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Problem description

For maritime collision avoidance (COLAV) systems it is useful to have some idea
about how other ships are likely to move during a time horizon of several minutes.
While such predictions hardly can be relied upon for a reactive COLAV method, they
may nevertheless enable a proactive COLAV method to make good decisions so that
dangerous situations never occur in the first place. This MSc thesis will contribute
to the development of such prediction methods, building on a previous specialization
project written by the candidate. Tasks for the MSc thesis include:
• Further refine the Neighbor Course Distribution Method (NCDM) to include

the possibility that a vessel moves straight ahead.

• Develop metrics for deciding the number of components in the Gaussian mixture
representing the uncertainty of the NCDM.

• Assess the suitability of the NCDM as part of a COLAV system.
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Abstract

In recent years there has been much research dedicated to the development of au-
tonomous surface vehicles (ASVs), including large-scale autonomous ships. An im-
portant part of this research is to ensure that an ASV can safely operate in areas
with other marine traffic. Therefore it is necessary that an ASV is equipped with
a collision avoidance (COLAV) system. A vital part of this system is the ability to
predict the trajectories of other vessels in order to avoid them. This thesis is focused
on improving recently developed prediction techniques and investigate whether they
are suitable for use within a COLAV system.

In this thesis, the neighbor course distribution method (NCDM), which makes pre-
dictions based on automatic identification system (AIS) data and represents obstacles
as Gaussian mixture models (GMMs), is improved upon to make it more suitable for
use in COLAV. This method has shown promise, but as it is a data-driven method
it performs poorly when little data is available and is often overconfident. Therefore,
a modified NCDM, which assumes near constant velocity in low data density areas,
is developed in this thesis to mitigate these problems. The modified NCDM shows
a significant improvement in covariance consistency, although there is some loss in
accuracy.

Furthermore, the modified NCDM is used for obstacle prediction within a COLAV
algorithm based on model predictive control (MPC). This is benchmarked against
using the same COLAV algorithm, but assuming that the vessels maintain a constant
velocity and modeling these obstacles as circular constraints. The new method is
found to be advantageous in areas where vessels historically have maneuvered often.
The results also show that the modifications to the NCDM makes the algorithm
significantly more suitable for COLAV than the original NCDM in areas with low
data density.
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Sammendrag

I de siste årene har det vært mye utvikling dedikert til utviklingen av autonome
overflate fartøyer (ASVer), inkludert autonome skip på stor skala. En viktig del av
denne forskningen er å forsikre at en ASV opererer trygt i områder med annen marin
trafikk. Derfor er det nødvendig at en ASV er utstyrt med et kollisjonsungåelsessys-
tem (COLAV system). En vital del av dette systemet er evnen til å prediktere banene
til andre skip for å kunne unngå dem. Denne oppgaven er fokusert på å forbedre
nylig utviklede prediksjonsmetoder og undersøke om de er egnet for bruk i et COLAV
system.

I denne oppgaven er metoden "neighbor course distribution method" (NCDM), som
gjør prediksjoner basert på "automatic identification system" (AIS) data og represen-
terer hindringer som Gaussiske mikstur modeler (GMMer), forbedret ved å gjøre den
mer egnet for bruk i COLAV. Denne metoden har vist seg lovende, men siden den
er en datadrevet metode så gir den dårlige resultater i områder med lav datatetthet
og er ofte for selvsikker. Derfor er en modifisert NCDM, som antar nær konstant
hastighet i områder med lav datatetthet, utviklet i denne oppgaven for å forminske
disse problemene. Den modifiserte NCDM viser en betydelig forbedring av kovarianse
konsistens, selv om det er noe tap av nøyaktighet.

Videre er den modifiserte NCDM brukt for prediksjon av hindringer i en COLAV
algoritme basert på "model predictive control" (MPC). Dette er målt mot den samme
COLAV algoritmen, men med antagelsen om at andre båter holder en konstant fart
og der hindringene er modellert som sirkulære begrensninger. Den nye motoden er
vist å være fordelaktig i områder der båter historisk har manøvrert mye. Resultatene
viser at modifikasjonene til NCDM gjør algoritmen betydelig mer egnet for COLAV
enn den originale NCDM i områder med lav datatetthet.
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Chapter 1

Introduction

1.1 Motivation

Ever since the industrial revolution humans workers performing simple tasks have
been replaced by automated machines. In more recent years there has been much
research dedicated to the automation of more complex tasks, such as driving. The
motivation behind this research is twofold. First, there is the potential for increased
safety. For example, many thousand die in traffic every year. This number could be
drastically reduced with the introduction of reliable autonomous cars. Second, there
is the economic benefits. Automation has greatly reduced the cost in manufacturing,
allowing consumer to purchase cheaper products. In addition, people are freed up to
spend their time on more useful or rewarding tasks.

There is reason to believe that similar advancements can be made in the maritime
industry if autonomous surface vehicles (ASVs) begin to replace regular, manned ves-
sels. It is expected that ASVs will be safer and cheaper to run [3, 4]. It is estimated
that 75% - 96% of all marine accidents are due to human error [4]. It is therefore rea-
sonable to assume that autonomous vessels can greatly reduce the number accidents
and lives lost. Another problem facing the maritime industry is that there is shortage
of skilled people willing to work on a ship for weeks or months at a time. There is
also the problem of piracy which is not a serious threat for an ASV as the ship cannot
be controlled from the ship itself and there are no potential hostages on board.

However, making an ASV safely operate together with other marine traffic is a major
challenge. The vessel needs to comply with the international regulations for prevent-
ing collisions at sea (COLREGS), which serves as the "rules of the road" at sea. It
is therefore necessary that ASVs are equipped with a collision avoidance (COLAV)
system that not only avoids collisions with other ships, but also complies with the
COLREGS. When performing COLAV with respect to other vessels, one must model
how the vessels will maneuver in the future. The focus of this thesis is to investi-
gate such prediction techniques and improve upon them, and to test whether these
predictions are suitable for use within a COLAV system.

1.2 Background

1.2.1 Obstacle prediction

Most of the previous literature regarding collision avoidance for ASVs assumes that
obstacles behave according to the constant velocity model (CVM), that is that they
maintain a constant or near constant velocity [5, 2, 6]. However, such predictions
might be sub-optimal for prediction horizons of 5 - 15 minutes, which is time horizon
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of interest for COLAV.

Other prediction methods for maritime vessels from the literature are usually de-
veloped for longer-term predictions than are of interest in the context of COLAV,
and instead focus on ship traffic monitoring and anomaly detection[7, 8, 9]. In [7],
vessel trajectories are predicted by describing a vessel’s velocity using a Ornstein-
Uhlenbeck (OU) stochastic process. This was shown to greatly reduce the variance of
the predicted position. Another approach for vessel movement prediction is to cluster
trajectories based on historical automatic identification system (AIS) data and then
assign an object’s initial state to one of these clusters [9, 10, 11].

A more data-driven approach was first introduced in [12] with the single point neighbor
search (SPNS). The SPNS algorithm uses historical AIS messages within an euclidean
radius to obtain a predicted course and speed of the vessel. Historical messages with
courses that deviate by a certain amount from the vessel’s course are discarded in or-
der to avoid influence from opposite moving vessels in the predictions. What remains
are messages that have a similar position and course as that of the vessel. The median
course and speed of these close neighbors are calculated and used as a predicted course
and speed of the vessel. The predicted course and speed are then used to calculate the
future position by a given step length parameter. The same process is then applied
on the newly predicted state and this is then repeated until a trajectory of desired
length is produced.

In order to handle branching of sea lanes and to estimate prediction uncertainty, the
neighbor course distribution method (NCDM) was developed [1]. Whereas the output
from the SPNS can be seen as a list of states which forms a single trajectory, the out-
put from NCDM is a tree of states which forms several trajectories. Each individual
trajectory is calculated in a similar manner as in the SPNS. The same set of close
neighbors are used to predict the vessel’s course and speed at each predicted position.
However, while the SPNS predicts the course and speed as the median course and
speed of the closest neighbors, the NCDM samples courses randomly from the closest
neighbor set. The NCDM is thus able to predict trajectories in several branched sea
lanes and it possess the ability to indicate an uncertainty measure of the predictions.

In the specialization project [13] the NCDM was further developed. The predicted
position of the vessel was here represented as a Gaussian mixture model (GMM). A
new data structure which utilizes the recent trajectory of the vessel was also intro-
duced. This data structure significantly improved the consistency of the prediction,
although there was no improvement in accuracy.

1.2.2 Collision avoidance

In the COLAV literature for ASVs a distinction between global and local COLAV
methods is often made. A global method plans a desired path for the vessel based on
the initial state, the goal state and the known obstacles at the initial time. The major
drawback of global methods is the large computational cost which means a real-time
implementation might not be feasible. Local methods, on the other hand, use far less
computational power, and are therefore more dynamic and can be updated with new
input more frequently. These methods have no overview of the global environment,
but rely on sensory input from the local surroundings.
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One common global method is the rapidly-exploring random trees (RRT) algorithm
first introduced in [14]. This randomized algorithm grows a tree that explores the
available state space. In the end, a sup-optimal, but sufficient path that avoids the
specified obstacles is found from start to goal. A COLREGS compliant planner based
on RRTs was developed in [15].

Local methods typically used for COLAV include the velocity obstacle (VO) method
and the dynamic window (DW) algorithm. In [5] the VO method is used. The VO is
the set of all velocities that the ASV can take that will eventually result in a collision,
assuming that the obstacle velocity is constant. The method used considers four dif-
ferent scenarios where different COLREGS rules apply. A velocity outside the VO is
selected based on which scenario the ASV is facing.

The DW algorithm, unlike the VO method, takes the limitations of the vehicle into
account. A window containing the reachable combinations of forward and rotational
speed is defined based on the state and dynamic constraints of the vehicle. The search
space is thus reduced to velocities within this window. In addition, velocities that will
lead to collisions with the obstacles are also restricted. The DW algorithm was de-
veloped in [16] for implementation with mobile robots. In [17] the DW algorithm
was implemented for COLAV for autonomous underwater vehicles (AUVs). This al-
gorithm was further developed for use with ASVs and tested in full-scale experiments
with a radar-based tracking system in [18].

In [19] a hybrid method is implemented where one global and one local method are
combined. A RRT is used to construct a path from start to goal, while the DW
approach is used to make local adaptions when the sensors detect that the planed
path runs into obstacles. This was demonstrated to give superior results compared to
relying on either a global or local approach alone.

In [2] a COLAV method based on model predictive control (MPC) is developed. This
algorithm is intended to be used in a mid-layer between a top, global layer and a
bottom, local layer. The planned path from the global layer is used as input for
the mid-level algorithm which outputs a new modified path for the local layer. The
algorithm uses the predicted output from an MPC as a planed path. This process is
described in further detail in Section 6.2. MPC is also used for COLAV in [6] with
a compliance to more COLREGS rules than in [2], but the control behaviours of the
ASV are limited to a finite set of discrete maneuvers as the method rely on brute force
techniques. The MPC algorithm in [6] is tested in full-scale experiments using AIS
for obtaining obstacle information in [20].

1.3 Contributions

The contributions of this thesis are:

• A review of previous position prediction techniques and COLAV methods.

• Modifications to the NCDM to make it rely on the CVM in areas with low data
density.

• Investigation of different GMM learning techniques.

• Extensive testing of the modified NCDM with different parameters and GMM
learning techniques.
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• The modification of a MPC-based COLAV method which makes it able to threat
a GMM as an obstacle.

• Testing of the NCDM within the modified COLAV method and a comparison
with older methods.

1.4 Outline

This thesis is divided into two parts. Part I is about vessel trajectory prediction.
This part begins with Chapter 2 which gives an overview of the AIS dataset used.
Chapter 3 explains the prediction algorithms used in the thesis. In Chapter 4 different
GMM learning methods are explored. Finally, the different prediction methods are
tested and compared in Chapter 5. Part II is about the use of the prediction methods
in a COLAV system. In Chapter 6 the NCDM is used for obstacle prediction within
a MPC-based COLAV system. The implementation is then tested and compared to
other methods in Chapter 7. A conclusion for both parts is given in Chapter 8.



5

Part I

Vessel Prediction
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Chapter 2

AIS dataset

This chapter is heavily based on chapter 4 of [13], but is included here for completeness.

AIS is an automatic tracking system that is used for identifying and tracking vessels.
It provides information such as a unique identification number, position, course and
speed of a vessel. This information is shared between vessels and also transferred
to base stations and satellites. The International Maritime Organization requires all
international voyaging ships with gross tonnage of 300 or more, and all passenger ships
to be fitted with an AIS system [21]. In addition, AIS is also used by many smaller
vessels.

2.1 Dataset

In this thesis the same dataset as in [1] and [13] is used. The dataset is provided
by DNV-GL and consists of almost 3 million AIS-messages from Trondheimsfjorden
collected during 2015. There are six values from this dataset that are considered in
this thesis. The six relevant values are explained in table 2.1.

Table 2.1: Description of AIS parameters

Parameter Description

MMSI Vessel identification number. Unique for all vessels.
Timestap Time when message was sent. Unit is days since 1.Jan 1900,

00:00.
Longitude Geographic coordinate. (−180◦, 180◦]
Latitude Geographic coordinate. [−90◦, 90◦]
Speed over ground Speed of the vessel measured in knots.
Course over ground Course of the vessel measured in degrees clockwise relative

to true north.

It is also worth mentioning that messages where ships are moving very slowly or
standing still (speed over ground < 0.5 knots) have been removed from the dataset.
The data is sorted by MMSI first and time second.

2.2 Data structures

In [13] two different data structures were used. The first of these structures was devel-
oped in [1] and contains data about a vessels’ position, course and speed. The second
structure was developed in [13] and contains data about a vessels’ recent trajectory.
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Figure 2.1: Scatter plot of the ship positions in the entire dataset.
Shipping lanes and an outline of the geography around Trondheims-

fjorden can clearly be seen.

Figure 2.2: Elapsed time between subsequent AIS messages of the
same MMSI. Courtesy of [1].
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Only the second structure is used in this thesis as this structure was shown to have
better covariance consistency properties [13]. However, the original structure from [1]
is defined here as it is needed to derive the new data structure.

2.2.1 Original structure

The original structure consists as a list of AIS messages:

XA =
[
X1 X2 ... Xn

]T (2.1)

where each message is given as:

Xi =
[
MMSIi ti pT

i χi vi
]

(2.2)

where MMSIi, ti, pT
i , χi and vi are the MMSI number, time stamp, position vector,

course over ground (COG) and speed over ground (SOG), respectively. The position
vector can be written as pT

i =
[
λi φi

]
where λi and φi are the longitude and latitude

in the WGS84 coordinate system.

2.2.2 New structure

The new structure takes the recent trajectory of a vessel into account. The data is
here structured as a list of sub-trajectories. A sub-trajectory S consists of n points:

S =
[
p1 p2 · · · pn

]
, (2.3)

where p is a point given by longitude and latitude. There is also an equal amount of
time t elapsed between any two subsequent points. A trajectory is given by:

T =
[
S1 S2 · · · Sn

]T
, (2.4)

and the entire dataset is given by a list of trajectories:

XB =
[
T1 T2 · · · Tn

]T (2.5)

Reformatting the dataset from the original structure XA to the new structure XB

involves three main steps:

1) Find trajectories from the original dataset: Points that belong to the same MMSI
number and have less than 15 minutes between two subsequent points are considered
as part of the same trajectory. The time limit makes sure that trajectories from ves-
sels which leave and later enter the dataset window or which stay in port for a long
time, are split into separate trajectories

2) Interpolate trajectories to get new data points: Cubic spline interpolation is used
to extract new data points at a specified time interval. The new data points now form
a new trajectory.

3) Create sub-trajectories of n points: The first sub-trajectory consists of the first n
points of the new data points. This is the first row of the data structure. The next
row is a new sub-trajectory shifted one point forward, thus creating a structure of
partly overlapping sub-trajectories. This continues until the end of the trajectory.
With this method a trajectory of k points will result in k − n+ 1 sub-trajectories of
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n points.

Figure 2.3: An example of a short trajectory represented with both
data structures: The blue dots represents the ship’s positions as given
in the original AIS data. The red dots are the new data points obtained
using interpolation. Here the sub-trajectories consist of n = 3 points.
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Chapter 3

Prediction algorithms

In this chapter two methods for predicting the trajectories of vessels are presented.
Firstly, the CVM, which assumes that the vessel will continue with a near constant
course and speed, where the vessel’s acceleration is modeled as a white noise process
with a small variance [22]. Secondly, the NCDM, first introduced in [1], which utilizes
historical AIS data. Lastly, a modified NCDM is introduced. This algorithm attempts
to mitigate some weaknesses of the NCDM by relying on the CVM in certain cases.

The work done on the NCDM in [1] and in the specialization project [13] lead to
a paper accepted to the 21th International Conference on Information Fusion. This
paper is included in Appendix A.

3.1 Prediction tree

The NCDM gives its predictions of a vessel’s future position as a prediction tree. In
this thesis the CVM is also included in the tree structure to better compare and com-
bine the two methods.

The prediction tree represents a vessel’s position at time tk by Jmax predicted states.
The predictions of these states are subject to a degree of randomness which means
that sates at the same level will be slightly different from each other. This is used to
give a measure of the uncertainty of the prediction.

The initial state is the root node of the prediction tree. Each node represents a pre-
dicted state X̂k,j , where k is the depth index and j is the width index of the tree. The
value Nk,j gives the number of child nodes for node (k, j), while Jk is the number of
nodes at level k. In this thesis the number of children for the root node is chosen to
be N1,1 = Jmax, while the number of children at all other levels are set to one. In
other words, the tree has Jmax branches which all originate from its root node. The
tree is illustrated in Figure 3.1.

For a given level k in the prediction tree, a GMM can be fitted to these points to give
a probabilistic, multimodal representation of the predicted position. This process is
described in more detail in Chapter 4.

3.2 Constant velocity model

The discrete-time CVM method presented here assumes that a vessel will continue
with its current velocity in the near future. However, some noise is also introduced to
the model. The motion model from [23] is used with some minor changes to the noise
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Figure 3.1: Prediction tree structure. N1,1 = Jmax, otherwise
Nk,j = 1. Courtesy of [1]

covariance matrix. The state of a vessel is given as:
[
N VN E VE

]
, (3.1)

where N , E, VN and VE are the positions and velocities of a vessel in the north and
east directions in a stationary NED reference frame. The complete model can be
written as:

xk+1 = FTxk + vk p(vk) = N (vk; 0, Qt) (3.2)

where v is the process noise and N is the normal distribution. The state transition
matrix FT and the noise covariance matrix QT are given as:

FT =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 , QT = σ2a




T 4/3 T 3/2 0 0
T 3/2 T 2 0 0

0 0 T 4/3 T 3/2
0 0 T 3/2 T 2


 , (3.3)

where T is the time in seconds between each level in the prediction tree and σa is the
noise covariance parameter.

3.3 Neighbor course distribution method

The NCDM is a data-driven algorithm that utilizes historical AIS data to make its
predictions. To obtain the predicted position p̂k+1,j the set of close neighbors (CNs)
at node (k, j) is considered. This set is defined as:

Ck,j = {Xi| d(Ŝk,j ,Si) ≤ rc,Xi ∈ X}, (3.4)
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p̂k

p̂k−1

pn−2

pn−1

pn

v

Figure 3.2: The sub-trajectory shown in red is a close neighbor of
X1 if the Euclidean distance between

[
p̂k−1 p̂k

]
and

[
pn−2 pn−1

]

is less than rc. The location of p̂k+1 is determined by adding v to p̂k.

where X is the XB data structure described in Chapter 2, rc is a search radius and
d(Ŝk,j ,Si) is the distance between the predicted sub-trajectory at node (k, j) and sub-
trajectory Si in the dataset. The distance between two sub-trajectories of size n is
found by representing each sub-trajectory as a point in 2×n dimensions and calculat-
ing the Euclidean distance between these two points. The initial state and predicted
states consists of n − 1 points while the sub-trajectories in the dataset consist of n
points. The predicted states are therefore only compared to the n − 1 first points of
the sub-trajectories in the dataset. The remaining point is used to obtain the next
predicted position.

A random sample is drawn from the CNs. From this sampled sub-trajectory the vector
v = pn−pn−1 is obtained. This vector is added to p̂k,j to get p̂k+1,q. The state, which
is a sub-trajectory, is updated by removing the first point from the sub-trajectory and
adding the newly calculated one at its end.

Algorithm 1 Neighbor course distribution method
1: Input parameters:

• X1 . Initial state

• Nk,j . Number of child nodes from node (k,j)

• K . Total number of tree levels

2: Set X̂1,1 = X1

3: for k = 1 to K − 1 do
4: q = 0 . Indexing variable at level k
5: for j = 1 to Jk do
6: Find close neighbors
7: for Nk,j iterations do
8: q = q + 1
9: Obtain random sample

10: Calculate the next position
11: Update X̂k+1,q based on the latest prediction
12: end for
13: end for
14: end for
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10 s 20 s 30 s 40 s 50 s 60 s 70 s 80 s 90 s 100 s110 s120 s

Figure 3.3: Interpolation of a simple prediction tree with two pre-
diction steps of one minute each and Jmax = 3. The new prediction
tree has one level every 10 seconds. The old levels are shown in blue

and the new levels in red.

(a) (b)

Figure 3.4: Predictions using the NCDM with low data density: The
blue dots show the AIS data. The red dots show the real trajectory of
the vessel with the triangle indicating its start and the cross indicat-
ing its end. A probability distribution of the vessel’s end position as

predicted by the NCDM is shown in orange.

3.3.1 Interpolation of trajectories

The choice of t, the time step between each point in a sub-trajectory, in XB is of major
importance when applying the NCDM as changes in this parameter will influence both
the granularity and accuracy of the predicted trajectories. In Chapter 6 it becomes
evident that a smaller time step than the one minute used in [13] is necessary. However,
a smaller time step seems to negatively affect predictions as sub-trajectories pointing
in opposite directions might then be considered close neighbors. This is solved by
linearly interpolating the vector v, which defines the position of p̂k+1,q in relation to
p̂k,q, at desired intervals. This is illustrated in Figure 3.3.

3.4 Constant velocity model in the NCDM

A major drawback of the NCDM is that it often gives inaccurate and overconfident
predictions in areas with low data density, as illustrated in Figure 3.4. In such areas
relying on a data-driven approach does not make sense and it might be more reason-
able to fall back on the CVM method.

This is solved by creating new sub-trajectories calculated using CVM and adding them
to the set CNs. Given the state

[
p1 · · ·pn−1

]
, the new sub-trajectory will be given as:[

p1 · · ·pn−1 pn

]
, where pn is calculated using the CVM as explained in Section 3.2.
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The values N , E, VN and VE are obtained as follows:
[
N E

]
= pn−1, (3.5a)

[
VN VE

]
=

1

t

[
pn−1 − pn−2

]
, (3.5b)

where t is the time step of the dataset. Note that using this method the CVM is only
used to predict one time step into the future. An alternative is use the CVM for the
entire prediction if there is no data nearby the initial state. However, this will fail to
take advantage of new data that might appear nearby newly predicted states.

Several copies of this newly created sub-trajectory are added to the CNs. The number
of copies are found according to the following formula:

W =

{[
α 1

M

]
, if M > 0

1, if M = 0
(3.6)

where W is the number of copies, α > 0 is a weight parameter, M is the number
of sub-trajectories in the CNs and [·] rounds to the nearest integer. Equation (3.6)
is designed to provide balance between the use of NCDM and CVM depending on
the data available. In areas with high data density, NCDM is favored, while CVM is
favored in areas with low data density. Thus the sum M +W is the total number of
CNs, while the ratios M/(M + W ) and W/(M + W ) give the fraction of CNs that
come from the NCDM and CVM, respectively.
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Chapter 4

Gaussian mixture learning

Learning the parameters of a GMM can be done by applying the expectation maxi-
mization (EM) algorithm, which fits the maximum likelihood GMM to the given set
of data points [24]. Since the EM algorithm needs the number components as an in-
put, fitting the model must be done using a two stage implementation: First, several
models are fitted to the data with an increasing component number k. Second, one
model is selected based on a criteria such as Akaike’s information criterion (AIC) [25]
or Bayesian inference criterion (BIC) [26]. In [13] the number of components was
selected by applying a minimum threshold for the distance between means of each
component.

However, this approach may suffer from a large computational cost because a new
model has to be learned for each k, with more parameters to be learned each time k
increases. Another problem with the EM algorithm is the presence of singularities in
the likelihood function [27].

One solution to this problem is using automatic model selection in which the number
of components are found automatically during parameter learning. In this thesis the
variational Bayes (VB) method introduced in [27] is tested for this task. This chapter
first explains the essential theory of this method before exploring the method in depth.

4.1 Gaussian mixture models

A GMM consists of a sum of a finite number of Gaussian distributions [28]. In a
mixture with K components each component will have a weight πk, a mean µk and a
covariance matrix Σk. The weights are defined so that they sum to 1, i.e

∑K
i=1 πk = 1.

A Gaussian mixture is defined by the following equation:

p(x) =

K∑

k=1

πkN (x|µk,Σk), (4.1)

where N (x|µk,Σk) is a multivariate Gaussian.

Each data point xn also has an associated latent variable zn which is a binary vector
of length K. The vector zn indicates which component the point xn originates from.
If xn comes from component k then zk = 1 while all other elements in zn are equal
to zero.
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4.2 Expectation maximization

The EM algorithm fits the maximum likelihood GMM to a set of points. The al-
gorithm starts with an initial mixture and iterates until convergence is found. Each
iteration can be divided into one expectation step and one maximization step. Before
applying the EM algorithm the number of components in the mixture has to be known.

The expectation step consists of computing the membership weights. This measure,
wik, gives the probability of variable xi being generated by component k. The weights
are computed as

wik =
π̂kN (xi|, µ̂k, Σ̂k)

∑K
j=1 π̂jN (xi|, µ̂j , Σ̂j)

, (4.2)

where π̂i, µ̂i and Σ̂i are estimates of the weight, mean, and covariance matrix re-
spectively for component i. These membership weights are computed for all variables
xi, 1 ≤ i ≤ N and all components 1 ≤ k ≤ K. This gives an N × K matrix where
each row will sum to 1.

In the maximization step, the estimates for all K components are updated using the
membership weights. The following equations are used to calculate the new estimates
for the mixture weights, means and covariance matrices:

π̂k =

∑N
i wik

N
(4.3a)

µ̂k =

∑N
i wikxi∑N
i wik

(4.3b)

Σ̂k =

∑N
i wik(xi − µ̂k)T (xi − µ̂k)

∑N
i wik

. (4.3c)

These two steps are repeated until convergance.

4.2.1 Model selection

The EM algorithm takes the number of components in a mixture as an input. Several
methods exist for determining this number.

Akaike information criterion

AIC is a measure of how well a statistical model fits to a set of data. The smaller the
AIC, the better the fit. It is defined as follows:

AIC = 2k − 2 ln(L̂), (4.4)

where k is the number of parameters and L̂ is the maximum value of the likelihood
function for the model. The second term of the equation rewards goodness of fit, while
the first term penalizes models with a large number of parameters in order to avoid
overfitting.
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Bayesian information criterion

The BIC has the following definition:

BIC = ln(n)k − 2 ln(L̂), (4.5)

where k and L̂ are the same values as defined above, and n is the number of data
points. As can be seen, the BIC is very similar to the AIC. The only difference is in
the penalty term for the number of parameters. A comparison between AIC and BIC
is made in [29].

Component distance

In [13], the component distance (CD) method was used which fits a new GMM with
an increasing component number to the data until the distance between the means
of two components is shorter than a set distance. This was done because the NCDM
is mostly concerned about finding components with significantly different means as a
way to handle branching of sea lanes.

4.3 Variational Bayes theoretical background

This section explains the theory behind variational Bayesian inference.

4.3.1 Bayesian inference

Bayesian inference is the process of updating a probability distribution as more data
becomes available. This is done by applying Bayes’ theorem:

p(Y |X) =
p(X|Y )p(Y )

p(X)
. (4.6)

The prior distribution p(Y ), the marginal likelihood p(X) and the likelihood function
p(X|Y ) are needed to get a posterior distribution p(Y |X), which gives the distribution
of Y after the data X is taken into account.

4.3.2 Variational calculus

A function is defined as an operator that takes a value as input and returns a value
as output. Similarly, a functional is defined as an operator that takes a function as
input and returns a value. Variational calculus uses variations, small changes in a
functional’s value due to a small change in its input function, to find maxima and
minima of functionals. The concept of variations is analogous to differentiation in
conventional calculus.

Functional derivatives are found by applying the Euler-Lagrange equation. This equa-
tion states that a functional on the form:

F [y] =

∫ b

a
L(x, y(x), y′(x)))) dx, (4.7)

has the functional derivative:

∂F

∂y(x)
=
∂L

∂y
− d

dx

∂L

∂y′
. (4.8)
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Maxima and minima are found, as in conventional calculus, by setting the derivative
equal to zero.

4.3.3 Kullback-Leibler divergence

Kullback-Leibler (KL) divergence is a measure of the difference between two proba-
bility distributions, p and q. In the context of VB, p is the true posterior distribution,
while q is its approximation. KL divergence is defined by the following equation:

KL(q||p) = −
∫
q(Z) ln

{
p(Z|X)

q(Z)

}
dZ, (4.9)

where Z are the latent variables and X are the data points.

Note that the KL divergence is non-symmetric, that is KL(q||p) 6= KL(p||q). To dis-
tinguish the two, KL(q||p) is called forward KL divergence, while KL(p||q) is called
reverse KL divergence.

From Equation (4.9) it can be seen that KL(q||p) → ∞ if q(Z) → 0 while p(Z|X) is
large. This means the divergence between two distributions can be widely different
whether the forward or the reverse KL divergence is used. This is illustrated in Fig-
ure 4.1. Figure 4.1a shows a scenario where KL(q||p) is small while KL(p||q) is large.
This is mostly due to the tails of q(Z) where p(Z) ≈ 0. In Figure 4.1b the opposite
is true. Here KL(q||p) is very large, due to the peak of the rightmost component of
p(Z) being at a point where q(Z) ≈ 0, while KL(p||q) is small.

(a) Scenario where KL(q||p) is small and
KL(p||q) is large.

(b) Scenario where KL(q||p) is large and
KL(p||q) is small.

Figure 4.1: Two probability distributions p(Z) and q(Z). The for-
ward and reverse KL divergences give very different similarity between

the two.

4.4 Variational Bayesian inference

Given a Bayesian model where all parameters have prior distributions, all parameters
and latent variables are denoted by Z, while the observed data is denoted by X. The
goal is to find the posterior distribution p(Z|X). The marginal likelihood p(X) is
often difficult to obtain and Bayes’ theorem can therefore not be used directly in such
situations. Instead the variational Bayesian inference solves this problem by finding
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the parameters of a distribution q(Z) which approximates p(Z|X). The similarity
between the two distributions is measured using the KL divergence. A good approxi-
mation therefore means minimizing the KL divergence.

The log marginal probability can be decomposed as follows [28]:

ln p(X) = L(q) + KL(q||p), (4.10)

where L(q) is called the lower bound and is defined as:

L(q) =

∫
q(Z) ln

{
p(X,Z)

q(Z)

}
dZ. (4.11)

Since the log marginal probability is constant, maximizing the lower bound is equiv-
alent to minimizing the KL divergence. Notice that L(q) is a functional and it is
therefore necessary to use variational calculus to maximize it.

The elements of Z are partitioned into disjoint groups such that the approximate
distribution gets the form:

q(Z) =
M∏

i=1

qi(Zi). (4.12)

The goal now is to find the distribution q(Z) which maximizes the lower bound L(q).
By plugging (4.12) into (4.11) the following expression can be obtained [28]:

ln q?j (Z) = Ei 6=j [ln p(X,Z)] + const, (4.13)

where q?j (Z) is the distribution which maximizes the lower bound and Ei 6=j [· · · ] gives
the expectation across all variables except j.

4.5 Variational Bayes method for GMMs

Variational Bayesian inference can be used to infer the parameters of a GMM. This
application of VB is analogous to the EM algorithm. The difference is that instead of
using maximum likelihood estimates to find the most probable value of each param-
eter, the VB method computes an approximation of the entire posterior distribution
of the parameters and latent variables. The VB method has a similar two-step, alter-
nating structure as the EM algorithm. These two steps are:

1. A variational E-step that computes the responsibilities (analogous to the mem-
bership weights of EM) based on the current parameter estimates of the mixture.

2. A variational M-step that computes new estimates for the parameters based on
the responsibilities.

Unlike the EM algorithm, the VB method does not need a parameter specifying the
number of components in the mixture, but infers this during the parameter learning
from a given value for the maximum number of components allowed in the mixture.
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Chapter 5

Prediction results

This chapter presents the results of tests performed on the CVM method and the
NCDM, with and without modifications. Tests are conducted to determine the optimal
parameters for the methods. Lastly, the methods are compared to see which one is
the most suitable for vessel position prediction. All tests measuring computational
time were run on an Intel(R) Xeon(R) CPU 3.40 GHz processor with 8 GB RAM and
Windows 10 64-bit operating system.

5.1 Performance measures

Two performance measures are used to determine the quality of a set of predictions:
root mean square error (RMSE) and a generalized concept of filter consistency in the
sense of [30]. These are the same performance measures used in [13], but their expla-
nation is repeated here.

The terms accuracy and precision will be used extensively in this analysis and should
be clarified: Accuracy is a value indicating how far a predicted mean is from the true
value. Precision is a measure of the predicted variance. High precision means that a
prediction has low variance and vice versa.

5.1.1 Root mean square error

The RMSE is used to measure the accuracy of a prediction. The smaller the RMSE,
the more accurate is the prediction. It is here defined as

RMSE =

√∑Jmax

i=1 ‖p̂− pi‖2
Jmax

, (5.1)

where p̂ is the true position, pi is the predicted position at iteration i and Jmax is
the number of individual predictions as defined in Section 3.1. This measure will give
an idea of how close the mean of the predictions is to the true value. The RMSE has
some problems when it comes to multimodal distributions (GMMs with more than one
component) which might be produced by the prediction methods. This is because the
mean of a multimodal distribution might be in an empty area between components.
However, this is a rare scenario so RMSE can still serve as a good quality measure.
An alternative to RMSE is the median error, but this is not used here.

5.1.2 Consistency

The second performance measure is used to determine if the GMM produced is con-
sistent. Filter consistency is colloquially explained as follows in [30]: The estimation
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error should have magnitude commensurate with the corresponding covariance that is
yielded by the estimator. In order to deal with multimodality, consistency of the pre-
diction methods is measured using the same method as in [31]. First, the probability
density function (PDF) value as given by the GMM for the true position is noted for
each individual test. This value, called f , is then compared to the maximum value of
the same PDF, called fmax. The ratio f/fmax ∈ [0, 1] thus serves as a quality measure
where a single prediction is better the closer the ratio is to one. The distribution of
f/fmax for N predictions will then give an idea of the consistency. The values f and
fmax are illustrated in Figure 5.1.

-1 -0.5 0 0.5 1

0
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f
max

    

f    

Figure 5.1: Performance measure illustrated using one-dimensional
data. The true value x = 0.1. In this case f/fmax ≈ 0.57/0.8 ≈ 0.71.

5.2 Test setup

The dataset is initially divided into a training set and a test set. The first 90% of
the data points are used as training data, while the remaining 10% are used for tests.
The NCDM is always run with the prediction tree described in Section 3.1 where
Jmax = 200, i.e the tree has 200 branches which all originate in its root node. All
tests were done on N = 600 initial states randomly pulled from the test set. A test
of a given method for a given time on N initial states will from here be referred to as
a ’test’ while a test of a single initial state will be referred to as an ’individual test’.
The parameters for the NCDM are given in Table 5.1.

Table 5.1: Decision parameters for NCDM

Decision parameter Value Description

n 3 Number of points in each sub-trajectory
t 60s Time between each point
rc 100m Search radius for CNs
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The initial states and their corresponding trajectories must fulfill one requirement:
The time at the end of the trajectory minus the time of the initial state must be
larger than or equal to the test time. This ensures that there is a true position in
the test trajectory that the prediction can be compared to. An individual test is also
discarded if the GMM learning algorithm fails to fit a GMM to the points. This may
happen when the data is highly correlated.

5.3 Testing of CVM

In this section the CVM is tested with various values for the process noise covariance
parameter σa and evaluated according to their resulting consistency as defined in Sec-
tion 5.1. In [23] the authors conclude that σa = 0.05 gives the best results for large
vessels with little maneuverability, while σa = 0.5 gives better results for vessels with
more maneuverability. With these results as a starting point, values between 0.05 and
0.5 for the process noise covariance are tested.

The natural logarithms of the f/fmax ratios are displayed in Figure 5.2 in order to
investigate the consistency. The far-right box plot consists of values sampled from
a Gaussian distribution. This plot should therefore exhibit ideal consistency proper-
ties and serves as a comparison for the box plots to the left. A consistent prediction
method would have a box plot similar to the one from the Gaussian distribution.

From Figure 5.2 it appears that the predictions with noise covariance parameter
σa = 0.1 has the box plot most similar to that of the Gaussian and therefore is
the prediction with the best consistency properties. Using σa = 0.05 gives by far the
worst consistency properties. This is because a low amount of noise leads to very
precise predictions that will miss if the vessel makes a slight turn. The two remaining
predictions give variances that are too high.

Figure 5.3 further explains the results. Although σa = 0.05 makes an accurate pre-
diction in this scenario, the prediction is overconfident as the ratio f/fmax will be
very low if the vessel deviates from its initial velocity. It also becomes apparent that
increasing σa quickly leads to very uncertain predictions.

5.4 Testing the modified NCDM

In this section the modified NCDM is tested. Tests are run for 8 minutes into the
future as before. Each test is run with a different value of α to determine the one
which leads to predictions with the best consistency properties.

Several different values for α have been tested and it appears that a α of around 5000
gives the best consistency properties. In Figure 5.4 the f/fmax ratios of some of the
tested values are displayed. It becomes apparent from the box plot for α = 0 that
modifications to the NCDM result in a significant improvement in the consistency
properties. Finer tuning of the α parameter is challenging as the box plots are diffi-
cult to compare and because of the stochastic nature of the NCDM.
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Figure 5.2: Box plot of the PDF-ratios for different noise parameters:
The central line represents the median. The bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively. All data
points not considered outliers are between the whiskers, while outliers
are plotted individually as crosses. Note that outliers below -35 on the

y-axis are not plotted.
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(a) σa = 0.05 (b) σa = 0.1

(c) σa = 0.2 (d) σa = 0.3

Figure 5.3: Prediction plots of the CVM with different noise covari-
ance parameters: The blue dots are reported ship positions from the
AIS dataset. The red dots indicate the true trajectory of a ship with
the triangle representing the initial position and the cross the true
position at the time the position is predicted. The orange dots are
predicted positions and the orange lines correspond to the 1, 2 and
3 standard deviation equi-probability contours of the GMM fitted to

them. The axes are in meters.

5.5 Testing of Gaussian learning methods

In this section the VB method for automatic model selection is tested. The results
taken into account are: consistency, computational time and average number of com-
ponents. This is compared with same results from EM algorithm, using AIC, BIC
and the CD method for model selection.

Table 5.2: Parameters for learning methods

Decision parameter Method Value

dmin CD 500m
cmax VB 8
πmin VB 0.01

Some of these methods require decision parameters that are given in Table 5.2. The
distance dmin gives the minimum distance allowed between the means of any two
components when using the CD method. The VB takes in a maximum number of
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Figure 5.4: Box plot of the PDF-ratios for different weight parame-
ters.

components which is given by cmax. This method often produces GMMs with many
small components. However, these are unlikely to represent any real trend and in-
creased complexity is often undesirable. Therefore the components with a weight of
less than πmin are set to zero with their weight distributed among the remaining com-
ponents.

From Figure 5.5 it can be seen that the new learning methods introduced to the
NCDM in this thesis do not lead to an improvement in consistency properties. In
particular, the VB method gives a poor performance. Table 5.3 also show that VB
gives no improvement in computational time and in fact performs a lot worse than
the EM algorithm. The information criteria for the EM, AIC and BIC, also perform
worse than the CD method, both in consistency and computational time. Therefore,
the means method continues to be used in the further testing.

Table 5.3: Results of learning method tests

Method Mean computational time Mean number of components

Means method 0.048 1.20
AIC 0.16 2.57
BIC 0.10 2.09
VB 0.68 2.88
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Figure 5.5: Box plot of the PDF-ratios of the different learning meth-
ods.
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5.6 Comparison of methods

This section compares the three different prediction methods discussed in this thesis:
the CVM, the NCDM and the modified NCDM. All methods are tested for 5, 10 and
15 minutes into the future. They are evaluated by the performance measures intro-
duced in Section 5.1.

5.6.1 RMSE

The median values of the RMSE of all the methods for each test time is given in Ta-
ble 5.4. The same information is plotted in Figure 5.6. As can be seen, the old NCDM
is the most accurate method, followed by the modified NCDM and the CVM is the
least accurate. The fact that the old NCDM is the most accurate is expected, as the
modifications to the NCDM were not made to improve its accuracy, but rather its
consistency. In any case, the results show that the NCDM, with or without modifica-
tions, is significantly more accurate than the CVM.

Table 5.4: Median RMSE for each test time

CVM Old NCDM Modified NCDM

5 min 344m 242m 271m
10 min 978m 582m 718m
15 min 1805m 955m 1268m
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Figure 5.6: Median RMSE over time
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5.6.2 Consistency

Figure 5.7 a consistency box plot for each method at each of the test times. The old
NCDM stands out as the method with the worst consistency properties, while both
the CVM and the modified NCDM offer a significant improvement. In addition, it
can be seen that the CVM slightly outperforms the modified NCDM.
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(a) Test time: 5 min.
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Figure 5.7: Box plot of the PDF-ratios for the method comparison
tests.

5.7 Discussion

The learning of a GMM using VB was investigated in this thesis since the number
of components in the mixtures that represent the predictions is unknown. However,
different vessels usually do not deviate much from each other, neither in course nor
speed, over the prediction horizons used. Thus, the best fit usually has very few
components and a two stage implementation of the EM is therefore not very compu-
tationally expensive.

The modifications to the NCDM were introduced in order to improve the algorithm’s
performance in areas with low data density. The NCDM often makes overconfident
and inaccurate predictions in such areas, which resulted in poor consistency proper-
ties. The results show that the modifications significantly improve the consistency
properties of the predictions, although the CVM still have better consistency proper-
ties than the NCDM. On the other hand, the CVM is less accurate then the NCDM.
Thus, the modified NCDM can be seen as a compromise between the CVM and the
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old NCDM, where there is a trade-off between consistency and accuracy. The choice
of α in the modified NCDM decides of much importance is placed on accuracy and
consistency, where a small α will weight the algorithm towards the former and a large
α will weight it towards the latter.
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Part II

Collision Avoidance
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Chapter 6

NCDM in a COLAV system

This chapter investigates whether the NCDM can be employed in a COLAV system.
The COLAV algorithm used is presented in [2] and is based on MPC.

6.1 Model predictive control

MPC is a control technique that is commonly used for multi-variable control problems
that have constraints on both input and output variables, as well as the states of the
system [32]. MPC can be used when there exists a reasonably accurate model of the
process that is to be controlled.

Figure 6.1 illustrates the principle behind a discrete MPC. The controller considers
an optimization problem. At time step k it predicts the optimal output values for a
prediction horizon P , by calculating the inputs over a control horizon M < P that
achieve these outputs.

Although MPC calculatesM future inputs, only the first one is implemented, and the
process is repeated at the next time step. This is done due to possible disturbances
or changes in the optimization problem. The remaining future inputs are used for
further calculations before a new sequence of inputs are produced. MPC therefore
has a receding prediction horizon where it always calculates M steps ahead.

6.2 MPC-based COLAV

In [2] a MPC-based COLAV algorithm for ASVs is developed. The algorithm min-
imizes an objective function which penalizes deviation between the vessel trajectory
and the desired trajectory, as well as changes in speed and yaw rate. Inequality con-
straints are imposed on the position of the vessel to disallow it being in the same area
as the obstacles. In addition, constraints are imposed on the yaw rate and speed of
the vessel to ensure that it behaves in a realistic manner. The output of the MPC is
an optimal trajectory for the ASV. The first step of this trajectory is implemented,
before a new optimal trajectory is calculated at the next time step.

A modified version of this algorithm is used in this thesis for COLAV. Whereas the
obstacles in [2] are modeled using inequality constraints predicted by the CVM, the
obstacles are now modeled in the objective function as GMMs produced by the NCDM.
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Figure 6.1: Illustration of an MPC for a single-input single-output
system. Courtesy of [32].

6.2.1 ASV modeling

The algorithm uses a purely kinematic model for ASVs. It can be formulated as
follows:

η̇ =




cos(ψ) 0
sin(ψ) 0

0 1


u, (6.1)

where η =
[
N E ψ

]T is the vehicle pose with N and E representing the north and
east coordinates respectively of the vessel position and ψ representing its yaw angle
(heading with respect to north). The vector u =

[
U r

]T , where U is the SOG and
r = ψ̇ is the yaw rate (ROT). Note that vehicle kinetics and ocean currents are ne-
glected in this model. This can be done due to the long prediction horizon compared
to the dynamics of the vessel, and also because a local, low-level COLAV algorithm
is intended to also be used in the full COLAV system.

In addition, limitations are placed on the SOG and ROT to ensure that the vessel
behaves in a feasible manner:

Umin(r) ≤ U ≤ Umax(r), (6.2a)
rmin ≤ r ≤ rmax. (6.2b)

Note that the limitations for U depend on r, while the limitations for r are constant.

6.2.2 Control objective

The algorithm assumes a desired trajectory pd(t) =
[
Nd(t) Ed(t)

]
for the vessel.

The objective is to make the vessel trajectory p(t) follow this desired trajectory as
closely as possible, while at the same time avoiding areas where obstacles are expected.
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A final objective is to make the vessel maneuver in a manner that complies with the
COLREGS. These regulations give a set of 38 rules that are intended to prevent col-
lisions between vessels. These rules have a varying degree of relevance for COLAV.
Due to the significant challenges of implementing these rules in a COLAV system,
they are often ignored in the literature. The algorithm from [2] is designed to make
the vessel comply with Rule 8 of COLREGS.

Rule 8 (b):
Any alteration of course and/or speed to avoid collision shall, if the circum-
stances of the case admit, be large enough to be readily apparent to another
vessel observing visually or by radar; a succession of small alterations of course
and/or speed should be avoided.

6.2.3 Optimization problem

An important step in the MPC is to solve the optimization problem. First, the general
optimization problem is defined as:

minimize φ(η(t),u(t))

subject to η̇(t) = F(η(t),u(t))

h(η(t),u(t)) ≤ 0

η(t0) = η̄0,

(6.3)

where φ is the objective function. F(η(t),u(t)) is the kinematic model defined in
(6.1), h(η(t),u(t)) gives the inequality constraints, while η̄0 is the initial state of the
vessel.

Since continuous optimization problems are difficult to solve it is more practical to
to define a nonlinear program (NLP) by discretizing (6.3). The discretization is done
using the direct multiple shooting technique. This technique involves discretizing both
the future input and the future state, as opposed to only discretizing the future input
as is done with single shooting. The discrete solutions are pieced together with the
shooting constraints. The new problem, with Np prediction steps, is now defined as:

minimize φ(w)

subject to g(w) = 0

h(w) ≤ 0,

(6.4)

where w =
[
ηT
0 uT

0 · · · ηT
Np−1

uT
Np−1

ηT
Np

]
are the decision variables.

The objective function is defined as:

φ(w,pd1:Np) =

Np∑

k=1

(
Kp

2
C
(
‖pk − pdk‖2 ; δ

)
+KU̇qU̇ (U̇k−1) +Krqr(rk−1)

)
, (6.5)

where pk and pdk are the actual and desired position of the vessel at time step k,
respectively. Kp,KU̇ ,Kr > 0 are tuning parameters. The function C is the pseudo-
Huber cost function. This function is usually linear, but approximates a quadratic
function close to zero, and is used to keep large errors from dominating the cost
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function. It is defined as:

C(x; δ) = 2δ2
(√(

1 +
x

δ

)
− 1

)
, (6.6)

where 2δ is the slope of the linear part of the function.

The last two terms of the objective function ensure that the vessel maneuvers in
compliance with rule 8 of COLREGS, that is the vessel should make large, visible
movements when avoiding other vessels. Therefore, these functions heavily penalize
small changes in speed and yaw, but penalize large changes more lightly. The functions
are defined as:

qr(r; rmax) =
100

q(rmax; ar, br)
q(r; ar, br) (6.7a)

qU̇ (U̇ ; U̇max) =
100

q(U̇max; aU̇ , bU̇ )
q(U̇ ; aU̇ , bU̇ ), (6.7b)

where rmax and U̇max are the maximum expected values for r and U̇ , respectively.
The function q defines the shape of the penalty terms and is given as:

q(ζ; a, b) = aζ2 + (1− e− ζ
2

b ), (6.8)

where a and b are tuning parameters.

Due to the use of the multiple shooting technique it is necessary to include shoot-
ing constraints to ensure that the control input and vessel states satisfy (6.1). An
integrator function is defined using Runge-Kutta of order 4:

k1 = F(ηk,uk) (6.9a)

k2 = F(ηk +
h

2
k1,uk) (6.9b)

k3 = F(ηk +
h

2
k2,uk) (6.9c)

k4 = F(ηk + hk3,uk) (6.9d)

f(ηk,uk) = ηk +
h

6
(k1 + 2k2 + 2k3 + k4), (6.9e)

where h is the discretization time step. Given a vessel state ηk and a control input uk

it is now possible to obtain the vessel state for next time step since ηk+1 = f(ηk,uk).
This results in the following equality shooting constraints for the optimization prob-
lem:

g(w) =




η̄0 − η0

f(η0,u0)− η1

f(η1,u1)− η2
...

f(ηNp−1
,uNp−1)− ηNp



. (6.10)
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Each control input is subject to limitations defined in (6.2) which is defined in the
following function:

hui(ui) =




Umin(ri)− Ui

−(Umax(ri)− Ui)
rmin − ri
−(rmax − ri)


 , (6.11)

which again forms the inequality constraints:

hu(w) =




hu0(u0)
hu1(u1)

...
huNp−1

(uNp−1).


 (6.12)

In [2] the obstacles are also included in the inequality constraints.

6.2.4 Using GMMs as obstacles

Since the NCDM represents obstacles as GMMs it is better to not model obstacles as
constraints. This would not have taken advantage of the representation of probability
that the GMM provides. Instead the GMM for a prediction at a given time step is
included as a term in the objective function and the vessel will thus be penalized when
moving over regions with a high likelihood of containing an obstacle at that time. The
new objective function is given as:

φ(w,pd1:Np) =

Np∑

k=1

(Kp

2
C
(
‖pk − pdk‖2 ; δ

)

+KU̇qU̇ (U̇k−1) +Krqr(rk−1) +Kgg(pk|θk)
) (6.13)

where Kg > 0 is a tuning parameter and

g(pk|θk) =
M∑

m=1

πkmN (pk|µkm,Σkm) (6.14)

is the value of the predicted GMM at time step k evaluated at position pk. The
number M is the number of components in the mixture and θk contains the mixture
parameters πk, µk and Σk. Figure 6.2 shows a simulation where this new objective
function is used when navigating around a static GMM.

6.3 Simulation

The simulated ASV starts with an initial state and a desired trajectory, consisting of a
set of waypoints, as well as a desired speed. The simulation is run for a given number
Np of prediction steps with a given step size. At each of these steps the NCDM is run.
It is important that the resulting prediction tree from the NCDM has the same time
step between levels as the step size of the simulation. This means that each point pk

in the predicted trajectory from the MPC avoids a corresponding GMM representing
the obstacles at time k. Thus, at each step the optimization problem is solved with
a new objective function. The optimization problem is solved using the CASADI [33]
framework for MATLAB with the IPOPT solver.
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Figure 6.2: GMM avoidance proof of concept: The figure shows a
simulated ASV in blue successfully avoiding a static GMM with two
components. The red contours correspond to the 1, 2 and 3 stan-
dard deviation equi-probability contours for the mixture. The crosses

indicate the trajectory predicted by the MPC.
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Chapter 7

COLAV results

In this chapter a series of qualitative tests of the COLAV algorithm are performed.
Two "close-to-collision" scenarios are picked from the dataset. The first scenario is
chosen to see whether the new COLAV method with NCDM for obstacle prediction
is advantageous compared to the original COLAV method. The second scenario is
chosen to investigate whether the modified NCDM is able to handle low data density
areas. In each scenario one vessel from the dataset is chosen as the obstacle and the
desired trajectory for the ASV is defined near or across the trajectory of the obstacle.
First, the original COLAV method from [2], where the CVM is used and the obstacles
are represented as constraints, is tested. Then the new COLAV method described
in Section 6.2.4 is tested, where the NCDM as described in Section 3.3 is used for
vessel prediction. Lastly, the same method is tested, but now using the the modified
NCDM described in Section 3.4 for vessel prediction. The parameters used in the
tests are shown in Table 7.1.

Table 7.1: Decision parameters for the COLAV tests.

Parameter Value Description

h 20 s Time step interval
Np 24 Prediction steps
Umin 0 m/s Minimum SOG
Umax 17 m/s Maximum SOG
Kp 0.04 Position error scaling
Ku̇ 0.6 SOG-derivative penalty term scaling
Kr 0.5 ROT penalty term scaling
[aU̇ , bU̇ ] [8, 2.5× 10−4] SOG-derivative penalty term parameters
[ar, br] [112, 6.25× 10−4] ROT penalty term parameters

r 200 m Obstacle radius (original COLAV method)
Kg 1014 GMM penalty term scaling (new COLAV method)

n 3 Number of points in each sub-trajectory (NCDM)
t 60s Time between each point (NCDM)
rc 100m Search radius for CNs (NCDM)
α 5000 Weight parameter for (modified NCDM)
σa 0.1 Noise covariance parameter (modified NCDM)

7.1 Scenario 1: Straight line crossing curved traffic area

The following scenario takes place around a turning sea lane with a relatively high
amount of traffic. The desired trajectory goes in a straight line that tangents the turn,
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Figure 7.1: Scenario 1: The small blue dots are the underlying AIS
data, the big, lighter blue dot is the ASV, and the red dot is the

obstacle. The black line shows the desired trajectory.

and the desired speed is 10 m/s. In this scenario the ASV risks a head-on collision if
it follows its desired trajectory. The scenario is shown in Figure 7.1. Note that, since
this is a high data density area, the NCDM is equivalent to the modified NCDM with
a low weight parameter α.

7.1.1 Original COLAV method

In Figure 7.2 the simulation of this method is shown at various time steps. Only every
third constraint is plotted to simplify the figure. The predicted positions of the ASV
are plotted as crosses, where the colors correspond to the constraints. In other words,
a cross should not be able to be inside a circle of the same color.

The simulated ASV manages to avoid the obstacle. Figure 7.2b shows that the planned
position for one minute into future deviate from the desired path because it cannot
be inside the red circle. This also happens at prediction steps that are not plotted. In
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the end, the ASV makes a slight turn to port to avoid the other vessel. COLREGS
dictates that a vessel should turn to starboard when facing a head-on situation, but
this is something this algorithm does not take into account and it is therefore arbitrary
which side the ASV passes on.

(a) Time: 100 s (b) Time: 200 s

(c) Time: 280 s (d) Time: 380 s

Figure 7.2: Scenario 1 the with original COLAV method: The blue
and red lines show the ASV and the obstacle, respectively. The crosses
show the predicted positions of the ASV. The multi-colored circles are

the constraints. The axes are in meters.

7.1.2 New COLAV method with NCDM

Figure 7.3 is similar to Figure 7.2 with the exception that the 1 and 2 standard de-
viation equi-probability contours of the predicted GMMs at various time steps are
plotted instead of the constraints. The crosses can be inside the contours plotted, but
this will be more expensive.
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From Figure 7.3 it is evident that a deviation is planned earlier than with the origi-
nal COLAV method. A large deviation is planned in the beginning, but the planned
deviation get smaller as time passes. In the end a deviation of similar size to the one
using the original COLAV method is made.

Unlike the test with the original COLAV method, the ASV now turns to starboard
to avoid the obstacle. This is because turning to port is now more expensive as the
obstacle is predicted to be at the port side of the ASV in short time. The fact that
this maneuver is COLREGS compliant and the maneuver performed with the original
COLAV method is not comes down to luck as neither method defines which way to
turn in different situations. However, the maneuver performed with the new COLAV
method is safer as the ASV now avoids crossing in front of the moving obstacle, and
avoids crossing the obstacle path altogether.

7.1.3 COLAV with modified NCDM

Figure 7.4 shows that predictions are now more uncertain, as the possibility that the
vessel move straight ahead in addition to following historical trajectories is considered.
It is therefore now more expensive to turn starboard and a turn to port is planned.
In the end, a maneuver similar to the one from the test with the original COLAV
method is performed.

7.2 Scenario 2: Head-on in low data density area

This scenario takes place in a low data density area as shown in Figure 7.5. The ASV
now faces a head-on situation where both vessels are driving in a straight line towards
each other. The desired speed is 10 m/s. The scenario is illustrated in Figure 7.5.
The NCDM without modifications is not included in these tests since it is not able to
produce predictions in areas with such low data density.

7.2.1 Original COLAV

Figure 7.6 shows that the ASV makes a small maneuver to avoid the other vessel.
One might argue that maneuver happens too late or is not large enough. However,
increasing the radius the circular constraints will solve this problem.

7.2.2 Modified NCDM

As seen in Figure 7.7 the method initially plans a rather large turn to port. However,
this turn is later flipped to the other side and greatly reduced in size. In the end, the
ASV ends up taking a very small turn and passes very close to the obstacle.

The problem the new COLAV method faces in this scenario is that the GMMs for the
obstacle at small prediction steps have very little uncertainty. Therefore, the obstacles
for small prediction steps cover a very small area and the ASV needs only make small
turns to avoid them.

7.3 Discussion

In the first scenario the new COLAV method with the original NCDM appears to give
the best performance. Using the modified NCDM gives a similar result to the original
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(a) Time: 80 s (b) Time: 200 s

(c) Time: 280 s (d) Time: 380 s

Figure 7.3: Scenario 1 with the new COLAV method and NCDM:
The blue and red lines show the ASV and the obstacle, respectively.
The crosses show the predicted positions of the ASV. The multi-colored
contours are the 1 and 2 standard deviation equi-probability contours

of the predicted GMMs.

COLAV method. Comparing the AIS data in Figure 7.1 to the plots in Figure 7.4 it
might appear as if the modified NCDM overestimates the probability that the vessel
maintains a constant velocity in this scenario, as there is plenty of data available.
The modified NCDM was developed primarily to make the method usable in areas
with low data density. Although an a weight parameter of α = 5000 gave the most
consistent results in Section 5.4, it might seem that a lower α is more suitable in a
COLAV system.

In the second scenario the original COLAV method gave the better performance.
It appears that the NCDM still struggles in low data density areas even after the
modifications, although it is a vast improvement as the original NCDM cannot operate
at all in such areas. An option to improve the results is to increase the covariance
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(a) Time: 120 s (b) Time: 200 s

(c) Time: 300 s (d) Time: 400 s

Figure 7.4: Scenario 1 with the new COLAV method and modified
NCDM.

noise parameter, but this gives even more uncertainty at larger prediction steps as the
uncertainty region of the CVM increases quadratically over time [7]. In addition, a
higher noise parameter was shown to give worse consistency properties in Section 5.3.
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Figure 7.5: Scenario 2: The small blue dots are the underlying AIS
data, the big, lighter blue dot is the ASV, and the red dot is the

obstacle. The axes are in meters.
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(a) Time: 120 s (b) Time: 340 s

(c) Time: 380 s (d) Time: 480 s

Figure 7.6: Scenario 2 with the original COLAV method.
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(a) Time: 140 s (b) Time: 280 s

(c) Time: 400 s (d) Time: 460 s

Figure 7.7: Scenario 2 with the new COLAV method and modified
NCDM.
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Chapter 8

Conclusion and further work

In this thesis a modified version of the NCDM which partly relies on the CVM is
introduced and tested. The modified NCDM is, unlike the original NCDM, able to
make predictions in areas with little or no AIS data available. The modifications
introduced leads to significantly better covariance consistency properties, although
the method’s accuracy is somewhat reduced. However, adjusting a weight parameter
decides how much the predictions rely upon either the original NCDM or the CVM,
and the method is thus very flexible.

Further improvements to the NCDM have been attempted by investigating other
methods for learning the parameters for the GMMs. The use of a method based on
variational Bayesian inference to replace the EM algorithm did not improve the per-
formance of the method. The tests conducted in this thesis show that the VB method
results in worse covariance consistency properties and also an increase in computa-
tional time. Using the information criteria AIC and BIC to decide the number of
components in a GMM also failed to show any improvement over the original criteria
which considers the distance between the means of the GMM components.

The NCDM has been tested for dynamic obstacle prediction in a COLAV algorithm.
These tests give an example of where the new MPC-based COLAV algorithm makes
a safer maneuver than the original method when avoiding a turning vessel, although
both methods are able to steer the ASV clear of the obstacle. A second example show
that the new COLAV method struggles in areas with low data density. As the the
original COLAV method is not dependent on AIS data, it performs better than the
new method in this case.

There are still several issues to be solved regarding the use of the NCDM in a COLAV
system. Therefore the following tasks are suggested to continue the work of this thesis:

• Investigate whether using a OU stochastic process to predict the position of a
vessel can replace the use of the CVM in the modified NCDM.

• Conduct more qualitative tests in different collision situations: Investigate how
the COLAV methods perform in crossing and overtaking situations.

• Conduct quantitative tests to measure and compare the performance of the
different COLAV methods.





53

Appendix A

Accepted paper for the 21th
International Conference on
Information Fusion 2018



The Neighbor Course Distribution Method with
Gaussian Mixture Models for AIS-based Vessel

Trajectory Prediction
Bjørnar R. Dalsnes∗†, Simen Hexeberg ‡, Andreas L. Flåten∗, Bjørn-Olav H. Eriksen∗ and Edmund F. Brekke∗
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Abstract—When operating an autonomous surface vessel
(ASV) in a marine environment it is vital that the vessel is
equipped with a collision avoidance (COLAV) system. This system
must be able to predict the trajectories of other vessels in order
to avoid them. The increasingly available automatic identification
system (AIS) data can be used for this task. In this paper, we
present a data-driven approach to predict vessel positions 5-15
minutes into the future using AIS data. The predictions are given
as Gaussian Mixture Models (GMMs), thus the predictions give a
measure of uncertainty and can handle multimodality. A nearest
neighbor algorithm is applied on two different data structures.
Tests to determine the accuracy and covariance consistency of
both structures are performed on real data.

I. INTRODUCTION

In order for an autonomous surface vessel (ASV) to
operate safely it is essential that it is equipped with a robust
collision avoidance (COLAV) system. A major component of
this system is the prediction of the future positions of other
vessels. A simple solution to this problem is to assume that
nearby vessels will continue with constant velocity. However,
such predictions might not be sufficient for longer prediction
horizons. In recent years automatic identification system
(AIS) data has become more available and has been used to
improve the trajectory predictions of vessels.

In previous work, vessel trajectories have been predicted
by describing a vessel’s velocity using a Ornstein-Uhlenbeck
(OU) stochastic process. This was shown to give better results
than to assume a near constant velocity [1].

Another approach for vessel movement prediction is to
cluster trajectories based on historical AIS data and then assign
an object’s initial state to one of these clusters [2], [3], [4].
This approach can typically be divided into four sequential
steps:

1) Cluster trajectories based on historical data.
2) Classify a new object to one of the clusters found in

step 1.
3) Generate a representative trajectory for each cluster.
4) Predict the movement of the object along the representa-

tive trajectory found in step 3.

The trajectory clustering (TRACLUS) algorithm presented
in [5] is widely used for trajectory clustering. This algorithm
uses density based clustering to detect trajectories. The
algorithm partitions trajectories into smaller line segments
and then clusters these line segments. The algorithm is further
improved in [6] where it is made less sensitive to its decision
parameters.

As opposed to TRACLUS, the traffic route extraction for
anomaly detection (TREAD) algorithm [2] was specifically
designed for AIS data predictions. This algorithm defines
waypoints that later are clustered instead of clustering
trajectories directly. The waypoints are defined when a vessel
enters or exits a pre-defined bounding box with minimal
movement, as well as when it stays within the box for a
certain amount of time. The algorithm is principally developed
to detect low-likelihood anomalies that deviate from the main
trajectories.

Clustering based methods like TRACLUS and TREAD, as
well as the OU method from [1], were developed for much
larger prediction horizons than what is of interest in a COLAV
system. In addition, the OU method requires the estimation
of process parameters, which may not be straightforward.
Therefore, a radically different and more data-driven approach
was proposed in [7]. The key concept in this approach was a
single point neighbor search (SPNS). Given an AIS message,
the SPNS algorithm considers historical messages within a
given radius, called close neighbors, to predict a course and
speed of the vessel. Historical messages with courses that
deviate by a certain amount from the vessel’s course are
discarded in order to avoid influence from opposite moving
vessels in the predictions. What remains are messages that
have a similar position and course as that of the vessel.
The median course and speed of these close neighbors are
calculated and used as a predicted course and speed of
the vessel. The predicted course and speed is then used to
calculate the future position by a given step length parameter.
The same process is then applied on the newly predicted state
and this is then repeated until a trajectory of desired length



is produced. The output of the SPNS algorithm is an array of
waypoints with equal distances between the positions of any
two subsequent messages.

The inability to estimate prediction uncertainty and the
inability to handle branching of sea lanes are two of the
SPNS algorithm’s main shortcomings. The neighbor course
distribution method (NCDM) was developed in the MSc
thesis [8] to account for this. Whereas the output from
the SPNS can be seen as a list of states which forms a
single trajectory, the output from NCDM is a tree of states
which forms several trajectories. Each individual trajectory is
calculated in a similar manner as in the SPNS. The same set
of close neighbors are used to predict the vessel’s course and
speed at each predicted position. However, while the SPNS
predict the course and speed as the median course and speed
of the closest neighbors, the NCDM samples course from the
distribution of the neighbors’ courses. The NCDM is thus
able to predict trajectories in several branched sea lanes and
it possess the ability to indicate an uncertainty measure of
the predictions.

This paper builds upon the work done in [7] and [8]. We
extend the NCDM by introducing a Gaussian Mixture Model
(GMM) to represent the position of a vessel. The NCDM
is implemented using both the original data structure that
was used in [8] and a new data structure proposed in this
paper, and the two implementations are tested on real AIS data.

The outline of this paper is as follows: Section II introduces
the NCDM using both data structures. In Section III the
methods are tested on a comprehensive set of AIS data from
Trondheimsfjorden, Norway. Lastly, conclusions and sugges-
tions for further work are given in Section IV and Section V.

II. NEIGHBOR COURSE DISTRIBUTION METHOD

This section describes the NCDM introduced in [8]. First
the prediction tree is explained. Then the two different data
structures are introduced: the AIS message structure from [8]
and a new structure which utilizes the recent past trajectory
of the vessel.

A. Prediction tree

The NCDM takes an initial state X1 of a ship as input.
This initial state is the root node of the prediction tree, where
each node represents a predicted state X̂k,j . The tree has a
depth index k and a width index j. Nk,j gives the number of
child nodes for node (k, j), while Jk is the number of nodes at
level k. In this paper we choose the number of children for the
root node to be N1,1 = Jmax, while the number of children
at all other levels are set to one. In other words the tree has
Jmax branches which all originate in its root node. A predicted
position p̂k,j is calculated from a random sample at every node
in the tree. The method for obtaining the predicted position
varies depending on the data structure used. The prediction

Fig. 1: Prediction tree structure. N1,1 = Jmax, otherwise
Nk,j = 1.

tree is illustrated in Figure 1.

Algorithm 1 Neighbor Course Distribution Method

1: Input parameters:
• X1 . Initial state
• Nk,j . Number of child nodes from node (k,j)
• K . Total number of tree levels

2: Set X̂1,1 = X1

3: for k = 1 to K − 1 do
4: q = 0 . Indexing variable at level k
5: for j = 1 to Jk do
6: Find close neighbors
7: for Nk,j iterations do
8: q = q + 1
9: Obtain random sample

10: Calculate the next position
11: Update X̂k+1,q based on the latest prediction
12: end for
13: end for
14: end for

B. Old data structure

The first structure, referred to as XA, is used in [7] and [8].
It consists of a list of AIS messages:

XA =
[
X1 X2 ... Xn

]T
, (1)

where each message is given as

Xi =
[
MMSIi ti pi χi vi

]
, (2)

where MMSIi, ti, pi, χi and vi are the unique vessel
identification number, time stamp, position vector, course over



ground (COG) and speed over ground (SOG), respectively.
The position vector can be written as pi =

[
λi φi

]
where

λi and φi are the longitude and latitude in the WGS84
coordinate system.

The set of close neighbors (CNs) at step (k, j) is defined
as

Ck,j = {Xi| d(p̂k,j ,pi) ≤ rc, χi ∈ I,Xi ∈ X}, (3)

where d(p̂k,j ,pi) is the Euclidean distance between the pre-
dicted position and a position in the dataset calculated with
the Haversine formula [9]. Further, rc is the search radius and
I is the interval of accepted course angles given by

I =
[
χk,j −∆χ, χk,j + ∆χ

]
, (4)

where ∆χ > 0 is the maximum course angle deviation. In
other words a state is considered a close neighbor to the
predicted state if its position is within a radius rc from the
predicted position and if its course is within ∆χ of the last
predicted course.

A random sample is drawn from the CNs and the predicted
course and speed are obtained from this sample. These values
are used to update the state X̂k+1,q . The position of the next
state is given by:

p̂k+1,q = p̂k,j + ∆l
[
sin(χ̂k,j) cos(χ̂k,j)

]
, (5)

where p̂k,j is the ship’s predicted position at node (k, j), χ̂k,j

is the predicted course at node (k, j) and ∆l is the fixed
step parameter. The time stamp is updated using the following
equation:

t̂k+1,q = t̂k,j +
∆l

v̂k,j
. (6)

This means that the new state is given as

X̂k+1,q =
[
MMSIi t̂k+1,q p̂k+1,q χ̂k,j v̂k,j

]
, (7)

where χ̂k,j and v̂k,j are the randomly drawn course and
speed respectively.

C. New data structure

The second structure, referred to as XB , structures the data
as a list of sub-trajectories. A sub-trajectory S consists of n
points

S =
[
p1 p2 · · · pn

]
, (8)

where p is a point given by longitude and latitude. There is
an equal amount of time elapsed between any two subsequent
points. These points are found using cubic spline interpolation
on the points given in the AIS messages. A trajectory is given
by:

T =
[
S1 S2 · · · SM

]T
, (9)

and the entire dataset is given by a list of trajectories:

XB =
[
T1 T2 · · · TN

]T
. (10)

Fig. 2: An example of a short trajectory represented with both
data structures: The blue dots represents the ship’s positions as
given in the original AIS data. The red dots are the new data
points obtained using interpolation. Here the sub-trajectories
consist of n = 3 points.

A comparison between the old and the new structure can
be seen in Figure 2. Reformatting the dataset from the
original structure XA to the new structure XB involves three
main steps:

1) Find trajectories from the original dataset: Points that
belong to the same MMSI number and have less than 15
minutes between two subsequent points are considered as
part of the same trajectory. The time limit makes sure that
trajectories from vessels which leave and later enter the
dataset window or which stay in port for a long time, are
split into separate trajectories

2) Interpolate trajectories to get new data points: Cubic
spline interpolation is used to extract new data points at a
specified time interval. The new data points now form a new
trajectory.

3) Create sub-trajectories of n points: The first sub-
trajectory consists of the first n points of the new data points.
This is the first row of the data structure. The next row is a
new sub-trajectory shifted one point forward, thus creating a
structure of partly overlapping sub-trajectories. This continues
until the end of the trajectory. With this method a trajectory
of k points will result in k−n+1 sub-trajectories of n points.

Sub-trajectories can be seen as 2 × n dimensional points,
where n is the number of points of the sub-trajectories
in XB . The distance between sub-trajectories is thus the
Euclidean distance between these points. Close neighbors are
found as in (3) where d(p̂k,j ,pi) now is replaced by the
distance between the two sub-trajectories. A key difference
now is that the course tolerance parameter ∆χ is no longer
needed. Instead of choosing an arbitrary parameter for
accepted courses, sub-trajectories with similar courses to
the initial state are selected because these sub-trajectories



p̂k

p̂k−1

pn−2

pn−1

pn

v

Fig. 3: The sub-trajectory shown in red is a close neighbor
of X1 if the Euclidean distance between

[
p̂k−1 p̂k

]
and[

pn−2 pn−1

]
is less than rc. The location of p̂k+1 is

determined by adding v to p̂k.

are closer to the initial state. Two nearby sub-trajectories
that point in opposite directions will still have a large
distance between each other while two sub-trajectories
that point in roughly the same direction will have a small
distance between each other. Sub-trajectories with similar
courses will thus be considered close neighbors. The step
length parameter ∆l is also no longer needed as predictions
are made with fixed time steps as defined by the data structure.

The input in this case is a sub-trajectory of n − 1 points
where the last point will be the first of the predicted trajectory.
This state is compared to the n − 1 first columns of XB

to find close neighbors. A random sample (a sub-trajectory
from XB) is drawn from the CNs. From this sub-trajectory a
vector v = pn−pn−1 is obtained. As shown in Figure 3, this
vector is added to p̂k,j to obtain p̂k+1,q . The state, which is
a sub-trajectory, is updated by removing the first point from
the sub-trajectory and adding the newly calculated one at its
end.

An advantage with the new data structure is that vessels
with similar speeds are more likely to be considered close
neighbors. This is because sub-trajectories of points are
compared instead of just single points. Intuitively, sub-
trajectories of similar length will be considered closer than
sub-trajectories of different length.

D. Gaussian mixture representation

For both structures the predicted future position of a vessel
is given by a number of Jmax points taken from the desired
level of the prediction tree. A GMM is then fitted to these
points to give a probabilistic model of the future position. This
is done using the Expectation Maximization (EM) algorithm
which will fit the maximum likelihood GMM for the given
points. The number of components used are increased until the
means of two components are less than a pre-specified distance
apart, then one less component is used. It is also possible
to consider a model selection criterion such as AIC [10] or
BIC [11] instead of looking at the distance between the means,
but in the context of vessel trajectories we are mostly interested

in a multimodal distribution to enable predictions in branching
sea lanes.

III. TESTS AND RESULTS

The NCDM is tested on AIS data gathered during 2015 in
Trondheimsfjorden, Norway.

A. Test setup

The dataset is initially divided into a training set, from
where the and a test set. The first 90% of the data points are
used as training data, while the remaining 10% are used for
tests. Both structures are tested to predict vessel positions
5, 10 and 15 minutes into the future from an initial state.
We use the same prediction tree as described in Section II-A
with Jmax = 200, i.e., the tree has 200 branches which all
originate in its root node. All tests were done on N = 400
initial states randomly sampled from the test set without
replacement. The close neighbors of this sample are obtained
from the training set. A test of a given method for a given
time horizon on N initial states will from here be referred to
as a ’test’ while a test of a single initial state will be referred
to as an ’individual test’.

The initial states and their corresponding trajectories must
fulfill one requirement: The time at the end of the trajectory
minus the time of the initial state must be larger or equal to
the test time. This ensures that there is a true position in the
test trajectory that the prediction can be compared against.

An individual test will be discarded if more than 25% of
the predicted positions at the desired level of the prediction
tree are identical. This is an indication that there is not
enough data in the area of the initial state for the algorithm
to make any reasonable predictions, and it is also difficult to
fit a GMM to the points in this case.

Table I shows the decision parameters used for the test of
the NCDM using data structure XA. The trajectories produced
using this structure have a fixed step length between subse-
quent states and each state has a predicted time stamp. Most
likely they will not have time stamps equal to the test time (5,
10 or 15 minutes). It is therefore necessary to interpolate the
trajectories to obtain a position at the desired time.

TABLE I: Decision parameters for NCDM with XA

Decision parameter Value Description

rc 100m Search radius for CNs
∆l 100m Prediction step length
∆χ 35◦ Maximum course deviation for CNs

Data structure XB was tested using the decision parameters
in Table II. The search radius rc is set to the same as for the
first data structure. Parameters n and t are chosen when gen-
erating XB as described in Section II-C. The choices of n and
t are somewhat arbitrary. The minimum value for n is three
and was chosen for simplicity. Higher values of n were tried



with no visible improvement, but this has not been extensively
tested. The average SOG for the messages in the dataset is
roughly 5.4m/s. If similar step length as with XA was to be
chosen the time step would be t = (100/5.4)s ≈ 18.5s. This
was tried, but with such small sub-trajectories it was found
that sub-trajectories pointing in opposite directions often were
considered close neighbors. Therefore, t was increased to 60
seconds.

TABLE II: Decision parameters for NCDM with XB

Decision parameter Value Description

rc 100m Search radius for CNs
n 3 Number of points in each sub-trajectory
t 60s Time between each point

B. Performance measures

Two performance measures are used to determine the
quality of a set of predictions: the root mean square error
(RMSE) and a generalized concept of filter consistency, also
sometimes referred to as credibility.

The RMSE is used to measure the accuracy of a prediction.
The lower the RMSE, the better is the prediction. We define
the RMSE as

RMSE =

√∑Jmax

i=1 ‖p− p̂i‖2
Jmax

, (11)

where p is the true position, p̂i is the predicted position at
iteration i and Jmax is the number of individual predictions
as defined in Section II-A. This measure gives an idea of
how close the mean of the predictions is to the true value.
The RMSE is generally not very well suited for multimodal
distributions. The mean of a multimodal distribution might
be in an empty area between components. This is, however,
a rare scenario.

The second performance measure is used to determine if the
GMM produced is consistent. Filter consistency is colloquially
explained as follows in [12]: The estimation error should have
magnitude commensurate with the corresponding covariance
that is yielded by the estimator. In order to deal with multi-
modality, consistency of the prediction methods is measured
using the same method as in [13]. First, the Probability Density
Function (PDF) value as given by the GMM for the true
position is noted for each individual test. This value, called
f , is then compared to the maximum value of the same PDF,
called fmax. The ratio f/fmax ∈ [0, 1] thus serves as a quality
measure where a single prediction is better the closer the ratio
is to one. The distribution of f/fmax for N predictions will
then give an idea of the consistency. The values f and fmax

are illustrated in Figure 4.

C. Results

The median values of the RMSE of all the methods for each
test time is given in Table III. The same information is plotted
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Fig. 4: Performance measure illustrated using one-dimensional
data. The true value is x = 0.1. In this case f/fmax ≈
0.57/0.8 ≈ 0.71.

in Figure 5. As can be seen, the accuracy of the NCDM is
roughly the same using both data structures. It can seem as if
XB has a slight advantage for short prediction horizons while
XA is more accurate for longer horizons. However, the sample
size might be too small to draw any definitive conclusions.

TABLE III: Median RMSE for each test time

NCDM with XA NCDM with XB

5 min 282m 269m
10 min 509m 537m
15 min 661m 758m
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Fig. 5: Median RMSE over time

The natural logarithms of the f/fmax ratios are displayed
in Figure 6 in order to investigate the consistency. The
far-right box plots are values sampled from a Gaussian
distribution (also shown in Figure 6d). This plot should
therefore exhibit ideal consistency properties and will serve
as a comparison for the box plots to the left. A consistent
prediction method would have a box plot similar to the one
from the Gaussian distribution.
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Fig. 6: Box plot of the PDF-ratios

The consistency behavior deteriorates as the test time in-
creases across all methods (notice the change of y-axis). It can
be seen that NCDM using XB over XA results in a significant
improvement in the consistency. However, compared to the
Gaussian it is evident that the consistency properties of XB

still remains far from ideal.

(a) (b)
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Fig. 7: The blue dots are reported ship positions from the AIS
dataset. The red dots indicate the true trajectory of a ship with
the triangle representing the initial position and the cross the
true position at the time the position is predicted. The orange
dots are predicted positions and the orange lines correspond
to the 1, 2 and 3 standard deviation equi-probability contours
of the GMM fitted to them. The axis are in meters.

Figure 7 shows plots where the true trajectories of vessels
are compared to their predicted positions produced by the
NCDM. They are not intended to show a representative
selection of predictions or to give a comparison of the two
structures, but are chosen to highlight the strengths and



weaknesses of the NCDM in general.

Figure 7a and Figure 7b show two typical outcomes where
relatively accurate predictions are made. Figure 7c and Fig-
ure 7d show cases where the algorithm has produced multi-
modal predictions, Figure 7c in particular gives a good exam-
ple of how the algorithm is able to handle branching. However,
Figure 7e shows an example where the algorithm fails to
produce a component for the less traveled lane. Figure 7f,
Figure 7g and Figure 7h show predictions made in areas with
sparse data density. The first produces a good prediction, while
the last two highlight a major weakness of the algorithm. In
areas with sparse data density it often makes overconfident
and inaccurate predictions. The plots also show that there is
usually more uncertainty in the speed prediction than in the
prediction of the course (best illustrated in Figure 7a). The
same conclusion was also reached in [8].

IV. CONCLUSION

The NCDM is able to give a probabilistic position prediction
of vessels. The predicted position distribution can be multi-
modal and the algorithm is thus able to handle branching. A
new data structure was developed to use data from the recent
trajectories of vessels in the predictions. The accuracy of the
predictions produced using the NCDM with the new structure
are similar to the ones using the old structure. However,
the uncertainty evaluations of the predictions are significantly
more reliable with the new structure. There is still a clear
potential for improvements in consistency, although it should
be noted that the algorithm is intended to be used in a highly
proactive manner, i.e., only for suggesting how other ships
possibly may move 5-15 minutes into the future. This may
relax the requirements to consistency somewhat and future
research is needed to determine what is acceptable.

V. SUGGESTIONS FOR FUTURE WORK

The performance of the NCDM in areas with low data
density has to be improved. A way of compensating for
the lack of data may be to include the possibility that the
vessel moves straight ahead with constant speed in such areas.
Furthermore, the current method for determining the number
of components for the EM algorithm is not ideal and may be
improved by using automatic model selection [14]. The next
step is to then assess the suitability of the NCDM as part
of a COLAV system [15]. Another approach for trajectory
prediction using Guassian Process Regression can also be
investigated.
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