
E504 Journal of The Electrochemical Society, 165 (10) E504-E512 (2018)

Explanation of Bubble Nucleation Mechanisms: A Gradient
Theory Approach
Kurian J. Vachaparambil z and Kristian Etienne Einarsrud

Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim 7491, Norway

A Helmholtz free energy description of the four nucleation mechanisms used to explain the bubble nucleation in electrochemical
systems is presented. The mechanisms are compared based on the nucleation energy barrier and critical nuclei radius. The theoretical
analysis sheds light on the effect of parameters like contact angle on the electrode surface and pre-existing gas bubbles on nucleation
energy barrier. A free energy based description of surface tension (planar interface) is also obtained from the thermodynamic
framework.
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The phenomenon of nucleation is a thermodynamic process that
governs phase separation in both natural and technological processes,
like bubble formation in electrochemical systems. Nucleation is af-
fected by both temperature and supersaturation level of the liquid.
When nucleation is influenced by temperature, like in case of boiling,
the change in temperature causes changes in local pressure that favors
formation of vapor nuclei.1 In supersaturated systems, however, the
nucleation happens because of the system’s attempt to recover equi-
librium by phase separation at a constant temperature. Gas evolution
on electrodes is a good example of nucleation driven by supersatu-
ration, the continuous redox reactions on the electrodes leading to
supersaturation of the liquid with gas, promoting the formation of the
gas bubble. The common features and disparity between temperature
driven gas evolution like boiling and electrochemical gas evolution,
including bubble nucleation, has been highlighted in the work by
Vogt et al.2

Four mechanisms proposed by Jones et al.,3 are used to describe the
experimental observations for gas bubble nucleation in supersaturated
systems:

� Type 1 or homogeneous nucleation occurs in the liquid bulk at
high levels of supersaturation;

� Type 2 or heterogeneous nucleation happens at surface imper-
fections like pits and cavities at lower levels of supersaturation com-
pared to Type 1;

� Type 3 or pseudo-classical nucleation utilizes pre-existing gas
cavities that have radii smaller than the critical radius predicted by the
classical theory to lower the nucleation energy barrier (compared to
Types 1 and 2);

� Type 4 or non-classical nucleation occurs at pre-existing gas
cavities whose radii is larger than the critical radius, effectively re-
ducing the energy barrier to zero.

The pre-existing gas cavities, relevant in Type 3 and 4 mechanisms,
can occur from previous nucleation,4 entrainment of gas from liquid
jet5 and solid surface trapping gases.6 Nanobubbles, whose radii is
smaller than the critical radius,7 adhering to the solid surface could
also facilitate nucleation.

In the work by German et al., homogeneous and heterogeneous
nucleations are considered to drive the gas bubble nucleation from a
platinum nanodisk.8 The paper by Sequeira et al., reviewed existing
experimental work where the electrode surface assisted the gas nu-
cleation in electrochemical systems.9 According to Taqieddina et al.,
nucleation of gas bubbles in electrochemical reactors is assisted by
solid surfaces and pre-existing gas bubbles.10 While modeling elec-
trochemical systems, the proposed nucleation appears to be based on
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Type 4 as the nucleation energy barrier is seldom considered.11,12 Gen-
erally, the energy requirement for gas bubble nucleation (Types 1 and
2) is done based on maximization of Gibbs and Helmholtz free energy
difference of the system before and after nucleation.13,14 In the gen-
eral analysis of electrochemical systems, the surface tension between
the gas bubble and the surrounding liquid is typically considered to
be constant.11,15 The presence of dissolved gas in the liquid has been
proposed to change this surface tension by Lubetkin,16 and observed
in molecular dynamics simulation.17 The change in surface tension is
critical in electrochemical systems where supersaturation drives the
nucleation.

The main aim of the paper is to provide a macroscopic thermody-
namic explanation for the nucleation energy requirement for the four
nucleation mechanisms proposed by Jones et al.3 Although classical
nucleation theories have explained the nucleation energy requirement
for Type 1 and Type 2 nucleation from a Gibbs approach,18 Type 3
and Type 4 nucleation modes, used in practical modeling of electro-
chemical systems, to the best of the author’s knowledge has not been
investigated yet. This paper uses the Helmholtz free energy descrip-
tion developed by Cahn and Hilliard (C-H), to study interfacial energy
and nucleation,19,20 instead of the classical approach like Gibbs which
is typically used for nucleation and interface studies.18,21 The nucle-
ation energy barrier and critical radius calculated by this method is
compared against the results of Type 1 and Type 2 mechanisms from
classical nucleation theories. The framework is then used to derive
the critical radius and nucleation energy barrier of Type 3 and Type 4
mechanisms.

Gas nucleation and evolution is very important in electrochemical
systems where the gas can either be a product (electrolysis, chloroal-
kali processes) or a by-product (aluminum production) of the process
at hand, but is in all cases linked to the overall performance of the
system. Usually gas evolution is a term used to describe the process
which begins with bubble nucleation, followed by bubble growth and
detachment from the electrode surface.22 The presence of bubbles
on the electrode surface reduces the area of the electrode in contact
with the electrolyte, which reduces the efficiency of the electrochem-
ical system. Experimental work has also shown that gas evolution
on the electrode adversely effects the catalyst coating.23,24 The work
by Kadyk et al. showed that the use of preferential nucleation sites
can reduce the damage done to the catalyst coating and electrode
surface, thus increasing the durability and efficiency of electrodes.25

Understanding nucleation can thus provide insight on how bubble
generation can be controlled and identify plausible nucleation sites to
design more durable and efficient electrodes.

Thermodynamic Definitions

Once a solution has reached supersaturation, nucleation reduces
the local supersaturation levels, which is observed as effervescence
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in carbonated beverages. In electrochemical systems, the continuous
surface reactions on the electrodes maintains the electrolyte at a con-
stant supersaturation level. The number of gas molecules that phase
separates can be considered to be much smaller than the total num-
ber of molecules in the volume encompassing both the bubble and
electrolyte (henceforth referred to as system). This approximation is
valid when the reactions at the electrodes are instantaneous and the
nucleated bubble does not grow in the reaction time. The volume
of the nucleated bubble can also be neglected in comparison to the
total volume of the system.26 By neglecting the effects of tempera-
ture to assume a fixed system volume, Helmholtz free energy can be
used instead of Gibbs energy to describe the thermodynamics of the
system.26,27

The C-H model, based on the studies on interface and
nucleation,19,20 combined with fluid flow equations (diffuse-interface
method) has proven useful in simulating multiphase flows.28,29 The
C-H model has also been successfully used to numerically model
the nucleation process where the nucleated particle size is a few
nanometers.30 A more recent work by Lee et al.26 which provides
a physical and mathematical derivation of the binary C-H equation
is also useful in understanding the free energy formulations in this
paper.

The thermodynamic definitions used in this paper is based on
C-H paper which delves into the interface physics.19 This formulation
of the free energy is used due to its relative simplicity compared
to frameworks like Gibbs and Guggenheim.21 The possible states
in which the constituent molecules can exist is denoted using the
following: solution of liquid (L) and dissolved gas which is henceforth
referred to as mixture is represented as M , interface is I and bubble
is denoted by G. For a given state i , the free energy per unit volume
is represented as F0

i and the mole fraction of the component in i is
denoted by χi .

The free energy per unit volume in an arbitrary volume (v) in the
system can be written as

F0
v = F0

mi x + k|∇χL |2, [1]

where the first term is the contribution due to local mixing (further
described by Eq. 2) and the second term is due to the presence of
gradients in the system.19 ∇χL which is the spatial gradient of the
liquid mole fraction and k is constant for a given system.19,26 The free
energy per unit volume of pure liquid and gas is given by F0

L and F0
G

respectively. When the liquid and the gas is mixed, the inter-molecular
bonds change due to the presence of dissimilar molecules along with
an increase in entropy. The free energy per unit volume of the mixture
of gas and liquid as

F0
mi x = (1 − χL )F0

G + χL F0
L + �F0, [2]

where the first two terms represent the free energy per unit volume due
to ideal mixing and �F0 represent the change because of the mixing
of gas and liquid.26

The interface is considered as a region of finite volume where the
transition from physical properties of mixture to bubble, occurs over a
very small interface thickness (as illustrated in Fig. 1). Typically, the
concentration variation across the interface is modeled as a sigmoid
function which has been observed to correspond to actual interface
structure.31 The boundaries of the interface are set at locations along
the radial direction such that the local composition remains constant
further into the bulk (mixture or bubble). Although the regions of
the mixture and bubble close to the interface tend to slightly deviate
from the bulk composition, for all practical purposes this deviation
can be neglected and composition can be approximated to be close
to the asymptotic composition. By setting discrete positions to define
the region for the interface, allows the thermodynamic terms to be
integrated separately for the mixture, bubble and interface.

The free energy per unit volume of the mixture is given as F0
M

while the corresponding term for the bubble is F0
G . Both these terms

are calculated by substituting the corresponding value of χL from
Fig. 1 and neglecting the gradient term in Eq. 1 (because of the
constant composition in the bulk). The free energy per unit volume of

Figure 1. Schematic of the variation in mole fraction of liquid (χL ) across an
interface of thickness γ between mixture and bubble. The interface thickness
used in C-H theory (γ0) is smaller than the interface thickness used in this
paper.

the interface region is

F0
I = k|∇χL |2 + F0

mi x , [3]

based on terms introduced in Eq. 1. The contributions to F0
I contains

the free energy due to the gradient of composition across the interface
and mixing (locally) within the interface. The work by C-H19 calcu-
lates the interfacial free energy of a system with no supersaturation but
another study by the same authors on nucleation in a supersaturated
system20 uses a different formulation (that uses an additional term
for the supersaturation in the mixture) to ensure that the interfacial
free energy is non-zero only within the interface. Since Eq. 3 is based
on C-H,19 it does not account for the effect of supersaturation of the
mixture on the interfacial free energy. The volume integral of F0

I over
the interface volume (VI ) is dealt with as∫

VI

F0
I dV = VI F0

I . [4a]

In the above equation, F0
I can be interpreted as volume averaged free

energy of the interface when the effect of the supersaturated is not
considered. Similarly, volume integrals of F0

M and F0
G are treated as

∫
VM

F0
M dV = VM F0

M ,

∫
VG

F0
GdV = VG F0

G . [4b]

Analysis of Nucleation Mechanisms

In this section, the thermodynamic favorability of each nucleation
mechanism is discussed in detail. The annotation used in this paper
to denote homogeneous, heterogeneous, pseudo-classical and non-
classical nucleation mechanisms are T 1, T 2, T 3 and T 4 respectively.

Type 1 or homogeneous nucleation (T 1).—Fig. 2 shows a
schematic of the homogeneous nucleation process in an electrochem-
ical system with Fig. 2a representing the mixture (supersaturated liq-
uid) in contact with the electrode surface before the onset on nu-
cleation, while Fig. 2b shows the bubble formed in the bulk of the
solution. The nucleated bubble is assumed to have an inner radius of
R which can be used to defined the volume of the gas bubble (VG),

VG = 4

3
πR3. [5]
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(a) (b)

Figure 2. Schematic of homogeneous nucleation. (a) Before nucleation (b) After nucleation.

Due to the finite interface thickness γ, outer radius of the interface is
R + γ. The volume of the interface VI is

VI = 4

3
π

(
(R + γ)3 − R3

)
. [6]

Usually, γ is very small and generally in the order of few angstroms.32

In comparison, the radius of the nucleated bubble is usually in
nanometers.33 So the interface thickness can be approximated as
γ << R and volume of the interface (Eq. 6) can be simplified to
Eq. 7, where AMG is the area of the mixture-gas interface in a spheri-
cal bubble (is the limiting case of a sharp interface),

lim
γ/R→0

VI = 4πγR2 = γAMG . [7]

The free energy of the system before nucleation (F∗
1 ) can be written

as

F∗
1 =

∫
V0

F0
M dV +

∫
A0

σSM d A, [8]

where V0 is the total volume of the solution before nucleation, F0
M free

energy of the mixture (liquid and dissolved gas) per unit volume and
σSM is the interfacial tension in the limit of a sharp (zero thickness)
solid-mixture interface. The integral involving σSM is the energy at-
tributed to the surface tension at the area where solid and mixture are
in contact (A0). After nucleation, the free energy of the system (F∗

2 )
is

F∗
2 =

∫
V0−VI −VG

F0
M dV +

∫
VI

F0
I dV +

∫
VG

F0
GdV +

∫
A0

σSM d A,

[9]
where the second and third term is the free energy of the interface and
gas bubble respectively. Subtracting Eq. 8 and Eq. 9 gives the change
in the free energy of the system before and after nucleation (�F∗

T 1),

�F∗
T 1 =

∫
V0−VI −VG

F0
M dV +

∫
VI

F0
I dV +

∫
VG

F0
GdV −

∫
V0

F0
M dV .

[10]
The volume integrals of free energies per unit volume (F0

M , F0
I and

F0
G) are treated as shown in Eq. 4, and Eq. 10 can be simplified as

�F∗
T 1 = VI

(
F0

I − F0
M

)
+ VG

(
F0

G − F0
M

)
. [11]

Substituting the volume of gas bubble and interface from Eq. 5 and
Eq. 7 into Eq. 11,

�F∗
T 1 = 4πγR2

(
F0

I − F0
M

)
+ 4

3
πR3

(
F0

G − F0
M

)
, [12]

where the first term represents the interfacial surface energy and the
subsequent term corresponds to volumetric energy. The critical radius

Rc for nucleation can be calculated from d�F∗
T 1/d R = 0,

Rc = −
2γ

(
F0

I − F0
M

)

F0
G − F0

M

. [13]

The critical radius described in Eq. 13, is analogous to critical radius
predicted by classical nucleation theory (Rc = 2σMG/�Gv),18 which
gives

σMG = γ

(
F0

I − F0
M

)
,

�Gv = F0
M − F0

G, [14]

where σMG and �Gv are the surface tension at the mixture-bubble
interface and free energy change per unit volume associated with
nucleation respectively.

For the nucleation mechanism to maximize the change in free
energy of the system, d2�F∗

T 1/d R2|R=Rc < 0 should be satisfied,
where Rc is defined in Eq. 13,

d2�F∗
T 1

d R2

∣∣∣∣
R=Rc

= 8πγ(F0
I − F0

M ) + 8πR

(
F0

G − F0
M

)∣∣∣∣
R=Rc

,

= −8πγ

(
F0

I − F0
M

)
,

= −8πσMG(susbstituting Eq. 14), [15]

which is always less than zero, indicating that Type 1 nucleation is a
thermodynamically favorable process and �F∗

T 1 is maximized at Rc

as shown schematically in Fig. 3.

Figure 3. Schematic of the free energy contributions in homogeneous
nucleation.

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.241.191.209Downloaded on 2018-08-15 to IP 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 165 (10) E504-E512 (2018) E507

(a) (b)

Figure 4. Schematic of heterogeneous nucleation. (a) Before nucleation (b) After nucleation.

The nucleation energy barrier for homogeneous nucleation can be
calculated by substituting Eq. 13 in Eq. 12,

�F∗
T 1|R=Rc =

16πγ3

(
F0

I − F0
M

)3

3

(
F0

G − F0
M

)2 , [16]

which is analogous to the classical homogeneous nucleation energy
barrier, �F∗

T 1|R=Rc = 16πσ3
MG/(3�G2

v).18

Type 2 or heterogeneous nucleation (T 2).—Fig. 4 shows a
schematic of heterogeneous nucleation, where the mixture in con-
tact with the surface forms a gas bubble on an electrode surface with
radius R and contact angle θ, measured in the mixture phase.

The geometric parameters to define the bubble like the surface area
of the inner surface of interface (AMG), the surface area where solid
in in contact with bubble (ASG) and the volume of bubble (VG) are
calculated based on Xu et al.13 AMG is calculated at the surface with
a radius R,

AMG = 2πR2

(
1 + cosθ

)
. [17]

Using the above equation, the volume of the interface VI is determined
based on the approximation done is Eq. 7,

VI = γAMG = 2γπR2

(
1 + cosθ

)
. [18]

Similarly ASG and VG are defined in Eq. 19 and Eq. 20 respectively.

ASG = πR2sin2θ. [19]

VG = πR3 −cos3θ + 3cosθ + 2

3
. [20]

The free energy of the system before the nucleation (F∗
1 ) can be

written as

F∗
1 =

∫
V0

F0
M dV +

∫
A0

σSM d A. [21]

Once the bubble is formed, free energy of the system (F∗
2 ) is

F∗
2 =

∫
V0−VI −VG

F0
M dV +

∫
VI

F0
I dV +

∫
A0−ASG

σSM d A

+
∫

ASG

σSGd A +
∫

VG

F0
GdV, [22]

where the fourth term represents the free energy associated with the
sharp solid-gas interface. Although the mixture-gas interface is con-
sidered to be diffused, solid-mixture and solid-gas interfaces are con-
sidered to be sharp, or zero thickness, to limit the complexity of the

model. It should be noted that the effect of solid surface on the diffused
interface is neglected in this paper.

The change in free energy of the system (�F∗
T 2) is

�F∗
T 2 =

∫
V0−VI −VG

F0
M dV +

∫
VI

F0
I dV +

∫
A0−ASG

σSM d A

+
∫

ASG

σSGd A +
∫

VG

F0
GdV −

∫
V0

F0
M dV −

∫
A0

σSM d A.

[23]

Treating volume integrals of F0
M , F0

G and F0
I based on Eq. 4, and

considering σSM and σSG as constants, Eq. 23 can be written as

�F∗
T 2 = VI

(
F0

I − F0
M

)
− ASGσSM + ASGσSG + VG

(
F0

G − F0
M

)
.

[24]
Substituting the definition of surface tension at the planar interface
σMG from Eq. 14,

�F∗
T 2 = VI

σMG

γ
− ASGσSM + ASGσSG + VG

(
F0

G − F0
M

)
. [25]

Substituting Young’s equation for surface wetting for gas bubble,
which relates surface tension terms with contact angle as σSG −σSM =
σMGcosθ (refer to Appendix), into the above equation,

�F∗
T 2 = VI

σMG

γ
+ ASGσMGcosθ + VG

(
F0

G − F0
M

)
, [26]

and finally substituting the definitions of VI , ASG and VG through
Eqs. 18–20, Eq. 26 can be simplified as

�F∗
T 2 = π(−cos3θ + 3cosθ + 2)

⎛
⎝σMG R2 + R3

3

(
F0

G − F0
M

)⎞
⎠.

[27]
Differentiating the above equation with respect to R gives

d�F∗
T 2

d R
= π(−cos3θ + 3cosθ + 2)

⎛
⎝2σMG R + R2

(
F0

G − F0
M

)⎞
⎠.

[28]
The critical radius Rc is always defined by Eq. 13 from classical nu-
cleation theory18 and this can be verified by equating Eq. 28 to zero.
Eq. 28 shows that Rc is independent of contact angle. For nucleation
in conical cavities, which is microstructural feature on the electrode
surface, critical radius can be shown to be equal to the Type 1 nucle-
ation by redefining the geometric parameters used in this paper.34 The
equivalence of Rc between Type 1 and Type 2 shows that the critical
radius required for nucleation is independent of the electrode surface
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Figure 5. Comparison of the ratio of nucleation energy barrier of heterogeneous and homogeneous nucleation for varying contact angle (in degrees).

properties. The second derivative of �F∗
T 2 with respect to R at Rc is

d2�F∗
T 2

d R2

∣∣∣∣
R=Rc

= −2π(−cos3θ + 3cosθ + 2)σMG, [29]

where −cos3θ + 3cosθ + 2 > 0 for 0 ≤ θ ≤ 180◦, is always less than
zero indicating that the �F∗

T 2 is maximized at Rc.
The energy barrier for heterogeneous nucleation is

�F∗
T 2|R=Rc =

4πγ3
(

F0
I − F0

M

)3

3

(
F0

G − F0
M

)2 (−cos3θ + 3cosθ + 2), [30]

which is analogous to the classical heterogeneous nucleation barrier,18

�F∗
T 2|R=Rc = 4πσ3

MG

3�G2
v

(−cos3θ + 3cosθ + 2). [31]

The ratio between the energy barrier for heterogeneous (Eq. 30) and
homogeneous nucleation (Eq. 16) is,

�F∗
T 2|R=Rc

�F∗
T 1|R=Rc

= −cos3θ + 3cosθ + 2

4
, [32]

plotted in Fig. 5. For θ = 0◦, �F∗
T 2|R=Rc = �F∗

T 1|R=Rc because the
nucleated bubble is not in contact with the electrode surface which
occurs when the electrode is completely wetted. On the other hand
when θ = 180◦, �F∗

T 2|R=Rc = 0 (from Eq. 30) corresponds to scenario
of a non-wetting mixture and subsequently the bubble covers the
surface completely like a film.

Type 3 or pseudo-classical nucleation (T 3).—A schematic of the
pseudo-classical nucleation mechanism is shown in Fig. 6, where a
pre-existing gas bubble of radius R1 (where R1 < Rc), a metastable
state, aids in nucleation of a bubble of radius R.

For the pre-existing bubble, volume of the interface VI,1, volume
of bubble VG,1 and surface area of solid-gas interaction ASG,1 are

calculated based on the method described in heterogeneous nucleation,

VI,1 = γAMG,1 = 2γπR1
2

(
1 + cosθ

)
,

VG,1 = πR1
3 −cos3θ + 3cosθ + 2

3
,

ASG,1 = πR1
2sin2θ. [33]

The volume of the interface VI , volume of bubble VG and surface area
of solid-gas interaction ASG for the bubble formed after the nucleation
are

VI = γAMG = 2γπR2

(
1 + cosθ

)
,

VG = πR3 −cos3θ + 3cosθ + 2

3
,

ASG = πR2sin2θ. [34]

The free energy of the system before nucleation (F∗
1 ) is

F∗
1 =

∫
V0−VI,1−VG,1

F0
M dV +

∫
VI,1

F0
I dV +

∫
A0−ASG,1

σSM d A

+
∫

ASG,1

σSGd A +
∫

VG,1

F0
GdV . [35]

Correspondingly after nucleation, the free energy of the system (F∗
2 )

is

F∗
2 =

∫
V0−VI −VG

F0
M dV +

∫
VI

F0
I dV +

∫
A0−ASG

σSM d A

+
∫

ASG

σSGd A +
∫

VG

F0
GdV, [36]
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(a) (b)

Figure 6. Schematic of pseudo-classical nucleation. (a) Before nucleation (b) After nucleation.

and the change in the free energy (�F∗
T 3) is

�F∗
T 3 =

∫
V0−VI −VG

F0
M dV +

∫
VI

F0
I dV +

∫
A0−ASG

σSM d A

+
∫

ASG

σSGd A +
∫

VG

F0
GdV −

∫
V0−VI,1−VG,1

F0
M dV −

∫
VI,1

F0
I dV −

∫
A0−ASG,1

σSM d A −
∫

ASG,1

σSGd A

−
∫

VG,1

F0
GdV . [37]

The volume integral of free energies per unit volume (F0
M , F0

I and
F0

G) are simplified using Eq. 4, and interfacial tensions between
solid-mixture/bubble are considered to be constants. Substituting
VI − VI,1 = γ(AMG − AMG,1) from Eq. 33 and Eq. 34, Eq. 37 can be

written as

�F∗
T 3 = 2πγ(1 + cosθ)(R2 − R1

2)

(
F0

I − F0
M

)

+πsin2θ(R2 − R2
1)(σSG − σSM )

+π
−cos3θ + 3cosθ + 2

3
(R3 − R1

3)

(
F0

G − F0
M

)
.

[38]

Using the Young’s equation for surface wetting and Eq. 14 to simplify
the above equation gives

�F∗
T 3 = π

(
− cos3θ + 3cosθ + 2

)

⎛
⎝σMG(R2 − R1

2) + F0
G − F0

M

3
(R3 − R1

3)

⎞
⎠. [39]

0123456798

Figure 7. Comparison of normalized nucleation energy between pseudo-classical and heterogeneous nucleation for 0◦ ≤ θ ≤ 180◦ and α = 0.1, 0.4 and 0.7.
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Figure 8. Schematic of non-classical nucleation.

Derivative of Eq. 39 with respect to R is equivalent to Eq. 28, because
R1 is a constant which is independent of nucleation mechanism, and
equating it to zero shows that the critical radius for nucleation in
Type 3 is also equal to Rc for Type 1 mechanism (Eq. 13). The second
derivative of Eq. 39 with respect to R at Rc is Eq. 29, which is always
negative, indicating that �F∗

T 3 is maximized at Rc.
The nucleation energy barrier for the mechanism is calculated by

substituting Rc into Eq. 39,

�F∗
T 3|R=Rc = π(−cos3θ + 3cosθ + 2)⎛

⎝ 4σ3
MG

3
(

F0
G − F0

M

)2 − σMG R1
2 − F0

G − F0
M

3
R1

3

⎞
⎠. [40]

In order to compare the nucleation energy barrier of pseudo-classical
with heterogeneous nucleation, Eq. 30 is subtracted from Eq. 40,

�F∗
T 3|R=Rc − �F∗

T 2|R=Rc

F0
M − F0

G

= π(−cos3θ + 3cosθ + 2)

⎛
⎝ − Rc

2
R1

2 + 1

3
R1

3

⎞
⎠. [41]

Assuming that R1 = αRc, where α is an arbitrary real number
0 < α < 1. Eq. 41 can be rewritten as

�F∗
T 3|R=Rc − �F∗

T 2|R=Rc(
F0

M − F0
G

)
Rc

3
= π(−cos3θ+3cosθ+2)

⎛
⎝− 1

2
α2+ 1

3
α3

⎞
⎠,

[42]
where the left hand side of the above equation can be interpreted as
a normalized nucleation energy barrier between pseudo-classical and
heterogeneous nucleation. Fig. 7 shows the variation of the normalized
nucleation barrier with respect to contact angle θ and α. When α = 0,
R1 = 0 and �F∗

T 3|R=Rc = �F∗
T 2|R=Rc i.e. nucleation energy require-

ment of Type 3 becomes equivalent to heterogeneous nucleation. With
values of α close to unity, R1 is closer to Rc and the energy barrier for
pseudo-classical nucleation also reduces, but it still dependent on the
contact angle.

Type 4 or non-classical nucleation (T 4).—Fig. 8 shows a pre-
existing bubble of radius R1 ≥ Rc on a flat electrode surface, which
is also a metastable initial state.

The energy barrier for non-classical nucleation can be derived
based on the procedure from pseudo-classical nucleation. The nu-
cleation energy barrier required to form a critical nuclei in Type 4
nucleation is described by substituting R1 = Rc in Eq. 40,

�F∗
T 4|R=Rc = 0, [43]

which shows that non-classical nucleation does not require the forma-
tion of critical nuclei. The bubble grows by diffusion of gas from the

solution, based on mass transfer.35 Fig. 8 shows the diffusion of gas
into the bubble through a mass flux of ṁ. The diffusion process, which
is described by Fick’s law, occurs due to the attempt to reduce the free
energy gradient across the interface. This process is similar to the
growth of the bubble after the nucleation by the previous mechanisms
and the change in free energy is driven by the volumetric growth of
the bubble. So Type 4 nucleation can be considered as diffusion driven
growth which can occur at very low supersaturation levels without the
need to form a critical nuclei. Similar diffusion driven nucleation has
also been observed and extensively studied during cavitation.35,36

Interfacial Free Energy in a Supersaturated Solution

As discussed before, F0
I does not provide a thermodynamically

consistent definition of interfacial energy in a supersaturated solution.
In this section, a comprehensive definition of interfacial free energy
is derived (from Eq. 14) and shown to be equal to the formulation
reported in the literature.

During the analysis of the nucleation mechanisms a description of
surface tension between mixture and gas bubble, σMG = γ(F0

I − F0
M )

based on Eq. 14, has been obtained. This along with Eq. 4, can be
used to write σMG as

σMG = γ

VI

∫
VI

(
k|∇χL |2 + F0

mi x

)
dV

− γ

V0 − VI − VG

∫
V0−VI −VG

F0
M dV . [44]

Since V0 >> VI + VG and composition of mixture bulk (away from
the nucleated bubble) is constant, volume averaged F0

M can be ap-
proximated to be equal to F0

M |r→∞. Eq. 44 can be rewritten as

σMG = γ

VI

∫
VI

(
k|∇χL |2 + F0

mi x − F0
M |r→∞

)
dV . [45]

For a flat or planar interface (when R → ∞), Eq. 45 can be written
as

σMG =
∫

γ

(
k|∇χL |2 + F0

mi x − F0
M |x→∞

)
dx . [46]

If the above integral is computed locally anywhere within the entire
system but it would be non-zero only when the composition changes
near the interface.20 So Eq. 46 can also be written as

σMG =
∫ ∞

−∞

(
k|∇χL |2 + F0

mi x − F0
M |x→∞

)
dx, [47]

which is the surface tension of the planar interface in a supersaturated
solution. The work by C-H20 also derives Eq. 47 as the surface tension
in a supersaturated solution. The interfacial energy (F∗

MG) can be
written as a local volume (v) integral (based on the formulation of
surface tension Eq. 47)

F∗
MG =

∫
v

(
k|∇χL |2 + F0

mi x − F0
M |x→∞

)
dV, [48]

which is used as the interfacial energy in the presence of a supersat-
urated solution in the work by C-H on nucleation.20 The formulation
of F∗

MG (Eq. 48) and σMG (Eq. 47) becomes zero outside the interface
region in the presence of supersaturated mixture as shown by C-H.20

Discussion

Although the critical radius is independent of the nucleation mech-
anism the nucleated bubble volume is different in each mechanism,
with the bubble produced during homogeneous nucleation being
largest compared to heterogeneous and pseudo-classical nucleation
while non-classical nucleation does not require formation of one.
The nucleation energy barrier is highest in homogeneous nucleation,
which indicates the high levels of supersaturation required for this
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mechanism. In heterogeneous nucleation, the nucleation energy bar-
rier is lower than homogeneous nucleation, but it is dependent on
the contact angle (Eq. 30). In case of pseudo-classical nucleation,
the presence of pre-existing gas bubble reduces the nucleation energy
barrier compared to heterogeneous nucleation (as seen in Eq. 40).
The smaller the pre-existing bubble, the closer the nucleation energy
barrier of this process is to heterogeneous nucleation. On the other
hand, if the radius of the pre-existing bubble is close to critical radius,
the nucleation energy barrier of the pseudo-classical mechanism is
very small. When the pre-existing bubble has a radius larger than the
critical radius (non-classical nucleation), the nucleation energy barrier
is negligible because the formation of critical nuclei is not necessary.
This mechanism is the mode of growth of all the nucleated bubbles,
which involves diffusion of gas into the bubble from the supersaturated
mixture.

The importance of contact angle in determining energy barrier as-
sociated with heterogeneous and pseudo-classical nucleation is shown
in Fig. 7. When θ = 180◦, the energy barrier of both the hetero-
geneous and pseudo-classical nucleation mechanisms are negligi-
ble, i.e. the surface of the electrode is non-wetting or hydrophobic
thus promoting gas evolution, as observed in the work by Kadyk
et al.25 On the contrary, when θ = 0◦, �F∗

T 2|R=Rc = �F∗
T 1|R=Rc

and �F∗
T 3|R=Rc < �F∗

T 2|R=Rc . The difficulty of nucleating gases
on a hydrophilic surface, has been experimentally observed in the
work by Yang et al.37 So if there is no pre-existing bubble on the
hydrophilic electrode surface, homogeneous nucleation is thermo-
dynamically more favorable than heterogeneous mechanism. In the
presence of a pre-existing bubble, pseudo-classical or non-classical
nucleation is more probable than both homogeneous and heteroge-
neous mechanisms.

The free energy of the mixture (F0
M ) varies non-linearly with

respect to composition (χL ), usually described by a double well
function.19,20,26 When F0

M − F0
G is written equal to �Gv , Eq. 14,

an additional term which arises due to the non-linear variation of the
F0

M with respect to χL should also be considered, as done by C-H.20

This term can be written as

δF0 =
(

χL |r→0 − χL |r→∞

)
d F0

mi x

dχL

∣∣∣∣∣∣
χL |r→∞

,

and �Gv can be redefined accordingly as F0
M − F0

G + δF0. Since this
paper does not describe variation of the free energy of the mixture with
respect to composition, this term was not included while describing
�Gv (Eq. 14).

In the work by C-H19,20 and Lee et al.,26 Fmi x is considered to
be equal to �F0, because the relative change in the thermodynamic
values for the given state is considered instead of its absolute values.
Using this approximation will alter only the definitions of free energy
per unit volume of states but would not influence the method used
or derived conclusions. Using this definition of the free energies, Eq.
47 become equivalent to the formulation derived in Ref. 19 when the
mixture is not supersaturated or F0

M |x→∞ = 0. And the critical radius
calculated in Eq. 13 can be shown equivalent to the formulation of
critical radius derived by C-H.20 A complete definition of the inter-
facial free energy in a supersaturated solution, given by Eq. 48, is
derived from the thermodynamic definition of the system. This defi-
nition of the interfacial energy is analogous to the description used by
C-H in their work on nucleation in supersaturated solutions.20 Further
investigation of the surface tension description for a planar interface
(Eq. 47) was performed by C-H.20

Conclusions

A thermodynamical explanation of nucleation mechanisms is suc-
cessfully developed using Helmholtz free energy change of the sys-
tem. The Type 1 and Type 2 nucleation energy barriers obtained
from this analysis are analogous to the energy requirement in the
classical theories. Even though the critical radius for the formation

of the nuclei is equal for all mechanisms, there is a substantial dif-
ference in the nucleation energy barrier between the mechanisms.
Homogeneous nucleation has the largest nucleation energy barrier,
followed by heterogeneous nucleation, then pseudo-classical nucle-
ation. The non-classical nucleation is a bubble growth mode, as it
does not require formation of critical nuclei. The pre-existing bubble
on the electrode surface has been observed to reduce the nucleation
energy barrier, based on its radius. The contact angle has also shown
to play an important role in the nucleation energy for heterogeneous
and pseudo-classical nucleation mechanisms. It has been shown that
value of contact angle can thermodynamically favor one mechanism
over the other. A definition of surface tension for planar interfaces that
depends on the Helmholtz free energy of the mixture has also been
determined from the thermodynamic framework which is found in the
literature.
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Appendix: Contact Angle Derivation for Gas Bubbles

The contact angle plays an important role in the balance between the surface energies
of the gas bubble. In this section, the contact angle is derived from the free energy of the
system based on the work by Bormashenko and Gendelman, who derived the Lippman
equation of a liquid droplet from its free energy description.38

From heterogeneous nucleation, the free energy of the system, F∗
2 (from Eq. 22), is

written as

F∗
2 =

∫
V0−VI −VG

F0
M dV +

∫
VI

F0
I dV +

∫
A0−ASG

σSM d A +
∫

ASG

σSG d A +
∫

VG

F0
G dV .

[A1]
Using Leibniz formula to differentiate the above integral,

d F∗
2 = F0

M d(V0 − VI − VG ) + F0
I dVI + σSM d(A0 − ASG ) + σSG d ASG + F0

G dVG .

[A2]

Writing VI as γAMG and considering only the surface energy contributions, as the contact
angle is determined by the balance in surface energy rather than the volumetric energy
terms,

d F∗
2 = γ(F0

I − F0
M )d AMG − σSM d ASG + σSG d ASG . [A3]

And with the definition of σMG (Eq. 14) and d F∗
2 = 0, Eq. A3 can be rewritten as

− σMG d AMG = (σSG − σSM )d ASG . [A4]

Substituting d AMG = −cosθd ASG , the − is a result of cos(π − θ) = −cosθ,

σMG cosθ = σSG − σSM , [A5]

which is the Young’s equation for gas bubbles, with contact angle defined in the mixture
phase.
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