Digital Investigation 26 (2018) S107—S117

Contents lists available at ScienceDirect =
DFRWS 2018

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2018 USA — Proceedings of the Eighteenth Annual DFRWS USA

Multinomial malware classification via low-level features "

Check for
updates

Sergii Banin * ", Geir Olav Dyrkolbotn *

@ Department of Information Security and Communication Technology, NTNU, Gjevik, Norway
b Norwegian Defence Cyber Academy (NDCA), Jorstadmoen, Norway

ABSTRACT

Keywords:

Information security
Malware detection
Malware classification
Multinomial classification
Low-level features
Hardware activity

Because malicious software or ("malware”) is so frequently used in a cyber crimes, malware detection
and relevant research became a serious issue in the information security landscape. However, in order to
have an appropriate defense and post-attack response however, malware must not only be detected, but
also categorized according to its functionality. It comes as no surprise that more and more malware is
now made with the intent to avoid detection and research mechanisms. Despite sophisticated obfus-
cation, encryption, and anti-debug techniques, it is impossible to avoid execution on hardware, so
hardware (“low-level”) activity is a promising source of features. In this paper, we study the applicability
of low-level features for multinomial malware classification. This research is a logical continuation of a
previously published paper (Banin et al., 2016) where it was proved that memory access patterns can be
successfully used for malware detection. In this research we use memory access patterns to distinguish
between 10 malware families and 10 malware types. In the results, we show that our method works
better for classifying malware into families than into types, and analyze our achievements in detail. With
satisfying classification accuracy, we show that thorough feature selection can reduce data dimension-
ality by a magnitude of 3 without significant loss in classification performance.

© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Malware detection is an important part of information security.
Recently there were several major cyber attacks that influenced
power grids, banking and transportation systems, manufacturing
facilities and so on Reuters (2017), The Verge (2017) and all of them
used malware for achieving their final goals. Despite the use of anti-
virus solutions, complicated anti-detection techniques allowed
adversaries to avoid defense mechanisms. This fact points out a
need for improvements in malware detection.

Malware is used for different purposes: to show ads to users,
spread spam, track user activity, steal data, create backdoors and so
on. Malware is often not created with a single specific purpose, but
rather as a part of more advanced threats. APT or Advanced
Persistent Threat is a human being or organization (WAMPTY
Enterprise) that operates a campaign of intellectual property
theft, the undermining of a company's or country's operations
through stealthy, targeted, adaptive and data focused (Cole, 2012)
attack techniques. Something has to exploit a victim's weaknesses,

* Corresponding author.
E-mail addresses: sergii.banin@ntnu.no (S. Banin), geir.dyrkolbotn@ntnu.no
(G.O. Dyrkolbotn).

https://doi.org/10.1016/j.diin.2018.04.019

something has to aid in the installation of persistence tools, some-
thing has to communicate with command and control servers, and
something has to perform actions in the victim system. Even though
specific actions might be launched manually from the command
and control server, they may rely on remote access trojans and
backdoors (Rudd et al., 2017) present in the victim system. As we
can see, malware could be used for different purposes and goals.

Because of the variety of malware functionality, it is important
not only to detect malice (malware detection), but to differentiate
between different kinds of malware (multinomial malware classifi-
cation or malware classification) in order to provide better under-
standing of malware capabilities, describe vulnerabilities of
systems and operations as well as to use appropriate protection and
post-attack actions.

Malware classification or categorization is a common problem
that is analyzed in many research articles (Tabish et al., 2009;
Sathyanarayan et al., 2008). There are two widely used malware
categorization approaches: malware types and malware families.
However, literature studies show that authors rarely provide
proper definitions of these terms. This can lead to the various
misunderstandings and non-valid comparisons. E.g. in Tabish et al.
(2009), authors mention viruses, backdoors, trojans etc. while talk-
ing about classifying malware types and families. Another example

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sergii.banin@ntnu.no
mailto:geir.dyrkolbotn@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.04.019&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.04.019
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.04.019
https://doi.org/10.1016/j.diin.2018.04.019

S108 S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117

of inconsistent terminology can be found in Sathyanarayan et al.
(2008). In this paper, authors claim that their system is capable of
detecting the malware families (in their case trojans, backdoors,
worms). Nevertheless, they compare their results to the results from
other papers where research was done on the malware types. Au-
thors of Saeed et al., (2013) attempted to elaborate on the definition
of the term malware; however, later on they use term malware
family when talking about viruses, trojans, worms and other mal-
ware types. It might happen, that the use of inconsistent termi-
nology is more common among academics and not malware
analysis practitioners. Therefore, we must emphasize, in this paper
that we use the following definitions created after reviewing de-
scriptions of malware categories provided by well-known vendors
(e.g. Microsoft, Symantec etc):

Malware type is assigned according to general functionality.
Malware is grouped into a malware family according to its
particular functionality.

Where general functionality is about what malware does (which
goals it pursues), and particular functionality is about how malware
acts (which methods it uses in order to achieve its goals).

As it appears, it is insufficient to know that some malware is
affecting operations: knowledge about its category (family or type)
can aid in restoring a system's state as well as in developing new
security mechanisms to prevent similar problems in the future. This
necessitates standard definitions of different malware kinds and
methods that allow the effective categorization of detected
malware.

To avoid detection, malware creators develop additional evasive
methods to thwart detection by antimalware software. They utilize
various obfuscation techniques such as metamorphism, poly-
morphism, encryption, dead code insertions, and instruction sub-
stitution (Schiffman, 2010). Such methods allow altering the
appearance of a file and its static characteristics. The basic example
is changing hash sums (such that SHA-1 or md5) used as file sig-
natures by means of changing different strings in the file. Moreover,
dead code insertions will change opcode sequences in the execut-
able, making detection more difficult.

There are two main ways to perform malware analysis which
are widely used and described in the literature (Distler and
Hornat, 2007; Kendall): static and dynamic. Static analysis is per-
formed without execution of a malicious file. The main purpose of
this approach is to collect different static properties: bytes, opc-
odes and API n-grams frequencies, properties of Portable Execut-
able header, strings (e.g. commandline commands, URLs etc) and
others (Schiffman, 2010; Uppal et al., 2014). Dynamic analysis is
done by executing malware in a controlled environment (a virtual
machine or emulator) and recording actions it has done in the
system. These include patterns of a registry, network and disk
usage, monitoring of API-calls, tracing of executed instructions,
investigation of memory layout and so on (Egele et al., 2012).
Specialized sandboxes like Cuckoo (Cuckoo Sandbox, 2015) or
other Virtual Machines can be used. They might be assisted by a
debugger or other tracing software. Some authors assume (Egele
et al., 2012; Prakash et al., 2015) disk and network activities are
essential for malware detection, but few authors explored the
capabilities of memory properties analysis (Kawakoya et al., 2013;
Khasawneh et al., 2015).

Though malware creators use a variety of sophisticated evasive
techniques (Rudd et al., 2017), it is impossible to avoid execution on
the system's hardware. Earlier low-level (or hardware) activity has
proven to be efficient in malware detection (Banin et al., 2016). In
this paper, we use a similar technique for multinomial malware
classification. Achieved results and findings will be used in future

work, where combinations of high- and low-level activity will be
used for malware categorization according to the specific context.

In this paper, we use sequences of memory access operations
generated by a set of malicious executables as a source of features for
machine learning algorithms. We apply dynamic analysis inside the
virtualized environment as it is a safe (we don't let real malware
samples spread outside of our environment) and time-efficient so-
lution (experiments on physical machines would take significantly
longer). We find the best features for distinguishing between ten
predefined malware families and ten types. However, our models
should be simple enough so that we can build a connection between
low-level and high-level activity in the future work. Therefore, we
may choose less accurate but simpler models to make analysis
easier. Our initial hypothesis predicts that since malware types and
families have a valuable difference in high-level behavior, we might
be able to find distinctive low-level behavior patterns among mal-
ware categories. In the future work, we will test our models on the
dataset of newer malware in order to check their capabilities against
previously unknown (as for the models) malware. Our second hy-
pothesis is that since malware families are assigned according to
their particular functionality (e.g. exploiting of a certain vulnera-
bility), they might generate more explicit activity that allows dis-
tinguishing better between families than between types.

The remainder of the paper is arranged in the following order:
Section 2 contains State of the Art, Section 3 describes our meth-
odology, Section 4 describes our results, Section 5 presents analysis
of the results achieved, Section 6 presents a series of short remarks,
conclusions, and a projection of future work.

2. State of the art

As was written above, in order to perform appropriate coun-
teractions (to prevent) or postactions (to recover), we need addi-
tional information about malware category. With knowledge about
malware types, we can apply appropriate defense mechanisms: e.g.
in order to protect against Ransomware, we should keep an up-to-
date backup of the data, while defense against self-replicating
(Viruses) malware could be implemented with a thorough man-
aging of a network traffic and removable media. In addition to
knowledge about malware type, knowledge about malware family
can help to set up appropriate defense mechanisms. Moreover,
information about malware family can serve well in incident
response actions: proper definition of malware family points to the
potentially affected system components.

Many authors have performed research on malware classifica-
tion. Different techniques and features are used to classify unknown
malware into known malware categories or to detect outliers and
perform a thorough analysis of such anomalies. For example, the
authors of Kong and Yan (2013) combined different types of mal-
ware attributes (opcodes, API calls, flags, registers etc) in order to
classify malware into 11 families. They used discriminant distance
metric learning and pairwise graph matching in ensembled classi-
fier to create an efficient framework that is capable of detecting
previously unknown samples. Authors of Tian et al (2008) used a
length of functions for classifying Trojans into 7 different families.
They created pretty fast (O(n) training and classification time) and
relatively accurate (around 80% average accuracy) method for mal-
ware classification. They also warn, that their approach might not be
as successful on other malware types such as Viruses, where mali-
cious code is difficult to extract. The same authors in their newer
paper (Tian et al., 2010) used API calls and their parameters as fea-
tures for malware detection, and classification of 10 malware fam-
ilies. They managed to achieve up to 97% accuracy in malware
detection, and up to 95% accuracy in malware classification.

S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117 S109

Nevertheless, malware analysis always challenges. Authors of
Branco et al (2012) did a thorough review of anti-debug, disas-
sembly and VM techniques on the dataset of more than 4 million
malware samples. As was shown, around 34% of malware is packed,
while most of the packers listed in the paper contain some kind of
anti-debug or anti-reverse engineering techniques. Moreover,
among samples considered nonpacked more than 68% contain
obfuscation, 43% contain anti-debugging and 12% contain anti-
disassembly techniques. This gives a clear view of a need of
advanced dynamic analysis. However, more than 81% contain anti-
VM techniques. The presence of anti-VM techniques might cause
some problems for dynamic analysis. The authors didn't mention
how they created their dataset and how the distribution of anti-
techniques might be different from a real world. For example,
Symantec published a paper where they claim that around 18% of
malware stop execution when detected while being launched on a
virtual machine (Wueest, 2014). Also, they say that a significant
amount of organizations were planning to use server virtualization
by the end of 2015. This means that malware may run on virtual
machines or even created specifically to act on VMs and use their
vulnerabilities (Wueest, 2014). Thus dynamic malware analysis,
which is often performed in virtualised environments (Gandotra
et al., 2014), is a relevant and promising research topic.

Dynamic malware analysis could be done on the different levels
regarding to how “far” the features are from the hardware. For
example, API calls or network analysis can be considered as high-
level features and were proved to be reliable features for mal-
ware analysis (Gandotra et al., 2014). On the other hand, memory
activity (Banin et al., 2016) (Kawakoya et al.,, 2013), opcodes
(Khasawneh et al., 2015; Kirat et al., 2014), file system activity (Kirat
et al,, 2014) and other hardware-based features (Ozsoy et al., 2016)
can be used for malware detection and considered as low-level
features.

When studying memory access traces, we use Intel Pin (IntelPin,
2017), a binary instrumentation tool that allows us to capture
detailed information about every single access to memory. Malware
analysis usingf Intel Pin was described earlier in Kawakoya et al
(2013) and Banin et al (2016). Authors of Kawakoya et al (2013)
tested model in a virtual environment and in a real environment
with installed Windows XP or Xen Linux. They recorded the
following features: API calls (both system or user) if any file or
folder was modified, calls which created symbolic or hard links,
calls and arguments passed to function exec(), and instructions that
executed memory operations such as read and write. While in our
paper we target separate memory access operations generated by
separate opcodes, authors of Kawakoya et al (2013) used basic
blocks of a program. The basic block is a sequence of instructions
executed between conditional branching instructions. Together
with other properties of memory access operations in the basic
blocks, authors studied memory range, the presence of certain
operations and the size of transferred data. Using records of the
execution trace, it was possible to create regular expressions and
security policies, to use them for malware detection. Finally, 100%
detection rate was achieved for both Windows and Linux on the
original and obfuscated malware samples. Authors also state that
their approach allows one accurately detect malware, and achieved
93.68% code and path coverage of input-dependent executables.
Ensemble learning method for malware detection with a use of a
number of properties extracted with Intel Pin (IntelPin, 2017) was
proposed in the Khasawneh et al (2015). Authors used the fre-
quency of opcode occurrence, presence of a particular opcode,
difference between the frequency of opcode in malware and benign
executables, distance and presence of memory references, and total
number of load and store memory operations as well as branches.
For each sample in their dataset, they recorded a generalized

feature vector for every ten thousands of executed instructions,
reaching up to 95.9% of classification accuracy.

Paper Banin et al (2016) is worth special attention, since the
authors used memory access traces for malware detection. Their
initial goal was to show that low-level features (memory access
patterns in their case) are applicable for malware detection tasks.
They used a virtualized environment and Intel Pin (IntelPin, 2017)
to record memory access operations produced by malicious and
benign executables. Using Machine Learning, they achieved more
than 98% of accuracy for malicious against benign classification.
Even though they used a different feature selection method, this
work created a baseline for our research. However, the authors of
Banin et al (2016) didn't take into account malware categories
present in their dataset which points to one of the main goals of our
research: testing whether memory access operations applicable for
multinomial malware classification.

Additionally, behavior analysis has its disadvantages: it might
be vulnerable to anti-emulation, when malware is created with
capabilities not to reveal it's functionality in emulated and virtual
environments. Even though it might not be the biggest problem,
behavior based detection methods have another disadvantage:
malware cannot be detected being executed (Rudd et al., 2017).
The speed of detection depends on the features used for detec-
tion. E.g. if we use n-grams (or 1-g) of API calls (or any other
high-level event), our detection system will not make a decision
before a certain API call is executed. However, single API call
invokes the execution of many (rough analysis allows us to say
hundreds) of opcodes with different parameters. So it is hypo-
thetically possible to detect a needed high-level event before it is
completed, since opcodes provide better data granularity. This is
yet another reason to study low-level features in malware
context. However, we need significantly more storage to store
information about executed opcodes and their parameters than
for API calls: from what was said above, it is easy to see that
amount of data (to store and to analyze) can be larger in several
magnitudes larger. In it's turn, memory access sequence takes
less space and can be stored as a sequence of binary elements (R
for read and W for write operation). It therefore simplifies process
of pattern search and matching. Memory accesses potentially
provide granularity better than opcodes: it is therefore possible
to detect execution of opcodes sequence before it is finished.
Moreover, since not all opcodes generate memory activity (Banin
et al., 2016) this method should create smaller performance
overhead while giving detection system more time to make a
decision.

Taking into account the presence of anti-debug techniques
mentioned above, as well the contiguous growth of virtualization
solutions' market share (PRNewswire, 2016) our research can aid
for out-of-VM security solutions. Since many virtualized solu-
tions might contain sensitive information, vendors won't always
have access to the systems, while malware capable of escaping
virtual environment can undermine not only host system
(Wueest, 2014), but other guest systems as well. Methods that
allow monitoring the state of guest system from outside a virtual
machine can improve the security of a virtualized environment
without breaking ethical and privacy policies. In their paper (Hua
and Zhang, 2015, Gu et al.,, 2012), the authors designed and
implemented a VMM-based hidden process detection system.
Their system is placed outside of a protected virtual machine and
interacts with a virtual machine manager. During the virtual
machine introspection they inspect low-level state of protected
virtual machine and track presence of hidden processes or lack of
critical processes. In Gu et al. (2012), authors created a system,
that can detect OS type with a use of fingerprints extracted from
virtual machine memory without false positives. Authors of

S110

Feature
construction

Feature
extraction

Dataset

Training and
testing of Machine
Learning models

Feature
selection

Fig. 1. Simplified experimental flow.

Ozsoy et al (2016) proposed Malware-Aware Processors, where
they suggest hardware-based online monitoring of malware. As a
features for malware detection they use frequency of memory
read and write operations, memory address histogram, frequency
and existence of opcodes and instruction categories. Moreover,
hardware manufacturers tend to invest in hardware-based se-
curity solutions (Ozsoy et al., 2016). Because of everything
written above, the results of our research may contribute to
different aspects of digitized society, from improving the security
of operations to helping security measures agree with ethical and
privacy considerations.

3. Methodology

In this section we describe our experimental flow and explain
details about dataset, feature selection, chosen machine learning
methods, and hardware. We also outline several phases of analysis
that we perform on the achieved results.

In our study we followed the scheme provided in Fig. 1. We first
created two datasets: one for malware families, and another for
malware types. We then extracted features by recording memory
access traces from each sample. Afterwards, we constructed n-grams
of asize 96 for each sample. Lastly, we performed feature selection and
trained Machine Learning Models. A detailed scheme of our experi-
mental flow is shown in Fig. 2 and described below in this Section.

3.1. Dataset

The initial dataset was created under the initiative of the Tes-
timon (T. R. Group, 2017) research group and consisted of 400 k

S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117

malware samples. All malware samples were PE32 executables.
This dataset was previously used for research purposes and
described in more details in Shalaginov et al (2016). The malware
that we used in our research was selected under the following
criteria: the file should not be a DLL (only EXE files), it should not
contain AntiDebug or AntiVM features, it contains GUI and files
were sorted ascending according to a size of a file. Information
about file type, AntiDebug, AntiVM and GUI were gained through
the use of peframe (Amato, 2016). As our research is aimed on proof
of concept, dealing with DLLs and AntiDebug features was not a
case, so we eliminated potential problems by filtering such things
out (though we argue that study of AntiDebug influence will be an
important part of future work). As we described in previous sec-
tions we can skip dealing with AntiVM, however we should
remember this for assessing the results. We selected malicious files
where peframe detected a presence of GUI for a simple reason:
malware samples without GUI can fall into idle mode soon after
starting, making it hard to collect enough data and increasing the
time of dynamic analysis (Banin et al., 2016). The presence of GUI
should not significantly influence the results because it is present in
every single sample. Because if something influences every sample
we might assume, that results will be equally biased. We also
decided to select small files because our goal was to prove a pres-
ence of features that can help to distinguish between 10 malware
categories. If we used big files with long execution times it would
be more likely to find a unique feature for each malware sample,
which is good for classification accuracy, but won't contribute to
understanding our findings and won't prove that our hypothesis
works.

The main goal of this research is to check how memory access
patterns can aid in malware classification. In order to do this, we
created two datasets: the first contain 10 malware types and the
second contain 10 malware families. We decided to choose the
following malware types: backdoor, pws, rogue, trojan, tro-
jandownloader, trojandropper, trojanspy, virtool, virus, worm. Addi-
tionally we chose the following malware families: agent, hupigon,
obfuscator, onlinegames, renos, small, vb, vbinject, vundo, zlob. The
reason for such choice was that these types and families were
prevalent in our malware dataset. We tried to create a balanced
dataset, so each malware category contained around 100 samples.
However, not all of the files launched, so they were rejected before
analysis. Our datasets contained 952 files for malware types and

) Feature Feature selection
Feature extraction construction

Testm[’n;;r:al;/l;lware —{>{ 1,000,000 memtraces 96-gram 1
| Select best n- i
grams based on Construct feature vector| |
Information Gain | p| using 28, 1000, 5000, | |
10000, 15000, 30000, 1

50000 best features

1,000 files
——{> (100 pereachof 10 |——

malware families)

1,000 files

Select best 29 n-
grams based on
Correlation Feature [
Selection

Feature vector of length 5000

(100 per each of 10 =
malware types)

Feature vectors of length 29,

A\ 4

1000, 5000, 10000, 15000,
30000, 50000

| Bitmap construction

Machine Learnlng »| Results
algorithm

A\ 4

Fig. 2. Detailed experimental flow.

S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117 S111

0.8

o
o

millions

1
>

0.2

Amiunt of memory access operations,

0 200 400 600 800 1,000
File number

(a)

1

08

0.6

millions

0.4

0.2

Amount of memory access operations,

0 200 400 600 800 1,000
File number

(b)

Fig. 3. Memory access operation numbers for families and types.

983 files for malware families. We can therefore assume that our
datasets are approximately balanced, and we don't need to analyze
the influence of sample distribution on the final results.

3.2. Feature construction and selection

The first task is to record a sequence of the first 1,000,000 (one
million) memory access operations performed by an executable.
We record only the type of operation: W for Write, and R for Read.
This length of a sequence was chosen based on results from pre-
vious research (Banin et al., 2016) where it provided the best ac-
curacy for malware against benign classification. We also found,
that not all the executables can produce a greater or equal amount
of memory access operations. On the Fig. 3, the charts show the
distribution of memory access operations gained from types and
families datasets. We analyze all samples regardless the amount of
memory access operations they produced. We do not truncate or fill
missing operations with zeros: instead we work with the available
amount of data. We explain our choice in the following paragraphs.

As was stated in Section 2 in some scenarios it might important
to detect malicious process as fast as possible. Also in Section 1 we
stated that our models should be simple enough to perform high
level analysis of the findings in future work. So we need to find
features that do not rely on how long the process is executed. The
sequence of memory access operations is later on divided into
overlapping n-grams of a length 96. An n-gram is a sub-sequence of
length n of original sequence of length L. For example if an original
sequence of length L = 6 [WRWWRW] is divided into n-grams of
length n =4 (4-g) then our n-grams set will look the following way:
{WRWW,RWWRWWRW}. Each n-gram starts from the second
element of the previous one: they overlap on the n-1 elements as it
is shown on the Fig. 4.

This n-gram size was also chosen due to findings published in
previous research (Banin et al., 2016). We might notice, that out of
29 possible n-grams we have to select the most relevant, thus
significantly reduce feature space. N-grams are later stored for
feature selection. Some malware researchers use file-wise fre-
quency of features as feature values: file-wise frequency is a ration
between number of observations of a certain feature in the file and
overall number of all observation of all features. In our case n-grams
are stored without file-wise frequency for two reasons. First, we
can not guarantee the amount of memory access operations (how
long the file will run before stop) produced by a random file.
Second, if we are able to find unique memory access patterns
that comply with our classification goal, we can continue with more

in-depth analysis of results, provide better high-level description of
low-level findings.

As numbers of features are too big to just simply feed them to
the machine learning models additional feature selection methods
are therefore required. We obtained more than 15 M of features for
malware families dataset, and more than 6 M of features for mal-
ware types dataset. The numbers are big but not surprising:
sequence of memory access operations is basically a binary
sequence with two possible elements R or W, so each sequence on
1 M operations can potentially contain up to 1M-96 + 1 different
96-g. However, during preliminary experiments we found that such
amounts of data are too big to use in general-purpose machine
learning libraries. Also models built on high-dimensional data
provide results that are harder to interpret by human analysis. We
used a feature selection method based on Information Gain. In-
formation gain is an attribute quality measure based on class en-
tropy and class conditional entropy given the value of attribute
(Kononenko and Kukar, 2007). We ranked all features according to
their Information Gain and selected 50,000 with highest rank. We
chose this number for several reasons. First, is computational
complexity while training ML models, and second because we
know from previous research (Banin et al., 2016), that we need
around 400 features for class to get good classification accuracy.
This reason is however more empirical since in this paper we study
multinomial classification. After feature selection we use several
conventional Machine Learning models in order to check our hy-
pothesis, quality of feature selection and get some additional
findings. To study the classification performance dependency on
number of features we also selected best 5, 10, 15 and 30 thousands
of features. We also performed correlation-based feature selection
(CfSubsetEval (Hall, 1998) from Weka (W. University, 2016)) on the
best 10,000 features. This method selects features based on their
correlation between class and other features. In simple words: the
best feature is the one that correlates with classes and does not
correlate with other features (does not bring redundant informa-
tion). This gave us the 29 best features, and we will show in Section

n-gram #i

WRWWRR......ccvviiiiiien, RWRR
. L

]
n-gram #i+1

Fig. 4. Example of overlapping n-grams.

S112 S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117

Table 1
Classification performance for families and types datasets.

Number of features Accuracy for families

Accuracy for types

kNN RF J48 SVM NB ANN kNN RF J48 SVM NB ANN
29 0.282 0.274 0.265 0.246 0.232 0.271 0.201 0.204 0.2 0.201 0.198 0.206
5000 0.806 0.802 0.800 0.651 0.646 N/A 0.642 0.637 0.623 0.468 0.430 N/A
10,000 0.802 0.807 0.793 0.607 0.599 N/A 0.663 0.678 0.648 0.461 0.412 N/A
15,000 0.800 0.802 0.795 0.607 0.600 N/A 0.665 0.661 0.645 0.455 0.415 N/A
30,000 0.814 0.818 0.814 0.591 0.606 N/A 0.673 0.688 0.666 0.419 0.412 N/A
50,000 0.833 0.845 0.827 0.648 0.572 N/A 0.668 0.675 0.665 0375 0.386 N/A
CfSbased 29 features 0.784 0.781 0.769 0.740 0.724 0.783 0.668 0.668 0.626 0.584 0.498 0.617

Bold emphasizes which ML algorithm achieved best results for families and types datasets. Also it is important to show, what was achieved by ML algorithms with 29 features.

4 that they perform almost as good as thousands of features.
However, it was impossible to get a larger number of features from
correlation-based feature selection due to computational issues. On
the Table 1 and on the Fig. 5 we also present results for best 29
features selected by Information gain, as so we can compare feature
selection performance on similar feature numbers. We omit results
for feature numbers between 29 and 5000 to simplify presented
material as they don't add any significant information to the reader.

3.3. Machine learning algorithms

As a machine learning (ML) methods we chose the following: k-
Nearest Neighbors (kNN), RandomForest (RF), Decision Trees (]J48),
Support Vector Machines (SVM), Naive Bayes (NB) and Artificial
Neural Network (ANN). The following parameters (default for Weka
package) were used for ML algorithms: KNN used k = 1; RF had 100
random trees; J48 used pruning confidence of 0.25 and minimum
split number of 2; SVM used radial basis as function of kernel; NB
used 100 instances as preferred batch size; ANN used 500 epochs,
learning rate 0.3 and a number of hidden neurons equal to half of
the sum of a number of classes and a number of attributes. The
results for ANN are shown only for the smallest amount of features
since machine learning software Weka (W. University, 2016) was
not able to finish training of such big neural networks. This fact can
be explained by means of time complexity for training. According
to S. for Machine Learning (2017) computational complexity of ANN
is O(nMPNe) where n is a number of input variables (size of a
feature set), M number of hidden neurons, P number of output
values (10 in our case, since we have 10 classes), N number of
samples, e number of learning epochs. Artificial Neural Networks
built by Weka by default has 1 hidden layer, when the number of
hidden neurons is taken as M = (P + n)/2 and e equals 500. For the

CfSbased 29, SVM
Cfsbased 29, NB

/

CfSbased 29, ANN
CfSbased 29, kNN e
CfSbased 29, RF

fsbased 29,148 —e—Accuracy, kNN
0.60 \—'** —&— Accuracy, RF

—e—Accuracy, J48

Accuracy

—m— Accuracy,SVM

o
&

—e—Cfsbased 29, kNN
—&—CfSbased 29, RF

0.40 Accuracy, N8
——CFSbased 29, J48
—e—Cfsbased 29, SVM
—@—CfSbased 29, NB

CfSbased 29, ANN

[10000 20000 30000 40000 50000
Number of features selected by InfoGain

(a)

Accuracy

dataset with 29 features, 10 classes, around 1000 samples and 5-
fold cross validation it took 5 x 9seconds=45seconds to train
models. The time complexity in this case is O(3-108operations).For
example, for 5000 features the time complexity would be around
0(6-1013) what will take roughly 10° times more time to complete
a task which is not suitable for our purposes since 45s-10° = 52days
of training time.

We held our experiments on Virtual Dedicated Server (VDS)
with Intel Core CPU running at 3.60 GHz, 4 cores, SSD RAID storage
and 48 GB of virtual memory. As a main operating system Ubuntu
14.04 64bit was used. Additionally, MySQL 5.5, PHP 5.5.9 and Vir-
tualBox 5.0.16 were used. Windows 7 32-bit was installed on the
VirtualBox virtual machine as a guest OS. It is widely spread
(Netmarketshare, 2016) and malware written for 32-bit OS's will
run on 64-bit OS as well as well. We also met some virtualization
problems and were not able to run VM with 64-bit OS installed.

3.4. Analysis

During the analysis stage we try to explain achieved results in
terms of numbers and words. We perform two types of analysis:
statistical and context using sub-categories of our two datasets
(different than original 10 classes). In statistical analysis we look
into per-category classification accuracy and use statistical mea-
sures to explain differences in performance of machine learning
models for different malware categories. During context analysis
we are seeking an understanding of classification performance with
a use of malware functionality description. As a results of analysis
we not only understand how distribution of subcategories influ-
ence on per-category classification accuracy, but also show how
human understandable explanation of malware functionality can
contribute to an explanation of malware classification performance.

0.8
CfSbased 29, RF

0.7 Cfsbased 29, kNN

¢ M‘

\ ~—@— Accuracy, kNN
06 ey

——A RF
CfsBased 29, SVM ceuracy,

Cf§Based 29, ANN —@— Accuracy, J48

CfsBased 29, NB —~._

—&—CfSbased 29, kNN
—e—CfsBased 29, RF
—&—Accuracy,SVM
—@— Accuracy, NB
—&—CfSBased 29, J48
0.3 —&—CfSbased 29, SVM
—e—CfSBased 29, NB

4— CfSBased 29, ANN

0.2
0 10000 20000 30000 40000 50000

Number of features selected by InfoGain

Fig. 5. Classification performance for families (a) and types (b) datasets.

S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117 S113

With these findings we contribute to our future work where we are
going to correspond low- and high-level activity and make results
achieved with low-level features more understandable.

We also compare our results with results from a paper
(Shalaginov et al., 2016) where authors used similar malware cat-
egories but did static analysis and used different ML algorithms.

4. Results

In this section we present results and key finding of our exper-
iments. In order to test the quality of our ML models we used 5-fold
cross validation. As a classification quality measure, we use accu-
racy: it allows us to compare results in this paper with results from
previous study published in Banin et al (2016). It also shows how
many instances have been correctly identified in our multinomial
classification problem. In the Table 1 we present results for classi-
fication accuracy of different ML algorithms as a function of number
of features. Each cell contains the accuracy that a certain ML method
achieved with a given number of features. The last row shows ac-
curacy that given ML method achieved with 29 features selected
based on correlation (Hall, 1998). We separated it from other feature
sets as here we used different feature selection method.

The results are also presented in Fig. 5. As we can see SVM and
NB, in general, showed lower accuracy than other methods. This is
interesting, since SVM performed pretty well in previous studies
(Banin et al., 2016). Additionally, in general, neither SVM nor NB
improve their performance with an increased number of features.
We can also see other ML methods (KNN, RF and J48) slightly
improve their performance as number of features increase. How-
ever, using 50,000 features instead of 5000 to gain a few extra
percents of accuracy is not necessarily an efficient method, when
our goal is to better understand how low-level features can be used
for multinomial malware classification. Therefore we might put
emphasis on a little bit less accurate but more understandable
model. Because of this we decided to compare ML methods per-
formance when only 29 features used. On the charts, these results
are shown with separate points aligned to the most representative
results on the horizontal axis. With 29 features (selected by
corellation-based feature selection) given, ML methods such as
kNN, RF and J48 show either small drop in performance or even
some increase when compared to 5000 features. Other ML methods
such as SVM and NB show significant grows of classification accu-
racy when given fewer features. One of the possible reasons could
be that SVM is not originally designed for multinomial classifica-
tion, it means that in order to deal with more than 2 classes it has to
build several one-versus-all or one-versus-one classifiers. SVM is
also known to have problems in so-called HDLSS datasets. High
Dimension Low Sample Size dataset is a dataset, where the number
of features is much bigger than the number of samples (it is true for
most of our datasets, where number of samples is no bigger than
1000, while feature number starts from 5000). This fact was
pointed out in different studies such as Ahn (2006) and Marron et al
(2007); Rennie et al (2003). Naive Bayes classifier on its turn as-
sumes that features are independent. But when we used Informa-
tion Gain for feature selection, we can have a lot of potentially
correlated features, thus Naive Bayes showed low classification
performance in comparison to dataset where features where
selected with respect to their mutual independence. Such behavior
of Naive Bayes was studies in Rennie et al (2003). Also it is worth
mentioning, that all the ML methods showed poor performance
when 29 features selected by Information Gain were used.

As we are able to see, classification performance are better when
our algorithms are used for distinguishing between malware fam-
ilies and worse for malware types. We can explain this fact by
referring to Section 1, where we provided definitions for term

malware family and malware type. From the definitions it is easy to
understand, that since malware sample is put into malware type
according to general functionality it might be harder to distinguish
between such categories, since a goal that malware achieves can be
achieved by different methods. On the other hand, malware families
are about particular functionality, which means that methods used
by samples within family should be more similar. This interpretation
can be strengthened by the following observations: from malware
families dataset we were able to extract more than 15 millions of
uniques features, while types dataset gave us “only” 6 millions of
such. It is worth mentioning that it took 1.66 h (5987 s) to run
through more than 15 millions of features extracted from malware
samples divided in families, and select 50,000 based on Information
Gain. And it took 1.72 h (6192 s) to run through more than 6 millions
of features extracted from malware samples divided in types, and
select 50,000 based on Information Gain. In the next section we will
provide more analysis of the achieved results and describe some
valuable findings.

5. Analysis

In this section we analyze our findings. First, we analyze our
results by means of statistics, e.g. we use our posterior knowledge
of achieved accuracy and additional subcategories in order to
explain why some malware categories are easier to classify than
other. After we perform context analysis and try to show how hu-
man understandable description of malware categories can assist
us in analyzing classification performance. Later we compare our
results with results presented in Shalaginov et al (2016) since au-
thors used similar malware categories for their research.

5.1. Statistical analysis

For the analysis we will focus on the classification results from
kNN algorithm. As it can be seen from Table 1 KNN provided best
classification accuracy for both families and types when given 29
features selected with correlation-based (Hall, 1998) features se-
lection. Also we chose this feature set for deeper analysis since
following a rule of a thumb “less is more” we think that smaller
feature set is much easier to analyze and it complies with our goals
from Section 1. The question about a trade-off between model
complexity and accuracy is not properly studied in the literature.
However, the authors of Canali et al (2012) state that best models
usually rely on a few features.

For our analysis we performed the following steps.

1. We recorded per-sample classification results and created a ta-
ble where information about classification of each sample in our
dataset is stored.

2. To this table we added a column where information about
additional subcategories of each sample is stored. For samples in
the malware types dataset, we added information about mal-
ware families, and vice versa.

3. As table from Step 1 allows us to calculate per-family (or per-
type) classification accuracy we examined the influence of
additional subcategories on the efficiency of our machine
learning model to detect a certain malware type or family.

In the following paragraphs we describe our analysis workflow
in a more detailed manner.

As we obtained our results based on average from a 5-fold
cross validation, we decided to run 5-fold cross validation 5
times. Each cross-validation was done with a different random
seed value in Weka (W. University, 2016). This allowed us to make
each sample to be in the test set (in other words - not used in

S114 S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117

model generating) more than once. We combined achieved re-
sults and took final information about classification result for a
certain sample by the majority of results from all 5 runs. In order
to analyze the influence of additional subcategory on classifica-
tion performance, we calculated entropy and coefficient of
unalikeability of subcategories for each malware family or type.
The (informational) entropy (Shannon, 1948) is calculated as
H(X) = -3 1p(x;)log, p(x;) where X is a variable (subcategory in
this case), x; is an i" value of a variable, and p(x;) is a probability of
a variable X to obtain value x;. In simple words, entropy is often
used to show randomness of a certain variable. It is also used in
static malware analysis for detection of packers (Lyda and
Hamrock, 2007). So in our case higher entropy will be a sign
that certain category (type or family) are more diverse in terms of
subcategories. In the matter of interest, we also used a coefficient
of unalikeability (Perry and Kader, 2005). It is an index of quali-
tative variation that measures variance of a nominal attribute (like

Z#JL‘(X,, j

our subcategory). It is calculated as u = =—) where c(x;,x;) =

{ (1)7 ;{ii j}% } Itis a very simple coefficient, however it efficiently
reflects variance of a nominal variable: if all the data are equal
(variable obtain a certain value for all positions) than unalike-
ability is 1, and 0 if all positions are different. As we will show later
unalikeability has a strong negative correlation with entropy.
After looking at results from Section 4 and taking into account our
initial hypotheses our first guess was that the more subcategories
are found within a specific class the more difficult it is to gener-
alize over that class. However pure number of subcategories will
not reflect their real distribution, and that was an important
reason to introduce some more advanced measures described
above. On the Table 2 we present analysis of subcategory distri-
bution on the classification accuracy.

As we can see, entropy in terms of subcategories in general is
higher for malware types than for malware families. This can be
easily explained by the fact that malware types samples are rep-
resented by higher number of subcategories. In order to illustrate
findings from Table 2 we will use charts on Fig. 6. As we have
written above, we can see a strong negative correlation between
entropy and accuracy. However accuracy does not strongly
dependent on neither unalikeability nor entropy. As we can see for
both families and types datasets we can find classes with relatively
high and low accuracy regardless the fact they share similar
amount of subcategories and similar value entropy.

On the Table 3 we show Pearson'’s correlation between corre-
sponding columns in Table 2 respectively. As we can see from these
tables, accuracy is strongly affected by the number of subcategories

Table 2

or entropy in types dataset. This is yet another proof that families
are assigned due to particular functionality, thus more alike within
one family, and more diverse within several families. Table 3 also
shows that entropy and coefficient of unalikeability has very strong
(close to —1) correlation. However it is also worth to analyze
several specific cases in order to understand the nature of different
classification accuracy for different malware categories.

5.2. Context analysis

In this subsection we analyze how human understandable
description of additional subcategories influence classification
performance. Within each (families and types) dataset we compare
categories with high and low per-category accuracy by means of
their two most frequent subcategories.

First, we will take a look at families dataset. For example mal-
ware family zlob has high classification accuracy (0.99) and rela-
tively low entropy (0.29). It belongs to two types (subcategories)
such as trojandownloader and trojan with classwise frequencies of
0.95 and 0.05 respectively. However, another malware family
vbinject has even lower entropy (0.08) but much lower accuracy
(0.59). It also belongs to two types such as virtool and trojan with
classwise frequencies of 0.99 and 0.01 respectively.

Second, let's take a look at types dataset. Malware type virus has
relatively high entropy (5.42) and relatively high accuracy (0.81).
Samples of this type belong to 55 different families (subcategories).
And two most frequent are small and radix with classwise fre-
quencies of 0.12 and 0.05 respectively. On its turn, malware type
rogue has the highest accuracy of 0.86 with way lower entropy of
2.08. Samples of this type belongs to only 9 families, two most
frequent of which are fakexpa and internetantivirus with classwise
frequencies of 0.43 and 0.35 respectively. On the other hand, mal-
ware type worm has entropy (5.69) slightly higher than virus, but
almost twice lower accuracy (0.43). Samples of worm type belongs
to 63 families, two most frequent of which are roram and kelvir with
classwise frequencies of 0.08 and 0.05 respectively.

In the first case we might admit, that trojandownloader and
trojan families might have relatively similar behaviour, because
first downloads and installs another malicious software, while
others are trojans by itself. Yet they share a similar feature: they
might look legitimate, and trick user to download and/or run them.
On the other hand virtools are aimed on modification of other
malicious software in order to hide them from antivirus software.
At a first glance it might look like trojandownloaders and trojans
are more similar than virtools and trojans. However in both cases
trojans make up only small amount of all samples. This is a very
important finding and we will return to it later.

Accuracy (acc.), unalikeability (unalike.), entropy and number of subcategories (subN) for malware families (a) and types (b). Onlinega. stands for onlinegames, trojandr - for

trojandropper, trojando. - for trojandownloader.

class acc. unalike. entropy subN class acc. unalike. entropy subN
agent 0.56 0.23 243 8 worm 0.43 0.02 5.69 63
vbinject 0.59 0.98 0.08 2 pws 0.54 0.06 4.50 40
obfuscator 0.64 0.98 0.08 2 trojan 0.54 0.12 4.14 37
hupigon 0.69 0.88 0.34 2 trojandr. 0.62 0.22 3.35 26
vb 0.75 0.36 1.83 8 backdoor 0.67 0.11 4.18 40
small 0.84 0.73 0.92 7 trojanspy 0.71 0.27 2.92 22
vundo 0.88 0.94 0.22 3 trojando. 0.74 0.27 2.75 20
renos 0.91 1.00 0.00 1 virtool 0.77 0.24 2.53 15
onlinega. 0.99 1.00 0.00 1 virus 0.81 0.02 5.42 55
zlob 0.99 0.90 0.29 2 rogue 0.86 0.31 2.08 9

(a) Families (b) Types

S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117

entropy

Accuracy
Unalikability

—e—unalikability

~—e—accuracy

00 0

%
%

S

%

$

®
&

R & &

Family Name

(a)

S115

6.0 1

o
&
Accuracy,
Unaliakability

entropy
025 —e—accuracy

== unalikability

Fig. 6. Per-family (a) and per-type (b) entropy (left vertical axis), unalikeability and accuracy (right vertical axis).

Table 3

Correlation between accuracy (acc.), unalikeability (unalike.), entropy and number of subcategories (subN) for columns of Table 2a and b.

acc. unalike. entropy subN acc. unalike. entropy subN

acc. 1.0 0.43 -0.44 -0.37 acc. 1.0 0.59 -0.60 -0.61

unalike. 0.43 1.0 -1.00 -0.92 unalike. 0.59 1.0 -0.98 -0.96

entropy -0.44 -1.00 1.0 093 entropy -0.60 -0.98 1.0 0.99

subN -0.37 -0.92 0.93 1.0 subN -0.61 -0.96 0.99 1.0
(a) Families (b) Types

In the second case we should also study what our subcategories
are. Small malware family are multipurpose malware, that is often
used for downloading and executing additional files. They used in
the initial infection of visitors to websites. They also tend to drop
and use kernel mode driver for its purposes. Radix on its turn is a
mass-mailing malware that propagates by send a copy of itself via
e-mail with a use of its own SMTP engine. FakeXPA and inter-
netantivirus are programs than pretend to scan systems for mal-
ware and display fake warning about malicious programs found on
victim system. After that they ask you to pay for removing fake
threats. There is no surprise that they have similar functionality and
is a part of malware type rogue. Roram spreads via IRC channels.
Kelvir also spreads via chat programs, but instead of IRC it uses MSN
or Windows Messenger. To sum up this paragraph: small and radix
are pretty different by functionality, while fakexpa and inter-
netantivirus are way more similar. Yet malware type to which they
belong are easy to generalize over. At the same time roram and

Table 4
Comparison of our results to the results from Shalaginov et al (2016).

kelvir are different only by the name of the chat program they use
for proliferating. However, we might assume that our methodology
is not capable of generalizing over such functionality.

5.3. Classification performance comparison

It is worth comparing our work with a paper by Shalaginov et al.
(2016) where the authors used malware dataset with a similar
malware categories. It the Table 4 per-category True Positive and
False Positive rates from Shalaginov et al (2016) and our work are
present. They did not include accuracy measure in their work, so we
compare our results using True and False Positive rates. Authors of
that work used a Neuro-Fuzzy approach for malware classification,
while we will use results achieved by kNN because, as it was said
earlier, it brought us best results in case of 29 features. As we can
see, in most cases TP rate from our work is higher, and FP rate is
somewhat lower than in Shalaginov et al (2016). However, for such

- Family | vb hupigon vundo obfuscator agent renos small onlinegames vbinject zlob
: TPrate | 0.3595 0.8080 0.5405 0.1222 0.1633 0.3276 0.5229 0.6084 0.2076 0.4295
= FPrate | 0.0226 0.2033 0.0233 0.1185 0.0341 0.0101 0.1397 0.0303 0.0261 0.0262
E‘J Type trojan pws trojando. worm virtool backdoor virus rogue trojandr. trojanspy
E _. | TPrate | 0.6084 0.1954 0.1385 0.1608 0.2112 0.3392 0.0857 0.0000 0.0744 0.0769
“ < FPrate | 05220 0.0432 0.0517 0.0097 0.0614 0.1528 0.0098 0.0000 0.0193 0.0152
Family vb hupigon ~ vundo obfuscator agent renos small onlinegames vbinject zlob
TP rate 0.75 0.695 0.879 0.639 0.56 091 0.835 0.99 0.586 0.99
. | FPrate | 0.028 0.036 0.02 0.061 0.015 0.009 0.046 0 0.02 0.003
OE § Type trojan pws trojando. worm virtool backdoor virus rogue trojandr. trojanspy
TPrate | 0.542 0.535 0.745 0.433 0.765 0.667 0.808 0.864 0.615 0.71
FPrate | 0.046 0.046 0.026 0.049 0.033 0.057 0.038 0.02 0.026 0.029

S116 S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117

categories as hupigon or trojan our results are worse. Authors of
paper in interest used different features: they used static features
from PE header. And Table 4 is yet more proof that static analysis
may be outperformed by dynamic analysis. Specifically we can
explain our relative success by the fact, that malware categories
(both families and types) in use are assigned based on the func-
tionality (dynamic characteristics), so our dynamic approach may be
more suitable for such tasks. It is also worth mentioning that they
had bigger dataset, so our results might be influenced as well if we
increase number of samples. Authors of Shalaginov et al (2016) used
up to 20 features to complete their goals, what makes their work
useful for malware analysts. This fact ensures us that using smaller
(even though a bit less accurate) models gives better contribution
for the scientific community. Finally, they show overall classification
accuracy around 39.6% while ours is around 78.4%.

As we shown in this Section, subcategories might be a key to
explain classification performance of our malware classification
approach, but only of the many. As we shown in previous para-
graphs, subcategories does not directly influence classification ac-
curacy neither by means of variety, nor by their amount. However
analysis of subcategories pointed us to a very important finding:
our approach is better in detecting and generalizing over a certain
types of behavior, and worse for others. It means that in order to
improve classification accuracy, in the future work we have to study
how usage of context as ground truth will influence classification
accuracy. We will elaborate on this more in the next section.

6. Conclusion and future work

In this paper we showed that patterns of memory access oper-
ations can be used for malware classification. We tested our
method over the datasets with malware types and families. At a
first glance, an achieved accuracy of 0.688 and 0.845 is not that
high, however it is important to remember that in our case we have
10 classes and random guess on the balanced dataset will not
exceed 0.1. So our results are way better than theoretical random
guess generator. It is also important to notice that we went down
from millions of potential features to 50,000, and from them
extracted 29 best features that allowed us to have compact yet
relatively accurate models.

We have also shown that our approach performs better in some
conditions, while worse in others. As we stated before, ground
truth and context might help to improve classification accuracy. As
a ground truth we might use high-level activity, to do so we should
study what high-level activity (e.g. which API calls) are represented
by certain memory access patterns. This study might also bring
additional meaning to memory access sequences, because now a
96-g similar to WWWRWRW ... WWRWW does not say anything to a
human analyst. While context analysis might involve capturing
opcodes as well as the content of the memory. It can also be useful
to use variative n-gram length, however, it might be extremely time
and memory consuming. We also plan to evaluate models built
with our approach against previously unknown, or assumed to be
new, malware samples Nevertheless, our research topic is shown as
promising, capable of bringing valuable findings and worth of
further studies.

References

Ahn, J., 2006. High Dimension, Low Sample Size Data Analysis.

Amato, G., 2016. Peframe. https://github.com/guelfoweb/peframe. (Accessed 27
October 2016).

Banin, S., Shalaginov, A., Franke, K., 2016. Memory Access Patterns for Malware
Detection, Norsk Informasjonssikkerhetskonferanse (NISK), pp. 96—107.

Branco, R.R,, Barbosa, G.N., Neto, P.D., 2012. Scientific but not academical overview of
malware anti-debugging, anti-disassembly and anti-vm technologies. Black Hat.

Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E., 2012.
A quantitative study of accuracy in system call-based malware detection. In:
Proceedings of the 2012 International Symposium on Software Testing and
Analysis - ISSTA 2012, p. 122.

Cole, E., 2012. Advanced Persistent Threat: Understanding the Danger and How to
Protect Your Organization. Newnes.

Cuckoo Sandbox, 2015. Cuckoo Sandbox: Automated Malware Analysis. https://
www.cuckoosandbox.org/. (Accessed 15 April 2016).

Distler, D., Hornat, C., 2007. Malware analysis: an introduction. SANS Inst. InfoSec
Read. Room 18—19.

Egele, M., Scholte, T., Kirda, E., Kruegel, C., 2012. A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. (CSUR) 44, 6.
Gandotra, E., Bansal, D., Sofat, S., 2014. Malware analysis and classification: a sur-

vey,. J. Inf. Secur. 5, 56.

Gu, Y, Fu, Y., Prakash, A., Lin, Z., Yin, H., 2012. Os-sommelier: memory-only oper-
ating system fingerprinting in the cloud. In: Proceedings of the Third ACM
Symposium on Cloud Computing, ACM, p. 5.

Hall, M.A., 1998. Correlation-based Feature Subset Selection for Machine Learning
[Ph.D. thesis]. University of Waikato, Hamilton, New Zealand.

Hua, Q., Zhang, Y., 2015. Detecting malware and rootkit via memory forensics. In:
Computer Science and Mechanical Automation (CSMA), 2015 International
Conference on. IEEE, pp. 92—-96.

IntelPin, 2017. A Dynamic Binary Instrumentation Tool.

Kawakoya, Y., Iwamura, M., Shioji, E., Hariu, T., 2013. Research in Attacks, Intrusions,
and Defenses: 16th International Symposium, RAID 2013, Rodney Bay, St. Lucia,
October 23-25, 2013. Proceedings. Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 123—143.

C. M. K. Kendall, Practical malware analysis, in: Black Hat Conference USA.

Khasawneh, K.N., Ozsoy, M., Donovick, C., Abu-Ghazaleh, N., Ponomarev, D., 2015.
Ensemble learning for low-level hardware-supported malware detection. In:
Research in Attacks, Intrusions, and Defenses. Springer, pp. 3—25.

Kirat, D., Vigna, G., Kruegel, C., 2014. Barecloud: bare-metal analysis-based evasive
malware detection. In: USENIX Security Symposium, pp. 287—301.

Kong, D., Yan, G., 2013. Discriminant malware distance learning on structural in-
formation for automated malware classification. In: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, pp. 1357—1365.

Kononenko, I., Kukar, M., 2007. Machine Learning and Data Mining: Introduction to
Principles and Algorithms. Horwood Publishing.

Lyda, R., Hamrock, J., 2007. Using entropy analysis to find encrypted and packed
malware. IEEE Secur. Priv. 5.

Marron, J.S., Todd, MJ., Ahn,]J., 2007. Distance-weighted discrimination. J. Am. Stat.
Assoc. 102, 1267—1271.

Netmarketshare, 2016. Desktop Operating System Market Share. https://www.
netmarketshare.com/operating-system-market-share.aspx?
Qqprid=10\&gpcustomd=0\&qpcustomb=2016. (Accessed 22 November 2017).

Ozsoy, M., Khasawneh, K.N., Donovick, C., Gorelik, I, Abu-Ghazaleh, N.,
Ponomarev, D., 2016. Hardware-based malware detection using low-level
architectural features. IEEE Trans. Comput. 65, 3332—3344.

Perry, M., Kader, G., 2005. Variation as unalikeability. Teach. Stat. 27, 58—60.

Prakash, A., Venkataramani, E., Yin, H., Lin, Z,, 2015. On the trustworthiness of
memory analysis #x2014;an empirical study from the perspective of binary
execution. IEEE Trans. Dependable Secure Comput. 12, 557—570.

PRNewswire, 2016. Virtual Desktop Infrastructure Market to See 27.35% Cagr Driven
by Byod to 2020. http://www.prnewswire.com/news-releases/virtual-desktop-
infrastructure-market-to-see-2735-cagr-driven-Qby-byod-to-2020-566513421.
html. (Accessed 29 September 2017).

Rennie, J.D., Shih, L., Teevan, J., Karger, D.R., 2003. Tackling the poor assumptions of
naive bayes text classifiers. In: Proceedings of the 20th International Conference
on Machine Learning (ICML-03), pp. 616—623.

Reuters, 2017. Ukraine's Power Outage Was a Cyber Attack: Ukrenergo. https://
www.reuters.com/article/Qus-ukraine-cyber-attack-energy/ukraines-power-
outage-was-a-cyber-Qattack-ukrenergo-idUSKBN1521BA.

Rudd, E., Rozsa, A., Gunther, M., Boult, T., 2017. A survey of stealth malware: attacks,
mitigation measures, and steps toward autonomous open world solutions. IEEE
Communications Surveys & Tutorials.

S. For Machine Learning, Time Complexity: Graph & Machine Learning Algorithms,
2017. https://github.com/guelfoweb/peframe. (Accessed 23 November 2017).

Saeed, [.A., Selamat, A., Abuagoub, A.M., 2013. A survey on malware and malware
detection systems. Int.]. Comput. Appl. 67.

Sathyanarayan, V.S., Kohli, P, Bruhadeshwar, B., 2008. Signature generation and
detection of malware families. In: Australasian Conference on Information Se-
curity and Privacy. Springer, pp. 336—349.

Schiffman, M., 2010. A Brief History of Malware Obfuscation: Part 2 of 2.

Shalaginov, A., Grini, L.S., Franke, K., 2016. Understanding neuro-fuzzy on a class of
multinomial malware detection problems. In: Neural Networks (IJCNN), 2016
International Joint Conference on. IEEE, pp. 684—691.

Shannon, C.E., 1948. A mathematical theory of communication, part i, part ii. Bell
Syst. Tech. J. 27, 623—656.

T. R. Group, 2017. Testimon Research Group. https://testimon.ccis.no/.

Tabish, S.M., Shafiq, M.Z., Farooq, M., 2009. Malware detection using statis-
tical analysis of byte-level file content. In: Proceedings of the ACM
SIGKDD Workshop on CyberSecurity and Intelligence Informatics. ACM,
pp. 23-31.

http://refhub.elsevier.com/S1742-2876(18)30195-6/sref1
https://github.com/guelfoweb/peframe
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref3
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref3
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref3
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref4
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref4
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref5
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref5
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref5
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref5
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref6
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref6
https://www.cuckoosandbox.org/
https://www.cuckoosandbox.org/
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref8
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref8
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref8
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref9
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref9
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref10
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref10
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref11
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref11
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref11
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref12
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref12
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref13
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref13
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref13
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref13
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref14
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref15
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref15
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref15
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref15
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref15
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref17
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref17
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref17
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref17
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref18
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref18
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref18
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref19
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref19
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref19
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref19
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref19
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref20
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref20
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref21
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref21
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref22
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref22
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref22
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
https://www.netmarketshare.com/operating-system-market-share.aspx?Ωqprid=10%5C&qpcustomd=0%5C&qpcustomb=2016
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref24
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref24
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref24
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref24
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref25
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref25
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref26
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref26
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref26
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref26
http://www.prnewswire.com/news-releases/virtual-desktop-infrastructure-market-to-see-2735-cagr-driven-Ωby-byod-to-2020-566513421.html
http://www.prnewswire.com/news-releases/virtual-desktop-infrastructure-market-to-see-2735-cagr-driven-Ωby-byod-to-2020-566513421.html
http://www.prnewswire.com/news-releases/virtual-desktop-infrastructure-market-to-see-2735-cagr-driven-Ωby-byod-to-2020-566513421.html
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref28
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref28
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref28
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref28
https://www.reuters.com/article/Ωus-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber-Ωattack-ukrenergo-idUSKBN1521BA
https://www.reuters.com/article/Ωus-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber-Ωattack-ukrenergo-idUSKBN1521BA
https://www.reuters.com/article/Ωus-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber-Ωattack-ukrenergo-idUSKBN1521BA
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref30
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref30
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref30
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref30
https://github.com/guelfoweb/peframe
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref32
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref32
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref33
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref33
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref33
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref33
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref34
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref35
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref35
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref35
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref35
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref36
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref36
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref36
https://testimon.ccis.no/
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref38
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref38
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref38
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref38
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref38

S. Banin, G.0. Dyrkolbotn / Digital Investigation 26 (2018) S107—S117 S117

The Verge, 2017. The Petya Ransomware Is Starting to Look like a Cyberattack in
Disguise. https://www.theverge.com/2017/6/28/Q15888632/petya-goldeneye-
ransomware-cyberattack-ukraine-russia.

Tian, R., Batten, L.M., Versteeg, S., 2008. Function length as a tool for malware
classification. In: Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd
International Conference on. IEEE, pp. 69—76.

Tian, R, Islam, R, Batten, L., Versteeg, S., 2010. Differentiating malware from
cleanware using behavioural analysis. In: Malicious and Unwanted Software
(MALWARE), 2010 5th International Conference on. IEEE, pp. 23—30.

Uppal, D.,Sinha, R.,, Mehra, V., Jain, V., 2014. Malware detection and classification based
on extraction of api sequences. In: Advances in Computing, Communications and
Informatics (ICACCI, 2014 International Conference on. IEEE, pp. 2337—2342.

W. University, 2016. Weka: Data Mining Software in Java. http://www.cs.waikato.ac.
nz. (Accessed 30 October 2017).

G. Hoglund, What APT Means To Your Enterprise.

Woueest, C.,, 2014. Threats to virtual environments, symantec research. Mountain
view. Symantec.

https://www.theverge.com/2017/6/28/Ω15888632/petya-goldeneye-ransomware-cyberattack-ukraine-russia
https://www.theverge.com/2017/6/28/Ω15888632/petya-goldeneye-ransomware-cyberattack-ukraine-russia
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref40
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref40
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref40
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref40
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref41
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref41
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref41
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref41
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref42
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref42
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref42
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref42
http://www.cs.waikato.ac.nz
http://www.cs.waikato.ac.nz
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref45
http://refhub.elsevier.com/S1742-2876(18)30195-6/sref45

	Multinomial malware classification via low-level features
	1. Introduction
	2. State of the art
	3. Methodology
	3.1. Dataset
	3.2. Feature construction and selection
	3.3. Machine learning algorithms
	3.4. Analysis

	4. Results
	5. Analysis
	5.1. Statistical analysis
	5.2. Context analysis
	5.3. Classification performance comparison

	6. Conclusion and future work
	References

