
An Application for Detection of Dyslexia

Tore Angell Petersen

Master of Science in Computer Science

Supervisor: John Krogstie, IDI

Department of Computer Science

Submission date: April 2018

Norwegian University of Science and Technology

Abstract

Dyslexia is a disability that has accumulated more and more attention over
the past years. Being able to detect dyslexia early on is essential for decreas-
ing the negative effects it has on people diagnosed with this disability. This
master thesis deals with creating a database system of an existing applica-
tion meant to be used as a screening tool in the process of detecting dyslexia.
This is done by developing a web-service, a database and a website to ex-
tend the application. The result of this process is an application with a fully
functional data collection system and a way to show this data graphically.
This master thesis provides the application with a data collection layer that
further helps scientists to collect information to study dyslexia. Hopefully,
when this application is deployed, the average age of dyslexia detection will
be significantly reduced and it will support the study of dyslexia.

The research questions defined for this project are twofold. First, they put
focus on the collection of personal data. Secondly, they address the possibili-
ties of implementing a web-service to collect information from the application
without any disturbance to the usability in the application Magno. These
questions are answered in this report through requirement analysis, design
and creation to extend the Magno application and evaluation of the extended
system.

I

Sammendrag

Dysleksi er en funksjonshemning som har fått mer og mer oppmerksomhet
de siste årene. Å være i stand til å oppdage dysleksi tidlig er viktig for å
redusere de negative effektene det har på personer som er diagnostisert med
denne funksjonshemmingen. Denne masteroppgaven omhandler å skape et
databasesystem til en eksisterende applikasjon ment å bli brukt som et verk-
tøy i prosessen med å oppdage dysleksi. Dette gjøres ved å utvikle en web-
tjeneste, en database og et nettsted for å utvide applikasjonen. Resultatet
av denne prosessen er en applikasjon med et fullt funksjonelt datainnsam-
lingssystem og en måte å vise disse dataene grafisk. Denne masteroppgaven
gir applikasjonen et datasamlingslag som videre hjelper forskere til å samle
inn informasjon for å studere dysleksi. Forhåpentligvis, når denne applikasjo-
nen blir distribuert, vil gjennomsnittsalderen for dysleksi-deteksjon bli bety-
delig redusert, og den vil støtte studiet av dysleksi.

Forskningsspørsmålene utarbeidet i dette prosjektet er todelt. For det først
legger de vekt på innsamling av personopplysninger. For det andre adresserer
de mulighetene for å implementere en webtjeneste for å samle inn informasjon
fra applikasjonen uten forstyrrelser av brukbarheten i søknaden Magno. Disse
spørsmålene vil besvares i denne oppgaven gjennom analyse av kravspesi-
fikasjonen, design og utvikling for å utvide Magno-applikasjonen og evaluer-
ing av det utvidede systemet.

II

Acknowledgments

The work presented in this thesis is a part of my master’s degree in computer
science at the Norwegian University of Science and Technology (NTNU).
The project is conducted under the Department of Computer Science at
the Faculty of Information Technology and Electrical Engineering, under the
supervision of Professor J. Krogstie. The project was done in collaboration
with Professor H. Sigmundsson at the Department of Psychology at NTNU.

I would like to thank Professor John Krogstie for his support and advisory
during the making of this master thesis. Without his help, this thesis would
not have been possible. I would also like to thank Professor Hermundur
Sigmundsson and Kaja Egset for contribute with their knowledge in the field
of dyslexia and dyslexia detection. My girlfriend deserve to be thanked for
being there for me during both good and bad times. Here care and motivation
is what have allowed me to focus on the project during stressful situations.

A special thanks is directed towards my family for their unprecedented sup-
port and for providing me with the foundation needed in order to complete
my master’s degree here at NTNU.

III

Contents

Abstract I

Sammendrag II

Acknowledgments III

1 Introduction 1
1.1 Motivation . 2
1.2 Project Objective . 2
1.3 Project Description . 2
1.4 Thesis Outline . 3

2 Research Approach 4
2.1 Research Question . 4
2.2 Research Method . 5

2.2.1 Participants and Stakeholders 6
2.3 Final Deliverables and Dissemination 7

3 Previous Work And Requirements 8
3.1 Dyslexia . 8

3.1.1 Magnocellular System 10
3.2 Detecting Dyslexia Today . 12

3.2.1 App for Early Detection of Dyslexia 14
3.3 Requirements . 20

3.3.1 Functional Requirements 20
3.3.2 Non-Functional Requirements 21

4 Methods and Implementation 23

IV

4.1 Application Overview . 23
4.1.1 Magno-app . 23
4.1.2 Magno Web-page . 25
4.1.3 Database. 28
4.1.4 Rest-Api . 28

4.2 Design Choices . 29
4.3 Software Architecture . 29

4.3.1 MVC . 30
4.3.2 Client Multi-Server/Three-tier architecture 31
4.3.3 Classes . 32

5 Evaluation 36
5.1 Overall Evaluation . 36
5.2 Evaluation of Technical Tools 37
5.3 Requirement Fulfillment . 40

5.3.1 Functional Requirement Fulfillment 40
5.3.2 Non-Functional Requirement Fulfillment 41

6 Discussion, Conclusion, and Further Work 43
6.1 Discussion . 43
6.2 Conclusion . 44

6.2.1 Final Conclusion . 46
6.3 Further Work . 46

A The application 48

V

List of Figures

2.1 Design Science Research Cycles 5
2.2 Model of The Research Process (adapted from [6]) 6

3.1 Images from the dynamic dot and form tests, testing coherent
motion (left) and coherent form (right) 10

3.2 Improvement in writing, after using yellow glasses for one
week[17]. 11

3.3 Increase in literacy (readin age) after use of yellow glasses [17]. 12
3.4 Increase in literacy (reading age) after use of blue glasses [17]. 13
3.5 Main menu . 14
3.6 Motion test. 15
3.7 Form fixed auto test. 16
3.8 Form random auto test at 100% coherency. 17
3.9 The new main menu . 17
3.10 Enter age . 18
3.11 Test results . 19

4.1 Changes to the test result screen 24
4.2 Adding sex input to tutorial 25
4.3 Home page . 26
4.4 Data page . 26
4.5 Contact page . 27
4.6 Log in page . 27
4.7 Database . 28
4.8 Class Diagram for Magno . 33
4.9 Class diagram for the entire system 34

A.1 Main menu . 48
A.2 First tutorial page . 49

VI

A.3 Second tutorial page . 49
A.4 Tutorial test start page . 50
A.5 Tutorial test page . 50
A.6 Tutorial test response when you choose the correct box 51
A.7 Tutorial test response when you choose the wrong box 51
A.8 Last tutorial page with the drop down box for choosing your

sex . 52
A.9 Form fixed test screen with full circle 52
A.10 Form fixed test screen with almost no circle 53
A.11 Form fixed test result . 53
A.12 App settings . 54
A.13 First part of Advanced settings 54
A.14 Second part of Advanced settings 55
A.15 Third part of Advanced settings 55
A.16 Fourth part of Advanced settings 56
A.17 Fifth part of Advanced settings 56
A.18 Sixth part of Advanced settings 57
A.19 First part of reset settings . 57
A.20 Second part of reset settings 58

VII

List of Tables

3.1 System requirements . 20
3.2 Functional Requirements . 21
3.3 Non-Functional Requirements 22

5.1 Functional Requirements . 40
5.2 Non-Functional Requirements 42

VIII

Chapter 1

Introduction

Big data is a fast evolving area within computer science that describes any
voluminous amount of structured, semi structured and unstructured data
that has the potential to be mined for information. The data can come
from several different sources, such at such as business sales records, real-
time sensors that are used in the internet of things or the collected results of
scientific experiments. The idea behind the application Magno is that it can
be used for possible early detection of dyslexia and also collect vast amounts
of data to study the correlation between dyslexia and other aspects of the
human being.

Reading is complex. It requires our brain to connect letters to sound and put
those sounds in the right order, and pull the words together into sentences so
that we can read and understand what is written. People with dyslexia have
trouble matching the letters they see on a page with the sounds those letters
and combination of letters make. But these difficulties does not have any
connection to their overall intelligence. In fact, dyslexia is an unexpected
difficulty in reading in an individual that has the intelligence to be a much
better reader[1]. The importance of detection dyslexia early on is undoubted,
as proper intervention has up to 80 percent effectiveness when applied to
children in the 1st and 2nd grade of primary school[2].

1

1.1 Motivation

With the importance of data collection and early dyslexia detection being
as is, the combination of the two makes for an interesting and rewarding
master’s thesis. The opportunity to not only provide the public with a tool
that helps scientist further research on the effects of enabling early dyslexia
detection not based on the ability to read or write, but also develop and
implement a data structure that contributes to the collection of information,
is unparalleled. Being able to participate in the development of this program,
could potentially contribute to the detection of several more cases of dyslexia,
and hopefully increasing the quality of life of one or more individuals suffering
from dyslexia.

My thesis focuses primarily on developing an application programming in-
terface and a database that collect data and process data. The web-service
is the link between data collection and the scientist that uses the data, and
is important to ensure usability and accessibility of the data. My motivation
for focusing on this aspect of the development is to ensure that this program
can be used for the masses and also big scientific researches.

1.2 Project Objective

The main objective of this project is to provide a system meant to collect data
from the Magno application without interference to the user interface. In a
larger sense, one might say that my objective is to ensure steady collection
of the information, in order to promote use of the program. By tailoring the
data collection of a system to meet the users needs, one lowers the threshold
for taking the program into use. The ultimate objective of this project is to
help in early dyslexia detection, and providing the researchers with a tool to
do so.

1.3 Project Description

This project is a continuation of the master thesis "App for Early Detec-
tion of Dyslexia" conducted in the spring of 2016 [3] and the master thesis

2

"Magno: An Application for Detection of Dyslexia" [2], as well as the authors’
specialization project “Designing an Application for Detection of Dyslexia”
conducted in the fall of 2016 [4]. "App for Early Detection of Dyslexia" was
a master thesis concerning the development and implementation of a digi-
tal test that might help in dyslexia screening. "Designing an Application for
Detection of Dyslexia" was a specialization project that had to do with creat-
ing a concept for a user interface to go along with the implemented screening
test. "Magno: An Application for Detection of Dyslexia" was regarding the
further development of the user interface design, and implementation of this
user interface. They identified any problem areas in the existing user inter-
face design, received from previous work, found solutions to these problem
areas, and implementing a finished user interface design. This project covers
further development of the application, and implementing a server to handle
the data collection. This project is meant to identify what data to collect
without any personal security issues. This without interfering the existing
code, received from previous work. Also finding solutions to these problem
areas, and implementing a finished system design.

1.4 Thesis Outline

This thesis consists of six different chapters. This chapter is the first chapter,
which includes the introduction. Chapter 2 contains information regarding
the research approach used in this project, and chapter 3 introduces all pre-
vious work done in relation to this project. In chapter 4 the implementation
process and the finished graphical user interface that has been implemented
are explained. Chapter 5 contains an evaluation of the work done in this
project, and chapter 6 encompasses discussion around the project, a conclu-
sion and any further work that might be needed. In addition, this thesis
includes an appendix with one chapter.

3

Chapter 2

Research Approach

In this chapter, we will describe the chosen research approach. In section 2.1
the different research questions are presented, in section 2.2 we will discuss
the research paradigm for this project and in section 2.3 we will discuss the
different selected research models and methodologies. The final deliverables
are declared in section 2.4

2.1 Research Question

This master thesis aims to develop a web-service for data collection and
implementing the finished system into an existing application for screening
for dyslexia [2]. The research questions to complement this master’s thesis
description are as follows:

RQ-1 What are the problem areas with developing the web-service in this
project?

RQ-2 What are the problem areas with collecting personal data?

RQ-3 How can we compliment existing code with the implementation of the
new web-service?

RQ-3.1 What technical tools are best suited to aid in implementing a web-
service for data collection, based on previously implemented
functionality?

4

2.2 Research Method

In this project I have chosen to use a combination of two research methods.
These are literature study and design-science. The method were selected to
obtain a solid foundation in the field through both empirical data and the-
ory. This allows for better justification of the choices taken throughout the
project. Due to the technological nature of the project, design-science is a
fitting research method as I wish to answer my research question through
development of a proof-of-concept solution. Design-Science is a set of tech-
niques used in research on information-systems and -technology. Research
which utilize these techniques follow a process where one acquire new knowl-
edge through innovation, or close-to-realizable artifacts. This knowledge is
used to analyze and reflect upon the effects of interaction with these artifacts
[5]. The analysis is to be done after the literature study is complete, giving
insights into previous experiments in this project’s domain, as well as related
theory to increase the quality of the first design iteration.

The research questions will be answered in this report by investigating the
entire system through Design Science Research [5] and review of litera-
ture and related work. The research conducted in this project had several
phases. Starting from the Knowledge Base constructed during the start of
this project, some small changes was made to the application by tapping into
the Knowledge Base as illustrated by the right side of Figure 2.1.

Figure 2.1: Design Science Research Cycles

The second, and most extensive phase, was the iterations of Design Sci-

5

ence Research illustrated by the left side of Figure 2.1. Here, the extended
RestAPI, database and web site was implemented through several iterations
of the Design Cycle. The requirements were implemented through Build De-
sign Artifacts & Processes and was iteratively tested and evaluated by the
developer. The Research Process adapted from Oates [6] with my personal
process indicated in red, can be seen in Figure 2.2. This figure highlights the
main strategies, the data generation methods and data analysis methodology
applied during this research project.

Figure 2.2: Model of The Research Process (adapted from [6])

2.2.1 Participants and Stakeholders

Participants of some form of research are the ones who have participated,
contributed, or are otherwise featured in the research. Stakeholders are the
ones who have something to either gain or lose depending on the outcome of
the research.

6

The participants in this project are primarily the researchers, the authors
of this master thesis, who contribute with their work and research on the
subject at hand. The project supervisor, Professor J. Krogstie, a profes-
sor at NTNU, contributes with his expertise and experience in research in
the field of information systems, and is also a participant. Other than the
researchers and the project supervisor, external experts on the subjects of
dyslexia and dyslexia detection have also been consulted. These external ex-
perts should also be viewed as participants of this project. The stakeholders
of this project are the researchers, as the research will impact the grade given,
and I am interested in presenting work that will reflect our work ethics and
abilities. The project supervisor and NTNU will want this project to be con-
ducted properly and with high quality, as the work reflects the quality of the
university and its professors, and the publication will represent the quality
and determination of the students who attend NTNU. Potential dyslectics,
teachers, and doctors specializing in dyslexia and other reading disabilities
will have something to gain as early detection of dyslexia minimizes potential
problems both inside and outside of the classroom. Detecting dyslexia early
will make life easier for the ones who are diagnosed, teachers who have to
teach them, and the doctors who treat and diagnose them. Psychology stu-
dents and researchers can use this application as a tool and an aid in research
concerning dyslexia.

2.3 Final Deliverables and Dissemination

The project will conclude in the delivery of this master thesis. In addition
a working version of the implemented application will be delivered, along
with all coding for the different parts of the project. The master thesis will
show an insight into the workings of the application, and how the application
itself can be used as is, or further development in order to enable extended
functionality.

7

Chapter 3

Previous Work And Requirements

Section 3.1 will describe what dyslexia is and it introduces the idea that
some of the things causing dyslexia might lead to motor deficits as well.
Also that the anatomical differences between the brains of known dyslexics
and non dyslexics are presented. Section 3.2 contains an explanation of how
dyslexia is detected in Norway today, and I give a thorough walk through of
the applications that is the precursor to this project. The requirements are
presented in the last section; section 3.3

3.1 Dyslexia

The disability causing reading abilities to be significantly worse than expected
given the IQ, is called dyslexia. It is a neurological syndrome and has no
connection with a person’s intelligence other than poor orthographic1 skills
[7]. There exist several definitions of dyslexia as it manifests itself a little
differently for each individual.

Some of the definitions are as follows:
«Dyslexia is a specific learning disability that is neurobiological in origin. It
is characterised by difficulties with accurate and/or fluent word recognition
and by poor spelling and decoding abilities. These difficulties typically re-
sult from a deficit in the phonological component of language that is often

1The study of spelling and how letters combine to represent sounds and form words.

8

unexpected in relation to other cognitive abilities and the provision of effec-
tive classroom instruction. Secondary consequences may include problems
in reading comprehension and reduced reading experience that can impede
growth of vocabulary and background knowledge.»
- International Dyslexia Association [8]

«Dyslexia is a specific learning difficulty that mainly affects the development
of literacy and language related skills. It is likely to be present at birth and to
be life-long in its effects. It is characterised by difficulties with phonological
processing, rapid naming, working memory, processing speed, and the auto-
matic development of skills that may not match up to an individual’s other
cognitive abilities. It tends to be resistant to conventional teaching methods,
but its effect can be mitigated by appropriately specific intervention, includ-
ing the application of information technology and supportive counselling.»
- British Dyslexia Association [9]

«A general term for disorders that involve difficulty in learning to read or
interpret words, letters, and other symbols, but that do not affect general
intelligence.»
- Oxford dictionary [10]

The definitions have similarities, but they are not equal. A similarity is that
none of these definitions mention anything about what the cause of dyslexia
is, only the symptoms. There are many different opinions on what causes
dyslexia, but it is generally agreed upon that dyslexia is a genetic disorder,
and therefore hereditary[11].

There have been conducted several studies that link dyslexia to other motor
skills. In 2005, H. Sigmundsson published a research paper suggesting a link
between dyslexia and poor performance in reaction time tests. The tests
conducted showed that dyslexics on average responded .19 seconds slower
than test subjects without dyslexia [12]. A study conducted by Hansen et
al., examined the connection between visual deficits in dyslexics and the
dorsal stream function2. They discovered that dyslexics were less sensitive
to coherent motion in dynamic dot displays than a control group. However,
the dyslexics did not perform significantly different from the control group
when tested in a static environment [13]. The dynamic dot test used in this

2The neural stream projected dorsally from the primary visual cortex in to the parietal
lobe.

9

study is the same as used in the application described in this thesis.

Figure 3.1: Images from the dynamic dot and form tests, testing coherent
motion (left) and coherent form (right)

The dot kinematogram showed in figure 3.1 was also used in another study
conducted by H. Sigmundsson, P. C. Hansen and J. B. Talcott, where they
looked for a connection between developmental “clumsiness” and visual im-
pairment. The results from this research showed that children considered as
clumsy had a significantly higher threshold for the visual measures tested.
This means that some clumsy children most likely have a visual impairment
in addition to their obvious motor problems [14].

3.1.1 Magnocellular System

The dorsal pathway is one part of the brain responsible for visual processing.
Within the dorsal pathway, there are cells called magnocellular neurons that
are specialised in detecting visual motion. Many dyslexics have reduced
activation of the visual areas in the dorsal stream in response to moving
targets. This reduced sensitivity to motion indicates reduced sensitivity of
the visual magnocellular system in many dyslexics, crucial for visuomotor
control. In addition, in the average brain, there is some asymmetry favouring
the left part of the brain, especially considering the dorsal pathway. Studies of
the brains of known dyslexics show that dyslexics often lack this asymmetry.

10

Small “brain warts” (ectopias3) were also discovered clustered around the
temporoparietal junction4 of the brain in these dyslexics. These warts are
associated with widespread disruption of normal neurological connections.
The studies done in this field imply that some people with dyslexia also
suffer from some kind of visual impairment, especially in relation to coherent
motion detection [7]. Yellow filters can improve magnocellular function and
improve reading, as magnocells are more sensitive to yellow light. This is
exemplified in figure 3.2 and shown in comparison with placebo in figure 3.3.

Figure 3.2: Improvement in writing, after using yellow glasses for one
week[17].

Blue filters on the other hand, can help the letters keep still when reading
[17]. The improvement of literacy when using blue tinted glasses can be seen
in figure 3.4.

3Malposition of an organ or structure [15]
4Relating to the temporal and the parietal bones or regions [16].

11

Figure 3.3: Increase in literacy (readin age) after use of yellow glasses [17].

The differences in the brain function explained here might explain the fact
that dyslexics score differently than a control group in the various tests de-
scribed in section 3.2. As many dyslexics have a weakened magnocellular
system, it allows for testing of signs of dyslexia by testing people’s ability to
detect motion and coherent motion. The benefit of this, is that one does not
have to know how to read to be tested, and enables dyslexia screening early
on in a persons life.

3.2 Detecting Dyslexia Today

There exist many different methods for detecting dyslexia already. The down-
side of these tests is that many of them rely on the subject already having
some reading or writing capabilities. In Norway, dyslexia is normally di-
agnosed by a specialized doctor, who conducts these tests to ensure that
struggles with reading and writing are not caused by some other factor than

12

Figure 3.4: Increase in literacy (reading age) after use of blue glasses [17].

dyslexia. Children can start screening in the 2nd grade of primary school
[18]. The different tests used to screen for and diagnose dyslexia are often
tailored to the subject’s age, but one of the most used tests in Norway today,
the word chain test (ordkjedetesten), can be performed on all subjects who
have some knowledge in reading, regardless of age. The word chain test is a
group exercise that is used to map a test subject’s ability to decode words.
The test consists of 90 words written in the following format: treearrowwho-
cow sausbeerknifehead. The test subject is to place three lines within each
word chain to divide them into four separate words. The test subject is given
a score based upon how many word chains he or she is able to divide within a
time space of four minutes. The score will be equal to the number of correct
answers, with a maximum score of 90 [12]. Test results derived from the
application presented in section 3.2.1 have been compared to this word chain
test.

13

3.2.1 App for Early Detection of Dyslexia

During the school year of 2015-2016, an application meant to function as
a screening test for detecting dyslexia was developed [3]. The application
incorporated the tests shown in figure 3.1. The summer and fall of 2016, H.
Sigmundsson and K. S. Egset performed tests with the application on 100
different test subjects; the results were that there is a significant correlation
between application test scores and test scores from the word chain test [19].
The goal for the application was to get the tests to function as correctly as
possible. Hence, the user interface was secondary to the functionality. The
user interface consists of simple white elements on a black background, with
colouring to indicate certain functionality. The screen captures below are
taken with the default settings specified in the application. The main menu,
showed in figure 3.5, consists of buttons in the middle of the screen. You
can choose between the three different tests, and settings. The exit button is
coloured red to indicate its functionality. Looking at the figure of the main
menu, you get a feeling of how the user interface is.

Figure 3.5: Main menu

Figure 3.6a shows a screen capture of the motion test. Each patch contains
300 randomly placed dots with a radius of 1 pixel, and a minimum distance

14

of 1 pixel between the dots. One of the patches is chosen at random at each
interval to contain a coherent motion target. In the chosen patch, a percent-
age of the dots will move either leftwards or rightwards, reversing every .572
seconds. The rest of the dots will move randomly, changing direction when
colliding with other dots after .572 seconds. The test taker should identify
the patch with the coherent moving target during the 5 seconds of animation
time. After the animation time, the dots will disappear and the test taker
can click on the patch they believe contained the coherent motion target.
The dots are recalculated with a change in coherency, and subsequently dis-
played on the screen when the input is registered. Figure 3.6b illustrates
the dot animation at 50 percent coherency, where the blue dots are moving
coherently to the right. The form fixed auto test is shown in figure 3.6. Each

(a) Motion test screen
capture.

(b) Illustration of the motion test
at 50% coherency.

Figure 3.6: Motion test.

patch consists of 600 line segments, and each of the lines have a length of 0.4◦
and a height of 1 pixel. One of the patches is chosen at random to contain a
percentage of lines that form concentric circles at each interval. The centre
of the concentric circles is locked in the centre of the chosen patch. The test
taker should search the patches for the concentric circles during an interval
of 4 seconds. After the pattern disappears, the test taker can click on the
patch they believe contained the circles. As in the motion test, the pattern
is recalculated with a change in coherency and subsequently displayed on the
screen when the input is registered. Figure 3.7a and 3.7b show the test at
respectively 100 and 50 percent coherency.

15

(a) 100% coherency. (b) 50% coherency.

Figure 3.7: Form fixed auto test.

The form random auto test, shown in figure 3.8, is similar to the form fixed
auto test. At each interval, one of the patches are chosen at random to
contain a percentage of lines that form concentric circles. The difference is
that the centre of the concentric circles will be placed randomly within the
chosen patch, with its circumference confined within the patch. Due to the
added difficulty of finding the target, the test taker is to search the patches
for the concentric circles during the interval of 1000 seconds. The test taker
can click the patches at any time.

During the school year of 2016-2017 the Magno-application was upgraded in
the master thesis of Johansen and Kirkerød [2]. It was based on improving
the usability of the application and improving the user interface. A full
overview of the application can be found in appendix A. The screen captures
below are the only part of the graphical user interface that needed to be
altered. The main menu seen in figure 3.9 that consists of menu to the left
with 3 different tests, settings and exit. In the middle of the screen there is
a welcome message that provides the short description to the application.

16

Figure 3.8: Form random auto test at 100% coherency.

Figure 3.9: The new main menu

17

There are multiple steps for the tutorial, the last step of the tutorial is that
the user have to enter their age. Showed in figure 3.10 you will see the header,
indicating what kind of test you have chosen, and a text field. Above the text
field there is a descriptive text, “Enter your age:”, indicating what you should
write in the text field. At the bottom a “Start test” button that starts the
test. The user can still navigate between the different tutorial screens. If the
user chooses to skip the tutorial, or turns off the tutorial in the application
settings, the fourth tutorial step is what will be shown.

Figure 3.10: Enter age

The content of test result view is the same, regardless of what test the user
has chosen. The difference in appearance is which section in the menu bar
that is highlighted. This is shown in figure 3.11. The test result view appears
when the user is finished with the chosen test. At the top of the screen, there
is a header, telling the user that they are viewing the test results. Following,
the user sees their score. The score is a value between 1 and 100, representing
the final threshold value derived from the completed test. Beneath the score

18

value, there is a text telling the user whether or not the score is within
the normal score range. As there is no available data on what score range
is normal for different age groups, the text is static regardless of what age
the user enters. Score between 1 and 20 - description “Your score is within
the normal score range.” Score between 20 and 50 - description “Your score is
slightly above the normal score range.” Score between 50 and 100 - description
“Your score is significantly above the normal score range.” In the middle of
the screen, there is a progress bar showing a graphical representation of the
test score. The progress bar has the number “1” and “100” indicated at each
end, and a descriptive text at each extremity. The far left hand side of
the progress bar represents low score values, and has the text “Little to no
problems”. The rightmost side of the progress bar has the descriptive text
“Severe problems”. There are two buttons at the bottom of the result view.
One button will take the user back to the main view of the application. The
other button will copy the results along with the test parameters onto the
device’s clipboard, enabling the user to paste the results into a spreadsheet
or a text processing program.

Figure 3.11: Test results

19

3.3 Requirements

This section will specify and elaborate the requirements for the extended
Magno application. The corresponding system-design and implementation of
the requirements are detailed in the following two sections. The requirements
are derived from the research questions and the vision of prof. Hermundur
Sigmundsson, together with the robust system requirements, seen in Table
4-1, established in meetings with Hermundur Sigmundsson. Adding support
for the system requirements is important to ensure the continuous support
for the project.

ID Description Priority
SR1 The application needs to be connected to a database High

and a system to collect the data to the database.
SR2 The system should present the data in such manner Medium

that it is easily understood
SR2.1 The system should only show data to an authorized Medium

user

Table 3.1: System requirements

3.3.1 Functional Requirements

From the very beginning, the advancement of Magno has been motivated
by the goal to reduce the complexity of collecting data of early detection of
dyslexia. The existing application made it easy for the test subjects, but
not for the scientist that want to collect the data. The application Magno,
introduced in chapter 3.2, has successfully managed to design a user friendly
software, but for collecting and viewing the results of scientific experiments
a new part of the system is necessary. In order to support the new part,
both some new components and also some changes to the system are needed.
The high priority requirements represent the minimum set of requirements
for supporting datacollection. The requirements can be seen in Table 3.2.
Priorities of the requirements are listed as High (H), Medium (M) or Low
(L) in the column labeled ‘Pri.’. Inter-dependencies of the requirements are
listed in the ‘Idep.’ column, while the ‘SR’ column lists the related System
Requirements seen in Table 3.1.

20

ID Description Pri. Idep. SR
FR1 The database should store the High - SR1

information needed by the stakeholders
FR2 The system should connect to the High - SR1

rest-API seamlessly
FR3 The rest-API should collect data High FR1 SR1

and input it to the database FR2
FR4 The system should be able to store Medium SR1

test results for use in comparisons
based on age groups and sex

FR5 The system should be able to Medium FR2 SR1
differentiate the different age groups

set by the shareholders
FR6 It should be possible to use and Medium FR2 SR2

navigate the web page with little to
none prior introduction

FR7 The web page should be able to Medium FR2 SR2
show the research information based on

a selected age group
FR8 The system should be able to export Low

data to an excel file with some given
parameters

Table 3.2: Functional Requirements

3.3.2 Non-Functional Requirements

Table 3.3 specifies the non-functional requirements for the application. As
this research report focuses on introducing new components into an existing
application which will use a web-service to collect data, our chosen quality
attribute is mainly availability, but also security and scalability.

21

Priority Requirement Requirement

Availability

A1 The system should be available to
receive data from the application

Magno 99.9% of the day
A2 The system should be running in less

than 20 min after any major incident
A3 A user should be able to get research

data 99.9% of the day

Security

SEC1 The system should only show
information to authorized users

SEC2 The system should not store any
personal information about the user

Scalability

S1 The system should be able to
handle 50 simultaneous clients

S2 The administrator should be able to
scale-up the system to handle

100 simultaneous clients

Table 3.3: Non-Functional Requirements

22

Chapter 4

Methods and Implementation

In this chapter I present some of the choices made for making a system of ad-
equate quality, alongside explanations of solutions that were used to achieve
the final implementation. Section 4.1 gives an overview over the applica-
tion overall structure and code structure. In section 4.2 I justify my design
choices. Section 4.3 contains a description of the application architecture.

4.1 Application Overview

When implementing the Rest-API, database and web-page of this system, the
aim was to make the new parts of the system as non-intrusive as possible,
while making necessary changes where they were needed. All screen shots in
this section are captured on a Samsung Galaxy Tab A, but as the design is
responsive it will look the same on any android device as well as on a desktop.
The implementation can be divided into two parts, further development of
the design of the application, and converting this design into code.

4.1.1 Magno-app

As the scope for the master thesis this project is built on was usability and
creating a good GUI, I did not want to do any more changes than needed. At
the start of this project I received some input from Kaja S. Egset about the

23

GUI of the application, parts of the Result screen was found to be confusing
and giving misleading information to the user. In the master thesis of Maja
Kirkerød and Thea Hove Johansen I found that the text commenting the
score value where set static regardless of age because the application did not
have any data to compare the score to [2]. And the names for the progress
bar where set a bit extreme so they did not give an accurate representation
of the score threshold. These where then removed as showed in figure 4.1a
and figure 4.1b.

(a) Before. (b) After.

Figure 4.1: Changes to the test result screen

Sigmundsson et al.[14] found that the form random test did not warrant a
good test result in studies concerning dyslexia, so this test would not be used
in the studies this application was created to contribute to. This finding
resulted in the decision to remove part of the application regarding Form
Random Test. Showed on the menu to the left in figure 4.1a.

The last visual change was done as a proof of concept to facilitate more
information given the connection to a RestAPI. This gives an option to al-
low studies conducted on dyslexia regarding sex. And it opens for further
development to connect to a identification database with a given ID. The
last visual change was added towards the end of the tutorial where the user
already input information about his or here age. Showed in figure 4.2

24

Figure 4.2: Adding sex input to tutorial

4.1.2 Magno Web-page

Considering that the scientist using Magno will not be a computer specialist
it was early decided that it was necessary to create a web-page for easy
access to the data collected by the application. Since the application has
potential to collect privacy information I decided to use the security provided
by Microsoft’s Asp.Net.

Main page

The home screen seen in figure 4.3 consists of a menu bar on the top side
of the screen, containing all the different navigational choices, as well as a
welcome message to the web-page. In the top-right side of the page there is
a link to the log in page. To gain access to the data-page, one needs to be
logged in to an authorized account. The user can click on the Magno logo to
get back to the home page from all pages.

25

Figure 4.3: Home page

Data-page

The data-page seen in figure 4.4 shows the graphical representation of the
scores gathered from the Magno application. This representation can be
update by using the update button just above the graph. By using the drop-
down menus the user can restrict the age range for the scores shown in the
graph.

Figure 4.4: Data page

26

Contact and login

Figure 4.5: Contact page

The contact page seen
in figure 4.5 gives the
contact information
for the creator of the
web-site for the users
to use if any errors
are found during use.
The log in page seen
in figure 4.6 is where
the user authenticate
them selves to access
the data in the data-
page.

Figure 4.6: Log in page

27

4.1.3 Database.

Figure 4.7: Database

The database in this context is relatively ba-
sic, since it just collect age, sex, score, test-
Type and potentially ID number. The ID
number is not required, even though it was
added in the database for the possibility to
be compatible with other scientific studies.
The layout of the database is shown in figure
4.7. The test-type where added to differen-
tiate between the two different test.

4.1.4 Rest-Api

REST stands for Representational State Transfer. It is a term coined by Roy
Fielding in his dissertation [19] to refer a software architectural style. Ac-
cording to [19], an architectural style is a coordinated set of architectural con-
straints that restricts the roles and features of architectural elements, and the
allowed relationships among those elements within any architecture that con-
forms to the style. In other words, we may regard an architectural style as a
set of design patterns with which we can create architectures that exhibit the
properties induced by the style. Derived from 12 other related styles, REST
is a hybrid (union) style that aims to induce certain architectural properties
that are important to distributed hypermedia systems. These properties in-
clude usability, simplicity, scalability and extensibility. By introducing these
properties with carefully considered trade-offs, REST attempts to minimize
latency and network communications, and at the same time, maximizing the
independence and scalability of component implementations, including user
agent, proxy, gateway, origin server and various connectors, in distributed
hypermedia systems.

Node.js

Node.js is a server-side platform built on Google Chrome’s JavaScript En-
gine [20] for easily building fast and scalable network applications. Node.js
uses and event-driven, non-blocking I/O model that makes it lightweight and

28

efficient perfect for data-intensive real-time applications that run across dis-
tributed devices. Following are some of the biggest incentives to use Node.js
and most important reasons that makes it the first choice of software archi-
tects:

• Asynchronous and event driven - All API’s of Node.js library are
asynchronous. It essentially means a Node.js based server never waits
for an API to return data. The server moves to the next API after
calling it and a notification mechanism of Events of Node.js helps the
server to get a response from the previous API call.

• Single Threaded but Highly Scalable - Node.js uses a single
threaded model with event looping. Event mechanism helps the server
to respond in a non-blocking way and makes the server highly scalable
as opposed to traditional servers which create limited threads to handle
requests. Node.js uses a single threaded program and the same program
can provide service to a much larger number of requests than traditional
servers.

• No Buffering - Node.js applications never buffer any data.
These applications simply output the data in chunks.

• License - Node.js is released under the MIT license.

4.2 Design Choices

In this section all the design choices that have been made within the appli-
cation will be described, as well as why they were made.

4.3 Software Architecture

Most of the functionality and all of the GUI for the application was already
implemented when I started to work on this system. LibGDX provides a
screen adapter class that holds a camera to display the content, and a stage
to handle input and the behaviour of actors, like fields and buttons. The
software was implemented with the model view controller (MVC) pattern

29

for the motion and form tests. The classes representing the model of the
MVC pattern, keep track of the current state and contain the functionality
related to a test [3]. The classes representing the view and controller of the
MVC pattern hold the interface and handle input from the user. I had to do
changes to the existing code to implement the connection to the server and
database. The use of MVC was a big advantage, as this made it possible to
implement the server connection without doing changes to the GUI.

4.3.1 MVC

It’s reasonable to propose that any given application is likely to change its
interface as time goes by, or indeed have several interfaces at any one point
in time. Yet the underlying application might well be fairly constant. A
banking application that used to sit behind character-based menu systems
or command-line interfaces is likely to be the exact same application that
today is probably sitting behind a graphical user interface (GUI). Building
any particular interface into an application would be to the detriment of
both the application, making it less flexible and harder to migrate; and the
interface, making it harder to use for other applications.

Model

The model is the unchanging essence of the domain. In object-oriented terms,
this will consist of the set of classes which model and support the underlying
problem, and which therefore will tend to be stable and as long-lived as the
problem itself. The domain model will consist of the objects which repre-
sent and support the essence of the problem— Client, Invoice, Booking, . . .
These are the classes that today’s software engineering modelling and imple-
mentation would focus on first. Indeed, it is usually considered crucial that
the core structure of the solution matches an appropriate and useful struc-
turing of the problem. The domain classes will truly know nothing about the
mechanisms that interface them to the outside world.

30

View

For a given situation there will be one or more interfaces with the model,
which we’ll call the views (plural). In object-oriented terms, these will consist
of sets of classes which give us “windows” (very often actual windows) onto
the model, e.g.

• The GUI/widget (graphical user interface) view,

• The CLI (command line interface) view,

• The API (application program interface) view.

Although views are very often graphical, they don’t have to be. What will
the views know about the model? They have to know of its existence. They
must know something of its nature. A bookingDate entry field, for example,
might display, and perhaps change, an instance variable of some model class
somewhere.

Controller

A controller is an object that lets you manipulate a view. Over-simplifying
a bit, the controller handles the input whilst the view handles the output.
Controllers have the most knowledge of platforms and operating systems.
Views are fairly independent of whether their event come from Microsoft
Windows, X Windows or whatever. And, just as the views know their model
but the model does not know its views, the controllers knows their views but
the view does not know its controller.

4.3.2 Client Multi-Server/Three-tier architecture

Apart from the usual advantages of modular software with well-defined in-
terfaces, the three-tier architecture is intended to allow any of the three
tiers to be upgraded or replaced independently in response to changes in
requirements or technology. For example, a change of operating system in
the presentation tier would only affect the user interface code. Typically,
the user interface runs on a desktop PC or workstation and uses a standard
graphical user interface, functional process logic that may consist of one or

31

more separate modules running on a workstation or application server, and
an DBMS on a database server or mainframe that contains the computer
data storage logic.

Three-tier architecture:

Presentation tier
This is the topmost level of the application. The presentation tier displays
information related to such services as browsing merchandise, purchasing and
shopping cart contents. It communicates with other tiers by which it puts
out the results to the browser/client tier and all other tiers in the network.
In simple terms, it is a layer which users can access directly (such as a web
page, or an operating system’s GUI).

Application tier (business logic, logic tier, or middle tier)
The logical tier is usually pulled out from the presentation tier and, as its
own layer, it controls an application’s functionality by performing detailed
processing. But in this system the middle tier was only created to collect
data from the Magno application and act as the data access layer for the
data tier.

Data tier
The data tier is in this system the data persistence mechanisms (database
servers, file shares, etc.). Avoiding dependencies on the storage mechanisms
allows for updates or changes without the application tier clients being af-
fected by or even aware of the change. As with the separation of any tier,
there are costs for implementation and often costs to performance in exchange
for improved scalability and maintainability.

4.3.3 Classes

During the implementation, new classes were added, some classes were
changed, and in the Magno application most of the classes were left un-
changed. The class diagram can be seen in figure 4.8. The classes marked
with red colour are new classes, the yellow ones are existing classes where
changes were made, and the white ones are classes that have remained the
same or have no significant changes. The classes that are most important for

32

the entire system are described below starting with the changes to Magno
application.

Figure 4.8: Class Diagram for Magno

The TutorialEnterSexAndAgeScreen is the last class in the line of classes
abstracted by TutorialScreen. This class has the smallest changes done in
the application with just the adding of an textField and an inputField. Then
the sex and age are put in a Gdx preference for later uses.

The ResultsScreen class instantiates and builds the content of the result view.
The result displayed, both in text and with the score-range bar, is fetched
from the Results class, that calculates the threshold score based on the user’s

33

performance during the test. This class also instantiates a server connection
class to post data to the RestAPI.

The ServerConnection class builds as the name suggest the connection to the
business layer or the server. The class builds a JSON-string that contains
the test-subjects age, sex, what kind of test was done and what the score
was for the test, which it post to the RestAPI who collects the data to the
database. It also has a get method that was made for further development
to get the mean score range for the respective age group that the test subject
falls under.

The Server class instantiates the Node.js server which handles connection to
the database. And it also exposes the server on the port stated in the code.

Figure 4.9: Class diagram for the entire system

The Rest class routes the HTTP calls and computes the request if it is
either get or push. It is listening on /users for both get and post where get
returns all the users and post inserts a new test-subject into the database

34

with the given data from the JSON-sting. There are three more routes that
are listening for get calls on /user/"userID" which return the user with the
given userID, /scores that return the sex, age, score and testType for all
in the database, and /scoresByAge/"age" that return sex, age, score and
testType for all the subjects that are in the age range where the given age
falls.

The web page

The web page is created from a template given by Microsoft Visual Studio
and it is of the MVC pattern. It was altered to allow security for log-in
and using the data page. The web page has email validation system that
create an ID-token that is sent to the users email and require the user to
have a valid email-address before using the data page. The data page is used
to get a graphical view of how the test-subjects did on the test conducted.
It is possible to manipulate the age range shown in the graph by using the
drop-down menus and the update-button.

35

Chapter 5

Evaluation

This chapter will evaluated the system in light of the predetermined require-
ments, found in section 3.3. In section 5.1, a general evaluation is given,
and in section 5.2 the technical tools used are evaluated. The requirement
fulfillment is evaluated in section 5.3.

5.1 Overall Evaluation

The finished system was not tested before implementation, there were no ma-
jor changes made to the graphical user interface. The initial plan was to test
these changes when they were implemented. The short response time from
the server makes the application with database connection not that different
than the original application, but due to time constraints the implemented
RestAPI and database was not tested either. One can argue that because of
the small amount of changes made this is not a major problem. The finished
application should still be availability and scalability tested on a larger, more
diverse test group before any potential release to the public.

36

5.2 Evaluation of Technical Tools

This section provides an introduction to the relevant tools and technologies
that have been used during this project.

Android Studio

In order to implement the changes to the application Magno, a text editor
tool was needed. Android Studio is the official Integrated Development En-
vironment (IDE) for Android app development, based on IntelliJ IDEA [21].
On top of IntelliJ’s code editor and developer tools, Android Studio offers
more features that enhance productivity when building Android apps. Some
examples of these features are a flexible Gradle-based build system, a fast
and feature-rich emulator, an unified environment where you can develop for
all Android devices, and instant Run to push changes to your running app
without building a new APK. Android Studio is distributed with templates
for creating activities and with the possibility to import samples from the
Google Samples repository. Together with the built in terminal it provides
a complete package to develop Android applications [androidStudio]. An-
droid Studio was chosen as it makes for easy testing on android devices and
emulators, as well as being a familiar tool to the author.

Visual studios

In order to implement the server side application, a text editor was needed.
Visual Studio is the official Integrated Development Environment (IDE) for
development in Microsoft applications. With great build in tools like the de-
bugger where you can quickly find and fix bugs with your systems. And great
tools for testing, this IDE fit perfect for me. Visual Studio is distributed with
templates for creating activities and with the possibility to import samples
from the Microsoft repository. Visual Studio was chosen as it makes for easy
connection to the azure cloud and great deployment tools, as well as being a
familiar tool to the author[22].

37

Microsoft SQL Server Management Studios

In order to properly administrate the SQL server on the azure cloud, the clear
option was to use Microsoft SQL Server Management Studios(SSMS). SSMS
is an integrated environment for managing any SQL infrastructure, from SQL
Server to SQL Database. SSMS provides tools to configure, monitor, and
administer instances of SQL. SSMS is used to deploy, monitor, and upgrade
the data-tier components used by my applications, as well as build queries
and scripts. Microsoft SSMS was chosen as it makes for easy management
of the database for this application[23].

Postman

In order to properly test out the RestAPI, a tool for API development. Post-
man makes it easy to test, develop and document API’s by allowing de-
velopers to quickly put together both simple and complex HTTP requests.
Postman is available as both a Google Chrome Packaged App and a Google
Chrome in-browser app. With no prior use of a tool like this, Postman was
chosen for its good reviews from the community [24].

Azure cloud Solution

In order to implement the server side application, a server solution was
needed. Microsoft Azure has a greet reputation from the biggest companies
in the world and they still have the little-guy in mind for using their cloud
platform. Azure supports a big selection of OS, programming-languages,
frameworks, databases and units. With the ease of connecting to Visual stu-
dios and amount of support for the solution Azure Cloud was the clear choice
for this system [25].

Git

Even though it was only me I decide to use git for easy version control over
the project. I quickly chose Git since I had previous experience with it. Git is
a free and open source distributed version control system designed to handle

38

projects with speed and efficiency. It is easy to learn, has a tiny footprint,
and fast performance. I found later in the project that you needed git to
publish Node.js applications to Azure Git allows and encourages you to have
multiple local branches that can be entirely independent of each other [26].

GitHub

I also had prior experience with GitHub. GitHub is a development platform
inspired by the way people work. GitHub has built-in review tools that
make code review an essential part of a team’s process. You can also plan
and manage projects from your repositories, create well-maintained docs, and
make sure they receive a high level of care [27].

Trello

In order to organize the work flow and keep track of what needed to be done
and in what order in this project, a project management tool was needed.
The author had previous experience with a tool called Trello. Trello is a
web-based project management application that is free, flexible, and a visual
way to manage projects and organize anything. It is a cloud based software,
and is available both through an application and directly in the web browser
[28]. Trello was chosen as the preferred project management tool, as it can
assign members to different tasks, and the user can customize the work flow
to fit the projects needs. The fact that the author had previous experience
with this tool also weighed in heavily on this decision.

ShareLATEX

In earlier projects, I had used ShareLaTeX to write reports. ShareLaTeX
is an online collaborative LaTeX editor, with real-time editing incorporated.
This allows for easy writing, graphical layout, and compiling, especially with
multiple authors. As ShareLaTeX is available online, there is no need for
installation [29]. All of these features, along with an incorporated review
tool, made me choose to use ShareLaTeX to write and format this thesis.

39

5.3 Requirement Fulfillment

This section evaluates the functional and non-functional requirements.

5.3.1 Functional Requirement Fulfillment

Table 5.1 evaluates the functional requirements for the application. “ID #”
is the requirement number, “Evaluation” describes or evaluates the require-
ment, while “Fulfillment” describes if the requirement was met or not. The
requirements can be found in section 3.3.

ID Evaluation Fulfillment
FR1 The database stores information about sex, age, Attained

score and what type of test was taken.
FR2 The system connects to the RestAPI without Attained

disturbing the user taking the test
FR3 The rest-API does collect data from the Attained

application and inputs it into the database
FR4 The system are able to store test result Attained

for use in comparisons by collecting the
age, sex and score of a test-subject

FR5 The system are able to differentiate the Attained
different age groups by a set mapping table

as set by the shareholders
FR6 I did not have the time to test if a user Not Attained

would be able to navigate the web page with
little to none introduction

FR7 The web page show research information Attained
based on the selected age groups that are

given in the drop-down menu on the data page
FR8 The system are not able to export data to Not Attained

an excel file from the web page due to some
unexpected problem with the implementation.

Table 5.1: Functional Requirements

40

FR1, FR2, FR3, FR4, FR5 and FR7 have all been attained. FR6 and FR8
are not attained. The web page was not tested by anyone other than the
developer, so I can not say with certainty if it is easy to use for other user.
Using an SQL management tool this data is easily collected, though this
is not an adequately solutions given that the users of this web page is not
computer specialists. With the given time-frame and the addition of the FR6
and FR8 has a low priority in the project this requirement was not solved. 6
out of 8 requirements have been met, where the one requirement that were
not met had a low priority. This is considered high requirement fulfillment.

5.3.2 Non-Functional Requirement Fulfillment

Table 5.2 evaluates the non-functional requirements listed in chapter 3.3.

Requirement Evaluation Fulfillment
A1 This was not tested, so it is no way Not

to be sure that the data from the application Attained
Magno will available all of the time, even with

health checks on the application
A2 The azure cloud solution is set up Not

to give the system administrator Attained
a message when any major incident

happens with the application by mail.
This has not been tested adequately

A3 With the health check and message to the Not
system administrator the system should be Attained

available, but the application has not
been tested adequately so this need to be tested

SEC1 The system only show data to personnel Attained
with an authorized users created by the

system administrator

41

Requirement Evaluation Fulfillment
SEC2 The system does not store any personal Attained

information about the user at this time,
the database is built to store some

personal ID for further use to connect
this test data to any other scientific

studies, at this time the database only
fill this with the value of "null"

S1 I was not able to test if the system Not
are able to handle 50 simultaneous Attained

clients as it is today.
S2 I have not tested the scaling of the Not

system, but by using the azure cloud Attained
solution together with Node.js the

system is built to scale.

Table 5.2: Non-Functional Requirements

Only two of the non-functional requirements have been attained. The rest
of the requirements have been tested adequately. So I can not say that
they have been attained when I do not know the outcome of the tests. The
scalability requirement was not prioritized with the knowledge that node.js
and azure cloud in combination makes an scalable system. The application
is built to always be available and, secure and scalable enough, based on the
standard decided prior to the project start. Requirements need to be tested
before the application is taken for use.

42

Chapter 6

Discussion, Conclusion, and
Further Work

In this chapter I present a discussion around the project, along with a con-
clusion and further work that needs to be done. In section 6.1, the results
from the evaluation, and the project development in general, are discussed.
In section 6.2, the research questions are answered, and in the last section,
section 6.3, alternatives to further work are presented.

6.1 Discussion

This project began as a continuation of a previous master thesis, viewed
in section 3.2.1. The theoretical research and the implementation of the
precursor to this project was thoroughly conducted. Still, in order to be able
to use this application for a larger scientific studies, it is important that the
application not only work as its own entity, but also has the means to collect
the data needed to conduct the studies. Without a proper data collection
part of the entire system, the functionality is not conveyed to its full extent,
and usages for the application decreases. The finished system design has
its shortcoming, based on the fact that it has not been sufficiently tested,
especially for a target group with greater diversity. There have been made
changes that can not be corroborated as to whether they improve on the
system or not, even though I have sufficient experience with web-services to

43

say that the changes most likely will have a positive impact. It is still safe
to say that the current system, developed during this project, provides for a
greater area of application than the previous system. The iterative process of
creating an entire system to collect information from an existing application
and show it to, is time consuming. Also to create a data collection system
in about 6 months, with the proper testing and implementation needed, is
probably not an optimal time estimation. That being said, the process has
been exceedingly educational in regards to several aspects; how to quickly
familiarize myself with new technologies, the different aspects of dyslexia,
and responsive design in applications. When coming across a problem, the
ability to work around the issue and find solutions has been vital to the
project. Encountering obstacles increased both learning and motivation for
me. This challenged my expertise and current knowledge, forcing me to
look beyond my existing knowledge space and acquiring new experiences
and further understanding of a subject.

6.2 Conclusion

The objectives of this project were to further develop and implement a data
collection system. Research questions were made to help in steering the
research and development in the correct direction. The data collection cen-
tred development process was used to develop the RestAPI and database.
The documentation found on these subject were analyzed to help me answer
the research questions that have guided the project. The conclusion to this
project will review these research questions and determine whether or not
they have been adequately answered.

RQ-1 What are the problem areas with developing the web-service
in this project?

There were found several problem areas with the system developed in this
project. The first was that this project had a difficult scope to define and
the requirements are often hard to clearly define. This because my special-
ization project did not build up to this specific project. It was clear that
the requirements were not perfect. The main problem is that to often the

44

requirements are to broad, in this case some of the requirements was not met
because of other requirements were to broadly scoped. The solution ended
up using technology that the author was not familiar with. So this made it
a bit harder to meet all the requirement.

RQ-2 What are the problem areas with collecting personal data?

There are several problem areas with collecting personal data. With the new
update to General Data Protection Regulation (GDPR) we have some new
regulations to consider when building this application. Privacy by design as
a concept has existed for years now, but it is only just becoming part of a
legal requirement with the GDPR. At it’s core, privacy by design calls for
the inclusion of data protection from the onset of the designing of systems,
rather than an addition. More specifically system manager shall implement
appropriate technical and organizational measures in an effective way in order
to meet the requirements of this Regulation and protect the rights of data
subjects. GDPR calls for system manager to hold and process only the data
absolutely necessary for the completion of its duties (data minimization), as
well as limiting the access to personal data to those needing to act out the
processing [30]. Given this I decided to implement the database and RestAPI
code to collect the data needed to connect the test-subject to other tests, but
did not implement the code in the Magno application to collect any means
identification. Also I decided to only show test scores based on age in the
graph on the web page.

RQ-3 How can we compliment existing code with the implementa-
tion of the new web-service?

In order to compliment the existing code, I reviewed the frameworks and
libraries previously used. This helped me to understand which parts of the
code belonged to the frontend. As my task description encompasses backend
development, I could easily understand which parts of the code to change
and not. Since the last master thesis where all about usability, it was early
decided that connecting to a web-service should not interfere with the rest of
the application. By using Node.js and Azure as the web-service I was able to
manage low response time that would not interfere with the GUI. It would

45

require some changes to the GUI if we decided to add the mean values for the
result screen on the threshold bar, but given that this is already implemented
on the web-service I expect that this would not create any big delays for the
GUI other than rendering the information to the result screen.

RQ-3.1 What technical tools are best suited to aid in implementing
a web-service for data collection, based on previously implemented
functionality?

With Node.js asynchronous and event driven there is not going to non-
blocking I/O model that makes it lightweight and efficient. Node.js is us-
ing Google Chrome’s V8 JavaScript Engine which makes it really fast [20].
Node.js also provides a rich library of various JavaScript modules which sim-
plifies the development of web applications using Node.js to a great extent.

Given that Azure is build to accommodate any programming language it has
already build in tools to develop and deploy Node.js applications with ease.
And the fact that Azure cloud give a really easy database management makes
the combination of these two tools the best way to solve this project.

6.2.1 Final Conclusion

In my opinion, the application sufficiently answers the research questions and
fulfills the task description. The system have made it easier for scientist to
collect data for scientific studies. There will always be areas for improvement,
but our thesis manages to address the majority of elements specified prior
to the project initiation, in the form of task description, research questions,
and requirements. The application delivered along with this thesis can be
taken into use as is, though I would recommend further development.

6.3 Further Work

This project has had its main focus on data collection development and im-
plementation. While the web-service is finished, there are still some aspects

46

that can be further developed before deploying this application to the masses.
Some key elements for further work are as follows:

• Implementation of non-acquired requirements.

• Final scalability testing and fine tuning of the performance.

• Implementation of functionality enabling selection of language.

• Implementation of feedback to the user based on processed information,
such as age and/or test score.

These elements are constructed of elements found in this project and some of
the elements from the previous master projects[2]. When all these elements
have been considered and potentially implemented, one can consider revis-
iting and revising the requirements. One might see it necessary to add or
subtract further functionality, and means of distribution must also be con-
sidered. Specifying the environments in which the application is to be used
is key, and narrowing down the target audience. It is also important that the
application tests are thoroughly documented and tested in order to validate
any data delivered by the application.

47

Appendix A

The application

Here I will show you the entire application using screenshots.

Figure A.1: Main menu

48

Figure A.2: First tutorial page

Figure A.3: Second tutorial page

49

Figure A.4: Tutorial test start page

Figure A.5: Tutorial test page

50

Figure A.6: Tutorial test response when you choose the correct box

Figure A.7: Tutorial test response when you choose the wrong box

51

Figure A.8: Last tutorial page with the drop down box for choosing your sex

Figure A.9: Form fixed test screen with full circle

52

Figure A.10: Form fixed test screen with almost no circle

Figure A.11: Form fixed test result

53

Figure A.12: App settings

Figure A.13: First part of Advanced settings

54

Figure A.14: Second part of Advanced settings

Figure A.15: Third part of Advanced settings

55

Figure A.16: Fourth part of Advanced settings

Figure A.17: Fifth part of Advanced settings

56

Figure A.18: Sixth part of Advanced settings

Figure A.19: First part of reset settings

57

Figure A.20: Second part of reset settings

58

Bibliography

[1] Sally Shaywitz. What is Dyslexia? url: http://dyslexia.yale.edu/
dyslexia/what-is-dyslexia/.

[2] Thea Hove Johansen and Maja Kirkerød. “Magno: An Application for
Detection of Dyslexia”. In: MA thesis (2017).

[3] Bjørnar Håkenstad Wold. “App for Early Detection of Dyslexia”. In:
MA thesis (2016).

[4] Maja Kirkerød and Thea Hove Johansen. “Designing an Application
for Detection of Dyslexia”. In: Specialisation project (2016).

[5] Design Science Research in Information Systems. “Hevner, A., & Chat-
terjee, S.” In: Design Research in Information Systems (2010), pp. 9–
22.

[6] Briony J. Oates. “Researching information systems and computing”. In:
(2005).

[7] John Stein. “The magnocellular theory of developmental dyslexia”. In:
Dyslexia 7.1 (2001), pp. 12–36. url: http://dx.doi.org/10.1002/
dys.186.

[8] IDA Board of directors. Definition of Dyslexia. 2002. url: https://
dyslexiaida.org/definition-of-dyslexia/.

[9] British Dyslexia Association. Dyslexia Definitions. url: http://www.
bdadyslexia.org.uk/dyslexic/definitions.

[10] Oxford English Dictionary.Dyslexia. url: https://en.oxforddictionaries.
com/definition/dyslexia.

[11] Dyslexia Research Trust. Genetics of Dyslexia. url: http://www.
dyslexic.org.uk/research/genetics-dyslexia.

[12] H. Sigmundsson. “Do visual processing deficits cause problem on re-
sponse time task for dyslexics?” In: Brain and cognition 58.2 (2005),
pp. 213–216.

59

[13] P. C Hansen et al. “Are dyslexics’ visual deficits limited to measures of
dorsal stream function?” In: Neuroreport 12.7 (2001), pp. 1527–1530.

[14] H. Sigmundsson, P. C. Hansen, and J. B. Talcott. “Do ’clumsy’ children
have visual deficits”. In: Behaviournal Brain Research 139.1 (2003),
pp. 123–129.

[15] The Free Dictionary Medical Dictionary. Ectopia. url: http://medical-
dictionary.thefreedictionary.com/Ectopia.

[16] The Free Dictionary Medical Dictionary. Temporoparietal. url: http:
//medical-dictionary.thefreedictionary.com/Temporoparietal.

[17] John Stein. “The Current Status of the Magnocellular Theory of Dyslexia”.
2014. url: http://slideplayer.com/slide/6120/.

[18] Dysleksi Norge. Avdekke dysleksi. url: http://dysleksinorge.no/
fagstoff/.

[19] Roy Thomas Fielding. Architectural Styles and the Design of Network-
Based Software Architectures, Ph.D. Dissertation. 2000. url: http:
//www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[20] Node.js Foundation. Node.js. url: https://nodejs.org/en/.
[21] JetBrains. IntelliJ IDEA. url: https://www.jetbrains.com/idea/.
[22] Microsoft. Visual Studio IDE. url: https://www.visualstudio.com/

vs/.
[23] Microsoft. SQL Server Management Studio (SSMS). url: https://

docs.microsoft.com/en-us/sql/ssms/sql-server-management-
studio-ssms?view=sql-server-2017.

[24] Postman. Postman Makes API Development Simple. url: https://
www.getpostman.com/.

[25] Microsoft. Din visjon, dine resultater, din sky. url: https://azure.
microsoft.com/nb-no/.

[26] git. git –fast-version-control. url: https://git-scm.com/.
[27] GitHub. Built for Developers. url: https://github.com/.
[28] Inc Trello. Trello. url: https://trello.com%20(.
[29] Henry Oswald and James Allen. ShareLaTeX. url: https://github.

com/sharelatex/sharelatex.
[30] European Commission. 2018 reform of EU data protection rules. url:

https://ec.europa.eu/commission/priorities/justice-and-
fundamental-rights/data-protection/2018-reform-eu-data-
protection-rules_en.

60

