-driving

task, while for the robot car movement task the same factor was found at 2000ms.

Some argue that task completion time increase linearly with delay time (Ando et

al., 1999), (Lane et al., 2002). While others experience an exponential increase (Xu

et al., 2014).

Table 1.1: Task completion time increase factor for different delays. N = number
of participants.

Author Task N Time delay [ms] and increase factor

100-300 400-700 800-1500

Fabrizio et al., 2000 Pin transfer 6 1.04-1.21* 1.17-1.41* 1.11-1.58*

Xu et al., 2014 Energy dissection 16 1.4-1.8 2.7-4.3

Xu et al., 2014 Needle-driving 16 1.5-2.1 2.5-6.2

Perez et al., 2016 Surgical simulator 37 0.75 1.5

Lum et al., 2009 Block transfer 14 1.45 2.04

MacKenzie et al., 1993 Target acquisition 8 1.64

* Estimated from graph

1.2. TELEOPERATION 5

The reasons for time delay in a teleoperation system can be many and is not the

focus of this thesis. In general, the total latency is a result of software and hardware

design as well as physical limitations and distance. Processing and transfer of

commands from the master control to the slave ROV will contribute to the total

time. As will the time it takes for the robot to capture and compress video frames,

and sending it back to the operator for viewing. In this thesis the total perceived

delay is of most interest. This is the total elapsed time from when the operator

issues a command, until the robot can be seen moving on the screen.

1.2.3 Delay compensation

There are three main ways to combat the detrimental effects of time delay. First, an

increased level of automation (LOA), the operator workload is reduced. The results

of Luck et al. (2006) showed that the higher LOA, the better performance in terms

of both time and number of errors made. In some cases, such as a communication

blackout, autonomy is essential (Dorais et al., 1999). This option is not always

available and may not even be possible, as it could require very advanced hardware

and software, depending on the task. Goodrich et al. (2001) argued that adjustable

autonomy could be used to increase the robot effectiveness. He also mentioned that

a more autonomous robot is required when longer time delays are present. On the

other hand, he also stated that ”as autonomy level increases, the breadth of tasks

that can be handled by a robot decreases”.

Secondly, instead of increasing LOA, providing more information to the operator

may increase situational awareness and therefore performance. Miller et al. (2005)

performed an experiment where the operator was reminded of what commands

had been given by providing them with a streaming command indicator. The

preliminary results showed that the operator reported lower fatigue levels. But

there are limitations to how much information an operator can digest in a finite

amount of time. Chen et al. (2007) explained that overlaying information on video

feed can potentially lead to cognitive tunneling.

6 CHAPTER 1. INTRODUCTION AND THEORY

Table 1.2: Predictive technology experiments with task time reduction. Ordered
by date.

Author Robot system
Task

Predictor method
Camera

Participants
Delay

Task time reduction

Lu et al., 2018 Car simulator
Driving

Model-free framework
Simulated human

12
Not reported

8%

Hu et al., 2016 2-6 DOF manipulator
Camera aligment

Simulated 3D scene
Virtual

15
300, 500, 1000

33%, 58%, 65%*

Zheng et al., 2016 Car simulator
Driving

Model-free framework
Simulated human

5
900

35%

Lovi et al., 2010 Robot arm on Segway
Object alignment

Vision-based monocular modeling
At end effector

5
300

33%*

Matheson et al., 2013 Rover
Driving

Projected field of view estimation
Fixed to car

12
3000

48%-64%*

Rachmielowski et al., 2010 Virtual with Phantom OMNI
Alignment

Reconstructed 3D environment
At end effector

12
300

29%-30%*

Mathan et al., 1996 Lunar vehicle
Manovuering

Superimposed directional information
Fixed to car

8
5000

24%-30%

Bejczy et al., 1990 6DOF PUMA robot
Tapping

Superimposed phantom robot
Fixed

2
1000, 4000

13%-34%, 40%-56%

* Estimated from graph

Lastly, as a third option, there is the use of predictive technology. These are dis-

plays, control algorithms and graphical models that try to predict the future state

of the ROV. They are based on the vehicle’s current state and commands given by

the operator. Predictive displays has proven to be the most promising solution, as

Chen et al. (2007) concluded:

If these delays cannot be engineered out of the system, it is suggested that

predictive displays or other decision support be provided to the operator.

1.3 Predictive Technology

Table 1.2 shows a summary of some experiments that has been done in the field

of predictive technology. The experiments span a wide variety of robot configura-

tions, experiment tasks and predictive methods and can not necessary be compared

directly.

The robot system can be roughly divided into two main groups, either the exact

robot configuration is known or it is not. The former includes robot arm ma-

nipulators fixed to a defined reference frame where its configuration is a result

of user input only. In the latter, the robot configuration is subjected to external

1.3. PREDICTIVE TECHNOLOGY 7

forces or freely floating. ROVs typically belong in this group since they are able to

move around in the environment. This makes the prediction more complicated as

unknown and changing external factors has to be considered.

As previously mentioned, there is a great variety in the tasks used in Table 1.2.

They do however have one thing in common; they all include some sort of lateral

movement. Typically the operator is required to perform an alignment or aim-

ing task. These kinds of tasks are particular exposed to the detrimental effects

from communication delay. It can cause the operator to overshoot the target and

transition to an inefficient move and wait strategy which can be measured by task

completion time. Lane et al. (2002) noted that this behaviour started to appear at

around one second of time delay.

In all kinds of predictive technology a future predicted state of the robot has to

be calculated. Variables used and method of calculation varies. Some methods

rely on the dynamic equations of the system. Zhang et al. (2017) implemented a

version where he used the state equations of a spacecraft and its dynamic properties

to calculate its predicted state. The operator was then presented with a future

predicted image of the spacecraft and gave commands correspondingly. This can be

a good approach in space since all external forces can be accurately modeled.

In situations where the external forces can not be calculated exactly and the ROV

is free to move around, a model free approach (no dynamics) are often used instead.

The method of conveying this information can be divided into three groups: super-

imposed predictive information, 3D graphic models and video manipulation.

1.3.1 Superimposed predictive information

In this category, predictive information is overlayed or superimposed on the delayed

video feed. In that way the operator is able to see estimates on where the ROV is

going to end up. The prediction is often visualized as vector graphics in the form

of lines or points along a path. Mathan et al. (1996) used this approach when he

superimposed directional velocity information related to a lunar rover on a video

display.

8 CHAPTER 1. INTRODUCTION AND THEORY

A similar example can be seen in airplanes and helicopters where a tunnel in the

sky display shows where the aircraft should be going and a cross indicating the

predicted trajectory (Grunwald et al., 1981). In cases with large amounts of lateral

movement this approach might not be applicable as the predicted heading can come

off screen.

1.3.2 3D graphic models

About half of the experiments in Table 1.2 would adhere to this category. Generally,

a 3D world is constructed from sensory input such as laser ranging, stereo cameras,

image tracking or others. Images taken by normal cameras are then mapped to the

surface of the computer generated world. Lastly, a virtual camera is placed inside

the virtual world in the predicted position of the real camera. The operator is then

given the virtual video feed as virtual reality (VR), or in a combination with the

real one, augmented reality (AR). As Hu et al. (2016) put it:

In [a] VR-based Predictive display (PD), instead of delayed visual feedback

from the remote robot site, an immediately and predicted visual feedback is

rendered from a graphics model in response to the operator’s motion com-

mand.

Some of the technologies used for capturing the 3D world are Monocular Simulta-

neous Location and Mapping (SLAM), stereo imagery, vision-based structure from

motion (SFM), light detection and ranging (LiDAR) or radio detection and ranging

(radar).

This method is particular popular in conjunction with robot arm manipulators.

In these cases the 3D environment can be constructed in advance and the exact

location of the robot arm is known (Ricks et al., 2004). A limitation with this

approach arises when tasks are performed in unknown and unstructured areas.

Then geometry can not be created in advance and real time mapping and rendering

can be difficult. In addition, it can require additional hardware such as stereo

cameras and the calculations can be computer intensive.

1.3. PREDICTIVE TECHNOLOGY 9

1.3.3 Video manipulation

Video manipulation is a more simple solution as it does not require 3D information

about the environment. This approach tries to make alterations to the delayed

video such that it looks like the ROV is actually moving in real time. A simple

example would be to zoom into the image if the robot is moving forward. Matheson

et al. (2013) halved the task completion time at a latency of three seconds in his

experiment. He described the method as such:

[The] display is obtained by estimating the current rover position within the

delayed drive camera image, finding the current field of view edges given

the rover’s location and orientation, and manipulating the delayed image

through cropping and projection, to approximate the view from the current

rover location.

A similar result is obtained by capturing a wide FOV video, possibly 360 degrees,

and then only displaying a section of that image to the operator. The section can

then be moved around in the video as a response the operator’s commands and

thus provide fluid and seemingly real time feedback (Baldwin et al., 1999).

The approach of video manipulation has the advantages of being low cost, easy to

implement and it does not rely on a structured environment. In addition, since

the displayed video are merely alterations to the last image, no prediction error

propagation will happen. It is however not able to recreate parallax movement,

which can be achieved using the 3D model method above. An example of parallax

movement would be when passing a corner or object. New parts of the environment

should be visible, but it can not be constructed from a delayed image.

10 CHAPTER 1. INTRODUCTION AND THEORY

1.4 Problem Statement

Most of the previous research seems to be concerned about 3D environment recon-

struction from sensory data. While it shows promising results and great reduction

in task completion times, this is a method that requires advanced algorithms and

possibly expensive equipment. Many of the mentioned predictive technologies also

require extensive information about the environment and the robot in order to

function. This is either not possible or a time consuming task. In comparison, the

video manipulation method provides and easy and cheap way to increase operator

performance.

The projected display method described by Matheson et al. (2013) is easiest video

manipulation method from Table 1.2, while still providing a good performance

increase. This method requires information about ROV ground trajectory to cal-

culate changes in perspective however.

By ignoring the effects of perspective change and instead apply positional and scale

transformations, an even simpler approach is obtained. The goal of this thesis is

therefore to investigate the following hypotheses:

H1: A simple predictor display based on image transformation can increase the

operator performance

H2: A simple predictor display based on image transformation will decrease the

operator’s subjective workload

2 eduROV Python Package

The eduROV project aims to let hobbyists, enthusiasts and schools create a simple,

affordable and open-source underwater ROV. A prototype has been created.

The ROV consisted of a Raspberry Pi 3 Model B+ (RPi) and an Arduino Micro.

The Arduino was responsible for reading sensor values and controlling motors. The

RPi had multiple tasks, it communicated with the Arduino by reading sensor values

and sending motor speed commands. In addition, it captured video from the RPi

camera module and displayed this to the user. Lastly, it processed user input from

the operator and forwarded these commands to the Arduino.

On the RPi a Python program using the Pygame1 package was running. This is an

open source package created for making games, but it can also be used to display

video feed and read user input. When initiated, this program would display a

window on the RPi. RealVNC 2, a software for remote desktop viewing was then

used to display this window on the remote computer used for control. Figure 2.1

shows this user interface (UI). The software did not require any installation, instead

the correct files had to be copied from a GitHub repository.

Figure 2.1: User interface for the original eduROV software.

1https://www.pygame.org/
2https://www.realvnc.com/

11

https://www.pygame.org/
https://www.realvnc.com/

12 CHAPTER 2. EDUROV PYTHON PACKAGE

Five main goals were set for my contribution to the project:

• Reduce the video latency as much as possible while still having the possibility

for high resolution images.

• Streamline the installation process, i.e. remove the need for visiting any

website or manually coping files.

• Remove the need for any third party applications, that would mean removing

the RealVNC dependency for video transfer.

• Increase customization while still maintaining a high level application pro-

gramming interface (API).

• Make the UI more attractive, include more UI features without overwhelming

the operator.

2.1 Current Alternatives

There exists a wealth of software created for operating ROVs. This introduction

will be limited to those that are open source and created in Python. The most well

known and probably most used is the Robot Operating System (ROS)3 which is

ported to Python as a client library called rospy4. Although a powerful framework,

it does not suit the needs of this project, as it is originally written in C++. This

means that the documentation is mostly for C++ and for anyone who wanted to

customize the eduROV software in the future would have learn ROS in addition

to Python. It was decided that making ROS fit the needs of the eduROV project

would require more time and be limiting to the development, in comparison to

creating a tailored software from scratch.

There is also a software called GoPiGo5. This started as a Kickstarter project and

is now a hardware and software project that can be bought online. It provides robot

3http://www.ros.org/
4http://wiki.ros.org/rospy
5https://www.dexterindustries.com/gopigo3/

http://www.ros.org/
http://wiki.ros.org/rospy
https://www.dexterindustries.com/gopigo3/

2.2. DEVELOPMENT 13

communication with video feed, but the software seems to be created specifically for

the robots they sell and not as a package meant for other users to build on.

In summary, existing alternatives were not found to be good alternatives for the

eduROV project. Actually, I was not able to find any Python packages created for

ROV communication with video support built in. There are many guides on the

internet that will walk you through how to create this, but the whole process can

be really intimidating for programmers with limited experience. In addition, many

of the guides online require installation of multiple software and other files from

additional places, not very user friendly. Also, in the guides online the ROV is

controlled by pushing buttons on the screen, not by keyboard input. Lastly, they

contain limited to none documentation.

2.2 Development

All popular and well known packages in the Python community is developed in

correspondence with the Python Packaging User Guide6. This guide establishes

multiple rules on how packages should be developed and distributed. It is always

possible to upload code to a remote repository and ask users to download it from

there, but there are many good reasons why serious actors follow the packaging

guide.

First reason, by distributing code through the Python Package Index, anyone can

install the package by running "pip install edurov" in a terminal. There is no

need to visit websites or copying files. This command will download and install the

required files automatically. Second reason is that it greatly simplifies the process

of documentation. By creating special files as stated by the guidelines, a separate

website with all the documentation is created and uploaded automatically. Thirdly,

it also specifies rules for a versioning scheme. This lets the developer create alpha,

beta, release candidates and deployment versions of the software. It makes it easy to

make sure that everything is tested properly before it gets publicly available.

6https://packaging.python.org/

https://packaging.python.org/

14 CHAPTER 2. EDUROV PYTHON PACKAGE

Git version control was used throughout the project. All the code was uploaded to

the remote repository at https://github.com/trolllabs/eduROV. Git branches

was used for rapid prototyping of different ideas. This meant that different ap-

proaches were developed concurrently in each their branch. They were then re-

moved one after another as it became clear that the approach did not meet the

requirements. The finished package code can also be seen in Appendix B on page

89.

In the first phase of the development, two main methods were tested. The first

method was based upon the pygame package. It required the operator to install

Python and the eduROV package on both the ROV and the controlling computer

itself. When the software was started, a program window would pop up on the

controlling computer and display the video feed. Any customization to the features

and UI would require the user to learn pygame as all the graphics are created using

the pygame API. The original software also used pygame, but this approach did

not rely on RealVNC for transmission. Instead it used socket communication to

transfer data.

The second method was based upon a web server approach. This method served a

web page from the ROV which could then be viewed on any device connected to the

same network as the ROV. This meant that the operator would not have to install

any software on his or hers computer. It also meant that the UI would be created

using html and css instead of pure pygame. This approach were chosen for the new

eduROV package. It would completely remove the need to install anything on the

operators computer. It would make it possible to view the video stream at multiple

devices at the same time. In addition, web browsers has been around for a very

long time and much effort has been spent on making them as efficient and flexible

as possible. By using the browser as a medium it is possible to take advantage

of this. Some high schools also have web development and html as part of their

curriculum.7 By basing the the eduROV package on a web server framework it

becomes possible to let the operator customize the UI with their knowledge of

html and css.

7https://www.udir.no/kl06/INF1-01/

https://github.com/trolllabs/eduROV
https://www.udir.no/kl06/INF1-01/

2.3. ARCHITECTURE 15

When the main method were chosen, proceeding development were administered

through the GitHub issues workflow8. Figure 2.2 shows a section of the issues page

on GitHub. On this page, feature requests and bug descriptions were posted by

me and one other that tested the software. These were then completed in turn

and uploaded as commits and releases. Issues were labelled in correspondence with

application area and severity.

Figure 2.2: GitHub eduROV issues overview.

2.3 Architecture

The eduROV package is based upon a HTTP web server framework. This means

that any information sent between the ROV and the user is communicated though

HTTP GET requests. For increased performance and robustness many of the

different tasks are spread on multiple processes running in parallel. This ensures

utilization of multiple CPU cores. The Pyro49 Python package uses socket TCP

communication and were chosen to facilitate transfer of data between processes. It

is fast, well maintained and easy to use.

Figure 2.3 pictures the flow of information between different processes and parts

of the system. When the user interact with the keyboard, this is sent as a HTTP

request from the web browser to the web server on the ROV. This is a threaded

HTTP server, which means that multiple requests can be handled at the same

time in different computer threads. The web server will forward this information

8https://github.com/trolllabs/eduROV/issues
9https://pythonhosted.org/Pyro4/

https://github.com/trolllabs/eduROV/issues
https://pythonhosted.org/Pyro4/

16 CHAPTER 2. EDUROV PYTHON PACKAGE

to the synchronize process which is responsible for holding an updated version

of all variables. The Arduino process checks the synchronize process many times

per second and forwards any new key presses to the Arduino through a serial

connection, which then moves the motors correspondingly. Sensor values moves

in a similar fashion, only in the opposite direction. The camera captures frames,

compresses them to .jpg files and store them in a memory buffer. The webserver

will then send the image to the web browser as soon it is ready, directly from the

buffer. Lastly, the system monitor process regularly checks that the drive space

and CPU temperature is ok and notifies the synchronize process.

Figure 2.3: System architecture of the eduROV software.

2.4 Graphical User Interface

Figure 2.4 shows the finished UI. The layout is dynamic which means that it will

fit any screen size and ratio. The side panels will stay the same size, but the video

will shrink and increase in size to what’s available. Left panels shows sensor values

from the Arduino and RPi. Center section shows the video feed. There is also a

roll indicator that shows how the ROV is oriented in the water. This indicator

can be toggled on/off from the button menu in the right panel. From this panel

the operator has multiple options, such as to arm the robot. If the robot is not

armed it will not move. Cinema mode will hide all panels and scale the video

feed to its maximum size. Some of the actions can also be triggered with hotkeys.

With this layout, the user can chose whether to view all information or nothing

2.5. APPLICATION PROGRAMMING INTERFACE 17

except the video feed. An approach with information in side panels was chosen be-

cause, as mentioned in the introduction, Chen et al. (2007) argued that ”overlaying

information on video feed can potentially lead to cognitive tunneling”.

Figure 2.4: The graphical user interface in the eduROV package.

The UI seen above is in the context of the Engage eduROV submersible. But since

the UI is created purely in HTML, CSS and JavaScript, any user of the package

can customize the look and feel of the webpage in any way he or she would like.

In fact, a completely different UI was created for the experiment in chapter 4, but

still used the eduROV framework for handling requests.

2.5 Application Programming Interface

The application programming interface (API) is how the user interact with the

software package. One of the goals of the project was to create an API that would

get the user up an running in a matter of minutes. In addition, provide a flexible

API that provides extensive flexibility and customization. There is one single main

class called WebMethod. By initiating this class with the path to the index.html

file which decribes the layout, the web server will start running and serving the

web page and video feed. In addition to that, the user is able to customize which

functions that should be started in their own processes, custom responses to GET

methods, resolution and frame rate and much more.

18 CHAPTER 2. EDUROV PYTHON PACKAGE

The reader is recommended to take a look at the API10 and getting started11

section of the documentation. These pages describes the API and provide a much

better user experience than what can be provided in a book.

2.6 Documentation

The documentation is written using the reStructuredText12 markup syntax and

compiled using the Sphinx13. This enables in-line program documentation. This

is very helpful because the documentation for the classes, methods and functions

can be written in the same place as the actual code. This creates fewer files which

makes it easier to maintain. In addition, sphinx will automatically detect classes,

functions and methods and create a corresponding documentation structure.

The GitHub repository has been connected to an account at readthedocs.io. By

connecting these accounts, a documentation website is automatically created from

the sphinx structure when updates are committed to the repository. The docu-

mentation can be seen online14 or in Appendix A on page 57. A sample can be

seen in Figure 2.5.

Figure 2.5: eduROV documentation at readthedocs.io.

10http://edurov.readthedocs.io/en/latest/api.html
11http://edurov.readthedocs.io/en/latest/started.html
12http://docutils.sourceforge.net/rst.html
13http://www.sphinx-doc.org/
14http://edurov.readthedocs.io

http://edurov.readthedocs.io/en/latest/api.html
http://edurov.readthedocs.io/en/latest/started.html
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/
http://edurov.readthedocs.io

2.7. PERFORMANCE AND NOVELTY FEATURES 19

2.7 Performance and Novelty Features

Figure 2.6: Video latency for eduROV 0.0.5 30fps for multiple resolutions.

As part of the development of the eduROV package, a latency test was performed.

Figure 2.6 shows this test for version 0.0.5 of the eduROV package. With a res-

olution of 0.3 mega pixels on a wired ethernet connection, the video latency has

been reduced from 782ms to 143ms. This is a 82% reduction. It is even possi-

ble to stream full HD video with a latency below 300ms. When using wireless

transmission the latency is affected by factors such as distance, interference and

hardware.

The test was performed in the same way as Jennehag et al. (2016) did in their test.

By manually comparing two timers, one in real time on the monitor and the other

as captured by the camera and transmitted back to the same monitor. This was

performed two times and the displayed value is the average.

20 CHAPTER 2. EDUROV PYTHON PACKAGE

A summary of the most novelty features in comparison with other similar solutions

can be listed as follows:

Low video latency. Possibility to stream high definition video with a delay below

200ms.

No setup required. The controlling computer does not need any software in-

stalled. The ROV can even be controlled from a mobile phone.

Very easy to use. One command in the terminal window will install all required

files. One additional command will start the web server.

Highly customizable. Since the UI is created in html the user can customize the

look and feel of the web page in any way.

Easy true parallelism. Custom functions can be spawned on multiple CPU cores

while still maintaining the possibility to share variables.

For future work there is one limitation to the current design. The client browser

communicates with the web server with GET requests. Each time the UI is up-

dated, the client has to ask for this update, there is no way that the server can

send new information to the client on its own. This is unless a WebSocket connec-

tion is used. Instead of creating a new connection each time a request is done, a

websocket is open as long as the client is viewing the web page. This enables the

server to push information when it have something new and thus removing a lot of

unnecessary communication. This would probably require comprehensive changes

to the underlying workings of the eduROV package, but is probably where the next

big performance gain can be achieved.

3 Predictive Display Scheme

This chapter describes the developed predictive display. The final results only

requires a few lines of code and can be applied to most ROVs. In the coming

explanation a very simple and limited ROV is considered, but section 3.4 describes

how the principle can be expanded to more complicated configurations.

3.1 Robot Configuration

To explain how the predictive display (PD) works, let us consider the self balancing

two wheeled robot depicted in Figure 3.1. The upper part of the figure shows the

robot from above with two objects in front of it, a black cube and a gray barrel.

The ROV is drawn at time equal to t = 0 and t = ∆t. The bottom part of the

image depicts the viewport of the onboard camera mounted to the ROV.

φ

Rh

z

ω

t = 0

∆θ

z

t = ∆t

∆Ph

Figure 3.1: Two wheeled robot before and after counter clockwise rotation.

21

22 CHAPTER 3. PREDICTIVE DISPLAY SCHEME

It has a forward facing camera with a FOV of φ degrees. The camera captures

a video feed with a resolution of Rh pixels horizontally. Its center of rotation is

located in the vector z pointing out of the paper. It is able to rotate with an

angular velocity of ω deg/sec around its center of rotation z.

Let us first consider a situation without delay and where the ROV can only be

given two commands, to turn either left or right. The commands are given by

pressing one of two buttons, not by a joystick with variable output. If the operator

holds down the left button for a period of ∆t seconds, the ROV would make an

angular rotation of ω · ∆t = ∆θ degrees. This is depicted in the right side of

Figure 3.1.

In the viewport, the cube and barrel would move to the right as the ROV turned

left. These objects has moved a finite number of pixels horizontally ∆Ph, which can

be calculated by Equation 3.1. It is simply the ratio between the angular rotation

and the FOV, times the pixel screen width. By substituting in the expression for

angular rotation, Equation 3.2 is obtained. Here η is used to denote the pixel turn

rate; the pixel rate at which objects in the video moves left or right when the

operator turns the ROV.

∆Ph =
∆θ

φ
·Rh (3.1)

∆Ph =

(
Rh

ω

φ

)
∆t = η · ∆t (3.2)

η is a constant and depending on the screen resolution, camera FOV and the

angular velocity of the ROV. By multiplying this factor by the amount of time the

operator holds down the left or right button, the number of pixels the objects in

the frame should move is obtained.

3.2. PREDICTIVE VISUALIZATION 23

3.2 Predictive Visualization

Let us now consider a situation where there is a td seconds delay from when the

commands are given by the operator, to the changes can be seen in the video feed.

This is the total perceived delay described in the introduction, section 1.2.2. For

simplicity, let us also consider a situation where ∆t < td.

Figure 3.2 shows a representation of what the video feed would look like as the

above maneuver was performed. It shows the situation in three different scenarios.

First no delay, secondly with delay and third with the PD implemented using the

delayed video. The outer rectangle shows the limitations of the monitor, while the

inner rectangle is the video feed itself.

t = 0 t = ∆t t = ∆t+ td

∆Ph

No delay

Delay

Delay + predictive display

Figure 3.2: Operator view. Outer box total screen size, inner box video feed.

Figure 3.3 plots the visible angular rotation α for the no delay display and the

delayed display as a function of time. For the no delay display, visible angular

rotation is equal to ROV angular rotation α = θ. In addition, the horizontal image

pixel displacement Ph is plotted with the same time axis.

The PD works by moving the video feed on the operator screen the opposite way of

what the ROV is moving. The amount of pixels the video Ph is moved is calculated

24 CHAPTER 3. PREDICTIVE DISPLAY SCHEME

by Equation 3.2. In addition, the video is moved back (the same way as the ROV

is moving) after td seconds has passed. This makes the objects in the video feed

appear in the correct position on the operator screen as if there were no delay. Note

that the black box in Figure 3.2 predictor display center column is in the correct

position relative to the no delay display. This approach does however assume that

the commands will be properly followed by the ROV. But since the prediction

is merely an alteration to the last image received, the prediction errors are not

cumulative.

No delay, α = θ

Delay

1
ω

α

∆θ

t

t = 0 t = ∆t

td

Ph

t

∆Ph

1

η

t = ∆t+ td

Figure 3.3: Visible angular rotation and horizontal image pixel displacement as a
function of time.

3.3 Implementation

Algorithm 1 shows the pseudocode for how this PD is implemented in practice.

The horizontal pixel displacement Ph is initialized as zero. Then, the predictor

display function is called at a set interval dt. The rate of these calls should happen

at least as fast as the frame rate of the video (fps). With a fps of 30, the interval

should be dt <= 1/30 ≈ 33ms. The change in horizontal pixel displacement ∆Ph

is then calculated from Equation 3.2 and the interface is updated with the new Ph.

In addition, an asynchronous call is done on the move back function so that the

video is moved back to its original position after td seconds has passed. It has to

be an asynchronous call so that the main program is not blocked when the move

back function is waiting.

3.3. IMPLEMENTATION 25

Algorithm 1 Predictive display

Ph = 0 . horizontal pixel displacement
set interval(predictor display, dt) . calls function at interval

function predictor display
if left then

∆Ph = −η · dt . equation 3.2
else if right then

∆Ph = +η · dt . equation 3.2
else

∆Ph = 0
end if
Ph += ∆Ph

update interface(Ph)
move back(∆Ph) . asynchronous call

end function

function move back(∆Ph)
wait td
Ph -= ∆Ph

end function

Figure 3.4 shows the predictor display as it was implemented in the experiment,

which is explained in chapter 4. It contains the video feed from the ROV, in

addition to a red arrow to visualize the prediction. The operator has recently

turned the ROV to the right, and as a result the video has moved to the left. The

red arrow has not moved and works as an indication of where the ROV will be

heading when the video feed has caught up with the time delay.

Figure 3.4: Predictor display visualization.

26 CHAPTER 3. PREDICTIVE DISPLAY SCHEME

The operator views the predictor screen through a web browser. The predictor

algorithm is written in java script and the video feed is moved around by changing

css margin properties. The code can viewed in its entirety in Appendix C on page

119, or online.1

3.4 Extending and Generalizing

The pixel turn rate η described in section 3.1 was related to the rotation of the

ROV. A similar constant can be found for the pixel scale rate, which relates how the

the video should be scaled when the ROV moves back and fourth. It’s a bit more

complicated since the apparent scaling of objects in the frame depends on how far

away they are, but by using an average distance this can at least be approximated.

The same approach as in Algorithm 1 can then be used for backward and forward

motion to manipulate the scale of the video feed.

In the case of a varying magnitude of left, right, forward and backward movements,

such if the operator is using a joystick with variable output, the PD has to account

for this. This can be achieved by applying an adjustment factor to the pixel

turn/scale rate proportionate to the magnitude of the command.

The predictor display can then be applied to all moving ROVs. It is just a matter

of finding the correct pixel turn/scale rate and adjustment factors corresponding

to how the ROV is moving. A submersible ROV would typically have a much lower

pixel turn/scale rate because of water friction.

These rates and factors can be found by calculation using ROVs physics and screen

resolution. But they can also be found using trial and error. For example, if the

visual angular rotation is less than the actual angular rotation, increase the pixel

turn rate until they match. In this way, the predictor display can be calibrated

without knowing any of the ROVs physics. In this context, ROV physics means

how the ROV respond to operator input, how fast it moves and turns.

1https://github.com/trolllabs/eduROV/blob/master/examples/experiment/displays/

predictive.js

https://github.com/trolllabs/eduROV/blob/master/examples/experiment/displays/predictive.js
https://github.com/trolllabs/eduROV/blob/master/examples/experiment/displays/predictive.js

4 Experiment

The goal of the experiment was to measure the human performance change in a

ROV maneuvering task using a predictor display based on image transformation.

The participants were given a modified ”peg-in-hole” task, where the peg was

mounted on a remotely controlled ground vehicle and the holes were rectangular

holes in a wooden box.

4.1 Participants

The participants were voluntary selected from the NTNU Department of Mechani-

cal and Industrial Engineering. A total of 58 participants performed the experiment

whereas the first one were excluded from the data foundation. This was due to

lack of information that became evident during the first trial. This information

were given to the other N = 57 participants. None of the subjects had any earlier

experience with predictive displays.

33.3% of the participants were female and the total group had an average age of

24.7 years with an standard deviation (SD) of 1.45. This information among others

can be seen in Table 4.1.

Table 4.1: Demographic details on participants in experiment.

Number of people Percentage Mean SD

People tested Total
Excluded

58
1

Gender Male
Female

38
19

66.7
33.3

Age 24.7 1.45

Use computer daily 57 100

Gaming Daily
Weekly
Monthly
Yearly
Never

2
15
8
17
15

3.5
26.3
14.0
29.8
26.3

27

28 CHAPTER 4. EXPERIMENT

4.2 Experimental Design

Figure 4.1 shows an overview of the experimental setup. A 17 inch laptop running

with a 2.3GHz Intel Core i7-3610QM CPU and Windows 10 together with the

arrow keys were used as the operator’s control device. This was connected to the

ROV through a direct Ethernet connection.

Figure 4.1: Experimental setup. The computer (left), is used to control the ROV
into holes in wooden box (right).

The ROV, Figure 4.2, was a three wheeled robot running a Raspberry Pi 3 Model

B+. Two of the wheels where connected to each their DC-motor while the third

one was a caster wheel for support. The ROV was equipped with a forward facing

Raspberry Pi Camera V2. The camera has a wide angle lens attached with a hori-

zontal FOV of 76.5 degrees. The robot was running the eduROV software outlined

in chapter 2. This software was responsible for serving the control interface, han-

dling control commands, logging experiment data and adding the desired latency

to the communication.

A wooden box with three holes and LEDs were used to register task performance.

The distance between the holes (center to center) was D = 30cm while the holes

itself has a width of W = 10cm. This translates to a Fitts’s index of difficulty of

Id = log2 (2D/W) = 2.58 bits (Fitts, 1954).

4.2. EXPERIMENTAL DESIGN 29

4.2.1 Task

One by one, in random order, the round LED on the button box would turn on.

The operator was then tasked to maneuver the ROV such that the black peg would

go inside the corresponding hole. A light sensor inside the hole would register this

as a hit. This would cause the LED to turn off and one of the other two to turn

on. The participants were told to make as many hits as possible in the course of

90 seconds.

The participants would repeat this task a total of three times, using three different

displays / conditions. The order of these conditions followed a 3x3 Latin Square

Design, to eliminate the order effect. Condition one had a total delay of 700 ms

which included the inherent system delay of 250ms, plus the added delay of 450

ms. Condition two had the same delay as condition one, but with the predictive

display in effect. The third condition had no added delay and only the inherent

delay of 250ms. No predictive technology was used in the third condition. The

total latency of 700 ms were chosen because it is below the reported threshold for

a ”move and wait” strategy (Chen et al., 2007), and above what is considered a

difficult level in many situations.

Figure 4.2: Three wheeled robot used in experiment.

Many of the experiments previously mentioned in Table 1.2 used a single task and

measured the task completion time in different conditions. This experiment was

however designed with a single simple task and measured the achieved score in the

course of a fixed time period. There are multiple reasons for this choice.

30 CHAPTER 4. EXPERIMENT

First, to reduce the learning effect that would accompany a longer maneuvering

course. Some of the authors in Table 1.2 reported that the participants performed

better for each try when they started to learn the obstacle course. I believe that a

longer course would require more time to reduce the learning effect.

Secondly, Chen et al. (2007) reported that the benefit of PD is very task dependent.

An easy task was therefore chosen to minimize the effect that task complexity had

on the performance results.

Thirdly, some experiments with real or simulated driving have long stretches with

forward motion. The PD provides little help in these situations but still contribute

to the task completion time in the same way. A task which required the operator

to move from side to side as much as possible was therefore chosen. In addition, by

not letting the operator accelerate to maximum ROV velocity, ceiling effects from

vehicle limitations were reduced.

As a fourth argument, a fixed task time made the experiment length much more

predictable. Subjects used on average 10 minutes and 56 seconds with a standard

deviation of 1 min and 12 seconds to perform the whole experiment. This again

made it easier to recruit new subjects.

As a last argument, the combination of score achievement and time pressure made

the subjects fully devoted to the task at hand. This made them performed as close

as possible to their potential.

4.3 Procedure

After entering the experiment room, the participants were able to look at the ROV

with the button box to get a sense of situational awareness. From that point on, the

subject was facing the other way, looking at the computer screen and with the robot

outside their FOV. The participants also wore an ear protection headset to remove

audible feedback. All the necessary information was given on the screen.

4.4. DATA RECORDING AND ANALYSIS 31

First, the subject S was presented with an initial form collecting demographic data.

Then, an information page describing experiment theme, how to steer the robot,

the participant’s goal and how the experiment would proceed was displayed to the

subject. This can be found in Appendix D on page 123. The S was then automat-

ically assigned to a group in correspondence to the 3x3 Latin Square Design. The

S then performed a 30 seconds long practice period followed by a 90 seconds long

real test. This was done repeatedly for all three conditions. At the end of each test,

the S was asked to fill out a test questionnaire. After each practice and test run,

the ROV was repositioned to its original position defined by the black markings in

Figure 4.2. The S was not told that one of the conditions would contain a predictor

display or how the predictor display worked.

4.4 Data Recording and Analysis

All the data was recorded with the onboard computer of the ROV using a SQLite

database. This included demographics, experiment questionnaire data, hits made

by the subjects, number of key presses and more. Time stamp data was also

recorded for each hit and the test start and end. A total of 11865 data points were

collected during the testing period. All the recorded data with exception of the

hits table is included in Appendix G on page 155.

The test questionnaire that was completed for each condition included a NASA

TLX (task load index) form (Hart et al., 1988). In addition the S had to guess

the total delay that they just experienced. This questionnaire can be found in

Appendix E on page 125. One modification were done to the NASA TLX form.

During the preliminary experiment evaluation, a helper reported that he found

it naturally to evaluate a good performance with a high score. In the original

questionnaire, a low values translates to a good performance. This metric and the

corresponding description was reversed such that a high value would reflect a good

performance. After data collection, this value was reversed back such that it can

be reported inline with convention.

32 CHAPTER 4. EXPERIMENT

The number of hits made by the S in the course of 90 seconds was used to quantify

performance. This score was normalized in the same way as Rachmielowski et al.

(2010) and Lovi et al. (2010) did in their analysis. First, the S’s number of hits

in a specific condition was divided by the S’s average hits achieved in all three

conditions. It was then multiplied with the average score for all participants in all

conditions. The same normalization has also been done on the reported subjective

delay for each condition.

To determine the statistical difference between conditions a two-sided paired sample

t-test was used. This was calculated using the scipy.stats.ttest rel1 function

which is a part of the SciPy python library. In the results section, the t-statistics

is reported as t, the two-tailed p-value as p and the degrees of freedom N − 1 as

df. A difference is reported as significant if p ≤ 0.05.

When comparing scores based on demographic groups, the variables are no longer

dependent. In those cases, a two-sided Welch’s t-test is performed instead. This

has been computed using the scipy.stats.ttest ind2 function. The statistics is

reported in the same fashion as in the dependent case, only difference is that the

degrees of freedom is calculated using the Welch–Satterthwaite equation (Allwood,

2008).

The effect size, which describes the magnitude of difference between conditions

was calculated using the Cohen’s d formula. This value is reported as d in the

results. When testing for linear relationships between dependent and indepen-

dent variables, linear least-squares regression is used. It has been calculates using

the scipy.stats.linregress3 function. The R-squared correlation coefficient is

reported as R2.

The code used for the statistical analysis can be found in Appendix F on page

127.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

5 Results and Discussion

This chapter will present the results and discussion divided into six consecutive

themes: general performance, gaming effects, task load index, subjective delay,

learning effects and key presses.

5.1 Performance

Figure 5.1 shows the normalized number of hits in 90 seconds (score), for each

display type and all N=57 participants. Delay refers to the added delay, which

means that ”No delay” translates to the inherent system delay of 250ms. The

numerical values are reported in Table 5.1. The statistical significance and effect

size between conditions can be seen in Table 5.2.

Figure 5.1: Normalized score all participants, N=57.

Figure 5.1 together with the statistical data in Table 5.2 shows that there is a

statistical difference in performance when controlling the ROV without and with

predictive help. Subjects performed on average 20.6% better with an effect size of

d = 0.904. This can be categorized as a medium to large effect, especially when

considering how easy and cheap this predictive method is to implement.

33

34 CHAPTER 5. RESULTS AND DISCUSSION

Table 5.1: Normalized mean scores and standard deviation (SD).

Differentiation Group Display Score SD

None All N=57 Delay 6.24 1.39

Delay PD 7.52 1.43

No delay 15.87 1.99

Gender Male n=38 Delay 6.65 1.25

Delay PD 7.95 1.43

No delay 17.30 1.71

Female n=19 Delay 5.39 1.49

Delay PD 6.61 1.35

No delay 13.10 2.17

Gaming Daily n=2 Delay 7.92 0.37

Delay PD 10.21 1.40

No delay 18.36 1.77

Weekly n=15 Delay 6.27 1.22

Delay PD 8.17 1.51

No delay 17.62 2.04

Monthly n=8 Delay 7.05 1.32

Delay PD 7.77 0.64

No delay 17.68 0.95

Yearly n=17 Delay 6.65 1.26

Delay PD 7.66 1.73

No delay 15.98 2.25

Never n=15 Delay 5.06 1.46

Delay PD 6.21 1.16

No delay 12.73 1.79

5.1. PERFORMANCE 35

Table 5.2: Mean difference, paired samples t-test and Cohen’s d effect size for
display pair scores. Gamers = plays weekly or more often.

Group / Pair Mean difference t-test for Equality of Means d

t df p

All N=57

Delay Delay PD 20.62% 4.80 56 <.001 0.904

Delay No delay 154.37% 23.15 56 <.001 5.569

Delay PD No delay 110.88% 19.66 56 <.001 4.772

Gamers n=17

Delay Delay PD 30.13% 4.34 16 <.001 1.376

Delay No delay 174.64% 14.93 16 <.001 6.463

Delay PD No delay 111.05% 10.83 16 <.001 4.965

Non-gamers n=40

Delay Delay PD 16.91% 3.20 39 .003 0.731

Delay No delay 146.46% 18.16 39 <.001 5.237

Delay PD No delay 110.80% 16.21 39 <.001 4.655

Previous research, Table 1.2, describes a wide range of task time reduction from

predictive technology. Everything from 8% to 65%. It is difficult to do a direct

comparison to any specific experiment, but a performance increase of 20.6% in this

experiment is probably in the lower range of what has been found before. How-

ever, the predictive method described in this thesis is the cheapest and easiest to

implement, at least when comparing to those in Table 1.2. The task time reduction

measure is considered to be comparable to the performance gain measure in this

experiment.

None of the subjects were told that there would be a predictive display or how

it worked. Some of the participants immediately identified what the predictive

display was trying to tell them. Others however, did not understand that there

had been a predictive display until the experiment was over. The ones who tried to

use the predictive display the way it was intended typically performed better than

those who did not use it. It may be possible that the performance could have been

improved if the subjects were informed how the predictive display works. This can

however not be verified unless additional experiments are performed.

36 CHAPTER 5. RESULTS AND DISCUSSION

5.2 Gaming

Those who play games weekly or more were defined as gamers (G). They per-

formed on average 30.13% better, while non-gamers (NG) only saw a 16.91% per-

formance increase using the PD. This difference is illustrated in Figure 5.2 and

Table 5.2.

Figure 5.2: Performance of gamers n=17, versus non-gamers n=40. Outliers indi-
cated by plus sign.

It is interesting to see that Gs were able to increase their score almost twice as

much as NGs when going from a delayed condition to a delayed condition with

PD. Exactly why Gs were able to increase their performance more using the PD is

unclear. It could be that the arrow in the PD which acts like an aiming device, is a

more familiar concept for gamers. It could also indicate that Gs are generally more

adaptable to new an unfamiliar situations in a computer competition setting.

When comparing Gs versus NGs directly, it is also interesting to see that Gs

only performed better than NGs in the second and third condition. Delay PD:

t(26.57)=2.23, p=0.034, d=0.692 and no delay: t(40.79)=2.56, p=0.014, d=0.660.

In the the first condition, there was no significant difference.

5.3. TASK LOAD INDEX 37

5.3 Task Load Index

Figure 5.3 shows the reported NASA TLX scores. The height of the bar describes

the mean value while the whiskers shows the SD. Numerical values are reported in

Table 5.3.

Subjects reported minimal differences between condition one (delayed video) and

two (delayed video with PD). The only significant differences were found in perfor-

mance and frustration. Subjects felt that they on average performed 14% better

using the predictor display, t(56)=3.24, p=0.002, d=0.360. The actual performance

increase was 21%. They also reported that they felt 11% less frustrated using the

PD, t(56)=2.15, p=0.036, d=0.271. Participants also stated that the no delay con-

dition was better in all metrics, with an exception of temporal demand where the

difference was not significant.

Figure 5.3: NASA TLX (task load index) results for each display type, N=57.
Lower is better.

The subjects reported no significant difference in mental, physical and temporal

demand between condition one and two. These three metrics is a good descrip-

tion of the total subjective workload. Some subjects, especially those who did

not understand what the PD were trying to tell them, even reported the PD as

distracting.

38 CHAPTER 5. RESULTS AND DISCUSSION

Table 5.3: Rated NASA TLX values and standard deviation (SD), N=57. Lower
is better.

Metric Display Rating SD Metric Display Rating SD

Mental Delay 5.67 2.05 Performance Delay 5.53 2.29

Delay PD 5.51 2.25 Delay PD 4.74 2.05

No delay 3.56 2.03 No delay 2.70 1.60

Physical Delay 2.88 2.14 Effort Delay 6.02 1.94

Delay PD 2.84 2.19 Delay PD 5.77 1.99

No delay 2.18 1.84 No delay 4.67 2.08

Temporal Delay 5.84 2.08 Frustration Delay 5.65 2.35

Delay PD 5.67 2.10 Delay PD 5.04 2.13

No delay 5.39 2.30 No delay 2.44 1.79

Because of how the PD works, the video feed is constantly moving around and

scaling up and down. This can understandably be distracting. Some participants

immediately understood how the PD worked, and they typically reported the PD

as helpful. They also seemed to be more relaxed, but there are no recorded data

that can prove this relationship.

During the task, a red timer indicating the remaining time was constantly visible

for the participant to see in the upper right corner. In addition, the robot had rapid

acceleration and was able move fast if the operator managed to do so. Overall, this

made for a hectic and exiting experience for the subjects. This may explain why

there is no significant change in the temporal demand, even compared to the no

delay situation. The fact that the participants reported a better value (smaller)

in the other five metrics for the no delay condition, is as expected. This finding

supports earlier research that describes how video latency negatively affect the user

experience in teleoperation.

5.4. SUBJECTIVE DELAY 39

5.4 Subjective Delay

Figure 5.4 shows the normalized reported total delay in seconds for the three con-

ditions. The participants reported a 11% decrease in subjective latency using the

predictive display versus the normal display with the same latency. This results is

however not significant, t(56)=1.40, p=0.167, d=0.356.

About 75% of the participants underestimated the latency in the third condition.

Many of them barely reported over 0ms, but the actual latency was 250ms. These

findings support previous research, which states that smaller latencies closer to

zero is difficult to differentiate from no latency.

Figure 5.4: Normalized reported subjective latency in seconds.

40 CHAPTER 5. RESULTS AND DISCUSSION

Since the participants reported less frustration using the PD, it it interesting to look

at how frustration and subjective delay time might be related. Figure 5.5 shows a

scatter plot of reported frustration and delay time for all conditions collectively. All

values has been normalized. The linear relationship is small, but still noticeable.

Note that Figure 5.5 presents the subjective latency in all conditions, this means

that there are differences between actual latency also. When looking at the different

conditions isolated, there are no significant relationships.

Figure 5.5: Normalized subjective delay versus frustration.

5.5. LEARNING EFFECT 41

5.5 Learning Effect

It is also interesting the evaluate if participants had any learning effects during the

experiment. Figure 5.6 shows the score for each display type and further divided

into groups depending if the subject had that display as the first, second or third

display. As an example, the first of the nine box plots describes the score achieved

in the delay condition for those who had that display as their first display. One

visible trend is that the participants who had a particular display as their second

display, performed better than those who had that display as their first. This

performance increase was significant for all displays. Delay: t(18)=2.19, p=0.042,

d=0.671, delay PD: t(17)=2.19, p=0.043, d=0.660, no delay: t(17)=3.26, p=0.005,

d=0.902. The performance change from #2 to #3 in all displays were however not

found significant.

This indicate that the participants had some learning effect from the first to second

display. But after that, the learning effect was eliminated.

Figure 5.6: Score categorized after display order.

42 CHAPTER 5. RESULTS AND DISCUSSION

Table 5.4: Mean score and standard deviation (SD) for each group.

Group n Display order Display Score SD

Group 1 9 1-2-3 Delay 5.08 1.21

Delay PD 7.40 1.13

No delay 15.40 1.83

Group 2 10 1-3-2 Delay 6.24 0.72

Delay PD 8.45 0.96

No delay 17.41 1.02

Group 3 10 2-1-3 Delay 6.65 1.15

Delay PD 6.32 1.03

No delay 17.04 1.51

Group 4 10 2-3-1 Delay 6.58 1.52

Delay PD 6.57 0.57

No delay 16.76 1.59

Group 5 9 3-1-2 Delay 6.78 0.91

Delay PD 8.42 1.33

No delay 14.69 1.45

Group 6 9 3-2-1 Delay 6.03 1.84

Delay PD 8.04 1.45

No delay 13.59 2.58

Table 5.4 and 5.5 presents the achieved score in each of the experiments groups.

These groups are defined by the 3x3 Latin Square design to minimize order effects.

It is interesting to see that the two groups who had condition two, the predictor

display first, did not show any statistical difference in performance between con-

dition one and two. But all the other groups who had the PD as their second or

third display, showed a performance increase from 24.34% to 45.58%. This would

indicate that the PD was more helpful, if the subject had tried one of the others

first.

It seems that the learning effect from the first to the second display helped the

performance of the PD, but not the ordinary display with latency, indicated by

group three and four. At least when comparing the performance difference between

condition one and two.

5.5. LEARNING EFFECT 43

Table 5.5: Mean difference, paired samples t-test and Cohen’s d effect size for
display pair scores. Seperated by experiment display order.

Group / Display order

Pair
Mean difference t-test for Equality of Means d

t df p

Group 1, n=9, 1-2-3

Delay Delay PD 45.58% 4.49 8 0.002 1.867

Delay No delay 203.00% 10.11 8 <.001 6.274

Delay PD No delay 108.13% 8.11 8 <.001 4.960

Group 2, n=10, 1-3-2

Delay Delay PD 35.42% 4.89 9 <.001 2.474

Delay No delay 179.12% 22.73 9 <.001 12.050

Delay PD No delay 106.11% 14.59 9 <.001 8.602

Group 3, n=10, 2-1-3

Delay Delay PD -4.98% -0.63 9 0.544 -0.288

Delay No delay 156.29% 12.57 9 <.001 7.347

Delay PD No delay 169.73% 13.93 9 <.001 7.884

Group 4, n=10, 2-3-1

Delay Delay PD -0.13% -0.01 9 0.988 -0.007

Delay No delay 154.87% 9.99 9 <.001 6.211

Delay PD No delay 155.19% 16.53 9 <.001 8.081

Group 5, n=9, 3-1-2

Delay Delay PD 24.34% 2.66 8 0.029 1.366

Delay No delay 116.81% 11.05 8 <.001 6.163

Delay PD No delay 74.38% 6.74 8 <.001 4.248

Group 6, n=9, 3-2-1

Delay Delay PD 33.42% 2.74 8 0.026 1.147

Delay No delay 125.50% 5.06 8 <.001 3.190

Delay PD No delay 69.02 4.18 8 0.003 2.503

44 CHAPTER 5. RESULTS AND DISCUSSION

5.6 Key Presses

Figure 5.7 shows the number of key presses performed during the 90 seconds of

task time for each display type. In condition three, the no added delay condition,

participants make a lot more key presses. With a low latency, participants are in

a greater degree trying to continuously maneuver the ROV, instead of partially

adapting a move and wait strategy.

Figure 5.7: The number of key presses performed during 90 seconds.

5.7 Limitations

The choice of not informing the participants about the predictive display before

they started the experiment was a conscious one. Because of this, the experiment

was limited to testing the performance increase by an intuitive understanding of

the PD. The results may had been different if the participants were informed in

advance. The experiment was also conducted indoors on a flat confined area using

a ROV with zero turn radius. More experiments needs to be performed to eval-

uate if the results in this thesis are applicable to a real ROV in an unstructured

environment.

6 Conclusion and Summary

The developed predictive display is very easy to implement and does not require any

additional hardware, nor is it very computational intensive. It can be implemented

on all ROVs with a fixed onboard camera, that are free to move in an environment.

Only a few constants describing the behaviour of the ROV is needed, and those

can be found by trial and error.

H1: Participants performed on average 20.62% better using the predictive display

versus no predictive display, t(56)=4.80, p<.001, d=0.904. H1, that a simple

predictor display based on image transformation can increase the operator

performance, is therefore verified.

H2: The participants did not reported any significant difference in the mental,

physical or temporal demand using the predictive display. H2, that a simple

predictor display based on image transformation will decrease the operators

subjective workload, has to be rejected.

The participants who play video games weekly or more were found to have a larger

performance increase from the predictive display than those who do not. The

predictive display use a red arrow to visualize future position. This can resemble

an aiming device which is a more familiar concept for gamers and can explain some

of the difference.

The experiment showed that all groups performed relatively worse on the first

display than they did on their second and third display. As a result, those who had

the predictive display as their first display, did not show any performance difference

using the predictive display versus the normal display with same delay. Those who

had the predictive display as their second or third condition however, showed a

performance increase of 24% to 46%.

The predictive display offers a valuable performance increase, especially considering

how easy and cheap it is to implement.

45

46 CHAPTER 6. CONCLUSION AND SUMMARY

6.1 Future Work

Although the predictive display (PD) increased performance, many participants

experienced minor improvements. In addition, some of the subjects even reported

that the PD was distracting and confusing. I believe that there are two main

reasons for this.

Firstly, the fact that the image itself is moving around and scaling up and down

constantly while the operator are using the ROV is distracting in itself. It is very

easy that the operators attention is distracted because of all the activity happening

on the screen. A good approach could be to incorporate something similar to

Baldwin et al. (1999) who used cropped video from a panoramic camera. By only

displaying parts of the FOV and changing this selection in response to operator

controls, the video would not have to move around on the screen. The PD algorithm

in this thesis can easily be altered to this kind of behavior. The disadvantages of

such a method is that it would require a wider FOV camera which is typically

more expensive. In addition, by only displaying parts of the video the displayed

resolution will drop. This can be accommodated by sending a higher resolution

image, but this would require more processing power and possibly increase the

video latency.

Secondly, many of the operators used the physical black peg as visual guidance

even though the red arrow was included. This meant that the operator frequently

overshot the target and in practice did not use the predictor. In a case where the

peg would not be needed, like an ordinary obstacle course, the subjects only visual

aid would have been the red arrow. This would presumably make them use it much

more, and reduce the amount of overshoot.

Although the predictive method is model free and can be used on all maneuvering

ROVs, the pixel turn/scale rate mentioned in section 3.4 has to be found to use

the predictive screen. There is however a way to make the predictive screen work

without the need for any additional information. By tracking objects in the video

a comparison can be made between the predicted movement of objects versus the

6.1. FUTURE WORK 47

actual movements. By constantly doing this comparison, the pixel turn/scale rate

can be automatically adjusted to minimize the discrepancies. This method can

also be used to automatically detect the communication latency. By comparing

the time when commands are given and when objects starts to move the delay

can be found. Object tracking can be performed using the OpenCV software.

This approach would would require a more advanced algorithm and also use more

processing power.

48 CHAPTER 6. CONCLUSION AND SUMMARY

References

Kumcu, Asli et al. (June 2017). “Effect of video lag on laparoscopic surgery: cor-

relation between performance and usability at low latencies”. In: International

Journal of Medical Robotics and Computer Assisted Surgery 13.2, e1758. issn:

1478596X. doi: 10.1002/rcs.1758. arXiv: 1504.07874. url: http://doi.

wiley.com/10.1002/rcs.1758.

Bejczy, A.K. et al. (1990). The phantom robot: predictive displays for teleoperation

with time delay. doi: 10.1109/ROBOT.1990.126037.

Draper, John V et al. (1998). Telepresence. Vol. 40. 3, pp. 354–375.

Chen, J.Y.C. et al. (2007). “Human performance issues and user interface design for

teleoperated robots”. In: Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on 37.6, pp. 1231–1245. issn: 1094-6977. doi:

10.1109/TSMCC.2007.905819. url: http://ieeexplore.ieee.org/xpls/

abs%7B%5C_%7Dall.jsp?arnumber=4343985.

Arthur, Kevin W. et al. (1993). “Evaluating 3D task performance for fish tank

virtual worlds”. In: ACM Transactions on Information Systems 11.3, pp. 239–

265. issn: 10468188. doi: 10.1145/159161.155359. url: http://portal.

acm.org/citation.cfm?doid=159161.155359.

Appelqvist, Pekka et al. (2007). “Development of an unmanned ground vehicle

for task-oriented operation - Considerations on teleoperation and delay”. In:

IEEE/ASME International Conference on Advanced Intelligent Mechatronics,

AIM. doi: 10.1109/AIM.2007.4412567.

Matheson, Adrian et al. (2013). “The effects of predictive displays on perfor-

mance in driving tasks with multi-second latency: Aiding tele-operation of lunar

rovers”. In: Proceedings of the Human Factors and Ergonomics Society, pp. 21–

25. issn: 10711813. doi: 10.1177/1541931213571007.

Ricks, Bob et al. (2004). “Ecological displays for robot interaction: a new perspec-

tive”. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS) 3, pp. 2855–2860. doi: 10.1109/IROS.2004.1389842. url: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389842.

49

https://doi.org/10.1002/rcs.1758
http://arxiv.org/abs/1504.07874
http://doi.wiley.com/10.1002/rcs.1758
http://doi.wiley.com/10.1002/rcs.1758
https://doi.org/10.1109/ROBOT.1990.126037
https://doi.org/10.1109/TSMCC.2007.905819
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=4343985
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=4343985
https://doi.org/10.1145/159161.155359
http://portal.acm.org/citation.cfm?doid=159161.155359
http://portal.acm.org/citation.cfm?doid=159161.155359
https://doi.org/10.1109/AIM.2007.4412567
https://doi.org/10.1177/1541931213571007
https://doi.org/10.1109/IROS.2004.1389842
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389842
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389842

50 REFERENCES

Nielsen, Curtis W. et al. (2007). “Ecological interfaces for improving mobile robot

teleoperation”. In: IEEE Transactions on Robotics 23.5, pp. 927–941. issn:

15523098. doi: 10.1109/TRO.2007.907479.

Ando, Noriaki et al. (1999). “A Study on Influence of Time Delay in Teleoperation”.

In: Proceedings of the 1999 IEEUASME.

Lane, J Corde et al. (2002). “Effects of Time Delay on Telerobotic Contorl of

Neutral Buoyancy Vehicles”. In: Proceedings of the 2002 IEEE International

Conference on Robotics & Automation May.

Xu, Song et al. (Sept. 2014). “Determination of the latency effects on surgical per-

formance and the acceptable latency levels in telesurgery using the dV-Trainer R©

simulator”. In: Surgical Endoscopy 28.9, pp. 2569–2576. issn: 0930-2794. doi:

10.1007/s00464-014-3504-z. url: http://link.springer.com/10.1007/

s00464-014-3504-z.

Fabrizio, M D et al. (2000). “Effect of time delay on surgical performance dur-

ing telesurgical manipulation.” In: Journal of Endourology 14.2, pp. 133–8.

issn: 0892-7790. doi: 10 . 1089 / end . 2000 . 14 . 133. url: http : / / www .

liebertonline.com/doi/abs/10.1089/end.2000.14.133%7B%5C%%7D0Ahttp:

//www.ncbi.nlm.nih.gov/pubmed/10772504.

Perez, Manuela et al. (Apr. 2016). “Impact of delay on telesurgical performance:

study on the robotic simulator dV-Trainer”. In: International Journal of Com-

puter Assisted Radiology and Surgery 11.4, pp. 581–587. issn: 1861-6410. doi:

10.1007/s11548-015-1306-y. url: http://link.springer.com/10.1007/

s11548-015-1306-y.

Lum, Mitchell J.H. et al. (Sept. 2009). “Teleoperation in surgical robotics - Network

latency effects on surgical performance”. In: Proceedings of the 31st Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society: Engineering the Future of Biomedicine, EMBC 2009. IEEE, pp. 6860–

6863. isbn: 9781424432967. doi: 10.1109/IEMBS.2009.5333120. url: http:

//ieeexplore.ieee.org/document/5333120/.

MacKenzie, Scott et al. (1993). “Lag as a Determinant of Human Performance

in Interactive Systems”. In: Proceedings of the ACM Conference on Human

https://doi.org/10.1109/TRO.2007.907479
https://doi.org/10.1007/s00464-014-3504-z
http://link.springer.com/10.1007/s00464-014-3504-z
http://link.springer.com/10.1007/s00464-014-3504-z
https://doi.org/10.1089/end.2000.14.133
http://www.liebertonline.com/doi/abs/10.1089/end.2000.14.133%7B%5C%%7D0Ahttp://www.ncbi.nlm.nih.gov/pubmed/10772504
http://www.liebertonline.com/doi/abs/10.1089/end.2000.14.133%7B%5C%%7D0Ahttp://www.ncbi.nlm.nih.gov/pubmed/10772504
http://www.liebertonline.com/doi/abs/10.1089/end.2000.14.133%7B%5C%%7D0Ahttp://www.ncbi.nlm.nih.gov/pubmed/10772504
https://doi.org/10.1007/s11548-015-1306-y
http://link.springer.com/10.1007/s11548-015-1306-y
http://link.springer.com/10.1007/s11548-015-1306-y
https://doi.org/10.1109/IEMBS.2009.5333120
http://ieeexplore.ieee.org/document/5333120/
http://ieeexplore.ieee.org/document/5333120/

REFERENCES 51

Factors in Computing Systems. url: http://www.yorku.ca/mack/CHI93b.

html.

Luck, Jason P et al. (2006). “An investigation of real world control of robotic

assets under communication latency”. In: HRI ’06: Proceeding of the 1st ACM

SIGCHI/SIGART conference on Human-robot interaction, pp. 202–209. doi:

10.1145/1121241.1121277. url: http://doi.acm.org/10.1145/1121241.

1121277.

Dorais, Gregory A. et al. (1999). “Adjustable Autonomy for Human-Centered Au-

tonomous Systems”. In: Sixteenth International Joint Conference on Artificial

Intelligence Workshop on Adjustable Autonomy Systems May 2003, pp. 16–35.

Goodrich, Michael A et al. (2001). “Experiments in Adjustable Autonomy Robot

Effectiveness Neglect”. In: IJCAI workshop on Autonomy, Delegation and Con-

trol: Interacting with Intelligent Agents, pp. 1624–1629. url: http://jcrandall.

faculty.masdar.ac.ae/jcrandall/IJCAI01.pdf.

Miller, David P. et al. (2005). “Visual aids for lunar rover tele-operation”. In:

European Space Agency, (Special Publication) ESA SP 603, pp. 557–562. issn:

03796566.

Lu, Shihan et al. (2018). “Effects of a Delay Compensation Aid on Teleoperation of

Unmanned Ground Vehicles”. In: pp. 179–180. issn: 21672148. doi: 10.1145/

3173386.3177064.

Hu, Huan et al. (2016). “Performance of Predictive Display Teleoperation un-

der Different Delays with Different Degree of Freedoms”. In: 2016 Interna-

tional Conference on Information System and Artificial Intelligence Perfor-

mance, pp. 2–6. doi: 10.1109/ISAI.2016.108.

Zheng, Yingshi et al. (2016). “An Experimental Evaluation of a Model-Free Pre-

dictor Framework in Teleoperated Vehicles”. In: IFAC-PapersOnLine 49.10,

pp. 157–164. issn: 24058963. doi: 10.1016/j.ifacol.2016.07.513.

Lovi, David et al. (2010). “Predictive display for mobile manipulators in unknown

environments using online vision-based monocular modeling and localization”.

In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Sys-

http://www.yorku.ca/mack/CHI93b.html
http://www.yorku.ca/mack/CHI93b.html
https://doi.org/10.1145/1121241.1121277
http://doi.acm.org/10.1145/1121241.1121277
http://doi.acm.org/10.1145/1121241.1121277
http://jcrandall.faculty.masdar.ac.ae/jcrandall/IJCAI01.pdf
http://jcrandall.faculty.masdar.ac.ae/jcrandall/IJCAI01.pdf
https://doi.org/10.1145/3173386.3177064
https://doi.org/10.1145/3173386.3177064
https://doi.org/10.1109/ISAI.2016.108
https://doi.org/10.1016/j.ifacol.2016.07.513

52 REFERENCES

tems, IROS 2010 - Conference Proceedings April 2014, pp. 5792–5798. issn:

2153-0858. doi: 10.1109/IROS.2010.5649522.

Rachmielowski, Adam et al. (2010). “Performance evaluation of monocular pre-

dictive display”. In: Proceedings - IEEE International Conference on Robotics

and Automation, pp. 5309–5314. issn: 10504729. doi: 10.1109/ROBOT.2010.

5509652.

Mathan, Santosh et al. (1996). “Efficacy of a predictive display, steering device, and

vehicle body representation in the operation of a lunar vehicle”. In: Conference

companion on Human factors in computing systems common ground - CHI ’96,

pp. 71–72. doi: 10.1145/257089.257147. url: http://portal.acm.org/

citation.cfm?doid=257089.257147.

Zhang, Yakun et al. (2017). “Handling qualities evaluation of predictive display

model for rendezvous and docking in lunar orbit with large time delay”. In:

CGNCC 2016 - 2016 IEEE Chinese Guidance, Navigation and Control Confer-

ence, pp. 742–747. isbn: 9781467383189. doi: 10.1109/CGNCC.2016.7828878.

Grunwald, a. J. et al. (1981). “Experimental evaluation of a perspective tunnel

display for three-dimensional helicopter approaches”. In: 4.6, pp. 623–631. issn:

0731-5090. doi: 10.2514/3.56119.

Baldwin, J. et al. (1999). “Panoramic video with predictive windows for telep-

resence applications”. In: Proceedings 1999 IEEE International Conference on

Robotics and Automation (Cat. No.99CH36288C) 3.May, pp. 1922–1927. issn:

10504729. doi: 10.1109/ROBOT.1999.770389. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=770389.

Jennehag, Ulf et al. (2016). “Low Delay Video Streaming on the Internet of Things

Using Raspberry Pi”. In: Electronics 60.3. doi: 10.3390/electronics5030060.

url: %7Bhttp://www.mdpi.com/2079-9292/5/3/60%7D.

Fitts, Paul M (1954). “The Information Capacity of the Human Motor system in

controlling the amplitude of movement”. In: Journal of Experimental Biology

47.6, pp. 381–391. issn: 0022-1015. doi: 10.1037/h0055392. url: http://

www.ncbi.nlm.nih.gov/pubmed/13174710.

https://doi.org/10.1109/IROS.2010.5649522
https://doi.org/10.1109/ROBOT.2010.5509652
https://doi.org/10.1109/ROBOT.2010.5509652
https://doi.org/10.1145/257089.257147
http://portal.acm.org/citation.cfm?doid=257089.257147
http://portal.acm.org/citation.cfm?doid=257089.257147
https://doi.org/10.1109/CGNCC.2016.7828878
https://doi.org/10.2514/3.56119
https://doi.org/10.1109/ROBOT.1999.770389
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=770389
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=770389
https://doi.org/10.3390/electronics5030060
%7Bhttp://www.mdpi.com/2079-9292/5/3/60%7D
https://doi.org/10.1037/h0055392
http://www.ncbi.nlm.nih.gov/pubmed/13174710
http://www.ncbi.nlm.nih.gov/pubmed/13174710

REFERENCES 53

Hart, Sandra G et al. (1988). “Development of NASA-TLX (Task Load Index):

Results of Empirical and Theoretical Research”. In: Advances in Psychology

52, pp. 139–183.

Allwood, Michael (2008). “The Satterthwaite Formula for Degrees of Freedom in

the Two-Sample t-Test”. In: AP Statistics.

54 REFERENCES

Appendices

55

eduROV documentation

57

Docs » Introduc�on

Introduction

Stream camera feed from a Raspberry Pi camera to any web browser on the network. Control the
robot with your keyboard directly in the browser.

The eduROV project is all about spreading the joy of technology and learning. The eduROV is
being developed as a DIY ROV kit meant to be affordable and usable by schools, hobbyists,
researchers and others as they see fit. We are commi�ed to be fully open-source, both so�ware
and hardware-wise, everything we develop will be available to you. Using other open-source and
or open-access tools and pla�orms.

GitHub: h�ps://github.com/trolllabs/eduROV

PyPI: h�ps://pypi.org/project/edurov/

Documenta�on: h�p://edurov.readthedocs.io

Engage eduROV: h�ps://www.edurov.no/

Main features

1. Low video latency

58

You can stream HD video from the Raspberry Pi camera to any unit on the same network with
a video delay below 200ms.

2. No setup required

The package works by displaying the video feed and other content in a web browser. This
means that you can use any device to display your interface.

3. Very easy to use

With the excep�on of Pyro4 (which is installed automa�cally), edurov doesn’t require any other
packages or so�ware. Everything is wri�en in python and html. 4 lines of code is everything
needed to get started!

4. Highly customizable

Since you define the html page yourself, you can make it look and work exactly the way you
want. Use css and javascript as much as you want.

5. True parallelism

Need to control motors, read sensor values and display video feed at the same �me? edurov
can spawn your func�ons on mul�ple CPU cores while s�ll maintaining the possibility to share
variables.

Prerequisites

eduROV requires python 3, if you don’t have python installed, you can download it here:
h�ps://www.python.org/downloads/
the camera on the raspberry pi has to be enabled, see
h�ps://www.raspberrypi.org/documenta�on/configura�on/camera.md

Installation

Run the following commands in a terminal on the Raspberry Pi.:

sudo pip3 install edurov

For a more in depth descrip�on visit the official documenta�on.

Usage

Engage eduROV submersible

On the Raspberry Pi, run the following command:

59

edurov-web

This will start the web server and print the ip where the web page can be viewed, e.g.
Visit the webpage at 192.168.0.197:8000 .

Create your own

The eduROV package includes mul�ple classes and func�ons to facilitate easy robot
communica�on with video feed. It will get you up and running in a ma�er of minutes. Visit the
official documenta�on for a ge�ng started, examples and API.

Performance

The eduROV package were created with a strong focus on keeping the latency at a minimum.
When deploying on a wireless network the actual performance will vary depending on factors
such as distance, interference and hardware.

Author

The package is created by Mar�n Løland as part of the master thesis at Norwegian University of
Science and Technology 2018

60

Docs » Installa�on

Installation

Raspbian

First, you will need a raspberry pi with an opera�ng system running on it. Visit the official so�ware
guide for a step by step guide on how to do that..

Remote control

In most cases it is more prac�cal to control the Raspberry Pi using another computer. The two
most popular methods are with either SSH or VNC.

Update system

Make sure that your Raspberry Pi is up to date:

sudo apt-get update
sudo apt-get dist-upgrade

Python version

The edurov package requires python 3. If python 3 si not your default python version (check by
running python --version), you can either (1) change the default python version, or (2) use pip3
and python3 instead.

1. Change default python version

Take a look at this page.
2. Use pip3 and python3

If you don’t want to make any changes, you can call pip3 instead of pip and python3 instead
of python . This will use version 3 when installing and running python scripts instead.

Install using pip

61

Install edurov, sudo rights are needed to enable console scripts:

sudo pip install edurov

Static IP

If you are remotely connected to the Pi it can be very useful with a sta�c ip so that you can find
the Pi on the network. How you should configure this depends how your network is setup. A
guide can be found here.

Start at system startup

If you want the edurov-web command to run automa�cally when the raspberry pi has started. Run
the following command:

sudo nano /etc/rc.local

Then add the following line to the bo�om of the screen, but before the line that says exit 0 :

edurov-web &

Exit and save by pressing CTRL+C, y, ENTER. The system then needs to be rebooted:

sudo shutdown -r now

62

Docs » Engage eduROV

Engage eduROV

Terminal command

By calling edurov-web in the terminal the edurov-web example will be launched. This command
also supports mul�ple flags that can be displayed by running edurov-web -h

-r resolu�on, use format WIDTHxHEIGHT (default 1024x768)

-fps framerate for the camera (default 30)

-port which port the server should serve it’s content (default 8000)

-d set to print debug informa�on

Example

edurov-web -r 640x480 -fps 10

Will then set the the video to 640x480 @ 10 fps

63

Docs » Ge�ng started

Getting started

 Tip

If you came here to find out how to to use the Engage ROV submersible, the Engage eduROV
page is probably for you. If you instead plan to create your own ROV or make some kind of
modifica�ons, you are in the right place.

 Note

Not all details at explained on this page. You should check the API page for more informa�on
on the classes, methods and parameters when you need.

On this page we will walk through the features example, one feature at a �me. This example was
created with the inten�on of describing all the features of the edurov package. Let’s get started!

Displaying the video feed

There are two main parts needed in any edurov project. First, it’s the python file that creates the
WebMethod class and starts serving the server. Secondly, a index.html file that describes how the

different objects will be displayed in the browser.

In the two code blocks underneath you can see how simple they can be created. The index.html
file needs to be called exactly this. We use the os.path() library to ensure correct file path
descrip�on.

features.py¶

1
2
3
4
5
6
7
8
9

import os
from edurov import WebMethod

Create the WebMethod class
web_method = WebMethod(
 index_file=os.path.join(os.path.dirname(__file__), 'index.html'),
)
Start serving the web page, blocks the program after this point
web_method.serve()

64

The index.html file must have an img element with src="stream.mjpg" . The server will then
populate this image with the one coming from the camera.

index.html¶

1
2
3
4
5
6
7
8
9

<!DOCTYPE html>
<html>
<head>
 <title>Features</title>
</head>
<body>

</body>
</html>

Our file structure now looks like this:

project
├── features.py
└── index.html

If you wanted to have a security camera system this is all you had to do. If you instead want to
control you robot through the browser or display other informa�on, keep reading.

Moving a robot

This sec�on will let us control the ROV from within the web browser. In computer technology
there is something called parallelism. It basically means that the CPU does mul�ple things at the
same �me in different processes. This is an important feature of the edurov package as it let’s us
do many things without interrup�ng the video feed. (It wouldn’t be very prac�cal if the video
stopped each �me we moved the robot).

Reading keystrokes

First, we have to ask the browser to send us informa�on when keys are pressed. We do this by
including keys.js inside the index.html file. We have put it inside a folder called sta�c as this is
the conven�on for these kind of files.

index.html¶

65

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

<!DOCTYPE html>
<html>
<head>
 <title>Features</title>
 <script src="./static/keys.js"></script>
</head>
<body>

</body>
</html>

/sta�c/keys.js¶

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

var last_key;

document.onkeydown = function(evt) {
 evt = evt || window.event;
 if (evt.keyCode != last_key){
 last_key = evt.keyCode;
 send_keydown(evt.keyCode);
 }
}

document.onkeyup = function(evt) {
 last_key = 0;
 send_keyup(evt.keyCode);
}

function send_keydown(keycode){
 var xhttp = new XMLHttpRequest();
 xhttp.open("GET", "/keydown="+keycode, true);
 xhttp.setRequestHeader("Content-Type", "text/html");
 xhttp.send(null);
}

function send_keyup(keycode){
 var xhttp = new XMLHttpRequest();
 xhttp.open("GET", "/keyup="+keycode, true);
 xhttp.setRequestHeader("Content-Type", "text/html");
 xhttp.send(null);
}

Controlling motors (or anything)

In this example we will not show how to move the motors, instead the program will print out
which arrow key you are pressing. You can then change the code to do whatever you want!

features.py¶

66

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import os
import Pyro4
from edurov import WebMethod

def control_motors():
 """Will be started in parallel by the WebMethod class"""
 with Pyro4.Proxy("PYRONAME:KeyManager") as keys:
 with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
 while rov.run:
 if keys.state('K_UP'):
 print('Forward')
 elif keys.state('K_DOWN'):
 print('Backward')
 elif keys.state('K_RIGHT'):
 print('Right')
 elif keys.state('K_LEFT'):
 print('left')

Create the WebMethod class
web_method = WebMethod(
 index_file=os.path.join(os.path.dirname(__file__), 'index.html'),
 runtime_functions=control_motors,
)
Start serving the web page, blocks the program after this point
web_method.serve()

On line 22 we are telling the WebMethod that control_motors should be a runtime_function . This
starts the func�on in another process and shuts it down when we stop the ROV. For more
informa�on visit the API page. Since this func�on is running in another process it needs to
communicate with the server. It does this by the help of Pyro4 (line 2). We then connect to the
KeyManager and ROVSyncer on line 7-8. This let’s us access the variables we need.

The resul�ng file structure:

project
├── features.py
├── index.html
└── static
 └── keys.js

Making it pretty

At this point our web page is very boring. It is white with one image. Since it’s a html file we can
add whatever we want to it! This �me we are adding a header, a bu�on to stop the server and
some informa�on. In addi�on we are adding some styling that will center the content and make it
look nicer.

index.html¶

1 <!DOCTYPE html>

67

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

<!DOCTYPE html>
<html>
<head>
 <title>Features</title>
 <link rel="stylesheet" type="text/css" href="./static/style.css">
 <script src="./static/keys.js"></script>
</head>
<body>
 <main>
 <h2>Welcome to the features example</h2>

 <p>
 Stop server
 </p>
 <p>
 Use arrow keys to print statements in the terminal window.
 </p>
 </main>
</body>
</html>

/sta�c/style.css¶

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

body {
 margin: 0;
 padding: 0;
 font-family: Verdana;
}
a {
 text-decoration: none;
}
img {
 width: 100%;
 height: auto;
}
main{
 width: 700px;
 margin-top: 20px;
 margin-left: auto;
 margin-right: auto;
}

project
├── features.py
├── index.html
└── static
 ├── keys.js
 └── style.css

Displaying sensor values

Coming soon

Custom responses

68

In some cases you want to display informa�on in the browser that you want to create yourself in a
python func�on. The WebMethod has a parameter exactly for this purpose.

features.py¶

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import os
import subprocess

import Pyro4

from edurov import WebMethod

def my_response(not_used, path):
 """Will be called by the web server if it not able to process by itself"""
 if path.startswith('/cpu_temp'):
 cmds = ['/opt/vc/bin/vcgencmd', 'measure_temp']
 return subprocess.check_output(cmds).decode()
 else:
 return None

def control_motors():
 """Will be started in parallel by the WebMethod class"""
 with Pyro4.Proxy("PYRONAME:KeyManager") as keys:
 with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
 while rov.run:
 if keys.state('K_UP'):
 print('Forward')
 elif keys.state('K_DOWN'):
 print('Backward')
 elif keys.state('K_RIGHT'):
 print('Right')
 elif keys.state('K_LEFT'):
 print('left')

Create the WebMethod class
web_method = WebMethod(
 index_file=os.path.join(os.path.dirname(__file__), 'index.html'),
 runtime_functions=control_motors,
 custom_response=my_response
)
Start serving the web page, blocks the program after this point
web_method.serve()

index.html¶

1 <!DOCTYPE html>

69

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

<!DOCTYPE html>
<html>
<head>
 <title>Features</title>
 <link rel="stylesheet" type="text/css" href="./static/style.css">
 <script src="./static/keys.js"></script>
 <script src="./static/extra.js"></script>
</head>
<body>
 <main>
 <h2>Welcome to the features example</h2>

 <p>
 Stop server
 <button onclick="cpuTemp()">Display CPU temp</button>
 </p>
 <p>
 Use arrow keys to print statements in the terminal window.
 </p>
 </main>
</body>
</html>

/sta�c/extra.js¶

1
2
3
4
5
6
7
8
9

function cpuTemp(){
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.stat == 200) {
 alert('The CPU temperature is '+this.responseText);
 };
 xhttp.open("GET", "cpu_temp", true);
 xhttp.send();
}

As an example we have created a bu�on in index.html (line 15) which calls a func�on in extra.js

that asks the server what the CPU temperature is. The new .js file is included as usual (index.html

(line 7)). On line 7 in extra.js we send a GET request with a value of cpu_temp. The server does
not know how it should answer this request, but since we have defined a custom_response (line 37)
in features.py the request is forwarded to this func�on and we can create the response our self!

Note that this func�on needs to accept two parameters whereas the last one is path that is
requested. If the path starts with /cpu_temp we can return the value, else return None .

project
├── features.py
├── index.html
└── static
 ├── keys.js
 ├── style.css
 └── extra.js

70

Docs » Examples

Examples

 Tip

The following examples can be downloaded from the eduROV examples folder.

Minimal working code

This is a bare minimum example so that the image stream and nothing more can be seen in the
browser. A great star�ng point if you want to expand the func�onality yourself.

minimal.py¶

from os import path

from edurov import WebMethod

web_method = WebMethod(
 index_file=path.join(path.dirname(__file__), 'index.html')
)
web_method.serve()

index.html¶

<!DOCTYPE html>
<html>
<head>
 <title>Minimal</title>
</head>
<body>

 Stop Server
</body>
</html>

project
├── minimal.py
└── index.html

Features

71

An example created to explain most of the features in the edurov package. See the Ge�ng started
page in the official documenta�on for a full walkthrough.

features.py¶

import os
import subprocess

import Pyro4

from edurov import WebMethod

def my_response(not_used, path):
 """Will be called by the web server if it not able to process by itself"""
 if path.startswith('/cpu_temp'):
 cmds = ['/opt/vc/bin/vcgencmd', 'measure_temp']
 return subprocess.check_output(cmds).decode()
 else:
 return None

def control_motors():
 """Will be started in parallel by the WebMethod class"""
 with Pyro4.Proxy("PYRONAME:KeyManager") as keys:
 with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
 while rov.run:
 if keys.state('K_UP'):
 print('Forward')
 elif keys.state('K_DOWN'):
 print('Backward')
 elif keys.state('K_RIGHT'):
 print('Right')
 elif keys.state('K_LEFT'):
 print('left')

Create the WebMethod class
web_method = WebMethod(
 index_file=os.path.join(os.path.dirname(__file__), 'index.html'),
 runtime_functions=control_motors,
 custom_response=my_response
)
Start serving the web page, blocks the program after this point
web_method.serve()

index.html¶

72

<!DOCTYPE html>
<html>
<head>
 <title>Features</title>
 <link rel="stylesheet" type="text/css" href="./static/style.css">
 <script src="./static/keys.js"></script>
 <script src="./static/extra.js"></script>
</head>
<body>
 <main>
 <h2>Welcome to the features example</h2>

 <p>
 Stop server
 <button onclick="cpuTemp()">Display CPU temp</button>
 </p>
 <p>
 Use arrow keys to print statements in the terminal window.
 </p>
 </main>
</body>
</html>

project
├── features.py
├── index.html
└── static
 ├── keys.js
 ├── extra.js
 └── style.css

Wireless RC car with camera feed

73

Create your very own wireless RC car with camera! The streaming video can be viewed in a
browser on any device on the same network, it is controlled by using the arrow keys on the
keyboard.

Bill of materials

Name Price USD Comment

Raspberry Pi Zero WH 18 A full size board can also be used

Raspberry Pi Camera Module V2 33

DC 6V 210RPM Geard Motor Wheel Kit 23 found on eBay

L298N Dual H Bridge Motor Controller Board 1.8 found on eBay

DC-DC 5V 12V Step Down Module Converter 3A 1.6 found on eBay

Total 76

74

In addi�on you will need a swivel wheel, M3/M2.5 bolts and nuts, cables and connectors, 12V
ba�ery and a car frame. The car frame used in the picture above was cut from 3mm MDF with a
laser cu�er and can be found here.

CAD files

Visit h�ps://grabcad.com/library/772279

project
├── rc_car.py
├── index.html
├── electronics.py
└── static
 └── keys.js

Engage eduROV

This example is used to control the ROV used in the eduROV project, see www.edurov.no.

start.py¶

75

import os
import time

import Pyro4

from edurov import WebMethod
from edurov.utils import detect_pi, serial_connection, send_arduino, \
 receive_arduino, free_drive_space, cpu_temperature

if detect_pi():
 from sense_hat import SenseHat

def valid_arduino_string(arduino_string):
 if arduino_string:
 if arduino_string.count(':') == 2:
 try:
 [float(v) for v in arduino_string.split(':')]
 return True
 except:
 return False
 return False

def arduino():
 lastState = '0000'
 ser = serial_connection()
 # 'letter': [position, value]
 config = {'w': [0, 1],
 's': [0, 2],
 'a': [1, 1],
 'q': [1, 2],
 'd': [2, 1],
 'e': [2, 2]}
 with Pyro4.Proxy("PYRONAME:KeyManager") as keys:
 with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
 keys.set_mode(key='l', mode='toggle')
 while rov.run:
 dic = keys.qweasd_dict
 states = [0, 0, 0, 0]
 for key in config:
 if dic[key]:
 states[config[key][0]] = config[key][1]
 states[3] = int(keys.state('l'))
 state = ''.join([str(n) for n in states])
 if state != lastState:
 lastState = state
 if ser:
 send_arduino(msg=state, serial_connection=ser)
 else:
 print(state)
 if ser:
 arduino_string = receive_arduino(serial_connection=ser)
 if valid_arduino_string(arduino_string):
 v1, v2, v3 = arduino_string.split(':')
 rov.sensor = {
 'tempWater': float(v1),
 'pressureWater': float(v2),
 'batteryVoltage': float(v3)
 }

def senser():
 sense = SenseHat()
 with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
 while rov.run:
 orientation = sense.get_orientation()
 rov.sensor = {'temp': sense.get_temperature(),
 'pressure': sense.get_pressure() / 10,

76

 'humidity': sense.get_humidity(),
 'pitch': orientation['pitch'],
 'roll': orientation['roll'] + 180,
 'yaw': orientation['yaw']}

def system_monitor():
 with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
 while rov.run:
 rov.sensor = {'free_space': free_drive_space(),
 'cpu_temp': cpu_temperature()}
 time.sleep(10)

def main(video_resolution='1024x768', fps=30, server_port=8000, debug=False):
 web_method = WebMethod(
 index_file=os.path.join(os.path.dirname(__file__), 'index.html'),
 video_resolution=video_resolution,
 fps=fps,
 server_port=server_port,
 debug=debug,
 runtime_functions=[arduino, senser, system_monitor]
)
 web_method.serve()

if __name__ == '__main__':
 main()

index.html¶

77

<html>
<head>
 <title>eduROV</title>
 <script src="./static/dynamic.js"></script>
 <script src="./static/general.js"></script>
 <script src="./static/keys.js"></script>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon">
 <link rel="icon" href="favicon.ico" type="image/x-icon">
 <link rel="stylesheet" type="text/css" href="./static/style.css">
 <link rel="stylesheet" type="text/css" href="./static/bootstrap.css">
</head>
<body onload="set_size()">

<div class="grid-container">
 <div class="d-none d-md-block side-panel " style="display:none;">
 <div class="card bg-light cinema">
 <h5 class="card-header">Sensors</h5>
 <div class="card-body">
 <h5>ROV</h5>
 <table class="table table-hover table-sm">
 <tbody>
 <tr>
 <th scope="row">Temperature</th>
 <td id="temp"></td>
 <td>℃</td>
 </tr>
 <tr>
 <th scope="row">Pressure</th>
 <td id="pressure"></td>
 <td>kPa</td>
 </tr>
 <tr>
 <th scope="row">Humidity</th>
 <td id="humidity"></td>
 <td>%</td>
 </tr>
 <tr>
 <th scope="row">Pitch</th>
 <td id="pitch"></td>
 <td>°</td>
 </tr>
 <tr>
 <th scope="row">Roll</th>
 <td id="roll"></td>
 <td>°</td>
 </tr>
 <tr>
 <th scope="row">Yaw</th>
 <td id="yaw"></td>
 <td>°</td>
 </tr>
 </tbody>
 </table>
 <h5>Water</h5>
 <table class="table table-sm">
 <tbody>
 <tr>
 <th scope="row">Temperature</th>
 <td id="tempWater"></td>
 <td>℃</td>
 </tr>
 <tr>
 <th scope="row">Pressure</th>
 <td id="pressureWater"></td>
 <td>kPa</td>
 </tr>
 </tbody>
 </table>
 </div>

78

 </div>
 <div class="card bg-light cinema">
 <h5 class="card-header">System</h5>
 <div class="card-body">
 <table class="table table-sm">
 <tbody class="table-borderless">
 <tr id="voltageTr">
 <th scope="row">Battery</th>
 <td id="batteryVoltage"></td>
 <td>V</td>
 </tr>
 <tr id="diskTr">
 <th scope="row">Disk space</th>
 <td id="free_space"></td>
 <td>MB</td>
 </tr>
 <tr id="cpuTr">
 <th scope="row">CPU temp</th>
 <td id="cpu_temp"></td>
 <td>℃</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 <div class="center-panel">

 </div>
 <div class="d-none d-md-block side-panel">
 <div class="card bg-light cinema">
 <h5 class="card-header">Options</h5>
 <div class="card-body">
 <button type="button" onclick="toggle_armed()" id="armBtn"
 class="btn btn-outline-success btn-sm btn-block"
 title="Use this to arm the robot">
 Arm
 </button>
 <button type="button" onclick="rotate_image()"
 class="btn btn-outline-primary btn-sm btn-block"
 title="Will rotate the video 180 degrees">
 Flip video
 </button>
 <button type="button" onclick="toggle_roll()" id="rollBtn"
 class="btn btn-outline-primary btn-sm btn-block active"
 title="Toggle the roll indicator on/off">
 Roll
 </button>
 <button type="button" onclick="toggle_cinema()"
 class="btn btn-outline-primary btn-sm btn-block"
 title="Toggle cinema mode which hides everything except video">
 Cinema
 </button>
 <button type="button" onclick="set_update_frequency()"
 class="btn btn-outline-primary btn-sm btn-block"
 title="Changes the sensor update frequency to desired value">
 Sensor frequency
 </button>
 <button type="button" onclick="toggle_light()" id="lightBtn"
 class="btn btn-outline-warning btn-sm btn-block"
 title="Toggle the light on the ROV on/off">Light
 </button>
 <button type="button" onclick="stop_rov()"
 class="btn btn-outline-danger btn-sm btn-block"
 title="Stops the ROV, this page will stop working">
 Shutdown
 </button>
 </div>
 </div>

79

 <div class="card bg-light cinema">
 <h5 class="card-header">Hotkeys</h5>
 <div class="card-body">
 <table class="table table-sm">
 <tbody>
 <tr>
 <td>F11</td>
 <td>Fullscreen</td>
 </tr>
 <tr>
 <td>L</td>
 <td>Lights</td>
 </tr>
 <tr>
 <td>C</td>
 <td>Cinema</td>
 </tr>
 <tr>
 <td>ENTER</td>
 <td>Arm</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>

 </div>
</div>

</body>
</html>

project
├── entry.py
├── start.py
├── index.html
└── static
 ├── keys.js
 ├── general.js
 ├── dynamic.js
 ├── roll.png
 ├── bootstrap.css
 └── style.css

80

Docs » API

API

 Tip

If you are having a hard �me, you can always have a look at the examples page where the
classes, methods and parameters are used in prac�ce.

WebMethod

Starts a video streaming from the rasparry pi and a webserver that can handle user input and
other requests.

Parameters: index_file (str) – Absolute path to the frontpage of the webpage, must be called
index.html . For more informa�on, see Displaying the video feed.

video_resolu�on (str, op�onal) – A string representa�on of the wanted video
resolu�on in the format WIDTHxHEIGHT.
fps (int, op�onal) – Wanted framerate, may not be achieved depending on
available resources and network.
server_port (int, op�onal) – The web page will be served at this port
debug (bool, op�onal) – If set True, addi�onal informa�on will be printed for
debug purposes.
run�me_func�ons (callable or list, op�onal) – Should be a callable func�on or a
list of callable func�ons, will be started as independent processes automa�cally.
For more informa�on, see Controlling motors (or anything).
custom_response (callable, op�onal) – If set, this func�on will be called if default
web server is not able to handle a GET request, should return a str or None. If
returned value starts with redirect= followed by a path, the server will redirect

the browser to this path. The callable must accept two parameters whereas the
second one is the requested path. For more informa�on, see Custom responses.

Examples

class edurov.core.WebMethod(index_file, video_resolution='1024x768', fps=30, server_port=8000,
debug=False, runtime_functions=None, custom_response=None) [source]

81

>>> import os
>>> from edurov import WebMethod
>>>
>>> file = os.path.join(os.path.dirname(__file__), 'index.html',)
>>> web_method = WebMethod(index_file=file)
>>> web_method.serve()

Will start serving the web page defined by the index_file parameter

Parameters: �meout (int, op�onal) – if set, the web page will only be served for that many
seconds before it automa�cally shuts down

Notes

This method will block the rest of the script.

ROVSyncer

Holds all variables for ROV related to control and sensors

Examples

>>> import Pyro4
>>>
>>> with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
>>> while rov.run:
>>> print('The ROV is still running')

Dic�onary holding actuator values

Ge�er: Returns actuator values as dict

Se�er: Update actuator values with dict

Type: dict

Bool describing if the ROV is s�ll running

Ge�er: Returns bool describing if the ROV is running

serve(timeout=None) [source]

class edurov.sync.ROVSyncer [source]

actuator

run

82

Se�er: Set to False if the ROV should stop

Type: bool

Dic�onary holding sensor values

Ge�er: Returns sensor values as dict

Se�er: Update sensor values with dict

Type: dict

KeyManager

Keeps control of all user input from keyboard.

Examples

>>> import Pyro4
>>>
>>> with Pyro4.Proxy("PYRONAME:KeyManager") as keys:
>>> with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:
>>> keys.set_mode(key='l', mode='toggle')
>>> while rov.run:
>>> if keys.state('up arrow'):
>>> print('You are pressing the up arrow')
>>> if keys.state('l'):
>>> print('light on')
>>> else:
>>> print('light off')

 Note

When using the methods below a key iden�fier must be used. Either the keycode (int) or
the KeyASCII or Common Name (str) from the table further down on this page can be used.
Using keycode is faster.

Dic�onary with the state of the keys up arrow, down arrow, le� arrow and right arrow

Call to simulate a keydown event

sensor

class edurov.sync.KeyManager [source]

arrow_dict

keydown(key, make_exception=False) [source]

83

Parameters: key (int or str) – key iden�fier as described above
make_excep�on (bool, op�onal) – As default an excep�on is raised if the key
is not found, this behavior can be changed be se�ng it to False

Call to simulate a keyup event

Parameters: key (int or str) – key iden�fier as described above
make_excep�on (bool, op�onal) – As default an excep�on is raised if the key
is not found, this behavior can be changed be se�ng it to False

Dic�onary with the state of the le�ers q, w, e, a, s and d

Set the state of the key to True or False

Parameters: key (int or str) – key iden�fier as described above
state (bool) – True or False

Set the press mode for the key to hold or toggle

Parameters: key (int or str) – key iden�fier as described above
mode (str) – hold or toggle

Returns the state of key

Parameters: key (int or str) – key iden�fier as described above

Returns: state – True or False

Return type: bool

Keys table

keyup(key, make_exception=False) [source]

qweasd_dict

set(key, state) [source]

set_mode(key, mode) [source]

state(key) [source]

84

KeyASCII ASCII Common Name Keycode
K_BACKSPACE \b backspace 8
K_TAB \t tab 9
K_CLEAR clear
K_RETURN \r return 13
K_PAUSE pause
K_ESCAPE ^[escape 27
K_SPACE space 32
K_EXCLAIM ! exclaim
K_QUOTEDBL " quotedbl
K_HASH # hash
K_DOLLAR $ dollar
K_AMPERSAND & ampersand
K_QUOTE quote
K_LEFTPAREN (left parenthesis
K_RIGHTPAREN) right parenthesis
K_ASTERISK * asterisk
K_PLUS + plus sign
K_COMMA , comma
K_MINUS - minus sign
K_PERIOD . period
K_SLASH / forward slash
K_0 0 0 48
K_1 1 1 49
K_2 2 2 50
K_3 3 3 51
K_4 4 4 52
K_5 5 5 53
K_6 6 6 54
K_7 7 7 55
K_8 8 8 56
K_9 9 9 57
K_COLON : colon
K_SEMICOLON ; semicolon
K_LESS < less-than sign
K_EQUALS = equals sign
K_GREATER > greater-than sign
K_QUESTION ? question mark
K_AT @ at
K_LEFTBRACKET [left bracket
K_BACKSLASH \ backslash
K_RIGHTBRACKET] right bracket
K_CARET ^ caret
K_UNDERSCORE _ underscore
K_BACKQUOTE ` grave
K_a a a 65
K_b b b 66
K_c c c 67
K_d d d 68
K_e e e 69
K_f f f 70
K_g g g 71
K_h h h 72
K_i i i 73
K_j j j 74
K_k k k 75
K_l l l 76
K_m m m 77
K_n n n 78
K_o o o 79
K_p p p 80
K_q q q 81
K_r r r 82
K_s s s 83
K_t t t 84
K_u u u 85
K_v v v 86
K_w w w 87
K_x x x 88

85

K_y y y 89
K_z z z 90
K_DELETE delete
K_KP0 keypad 0
K_KP1 keypad 1
K_KP2 keypad 2
K_KP3 keypad 3
K_KP4 keypad 4
K_KP5 keypad 5
K_KP6 keypad 6
K_KP7 keypad 7
K_KP8 keypad 8
K_KP9 keypad 9
K_KP_PERIOD . keypad period
K_KP_DIVIDE / keypad divide
K_KP_MULTIPLY * keypad multiply
K_KP_MINUS - keypad minus
K_KP_PLUS + keypad plus
K_KP_ENTER \r keypad enter
K_KP_EQUALS = keypad equals
K_UP up arrow 38
K_DOWN down arrow 40
K_RIGHT right arrow 39
K_LEFT left arrow 37
K_INSERT insert 45
K_HOME home 36
K_END end 35
K_PAGEUP page up 33
K_PAGEDOWN page down 34
K_F1 F1
K_F2 F2
K_F3 F3
K_F4 F4
K_F5 F5
K_F6 F6
K_F7 F7
K_F8 F8
K_F9 F9
K_F10 F10
K_F11 F11
K_F12 F12
K_F13 F13
K_F14 F14
K_F15 F15
K_NUMLOCK numlock
K_CAPSLOCK capslock
K_SCROLLOCK scrollock
K_RSHIFT right shift
K_LSHIFT left shift
K_RCTRL right control
K_LCTRL left control
K_RALT right alt
K_LALT left alt
K_RMETA right meta
K_LMETA left meta
K_LSUPER left Windows key
K_RSUPER right Windows key
K_MODE mode shift
K_HELP help
K_PRINT print screen
K_SYSREQ sysrq
K_BREAK break
K_MENU menu
K_POWER power
K_EURO Euro

86

Utilities

Different u�lity func�ons prac�cal for ROV control

Checks and returns the on board CPU temperature

Returns: temperature – the temperature

Return type: float

Checks and returns the remaining free drive space

Parameters: as_string (bool, op�onal) – set to True if you want the func�on to return a forma�ed
string. 4278 -> 4.28 GB

Returns: space – the remaining MB in float or as string if as_string=True

Return type: float or str

Returns a message received over serial_connec�on

Expects that the message received starts with a 6 bytes long number describing the size of the
remaining data. “0x000bhello there” -> “hello there”.

Parameters: serial_connec�on (object) – the serial.Serial object you want to use for receiving

Returns: msg – the message received or None

Return type: str or None

Returns a message received over serial_connec�on

Same as receive_arduino but doesn’t expect that the message starts with a hex number.

Parameters: serial_connec�on (object) – the serial.Serial object you want to use for

receiving
min_length (int, op�onal) – if you only want that the func�on to only return the
string if it is at least this long.

edurov.utils.cpu_temperature() [source]

edurov.utils.free_drive_space(as_string=False) [source]

edurov.utils.receive_arduino(serial_connection) [source]

edurov.utils.receive_arduino_simple(serial_connection, min_length=1) [source]

87

Returns: msg – the message received or None

Return type: str or None

Send the msg over the serial_connec�on

Adds a hexadecimal number of 6 bytes to the start of the message before sending it. “hello
there” -> “0x000bhello there”

Parameters: msg (str or bytes) – the message you want to send
serial_connec�on (object) – the serial.Serial object you want to use for

sending

Send the msg over the serial_connec�on

Same as send_arduino , but doesn’t add anything to the message before sending it.

Parameters: msg (str or bytes) – the message you want to send
serial_connec�on (object) – the serial.Serial object you want to use for

sending

Establishes a serial connec�on

Parameters: port (str, op�onal) – the serial port you want to use
baudrate (int, op�onal) – the baudrate of the serial connec�on
�meout (float, op�onal) – read �meout value

Returns: connec�on – a serial.Serial object if successful or None if not

Return type: class or None

edurov.utils.send_arduino(msg, serial_connection) [source]

edurov.utils.send_arduino_simple(msg, serial_connection) [source]

edurov.utils.serial_connection(port='/dev/ttyACM0', baudrate=115200, timeout=0.05) [source]

88

eduROV Package Code

89

web.py

Page 1 of 6

"""1
Sever classes used in the web method2
"""3

4
import io5
import json6
import logging7
import os8
import socketserver9
import time10
from http import server11
from threading import Condition12

13
import Pyro414

15
from edurov.utils import server_ip, detect_pi, warning16

17
if detect_pi():18
 import picamera19

20
21

class StreamingOutput(object):22
 """Defines output for the picamera, used by request server
"""

23

24
 def __init__(self):25
 self.frame = None26
 self.buffer = io.BytesIO()27
 self.condition = Condition()28
 self.count = 029

30
 def write(self, buf):31
 if buf.startswith(b'\xff\xd8'):32
 # New frame, copy the existing buffer's content and
notify all

33

 # clients it's available34
 self.buffer.truncate()35
 with self.condition:36
 self.frame = self.buffer.getvalue()37
 self.condition.notify_all()38
 self.buffer.seek(0)39
 self.count += 140
 return self.buffer.write(buf)41

42
43

class RequestHandler(server.BaseHTTPRequestHandler):44

90

web.py

Page 2 of 6

 """Request server, handles request from the browser"""45
 output = None46
 keys = None47
 rov = None48
 base_folder = None49
 index_file = None50
 custom_response = None51

52
 def do_GET(self):53
 if self.path == '/':54
 self.redirect('/index.html', redir_type=301)55
 elif self.path == '/stream.mjpg':56
 self.serve_stream()57
 elif self.path.startswith('/http') or self.path.
startswith('/www'):

58

 self.redirect(self.path[1:])59
 elif self.path.startswith('/keyup'):60
 self.send_response(200)61
 self.end_headers()62
 self.keys.keyup(key=int(self.path.split('=')[1]))63
 elif self.path.startswith('/keydown'):64
 self.send_response(200)65
 self.end_headers()66
 self.keys.keydown(key=int(self.path.split('=')[1]))67
 elif self.path.startswith('/sensor.json'):68
 self.serve_rov_data('sensor')69
 elif self.path.startswith('/actuator.json'):70
 self.serve_rov_data('actuator')71
 elif self.path.startswith('/stop'):72
 self.send_response(200)73
 self.end_headers()74
 self.rov.run = False75
 else:76
 path = os.path.join(self.base_folder, self.path[1:]
)

77

 if os.path.isfile(path):78
 self.serve_path(path)79
 elif self.custom_response:80
 response = self.custom_response(self.path)81
 if response:82
 if response.startswith('redirect='):83
 new_path = response[response.find('=')
+ 1:]

84

 self.redirect(new_path)85
 else:86
 self.serve_content(response.encode('utf87

91

web.py

Page 3 of 6

-8'))87
 else:88
 warning(message='Bad response. {}. custom
 '

89

 'response function
returned nothing'

90

 .format(self.requestline), filter=
'default')

91

 self.send_404()92
 else:93
 warning(message='Bad response. {}. Could not
find {}'

94

 .format(self.requestline, path),
filter='default')

95

 self.send_404()96
97

 def do_POST(self):98
 self.send_404()99

100
 def serve_content(self, content, content_type='text/html'):101
 self.send_response(200)102
 self.send_header('Content-Type', content_type)103
 self.send_header('Content-Length', len(content))104
 self.end_headers()105
 self.wfile.write(content)106

107
 def serve_path(self, path):108
 if '.css' in path:109
 content_type = 'text/css'110
 elif '.js' in path:111
 content_type = 'text/javascript'112
 else:113
 content_type = 'text/html'114
 with open(path, 'rb') as f:115
 content = f.read()116
 self.serve_content(content, content_type)117

118
 def redirect(self, path, redir_type=302):119
 self.send_response(redir_type)120
 self.send_header('Location', path)121
 self.end_headers()122

123
 def send_404(self):124
 self.send_error(404)125
 self.end_headers()126

127

92

web.py

Page 4 of 6

 def serve_rov_data(self, data_type):128
 values = ''129
 if data_type == 'sensor':130
 values = json.dumps(self.rov.sensor)131
 elif data_type == 'actuator':132
 values = json.dumps(self.rov.actuator)133
 else:134
 warning('Unable to process data_type {}'.format(
data_type))

135

 content = values.encode('utf-8')136
 self.serve_content(content, 'application/json')137

138
 def serve_stream(self):139
 self.send_response(200)140
 self.send_header('Age', 0)141
 self.send_header('Cache-Control', 'no-cache, private')142
 self.send_header('Pragma', 'no-cache')143
 self.send_header('Content-Type',144
 'multipart/x-mixed-replace; boundary=
FRAME')

145

 self.end_headers()146
 try:147
 while True:148
 with self.output.condition:149
 self.output.condition.wait()150
 frame = self.output.frame151
 self.wfile.write(b'--FRAME\r\n')152
 self.send_header('Content-Type', 'image/jpeg')153
 self.send_header('Content-Length', len(frame))154
 self.end_headers()155
 self.wfile.write(frame)156
 self.wfile.write(b'\r\n')157
 except Exception as e:158
 logging.warning(159
 'Removed streaming client %s: %s',160
 self.client_address, str(e))161

162
 def log_message(self, format, *args):163
 return164

165
166

class WebpageServer(socketserver.ThreadingMixIn, server.
HTTPServer):

167

 """Threaded HTTP server, forwards request to the
RequestHandlerClass"""

168

 allow_reuse_address = True169

93

web.py

Page 5 of 6

 daemon_threads = True170
171

 def __init__(self, server_address, RequestHandlerClass,
stream_output,

172

 rov_proxy, keys_proxy, index_file=None, debug
=False,

173

 custom_response=None):174
 self.start = time.time()175
 self.debug = debug176
 RequestHandlerClass.output = stream_output177
 RequestHandlerClass.rov = rov_proxy178
 RequestHandlerClass.keys = keys_proxy179
 RequestHandlerClass.base_folder = os.path.abspath(180
 os.path.dirname(index_file))181
 RequestHandlerClass.index_file = index_file182
 RequestHandlerClass.custom_response = custom_response183
 super(WebpageServer, self).__init__(server_address,184

RequestHandlerClass)

185

186
 def __enter__(self):187
 return self188

189
 def __exit__(self, exc_type, exc_val, exc_tb):190
 print('Shutting down http server')191
 if self.debug:192
 finish = time.time()193
 frame_count = self.RequestHandlerClass.output.count194
 print('Sent {} images in {:.1f} seconds at {:.2f}
fps'

195

 .format(frame_count,196
 finish - self.start,197
 frame_count / (finish - self.start))
)

198

199
200

def start_http_server(video_resolution, fps, server_port,
index_file,

201

 debug=False, custom_response=None):202
 if debug:203
 print('Using {} @ {} fps'.format(video_resolution, fps)
)

204

205
 with picamera.PiCamera(resolution=video_resolution,206
 framerate=fps) as camera, \207
 Pyro4.Proxy("PYRONAME:ROVSyncer") as rov, \208

94

web.py

Page 6 of 6

 Pyro4.Proxy("PYRONAME:KeyManager") as keys:209
 stream_output = StreamingOutput()210
 camera.start_recording(stream_output, format='mjpeg')211
 try:212
 with WebpageServer(server_address=('', server_port)
,

213

 RequestHandlerClass=
RequestHandler,

214

 stream_output=stream_output,215
 debug=debug,216
 rov_proxy=rov,217
 keys_proxy=keys,218
 index_file=index_file,219
 custom_response=custom_response
) as s:

220

 print('Visit the webpage at {}'.format(
server_ip(server_port)))

221

 s.serve_forever()222
 finally:223
 print('closing web server')224
 camera.stop_recording()225

226

95

core.py

Page 1 of 4

import os1
import subprocess2
import time3
from multiprocessing import Process4

5
from edurov.sync import start_sync_classes6
from edurov.utils import warning, preexec_function, detect_pi7
from edurov.web import start_http_server8

9
if detect_pi():10
 import Pyro411

12
class WebMethod(object):13
 """14
 Starts a video streaming from the rasparry pi and a
webserver that can

15

 handle user input and other requests.16
17

 Parameters18
 ----------19
 index_file : str20
 absolute path to the frontpage of the webpage, must be
called

21

 ``index.html``22
 video_resolution : str, optional23
 a string representation of the wanted video resolution
in the format

24

 WIDTHxHEIGHT25
 fps : int, optional26
 wanted framerate, may not be achieved depending on
available resources

27

 and network28
 server_port : int, optional29
 the web page will be served at this port30
 debug : bool, optional31
 if set True, additional information will be printed for
debug

32

 purposes33
 runtime_functions : callable or list, optional34
 should be a callable function or a list of callable
functions, will be

35

 started as independent processes automatically36
 custom_response : callable, optional37
 if set, this function will be called if default web
server is not able

38

 to handle a GET request, should return a str or None. If39

96

core.py

Page 2 of 4

 returned value39
 starts with ``redirect=`` followed by a path, the
browser wil redirect

40

 the user to this path. The callable must accept two
parameters whereas

41

 the second one is the requested path42
43

 Examples44
 --------45
 >>> import os46
 >>> from edurov import WebMethod47
 >>>48
 >>> file = os.path.join(os.path.dirname(__file__), 'index.
html',)

49

 >>> web_method = WebMethod(index_file=file)50
 >>> web_method.serve()51
 """52
 def __init__(self, index_file, video_resolution='1024x768',
fps=30,

53

 server_port=8000, debug=False,
runtime_functions=None,

54

 custom_response=None):55
56

 self.res = video_resolution57
 self.fps = fps58
 self.server_port = server_port59
 self.debug = debug60
 self.run_funcs = self._valid_runtime_functions(
runtime_functions)

61

 self.cust_resp = self._valid_custom_response(
custom_response)

62

 self.index_file = self._valid_index_file(index_file)63
64

 def _valid_custom_response(self, custom_response):65
 if custom_response:66
 if not callable(custom_response):67
 warning('custom_response parameter has to be a
callable '

68

 'function, not type {}'.format(type(
custom_response)))

69

 return None70
 return custom_response71

72
 def _valid_runtime_functions(self, runtime_functions):73
 if runtime_functions:74
 if callable(runtime_functions):75

97

core.py

Page 3 of 4

 runtime_functions = [runtime_functions]76
 elif isinstance(runtime_functions, list):77
 for f in runtime_functions:78
 if not callable(f):79
 warning(80
 'Parameter runtime_functions has
to be a function '

81

 'or a list of functions, not {}'.
format(type(f)))

82

 else:83
 warning('Parameter runtime_functions has to be
a function '

84

 'or a list of functions, not {}'85
 .format(type(runtime_functions)))86
 return runtime_functions87

88
 def _valid_index_file(self, file_path):89
 if not 'index.html' in file_path:90
 warning('The index files must be called "index.html
')

91

 if os.path.isfile(file_path):92
 return os.path.abspath(file_path)93
 else:94
 warning('could not find "{}", needs absolute path'95
 .format(file_path))96
 return None97

98
 def serve(self, timeout=None):99
 """100
 Will start serving the web page defined by the
index_file parameter

101

102
 Parameters103
 ----------104
 timeout : int, optional105
 if set, the web page will only be served for that
many seconds

106

 before it automatically shuts down107
108

 Notes109
 -----110
 This method will block the rest of the script.111
 """112
 start = time.time()113
 name_server = subprocess.Popen('pyro4-ns', shell=False,114
 preexec_fn=115

98

core.py

Page 4 of 4

preexec_function)115
 time.sleep(2)116
 pyro_classes = Process(target=start_sync_classes)117
 pyro_classes.start()118
 time.sleep(4)119
 web_server = Process(120
 target=start_http_server,121
 args=(self.res, self.fps, self.server_port, self.
index_file,

122

 self.debug, self.cust_resp))123
 web_server.daemon = True124
 web_server.start()125
 processes = []126
 if self.run_funcs:127
 for f in self.run_funcs:128
 p = Process(target=f)129
 p.daemon = True130
 p.start()131
 processes.append(p)132

133
 with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:134
 try:135
 while rov.run:136
 if timeout:137
 if time.time() - start >= timeout:138
 break139
 except KeyboardInterrupt:140
 pass141
 finally:142
 print('Shutting down')143
 web_server.terminate()144
 rov.run = False145
 if self.run_funcs:146
 for p in processes:147
 p.join(3)148
 pyro_classes.terminate()149
 name_server.terminate()150

151

99

sync.py

Page 1 of 7

"""1
Synchronizing the state of ROV and controller2
"""3

4
import os5
import time6

7
import Pyro48

9
10

class Key(object):11
 """Manages the state of a specific key on the keyboard"""12

13
 def __init__(self, KeyASCII, ASCII, common, keycode, mode='
hold'):

14

 self.state = False15
 self.KeyASCII = KeyASCII16
 self.ASCII = ASCII17
 self.common = common18
 self.mode = mode19
 if keycode:20
 self.keycode = int(keycode)21
 else:22
 self.keycode = None23

24
 def keydown(self):25
 if self.mode == 'toggle':26
 self.state = not self.state27
 else:28
 self.state = True29

30
 def keyup(self):31
 if self.mode != 'toggle':32
 self.state = False33

34
 def __str__(self):35
 return str(vars(self))36

37
38

@Pyro4.expose39
class KeyManager(object):40
 """41
 Keeps control of all user input from keyboard.42

43
 Examples44
 --------45

100

sync.py

Page 2 of 7

 >>> import Pyro446
 >>>47
 >>> with Pyro4.Proxy("PYRONAME:KeyManager") as keys:48
 >>> with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:49
 >>> keys.set_mode(key='l', mode='toggle')50
 >>> while rov.run:51
 >>> if keys.state('up arrow'):52
 >>> print('You are pressing the up arrow')53
 >>> if keys.state('l'):54
 >>> print('light on')55
 >>> else:56
 >>> print('light off')57

58
 Note59
 ----60
 When using the methods below a **key identifier** must be
used. Either the

61

 keycode (int) or the KeyASCII or Common Name (str) from the
table further

62

 down on this page can be used. Using keycode is faster.63
 """64

65
 def __init__(self):66
 self.keys = {}67
 cwd = os.path.dirname(os.path.abspath(__file__))68
 with open(os.path.join(cwd, 'keys.txt'), 'r') as f:69
 for line in f.readlines()[1:]:70
 KeyASCII = line[0:14].rstrip()71
 ASCII = line[14:22].rstrip()72
 common = line[22:44].rstrip()73
 keycode = line[44:].rstrip()74
 if keycode:75
 dict_key = int(keycode)76
 else:77
 dict_key = KeyASCII78
 self.keys.update({79
 dict_key: Key(KeyASCII, ASCII, common,
keycode)})

80

81
 def set_mode(self, key, mode):82
 """83
 Set the press mode for the key to *hold* or *toggle*84

85
 Parameters86
 ----------87
 key : int or str88

101

sync.py

Page 3 of 7

 key identifier as described above89
 mode : str90
 hold or *toggle*91
 """92
 self._get(key).mode = mode93

94
 def set(self, key, state):95
 """96
 Set the state of the key to True or False97

98
 Parameters99
 ----------100
 key : int or str101
 key identifier as described above102
 state : bool103
 True or *False*104
 """105
 self._get(key).state = bool(state)106

107
 def _get(self, key_idx, make_exception=True):108
 """109
 Returns the Key object identified by *key_idx*110

111
 Parameters112
 ----------113
 key_idx : int or str114
 key identifier as described above115
 make_exception : bool, optional116
 As default an exception is raised if the key is not
 found, this

117

 behavior can be changed be setting it to *False*118
119

 Returns120
 -------121
 key : Key object122
 list items is *namedtuple* of type *LiItem*123
 """124
 if key_idx in self.keys:125
 return self.keys[key_idx]126
 elif isinstance(key_idx, str):127
 for dict_key in self.keys:128
 if key_idx in [self.keys[dict_key].common,129
 self.keys[dict_key].KeyASCII]:130
 return self.keys[dict_key]131
 if make_exception:132
 raise ValueError('Could not find key {}'.format(133

102

sync.py

Page 4 of 7

key_idx))133
 else:134
 return None135

136
 def state(self, key):137
 """138
 Returns the state of *key*139

140
 Parameters141
 ----------142
 key : int or str143
 key identifier as described above144

145
 Returns146
 -------147
 state : bool148
 True or *False*149
 """150
 return self._get(key).state151

152
 def keydown(self, key, make_exception=False):153
 """154
 Call to simulate a keydown event155

156
 Parameters157
 ----------158
 key : int or str159
 key identifier as described above160
 make_exception : bool, optional161
 As default an exception is raised if the key is not
 found, this

162

 behavior can be changed be setting it to *False*163
 """164
 btn = self._get(key, make_exception=make_exception)165
 if btn:166
 btn.keydown()167

168
 def keyup(self, key, make_exception=False):169
 """170
 Call to simulate a keyup event171

172
 Parameters173
 ----------174
 key : int or str175
 key identifier as described above176
 make_exception : bool, optional177

103

sync.py

Page 5 of 7

 As default an exception is raised if the key is not
 found, this

178

 behavior can be changed be setting it to *False*179
 """180
 btn = self._get(key, make_exception=make_exception)181
 if btn:182
 btn.keyup()183

184
 @property185
 def qweasd_dict(self):186
 """187
 Dictionary with the state of the letters q, w, e, a, s
and d

188

 """189
 state = {190
 'q': self._get(81).state,191
 'w': self._get(87).state,192
 'e': self._get(69).state,193
 'a': self._get(65).state,194
 's': self._get(83).state,195
 'd': self._get(68).state,196
 }197
 return state198

199
 @property200
 def arrow_dict(self):201
 """202
 Dictionary with the state of the keys *up arrow*, *down
 arrow*,

203

 left arrow and *right arrow*204
 """205
 state = {206
 'up arrow': self._get(38).state,207
 'down arrow': self._get(40).state,208
 'left arrow': self._get(37).state,209
 'right arrow': self._get(39).state,210
 }211
 return state212

213
214

@Pyro4.expose215
class ROVSyncer(object):216
 """217
 Holds all variables for ROV related to control and sensors218

219
 Examples220

104

sync.py

Page 6 of 7

 --------221
 >>> import Pyro4222
 >>>223
 >>> with Pyro4.Proxy("PYRONAME:ROVSyncer") as rov:224
 >>> while rov.run:225
 >>> print('The ROV is still running')226
 """227

228
 def __init__(self):229
 self._sensor = {'time': time.time()}230
 self._actuator = {}231
 self._run = True232

233
 @property234
 def sensor(self):235
 """236
 Dictionary holding sensor values237

238
 :getter: Returns sensor values as dict239
 :setter: Update sensor values with dict240
 :type: dict241
 """242
 return self._sensor243

244
 @sensor.setter245
 def sensor(self, values):246
 self._sensor.update(values)247
 self._sensor['time'] = time.time()248

249
 @property250
 def actuator(self):251
 """252
 Dictionary holding actuator values253

254
 :getter: Returns actuator values as dict255
 :setter: Update actuator values with dict256
 :type: dict257
 """258
 return self._actuator259

260
 @actuator.setter261
 def actuator(self, values):262
 self._actuator.update(values)263
 self._actuator['time'] = time.time()264

265
 @property266

105

sync.py

Page 7 of 7

 def run(self):267
 """268
 Bool describing if the ROV is still running269

270
 :getter: Returns bool describing if the ROV is running271
 :setter: Set to False if the ROV should stop272
 :type: bool273
 """274
 return self._run275

276
 @run.setter277
 def run(self, bool_):278
 self._run = bool_279

280
281

def start_sync_classes():282
 """Registers pyro classes in name server and starts request
 loop"""

283

 rov = ROVSyncer()284
 keys = KeyManager()285
 with Pyro4.Daemon() as daemon:286
 rov_uri = daemon.register(rov)287
 keys_uri = daemon.register(keys)288
 with Pyro4.locateNS() as ns:289
 ns.register("ROVSyncer", rov_uri)290
 ns.register("KeyManager", keys_uri)291
 daemon.requestLoop()292

293
294

if __name__ == "__main__":295
 start_sync_classes()296

297

106

keys.txt

Page 1 of 3

KeyASCII ASCII Common Name Keycode1
K_BACKSPACE \b backspace 82
K_TAB \t tab 93
K_CLEAR clear4
K_RETURN \r return 135
K_PAUSE pause6
K_ESCAPE ^[escape 277
K_SPACE space 328
K_EXCLAIM ! exclaim9
K_QUOTEDBL " quotedbl10
K_HASH # hash11
K_DOLLAR $ dollar12
K_AMPERSAND & ampersand13
K_QUOTE quote14
K_LEFTPAREN (left parenthesis15
K_RIGHTPAREN) right parenthesis16
K_ASTERISK * asterisk17
K_PLUS + plus sign18
K_COMMA , comma19
K_MINUS - minus sign20
K_PERIOD . period21
K_SLASH / forward slash22
K_0 0 0 4823
K_1 1 1 4924
K_2 2 2 5025
K_3 3 3 5126
K_4 4 4 5227
K_5 5 5 5328
K_6 6 6 5429
K_7 7 7 5530
K_8 8 8 5631
K_9 9 9 5732
K_COLON : colon33
K_SEMICOLON ; semicolon34
K_LESS < less-than sign35
K_EQUALS = equals sign36
K_GREATER > greater-than sign37
K_QUESTION ? question mark38
K_AT @ at39
K_LEFTBRACKET [left bracket40
K_BACKSLASH \ backslash41
K_RIGHTBRACKET] right bracket42
K_CARET ^ caret43
K_UNDERSCORE _ underscore44
K_BACKQUOTE ` grave45
K_a a a 6546

107

keys.txt

Page 2 of 3

K_b b b 6647
K_c c c 6748
K_d d d 6849
K_e e e 6950
K_f f f 7051
K_g g g 7152
K_h h h 7253
K_i i i 7354
K_j j j 7455
K_k k k 7556
K_l l l 7657
K_m m m 7758
K_n n n 7859
K_o o o 7960
K_p p p 8061
K_q q q 8162
K_r r r 8263
K_s s s 8364
K_t t t 8465
K_u u u 8566
K_v v v 8667
K_w w w 8768
K_x x x 8869
K_y y y 8970
K_z z z 9071
K_DELETE delete72
K_KP0 keypad 073
K_KP1 keypad 174
K_KP2 keypad 275
K_KP3 keypad 376
K_KP4 keypad 477
K_KP5 keypad 578
K_KP6 keypad 679
K_KP7 keypad 780
K_KP8 keypad 881
K_KP9 keypad 982
K_KP_PERIOD . keypad period83
K_KP_DIVIDE / keypad divide84
K_KP_MULTIPLY * keypad multiply85
K_KP_MINUS - keypad minus86
K_KP_PLUS + keypad plus87
K_KP_ENTER \r keypad enter88
K_KP_EQUALS = keypad equals89
K_UP up arrow 3890
K_DOWN down arrow 4091
K_RIGHT right arrow 3992

108

keys.txt

Page 3 of 3

K_LEFT left arrow 3793
K_INSERT insert 4594
K_HOME home 3695
K_END end 3596
K_PAGEUP page up 3397
K_PAGEDOWN page down 3498
K_F1 F199
K_F2 F2100
K_F3 F3101
K_F4 F4102
K_F5 F5103
K_F6 F6104
K_F7 F7105
K_F8 F8106
K_F9 F9107
K_F10 F10108
K_F11 F11109
K_F12 F12110
K_F13 F13111
K_F14 F14112
K_F15 F15113
K_NUMLOCK numlock114
K_CAPSLOCK capslock115
K_SCROLLOCK scrollock116
K_RSHIFT right shift117
K_LSHIFT left shift118
K_RCTRL right control119
K_LCTRL left control120
K_RALT right alt121
K_LALT left alt122
K_RMETA right meta123
K_LMETA left meta124
K_LSUPER left Windows key125
K_RSUPER right Windows key126
K_MODE mode shift127
K_HELP help128
K_PRINT print screen129
K_SYSREQ sysrq130
K_BREAK break131
K_MENU menu132
K_POWER power133
K_EURO Euro134

109

utils.py

Page 1 of 7

"""1
Different utility functions practical for ROV control2
"""3

4
import ctypes5
import os6
import platform7
import signal8
import socket9
import struct10
import subprocess11
import warnings12

13
14

def detect_pi():15
 return platform.linux_distribution()[0].lower() == 'debian'16

17
18

if detect_pi():19
 import serial20
 import fcntl21

22
23

def is_int(number):24
 if isinstance(number, int):25
 return True26
 else:27
 try:28
 if isinstance(int(number), int):29
 return True30
 except ValueError:31
 pass32
 return False33

34
35

def resolution_to_tuple(resolution):36
 if 'x' not in resolution:37
 raise ValueError('Resolution must be in format
WIDTHxHEIGHT')

38

 screen_size = tuple([int(val) for val in resolution.split('x
')])

39

 if len(screen_size) is not 2:40
 raise ValueError('Error in parsing resolution, len is
not 2')

41

 return screen_size42
43

110

utils.py

Page 2 of 7

44
def preexec_function():45
 signal.signal(signal.SIGINT, signal.SIG_IGN)46

47
48

def valid_resolution(resolution):49
 if 'x' in resolution:50
 w, h = resolution.split('x')51
 if is_int(w) and is_int(h):52
 return resolution53
 warning('Resolution must be WIDTHxHEIGHT')54

55
56

def server_ip(port):57
 online_ips = []58
 for interface in [b'eth0', b'wlan0']:59
 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)60
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,
1)

61

 try:62
 ip = socket.inet_ntoa(fcntl.ioctl(63
 sock.fileno(),64
 0x8915,65
 struct.pack('256s', interface[:15])66
)[20:24])67
 online_ips.append(ip)68
 except OSError:69
 pass70
 sock.close()71
 return ' or '.join(['{}:{}'.format(ip, port) for ip in
online_ips])

72

73
74

def check_requirements():75
 if detect_pi():76
 camera = subprocess.check_output(['vcgencmd',77
 'get_camera']).
decode().rstrip()

78

 if '0' in camera:79
 warning('Camera not enabled or connected properly')80
 return False81
 else:82
 return True83
 else:84
 warning('eduROV only works on a raspberry pi')85
 return False86

111

utils.py

Page 3 of 7

87
88

def send_arduino(msg, serial_connection):89
 """90
 Send the *msg* over the *serial_connection*91

92
 Adds a hexadecimal number of 6 bytes to the start of the
message before

93

 sending it. "hello there" -> "0x000bhello there"94
95

 Parameters96
 ----------97
 msg : str or bytes98
 the message you want to send99
 serial_connection : object100
 the :code:`serial.Serial` object you want to use for
sending

101

 """102
 if not isinstance(msg, bytes):103
 msg = str(msg).encode()104
 length = "{0:#0{1}x}".format(len(msg), 6).encode()105
 data = length + msg106
 serial_connection.write(data)107

108
109

def receive_arduino(serial_connection):110
 """111
 Returns a message received over *serial_connection*112

113
 Expects that the message received starts with a 6 bytes
long number

114

 describing the size of the remaining data. "0x000bhello
there" -> "hello

115

 there".116
117

 Parameters118
 ----------119
 serial_connection : object120
 the :code:`serial.Serial` object you want to use for
receiving

121

122
 Returns123
 -------124
 msg : str or None125
 the message received or None126
 """127

112

utils.py

Page 4 of 7

 if serial_connection.inWaiting():128
 msg = serial_connection.readline().decode().rstrip()129
 if len(msg) >= 6:130
 try:131
 length = int(msg[:6], 0)132
 data = msg[6:]133
 if length == len(data):134
 return data135
 else:136
 warning('Received incomplete serial string
: {}'

137

 .format(data), 'default')138
 except ValueError:139
 pass140
 return None141

142
143

def send_arduino_simple(msg, serial_connection):144
 """145
 Send the *msg* over the *serial_connection*146

147
 Same as :code:`send_arduino`, but doesn't add anything to
the message

148

 before sending it.149
150

 Parameters151
 ----------152
 msg : str or bytes153
 the message you want to send154
 serial_connection : object155
 the :code:`serial.Serial` object you want to use for
sending

156

 """157
 if not isinstance(msg, bytes):158
 msg = str(msg).encode()159
 serial_connection.write(msg)160

161
162

def receive_arduino_simple(serial_connection, min_length=1):163
 """164
 Returns a message received over *serial_connection*165

166
 Same as :code:`receive_arduino` but doesn't expect that the
 message starts

167

 with a hex number.168
169

113

utils.py

Page 5 of 7

 Parameters170
 ----------171
 serial_connection : object172
 the :code:`serial.Serial` object you want to use for
receiving

173

 min_length : int, optional174
 if you only want that the function to only return the
string if it is

175

 at least this long.176
177

 Returns178
 -------179
 msg : str or None180
 the message received or None181
 """182
 if serial_connection.inWaiting():183
 msg = serial_connection.readline().decode().rstrip()184
 if len(msg) >= min_length:185
 return msg186
 else:187
 return None188

189
190

def serial_connection(port='/dev/ttyACM0', baudrate=115200,
timeout=0.05):

191

 """192
 Establishes a serial connection193

194
 Parameters195
 ----------196
 port : str, optional197
 the serial port you want to use198
 baudrate : int, optional199
 the baudrate of the serial connection200
 timeout : float, optional201
 read timeout value202

203
 Returns204
 -------205
 connection : class or None206
 a :code:`serial.Serial` object if successful or None if
 not

207

 """208
 try:209
 ser = serial.Serial(port, baudrate, timeout=timeout)210
 ser.close()211

114

utils.py

Page 6 of 7

 ser.open()212
 return ser213
 except FileNotFoundError:214
 pass215
 except serial.serialutil.SerialException:216
 pass217
 except ValueError:218
 pass219
 warning(message="""Could not establish serial connection at
 {}\n

220

 Try running 'ls /dev/*tty*' to find correct port"""221
 .format(port), filter='default')222
 return None223

224
225

def warning(message, filter='error', category=UserWarning):226
 warnings.simplefilter(filter, category)227
 warnings.formatwarning = warning_format228
 warnings.warn(message)229

230
231

def warning_format(message, category, filename, lineno,232
 file=None, line=None):233
 return 'WARNING:\n {}: {}\n File: {}:{}\n'.format(234
 category.__name__, message, filename, lineno)235

236
237

def free_drive_space(as_string=False):238
 """239
 Checks and returns the remaining free drive space240

241
 Parameters242
 ----------243
 as_string : bool, optional244
 set to True if you want the function to return a
formatted string.

245

 4278 -> 4.28 GB246
247

 Returns248
 -------249
 space : float or str250
 the remaining MB in float or as string if *as_string=
True*

251

 """252
 if platform.system() == 'Windows':253
 free_bytes = ctypes.c_ulonglong(0)254

115

utils.py

Page 7 of 7

 ctypes.windll.kernel32.GetDiskFreeSpaceExW(ctypes.
c_wchar_p('/'),

255

 None, None
,

256

 ctypes.
pointer(free_bytes))

257

 mb = free_bytes.value / 1024 / 1024258
 else:259
 st = os.statvfs('/')260
 mb = st.f_bavail * st.f_frsize / 1024 / 1024261

262
 if as_string:263
 if mb >= 1000:264
 return '{:.2f} GB'.format(mb / 1000)265
 else:266
 return '{:.0f} MB'.format(mb)267
 else:268
 return mb269

270
271

def cpu_temperature():272
 """273
 Checks and returns the on board CPU temperature274

275
 Returns276
 -------277
 temperature : float278
 the temperature279
 """280
 cmds = ['/opt/vc/bin/vcgencmd', 'measure_temp']281
 response = subprocess.check_output(cmds).decode()282
 return float(response.split('=')[1].split("'")[0].rstrip())283

284

116

__init__.py

Page 1 of 1

from .core import WebMethod1
2

117

118

Predictive Display Code

119

predictive.js

Page 1 of 3

var up = 38;1
var down = 40;2
var right = 39;3
var left = 37;4
var key_status = {up: 0, down: 0, right: 0, left:0};5
var base_margin = 0;6
var base_image_width = 1024;7
var pixel_turn_rate = 30;8
var pixel_scale_rate = 5;9

10
var horizontal_move = 0;11
var scale_move = 0;12
var horizontal_px_move = 0;13
var scale_px_move = 0;14

15
var update_interval = 25;16
var perceived_delay = 710;17

18
19

var bodW = 0;20
21

function sleep(ms) {22
 return new Promise(resolve => setTimeout(resolve, ms));23
}24

25
async function update_hor_with_delay(amount, delay){26
 await sleep(delay);27
 horizontal_move += amount;28
}29

30
async function update_scale_with_delay(amount, delay){31
 await sleep(delay);32
 scale_move += amount;33
}34

35
var x = setInterval(function() {36
 if (key_status[up]){37
 scale_move += 1;38
 update_scale_with_delay(-1, perceived_delay);39

40
 var factor = 0.8;41
 if (key_status[left]){42
 horizontal_move += factor;43
 update_hor_with_delay(-factor, perceived_delay);44

120

predictive.js

Page 2 of 3

 } else if (key_status[right]){45
 horizontal_move -= factor;46
 update_hor_with_delay(+factor, perceived_delay);47
 }48
 } else if (key_status[down]){49
 scale_move -= 1;50
 update_scale_with_delay(1, perceived_delay);51

52
 var factor = -0.8;53
 if (key_status[left]){54
 horizontal_move += factor;55
 update_hor_with_delay(-factor, perceived_delay);56
 } else if (key_status[right]){57
 horizontal_move -= factor;58
 update_hor_with_delay(+factor, perceived_delay);59
 }60
 } else if (key_status[left]){61
 horizontal_move += 1;62
 update_hor_with_delay(-1, perceived_delay);63
 } else if (key_status[right]){64
 horizontal_move -= 1;65
 update_hor_with_delay(+1, perceived_delay);66
 }67

68
 var new_width = base_image_width + scale_move*
pixel_scale_rate;

69

 var new_margin_left = (bodW-new_width)/2 +
horizontal_move*pixel_turn_rate;

70

71
 horizontal_px_move = base_margin+horizontal_move*
pixel_turn_rate;

72

 scale_px_move = base_image_width+scale_move*
pixel_scale_rate;

73

 margin_left = (bodW-scale_px_move)/2+scale_move*
pixel_scale_rate;

74

 document.getElementById("stream").style.width = `${
new_width}px`;

75

 document.getElementById("stream").style.marginLeft = `${
new_margin_left}px`;

76

}, update_interval);77
78

function set_base_margin(){79
 var myImage = new Image();80
 var img = document.getElementById("stream");81

121

predictive.js

Page 3 of 3

 myImage.src = img.src;82
 var imgW = myImage.width;83
 bodW = document.body.clientWidth;84
 base_margin = (bodW-imgW)/2;85
 document.getElementById("stream").style.marginLeft = `${
base_margin}px`;

86

 document.getElementById("overlay").style.left = `${
base_margin}px`;

87

}88

122

Experiment Info Page

123

Welcome to the experiment!
This experiment aims to investigate how different ways of presenting a video with time delay
effects user performance.

You will soon be presented with a camera feed from a RC car similar to the one below. You control
the car with the arrow keys on the keyboard.

One by one, in random order the round LED will light up. You shall then steer the robot such that
center pin goes inside the corresponding hole. The LED will turn off when you have made the hit,
and a new one will light up.

Your goal
In 90 seconds, your goal is to make as many "hits" as possible.

Last notes
Three different display types will be shown to you. You will be given a 30 seconds long "training
period" to get used to steering the car before hits starts to count.

Pages may load a bit slowly, you only need to press buttons one time.

OK, continue Click only once

124

Experiment Questionnaire

125

Very low Very high

0 1 2 3 4 5 6 7 8 9 10

Very low Very high

0 1 2 3 4 5 6 7 8 9 10

Very low Very high

0 1 2 3 4 5 6 7 8 9 10

Failure Perfect

0 1 2 3 4 5 6 7 8 9 10

Very low Very high

0 1 2 3 4 5 6 7 8 9 10

Very low Very high

0 1 2 3 4 5 6 7 8 9 10

Experiment survey

Mental demand
How mentally demanding was the task?

Physical demand
How physically demanding was the task?

Temporal demand
How much time pressure did you feel because of the task?

Performance
How successful were you in accomplishing what you were asked to do?

Effort
How hard did you have to work (mentally and physically) to accomplish your level of
performance?

Frustration
How insecure, discouraged, irritated, stressed, and annoyed were you ?

Delay time
How many ms do you think the communication delay was? The time it took from you
pressed a button to the reaction could be seen in the video? (1s=1000ms)

delay in ms

Submit Click only once

126

Data Analysis Code

127

Import and connect to database

In [44]: import pandas as pd
from scipy import stats
import numpy as np
import sqlite3
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from math import pi

conn = sqlite3.connect("data.db")
act = pd.read_sql_query("select rowid, * from actors where valid=1;", conn)

Constants

In [78]: def exp_format(x, pos=None):
 names = {1: 'Delay',
 2: 'Delay PD',
 3: 'No delay'}
 return names[x]

pair_dict2 = [{'aName':'Delay', 'bName':'Delay PD', 'a':0, 'b':1},
 {'aName':'Delay', 'bName':'No delay', 'a':0, 'b':2},
 {'aName':'Delay PD', 'bName':'No delay', 'a':1, 'b':2}]

Significance, Paired sample t-test and Cohen's D

128

In [41]: from numpy import std, mean, sqrt

def welch_dof(x,y):
 dof = (x.var()/x.size + y.var()/y.size)**2 / ((x.var()/x.size)**2 / (x.s
ize-1) + (y.var()/y.size)**2 / (y.size-1))
 return dof

def dependent_dof(x,y):
 return (len(x)+len(y))/2-1

def cohen_d(x,y):
 x = x.tolist()
 y = y.tolist()
 nx = len(x)
 ny = len(y)
 dof = nx + ny - 2
 return (mean(x) - mean(y)) / sqrt(((nx-1)*std(x, ddof=1) ** 2 + (ny-1)*s
td(y, ddof=1) ** 2) / dof)

def print_sig(a, b, equal_var=False, dependent=True):
 if len(a) == len(b):
 t_stat, p_value = stats.ttest_rel(b, a)
 dof = dependent_dof(a, b)
 else:
 dependent = False
 t_stat, p_value = stats.ttest_ind(b, a, equal_var=equal_var)
 dof = welch_dof(a,b)
 d_value = cohen_d(b, a)

 if dependent:
 if p_value < 0.001:
 print('t({:.0f})={:.2f}, p$<$.001, d={:.3f}'.format(dof, t_stat,
d_value))
 else:
 print('t({:.0f})={:.2f}, p={:.3f}, d={:.3f}'.format(dof, t_stat,
p_value, d_value))
 else:
 if p_value < 0.001:
 print('t({:.2f})={:.2f}, p$<$.001, d={:.3f}'.format(dof, t_stat,
d_value))
 else:
 print('t({:.2f})={:.2f}, p={:.3f}, d={:.3f}'.format(dof, t_stat,
p_value, d_value))

Recorded data

In [14]: all_act = pd.read_sql_query("select * from actors where valid=1;", conn)
all_hits = pd.read_sql_query("select * from hits where valid=1;", conn)
all_survey = pd.read_sql_query("select * from survey where valid=1;", conn)
print('A total of {} data points were collected'.format(all_act.size+all_hit
s.size+all_survey.size))

A total of 11865 data points were collected

129

Task times

In [15]: times = pd.read_sql_query("select start, end from actors where valid=1;", co
nn)
length = np.array(times['end']-times['start'])
minutes = length.mean()/60-length.mean()/60%1
seconds = (length.mean()/60)%1*60
minutes_std = length.std()/60-length.std()/60%1
seconds_std = (length.std()/60)%1*60

print('Subjects used on average {:.0f} minutes and {:.0f} seconds with a sta
ndard deviation of {:.0f}min and {:.0f}s'
 .format(minutes, seconds, minutes_std, seconds_std))

Demographics

Subjects used on average 10 minutes and 56 seconds with a standard deviatio
n of 1min and 12s

130

In [12]: valid_n = len(pd.read_sql_query("select age, gender, education, computer, ey
e from actors where valid=1;", conn))
non_valid = pd.read_sql_query("select age, gender, education, computer, eye
from actors where valid=0;", conn)
female = pd.read_sql_query("select age, gender, education, computer, eye fro
m actors where gender=1 and valid=1;", conn)
male = pd.read_sql_query("select age, gender, education, computer, eye from
actors where gender=0 and valid=1;", conn)
ages_df = pd.read_sql_query("select age from actors where valid=1;", conn)
ages = np.array(ages_df)
game = []
frequency = ['Daily', 'Weekly', 'Monthly', 'Yearly', 'Never']
print('Gaming:')
for i in range(5):
 query = "select * from actors where valid=1 and game={};".format(i)
 n_people = len(pd.read_sql_query(query, conn))
 print('{}: {}, {:.1f}'.format(frequency[i], n_people, n_people/valid_n*1
00))

print('{} total participants, {} excluded'.format(valid_n+len(non_valid),len
(non_valid)))
print('{} males {:.1f}, {} females {:.1f}'.format(len(male), len(male)/valid
_n*100, len(female), len(female)/valid_n*100))
print('{:.1f}% females'.format(len(female)/valid_n*100))
print('Average age of {:.1f} years with a SD of {:.2f}'.format(float(ages.me
an(axis=0)), float(ages.std(axis=0))))
print('100% said they use computer on a daily basis ')
print('Gaming: daily {:.0f}%, weekly {:.0f}%, monthly {:.0f}%, yearly {:.0
f}% and never {:.0f}%'.format(*[i/valid_n*100 for i in game]))

Performance normalized

Gaming:
Daily: 2, 3.5
Weekly: 15, 26.3
Monthly: 8, 14.0
Yearly: 17, 29.8
Never: 15, 26.3
58 total participants, 1 excluded
38 males 66.7, 19 females 33.3
Average age of 24.7 years with a SD of 1.45
100% said they use computer on a daily basis

131

In [148]: def output_statistical_information(normalized_values, group_name='All', subs
et=False):
 """
 Parameters

 normalized_values : a Nx3 numpy matrix with normalized values

 group_name : str with the group or subgroup

 subset : if subset, it will print "n" instead of "N"
 """
 if subset:
 n = 'n'
 else:
 n = 'N'

 norm = normalized_values
 display_means = norm.mean(axis=0)
 display_std = norm.std(axis=0)
 display_max = norm.max(axis=0)
 display_min = norm.min(axis=0)
 print('{} {}={}'.format(group_name, n, len(norm)))
 print('\tScore\n')
 for exp_idx in range(3):
 print('\t{:<10} Mean: {:>5.2f}, SD: {:>.2f}'
 .format(exp_format(exp_idx+1), display_means[exp_idx], display
_std[exp_idx]))

 print('\n\tPaired difference\n')
 for di in pair_dict2:
 a = norm[...,di['a']]
 b = norm[...,di['b']]

 print('\t{:<10}- {:<10}'.format(di['aName'], di['bName']), end='')
 print('\t{:>6.2f}\% '.format((b.mean()/a.mean()-1)*100), end='')
 print_sig(a,b)
 print('')

def boxplot(normalized_values, filename=None):
 """
 Parameters

 normalized_values : a Nx3 numpy matrix with normalized values

 filename : str, if defined figure will be saved
 """
 norm = normalized_values
 fig, ax = plt.subplots(figsize=(4,4))
 ax.boxplot(norm, whis=2, widths=0.5)
 ax.xaxis.set_major_formatter(ticker.FuncFormatter(exp_format))
 plt.ylabel('Score')
 plt.show()
 if filename:
 fig.savefig('../img/{}.png'.format(filename), bbox_inches='tight')

def normalize_array(array):

132

 """
 Parameters

 array : a Nx3 numpy matrix

 Returns

 array : a Nx3 numpy matrix with normalized values
 """
 hits = array
 total_mean = hits.mean()
 norm = np.zeros((hits.shape[0],3))
 for i, row in enumerate(hits):
 user_mean = np.array([row[0], row[1], row[2]]).mean()
 norm[i,0] = row[0]/user_mean*total_mean
 norm[i,1] = row[1]/user_mean*total_mean
 norm[i,2] = row[2]/user_mean*total_mean
 return norm

All

133

In [149]: hits = np.array(pd.read_sql_query("select tothitsexp0, tothitsexp1, tothitse
xp2 from actors where valid=1;", conn))
norm = normalize_array(hits)
output_statistical_information(norm)
boxplot(norm, 'performance_norm')

Gender

All N=57
Score

Delay Mean: 6.24, SD: 1.39
Delay PD Mean: 7.52, SD: 1.43
No delay Mean: 15.87, SD: 1.99

Paired difference

Delay - Delay PD 20.62\% t(56)=4.80, p$<$.001, d=0.904
Delay - No delay 154.37\% t(56)=23.15, p$<$.001, d=5.569
Delay PD - No delay 110.88\% t(56)=19.66, p$<$.001, d=4.772

134

In [117]: genders = ['Male', 'Female']

for gender_idx, gender in enumerate(genders):
 hits = np.array(pd.read_sql_query("select tothitsexp0, tothitsexp1, toth
itsexp2 from actors where gender={} and valid=1;"
 .format(gender_idx), conn))
 norm = normalize_array(hits)
 output_statistical_information(norm, gender, True)

Gaming

Male n=38
Score

Delay Mean: 6.65, SD: 1.25
Delay PD Mean: 7.95, SD: 1.43
No delay Mean: 17.30, SD: 1.71

Paired difference

Delay - Delay PD 19.62\% t(37)=3.84, p$<$.001, d=0.960
Delay - No delay 160.31\% t(37)=24.66, p$<$.001, d=7.031
Delay PD - No delay 117.61\% t(37)=19.67, p$<$.001, d=5.861

Female n=19
Score

Delay Mean: 5.39, SD: 1.49
Delay PD Mean: 6.61, SD: 1.35
No delay Mean: 13.10, SD: 2.17

Paired difference

Delay - Delay PD 22.57\% t(18)=2.82, p=0.011, d=0.835
Delay - No delay 142.85\% t(18)=9.43, p$<$.001, d=4.033
Delay PD - No delay 98.14\% t(18)=8.35, p$<$.001, d=3.495

135

In [118]: gamers = ['Daily', 'Weekly', 'Montly', 'Yearly', 'Never']

for gamer_idx, gamer in enumerate(gamers):
 hits = np.array(pd.read_sql_query("select tothitsexp0, tothitsexp1, toth
itsexp2 from actors where game={} and valid=1;"
 .format(gamer_idx), conn))
 norm = normalize_array(hits)
 output_statistical_information(norm, gamer, True)

136

Daily n=2
Score

Delay Mean: 7.92, SD: 0.37
Delay PD Mean: 10.21, SD: 1.40
No delay Mean: 18.36, SD: 1.77

Paired difference

Delay - Delay PD 28.88\% t(1)=2.22, p=0.269, d=1.578
Delay - No delay 131.77\% t(1)=4.87, p=0.129, d=5.762
Delay PD - No delay 79.83\% t(1)=2.57, p=0.236, d=3.606

Weekly n=15
Score

Delay Mean: 6.27, SD: 1.22
Delay PD Mean: 8.17, SD: 1.51
No delay Mean: 17.62, SD: 2.04

Paired difference

Delay - Delay PD 30.32\% t(14)=3.85, p=0.002, d=1.336
Delay - No delay 180.98\% t(14)=14.18, p$<$.001, d=6.534
Delay PD - No delay 115.62\% t(14)=10.48, p$<$.001, d=5.090

Montly n=8
Score

Delay Mean: 7.05, SD: 1.32
Delay PD Mean: 7.77, SD: 0.64
No delay Mean: 17.68, SD: 0.95

Paired difference

Delay - Delay PD 10.26\% t(7)=1.04, p=0.334, d=0.652
Delay - No delay 150.84\% t(7)=12.76, p$<$.001, d=8.660
Delay PD - No delay 127.51\% t(7)=27.89, p$<$.001, d=11.448

Yearly n=17
Score

Delay Mean: 6.65, SD: 1.26
Delay PD Mean: 7.66, SD: 1.73
No delay Mean: 15.98, SD: 2.25

Paired difference

Delay - Delay PD 15.24\% t(16)=2.00, p=0.063, d=0.650
Delay - No delay 140.31\% t(16)=11.65, p$<$.001, d=4.971
Delay PD - No delay 108.53\% t(16)=8.74, p$<$.001, d=4.025

Never n=15
Score

Delay Mean: 5.06, SD: 1.46
Delay PD Mean: 6.21, SD: 1.16

137

Gamers vs non gamers

In [121]: gamers = np.array(pd.read_sql_query("select tothitsexp0, tothitsexp1, tothit
sexp2 from actors where valid=1 and game<=1;", conn))
non_gamers = np.array(pd.read_sql_query("select tothitsexp0, tothitsexp1, to
thitsexp2 from actors where valid=1 and game>1;", conn))

output_statistical_information(normalize_array(gamers), 'Gamers', True)
output_statistical_information(normalize_array(non_gamers), 'Non gamers', Tr
ue)

Load index

Absolute

No delay Mean: 12.73, SD: 1.79

Paired difference

Delay - Delay PD 22.54\% t(14)=2.21, p=0.044, d=0.836
Delay - No delay 151.31\% t(14)=9.38, p$<$.001, d=4.529
Delay PD - No delay 105.09\% t(14)=9.22, p$<$.001, d=4.169

Gamers n=17
Score

Delay Mean: 6.46, SD: 1.19
Delay PD Mean: 8.40, SD: 1.53
No delay Mean: 17.73, SD: 2.08

Paired difference

Delay - Delay PD 30.13\% t(16)=4.34, p$<$.001, d=1.376
Delay - No delay 174.64\% t(16)=14.93, p$<$.001, d=6.463
Delay PD - No delay 111.05\% t(16)=10.83, p$<$.001, d=4.965

Non gamers n=40
Score

Delay Mean: 6.12, SD: 1.41
Delay PD Mean: 7.16, SD: 1.39
No delay Mean: 15.09, SD: 1.93

Paired difference

Delay - Delay PD 16.91\% t(39)=3.20, p=0.003, d=0.731
Delay - No delay 146.46\% t(39)=18.16, p$<$.001, d=5.237
Delay PD - No delay 110.80\% t(39)=16.21, p$<$.001, d=4.655

138

In [130]: tlx_metrics = ['Mental', 'Physical', 'Temporal', 'Performance', 'Effort', 'F
rustration']
filename = 'nasa_tlx_bar'
plt.style.use('default')
plt.style.use('thesis.mplstyle')

n_partic = pd.read_sql_query("select rowid from actors where valid=1 ;", con
n).size
fig1, ax1 = plt.subplots(figsize=(5,4))
tlx_answers = []

bar_width= 0.13

for idx, metric in enumerate(tlx_metrics):
 data = np.zeros([n_partic,3])
 for exp in range(3):
 load = pd.read_sql_query("select {} from survey where valid=1 and ex
periment={};"
 .format(metric, exp), conn)
 data[...,exp] = np.reshape(np.array(load),(57,))
 if metric == 'Performance':
 data = np.ones_like(data)*10-data
 mean_ = data.mean(axis=0)
 std_ = data.std(axis=0)
 x_pos = np.arange(3)+1 - bar_width*3 +idx*bar_width+bar_width/2
 tlx_answers.append(data)

 ax1.bar(x_pos, mean_, bar_width, yerr=std_, label=metric,
 edgecolor='k',
 linewidth=1,
 capsize=2,
 error_kw={'linewidth':0.8})

ax1.xaxis.set_major_formatter(ticker.FuncFormatter(exp_format))
ax1.set_xticks(np.arange(3)+1)
plt.ylim(0,10)
plt.legend(ncol=2, fontsize='small')
plt.show()
fig1.savefig('../img/{}.png'.format(filename), bbox_inches='tight')
for idx, metric in enumerate(tlx_answers):
 output_statistical_information(metric, tlx_metrics[idx])

139

140

Mental N=57
Score

Delay Mean: 5.67, SD: 2.05
Delay PD Mean: 5.51, SD: 2.25
No delay Mean: 3.56, SD: 2.03

Paired difference

Delay - Delay PD -2.79\% t(56)=-0.67, p=0.504, d=-0.073
Delay - No delay -37.15\% t(56)=-9.31, p$<$.001, d=-1.02

5
Delay PD - No delay -35.35\% t(56)=-6.36, p$<$.001, d=-0.90

2

Physical N=57
Score

Delay Mean: 2.88, SD: 2.14
Delay PD Mean: 2.84, SD: 2.19
No delay Mean: 2.18, SD: 1.84

Paired difference

Delay - Delay PD -1.22\% t(56)=-0.16, p=0.874, d=-0.016
Delay - No delay -24.39\% t(56)=-3.10, p=0.003, d=-0.349
Delay PD - No delay -23.46\% t(56)=-3.15, p=0.003, d=-0.327

Temporal N=57
Score

Delay Mean: 5.84, SD: 2.08
Delay PD Mean: 5.67, SD: 2.10
No delay Mean: 5.39, SD: 2.30

Paired difference

Delay - Delay PD -3.00\% t(56)=-0.79, p=0.431, d=-0.083
Delay - No delay -7.81\% t(56)=-1.93, p=0.059, d=-0.206
Delay PD - No delay -4.95\% t(56)=-0.97, p=0.335, d=-0.126

Performance N=57
Score

Delay Mean: 5.53, SD: 2.29
Delay PD Mean: 4.74, SD: 2.05
No delay Mean: 2.70, SD: 1.60

Paired difference

Delay - Delay PD -14.29\% t(56)=-3.24, p=0.002, d=-0.360
Delay - No delay -51.11\% t(56)=-11.76, p$<$.001, d=-1.4

15
Delay PD - No delay -42.96\% t(56)=-9.58, p$<$.001, d=-1.09

8

Effort N=57

141

Significance

In [316]: metric = 0
g0 = tlx_answers[metric][...,1]
g1 = tlx_answers[metric][...,2]
print_sig(g1, g0)
answers_means = np.copy(tlx_answers[metric]).mean(axis=0)
print(answers_means)
print('{:.0f}% decrease in subjective latency using predictor screen'.format
((1-answers_means[1]/answers_means[0])*100))

Subjective delay vs frustration

Score

Delay Mean: 6.02, SD: 1.94
Delay PD Mean: 5.77, SD: 1.99
No delay Mean: 4.67, SD: 2.08

Paired difference

Delay - Delay PD -4.08\% t(56)=-1.05, p=0.298, d=-0.124
Delay - No delay -22.45\% t(56)=-6.34, p$<$.001, d=-0.66

5
Delay PD - No delay -19.15\% t(56)=-4.59, p$<$.001, d=-0.53

8

Frustration N=57
Score

Delay Mean: 5.65, SD: 2.35
Delay PD Mean: 5.04, SD: 2.13
No delay Mean: 2.44, SD: 1.79

Paired difference

Delay - Delay PD -10.87\% t(56)=-2.15, p=0.036, d=-0.271
Delay - No delay -56.83\% t(56)=-10.70, p$<$.001, d=-1.5

24
Delay PD - No delay -51.57\% t(56)=-8.23, p$<$.001, d=-1.31

0

t(56)=6.36, p$<$.001, d=0.902
[5.66666667 5.50877193 3.56140351]
3% decrease in subjective latency using predictor screen

142

In [182]: def avg_actor_delay(id):
 avg_delay = np.array(pd.read_sql_query("select delay from survey where v
alid=1 and actor={}".format(id), conn)).mean()
 return avg_delay

def avg_actor_frustration(id):
 avg_frus = np.array(pd.read_sql_query("select frustration from survey wh
ere valid=1 and actor={}".format(id), conn)).mean()
 return avg_frus

total_avg_frustration = np.array(pd.read_sql_query("select frustration from
survey where valid=1", conn)).mean()
total_avg_delay = np.array(pd.read_sql_query("select delay from survey where
valid=1", conn)).mean()

act = pd.read_sql_query("select rowid, * from actors where valid=1;", conn)
actor_ids = act.rowid.values
answ = [[],[]]

normalize = True
sel_exp = None
filename = 'delay_vs_frustration'

for actor_id in actor_ids:
 avg_delay = avg_actor_delay(actor_id)
 avg_frustration = avg_actor_frustration(actor_id)
 for exp in range(3):
 sur = pd.read_sql_query("select frustration, delay from survey where
valid=1 and actor={} and experiment={}"
 .format(actor_id, exp), conn)
 if normalize:
 frustration = float(sur['frustration'])/avg_frustration*total_av
g_frustration
 delay = float(sur['delay'])/avg_delay*total_avg_delay
 else:
 frustration = float(sur['frustration'])
 delay = float(sur['delay'])

 if sel_exp is None or exp in sel_exp:
 answ[0].append(frustration)
 answ[1].append(delay)

x = answ[1]
y = answ[0]

linreg = stats.linregress(x,y)
print(linreg)
x_min = min(x)
x_max = max(x)
print('$R^2={:.2f}$, p={:.5f}, err={:.5f}'.format(linreg.rvalue**2, linreg.p
value, linreg.stderr))

plt.style.use('default')
plt.style.use('thesis.mplstyle')
fig, ax = plt.subplots(figsize=(5,4))
ax.scatter(x,y, marker='o', alpha=0.5, label='Orginal\ndata')
ax.plot(np.arange(x_min, x_max), np.arange(x_min, x_max)*linreg.slope+linreg

143

.intercept, label='Fitted line\n R^2={:.2f}'
 .format(linreg.rvalue**2))
ax.legend()
plt.ylabel('Frustration')
plt.xlabel('Subjective delay [ms]')
plt.ylim([-0.5,10])
plt.show()
fig.savefig('../img/{}.png'.format(filename), bbox_inches='tight')

Delay times

In [100]: data = pd.DataFrame()
for exp in range(3):
 data[exp] = pd.read_sql_query("select delay from survey where valid=1 an
d experiment={} order by actor asc;".format(exp), conn)
times = np.array(data)

Absolute

$R^2=0.35$, p=0.00000, err=0.00038

144

In [101]: filename = 'subjective_delay_abs'
matplotlib.rcParams.update({'font.size': 11})
fig, ax = plt.subplots(figsize=(4,4))
ax.boxplot(times, widths=0.5)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(exp_format))
ax.plot([0.6,1.4], [750, 750], 'k', alpha=0.3, label='Actual delay')
ax.plot([1.6,2.4], [750, 750], 'k', alpha=0.3)
ax.plot([2.6,3.4], [250, 250], 'k', alpha=0.3)
ax.legend()
plt.ylabel('Delay [s]')
plt.ylim([-100,2100])
plt.show()
fig.savefig('../img/{}.png'.format(filename), bbox_inches='tight')

Normalized

In [103]: sums = times.sum(axis=1)
averages = np.copy(times).mean(axis=0)
total_delay_average = np.copy(times).mean()
normalized = np.copy(times)
for idx, row in enumerate(normalized):
 user_avg = np.array([row[0], row[1], row[2]]).mean()
 row[0] = row[0]/user_avg*total_delay_average
 row[1] = row[1]/user_avg*total_delay_average
 row[2] = row[2]/user_avg*total_delay_average

145

In [104]: plt.style.use('classic')
plt.style.use('thesis.mplstyle')
filename = 'subjective_delay_norm'
fig, ax = plt.subplots(figsize=(5,4))
ax.boxplot(normalized, widths=0.5)
ax.plot([0.6,1.4], [750, 750], 'k', alpha=0.5, label='Actual delay')
ax.plot([1.6,2.4], [750, 750], 'k', alpha=0.5)
ax.plot([2.6,3.4], [250, 250], 'k', alpha=0.5)
ax.legend()
ax.xaxis.set_major_formatter(ticker.FuncFormatter(exp_format))
plt.ylabel('Delay [s]')
plt.ylim([-100,1800])
plt.show()
fig.savefig('../img/{}.png'.format(filename), bbox_inches='tight')

In [244]: norm_avg = np.copy(normalized).mean(axis=0)
print('{:.0f}% decrease in subjective latency using predictor screen'.format
((1-norm_avg[1]/norm_avg[0])*100))
print_sig(normalized[...,1], normalized[...,0])

Key presses

In [95]: data = pd.read_sql_query("select keydowns0, keydowns1, keydowns2 from actors
where valid=1;", conn)
keys = np.array(data)

11% decrease in subjective latency using predictor screen
t(56)=1.40, p=0.167, d=0.356

146

Absolute

In [96]: filename = 'keypresses'
matplotlib.rcParams.update({'font.size': 10})
fig, ax = plt.subplots(figsize=(5,4))
ax.boxplot(keys, widths=0.5)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(exp_format))
plt.ylabel('Key presses')
plt.show()
fig.savefig('../img/{}.png'.format(filename), bbox_inches='tight')

Learning effect

147

In [93]: def condition_format(x, pos=None):
 names = ['#1', '#2', '#3']*3
 return names[x-1]

filename = 'learning_effect'

pos = [[0,1,2,4,3,5],
 [2,3,0,5,1,4],
 [4,5,1,3,0,2]]

all_li = []

for exp in range(3):
 first = pd.read_sql_query("select tothitsexp{} from actors where valid=1
and crowd={} or crowd={};"
 .format(exp, pos[exp][0], pos[exp][1]), conn)
 middle = pd.read_sql_query("select tothitsexp{} from actors where valid=
1 and crowd={} or crowd={};"
 .format(exp, pos[exp][2], pos[exp][3]), conn)
 last = pd.read_sql_query("select tothitsexp{} from actors where valid=1
and crowd={} or crowd={};"
 .format(exp, pos[exp][4], pos[exp][5]), conn)

 li = [first['tothitsexp'+str(exp)], middle['tothitsexp'+str(exp)],last[
'tothitsexp'+str(exp)]]
 all_li.extend(li)

fig, ax = plt.subplots(figsize=(5,4))
ax.boxplot([list(i) for i in all_li])
ax.plot([3.5, 3.5],[0,23])
ax.plot([6.5, 6.5],[0,23])
plt.ylabel('Score')
plt.text(2, 20, 'Delay', fontsize=10, ha='center')
plt.text(5, 20, 'Delay PD', fontsize=10, ha='center')
plt.text(8, 4, 'No delay', fontsize=10, ha='center')
ax.xaxis.set_major_formatter(ticker.FuncFormatter(condition_format))
plt.ylim([0,23])
plt.show()
fig.savefig('../img/{}.png'.format(filename), bbox_inches='tight')

148

In [142]: num1 = 6
num2 = num1+1
ns = min(len(all_li[num1]), len(all_li[num2]))
print(ns)

print_sig(all_li[num1][:ns], all_li[num2][:ns])

18
t(17)=3.26, p=0.005, d=0.902

149

In [181]: for group in range(6):
 hits = pd.read_sql_query("select tothitsexp0, tothitsexp1, tothitsexp2 f
rom actors where valid=1 and crowd={};".format(group), conn)
 norm = normalize_array(np.array(hits))
 output_statistical_information(norm, 'Group {}'.format(group), True)

150

Group 0 n=9
Score

Delay Mean: 5.08, SD: 1.21
Delay PD Mean: 7.40, SD: 1.13
No delay Mean: 15.40, SD: 1.83

Paired difference

Delay - Delay PD 45.58\% t(8)=4.49, p=0.002, d=1.867
Delay - No delay 203.00\% t(8)=10.11, p$<$.001, d=6.274
Delay PD - No delay 108.13\% t(8)=8.11, p$<$.001, d=4.960

Group 1 n=10
Score

Delay Mean: 6.24, SD: 0.72
Delay PD Mean: 8.45, SD: 0.96
No delay Mean: 17.41, SD: 1.02

Paired difference

Delay - Delay PD 35.42\% t(9)=4.89, p$<$.001, d=2.474
Delay - No delay 179.12\% t(9)=22.73, p$<$.001, d=12.050
Delay PD - No delay 106.11\% t(9)=14.59, p$<$.001, d=8.602

Group 2 n=10
Score

Delay Mean: 6.65, SD: 1.15
Delay PD Mean: 6.32, SD: 1.03
No delay Mean: 17.04, SD: 1.51

Paired difference

Delay - Delay PD -4.98\% t(9)=-0.63, p=0.544, d=-0.288
Delay - No delay 156.29\% t(9)=12.57, p$<$.001, d=7.347
Delay PD - No delay 169.73\% t(9)=13.93, p$<$.001, d=7.884

Group 3 n=10
Score

Delay Mean: 6.58, SD: 1.52
Delay PD Mean: 6.57, SD: 0.57
No delay Mean: 16.76, SD: 1.59

Paired difference

Delay - Delay PD -0.13\% t(9)=-0.01, p=0.988, d=-0.007
Delay - No delay 154.87\% t(9)=9.99, p$<$.001, d=6.211
Delay PD - No delay 155.19\% t(9)=16.53, p$<$.001, d=8.081

Group 4 n=9
Score

Delay Mean: 6.78, SD: 0.91
Delay PD Mean: 8.42, SD: 1.33

151

Gamers

No delay Mean: 14.69, SD: 1.45

Paired difference

Delay - Delay PD 24.34\% t(8)=2.66, p=0.029, d=1.366
Delay - No delay 116.81\% t(8)=11.05, p$<$.001, d=6.163
Delay PD - No delay 74.38\% t(8)=6.74, p$<$.001, d=4.248

Group 5 n=9
Score

Delay Mean: 6.03, SD: 1.84
Delay PD Mean: 8.04, SD: 1.45
No delay Mean: 13.59, SD: 2.58

Paired difference

Delay - Delay PD 33.42\% t(8)=2.74, p=0.026, d=1.147
Delay - No delay 125.50\% t(8)=5.06, p$<$.001, d=3.190
Delay PD - No delay 69.02\% t(8)=4.18, p=0.003, d=2.503

152

In [122]: def game_format(x, pos=None):
 names = {1: 'Delay',
 2: 'Delay\ngamer',
 3: 'Delay PD',
 4: 'Delay PD\ngamer',
 5: 'No delay',
 6: 'No delay\ngamer'}
 return names[x]

gamers = pd.read_sql_query("select rowid, * from actors where valid=1 and ga
me<=1;", conn)
ga = np.array(gamers[['tothitsexp0', 'tothitsexp1', 'tothitsexp2']])
non_gamers = pd.read_sql_query("select rowid, * from actors where valid=1 an
d game >1;", conn)
no = np.array(non_gamers[['tothitsexp0', 'tothitsexp1', 'tothitsexp2']])

game_per = len(gamers)/(len(gamers)+len(non_gamers))

filename = 'gamer_performance'
fig1, ax1 = plt.subplots(figsize=(5,4))
ax1.set_title('Performance gamers vs non gamers')
ax1.boxplot([no[...,0], ga[...,0], no[...,1], ga[...,1], no[...,2], ga[...,2
]])
ax1.xaxis.set_major_formatter(ticker.FuncFormatter(game_format))
plt.ylabel('Score')
plt.text(0.7, 21, 'gamer: plays weekly or more\n {:.0f}% of parti
cipants'.format(game_per*100), fontsize=10)
plt.xticks(rotation=-30)
plt.ylim([0,23.5])
plt.show()
fig1.savefig('../img/{}.png'.format(filename), bbox_inches='tight')

153

In [157]: exp = 2
print_sig(no[...,0], no[...,1])
print_sig(ga[...,0], ga[...,1])

t(39)=3.27, p=0.002, d=0.577
t(16)=4.17, p<.001, d=1.018

154

Collected Experiment Data

155

Pa
rt
ic
ip
an

ts

ro
w
id

ag
e

ge
nd

er
ed

uc
at
io
n

ga
m
e

co
m
pu

te
r

ey
e

st
ar
t

en
d

cr
ow

d
st
ar
te
xp

0
st
ar
te
xp

1
st
ar
te
xp

2
en

de
xp

0
en

de
xp

1
en

de
xp

2
to
th
its

ex
p0

to
th
its

ex
p1

to
th
its

ex
p2

ke
yd

ow
ns
0

ke
yd

ow
ns
1

ke
yd

ow
ns
2

va
lid

1
24

1
6

3
0

0
15
25
72
23
98

15
25
72
31
59

0
15
25
72
24
95

15
25
72
13
24

15
25
72
13
97

15
25
72
25
85

15
25
72
29
05

15
25
72
31
11

7
6

7
97

85
11
7

0
2

30
0

6
1

0
0

15
25
72
36
10

15
25
72
42
57

1
15
25
72
37
12

15
25
72
41
10

15
25
72
39
16

15
25
72
38
02

15
25
72
42
04

15
25
72
40
06

6
9

21
81

99
22
6

1
3

24
0

4
2

0
3

15
25
72
59
20

15
25
72
66
46

2
15
25
72
62
60

15
25
72
60
19

15
25
72
64
95

15
25
72
63
50

15
25
72
61
09

15
25
72
65
88

10
9

20
16
9

14
6

21
8

1
4

25
0

4
2

0
3

15
25
72
69
01

15
25
72
75
48

3
15
25
72
73
95

15
25
72
70
03

15
25
72
72
04

15
25
72
74
85

15
25
72
70
93

15
25
72
72
94

6
9

22
17
0

15
1

24
1

1
5

24
0

4
0

0
3

15
25
72
47
92

15
25
72
53
70

4
15
25
72
50
82

15
25
72
52
42

15
25
72
48
94

15
25
72
51
74

15
25
72
53
32

15
25
72
49
84

10
14

20
14
6

18
4

20
8

1
6

25
0

4
3

0
2

15
25
72
57
01

15
25
72
65
59

5
15
25
72
63
96

15
25
72
61
13

15
25
72
58
32

15
25
72
64
86

15
25
72
62
03

15
25
72
59
22

8
12

18
11
6

12
6

17
7

1
7

25
0

4
2

0
2

15
25
72
70
58

15
25
72
77
92

0
15
25
72
72
03

15
25
72
74
34

15
25
72
76
37

15
25
72
72
93

15
25
72
75
24

15
25
72
77
27

6
9

20
97

13
2

16
8

1
8

26
0

4
1

0
0

15
25
72
96
28

15
25
73
03
49

1
15
25
72
97
81

15
25
73
01
96

15
25
72
99
92

15
25
72
98
71

15
25
73
02
86

15
25
73
00
83

6
9

21
13
8

14
4

22
9

1
9

27
0

5
3

0
0

15
25
73
30
14

15
25
73
37
42

2
15
25
73
33
68

15
25
73
31
37

15
25
73
35
73

15
25
73
34
58

15
25
73
32
28

15
25
73
36
64

8
9

19
11
5

10
2

21
4

1
10

23
1

4
2

0
0

15
25
73
42
38

15
25
73
49
55

3
15
25
73
47
89

15
25
73
43
25

15
25
73
45
66

15
25
73
48
79

15
25
73
44
15

15
25
73
46
58

6
5

11
87

98
18
9

1
11

24
1

4
2

0
0

15
25
73
52
85

15
25
73
59
32

4
15
25
73
56
19

15
25
73
57
96

15
25
73
53
86

15
25
73
57
09

15
25
73
58
86

15
25
73
54
76

8
8

18
12
5

12
0

22
5

1
12

24
1

4
4

0
3

15
25
73
64
28

15
25
73
71
39

5
15
25
73
69
91

15
25
73
67
95

15
25
73
65
36

15
25
73
70
81

15
25
73
68
89

15
25
73
66
26

6
5

7
96

91
13
6

1
13

26
0

4
3

0
0

15
25
73
77
64

15
25
73
84
07

0
15
25
73
78
46

15
25
73
80
91

15
25
73
82
67

15
25
73
79
36

15
25
73
81
82

15
25
73
83
57

4
8

14
16
3

14
1

19
2

1
14

25
0

4
2

0
0

15
25
73
86
77

15
25
73
92
95

1
15
25
73
87
76

15
25
73
91
54

15
25
73
89
79

15
25
73
88
66

15
25
73
92
46

15
25
73
90
71

5
7

14
19
6

14
8

23
0

1
15

26
0

6
1

0
1

15
25
73
95
90

15
25
74
01
60

2
15
25
73
98
64

15
25
73
96
75

15
25
74
00
41

15
25
73
99
55

15
25
73
97
70

15
25
74
01
31

8
7

20
13
0

12
6

22
1

1
16

24
0

4
2

0
0

15
25
74
15
47

15
25
74
21
94

3
15
25
74
20
58

15
25
74
16
54

15
25
74
18
66

15
25
74
21
48

15
25
74
17
44

15
25
74
19
59

9
7

19
16
2

14
2

21
1

1
17

24
0

4
2

0
0

15
25
74
24
05

15
25
74
30
29

4
15
25
74
27
00

15
25
74
28
74

15
25
74
25
13

15
25
74
27
90

15
25
74
29
64

15
25
74
26
05

6
8

18
17
4

14
7

23
5

1
19

25
0

5
1

0
0

15
25
74
35
51

15
25
74
41
16

0
15
25
74
36
06

15
25
74
38
15

15
25
74
39
86

15
25
74
36
96

15
25
74
39
09

15
25
74
40
76

6
8

12
97

94
19
6

1
20

25
0

4
1

0
0

15
25
74
51
09

15
25
74
57
87

1
15
25
74
52
12

15
25
74
56
48

15
25
74
54
60

15
25
74
53
02

15
25
74
57
38

15
25
74
55
50

6
12

19
10
2

17
0

21
7

1
21

23
0

4
3

0
0

15
25
74
66
09

15
25
74
72
49

2
15
25
74
69
34

15
25
74
67
03

15
25
74
71
17

15
25
74
70
24

15
25
74
67
95

15
25
74
72
08

8
8

17
15
3

17
6

21
3

1
22

23
0

4
0

0
1

15
25
74
77
30

15
25
74
83
01

3
15
25
74
81
68

15
25
74
78
15

15
25
74
80
03

15
25
74
82
58

15
25
74
79
05

15
25
74
80
93

6
7

16
11
9

97
18
6

1
23

24
1

5
4

0
1

15
25
74
87
51

15
25
74
94
13

4
15
25
74
90
58

15
25
74
92
84

15
25
74
88
44

15
25
74
91
48

15
25
74
93
76

15
25
74
89
34

5
7

13
13
0

11
2

18
9

1
24

24
0

5
1

0
0

15
25
74
99
32

15
25
75
05
87

5
15
25
75
04
38

15
25
75
02
49

15
25
75
00
41

15
25
75
05
28

15
25
75
03
39

15
25
75
01
31

8
9

17
17
8

15
3

28
5

1
25

25
0

5
1

0
2

15
25
75
09
87

15
25
75
16
21

0
15
25
75
10
97

15
25
75
13
15

15
25
75
14
89

15
25
75
11
87

15
25
75
14
05

15
25
75
15
79

5
5

17
11
9

94
19
8

1
26

26
0

5
1

0
2

15
25
75
19
87

15
25
75
26
17

1
15
25
75
20
77

15
25
75
24
75

15
25
75
22
82

15
25
75
21
67

15
25
75
25
65

15
25
75
23
72

6
8

17
10
2

14
4

20
5

1
32

24
0

4
3

0
3

15
25
75
60
08

15
25
75
66
06

1
15
25
75
60
94

15
25
75
64
72

15
25
75
62
92

15
25
75
61
84

15
25
75
65
62

15
25
75
63
83

8
9

22
20
2

18
5

26
9

1
33

26
0

4
3

0
3

15
25
75
68
85

15
25
75
74
69

2
15
25
75
71
65

15
25
75
69
74

15
25
75
73
37

15
25
75
72
56

15
25
75
70
64

15
25
75
74
27

5
4

19
14
2

20
2

17
3

1
34

27
0

4
1

0
0

15
25
75
81
12

15
25
75
87
94

3
15
25
75
86
57

15
25
75
82
28

15
25
75
84
62

15
25
75
87
47

15
25
75
83
18

15
25
75
85
55

8
8

20
14
7

15
6

23
4

1
35

30
0

6
1

0
0

15
25
75
92
76

15
25
75
98
43

4
15
25
75
95
35

15
25
75
97
11

15
25
75
93
53

15
25
75
96
27

15
25
75
98
02

15
25
75
94
44

8
9

19
13
0

15
8

25
4

1
36

23
0

3
1

0
3

15
25
76
08
50

15
25
76
14
36

5
15
25
76
12
98

15
25
76
11
13

15
25
76
09
23

15
25
76
13
88

15
25
76
12
03

15
25
76
10
13

6
10

11
13
4

13
7

22
2

1
37

25
0

6
1

0
0

15
25
76
19
85

15
25
76
27
05

0
15
25
76
20
92

15
25
76
23
88

15
25
76
25
70

15
25
76
21
82

15
25
76
24
78

15
25
76
26
60

3
7

21
13
0

16
5

20
4

1
38

25
0

6
1

0
2

15
25
76
29
53

15
25
76
36
07

1
15
25
76
30
69

15
25
76
34
64

15
25
76
32
82

15
25
76
31
59

15
25
76
35
54

15
25
76
33
72

5
7

14
14
9

11
7

16
9

1
39

25
0

4
1

0
0

15
25
76
40
32

15
25
76
46
34

2
15
25
76
43
30

15
25
76
41
18

15
25
76
45
04

15
25
76
44
20

15
25
76
42
08

15
25
76
45
94

5
7

18
11
0

97
20
0

1
40

25
0

6
3

0
0

15
25
76
50
94

15
25
76
57
45

3
15
25
76
55
89

15
25
76
51
92

15
25
76
53
98

15
25
76
56
79

15
25
76
52
83

15
25
76
54
88

8
8

18
14
9

14
7

23
1

1
41

25
0

5
4

0
0

15
25
76
59
36

15
25
76
66
06

4
15
25
76
62
70

15
25
76
64
47

15
25
76
60
39

15
25
76
63
60

15
25
76
65
37

15
25
76
61
29

6
8

12
13
7

13
0

13
6

1
42

24
1

4
3

0
2

15
25
76
78
83

15
25
76
85
74

5
15
25
76
84
44

15
25
76
82
36

15
25
76
80
00

15
25
76
85
34

15
25
76
83
26

15
25
76
80
90

6
8

8
14
7

15
4

21
6

1
44

23
0

4
3

0
0

15
25
76
90
61

15
25
76
96
44

1
15
25
76
91
54

15
25
76
95
11

15
25
76
93
47

15
25
76
92
46

15
25
76
96
01

15
25
76
94
37

8
9

18
12
5

15
3

21
1

1
45

24
1

4
4

0
1

15
25
77
01
41

15
25
77
07
79

2
15
25
77
04
41

15
25
77
02
38

15
25
77
06
56

15
25
77
05
31

15
25
77
03
28

15
25
77
07
46

5
4

13
14
2

11
0

18
3

1
46

23
0

5
4

0
0

15
25
77
14
48

15
25
77
23
35

3
15
25
77
21
66

15
25
77
15
63

15
25
77
19
61

15
25
77
22
57

15
25
77
16
53

15
25
77
20
51

8
6

16
13
9

14
5

26
1

1
47

24
1

4
3

0
0

15
25
77
33
36

15
25
77
39
49

4
15
25
77
36
26

15
25
77
38
06

15
25
77
34
20

15
25
77
37
16

15
25
77
38
96

15
25
77
35
10

6
8

9
12
7

14
0

17
7

1
48

25
1

4
4

0
0

15
25
77
43
64

15
25
77
49
83

5
15
25
77
48
53

15
25
77
46
78

15
25
77
44
52

15
25
77
49
44

15
25
77
47
68

15
25
77
45
45

5
7

11
91

10
0

14
3

1
49

25
1

4
4

0
2

15
25
77
57
20

15
25
77
65
85

0
15
25
77
58
27

15
25
77
61
22

15
25
77
63
91

15
25
77
59
17

15
25
77
62
12

15
25
77
64
82

4
7

11
18
8

18
5

18
3

1
50

24
0

5
3

0
3

15
25
77
70
84

15
25
77
76
73

1
15
25
77
71
42

15
25
77
75
32

15
25
77
73
51

15
25
77
72
35

15
25
77
76
22

15
25
77
74
42

7
7

18
16
0

18
8

25
2

1
51

25
0

4
4

0
2

15
25
78
06
56

15
25
78
12
71

2
15
25
78
09
55

15
25
78
07
57

15
25
78
11
39

15
25
78
10
45

15
25
78
08
47

15
25
78
12
29

4
4

9
21
2

18
3

23
2

1
52

24
1

4
3

0
2

15
25
78
15
18

15
25
78
22
26

3
15
25
78
21
34

15
25
78
16
12

15
25
78
18
44

15
25
78
22
27

15
25
78
17
02

15
25
78
19
35

4
6

16
12
0

11
1

19
5

1
54

23
1

4
4

0
3

15
25
78
40
18

15
25
78
46
57

5
15
25
78
45
35

15
25
78
43
55

15
25
78
41
21

15
25
78
46
25

15
25
78
44
47

15
25
78
42
12

3
9

19
21
8

17
9

27
8

1
55

23
1

4
4

0
0

15
25
78
51
66

15
25
78
59
33

0
15
25
78
52
96

15
25
78
55
84

15
25
78
58
37

15
25
78
53
86

15
25
78
56
77

15
25
78
59
28

6
6

11
96

96
14
7

1
57

24
0

4
3

0
0

15
25
78
87
60

15
25
78
94
81

2
15
25
78
90
96

15
25
78
88
56

15
25
78
93
35

15
25
78
91
86

15
25
78
89
46

15
25
78
94
25

7
4

13
16
3

22
3

14
9

1
58

25
1

6
4

0
0

15
25
79
12
18

15
25
79
18
33

4
15
25
79
15
25

15
25
79
16
94

15
25
79
13
17

15
25
79
16
18

15
25
79
17
86

15
25
79
14
07

4
7

10
15
3

11
6

19
7

1
59

23
1

4
4

0
3

15
25
79
23
90

15
25
79
31
00

5
15
25
79
29
68

15
25
79
27
85

15
25
79
25
17

15
25
79
30
58

15
25
79
28
75

15
25
79
26
08

3
5

15
17
5

16
7

20
1

1
60

24
0

5
4

0
0

15
25
79
35
83

15
25
79
41
63

0
15
25
79
36
74

15
25
79
38
68

15
25
79
40
34

15
25
79
37
64

15
25
79
39
61

15
25
79
41
24

5
8

16
12
2

12
5

16
2

1

156

61
24

1
4

4
0

2
15
25
79
46
24

15
25
79
53
17

3
15
25
79
51
50

15
25
79
47
47

15
25
79
49
60

15
25
79
52
40

15
25
79
48
37

15
25
79
50
51

3
4

15
11
6

96
19
4

1
62

26
0

6
3

0
0

15
25
79
63
81

15
25
79
69
48

4
15
25
79
66
55

15
25
79
68
24

15
25
79
64
68

15
25
79
67
45

15
25
79
69
14

15
25
79
65
61

8
6

14
11
5

11
7

18
4

1
63

25
1

4
1

0
0

15
25
79
73
05

15
25
79
80
18

5
15
25
79
78
73

15
25
79
76
72

15
25
79
74
56

15
25
79
79
63

15
25
79
77
63

15
25
79
75
46

8
7

18
12
6

12
1

19
8

1
64

26
0

4
3

0
3

15
25
79
88
19

15
25
79
94
13

0
15
25
79
89
21

15
25
79
91
12

15
25
79
92
83

15
25
79
90
11

15
25
79
92
04

15
25
79
93
73

6
8

18
14
5

10
9

18
1

1
65

25
1

4
3

0
0

15
25
79
99
58

15
25
80
05
43

1
15
25
80
00
51

15
25
80
04
13

15
25
80
02
37

15
25
80
01
41

15
25
80
05
03

15
25
80
03
29

5
7

11
14
6

10
9

17
0

1
66

23
1

4
3

0
0

15
25
80
10
53

15
25
80
16
62

2
15
25
80
13
48

15
25
80
11
54

15
25
80
15
25

15
25
80
14
38

15
25
80
12
45

15
25
80
16
15

6
8

22
15
9

15
5

27
6

1
67

23
1

4
4

0
0

15
25
80
21
65

15
25
80
27
87

3
15
25
80
26
38

15
25
80
22
60

15
25
80
24
68

15
25
80
27
28

15
25
80
23
50

15
25
80
25
58

8
6

14
11
0

12
9

18
8

1

157

Test questionnaire

actor experiment mental physical temporal effort performance frustration delay time valid
1 0 3 3 5 5 3 6 1000 1525722715 0
1 1 5 3 5 3 3 7 1000 1525722969 0
1 2 3 3 4 3 4 5 600 1525723155 0
2 0 4 1 5 5 6 4 600 1525723867 1
2 2 3 2 5 2 8 2 0 1525724068 1
2 1 4 1 4 4 6 4 600 1525724254 1
3 1 6 2 8 10 7 4 800 1525726212 1
3 0 6 3 8 9 7 5 400 1525726445 1
3 2 3 1 9 4 9 0 0 1525726642 1
4 1 6 1 6 4 7 8 1000 1525727158 1
4 2 6 2 7 7 8 2 100 1525727343 1
4 0 8 5 5 8 2 9 2500 1525727544 1
5 2 1 1 5 3 9 0 1000 1525725036 1
5 0 5 2 5 6 7 3 1500 1525725199 1
5 1 6 4 5 6 6 4 1500 1525725366 1
6 2 5 3 7 7 7 2 200 1525726063 1
6 1 7 4 6 6 3 4 350 1525726349 1
6 0 9 6 6 8 0 8 600 1525726555 1
7 0 8 3 6 6 8 1 800 1525727380 1
7 1 6 2 6 6 8 4 900 1525727590 1
7 2 3 1 2 2 9 1 100 1525727788 1
8 0 3 2 5 5 5 7 300 1525729939 1
8 2 4 2 6 5 10 1 10 1525730138 1
8 1 3 2 3 5 6 5 500 1525730347 1
9 1 7 4 6 8 7 5 500 1525733320 1
9 0 7 6 7 7 5 6 600 1525733524 1
9 2 5 4 7 6 9 1 50 1525733739 1

10 1 6 0 3 4 3 5 300 1525734517 1
10 2 3 0 4 3 5 2 100 1525734743 1
10 0 5 0 4 4 4 5 500 1525734952 1
11 2 6 2 6 7 5 4 300 1525735578 1
11 0 8 2 6 8 3 6 600 1525735756 1
11 1 7 2 6 7 4 6 800 1525735929 1
12 2 4 1 5 5 4 2 500 1525736712 1
12 1 3 3 5 5 4 4 2000 1525736945 1
12 0 6 5 5 4 5 5 200 1525737136 1
13 0 6 0 9 6 3 9 400 1525738047 1
13 1 6 1 7 5 6 5 200 1525738229 1
13 2 6 2 6 6 8 3 100 1525738404 1
14 0 4 1 3 3 6 3 300 1525738935 1
14 2 1 1 1 3 8 1 80 1525739108 1
14 1 9 7 6 9 3 9 300 1525739292 1
15 1 7 7 7 7 8 6 250 1525739824 1
15 0 7 5 6 6 5 4 600 1525740002 1
15 2 7 6 4 7 8 2 70 1525740158 1
16 1 7 4 6 6 9 2 700 1525741824 1
16 2 2 2 5 5 8 2 50 1525742017 1
16 0 7 6 6 7 5 6 700 1525742191 1
17 2 3 1 8 7 8 4 20 1525742659 1
17 0 6 3 9 8 3 9 700 1525742834 1
17 1 7 2 7 6 6 6 500 1525743026 1
19 0 8 4 6 7 5 3 200 1525743770 1
19 1 8 6 7 7 6 4 50 1525743942 1
19 2 7 5 8 7 8 3 10 1525744113 1
20 0 4 5 7 8 2 9 600 1525745416 1
20 2 2 2 8 3 8 2 200 1525745603 1
20 1 4 5 8 5 4 6 600 1525745783 1
21 1 5 2 3 5 6 5 250 1525746888 1
21 0 4 2 4 4 6 5 200 1525747076 1
21 2 2 2 2 2 7 3 50 1525747246 1
22 1 3 4 4 4 6 3 200 1525747960 1
22 2 2 1 2 3 8 0 50 1525748128 1
22 0 7 3 2 6 5 3 200 1525748298 1
23 2 3 1 7 4 5 6 400 1525749013 1
23 0 6 5 8 8 2 8 1300 1525749238 1
23 1 4 3 6 5 3 5 1300 1525749411 1

158

24 2 3 3 7 4 7 3 10 1525750206 1
24 1 5 2 7 6 3 6 500 1525750397 1
24 0 5 3 6 6 3 7 800 1525750585 1
25 0 5 0 9 8 7 4 1000 1525751261 1
25 1 8 4 8 8 7 6 1000 1525751438 1
25 2 3 1 5 7 7 3 200 1525751619 1
26 0 3 0 7 8 4 7 1000 1525752236 1
26 2 1 0 6 3 9 0 100 1525752435 1
26 1 8 1 7 9 2 7 1500 1525752615 1
32 0 5 4 7 6 5 6 200 1525756243 1
32 2 5 5 4 6 7 2 100 1525756419 1
32 1 6 5 3 6 4 7 350 1525756604 1
33 1 7 0 8 5 2 10 350 1525757126 1
33 0 6 1 7 5 5 7 150 1525757296 1
33 2 2 1 5 4 8 2 50 1525757465 1
34 1 3 0 4 4 5 4 400 1525758411 1
34 2 1 0 5 4 6 2 60 1525758616 1
34 0 5 1 5 6 2 4 1000 1525758791 1
35 2 5 3 8 7 8 4 30 1525759492 1
35 0 8 4 7 6 6 7 1000 1525759659 1
35 1 9 5 8 8 6 6 900 1525759840 1
36 2 3 2 7 7 7 3 4 1525761071 1
36 1 8 3 8 8 5 6 25 1525761249 1
36 0 8 3 8 8 3 8 1500 1525761434 1
37 0 5 0 3 6 3 4 800 1525762345 1
37 1 6 0 7 5 5 2 400 1525762531 1
37 2 2 0 4 4 6 1 200 1525762703 1
38 0 6 2 0 7 4 7 600 1525763239 1
38 2 3 1 0 5 6 1 30 1525763423 1
38 1 7 4 2 7 4 6 1500 1525763604 1
39 1 6 1 8 6 7 3 500 1525764278 1
39 0 6 2 7 4 6 4 750 1525764461 1
39 2 4 2 7 4 8 2 100 1525764631 1
40 1 6 2 7 9 6 1 800 1525765358 1
40 2 9 2 8 9 8 3 20 1525765551 1
40 0 10 2 7 9 5 5 500 1525765743 1
41 2 5 5 7 7 5 4 1000 1525766230 1
41 0 8 6 8 7 2 7 1000 1525766407 1
41 1 6 5 6 7 4 5 1000 1525766603 1
42 2 3 6 8 3 10 7 1000 1525768189 1
42 1 2 4 7 3 10 6 1500 1525768400 1
42 0 2 4 8 4 9 9 1000 1525768571 1
44 0 6 3 7 7 6 8 400 1525769306 1
44 2 4 6 6 4 8 3 100 1525769472 1
44 1 8 6 7 7 5 6 400 1525769641 1
45 1 0 0 7 2 10 3 100 1525770400 1
45 0 2 0 3 2 10 3 200 1525770617 1
45 2 0 0 1 1 10 0 50 1525770777 1
46 1 5 0 6 3 7 6 1500 1525771815 1
46 2 1 0 2 0 9 0 0 1525772123 1
46 0 7 2 6 3 5 7 1500 1525772332 1
47 2 5 4 9 6 5 6 500 1525773587 1
47 0 8 7 6 10 3 8 500 1525773767 1
47 1 9 9 7 6 5 6 800 1525773947 1
48 2 3 0 6 5 7 0 100 1525774632 1
48 1 3 0 5 5 4 4 1500 1525774814 1
48 0 2 0 6 3 4 4 1200 1525774980 1
49 0 5 0 9 5 10 5 100 1525776074 1
49 1 4 0 7 2 10 5 80 1525776348 1
49 2 2 0 4 3 10 3 50 1525776582 1
50 0 4 1 6 6 4 1 400 1525777304 1
50 2 6 5 5 6 5 2 100 1525777488 1
50 1 3 4 2 3 2 3 600 1525777671 1
51 1 0 0 0 5 7 1 500 1525780911 1
51 0 1 0 3 1 7 1 1000 1525781098 1
51 2 1 0 2 1 9 1 100 1525781268 1
52 1 4 1 5 6 5 3 400 1525781803 1
52 2 5 2 5 6 7 2 170 1525782020 1
52 0 6 1 5 5 1 6 1000 1525782319 1

159

54 2 6 5 7 8 7 4 10 1525784306 1
54 1 8 7 9 9 3 9 100 1525784485 1
54 0 8 7 9 8 2 10 50 1525784654 1
55 0 8 4 8 9 10 8 1000 1525785532 1
55 1 10 4 8 9 8 9 1500 1525785712 1
55 2 8 4 8 8 10 7 800 1525786001 1
57 1 5 1 8 6 2 7 50 1525789052 1
57 0 6 1 5 5 5 4 70 1525789297 1
57 2 4 1 3 3 7 2 30 1525789477 1
58 2 2 1 5 4 6 4 300 1525791480 1
58 0 6 5 7 6 2 8 800 1525791653 1
58 1 5 4 5 5 6 4 400 1525791830 1
59 2 6 1 8 7 6 4 500 1525792739 1
59 1 7 1 4 7 3 1 2000 1525792926 1
59 0 7 1 6 7 3 1 3000 1525793097 1
60 0 3 3 0 3 2 6 500 1525793823 1
60 1 2 2 0 1 5 3 500 1525793995 1
60 2 0 0 0 0 8 0 100 1525794160 1
61 1 5 3 8 6 3 5 500 1525794914 1
61 2 6 4 7 5 5 5 200 1525795105 1
61 0 7 5 7 8 0 7 2000 1525795314 1
62 2 1 1 3 5 7 0 200 1525796611 1
62 0 3 2 3 6 6 4 800 1525796780 1
62 1 6 2 4 6 5 6 800 1525796945 1
63 2 3 5 8 5 3 6 500 1525797625 1
63 1 7 6 4 7 3 9 1500 1525797829 1
63 0 7 7 4 5 3 6 2000 1525798015 1
64 0 3 3 5 4 4 8 500 1525799063 1
64 1 2 2 3 3 6 4 500 1525799240 1
64 2 3 3 5 3 8 3 50 1525799409 1
65 0 1 0 6 3 5 1 100 1525800195 1
65 2 1 0 4 2 6 1 80 1525800369 1
65 1 1 0 4 2 6 1 200 1525800539 1
66 1 6 3 3 6 3 4 400 1525801306 1
66 0 6 5 3 6 2 4 700 1525801483 1
66 2 4 5 6 6 6 4 100 1525801659 1
67 1 6 5 8 8 4 9 600 1525802422 1
67 2 5 4 8 6 6 2 200 1525802596 1
67 0 7 6 8 8 3 8 800 1525802784 1

160

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction and Theory
	Thesis Structure
	Teleoperation
	Telepresence
	Time delay
	Delay compensation

	Predictive Technology
	Superimposed predictive information
	3D graphic models
	Video manipulation

	Problem Statement

	eduROV Python Package
	Current Alternatives
	Development
	Architecture
	Graphical User Interface
	Application Programming Interface
	Documentation
	Performance and Novelty Features

	Predictive Display Scheme
	Robot Configuration
	Predictive Visualization
	Implementation
	Extending and Generalizing

	Experiment
	Participants
	Experimental Design
	Task

	Procedure
	Data Recording and Analysis

	Results and Discussion
	Performance
	Gaming
	Task Load Index
	Subjective Delay
	Learning Effect
	Key Presses
	Limitations

	Conclusion and Summary
	Future Work

	References
	Appendices
	A eduROV Documentation
	B eduROV Package Code
	C Predictive Display Code
	D Experiment Info Page
	E Experiment Questionnaire
	F Data Analysis Code
	G Collected Experiment Data

