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Abstract

A generic �ow system can be described as a system whose state depends on �owing streams
of energy, material, or information. Traditional examples of such systems are the transport
of properties such as pressure, temperature, and matter in �uids, and the transport of charge
in electrical currents. However, valuable insight into various phenomena, including — but
not limited to — algal blooms in the ocean, and crowd patterns formed by humans, can be
obtained by regarding them as �ow systems.

Lagrangian coherent structures (henceforth abbreviated to LCSs) can be described as “land-
scapes” within a multidimensional phase space, which exert a major in�uence upon the
�ow patterns in dynamical systems. In terms of predicting future states of complex systems
accurately, LCSs provide a simpler means of analysis than the conventional approach of
progressively increasing the resoluton of the model(s) involved in numerical simulations.
In this context, a complex system is a system which exhibits sensitive dependence on
initial conditions. From their variational theory, hyperbolic LCSs are identi�ed as locally
most repelling or attracting material surfaces. Somewhat simpli�ed, such surfaces can be
considered as generalized trajectories, created by the underlying transport phenomenon.
When investigating transport systems, hyperbolic LCSs are of particular interest, as they
form the skeleton of observable �ow patterns.

Several important, naturally occuring transport phenomena — such as the spread of contam-
inants by oceanic surface currents — can reasonably be approximated as planar. This is one
possible reason why previous LCS research has mostly been conducted for two-dimensional
systems; another may be that the inclusion of a third dimension severely increases the under-
lying mathematical complexity. To the extent that LCS analysis for three-dimensional �ows
has hitherto been conducted, a common approach has been to merge a set of two-dimensional
projections, resulting in quasi-three-dimensional surfaces. This project is centered around
combining the underlying variational principles of hyperbolic LCSs with an acknowledged
technique for computing invariant manifolds of vector �elds, with a view to developing a
robust framework for computing hyperbolic LCSs in three-dimensional �ow systems.

Our approach is described in detail, from its theoretical fundament, through how we
incorporated the underlying LCS theory into the computation of manifolds and subsequently
LCS surfaces, to some clever optimizations regarding computational resource management.
Using a few reference cases, we demonstrate the e�cacy of our method in reproducing
simple three-dimensional manifolds and LCSs. Moreover, the LCSs obtained for a simple, yet
chaotic �ow system are shown to correspond well with those obtained for a time perturbed
version of the same system. This suggests that the computed LCS surfaces are quite robust,
and that the unavoidable inaccuracies of model data for simulating transport phenomena
need not be a hindrance for applying LCS analysis to real-world systems.

It remains to be seen whether computing “truly” three-dimensional LCS surfaces yields
a su�cient increase in descriptive power, compared to the aforementioned quasi-three-
dimensional approach, to warrant the increase in conceptual complexity and computational
resource consumption. This balancing act might be context sensitive.
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Sammendrag

Et generisk strømningssystem kan beskrives som et system hvis tilstand avhenger av �yt av
energi-, material-, eller informasjonsstrømmer. Tradisjonelle eksempler på slike systemer er
transport av trykk, temperatur, og materie i �uidstrømninger, og ladningstransport forårsaket
av elektriske strømmer. Interessante sider ved andre fenomen, som algeoppblomstring, og
mønsterdannelser i folkemengder, kan avsløres ved å betrakte dem som strømningssystemer.

Lagrange-koherente strukturer (heretter forkortet til LKSer) kan beskrives som «landskap» i
et �erdimensjonalt rom, som utøver stor inn�ytelse på strømningsmønstre i dynamiske
systemer. Hva gjelder prediksjoner for fremtidige tilstander i komplekse systemer, kan bruk
av LKSer utgjøre et enklere analyseverktøy enn den mer tradisjonelle tilnærmingen basert på
å iterativt øke oppløsningen i modellen(e) som ligger til grunn for numeriske simuleringer.
I denne sammenheng betegner et komplekst system et system som er svært sensitivt til
dets initialbetingelser. Fra deres underliggende variasjonsteori kjennetegnes hyperbolske
LKSer som lokalt sterkest frastøtende eller tiltrekkende materialover�ater. Noe forenklet
kan denne typen over�ater betraktes som en generalisering av banene det underliggende
transportfenomenet forårsaker. Ved analyse av transportsystemer er hyperbolske LKSer
spesielt interessante, ettersom disse utgjør skjelettet av observable strømningsmønstre.

Flere viktige, naturlige transportfenomen – deriblant spredning av forurensning ved havover-
�atestrømninger – kan betraktes som tilnærmet plane. Dette er en mulig årsak til at tidligere
utført forskning på LKSer i stor grad har omhandlet todimensjonale systemer; en annen kan
være at å introdusere en tredje dimensjon øker den underliggende matematiske komplek-
siteten betraktelig. I den grad LKSer i tredimensjonale strømninger har blitt undersøkt så
langt, har en vanlig tilnærming vært å sette sammen et sett av planprojeksjoner, hvilket
resulterer i kvasi-tredimensjonale over�ater. Dette prosjektet går ut på å kombinere de
underliggende variasjonsprinsippene for hyperbolske LKSer med en anerkjent teknikk for
å beregne invariante mangfoldigheter for vektorfelt, med den hensikt å utvikle et robust
rammeverk for å beregne hyperbolske LKSer i tredimensjonale strømningssystemer.

Fremgangsmåten vår beskrives i detalj, fra dens teoretiske fundament, via hvordan vi
inkorporerte den underliggende LKS-teorien i beregninger av mangfoldigheter og videre
LKS-over�ater, til noen �kse løsninger for å begrense ressursforbruket. Ved analyse av
noen referansesystemer demonstrerer vi metodens velegnethet for beregning av enkle
tredimensjonale mangfoldigheter og LKSer. Videre stemmer LKS-over�atene vi �nner i
et enkelt, men kaotisk strømningssystem godt overens med over�atene som avdekkes i
en tidsperturbert versjon av det samme systemet. Dette tyder på at de beregnede LKS-
over�atene er robuste, og at den uunngåelige unøyaktigheten i modelldata for å simulere
reelle transportfenomen ikke trenger å stå til hinder for å anvende LKS-analyse på virkelige
strømninger.

Det gjenstår å se hvorvidt beregning av «ekte» tredimensjonale LKS-over�ater resulterer i
tilstrekkelig økt innsikt, sammenlignet med den ovennevnte kvasi-tredimensjonale tilnærmin-
gen, til å forsvare den økte kompleksiteten og det økte ressursforbruket. Denne avveiningen
vil muligens avhenge av kontekst.
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Preface

The submission of this thesis signi�es my completion of all formal requirements for acquiring
the degree of MSc within the �eld of “Physics and Mathematics”, with a specialization
in Applied Physics, at the Norwegian University of Science and Technology. This thesis
accounts for a total of 30 ECTS. All of the underlying work was performed in Trondheim
under the supervision of Assoc. Prof. Tor Nordam, during the spring semester of 2018 — that
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close collaboration for the work on our master’s projects, fellow student Simon Nordgreen
and I present the same results in our respective master’s theses.

This thesis builds upon the work I did for my specialization project, which was carried out
during the fall semester of 2017 (

.

Løken 2017

..

). The target audience possesses an understanding
of physics and mathematics corresponding to what is expected prior to the enrollment
in a master’s level physics program. Intermediate pro�ciency with regards to numerical
programming pertaining to simulations would be advantageous. The program code which
was developed for this project — a combination of modern Fortran, C++ and Python — is
hosted at github1

.

; guidance can be provided upon request. Familiarity with variational
principles — in particular regarding stretch and strain in material �ows — is not a necessary
prerequisite, as all advanced concepts are explained in detail prior to application.

Trondheim, June 2018
Arne Magnus Tveita Løken

1https://github.com/arnemagnus/3d_lcs
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Notation

Newton’s notation is used for di�erentiation with respect to time, i.e.:

Ûf (t) ≡ df (t)
dt .

Vectors are denoted by lowercase, upright, bold letters, like this:

ξ =
(
ξ1, ξ2, . . . , ξn

)
.

The Euclidean inner product for two vectors (ξ,ψ) ∈ Rn is denoted by:

〈ξ,ψ〉 =
n∑
i=1

ξiψi .

The Euclidean norm of a vector ξ ∈ Rn is designated as:

‖ξ‖ =
√
〈ξ, ξ〉.

Matrices and matrix representations of rank-2 tensors are denoted by uppercase, upright,
bold letters, as follows:

A = (ai,j) =
©«

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

ª®®®®¬
.
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1 Introduction

When analyzing complex dynamical systems, such as the nonlinear many-body problems
arising in transport phenomena by virtue of oceanic currents or atmospheric winds, the
conventional approach to predicting future states by means of simulating the trajectories
of phase points is frequently insu�cient. This is due to the resulting predictions being
very sensitive to small changes in time and initial positions. One way of addressing the
delicate dependence on initial conditions is to run ensembles of di�erent models for the
same underlying physical systems, with increasing spatial and temporal resolution. Another
is to run ensembles of simulations for the same physical model, using perturbed initial
conditions. These sorts of approaches are made possible because the fundamental dynamics
are known — yet, for complex transport systems, the computational cost quickly grows
beyond the available resources, in terms of computation time or memory. For many practical
purposes, however, microscopic details matter little in comparison to the overarching trends
in the system, which means that a less ambitious approach, merely aiming to understand the
macroscopics of the transport phenomenon, is often justi�able.

At the turn of the millennium, the concept of Lagrangian coherent structures saw the light
of day, emerging from the intersection between nonlinear dynamics, that is, the underlying
mathematical principles of chaos theory, and �uid dynamics (

.

Haller and Yuan 2000

..

). These
provide a new framework for understanding transport phenomena in conceptual �uid �ow
systems. Lagrangian coherent structures can be described as time-evolving “landscapes” in a
multidimensional space, which dictate macroscopic �ow patterns in dynamical systems. In
particular, such structures de�ne the interfaces of dynamically distinct, invariant regions. An
invariant region in �uid dynamics is characterized as a domain where all particle trajectories
that originate within the region, remain in it, although the region itself can move and deform
with time. So, simply put; Lagrangian coherent structures enable us to make predictions
regarding the future states of �ow systems.

There are two possible perspectives regarding the description of �uid �ow. The Eulerian
approach is to consider the properties of a �ow �eld at a set of �xed points in time and space.
An example is the concept of velocity �elds, which describe the local and instantaneous
velocities at all points within their domains. The Lagrangian point of view, on the other
hand, concerns the developing velocity of each �uid element along their paths, as they
are transported by the �ow. Unlike the Eulerian perspective, the Lagrangian mindset is
objective, as in frame-invariant. That is, properties of Lagrangian �elds are unchanged by
time-dependent translations and rotations of the reference frame. For unsteady �ow systems,
which are more common than steady �ow systems in nature, there exists no self-evident
preferred frame of reference. Thus, any transport-dictating dynamical structures should hold
for any choice of reference frame. This is the main rationale for which Lagrangian, rather
than Eulerian, coherent structures have been pursued.

A generic �ow system can be described as a structure whose state depends on �owing
streams of energy, material, or information. Conventional examples of �ow systems include

1



Chapter 1 Introduction

the transport of physical properties such as pressure, temperature, or matter in �uids, and
the transport of charge in electrical currents. A large variety of phenomena can reasonably
be modelled as �ow systems, such as the classical harmonic oscillator, or the interaction
between predator and prey in closed systems (

.

Strogatz 2014

..

, parts I–II). In doing so, valuable
pieces of insight can be obtained from well-understood properties of generic �ows. In recent
years, analyses based upon Lagrangian coherent structures have been conducted for a variety
of naturally occuring phenomena which are not commonly considered as �ow systems. Two
prominent examples are how

.

Olascoaga et al. (2008)

..

used Lagrangian coherent structures
in order to forecast the development of toxic algae in the ocean, and

.

Ali and Shah (2007)

..

used Lagrangian coherent structures to predict the formation and stability of human crowd
patterns. As these examples emphasize, the theory of Lagrangian coherent structures is
applicable to a wide range of systems.

The focus of this project has been the computation of Lagrangian coherent structures in
three-dimensional �ow systems. Although the framework for detecting Lagrangian coherent
structures is mathematically valid for any number of dimensions, little work has previously
been dedicated to three-dimensional systems. The two-dimensional case has been treated
extensively (consider, for instance, the works of

.

Haller and Yuan (2000)

..

,

.

Farazmand and
Haller (2012a)

..

, and

.

Onu, Huhn, and Haller (2015)

..

), as many real-world transport systems —
such as the transport of garbage patches, or remnants of oil spills, by oceanic surface currents
— can reasonably be treated as two-dimensional. Two-dimensional analysis is, however,
not always su�ucient; the scattering of e.g. volcanic ashes by the Earth’s wind systems is
an example of an irrefutably three-dimensional transport phenomenon. As concrete areas
of application, identifying the Lagrangian coherent structures present in the underlying
circulation allows for predicting the spread of oil spills on the ocean surface in order to
isolate them and accelerate the cleanup process before the oil is able to reach the coastline,
or providing airline companies an opportunity to divert �ights which would otherwise
be exposed to volcanic ash clouds. Put simply, Lagrangian �ow analysis could potentially
mitigate human-instigated and natural calamities alike.

The limited extent to which analysis of three-dimensional �ow systems with the intention of
identifying Lagrangian coherent structures has previously been conducted, is emphasized by
the common practice being to compute a series of two-dimensional projections followed
by joining them together using some kind of interpolation method (see e.g. the work of

.

Blazevski and Haller (2014)

..

). Although yielding three-dimensional surfaces, this approach
potentially neglects intricacies pertaining to fully three-dimensional transport phenomena.
A plausible justi�cation for using this approach is the increase in complexity when including
the depth dimension, further increasing the amount of computational resources required
for full-scale analysis. Moreover — as previously mentioned — many signi�cant transport
systems can reasonably be treated as two-dimensional. Hence, the extent to which it is
appropriate to substitute analysis of two-dimensional Lagrangian coherent structures with
that of their three-dimensional counterparts remains an open question.

For this project, we aimed to adapt the method of geodesic level sets for computing manifolds
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Chapter 1 Introduction

of three-dimensional vector �elds, as outlined by

.

Krauskopf, Osinga, et al. (2005)

..

(�rst
introduced by

.

Krauskopf and Osinga (2003)

..

), to identify Lagrangian coherent structures as
barriers to transport in three-dimensional �ow systems. This involved extensive conceptual
derivations, in addition to quite a bit of programming ingenuity. Accordingly, the project is
best classi�ed as one of computational physics, which might be viewed as complementary to
the more traditional branches of theoretical and experimental physics.

This thesis is structured based on the idea that readers possessing at least an undergraduate
level of knowledge of physics and mathematics, in addition to a rudimentary understanding
of programming, should be able to understand and repeat the numerical investigations
which have been conducted. To this end, the immediately forthcoming chapter contains
a description of the numerical integration and interpolation schemes which we used to
simulate general transport phenomena, in addition to a generic yet brief mathematical
description of the kind of �ow systems considered — and the Lagrangian coherent structures
situated therein, based on their variational theory. In the ensuing chapter, we present the
di�erent transport models we considered, followed by a rigorous description of how we
implemented the variational principles of Lagrangian coherent structures in a variation of
the method of geodesic level sets, in addition to how we made sure to utilize the available
computational resources in an e�cient manner throughout. Then, we present a few tests we
used in order to verify that the computed three-dimensional structures behave as expected
for Lagrangian coherent structures, closely followed by a presentation of the Lagrangian
coherent structures we identi�ed in the various transport models. Lastly, we discuss the
strengths and weaknesses of using our variation of the method of geodesic level sets to
compute three-dimensional Lagrangian coherent structures, before drawing conclusions on
the project as a whole.
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2 Theory

This chapter introduces the mathematical principles which form the foundation of our
approach to computing Lagrangian coherent structures in three-dimensional �ow systems.
Section 2.1

.

provides a concise description of how numerical integrators (that is, Runge-Kutta
solvers) in addition to interpolation methods allow for numerically solving systems of
ordinary di�erential equations. Then, section 2.2

.

introduces what we de�ne as �ow systems,
in addition to providing a concise description of the underlying mathematics upon which
Lagrangian �ow analysis is based. Lastly, section 2.3

.

contains a succinct introduction to
Lagrangian coherent structures; perhaps most notably, necessary and su�cent existence
criteria for hyperbolic three-dimensional Lagrangian coherent structures — which arise from
their underlying variational theory — are presented.

2.1 Solving systems of ordinary differential equations

In physics, like other sciences, modeling a system often equates to solving an initial value
problem. An initial value problem can be described in terms of an ordinary di�erential
equation (hereafter abbreviated to ODE) of the form

Ûx(t) = f
(
t ,x(t)), x(t0) = x0, (2.1)

where x is an unknown function (scalar or vector) of time t . The function f is de�ned on an
open subset Ω of R ×Rn, where n is the number of spatial dimensions; that is, the number of
components of x . The initial condition (t0,x0) is a point in the domain of f , i.e., (t0,x0) ∈ Ω.
In higher dimensions (namely, n > 1), the di�erential equation (2.1

.

) generally extends to a
family of coupled ODEs

Ûxi(t) = fi
(
t ,x1(t),x2(t), . . . ,xn(t)

)
, xi(t0) = xi,0, i = 1, . . . ,n. (2.2)

The system is nonlinear if the function f in equation (2.1

.

), or, if at least one of the functions
{ fi} in equation (2.2

.

), is nonlinear in one or more of its arguments. For the sake of notational
simplicity, the discussion to follow in the rest of this section is based on the one-dimensional
case, that is, system (2.1

.

), for n = 1. However, all of the considerations also hold for n > 1.

Say that the solution of system (2.1

.

) is sought at some time t f . In order to approximate said
solution numerically, the time variable must �rst be discretized. This is frequently done by
de�ning

tj = t0 + j · h, (2.3)

where tj is the time level j for integer j , and h is some increment which is smaller than t f − t0.
Typically, the time increment is chosen such that an integer number of step lengths h equals
the di�erence t f − t0. With the discretized time, the numerical solution of system (2.1

.

) is
found by successive applications of some numerical integration method. The Runge-Kutta
family of numerical methods for ODE systems is a common choice, and will be elaborated
upon in greater detail in section 2.1.1

.

.
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Chapter 2 Theory

All numerical integration schemes fall into one of two categories; explicit and implicit
methods. Explicit methods are characterized by computing the state of the system at a later
time, based on the state of the system at the current time (in some cases, the state at earlier
times are also considered). Implicit methods, however, involve the solution of an equation
in which both the current and the later state of the system are involved. Thus, a generic,
explicit method for computing an approximation of the system’s state at time t + h, given its
state at t , can be expressed as

x(t + h) = F
(
x(t)), (2.4a)

while, for implicit methods, an equation of the sort

G
(
x(t),x(t + h)) = 0, (2.4b)

is solved to �nd an approximation of x(t + h).

In solving linear ODEs, implicit methods require the solution of a linear system at every
time step. Typically, implicit methods are more computationally demanding than explicit
methods. The main selling point of implicit methods is that they are more numerically
stable than explicit methods. This property means that implicit methods are particularly
well-suited for sti� systems, i.e., physical systems with highly disparate time scales (

.

Hairer
and Wanner 1996

..

, p.2). For such systems, most explicit methods are unstable, unless the time
step h is made exceptionally small, rendering these methods practically useless. For nonsti�
systems, however, implicit methods behave similarly to their explicit analogues in terms of
numerical accuracy and convergence properties.

Irrespective of which kind of numerical integration method is employed (see equation (2.4

.

)),
one obtains an approximation of the true solution of system (2.1

.

) at the discrete time levels,
that is,

xj ≈ x(tj), (2.5)

where x(t) is the exact solution at time t . The accuracy of the approximation, however,
depends on both the numerical integration method and the time step length h used for
the temporal discretization. Given the discrete nature of numerical methods, approximate
solutions are not known at arbitrary times t . One way of obtaining approximations of the
true solution inbetween the discrete time levels is by means of interpolation — a numerical
technique which will be elaborated upon in section 2.1.2

.

.

2.1.1 The Runge-Kutta family of numerical ODE solvers

In numerical analysis, the Runge-Kutta family of methods is a popular collection of implicit
and explicit iterative methods, used in temporal discretization in order to obtain numerical
approximations of the true solutions of systems like (2.1

.

). The German mathematicians
C. Runge and M.W. Kutta developed the �rst of the family’s methods at the turn of the
twentieth century (

.

Hairer, Nørsett, and Wanner 1993

..

, p.134). The general outline of what is
now known as a Runge-Kutta method is as follows:
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2.1 Solving systems of ordinary di�erential equations

De�nition 1 (Runge-Kutta methods).
Let s be an integer and {ai,j}si,j=1, {bi}si=1 and {ci}si=1 be real coe�cients.
Let h be the numerical step length used in the temporal discretization.
Then, the method

ki = f

(
tn + cih,xn + h

s∑
j=1

ai,jkj

)
, i = 1, . . . , s,

xn+1 = xn + h
s∑

i=1
biki ,

(2.6)

is called an s-stage Runge-Kutta method for system (2.1

.

).

The main reason to include multiple stages in a Runge-Kutta method is to improve the
numerical accuracy of the computed solutions. The order of a Runge-Kutta method can be
de�ned as follows:

De�nition 2 (Order of Runge-Kutta methods).
A Runge-Kutta method, given by equation (2.6

.

), is of order p if, for su�ciently smooth
systems (2.1

.

), the local error en scales as hp+1. That is:

en = ‖xn − un−1(tn)‖ ≤ Khp+1, (2.7)

where un−1(t) is the exact solution of the ODE in system (2.1

.

) at time t , subject to the initial
condition un−1(tn−1) = xn−1, and K is a numerical constant. This is true if the Taylor series
for the exact solution un−1(tn) and the numerical solution xn coincide up to (and including)
the term hp .

The global error
En = xn − x(tn), (2.8)

where x(t) is the exact solution of system (2.1

.

) at time t , accumulated by n repeated applica-
tions of the numerical method, can be estimated by

|En | ≤ C
n∑
l=1
|el |, (2.9)

where C is a numerical constant, depending on both the right hand side of the ODE in
system (2.1

.

) and the di�erence tn − t0. Making use of de�nition 2

.

, the global error is limited
from above by

|En | ≤ C
n∑
l=1
|el | ≤ C

n∑
l=1
|Kl | hp+1 ≤ C max

l

{ |Kl |
}
n hp+1

≤ C max
l

{ |Kl |
} tn − t0

h
hp+1 ≤ K̃ hp,

(2.10)

where K̃ is a numerical constant. Equation (2.10

.

) demonstrates that, for a p-th order
Runge-Kutta method, the global error can be expected to scale as hp .
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Chapter 2 Theory

In de�nition 1

.

, the matrix (ai,j) is commonly called the Runge-Kutta matrix, while the
coe�cients {bi} and {ci} are known as the weights and nodes, respectively. Since the 1960s, it
has been customary to represent Runge-Kutta methods, given by equation (2.6

.

), symbolically,
by means of mnemonic devices known as Butcher tableaus (

.

Hairer, Nørsett, and Wanner
1993

..

, p.134). The Butcher tableau for a general s-stage Runge-Kutta method, as introduced in
de�nition 1

.

, is presented in table 2.1

.

. For explicit Runge-Kutta methods, the Runge-Kutta
matrix (ai,j) is lower triangular. Similarly, for fully implicit Runge-Kutta methods, the
Runge-Kutta matrix is upper triangular. The di�erence between explicit and implicit methods
is outlined in equation (2.4

.

).

Table 2.1: Butcher tableau representation of generic s-stage Runge-Kutta methods.

c1 a1,1 a1,2 · · · a1,s
c2 a2,1 a2,2 · · · a2,s
...
...

...
. . .

...
cs as,1 as,2 · · · as,s

b1 b2 · · · bs

During the �rst half of the twentieth century, a substantial amount of research was conducted
in order to develop numerically robust, high-order, explicit Runge-Kutta methods. The idea
was that using such methods would mean one could resort to larger time increments h
without sacri�cing precision in the computed solution. However, the required number of
stages s grows quicker than linearly as a function of the required order p. It has been proven
that, for p ≥ 5, no explicit Runge-Kutta method of order p with s = p stages exists (

.

Hairer,
Nørsett, and Wanner 1993

..

, p.173). This is one of the reasons for the attention shift from the
latter half of the 1950s and onwards, towards so-called embedded Runge-Kutta methods.

The basic idea of embedded Runge-Kutta methods is that they, aside from the numerical
approximation xn+1, yield a second approximation x̂n+1. The di�erence between the two
approximations then provides an estimate of the local error of the less precise result, which
can be used for automatic step size control (

.

Hairer, Nørsett, and Wanner 1993

..

, pp.167–168).
The trick is to construct two independent, explicit Runge-Kutta methods which both use
the same function evaluations. This results in practically obtaining the two solutions for
the price of one, in terms of computational complexity. The Butcher tableau of a generic,
embedded, explicit Runge-Kutta method is illustrated in table 2.2

.

.

For embedded methods, the coe�cients are tuned such that

xn+1 = xn + h
s∑

i=1
biki (2.11a)

is of order p, and

x̂n+1 = xn + h
s∑

i=1
b̂iki (2.11b)
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2.1 Solving systems of ordinary di�erential equations

is of order p̂, typically with p̂ = p+1. Which of the solutions is used to continue the numerical
integration, depends on the integration method in question. In the following, the solution
which is not used to continue the integration, will be referred to as the interpolant solution.

Table 2.2: Butcher tableau representation of generic, embedded, explicit Runge-Kutta
methods.

c1
c2 a2,1
c3 a3,1 a3,2
...
...

...
. . .

cs as,1 as,2 · · · as,s−1
b1 b2 · · · bs−1 bs

b̂1 b̂2 · · · b̂s−1 b̂s

There exists an abundance of Runge-Kutta methods; many of which are �ne-tuned for speci�c
constraints, such as problems of varying degrees of sti�ness. Based on prior investigations —
such as the work done by

.

Løken (2017)

..

— using explicit, high order, embedded Runge-Kutta
methods to compute Lagrangian coherent structures (which will be elaborated upon in
section 2.3

.

) consistently yields accurate solutions at lower computational cost than the most
common �xed step size methods. Accordingly, the Dormand-Prince 8(7) method — consisting
of an eighth order solution with a seventh order interpolant — was chosen as the single,
multipurpose, numerical ODE solver for this project.

Note that the concept of order is less well-de�ned for embedded methods than for �xed step
size methods, as a direct consequence of the adaptive time step. Although the local errors of
each integration step scale as per equation (2.7

.

), the bound on the global (i.e., observable)
error suggested in equation (2.10

.

) is invalid, as the time step is, in general, di�erent for each
integration step.

Butcher tableau representations of the classical 4th-order Runge-Kutta method and the
embedded Dormand-Prince 8(7) method are available in tables 2.3

.

and 2.4

.

; where the latter
has been typeset in landscape orientation for the reader’s convenience. Details on how the
dynamic time step of the Dormand-Prince 8(7) method was implemented will be presented
in section 3.3.2

.

.

Table 2.3: Butcher tableau representing the classical 4th-order Runge-Kutta method.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
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2.1 Solving systems of ordinary di�erential equations

2.1.2 Spline interpolation of discrete data

All naturally ocurring physical systems can only be known partially, either by means of
limited measurements or grid based model output. Thus, interpolating (i.e., estimating)
the measurement data becomes a requirement when describing the dynamics of systems
which depend on measurement data from inbetween the sampling or grid points. Spline
interpolation involves approximating a discretely sampled function by a series of piecewise
de�ned polynomials. According to Stoer and Bulirsch (

.

2002

..

, p.93), spline interpolation is a
popular tool within the �eld of numerical analysis, due to yielding smooth interpolation curves
with limited interpolation error when using low degree polynomial pieces. Furthermore,
the local nature of spline interpolated functions means that such functions are less prone
to oscillatory behaviour when using high order polynomials. This is in stark constrast to
regular, global polynomial interpolation, which exhibits strong global dependence on local
properties. In particular, if the function to be approximated is badly behaved anywhere within
the interval of approximation, then the approximation by global polynomial interpolation is
poor everywhere (

.

de Boor 1978

..

, p.17).

A generic interpolation problem can be described in terms of a family of functions

Θ(x; β0, . . . , βn), (2.12)

each of which characterized by the n + 1 parameters {βi}, with x containing the independent
variables of the problem. Given a set of n + 1 discrete measurements — each de�ned by a
set of coordinates and function values (xi , fi) where xi , xj for i , j and fi = f (xi) — the
interpolation problem reduces to �nding parameters {βi} such that

Θ(xi ; β0, . . . , βn) = fi , i = 0, . . . ,n (2.13)

is satis�ed. According to Stoer and Bulirsch (

.

2002

..

, pp.38–39), spline interpolation problems
(amongst others) can be classi�ed as linear interpolation problems, meaning that the family
of interpolation functions (cf. equation (2.12

.

)) can be expressed as

Θ(x; β0, . . . , βn) =
n∑
i=0

βiΘi(x). (2.14)

In the following, let the coordinates {xi}, function values { fi}, and sampling points {(xi , fi)}
be denoted by support abscissas, support ordinates, and support points, respectively.

Solving an interpolation problem by means of spline interpolation is done by determining
the set of parameters {βi} of equations (2.13

.

) and (2.14

.

), with the family of functions {Θi}
limited to spline functions. These functions, often denoted as splines, are connected through
the use of a partition. Consider the one-dimensional case for the sake of notational simplicity
— the considerations to follow also hold for higher dimensions, but invariably introduces
notational clutter. The partition

∆ : {a = x0 < x1 < · · · < xn = b} (2.15)

of the closed interval [a,b] determines the domains of the piecewise polynomial spline
functions S in the set S∆. These spline functions are joined at support abscissas, which, in
the context of splines, are called knots.
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Chapter 2 Theory

Stoer and Bulirsch (

.

2002

..

, p.107) de�ne a piecewise polynomial function as follows:

De�nition 3 (Piecewise polynomial functions).
A real-valued function f is called a piecewise polynomial function of order k , or degree k − 1, if
it, for each i = 0, . . . ,n − 1, when restricted to the subinterval (xi ,xi+1) of the partition given
in equation (2.15

.

), corresponds to a polynomial pi(x) of degree less than or equal to k − 1.
In order to obtain a one-to-one correspondence between the function f and the polyno-
mial sequence

(
p0(x),p1(x), . . . ,pn−1(x)

)
, de�ne f at the knots {xi}n−1

i=0 , so that the function
becomes continuous from the right.

Accordingly, spline functions S∆ of order k are piecewise polynomial functions which are
k − 1 times continuously di�erentiable at the interior knots — that is, {xi}n−1

i=1 , of the partition
∆. These k th-order piecewise polynomials are uniquely determined by k + 1 coe�cients, of
which k are given by the k − 1 derivatives and the function value at their left bordering knot,
and the last coe�cient is given by the function value at the right bordering knot, for each
interval in the partition ∆ (

.

Stoer and Bulirsch 2002

..

, pp.107–108).
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(a) Nearest neighbor interpolation −5.0 −2.5 0.0 2.5 5.0 7.5
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(b) Linear interpolation
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(c) Quadratic B-spline interpolation −5.0 −2.5 0.0 2.5 5.0 7.5
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(d) Cubic B-spline interpolation

Figure 2.1: A selection of commonly used interpolation methods applied to a discretely
sampled, high degree polynomial (dashed). The sampling points (knots) are shown as
hollow circles. The splines in (c) and (d) are of second and third order, respectively
(see de�nition 3

.

). Observe how higher order splines yield increasingly accurate and
smooth interpolations.

B-splines are a family of nonnegative spline functions which have minimal support for any
given degree, smoothness, and domain partition. Furthermore, any spline function of a given
degree can be expressed as a linear combination of B-splines of the same degree (

.

Stoer and
Bulirsch 2002

..

, pp.107–110). Therefore, B-splines provide the foundation of e�cient and

12



2.2 The type of �ow systems considered

numerically stable computations of splines. A selection of commonly used interpolation
methods applied to a discretely sampled, high degree polynomial is shown in �gure 2.1

.

.
From the �gure, the increased precision of higher order splines when applied to continuous
functions is readily apparent. Note, however, that higher order interpolation methods require
more sampling points than lower order methods. In particular, at least k + 1 samples are
required in order to construct a k th-order spline. In higher dimensions, that is, with data
which depends on several other (independent) variables, the required amount of samples
increases rapidly with the interpolation order. Consequently, the use of cubic B-splines
constitutes a popular method for general-purpose interpolation, providing a good balance
between numerical accuracy and computational complexity.

2.2 The type of flow systems considered

We consider �ow in three-dimensional dynamical systems of the form

Ûx = v(t , x), x ∈ U, t ∈ I, (2.16)

i.e., systems de�ned for the �nite time interval I on an open, bounded subsetU of R3. In
addition, the velocity �eld v is assumed to be smooth in its arguments. Depending on the
exact nature of the velocity �eld v, analytical particle trajectories, that is, analytical solutions
of system (2.16

.

), may or may not exist. The �ow particles are assumed to be in�nitesimal
and massless, i.e., non-interacting tracers of the overall circulation.

Consider a �nite time interval [t0, t1] ⊂ I such that all tracer trajectories x(t ; t0, x0) —
denoting the time-t position of a tracer which was located at x0 at time t0 — in the system
given by equation (2.16

.

) are de�ned for all times t ∈ [t0, t1]. Then, the �ow map is de�ned as

ϕtt0(x0) = x(t ; t0, x0), (2.17)

that is, the �ow map mathematically describes the movement of tracers from one point
in time to another. In general, the �ow map is as smooth as the underlying velocity �eld
(cf. system (2.16

.

)) (

.

Farazmand and Haller 2012a

..

). In Lagrangian �ow analysis, the Jacobian
matrix of the �ow map ϕtt0 plays a signi�cant role. Component-wise, the Jacobian matrix of
a general vector-valued function f is de�ned as

(∇f)i,j =
∂ fi
∂xj
, f = f(x) = (

f1(x), f2(x), . . .
)
, (2.18)

which, for our three-dimensional �ow, reduces to

∇f =

©«

∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z
.

ª®®®®®®®®¬
. (2.19)
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Chapter 2 Theory

Making use of the de�nition of the �ow map (cf. equation (2.17

.

)) in conjunction with
equation (2.16

.

), one �nds the following ODE which describes the time evolution of the �ow
map:

Ûϕ = v(t ,ϕ), (2.20)

where t0, t and x0 have been omitted in order to avoid notational clutter. These are, however,
implicit by context. As the nabla operator is time-independent, equation (2.20

.

) immediately
yields a set of ODEs for the time development of the directional derivatives of the �ow map,
namely

d
dt

(
u ·∇)

ϕ =
(
u ·∇)

v(t ,ϕ), (2.21)

which holds along any constant (unit) vector u. On a regular Cartesian grid, equation (2.21

.

)
provides a coupled set of ODEs describing the time evolution of each component of the
Jacobian of the �ow map:

d
dt

(
∂ϕi
∂xj

)
=

∑
k

∂vi
∂xk

����
(t ,ϕ)

∂ϕk
∂xj

����
t

,

∂ϕi
∂xj

����
t0

= δij , x0 ∈ U, t ∈ [t0, t1],
(2.22)

where the Kronecker delta is de�ned as

δij =

{
1, if i = j,

0, if i , j .
(2.23)

The initial conditions for the Jacobi components re�ect the fact that, for a regular Cartesian
grid, the directional derivative of e.g. the x coordinate in the x direction is 1, but zero in the
y and z directions, and so on.

For su�ciently smooth velocity �elds, the �ow map Jacobian∇ϕtt0 can be computed, which
allows the right Cauchy-Green strain tensor �eld to be de�ned as

Ct
t0(x0) =

(
∇ϕtt0(x0)

)∗ (
∇ϕtt0(x0)

)
, (2.24)

where the asterisk refers to the adjoint operation, which, because the Jacobian ∇ϕtt0 is
real-valued, equates to matrix transposition. Moreover, as the Jacobian of the �ow map
is invertible, the Cauchy-Green strain tensor Ct

t0
(x0) is symmetric and positive de�nite

(

.

Farazmand and Haller 2012a

..

). Thus, it has three real, positive eigenvalues and orthogonal,
real eigenvectors. Its eigenvalues λi and corresponding unit eigenvectors ξi are de�ned by

Ct
t0(x0)ξi(x0) = λiξi(x0), i = 1, 2, 3,〈

ξi(x0), ξj(x0)
〉
= δij , 0 < λ1(x0) ≤ λ2(x0) ≤ λ3(x0),

(2.25)

where the Kronecker delta is de�ned in equation (2.23

.

), and the dependence of λi and ξi on
t0 and t has been suppressed, for the sake of notational brevity. The geometric interpretation
of equation (2.25

.

) is that a �uid element transported by the underlying �ow undergoes the
most stretching along the ξ3 axis, less stretching along the ξ2 axis, and the least stretching
along the ξ1 axis. This concept is shown in �gure 2.2

.

.
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2.3 De�nition of Lagrangian coherent structures for three-dimensional �ows

t0

ϕtt0 (x0)

t

ξ1

ξ2

ξ3

Figure 2.2: Geometric interpretation of the eigenvectors of the Cauchy-Green strain
tensor. The central unit cell is stretched and deformed under the �ow map ϕtt0(x0). The
local stretching is largest in the direction of ξ3, the eigenvector which corresponds to
the largest eigenvalue, λ3, of the Cauchy-Green strain tensor, de�ned in equation (2.25

.

).
Along the ξi axes, the stretch factors are given by

√
λi , respectively.

As the stretch factors along the ξi axes are given by the square roots of the corresponding
eigenvalues, for incompressible �ow, the eigenvalues satisfy

λ1(x0)λ2(x0)λ3(x0) = 1 ∀ x0 ∈ U, (2.26)

where, in the context of tracer advection, incompressibility is equivalent to the velocity �eld
v being divergence-free (i.e.,∇ · v ≡ 0 in system (2.16

.

)).

2.3 Definition of Lagrangian coherent structures for
three-dimensional flows

A necessary prerequisite for three-dimensional Lagrangian �ow analysis is the concept of
material surfaces, which

.

Oettinger and Haller (2016)

..

de�ne as

De�nition 4 (Material surfaces).
Consider a set of initial positions forming a two-dimensional surfaceM(t0) at time t0 inU.
Its time-t image,M(t), is obtained under the �ow map as

M(t) = ϕtt0
(M(t0)) . (2.27)

The union of all time-t images, ∪t∈[t0,t1]M(t), is a hypersurface in the extended phase space
I ×U, called a material surface.

From here on, the entire material surface will be referred to by the notation M(t). In
the extended phase space I × U, the dynamical system governed by equation (2.27

.

) is
autonomous. In autonomous systems, di�erent trajectories never intersect; thus, no material
surfaces can be crossed by tracers (

.

Strogatz 2014

..

, p.150). However, only special material
surfaces create coherence in the phase spaceU and thus act as observable transport barriers.
Such material surfaces are generally referred to as Lagrangian coherent structures (henceforth
abbreviated to LCSs).
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Chapter 2 Theory

Subsequently, LCSs can be described as time-evolving surfaces which shape coherent trajec-
tory patterns in dynamical systems, de�ned over a �nite time interval (

.

Haller 2011

..

). There
are three main types of LCSs, namely elliptic, hyperbolic, and parabolic. Rougly speaking,
parabolic LCSs outline cores of jet-like trajectories, elliptic LCSs describe vortex boundaries,
whereas hyperbolic LCSs are comprised of overall attractive or repelling manifolds. As such,
hyperbolic LCSs practically act as organizing centers of observable tracer patterns (

.

Onu,
Huhn, and Haller 2015

..

). Because hyperbolic LCSs provide the most readily applicable insight
in terms of forecasting �ow in e.g. oceanic currents, such structures have been the focus of
this project.

2.3.1 Hyperbolic LCSs in three dimensions

The identi�cation of LCSs for reliable forecasting requires necessity and su�ciency conditions,
supported by mathematical theorems.

.

Haller (2011)

..

derived a variational LCS theory based on
the Cauchy-Green strain tensor, de�ned by equation (2.24

.

), from which the aforementioned
conditions follow. The immediately relevant parts of Haller’s theory are given in de�nitions 5

.

–
8

.

(

.

Haller 2011

..

).

De�nition 5 (Normally repellent material surfaces).
A normally repellent material surface over the time interval [t0, t1] is a compact material
surface segmentM(t) which is overall repelling, and on which the normal repulsion rate is
greater than the tangential repulsion rate.

The required compactness of the material surface segment signi�es that, in some sense, it
must be topologically well-behaved. That the material surface is overall repelling means that
nearby trajectories are repelled from, rather than attracted towards, the material surface.
Lastly, requiring that the normal repulsion rate is greater than the tangential repulsion rate
means that nearby trajectories are in fact driven away from the material surface, rather than
being stretched along with it due to shear stress.

De�nition 6 (Repelling LCS).
A repelling LCS over the time interval [t0, t1] is a normally repelling material surfaceM(t0)
whose normal repulsion admits a pointwise non-degenerate maximum relative to any nearby
material surface M̂(t0).
De�nition 7 (Attracting LCS).
An attracting LCS over the time interval [t0, t1] is de�ned as a repelling LCS over the backward
time interval [t1, t0].
De�nition 8 (Hyperbolic LCS).
A hyperbolic LCS over the time interval [t0, t1] is a repelling or attracting LCS over the same
time interval.

Note that the above de�nitions associate LCSs with the time interval I over which the
dynamical system under consideration is known, or, at the very least, where information
regarding the behaviour of tracers is sought. Generally, LCSs obtained over a time interval I
do not necessarily exist over di�erent time intervals (

.

Farazmand and Haller 2012a

..

).
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2.3 De�nition of Lagrangian coherent structures for three-dimensional �ows

For su�ciently smooth three-dimensional �ow, the above de�nitions can be summarized
as a set of mathematical existence criteria, based on the Cauchy-Green strain tensor (cf.
equation (2.24

.

)) (

.

Haller 2011

..

;

.

Farazmand and Haller 2012a

..

;

.

Karrasch 2012

..

;

.

Farazmand and
Haller 2012b

..

). The existence criteria for repelling LCSs are given in theorem 1

.

.

Theorem 1 (Necessary and su�cient conditions for repelling LCSs in three dimensions).
Consider a compact material surfaceM(t) ⊂ U evolving over the time interval [t0, t1]. Then
M(t) is a repelling LCS over [t0, t1] if and only if all of the following holds for all initial
conditions x0 ∈ M(t0):

λ2(x0) , λ3(x0) > 1, (2.28a)〈
ξ3(x0),Hλ3(x0)ξ3(x0)

〉
< 0 (2.28b)

ξ3(x0) ⊥ M(t0), (2.28c)〈
∇λ3(x0), ξ3(x0)

〉
= 0. (2.28d)

In theorem 1

.

, 〈·, ·〉 signi�es the Euclidean inner product, and Hλ3 denotes the Hessian matrix
of the largest eigenvalues of the Cauchy-Green strain tensor �eld. Component-wise, the
Hessian matrix of a general, smooth, scalar-valued function f is de�ned as

(Hf )i,j =
∂2 f

∂xi∂xj
, (2.29)

which, for our three-dimensional �ow, reduces to

Hf =

©«

∂2 f

∂x2
∂2 f

∂x∂y

∂2 f

∂x∂z

∂2 f

∂y∂x

∂2 f

∂y2
∂2 f

∂y∂z

∂2 f

∂z∂x

∂2 f

∂z∂y

∂2 f

∂z2

ª®®®®®®®®®¬

. (2.30)

Condition (2.28a

.

) ensures that the normal repulsion rate is larger than the tangential stretch
arising due to shear strain along the LCS, in accordance with de�nition 5

.

. Conditions (2.28c

.

)
and (2.28d

.

) su�ce to enforce that the normal repulsion rate attains a local extremum along
the LCS, relative to all nearby material surfaces. Lastly, condition (2.28b

.

) ensures that this is
a strict local maximum.

From condition (2.28c

.

) and the orthormality of the Cauchy-Green strain eigenvectors (cf.
equation (2.25

.

)), it follows that any initial (that is, time-t0) image of an LCS surface is
everywhere tangent to the planes locally spanned by ξ1(x0) and ξ2(x0). Thus, an integral
curve of any (normalized) linear combination of the ξ1- and ξ2-direction �elds, launched
from an arbitrary point of the surfaceM(t0), will never leaveM(t0). Hence:

Remark 1 (Invariance of time-t0 images of repelling LCSs).
The time-t0 imageM(t0) of any repelling LCS (de�nition 6

.

) is an invariant manifold of the
autonomous dynamical system

Ûx = aξ1(x) + bξ2(x), a2 + b2 = 1. (2.31)
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Chapter 2 Theory

Note that the converse of remark 1

.

does not hold. That is, a material surface Ξ(t0) which is an
invariant manifold of all (normalized) linear combinations of ξ1 and ξ2 does not necessarily
correspond to a repelling LCSM(t0) — unless Ξ(t0) also satis�es conditions (2.28a

.

), (2.28b

.

)
and (2.28d

.

) (

.

Oettinger and Haller 2016

..

).
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3 Method

This chapter contains a complete description of our method for computing repelling LCSs.
Details regarding the speci�c �ow systems we used as test cases will be presented in
sections 3.1

.

and 3.2

.

. Our way of extracting the Cauchy-Green strain eigenvalues and -vectors
(cf. equation (2.25

.

)) from the aforementioned �ow systems then follows in sections 3.3

.

and 3.4

.

. As will be outlined in sections 3.5

.

–3.11

.

, the Cauchy-Green strain eigenvalues and
-vectors were then used to compute manifolds as three-dimensional surfaces — parametrized
in terms of points organized in geodesic level sets — from which repelling LCSs were extracted
as subsets. Lastly, section 3.12

.

contains a succinct description of some optimization tweaks
we introduced in order to limit the consumption of computational resources.

Note that we present two variants of the method of geodesic level sets for expanding a
manifold by the addition of mesh points. Section 3.6

.

contains the framework for a level
set approach which closely resembles the method introduced by

.

Krauskopf, Osinga, et al.
(2005)

..

(see also

.

Krauskopf and Osinga (2003)

..

). However, by making use of the properties
de�ning repelling LCSs (see theorem 1

.

in section 2.3.1

.

), we were able to simplify the method
of generating new mesh points considerably, resulting in a great speedup in terms of
computation runtimes. Our adaption of the method of geodesic level sets for the speci�c
case of repelling LCSs will hereafter be referred to as the revised approach to computing new
mesh points, and is described in detail in section 3.7

.

.

3.1 Flow systems defined by analytical velocity fields

Within all branches of computational science — perhaps particularly for the analysis of
nonlinear systems of the form suggested in section 2.2

.

— analytical test cases are very
useful. Especially as far as reproducibility is concerned. Hence, we chose two variants of
the three-dimensional �ow system commonly referred to as the Arnold-Beltrami-Childress
�ow, which has previously been subject to Lagrangian analysis (

.

Blazevski and Haller 2014

..

;

.

Oettinger and Haller 2016

..

), as our base cases. We present a steady variant in section 3.1.1

.

,
and an unsteady one in section 3.1.2

.

, with the intention of investigating to what extent
the introduction of time dependence results in altered repelling LCSs (more to follow in
sections 3.3

.

–3.11

.

and chapter 4

.

).

3.1.1 Steady Arnold-Beltrami-Childress �ow

The Arnold-Beltrami-Childress (henceforth abbreviated to ABC) �ow is a three-dimensional,
incompressible velocity �eld which solves the Euler equations exactly. It is a simple example
of a �uid �ow which can exhibit chaotic behaviour (

.

Frisch 1995

..

, p.204). In terms of the
Cartesian coordinate vector x = (x ,y, z), the system can be expressed mathematically as

Ûx = v(t , x) =
©«
A sin(z) +C cos(y)
B sin(x) +A cos(z)
C sin(y) + B cos(x)

ª®®¬
, (3.1)
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where A, B, and C are parameters which dictate the nature of the �ow pattern. The inherent
periodicity with regards to the Cartesian axes naturally leads to a domain of interest
U = [0, 2π ]3, with periodic boundary conditions imposed in x , y and z.

Here, the parameter values

A =
√

3, B =
√

2, C = 1, (3.2)

were used, as has been common in litterature (e.g. by

.

Oettinger and Haller (2016)

..

); these
values are known to result in chaotic tracer trajectories (

.

Zhao et al. 1993

..

). The time interval
of interest for this system was I = [0, 5].

3.1.2 Unsteady Arnold-Beltrami-Childress �ow

Inspired by

.

Oettinger and Haller (2016)

..

, a temporally aperiodic modi�cation of the ABC �ow
(equation (3.1

.

)) was made by the replacements

B → B̃(t) = B + B · k0 tanh(k1t) cos
((k2t)2

)
,

C → C̃(t) = C +C · k0 tanh(k1t) sin
((k3t)2

)
,

(3.3)

with A, B, and C given by equation (3.2

.

), where the parameters values

k0 = 0.3, k1 = 0.5, k2 = 1.5, k3 = 1.8, (3.4)

were used. The fundamental idea of this modi�cation is to further enhance the chaotic
nature of the resulting �ow patterns. Similarly modi�ed ABC �ow has previously been at the
centre of other three-dimensional transport barrier investigations — including hyperbolic
LCSs — such as the work of

.

Blazevski and Haller (2014)

..

; albeit with quite di�erent methods
of computing said LCSs than the one considered here. Like for its stationary sibling, the
time interval of interest for this system was I = [0, 5]. The time dependence of the B̃ and C̃

coe�cients is illustrated in �gure 3.1

.

.

0 1 2 3 4 5
t

−0.30

−0.15

0.00

0.15

0.30
B̃ (t)/B − 1
C̃ (t)/C − 1

Figure 3.1: Time dependence of the coe�cient functions for unsteady ABC �ow,
de�ned in equations (3.2

.

)–(3.4

.

).
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3.2 Flow systems defined by gridded velocity data

As suggested in section 2.1.2

.

, most kinds of computational science pertaining to the simulation
of natural phenomena rely on some physical model for the generation of data, which can
then be used to predict future states by solving appropriate di�erential equations. In order to
demonstrate the applicability of Lagrangian analysis to real-life systems, we thus considered
particle transport by oceanic currents in the Førde fjord. Section 3.2.1

.

contains a brief
description of the relevance of transport in the Førde fjord in particular — in light of recent
legislations and regulations — in addition to showcasing our domain of interest within said
fjord. Then, in section 3.2.2

.

, we present our way of interpolating the discrete model data in
order to solve the set of transport equations pertaining to Lagrangian �ow analysis (more to
follow in sections 3.3

.

and 3.4

.

).

3.2.1 Oceanic currents in the Førde fjord

In 2016, the mining company Nordic Mining ASA received permission from the Norwegian
Ministry of Climate and Environment to extract rutile from the Engebø mountain in Naustdal,
Norway (

.

Garvik 2017

..

;

.

Haugan 2015

..

). Furthermore, the company was authorized to deposit
the mining waste into the nearby Førde fjord; a legislation which has been debated �ercely,
and heavily protested against, ever since the original application was submitted in 2008.
Early estimates suggest that, when operating at full scale, the mining operation will result in
yearly oceanic mine tailings deposits in excess of �ve million tonnes (

.

Garvik 2017

..

).

Several centres of technical expertise — such as the Norwegian Institute of Marine Research
— have publically advised against depositing mine tailings into the fjord, emphasizing the
potentially severe negative consequences for marine life (

.

Haugan 2015

..

). Not only is the
surrounding area a signi�cant spawning ground for cod, there is always a possibility of
particles being transported by the water currents such that they contaminate the outer edges
of the fjord, or even the ocean. Accordingly, the use of LCSs in order to predict possible
�ow patterns for contaminants resulting from the deposit of mine tailings would be of great
environmental interest.

To this end, gridded three-dimensional velocity data, modelling oceanic currents in the
(depths of the) Førde Fjord, was made available by SINTEF Ocean, based on the SINMOD
oceanic model (

.

Slagstad and McClimans 2005

..

). The data set considered here contains velocity
data for the time period between June 1 2013, 00:00 and June 3 2013, 00:00, sampled in
intervals of 20 minutes, with a horizontal resolution of approximately 50 m and a vertical
resolution varying from 25 m in the fjord depths, to 1 m near the surface. For our simulations,
the time interval of interest was the 12 hour time window between 00:00 and 12:00 on June 1
2013 — practically ensuring the encapsulation of a tidal cycle.

We concentrated our analysis on the depths of the fjord. Therefore, we looked for LCSs in a
region of water which was neither particularly close to the oceanic surface, nor reached
the coastline when advected for the 12 hour duration of the time interval of interest. This
limited our research to a 500 m × 500 m × 250 m region, with depths ranging from 50 m to
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300 m below the surface. A bird’s-eye view of the region is shown in white in �gure 3.2

.

,
which also contains a map view of the geographical surroundings.

61.4°N

61.45°N

61.5°N

61.55°N

61.6°N

4.9°E 5°E 5.1°E 5.2°E 5.3°E 5.4°E 5.5°E

Figure 3.2: Stereographical map projection of the Førde fjord and its surroundings.
The local fjord depths are indicated by a varying background color. A subset of the
gridded velocity vectors indicates the macroscopic trends of the oceanic currents at a
depth of 3 m below the surface. Outlined in white is a bird’s-eye view of the main
region of interest; namely, a region of water which was neither particularly close to
the oceanic surface, nor struck the coastline when transported by the currents for the
duration of the 12 hour time interval of interest.

3.2.2 Interpolating gridded velocity data

In order to describe transport phenomena in the Førde fjord, interpolating the discretely
sampled velocity �eld becomes necessary. Based upon the considerations presented in
section 2.1.2

.

, in addition to the �ndings of

.

van Hinsberg et al. (2013)

..

— which suggest that
B-splines constitue the best choice for interpolating gridded data in the computation of
particle trajectories — we elected to do so by means of cubic B-splines in time and space.
Thus, each of the velocity �eld’s three components was considered to be a quadrivariate
function of time and the three spatial coordinates.

Several multidimensional B-spline interpolation libraries are publically available under
open source licensing. For this project, we elected to use the Bspline-Fortran library, partly
motivated by its extensive documentation (

.

Williams 2018

..

). In particular, we made use of its
bspline_4d derived type, which we, along with a subset of its type-bound procedures, made
available in C by means of the Fortran standard interoperability with C-languages — that is,
the iso_c_binding module, which is shipped with most modern Fortran compilers. From
there, we wrote a thin wrapper class in C++, which was exposed to Python via Cython.

The choice of Python as our main programming language was made partly due to its
relatively low development costs, in addition to its bene�cial properties as a multi-paradigm
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3.3 Computing the �ow map and its directional derivatives

language, and the ease of parallelization by means of e.g. MPI (the use of which will be
outlined in greater detail in section 3.12

.

). Moreover, by utilizing Fortran’s reference-based
subroutine call structure, in addition to pointers at C-level (typed memoryviews in Cython),
we were able to minimize memory duplication. This could otherwise have been a signi�cant
bottleneck.

3.3 Computing the flow map and its directional
derivatives

Computing the �ow map Jacobian �eld is crucial, as it is used in our de�nition of the
Cauchy-Green strain tensor �eld (cf. equation (2.24

.

)) — whose eigenvalues and -vectors,
in turn, form the basis of the LCS existence criteria given in equation (2.28

.

). An outline
of how we solved equation (2.16

.

) in conjunction with equation (2.22

.

) in order to obtain
the �nal state of the �ow map Jacobian �eld is presented in section 3.3.1

.

. Furthermore,
section 3.3.2

.

contains a detailed description of how the dynamic Runge-Kutta solver step
size (see section 2.1.1

.

) was implemented. How we then extracted the Cauchy-Green strain
eigenvalues and -vectors from the �nal state �ow map Jacobian �eld is the topic of section 3.4

.

.

3.3.1 Advecting a set of tracers

The variational framework for computing LCSs is based upon the advection of non-interacting
tracers, as described in section 2.2

.

, by the systems mentioned in sections 3.1

.

and 3.2

.

. The
computational domainsU were discretized by a set equidistant tracers, e�ectively creating
a uniform grid with tracers placed on and within the domain boundaries ofU. The grid
parameters are summarized in table 3.1

.

.

Table 3.1: Grid parameters for advection in the considered �ow systems. For the fjord
system, the domain extents and grid spacings are given in units of metre. Also note
that the grid spacings have been truncated to two signi�cant decimal digits.

Analytical ABC �ow Fjord model data
Computational domain [0, 2π ]3 [0, 500] × [0, 500] × [50, 300]

Nx , Ny , Nz 256, 256, 256 200, 200, 100
∆x = ∆y = ∆z 2.5 · 10−2 2.5

In order to increase the precision of the computed Cauchy-Green strain tensor �eld, it is
necessary to increase the accuracy with which one computes the Jacobian of the �ow map, as
their accuracies are intrinsically linked. This follows from equation (2.24

.

). Accordingly, the
�ow map Jacobian was computed directly, by means of simultaneously solving the twelve
coupled ODEs given by equations (2.16

.

) and (2.22

.

), letting the underlying velocity �eld
transport the tracers. All twelve ODEs were solved simultaneously, using the Dormand-
Prince 8(7) method (see section 2.1.1

.

and, in particular, table 2.4

.

). The dynamic step length
adjustment procedure will be outlined in detail in section 3.3.2

.

.

In this framework, the tracer advection takes second stage to the “advection” of the compo-
nents of the �ow map Jacobian. As it turns out, the increase in mathematical complexity
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which the coupling terms introduce is a small price to pay for the increased precision
compared to the straightforward approach of applying a �nite di�ference scheme to the
advected �ow map (

.

Oettinger and Haller 2016

..

). This is also evident from previous “�nite
di�erence-based” LCS computing endeavors, in which the use of several grids of tracers was
necessitated in order to accurately compute the �ow map Jacobian (

.

Løken 2017

..

;

.

Farazmand
and Haller 2012a

..

).

3.3.2 The implementation of dynamic Runge-Kutta step size

In order to implement automatic step size control, the procedure suggested by Hairer,
Nørsett, and Wanner (

.

1993

..

, pp.167–168) was followed closely. A starting step size h needs to
be prescribed; this generally di�ers based upon the (pseudo-)time scale of the underlying
system. For the �rst solution step, the embedded Dormand-Prince 8(7) method, as described
in section 2.1.1

.

and table 2.4

.

, yields the two approximations x1 and x̂1, from which the
di�erence x1 − x̂1 can be used as an estimate of the error of the less precise result. The idea
is to force the error of the numerical solution to satisfy, componentwise:��x1,i − x̂1,i

�� ≤ sci , sci = Atoli +max
(��x1,i

��, ��x̂1,i
��) · Rtoli , (3.5)

where Atoli and Rtoli are the desired absolute and relative tolerances. For this project, the
tolerance values

Atoli = 10−7, Rtoli = 10−7 (3.6)
were used throughout.

As a measure of the numerical error,

err =

√√
1
n

n∑
i=1

(
x1,i − x̂1,i

sci

)2
(3.7)

is used. Then, err is compared to unity in order to �nd an optimal step size. From de�nition 2

.

,
it follows that err scales like hq+1, where q = min(p, p̂ ). Thus, under the expected scaling
err ≈ Khq+1, and the assumption 1 ≈ Kh

q+1
opt , one �nds the optimal step size according to

hopt = h ·
(

1
err

) 1
q+1
. (3.8)

If err ≤ 1, the suggested solution step is accepted, the (pseudo-)time variable t is increased
by h, and the step length is modi�ed according to equations (3.8

.

) and (3.9

.

). Which of the
two approximations xn+1 or x̂n+1 is used to continue the integration generally depends
on the embedded Runge-Kutta method in question. Continuing the integration with the
higher order result is commonly referred to as local extrapolation. The Dormand-Prince 8(7)
method is tuned in order to minimize the error of the higher order result; accordingly, local
extrapolation was used throughout. If err > 1, the solution step is rejected, and the step
length decreased before attempting another step. The procedure for updating the time step
can be summarized as follows:

hnew =

{
min(facmax · h, fac · hopt) if the solution step is accepted,
fac · hopt, if the solution step is rejected,

(3.9)
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3.4 Computing Cauchy-Green strain eigenvalues and -vectors

where fac and facmax are numerical safety factors, intended to prevent increasing the step
size too much, in order to make it more likely that the next step is accepted. Here, the
parameter values

fac = 0.8, facmax = 2.0, (3.10)

were used throughout.

3.4 Computing Cauchy-Green strain eigenvalues and
-vectors

Computing the Cauchy-Green strain tensor �eld directly, by performing a series of matrix
products per its de�nition in equation (2.24

.

), and then solving for its eigenvalues and -vectors
turns out to be numerically disadvantageous (

.

Oettinger and Haller 2016

..

). In particular,
this method leaves the smallest eigenvalues quite susceptible to numerical round-o� error.
A fully equivalent, more numerically sound way of identifying the Cauchy-Green strain
eigenvalues and -vectors is based on performing an SVD decomposition of the Jacobian �eld
of the �ow map, i.e.,

∇ϕtt0(x0) = UΣV∗, (3.11)

where the asterisk refers to the adjoint operation, U and V are unitary matrices, and Σ is
a diagonal matrix with nonnegative real numbers — the singular values of∇ϕ — on the
diagonal. Because the �ow map Jacobian is square, so too are the matrices U, Σ, and V.
Moreover, as the �ow map Jacobian is real-valued, so too are the matrices U and V. The
eigenvalues of the right Cauchy-Green strain tensor (cf. equations (2.24

.

) and (2.25

.

)) are
given by the squares of the singular values, that is, λi(x0) =

(
σi(x0)

)2, and the corresponding
orthonormal eigenvectors are found in the columns of V.

Interpolating the Cauchy-Green strain eigenvalues

For computing LCSs, the Cauchy-Green strain eigenvalues frequently need to be evaluated
inbetween the grid points. Moreover, as suggested by the existence criterion given in
equation (2.28b

.

), all of the second derivatives of λ3(x0) are also needed. Accordingly, the
eigenvalues were interpolated by means of cubic trivariate B-splines, in order to ensure
continuous second derivatives. For this purpose, the bspline_3d derived type from the
Bspline-Fortran library (

.

Williams 2018

..

) was exposed to Python using the techniques described
in section 3.2.2

.

.

Interpolating the Cauchy-Green strain eigenvectors

Just like the eigenvalues of the Cauchy-Green strain tensor �eld, its eigenvectors frequently
need to be evaluated between the grid points in order to compute LCSs. Like the strain
eigenvalues, the strain eigenvectors were interpolated by means of cubic trivariate B-splines,
through the bspline_3d derived type from the Bspline-Fortran library (

.

Williams 2018

..

) —
albeit with a twist, in order to remove local orientational discontinuities. In particular,
the local stretch is equal in magnitude along any given negative ξi axis as that of its
positive counterpart, and there is no a priori reason to expect the SVD decomposition (cf.
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equation (3.11

.

)) to follow any particular convention regarding the “sign” of the computed
eigenvectors.

The interpolation routine outlined here is a generalization of a similar special-purpose linear
interpolation routine which has previously been utilized to compute LCSs in two spatial
dimensions (

.

Onu, Huhn, and Haller 2015

..

;

.

Løken 2017

..

). Our routine is based upon careful
monitoring and local reorientation prior to cubic interpolation, and its two-dimensional
equivalent is illustrated in �gure 3.3

.

— the principles are similar in three dimensions, but
illustrating a two-dimensional projection of the three-dimensional case simply became
cluttered beyond comprehension.

x

P

Figure 3.3: Conceptual illustration of the special-purpose cubic interpolation routine
for the Cauchy-Green strain eigenvectors. The 64 nearest grid points (16 in two
dimensions; here shown in gray) to any given coordinate x are identi�ed. As the
local stretch is equal in magnitude along the negative ξi axis as that of its positive
counterpart, we are free to reverse any ξi vector which is rotated more than 90° with
regards to the chosen pivot vector (at the grid point denoted by P) prior to interpolating
the components of ξi , making use of cubic B-splines. The vectors used in the local
cubic interpolation are dashed, whereas the vectors which had to be reversed are
dotted.

First, the 64 (in two dimensions: 16) nearest neighboring grid points corresponding to
any given coordinate x are identi�ed. Choosing a pivot vector at a corner of this local
interpolation voxel, orientational discontinuities between the grid elements are found by
inspecting the inner products of the ξi vectors of the remaining grid points with the pivot.
Rotations exceeding 90° are identi�ed by inner products with the pivot vector being negative,
labelled as orientational discontinuities, and then corrected by reversing the direction of the
corresponding vectors. For each of ξi ’s three components, cubic B-spline interpolation is
used within the interpolation voxel in order to �nd ξi(x), which is then normalized, like the
ξi vectors de�ned at the grid points are per their de�nition, cf. equation (2.25

.

).
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3.5 Preliminaries for computing repelling LCSs in 3D
flow by means of geodesic level sets

Repelling LCSs in three spatial dimensions are quite challenging to compute. Straightforward
numerical integration of the �ow in a strain eigendirection �eld su�ces for Lagrangian
analysis of two-dimensional systems (

.

Farazmand and Haller 2012a

..

;

.

Løken 2017

..

). In three
dimensions, however, this is not the case; LCS existence criterion (2.28c

.

) implies that
three-dimensional repelling LCSs are everywhere simultaneously tangent to the ξ1- and
ξ2-direction �elds (see remark 1

.

). Another way to interpret this extra degree of freedom —
compared to the two-dimensional case — is that everywhere within a three-dimensional
repelling LCS, one is allowed to move “freely” within a plane which is orthogonal to ξ3(x).
Thus, more sophisticated algorithms are needed in order to compute three-dimensional
LCSs, than their two-dimensional counterparts. Here, we consider a variation of the method
of geodesic level sets for computing repelling LCSs as invariant manifolds of the ξ1- and
ξ2-direction �elds (cf. remark 1

.

), as presented by

.

Krauskopf, Osinga, et al. (2005)

..

. The
short presentation to follow in the next paragraph will be explained further in depth in the
subsequent sections.

The method is based on the concept of developing an unstable manifold from a local
neighborhood of an initial condition x0 (how the initial conditions are selected will be
described in section 3.5.1

.

). In particular, a small, closed curve C1 forming a geodesic circle,
consisting of mesh points which are all located in the tangent plane de�ned by the coordinate
x0 and the unit normal ξ3(x0), separated from x0 by a distance δinit, is assumed to be a
part of the same manifold as x0. The idea is then to compute the next geodesic circle in a
local, dynamic coordinate system, de�ned by hyperplanes which are orthogonal to the most
recently computed geodesic circle. A set of accuracy parameters governs the number of
points by which the next geodesic circle is approximated, in solving a set of initial value
problems. During the computation, the interpolation error stays limited by the density of
mesh points, so that the overall quality of the mesh is preserved (

.

Krauskopf and Osinga
2003

..

).

3.5.1 Identifying suitable initial conditions for developing LCSs

Inspired by the two-dimensional approach of

.

Farazmand and Haller (2012a)

..

, in order to
identify repelling LCSs, the �rst step was to identify the subdomain U0 ⊂ U in which
existence conditions (2.28a

.

), (2.28b

.

) and (2.28d

.

) are satis�ed — as these conditions can be
veri�ed for individual points, unlike criterion (2.28c

.

). All grid points inU0 would then be
valid initial conditions for repelling LCSs. Of the aforementioned criteria, condition (2.28d

.

)
is the least straightforward to implement numerically, as identifying the zeros of inner
products is prone to numerical round-o� error. Our approach is based on comparing the
value of λ3 at a given grid point x0 to the values of λ3 at the two points x0 ± εξ3(x0), where ε
is a number one order of magnitude smaller than the grid spacing. Should λ3(x0) be the
largest of the three, signifying that x0 could be an approximate maximum of the λ3 �eld
along the (local) ξ3 direction (which compliance with condition (2.28b

.

) would con�rm), the
point x0 would be �agged as satisfying criterion (2.28d

.

).
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Using all of the points inU0 would invariably involve computing a lot of LCSs several times
over — in particular, if two neighboring grid points are both part ofU0, then they likely
belong to the same manifold. In order to reduce the number of redundant calculations, the
set of considered initial conditions was further reduced, by only checking whether every ν th

grid point along each axis belonged toU0, that is, only considering one in every ν3 grid
points in the entire domain as possible initial conditions. Because the number of grid points
was di�erent for the di�erent types of �ow (cf. table 3.1

.

), so too was the pseudo-sampling
frequency ν . The values for ε , ν , and the resulting number of initial conditions are given in
table 3.2

.

. Note that, using the given �ltering parameters, the initial conditions reduced to a
far more manageable number of grid points, than all of the grid points which satisfy the LCS
conditions (2.28a

.

), (2.28b

.

) and (2.28d

.

).

Table 3.2: Parameter choices for selecting LCS initial conditions. ε was made to be one
order of magnitude smaller than the grid spacing, and ν was selected to be a common
divisor of the number of grid points along each Cartesian axis, cf. table 3.1

.

. Note that ε
for the fjord model data is given in units of metre. Observe how the reduced set of
initial conditions contains orders of magnitude fewer points than the total number of
grid points which satisfy the LCS existence criteria (2.28a

.

), (2.28b

.

) and (2.28d

.

).

Analytical ABC �ow Fjord model data
ε 5 · 10−3 10−1

ν 8 5
# initial conditions
without ν-�ltering

340 951 (steady)
361 461 (unsteady) 209 945

# initial conditions
with ν-�ltering

618 (steady)
676 (unsteady) 1 631

3.5.2 Parametrizing the innermost level set

For an initial condition x0, identi�ed by means of the method outlined in section 3.5.1

.

, the
corresponding LCS must locally be tangent to the plane with unit normal given by ξ3(x0), as
a consequence of LCS existence criterion (2.28c

.

). Accordingly, the �rst geodesic level set is
approximated by a set of n mesh points {M1,j}nj=1, placed in the aforementioned tangent
plane, evenly distributed along a circle centered at x0 with radius δinit. All of these points are
assumed to be contained within the same manifold. Figure 3.4

.

shows where the points in
the innermost level set are located, in relation to x0. The parameter δinit was chosen small
compared to the grid spacing, in order to limit the inherent errors of this linearization.

An interpolation curve C1 was then made, with a view to representing the innermost level
set in a smoother fashion. In particular, this interpolation curve was designed as a parametric
spline. To this end, the points {M1,j}n+1

j=1 , whereM1,n+1 =M1,1, were ordered in clockwise
or counterclockwise — merely a matter of perspective — fashion. Then, each mesh point was
assigned an independent variable s based upon the cumulative interpoint distance along the
ordered list of points, starting at j = 1; estimated by means of the Euclidean norm, then
normalized by dividing through by the total interpoint distance around the entire initial
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level set. Consequently, there was a one-to-one correspondence between the s-values and
the mesh points, aside fromM1,1, to which both s = 0 and s = 1 were mapped.

Next, we made lists containing the coordinates of the ordered mesh points {Mi,j}n+1
j=1 ; i.e.,

one list for each of the three Cartesian coordinates. Considering each of the lists of the mesh
points’ Cartesian coordinates as univariate functions of the pseudo-arclength parameter
s , separate cubic B-splines were then made for each set of coordinates, making use of the
bspline_1d extension type from the Bspline-Fortran library (

.

Williams 2018

..

), which was
exposed to Python as outlined in section 3.2.2

.

. The constructed innermost level set and
its associated interpolation curve is illustrated in �gure 3.4

.

. Interpolation curves for all
subsequent level sets (the computation of which will be described in detail in the sections to
follow) were made completely analogously to C1.

ξ3(x0)

x0

M1,1
M1,2

M1,3

M1,n

M1,n−1 s1 = 0,
sn+1 = 1

s2

s3

sn

sn−1

δinit

C1

Figure 3.4: The construction of the innermost geodesic level set. An initial condition
x0 is found by means of the method outlined in section 3.5.1

.

. A set of n mesh points
{M1, j }nj=1 is then evenly distributed within the plane de�ned by the point x0 and the
unit normal ξ3(x0), which is shaded. Each mesh point is separated from x0 by a small
distance δinit (dashed). Using a normalized pseudo-arclength parameter s , the mesh
point coordinates are interpolated using cubic B-splines, forming the smooth curve C1
(dotted).

In the following, let xi,j denote the location of mesh pointMi,j . As suggested by

.

Krauskopf,
Osinga, et al. (2005)

..

, we next sought to develop a new level set, parametrized by a new set of
points {M2,j} located in the family of half-planes {H1,j}nj=1, extending radially outwards
from the corresponding points {M1,j}nj=1 in the initial level set while being orthogonal to C1.
These half-planes are generally de�ned by the points xi,j and the (unit) tangent vectors ti,j .
For the innermost level set, these tangent vectors were computed as

t1,j =
ξ3(x0) × (x1,j − x0)ξ3(x0) × (x1,j − x0)

 . (3.12)

For the subsequent level sets,

.

Krauskopf, Osinga, et al. (2005)

..

suggest determining the
tangents ti,j using the interpolation curve Ci , by drawing a vector between two points
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equidistant toMi,j in either direction along Ci . However, an inheritance-based approach
was found to yield more smoothly parametrized manifolds, which were less sensitive to
numerical noise. This approach, along with the treatment of special cases, will be explained
in greater detail in the sections to follow (in particular, section 3.8.1

.

).

A guidance vector ρi,j was computed for each of the mesh points {Mi,j}, in order to keep
track of the local (quasi-)radial direction. The guidance vectors for the innermost level set
were computed as

ρ1,j =
x1,j − x0x1,j − x0

 . (3.13)

For each mesh point in all ensuing level sets, the guidance vectors were computed relative to
the coordinates of the point in the immediately preceding level set, from which the new
point was computed. That is,

ρi,j =
xi,j − xi−1, ̂xi,j − xi−1, ̂

 , (3.14)

where the indices j and ̂ generally need not be the same, as there is generally not a one-to-one
correspondence between points in subsequent level sets; see section 3.8.1

.

for details.

Note that, in computing new mesh points, organized in level sets, a descendant pointMi+1,j
has to be computed for each ancestor pointMi,j . This is due to the method being based on
parametrizing manifolds as a series of smooth topological circles. Should this prove not to be
possible, given a set of tolerance parameters which will be described in greater detail in the
sections to come, the computation is stopped abruptly, leaving the manifold parametrized
by however many of its geodesic level sets were successfully completed. Further details
on the stopping criteria for the generation of new geodesic level sets will be presented in
section 3.10

.

.

3.6 Legacy approach to computing new mesh points

As tentatively suggested in section 3.5.2

.

, each of the points in the �rst level setM1 = {M1,j}nj=1
is used to compute a point in the ensuing level setM2. This notion extends to all of the
subsequent level sets; namely, the points in level setMi+1 are computed from the points
in the prior level setMi . For reasons of brevity in the discussion to follow, we denote the
points {Mi,j} and {Mi+1,j} as ancestor and descendant points, respectively. Furthermore, the
set of mesh points which can be traced backwards to a single, common ancestor, is referred
to as a point strand. The considerations to follow rely on each mesh pointMi,j inheriting its
tangential vector from its direct ancestor; that is, ti,j := ti−1,j . The treatment of the special
cases of this inheritance-based approach will be described in greater detail in section 3.8.1

.

.

From the mesh pointMi,j , we wish to place a new mesh pointMi+1,j at an intersection of the
manifoldM and the half-planeHi,j , located a distance ∆i fromMi,j . The aforementioned
half-plane is de�ned by the coordinate xi,j , the tangential vector ti,j — which doubles as a
unit normal for the half-plane — and the guidance vector ρi,j (cf. equations (3.13

.

) and (3.14

.

)).
Note that this intersection may occur anywhere on the half-circle withinHi,j of radius ∆i ,
centered at xi,j . The search for a new mesh point is conducted by de�ning an aim point
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xaim withinHi,j , computed by performing a single, classical, 4th-order Runge-Kutta step (cf.
table 2.3

.

) of length ∆i in the vector �eld locally de�ned as

ψ(x) = ξ3(x) × ti,jξ3(x) × ti,j
 , (3.15)

starting at xi,j . Moreover, all of the vectors of the intermediary Runge-Kutta evaluations of
ψ(x) were corrected, if necessary, by continuous comparison with ρi,j and sign-reversion if
an intermediary vector was directed radially inwards. Finally, the computed aim point was
projected into the half-planeHi,j as follows:

xaim := xaim − 〈ti,j , xaim − x〉ti,j . (3.16)

The idea is then to look for a new position withinHi,j , in the vicinity of xaim, at a distance
∆i from xi,j , by moving within the constraints of the manifold. Motivated by remark 1

.

—
on the invariance of the time-t0 image of repelling LCSs under perturbations in the local
ξ1- and ξ2-direction �elds — this involves computing trajectories which everywhere l2ay
within the plane spanned by the local ξ1- and ξ2-vectors. This was done by de�ning a local,
normalized direction �eld as

µ(x, xaim) =
xaim − x − 〈ξ3(x), xaim − x〉ξ3(x)xaim − x − 〈ξ3(x), xaim − x〉ξ3(x)

 , (3.17)

that is, the normalized projection of the vector separating x and xaim into the plane or-
thogonal to the local ξ3 vector, in accordance with LCS existence criterion (2.28c

.

). A visual
representation of this direction �eld is given in �gure 3.5

.

. The choice of initial conditions for
computing trajectories within the manifold, with a view to expanding it, is the topic of (the
immediately forthcoming) section 3.6.1

.

.

ξ1(x)

ξ 2
(x)

ξ3(x)
µ(x, xaim)

xaim

x

Figure 3.5: Visualization of the direction �eld used to compute trajectories within a
manifold, using the legacy approach. The direction µ(x, xaim) (see equation (3.17

.

)) is
found by normalizing the projection of xaim − x into the plane spanned by the local ξ1-
and ξ2 vectors (shaded).
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3.6.1 Selecting initial conditions from which to compute new mesh points

As suggested by

.

Krauskopf, Osinga, et al. (2005)

..

, the starting point for all trajectories
intended to reach xaim could be chosen as any point not equal to xi,j along the parametrized
curve Ci . However, trajectories starting out at points along Ci which are far removed from
xi,j are likely to require a long integration path, which would result in an increase in the
accumulated numerical error. Subject to this kind of error, these trajectories might not even
get close to xaim with a reasonable computational resource consumption. Accordingly, we
limited the potential number of trajectories to compute by only considering a subset of the
interpolation curve Ci as initial conditions, as follows:

xinit = Ci(s̆), s̆ ∈ {[sj − ς , sj) ∪ (sj , sj + ς]}, 0 < ς ≤ 1
2 , (3.18)

where sj is the pseudo-arclength parameter corresponding to the mesh point located at
xi,j , and the inherent periodicity of the pseudo-arclength parametrization of Ci is implicitly
applied. Here, ς was set to 0.1, ensuring that 20 % of all possible initial conditions along Ci
were available for consideration.

For computing trajectories whose initial conditions are given by equation (3.18

.

), and direction
�elds are given by equation (3.17

.

), the Dormand-Prince 8(7) adaptive ODE solver (cf. table 2.4

.

and section 3.3.2

.

) was the method of choice. In particular, the dynamic integration step
size adjustment meant that we did not need to treat the integration step length itself as a
degree of freedom (of which there are many, as will be revealed shortly). However, in order
to ensure that any trajectory did not overstep the half-planeHi,j in passing, the step length
was continuously limited from above by ‖xaim − x‖. Moreover, in order to avoid spending
unreasonable computational resources on trajectories which for practical purposes never
would result in acceptable, new mesh points, the total allowed integration arclength was
limited by a scalar multiple γarc of the initial separation ‖xaim − xinit‖. In particular, this
limitation meant that trajectories which ended in stable orbits around xaim were not allowed
to keep going inde�nitely.

If any trajectory terminated in a point x�n located in the half-planeHi,j at a distance ∆i from
xi,j , then the new mesh pointMi+1,j was placed at x�n. Numerically, these conditions were
implemented by means of tolerance parameters, as comparing �oating-point numbers for
equality is prone to numerical round-o� error. More precisely, a point x was said to lay
withinHi,j provided that

η :=
x − xi,jx − xi,j

 ;
��〈η, ti,j〉�� < γH , (3.19)

whereas �����
x − xi,j


∆i

− 1

����� < γ∆ (3.20)

su�ced for it to be �agged as laying a distance ∆i from xi,j , with γH and γ∆ chosen as small
numbers. When a trajectory �rst intersectedHi,j , the integration was stopped abrubtly,
leaving its endpoint x�n as its suggested coordinates for the new mesh point. As brie�y
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3.6 Legacy approach to computing new mesh points

mentioned in section 3.5.2

.

, the unit tangent vectors ti,j were generally inherited — the
treatment of special cases will be explained in greater detail in section 3.8.1

.

. Figure 3.6

.

depicts a few characteristic trajectory patterns which commonly occured when searching for
new mesh points in the fashion discussed in the above.

ρi, j

Hi, j

Ci

Mi, j

αi, j

xaim

∆i

Figure 3.6: Visualization of typical trajectories used to compute a new mesh point,
using the legacy approach. The aim point xaim is used to guide trajectories which are
locally orthogonal to the ξ3 direction �eld (cf. equation (3.17

.

)) towards the intersection
between the manifoldM and the half-planeHi, j (shaded), in order to �nd a new mesh
pointMi+1, j located a distance ∆i fromMi, j . Hi, j is de�ned by the point xi, j (that
is, the coordinates corresponding to the mesh pointMi, j ), its unit normal ti, j (not
shown), and the (quasi-)radial unit vector ρi, j (dashdotted). The half-circle of radius
∆i , centered in xi, j and laying withinHi, j , on which we seek to �nd a new mesh point,
is dashed. All permitted trajectory initial positions lie along the smooth parametrized
curve Ci (dotted), and are given by equation (3.18

.

). A select few trajectories are shown,
where the arrowheads indicate the �rst intersection withHi, j (as per equation (3.19

.

)),
at which point the integration was terminated.

3.6.2 Choosing new trajectory start points by an algorithm with memory

Our method of choosing parameter values s̆ corresponding to points along Ci (cf. equa-
tion (3.18

.

)), from which to compute trajectories of the direction �eld given by equation (3.17

.

)
— with the intention of computing new mesh points — rests on the assumption that

∆(s̆) :=
x�n(s̆) − xi,j

, x�n ∈ Hi,j (3.21)

is a continuous function of s̆ . To this end, we keep track of why each computed trajectory is
terminated. In particular, we �rst note whether or not each trajectory, corresponding to a
start point x(s̆), ends up at some point x�n ∈ Hi,j . If this is the case, we also note whether
the corresponding separation ∆(s̆) (de�ned in equation (3.21

.

)) was an over- or undershoot
with regards to the desired separation ∆i .
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Chapter 3 Method

Based on the premises outlined above, we then make use of the intermediate value theorem;
speci�cally, if we have

∆(s̆1) < ∆i , ∆(s̆2) > ∆i (3.22a)
for s̆1 < s̆2, then the intermediate value theorem implies that there must exist an s̆ , such that

∆(s̆) = ∆i , s̆1 < s̆ < s̆2, (3.22b)

under the assumption that ∆(s̆) is a continuous function. In order to optimize our use
of computational resources, we thus endeavor to take large steps when moving along Ci
whenever the computed intersections withHi,j are far from ful�lling ∆(s̆) = ∆i . However,
when a subinterval of Ci is identi�ed, within which the intermediate value theorem suggests
that a trajectory may ful�ll our requirements, we decrease the pseudo-arclength increment
δ s̆ in order to increase our odds of �nding said trajectory. While the purpose of δ s̆min was to
manage resource requirements, δ s̆max was used in order to avoid bypassing subsets of Ci
from which two or more trajectories satisfy ∆(s̆) = ∆i . Overstepping a region containing an
even number of such intersections could render it undetectable using our algorithm (see
�gure 3.7

.

), as no change in trajectory termination status need be detected.

The feedback received by tracking why each trajectory is terminated, allows us to dynamically
select new trajectory start points along Ci . We do so by increasing the pseudo-arclength
increment δ s̆ as long as there is no change in trajectory termination status, and, conversely,
backtracking and reducing δ s̆ when a status change is detected. This process is shown
schematically in �gure 3.7

.

. As we assume asymptotic behaviour close to any regions in
which ∆(s̆) is not de�ned (that is, regions where no trajectories reach the half-planeHi,j , cf.
equation (3.21

.

)), the adjustment of δ s̆ is treated in the same fashion there.

3.6.3 Handling failures to compute satisfactory mesh points

As mentioned in section 3.6.1

.

, it can never be guaranteed that any trajectories which start
out at some point along the smooth curve Ci will be able to generate a new mesh point
located withinHi,j which simultaneously satis�es all of our de�ned constraints. Missing out
on points in any freshly generated level set prohibits the generation of more level sets — in
particular, partly dependent on the number of successfully computed points, the smoothness
of the interpolation curve Ci+1 exhibits a critical dependence on all of the points used for its
creation. Accordingly, handling tricky mesh points is crucial.

Although it remains impossible to ensure that the trajectory-based approach to computing
new mesh points is successful, the success rate can be increased signi�cantly by responding
appropriately to an initially failed search. Our strategy of choice is based upon adjusting the
computed aim point incrementally. Speci�cally, given the initial angular o�set αi,j of xaim
along the semicircle of radius ∆i , with regards to the guidance vector ρi,j (see �gure 3.6

.

), we
perturb xaim along said semicircle by the forced alteration

αi,j := αi,j + δα , (3.23a)

with
|δα | ≤ δαmax. (3.23b)
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3.6 Legacy approach to computing new mesh points

Choose a traversion direction (clockwise or counterclockwise)
of Ci , along which to �nd trajectory start points

Use a �cticious trajectory starting at xi, j as the baseline;
an instantly terminated undershoot, as xi, j ∈ Hi, j .

Set δ s̆ = ±δ s̆min (dep. on trav. direction) and s̆ := sj .

Update s̆ := s̆ + δ s̆ .
Check if s̆ ∈ {[sj − ς , sj ) ∪ (sj , sj + ς]}

Both traversion directions a�empted;
neither yielding a new mesh point

Search aborted, �agged as a failure;
unable to compute new mesh point

given current restrictions

First traversion direction did not
yield an acceptable mesh point;
reverse direction and start over

Compute trajectory starting at xinit = Ci (s̆)

Decrease |δ s̆ |, not
beyond δ s̆min

Increase |δ s̆ |, not
beyond δ s̆max

Trajectory satis�es ∆(s̆) = ∆i

Previous: Overshoot (undershoot)
New: Overshoot (undershoot)

Previous: Overshoot (undershoot) (or miss)
New: Undershoot (overshoot)

New mesh point at x�n(s̆) Previous: Miss

Previous: Hit

Backtrack, set s̆ = s̆prev

Yes

No

Trajectory missedHi, jTrajectory hitHi, j

|δ s̆ | > δ s̆min

|δ s̆ | = δ s̆min

Figure 3.7: Flowchart illustrating the algorithm for iteratively choosing new trajectory
start points based on the termination status of the preceding trajectories, using the
legacy approach. All possible trajectory start points are contained within a subset of Ci ,
per equation (3.18

.

). Whether or not a given trajectory intersected with the half-plane
Hi, j , and satis�ed ∆(s̆) = ∆i , was determined using equations (3.19

.

) and (3.20

.

).

Note that the range of o�sets — determined by δαmax — should be chosen based on the
expected geometry of the manifold as a whole; in contrast to the number of attempted
angular o�sets, which should be guided by considerations pertaining to the availability of
computational resources.

Note that reattempting the iterative point search algorithm outlined in the entirety of
the current section (that is, section 3.6

.

) for all possible perturbation con�gurations of
xaim (given by equation (3.23

.

)) does not guarantee that an acceptable mesh point is found.
In an attempt to �nd particularly elusive mesh points, the entire algorithm — including
angular perturbations as outlined in the above — was then rerun with simultaneously and
progressively relaxed point acceptance criteria. That is, the numerical tolerance parameters
γH and γ∆ (cf. equations (3.19

.

) and (3.20

.

)) were gradually increased up to pre-set maximum
values γmax

H and γmax
∆ .

If, after having increased said tolerance parameters to their maximal permitted values,
we were still unable able to �nd an “acceptable” mesh point, the incomplete level set was
promptly discarded, and attempted to be computed anew with ∆i reduced to ∆min (more
on the general adjustment procedure for ∆i to follow in section 3.8.3

.

). Should an entire,
new geodesic level set not be computable even with the minimum permitted step length,
attempts at expanding the computed manifold further were abandoned; constrained by the
given (maximal) tolerance parameters, the method simply would not be able to expand the
computed manifold any further. The various other stopping criteria for the generation of
manifolds will be described in detail in section 3.10

.

.
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3.7 Revised approach to computing new mesh points

The version of the method of geodesic level sets presented by

.

Krauskopf, Osinga, et al. (2005)

..

is centered around computing manifolds de�ned by being everywhere tangent to some
three-dimensional vector �eld (as a concrete example of application, Krauskopf, Osinga,
et al. seek to compute the strange attractor of the Lorenz system). As noted by

.

Oettinger
and Haller (2016)

..

, repelling LCSs in 3D consist of subsets of manifolds de�ned by being
everywhere orthgonal to the ξ3 direction �eld — which is re�ected in existence criterion
(2.28c

.

). Thus, compared to the type of systems considered by Krauskopf, Osinga, et al., we
have an extra degree of freedom when seeking to identify repelling LCSs in 3D; in particular,
moving along a manifold in arbitrary directions within a plane orthogonal to the local ξ3
vector is allowed, in contrast to being constrained to moving back and forth along a curve.
The paragraphs (and sections) to follow will reveal how we utilized the additional degree of
freedom to reduce the number of calculations necessary to compute new mesh points.

The overarching principles, nevertheless, remain the same. Like for the legacy approach
presented in section 3.6

.

, mesh points in level setMi+1 are computed from the points in
the prior level setMi . Similarly, the considerations to follow rely on each mesh pointMi,j

having inherited its tangential vector from its direct ancestor; namely, ti,j := ti−1,j . How the
special cases of this inheritance-based approach were treated, will be described in greater
detail in section 3.8.1

.

. From each mesh pointMi,j , we wish to place a new mesh pointMi+1,j
at an intersection of the manifoldM and the half-plane Hi,j , located a distance ∆i from
Mi,j . As usual,Hi,j is de�ned by the coordinate xi,j , the unit normal ti,j , and the guidance
vector ρi,j (where the latter of which is de�ned in equations (3.13

.

) and (3.14

.

)).

3.7.1 Computing pseudoradial trajectories directly

Just like in the legacy approach outlined in section 3.6

.

, we de�ne a local direction �eld as

ψ(x) = ξ3(x) × ti,jξ3(x) × ti,j
 , (3.24)

where ti,j is the unit tangent associated with the mesh pointMi,j . Here, however, we
make explicit use of our previously mentioned additional degree of freedom; namely, that
trajectories within the parametrized manifold are allowed arbitrary movements within the
planes which are locally orthogonal to the ξ3 direction �eld, rather than being constrained
to moving along a three-dimensional curve. Thus, we compute the coordinates of the new
mesh pointMi+1,j as the end point of a single trajectory.

Any trajectory starting out within the half-plane Hi,j and moving in the direction �eld
given by equation (3.24

.

) is certain to remain within the half-plane, as the direction �eld is
everywhere orthogonal to its unit normal ti,j . That is, as long as the direction �eld used
in computing said trajectory is everywhere oriented radially outwards. Accordingly, we
computed a single trajectory in the aforementioned direction �eld, starting out at xinit = xi,j ,
using the Dormand-Prince 8(7) adaptive ODE solver (see table 2.4

.

and section 3.3.2

.

), where
all of the vectors of the intermediary Runge-Kutta evaulations were corrected, if necessary,
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3.7 Revised approach to computing new mesh points

by continuous comparison with ρi,j and direction-reversion if an intermediary vector was
pointing radially inwards.

Should the ξ3 direction be parallel to the unit tangent ti,j locally along the trajectory,
the direction �eld equation (3.24

.

) would become unde�ned. In such regions, we allowed
the Runge-Kutta solver to step in the direction used for the immediately preceding step.
Numerically, such regions were recognized by

ξ3(x) × ti,j
 < γ‖, (3.25)

where γ‖ is a small tolerance parameter. Like for the legacy approach (outlined in section 3.6

.

),
the self-correcting integration step length meant that we did not treat the integration step as a
degree of freedom, and, in order to avoid overstepping, the step length of the Dormand-Prince
solver was continuously limited from above by ∆i −

x − xi,j
. Moreover, the total allowed

integration arclength was limited to an integer multiple γarc of the interset step ∆i , allowing
for the termination of any (hypothetical) trajectory which would end up in a stable orbit.

The trajectory integration was immediately interrupted upon reaching a point x�n separated
from xi,j by a distance ∆i . Like for the legacy approach, this criterion was checked by means
of a tolerance parameter, seeing as directly comparing �oating-point numbers for equality is
prone to numerical round-o� error. In particular, if a point x satis�ed�����

x − xi,j


∆i
− 1

����� < γ∆, (3.26)

with γ∆ being a small number, the point was �agged as laying a distance ∆i from xi,j . Thus,
upon reaching a point satisfying equation (3.26

.

), the trajectory was terminated, and the new
mesh pointMi+1,j was placed at the trajectory end point x�n. Figure 3.8

.

depicts a typical
trajectory used to compute new mesh points in the fashion discussed in the above.

3.7.2 Handling failures to compute satisfactory mesh points

Much like for the legacy approach outlined in section 3.6

.

, it can never be guaranteed that all
of the computed trajectories will yield new, acceptable mesh points — moreover, missing
out on points in a level set prohibits the generation of further level sets. In particular, our
procedure for maintaining mesh accuracy (which will be described in section 3.8.1

.

) makes
extensive use of the interpolation curves {Ci}. As the smoothness of the interpolation curve
Ci+1 depends on all of the points used for its creation, proper handling of tricky mesh points
remains critically important.

Seeing as the only tolerance parameter involved in this method pertains to achieving the
desired separation between a meshpoint and its direct descendant — see equation (3.26

.

) —
we elected not to progressively relax this constraint. Instead, we interpreted the failure of
any trajectory to reach a point su�ciently far away, as the trajectory being coiled such that
the required integration arc length to yield a point su�ciently far away from the ancestor
mesh point, exceeded the maximum allowed integration path length (governed by γarc, cf.
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ρi, j

Hi, j

Ci

Mi, j
x�n

∆i

Figure 3.8: Visualization of a typical trajectory used to compute a new mesh point,
using the revised approach. A trajectory is computed, starting at xi, j (that is, the
coordinates corresponding to the mesh pointMi, j ) and moving in the direction �eld
given by equation (3.24

.

), in order to �nd a new mesh point at the intersection between
the manifoldM and the half-planeHi, j (shaded), located a distance ∆i fromMi, j .
Hi, j is de�ned by the point xi, j , its unit normal ti, j (not shown), and the (quasi-)radial
unit vector ρi, j (dashdotted). The half-circle of radius ∆i , centered in xi, j and laying
within Hi, j , on which we seek to �nd a new mesh point, is dashed. As soon as a
trajectory reaches a point separated fromMi, j by a distance ∆i (per equation (3.26

.

)),
the integration is stopped, and a new mesh pointMi+1, j (not shown) is placed at the
trajectory end point x�n.

section 3.7.1

.

). Accordingly, the incomplete level set was discarded, and attempted to be
recomputed with ∆i reduced to ∆min (our general dynamic adjustment procedure for ∆i

will be described in detail in section 3.8.3

.

). Should an entire, new geodesic level set prove
incomputable even at the minimum permitted step length, attempts at further expansion of
the computed manifold were abandoned. In such cases, this variant of the method of geodesic
level sets simply did not su�ce, for the given set of development parameters. Details on
other stopping criteria for the generation of manifolds will be presented in section 3.10

.

.

3.7.3 Key improvements of the revised algorithm for computing newmesh points

When compared to the convoluted way of computing new mesh points presented in sec-
tion 3.6

.

, it is readily apparent that the revised approach is signi�cantly less complex. In
particular, note how launching a single trajectory starting at the ancestor mesh point results
in the legacy algorithm for computing new trajectory start points iteratively (cf. �gure 3.7

.

)
being rendered entirely super�uous. Furthermore, as all computed trajectories necessarily
remain within the target half-planes, no tolerance parameter for detecting intersections
between trajectories and half-planes is needed. In short, the revised algorithm is conceptually
simpler, and involves a lesser number of free (tolerance) parameters.

Simple numerical experiments con�rmed that, given the same initial conditions and under-
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lying direction �elds, the two approaches yielded the same mesh points — at least, within
rounding error. Moreover, these tests also revealed that the revised algorithm is usually two
orders of magnitude faster (in terms of computational runtime). Unsurprisingly, the main
time expenditure of the legacy approach turned out to be the computation of elusive mesh
points; often, several thousand computed trajectories were needed before a satisfactory new
point was found. In particular, the probability of �nding an acceptable mesh point depends
sensitively on choosing an appropriate aim point — leading to signi�cant slowdowns in
regions wherein the underlying manifold behaves erratically.

As a consequence of its superior speed and simplicity, the revised approach of forced
pseudoradial trajectories became our method of choice. Accordingly, all of our results
(which will be presented in chapter 4

.

) were generated with this method. Note that, while
deemed inferior in the context of identifying repelling LCSs in three-dimensional �ow, the
legacy approach of guided trajectories remains a valid way of computing three-dimensional
manifolds. Thus, it can be used as a baseline for computing other kinds of three-dimensional
manifolds de�ned in a di�erent manner than repelling LCSs — which remains beyond the
scope of this project.

3.8 Managing mesh accuracy

As will be described extensively in section 3.9

.

, the manifoldM was extracted from its set
of parametrization points {Mi,j} by means of linear interpolation. In order to keep the
interpolation error in check, we sought to limit the distance separating neighboring mesh
points by means of pre-set upper and lower boundaries — in the following denoted ∆min
and ∆max, respectively. Considering a set of mesh points as a holistic approximation of a
manifold, the separations between the mesh points in each level set, combined with the
interset step lengths {∆i}, determine the overall accuracy. Our algorithmic approach to
maintaining the overall mesh quality will be explained in the sections to follow.

3.8.1 Maintaining mesh point density

When expanding a manifold by computing new geodesic level sets, the distance separating
neighboring mesh points within each subsequent level set generally increases. This is due to
the mesh points being a parametrization of what is essentially an expanding topological
circle, for which an increasing amount of sampling points are needed in order to maintain the
point density. This concept is illustrated in �gure 3.9

.

. Thus, having successfully computed a
new geodesic level set — that is, having found a descendant pointMi+1,j for each of the
ancestor points {Mi,j} — by use of the method outlined in section 3.7

.

, we then inspected all
of the distances separating nearest neighbors.

Speci�cally, if any of the separations between nearest neighbors exceeded ∆max, we sought
to insert a new mesh point between them. That is, if

xi+1,j − xi+1,j+1
 > ∆max, a new mesh

pointMi+1,j+1/2 was computed using the method described in section 3.7

.

, by launching
a trajectory starting from a �cticious ancestor pointMi,j+1/2, located midway inbetween
Mi,j andMi,j+1 along the interpolation curve Ci . As the �cticious mesh pointMi,j+1/2 does
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Figure 3.9: Conceptual illustration of the rationale behind the insertion of new mesh
points as the geodesic level sets expand. The shown subset of the innermost topological
circle is parametrized by three mesh points, shown as dark gray circles. As the
topological circle is expanded, an increasing amount of mesh points must be inserted
in order to maintain the (approximate) mesh point density. In the intermediate-sized
circle shown in the �gure, the mesh points with no direct analogue in the smallest
circle are shown in a lighter shade of gray. Similarly, in the largest circle shown, the
mesh points with no direct analogue in the intermediate-sized circle are drawn without
�ll.

not itself have a direct ancestor from which to inherit a unit tangent, ti,j+1/2 was instead
constructed by normalizing the arithmetic average of ti,j and ti,j+1, and passed on toMi,j+1/2.
The �cticious mesh point’s guidance vector ρi,j+1/2 was constructed in similar fashion (the
guidance vectors’ role in the dynamic update of the interset separation ∆i will be described
in detail in section 3.8.3

.

). This way, the interpolation error is limited; no new mesh points
are generated using interpolations (in intermediary computations) over intervals of length
exceeding ∆max.

Conversely, if any of the nearest neighbor separations became smaller than ∆min, we sought
to remove one of the points, as long as the distance separating mesh points which would
then become nearest neighbors did not exceed ∆max. Accordingly, if any one of a pair of
neighboring mesh points was to be removed, we chose to discard the one which would
result in the smallest separation between the ensuing, new pair of nearest neighbors. In
our experience, the removal of mesh points rarely occurred; however, it was crucial for
generating the spherical LCS surface which will be presented in section 4.2.1

.

. Our principles
for inserting new mesh points inbetween others, and removing grid points which are too
close together, are illustrated in �gure 3.10

.

.

Having completed the process of inserting and removing mesh points, the points in the
level set were assigned consecutive integer indices. Speci�cally, if a mesh pointMi,j+1/2
was inserted inbetweenMi,j andMi,j+1, the respective indices were updated asMi,j+1/2 →
Mi,j+1,Mi,j+1 → Mi,j+2 and so on. Conversely, if mesh pointMi,j+1 was removed, then
Mi,j+2 →Mi,j+1,Mi,j+3 →Mi,j+2 and so forth.
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Mi, j−1

Mi, j

Mi, j+1/2
Mi, j+1

Mi+1, j−1

Mi+1, j

Mi+1, j+1/2

Mi+1, j+1
Ci

xi+1, j − xi+1, j+1 
> ∆max

(a) Inserting a new mesh point inbetween a
pair of mesh points which are too far apart.

Mi, j−1

Mi, j

Mi, j+1

Mi, j+2

xi+1, j+1 − xi+1, j 
< ∆min

xi+1, j+2 − xi+1, j  < ∆max

xi+1, j+1 − xi+1, j−1 
<
∆max

(b) Removing a mesh point too close to another,
if the ensuing separations are acceptable.

Figure 3.10: Our approach to inserting new, or removing, mesh points to maintain
mesh point density. When two neighboring mesh points in a freshly computed level
set are too far apart with regards to the given mesh parameter ∆max, we attempt to
insert a new mesh point between them. As shown in (a), this is done by the method
described in section 3.7

.

, using a �cticious initial condition midway inbetween the two
ancestor mesh pointsMi, j andMi, j+1, along the interpolated curve Ci , indicated in
the �gure by a lighter shade of gray. Should two neighboring mesh points be too close
together, and one of the two can be removed without the resulting sets of neighboring
points being too far apart, we remove the one which results in the shortest interpoint
separation — as shown in (b), where the point which is removed is indicated with a
lighter shade of gray.

3.8.2 Limiting the accumulation of numerical noise

Early tests with regards to the generation of manifolds revealed that the compound numerical
error over the course of many level sets often resulted in irregular behaviour. Speci�cally,
small bulges in the mesh easily became ampli�ed in the subsequent level sets, which
frequently caused unwanted loops in the interpolation curves {Ci} which extended far
from the manifold epicentre (namely x0, cf. section 3.5.1

.

). Occasionally, this would lead the
generated manifold to fold into itself. Per their de�nition, this is never permitted for repelling
LCSs. In particular, self-intersecting manifolds indicate that, in a small neighborhood of any
intersection, there would not be a well-de�ned direction of strongest repulsion, which would
violate LCS existence criterion (2.28a

.

).

As a countermeasure against the formation of undesired loops within a level set, we reviewed
a recently computed geodesic level set, as follows: Consider a point Mi+1,j located at
xi+1,j . If, for any pointMi+1,j+k with k > 1, the separation between the mesh pointsMi+1,j
andMi+1,j+k satis�es the pre-set bounds for the mesh point density (cf. section 3.8.1

.

),
and is signi�cantly smaller than the cumulative nearest neighbor separations in the mesh
point sequence {Mi+1,j+κ}kκ=0, we would remove the intermediate mesh points. In more
mathematical terms; if the interpoint distances satisfy

∆min <
xi+1,j+k − xi+1,j

 < ∆max (3.27a)

and xi+1,j+k − xi+1,j
 < γ	 k−1∑

κ=0

xi+1,j+κ+1 − xi+1,j+κ
, (3.27b)
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then all mesh points {Mi+1,j+κ}k−1
κ=1 are removed. Here, 0 ≤ γ	 ≤ 1 is a bulge tolerance

parameter, which essentially determines an upper limit for the extent (measured in cumulative
arclength) of loop-like segments of any given interpolation curve Ci . Speci�cally, a large γ	
facilitates removal of rounded loops, whereas a small γ	 restricts the removal process to
sharp bulges.

A characteristic example demonstrating this method of removing unwanted loops is shown
in �gure 3.11

.

. While possibly sacri�cing some resolution of the manifold as a whole, adhering
to criterion (3.27

.

) prevents the removal of any reasonable bulge formations. The removal of
several consecutive mesh points in the manner outlined may cause some triangle elements in
the reconstruction of manifold surfaces from the resulting point meshes (see section 3.9

.

) to be
somewhat larger than their neighbors, and, in some cases, some triangles may partly overlap.
However, as no new mesh points are added as a direct consequence of this loop-removal
algorithm, it does not introduce new errors. In our experience, the removal of loop-forming
mesh points was rarely required.

Mi, j−1

Mi, j

Mi, j+k

Mi, j+k+1

Mi, j+1

Mi, j+2

Mi, j+k−2

Mi, j+k−1
Ci

∆min <
xi, j+k − xi, j  < ∆max

Figure 3.11: Our approach to limit the compound numerical error, by continuously
removing unwanted loops in the computed level sets. As the separation between the
mesh pointsMi, j andMi, j+k satis�es the restrictions regarding mesh point density
(cf. section 3.8.1

.

), the mesh points {Mi, j+κ }k−1
κ=1 (shown in a lighter shade of gray)

are removed, provided that the cumulative neighbor separation around the bulge
is su�ciently large (per the conditions presented in equation (3.27

.

)) — which is the
case in the above. The resulting interpolation curve Ci becomes signi�cantly more
well-behaved without the super�uous mesh points.

3.8.3 A curvature-based approach to determining interset separations

Given the interpoint separation constraints described in section 3.8.1

.

, we have some �exibility
regarding the choice of interset step length ∆i . In an approach closely mirroring that of

.

Krauskopf, Osinga, et al. (2005)

..

, we used the (approximate) local curvatures along each point
strand (i.e., the set of mesh points which can be traced back to a common ancestor) in order
to determine whether or not the local manifold dynamics were resolved to a satisfactory

42



3.8 Managing mesh accuracy

level of detail. Starting out with an initial interset separation ∆1 = 2∆min for the second
innermost level set (i.e., the �rst level set which was computed using the method described
in section 3.7

.

), we sought to ensure that the subsequent ∆i resulted in the encapsulation of
the �ner details of the growing manifolds.

Speci�cally, once all mesh points which constitute a geodesic level setMi+1 had been
identi�ed, all a distance ∆i away from their direct ancestor points in the previous level set
Mi , we computed the angular o�sets αi,j between each pair of guidance vectors ρi,j and ρi+1,j
(as de�ned in equations (3.13

.

) and (3.14

.

)). This is sketched in �gure 3.12

.

. Note, however, that
angular o�sets for mesh points computed from �cticious ancestors in order to maintain the
mesh point density (see section 3.8.1

.

), were not computed. If

αi,j > α↓ or ∆i · αi,j > (∆α)↓ for at least one j, (3.28)

where α↓ and (∆α)↓ are upper curvature tolerance parameters, was satis�ed, the level set
Mi+1 was discarded and recomputed with reduced ∆i . However, ∆i was never reduced below
∆min. Conversely, if

αi,j < α↑ and ∆i · αi,j < (∆α)↑ for all j, (3.29)

where α↑ and (∆α)↑ are lower curvature tolerance parameters, was satis�ed, the interset
distance for computing the next level set, ∆i+1, was made bigger than ∆i (although never
beyond the pre-set ∆max).

ρi, j

αi, jMi−1, j Mi, j

Mi+1, j

Ci−1
Ci ∆ i

Figure 3.12: The principles of curvature-guided interset step length adjustment. For
each of the mesh points {Mi+1, j } constituting the level setMi+1 which were computed
from the mesh points constituting the most recently completed level setMi (i.e., all
but the mesh points which were computed from �cticious ancestors, cf. section 3.8.1

.

),
the angular o�sets αi, j between the guidance vectors ρi, j (dashdotted) and ρi+1, j (not
shown, but parallel to the vector separatingMi, j andMi+1, j , shown in solid) were
computed. These were used in conjunction with ∆i , the interset step used to compute
the new mesh points, in order to determine whether or not the suggested level set
would have to be discarded due to the local curvature along at least one point strand
being too large, according to criterion (3.28

.

). If the level set was deemed acceptable,
local curvature estimates {αi, j } and {∆i · αi, j } were then used to determine if the
subsequent level setMi+2 could be computed using ∆i+1 > ∆i ; namely, if criterion
(3.29

.

) was satis�ed.

As is evident from equations (3.28

.

) and (3.29

.

), the parameters α↓, α↑, (∆α)↓ and (∆α)↑
determine the mesh adaption along point strands. The bounds for the o�sets {∆i · αi,j}
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enforce stricter requirements on angular o�sets for large interstep lengths. Conversely, level
sets computed using small interset lengths are generally allowed to exhibit (comparatively)
larger angular o�sets. In our experience, the interset step lengths were rarely increased —
typically, there would be one or more subsets of the mesh points constituting any given level
set which underwent su�cient curvature such that condition (3.29

.

) did not hold.

3.9 Continuously reconstructing manifold surfaces
from point meshes in 3D

While expanding the point mesh parametrization of a manifoldM in bundles of mesh
points constituting geodesic level sets, we attempted to reproduce its fully three-dimensional
structure by simultaneously interpolating inbetween the mesh points. Our main objective
for representing manifolds as continuous interpolation objects is visual representation
(in addition to the detection of self-intersections, as will be outlined in section 3.10.1

.

) —
accordingly, we do not provide any form of analytical expression forM’s surface. Moreover,
as high order interpolation schemes are complicated considerably by the irregular structure
inherent to the parametrization ofM as a sequence of level sets, linear interpolation became
our method of choice.

To our knowledge, all three-dimensional surface plotting algorithms rely on some sort of
triangulation method to regularize a pointwise parametrized surface. General-purpose
routines for triangulation generation were found to be unsuitable, due to the speci�c mesh
structure ofM, arising from the parametrization by geodesic level sets. For instance,
Delaunay triangulation not only resulted in omitting triangles which, to the naked eye, were
crucial for the overall manifold structure, but also generated a lot of undesirable surface
triangles — a problem which became increasingly prominent near creases. Accordingly,
we made use of the fact that the plot_trisurf routine from the Python plotting library
Matplotlib accepts an optional input argument specifying a list of triangles to plot, given
by their vertices, and made our own triangulation scheme based on the speci�c structure of
the mesh point parametrization of the computed manifolds.

We begin by �xing a traversion direction, specifying the order in which the triangles are
created. Starting with the innermost level set, we then specify the vertices for a set of triangles
which together cover the (approximate) surface between the manifold epicentre x0 and C1 (see
�gure 3.4

.

). When a new geodesic level setMi+1 satis�es the accuracy constraints outlined
in section 3.8

.

, we move along the mesh points constituting Ci+1 in the selected direction,
adding new triangles covering the (approximate) surface area between the interpolation
curves Ci and Ci+1.

The surface area enclosed by the innermost level set was simply reconstructed by forming
the triangles whose vertices are given as {x0, x1,j , x1,j+1}. Our treatment of the ensuing
level sets is best described in terms of the local triangles formed around a single mesh
pointMi,j . The base case — that is, when no (nearby) points in the level setMi+1 have
been removed nor added inbetween direct descendants in order to maintain the over-
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all mesh point quality (cf. sections 3.8.1

.

and 3.8.2

.

) — is handled by demanding that the
triangles associated withMi,j cover the tetragonal surface element with vertices given
by {xi,j , xi,j+1, xi+1,j+1, xi+1,j}. Accordingly, we add two triangles with vertices given by
{xi,j , xi+1,j , xi+1,j+1} and {xi,j , xi,j+1, xi+1,j}, respectively. This is shown in �gure 3.13a

.

.

The cases not involving a one-to-one correspondence between the mesh points inMi and
Mi+1 require special attention. This occurs whenever mesh points are inserted by making
use of �cticious ancestors, or when mesh points are removed, in order to maintain the mesh
point density (cf. section 3.8.1

.

) — alternatively, when removing unwanted bulges in order
to dampen the e�ects of compound numerical noise (as described in section 3.8.2

.

). The
treatment of these special cases is shown in �gures 3.13b

.

and 3.13c

.

, and will be outlined
in greater detail in the upcoming paragraph. In particular, note how all ofMi,j ’s nearest
neighbors in the surrounding level setMi+1 are used in the triangulations — regardless
of whether these are computed from the mesh points in level setMi , or have �cticious
ancestors. This ensures (approximate) coverage of the entire surface area inbetween each
level set, and thus the computed manifold as a whole.

When an extra mesh pointMi+1,j+1/2 is inserted inbetweenMi+1,j andMi+1,j+1, the tetrag-
onal surface element whose vertices are located at {xi,j , xi,j+1, xi+1,j , xi+1,j+1/2} is approx-
imated by means of two triangles. Again expressed in terms of their vertices, these are
{xi,j , xi+1,j , xi+1,j+1/2} and {xi,j , xi,j+1, xi+1,j+1/2}. In the event that the mesh pointMi+1,j was
removed, either as part of an undesired bulge or in order to preserve mesh density, the tetrag-
onal surface with vertices at {xi,j , xi,j+1, xi+1,j−1, xi+1,j+1} is constructed using two triangles,
with vertices at {xi,j , xi+1,j−1, xi+1,j+1} and {xi,j , xi,j+1, xi+1,j+1}, respectively. If more than one
intermediate mesh point is removed, the treatment is completely analogous, occasionally
resulting in some triangle elements being signi�cantly larger than their neighbors.

3.10 Macroscale stopping criteria for the expansion of
computed manifolds

In principle, the process of developing manifold approximations by adding more and more
mesh points, organized in geodesic level sets, would continue as long as the overall mesh
quality was conserved (cf. section 3.8

.

). The enforced (pseudo-)uniform expansion (quasi-)
radially outwards, inherent to our take on the method of geodesic level sets, would then
yield a mesh providing a conservative estimate of the extent of the actual manifold, as there
is no particular reason to expect the manifold to appear homogeneous, when viewed from
the epicentre of the computed level sets (i.e. the initial position x0, cf. section 3.5.1

.

). With
reasonable parameter choices, we became able to generate large manifolds quite quickly.
This lead us to enforce two additional types of stopping criteria, based on what would happen
if the computed manifolds reached the edges of the computational domain, or folded into
themselves — where the latter of the two will be described in section 3.10.1

.

.

The trajectories which are computed in order to identify new mesh points (per the method
described in section 3.7

.

) frequently overstep the domains within which the Cauchy-Green
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Mi, j+2

Mi+1, j−1
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Mi+1, j+1

Mi+1, j+2

(a) The base case for our triangulation scheme.

Mi, j−1

Mi, j

Mi, j+1
Mi+1, j−1

Mi+1, j

Mi+1, j+1/2

Mi+1, j+1

(b) Including mesh points with �cticious
ancestors in the triangulation.

Mi+1, j−1

Mi+1, j+1
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Mi+1, j+2

Mi, j−1

Mi, j

Mi, j+1

Mi, j+2

(c) Triangulating with the resulting nearest
neighbors, if a mesh point is removed.

Figure 3.13: Conceptual illustrations of our triangulation algorithm. The standard
approach, which applies when there is a one-to-one correspondence between the
nearest neighbors of the pointMi, j in the level setMi , and the andMi, j ’s nearest
neighbors in the level setMi+1, is shown in (a). Meanwhile, (b) and (c) illustrate our
handling of the special cases which arise when the one-to-one correspondence between
points in subsequent level sets is broken. In particular, (b) shows how we include a
mesh point inserted inbetween the pointsMi+1, j andMi+1, j+1 in the triangulation,
while (c) demonstrates how the removal of mesh pointMi+1, j a�ects the triangulation.
Both of these kinds of adjustments were made in order to maintain the density of
mesh points (cf. section 3.8.1

.

). In all of the illustrations, the pair of triangles which
arise when triangulating outwards fromMi, j , are shaded. The remaining triangles
(patterned) originate from the triangulation of other points in level setMi . Note that
the removal of bundles of mesh points in order to dampen the e�ect of numerical noise
(which introduces bulges, as described in section 3.8.2

.

) is treated analogously to the
case of single missing points.

strain eigenvalues and -vectors are de�ned in order to compute mesh points on or near the
domain boundaries. Thus, in order to resolve the behaviour of manifolds near the edges of
the domain of interest, the aforementioned strain characteristics need to be computed in a
region which contains the domain of interest, extending beyond it in all directions. This
is how we treated the case of tidal �ow in the Førde fjord (see section 3.2

.

). For perfectly
periodic �ow systems, such as (either variant of) the ABC �ow — described in section 3.1

.

— the trivial exercise of utilizing the inherent periodicity is su�cient, provided that the
computational domain is large enough to encompass at least one cycle along each direction.

3.10.1 Continuous self-intersection checks

Per LCS existence criterion (2.28a

.

), there must be a uniquely de�ned direction of strongest
repulsion everywhere along a repelling LCS. Furthermore, our method of expanding
manifolds by adding mesh points organized in geodesic level sets (cf. section 3.7

.

) is based on
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3.10 Macroscale stopping criteria for the expansion of computed manifolds

continuous expansions (quasi-)radially outwards from the manifold centre. Accordingly,
the intersection of any manifold with itself was interpreted as a nonphysical artefact of
accumulated numerical error. For that reason, we sought to terminate the expansion of a
manifold when self-intersections were detected.

Our method of detecting manifold self-intersections is based on comparing the continuously
computed interpolation triangles (as described in section 3.9

.

) — in particular, we compared
each triangle which was added with the most recently computed level set, to all of the triangles
which had been added with the preceding level sets. If at least one pair of triangles intersected,
the newest level set was �agged as self-intersecting. Our way of determining whether or not
two triangles intersect, is based on the Möller-Trumbore ray-triangle intersection algorithm,
with a detection sensitivity parameter ϵ = 10−8 (

.

Möller and Trumbore 1997

..

). A visual
representation of our triangle-intersection detection algorithm is available in �gure 3.14

.

.

Does the Möller-Trumbore algorithm suggest
that at least one ray starting at a vertex of A,

passing through another vertex of A, intersects B?

Does at least one pair of vertices of A,
which gave rise to such a ray, lie on
opposite sides of the surface of B?

Triangles A and B do not intersect

Triangles A and B intersect Do all intersection points
lie on the perimeter of B?

YesNo

Yes

No

Yes

No

Figure 3.14: Flowchart illustrating the algorithm for detecting self-intersections. In
order to ensure that no self-intersection went unnoticed, the indicated procedure was
carried out by comparing each of the interpolation triangles A in the most recently
computed level set, to all of the triangles B in the previously computed level sets.
Provided that any of the new triangles intersected any of the old ones, the new level set
as a whole was �agged as self-intersecting. How this intersection-detection approach
handled a set of special cases is illustrated in �gure 3.15

.

.

Some cases of intersecting triangles warrant special treatment. In particular, as our triangu-
lation method (outlined in section 3.9

.

) is based on generating triangles which share sides
with its neighbors, we had to allow triangles to intersect along the edges. Similarly, we
allowed for two triangles to be identical — which might happen if a manifold folds onto itself
perfectly. Our algorithmic way of treating these cases resulted in a theoretical false negative;
namely, the case of two triangles intersecting in exactly two points, laying along the edges
of both triangles. In our experience, however, this never proved problematic — should one
pair of triangles happen to intersect in this exact fashion (which is a rarity in itself due to
numerical round-o� errors), another pair of triangles would intersect in such a way that
the most recently added set as a whole would be �agged as self-intersecting. Two of the
aforementioned special cases — that is, two triangles sharing an edge, and two triangles
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(a) Two triangles sharing an edge, normally
treated as a continuous intersection

(b) Two triangles whose edges intersect in
exactly two unique points

Figure 3.15: How the intersection-detection algorithm handles special cases. Triangles
which share a common edge, as illustrated in (a), form the premise of our triangulation
algorithm; accordingly, this scenario does not get �agged as an intersection. Neither
does the case when two triangles are identical (or one is contained within the other) —
which is not shown here — nor the case when the edges of two triangles intersect
in exactly two unique points, shown in (b). The latter is a very marginal case which
hardly ever occurs, and, for our purposes, would invariably coincide with another
(nearby) pair of triangles intersecting in a di�erent manner than these special cases;
ensuring that the computed level set as a whole would be �agged as self-intersecting.

intersecting in exactly two points laying along the edges of both triangles — are shown in
�gure 3.15

.

.

Initial tests revealed that some self-intersections were quite innocuous, in that, if the computed
manifold was expanded by an additional level set, the newly added triangulations need not
necessarily intersect with any of the preceding ones. This kind of insipid intersection could
be a consequence of the linear nature of our triangulation method, possibly compounded by
round-o� error. Accordingly, we decided to stop the manifold expansion process if several
consecutive geodesic level sets introduced intersecting triangulations. This was done by
computing the sum of the interset distances {∆i} for each consecutive level set {Mi} which
introduced new intersections. Whenever this pseudo-intersection length exceeded a scalar
multiple γ∩ of ∆min (cf. section 3.8.1

.

), we terminated the manifold computation process;
empirical trials suggested that the intersection issue would then only worsen if more mesh
points were added.

3.11 Identifying LCSs as subsets of computed manifolds

The collection of manifolds computed by means of the method outlined in the preceding
sections, starting from an approximately even distribution of points in the U0 domain
(cf. section 3.5

.

and, in particular, table 3.2

.

), are all surfaces which satisfy LCS existence
criterion (2.28c

.

) — that is, they are everywhere perpendicular to the local direction of maximal
repulsion. In order to extract repelling LCSs from these parametrized surfaces, we then
identi�ed the regions of the manifolds — represented as a subset of the mesh points in their
parametrization — which also satisfy the remaining existence criteria; namely, (2.28a

.

), (2.28b

.

)
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and (2.28d

.

). This was done completely analogously to how we identi�ed the grid points
belonging within theU0 domain, as outlined in section 3.5.1

.

. In particular, each mesh point
Mi,j of a computed manifoldM was �agged as to whether or not it satsi�ed all of the
aforementioned existence criteria.

We then proceded to construct a repelling LCSL from the mesh points ofM. Per section 3.5.1

.

,
the mesh point at the centre of any given manifold always satis�es all the LCS existence
criteria; accordingly, it was added as the �rst mesh point L0 of the extracted LCS. We then
went through the list of the mesh pointsMi,j which satis�ed all LCS criteria, traversing
each level set in the order in which their mesh points were added. In order to avoid isolated
points in the ensuing parametrization of the LCS, we added a manifold mesh point to the set
of LCS points provided that xi,j − x̃κ

 < γI∆max (3.30)

held for at least one κ, where xi,j and x̃κ denote the coordinates of mesh pointMi,j and the
already accepted LCS point Lκ ∈ {Lk}, respectively. ∆max is the maximum allowed mesh
point separation used for computing the manifold (cf. section 3.8.1

.

), while the scalar parameter
γI ≥ 1 allows for extracting smoother LCSs, more well-suited for visualization purposes —
as will be made clear shortly. Subsequently, the mesh points in the parametrization ofM
which did not satisfy all of the LCS existence criteria were added to the set of LCS points for
the purpose of enhanced visual representation — provided that they complied with a similar
distance threshold as the one given in equation (3.30

.

). Note, however, that these mesh points
were only added if they were su�ciently close to a point in {Lk} which satis�ed all of the
LCS existence criteria.

The tolerance parameterγI thus allowed us to mitigate possible numerical error; in particular,
if any given mesh point was slightly perturbed away from the underlying manifold, it could
still end up being a part of the LCS. Finally, we looked at all of the surface elements pertaining
to the triangulation of the manifoldM (as described in section 3.9

.

) in conjunction with the
set of mesh points which had been recognized as belonging to the LCS L. If mesh points
corresponding to two of the three vertices de�ning a triangular surface element had been
recognized as part of L, we then added the mesh point corresponding to the last remaining
vertex to the set of LCS points {Lk}. Accordingly, the triangulations of the manifoldM were
reused for L. These slight relaxations of the LCS existence criteria facilitate the extraction of
smoother LCS surfaces and are favorable for the visual representation of LCSs. Moreover,
they mitigate the possible e�ects of numerical error perturbing any given mesh pointMi,j

away from the actual manifold — leaving it more than su�ciently close to the manifold for
visualization purposes — by possibly allowing it to be included as part of the LCS after all.
Figure 3.16

.

shows an example of extracting a repelling LCS from a computed manifold.

The extracted LCS surfaces L, parametrized as a set of mesh points {Lk}, represent three-
dimensional surfaces which — allowing for a little numerical error — comply with all of the
existence criteria for repelling LCSs given in equation (2.28

.

), as originally proposed by

.

Haller
(2011)

..

. Inspired by the work of

.

Farazmand and Haller (2012a)

..

, we then sought to dispose of
the smallest among the computed LCSs, as these are expected to be the least signi�cant in
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(a) A computed manifold in its entirety
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(b) The extracted repelling LCS

Figure 3.16: An example of a repelling LCS extracted as a subset of a computed
manifold. In (a), a sample manifold for the steady ABC �ow is shown, whereas (b)
shows the subset of the manifold which satis�es the LCS existence criteria given in
equation (2.28

.

) (or is su�ciently close to any point satisfying these criteria, meaning
that their inclusion facilitates triangulations which provide an overall enhanced visual
representation).

terms of in�uencing the overall �ow within the system.

In order to obtain a measure of the size of our three-dimensional surfaces, to each LCS
point Lk , we assigned a weighting given by the surface area approximating the region of
the underlying manifoldM that is closer to the corresponding mesh pointMi,j than any
others. To the mesh point located at the manifold epicentre x0, we assigned the weight
W0 = π (δinit/2)2. The weights of all other mesh points were computed as

Wk := Ai,j ≈ ∆i + ∆i−1
2 ·

xi,j+1 − xi,j
 + xi,j − xi,j−1


2 , (3.31)

where, as always, xi,j denotes the coordinates of mesh pointMi,j . This surface approximation
is illustrated in �gure 3.17

.

. These weights were also used to compute a repulsion average λ3;
in particular,

W =
∑
k

Wk , λ3 =
1
W

∑
k

λ3(x̃k)Wk , (3.32)

where the summation is over all mesh points in the parametrization of L, and x̃k denotes
the coordinates of mesh point Lk .

In practice, we found that some mesh points exhibited λ3-values which were signi�cantly
di�erent to others in their vicinities. We interpreted these disparate λ3-values as spurious
interpolation artefacts. Therefore, in order to limit biasing from outlier mesh points (measured
in terms of their λ3 value) in the computed repulsion average, we alternately removed the
least and most repulsive mesh points from the averaging process, as long as this altered
the resulting repulsion average signi�cantly. In particular, denoting the adjusted repulsion
average by λ̂3, we iteratively removed outlier extrema provided that�����1 − λ̂3

λ3

����� > 0.1, (3.33a)
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whereupon we continuously accepted the most recently computed adjusted repulsion average
as the new reference repulsion average — that is,

λ3 := λ̂3. (3.33b)

This process was repeated until the removal of the least or most strongly repelling mesh
points did not alter the resulting repulsion average enough to trigger condition (3.33a

.

).

Any LCS for which the computed total weightW (a measure of its surface area) was smaller
than some pre-set limitWmin, or where λ3 < 1 — the latter as a sanity check to ensure
overall repulsion — per existence criterion (2.28a

.

), were discarded. As an aside, note that this
method of identifying repelling LCSs can easily be adapted to the identi�cation of attracting
LCSs, by computing Cauchy-Green strain eigenvalues and -vectors for the reversed time
interval [t1, t0] (see de�nition 7

.

) and otherwise proceeding as discussed.

Mi−1, j−1

Mi−1, j

Mi−1, j+1

Mi, j−1

Mi, j

Mi, j+1

Mi+1, j−1

Mi+1, j

Mi+1, j+1

xi, j+1 −xi, j + xi, j −xi, j−1 

2

∆i−1+∆i2

Figure 3.17: Our way of assigning weights to mesh points in computed LCSs. To a
given LCS point Lk , we assigned a weight given by a rectangular approximation of
the surface area closer to the corresponding manifold mesh pointMi, j than all other
points in the parametrization of the manifoldM (patterned). Here, ∆i corresponds
to the interset step length used to create level setMi+1, based on level setMi , (see
section 3.7

.

), while xi, j denotes the coordinates of mesh pointMi, j .

3.12 Making the most of the available computational
resources

The simultaneous solution of twelve coupled ODEs involved in the advection of tracers
in order to compute the �ow map and its directional derivatives (cf. section 3.3

.

) quickly
proved an unreasonably strenuous task for the author’s own personal laptop. Seeing as the
available memory was the main limitation, we parallelized this computation by means of MPI,
and ran it on NTNU’s supercomputer, Vilje. In spite of the tracers being independent, we
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elected to utilize MPI over alternative multiprocessing tools in order to access multiple nodes
within the Vilje cluster. Due to the problem’s pleasingly parallel nature, the parallelization
process consisted of distributing an approximately even amount of tracers across all ranks,
whereupon each rank advected (that is, simultaneously solved the twelve coupled ODEs
for all of) its allocated tracers. In the end, all of the �nal state �ow map Jacobians were
collected by the designated main process (i.e., rank = 0), whereupon the Cauchy-Green
strain eigenvalues and -vectors were extracted by means of an SVD decomposition (as
outlined in section 3.4

.

).

Regarding the generation of manifolds, code pro�ling (unsurprisingly) revealed that the
generation of new mesh points by computing (quasi-)radial trajectories orthogonal to the ξ3-
direction �eld was a great source of time expenditure. Accordingly, we rewrote all numerical
routines pertaining to the generation of new mesh points in Cython. In particular, we made
use of highly optimized, low-level BLAS1

.

routines whenever possible. Because of the ever
increasing number of necessary triangle comparisons in our algorithm of detectng manifolds
which self-intersect (as described in section 3.10.1

.

), all of the accompanying numerical
methods were expressed in Cython. Similarly to how we exposed the Bspline-Fortran library
to Python (cf. section 3.2.2

.

), we also consistently used calls by reference in order to avoid
unneccesary memory duplication. The transition from (NumPy-based) Python to Cython for
the most signi�cant tasks reduced the overall runtime by two orders of magnitude — on top
of the the reduction by (up to) two orders of magnitude from utilizing the revised rather
than the legacy approach to computing mesh points (mentioned in section 3.7

.

).

Analogously to the advection of tracers, we made use of the mutual independence of the
computed manifolds to accelerate their computation by means of MPI parallelization across
the Vilje cluster. We elected to make a one-to-one correspondence between the number of
MPI threads and the number of manifolds to generate (as described in section 3.5.1

.

) such that
each manifold was allotted as much working memory as possible, facilitating each manifold
to grow as large as possible before being stopped due to the one of the criteria proposed
in section 3.10

.

. Compared to the advection of tracers, or the expansion of manifolds, the
extraction of repelling LCSs as subsets of the computed manifolds (cf. section 3.11

.

) was not a
particularly laborious task. Thus, we chose to parallelize this selection process by making
use of the Python multiprocessing library, as access to a single node in the Vilje cluster
su�ced to complete it in less than a minute.

1See www.netlib.org/blas

.

and https://docs.scipy.org/doc/scipy/reference/linalg.cython_blas.html

.
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4 Results

This chapter contains plots which illustrate some key properties of manifolds (and subse-
quently, repelling LCSs) computed using the method outlined in chapter 3

.

. In section 4.1

.

, we
present geodesic level set approximations to a couple of three-dimensional surfaces, and
how these were used in order to guide our parameter choices pertaining to the generation
of mesh points in the general case. Section 4.2

.

describes how we veri�ed our method of
extracting repelling LCSs from the computed manifolds. Lastly, sections 4.3

.

and 4.4

.

contain
the repelling LCSs we computed for �ow in (either variant of) the ABC �ow and the Førde
fjord, respectively.

4.1 Verifying our method of generating manifolds

To start things o�, section 4.1.1

.

outlines a series of geodesic level set approximations of an
analytically known three-dimensional surface. From these, we extract key insight regarding
which mesh point con�gurations might be reasonable for general application. In section 4.1.2

.

,
we illustrate how a sample manifold from the steady ABC �ow (see section 3.1

.

) depends
on the mesh point parameters; which we then used to guide our parameter choices for the
generation of manifolds in the general case. Lastly, we illustrate that the computed manifolds
are in fact invariant for trajectories everywhere tangent to (arbitrary linear combinations of)
the ξ1- and ξ2-direction �elds (see remark 1

.

) — and, consequently, everywhere orthogonal to
the ξ3-�eld, in compliance with existence criterion (2.28c

.

).

4.1.1 An analytical test case

As a veri�cation test case for (our variant of) the method of geodesic level sets to compute
three-dimensional manifolds, we sought to reproduce a three-dimensional surface de�ned by

z = д(x ,y) = A sin(ωxx) sin
(
ωyy

)
+ z0, (4.1a)

which can be expressed as the zeros of the scalar function

f (x) = д(x ,y) − z, (4.1b)

where x denotes the Cartesian coordinate vector (x ,y, z). In order to do so, we computed its
unit normal vector �eld as

n(x) = ∇f (x)
‖∇f (x)‖ , (4.2)

which we then substituted for the ξ3-direction �eld in equation (3.24

.

). Here, we chose the
parameters

A = 1, ωx = ωy = 2, z0 = π (4.3)

and used a single initial position x0 = (π ,π ,π ) from which to develop the surface, by
subsequently adding mesh points organized in level sets, as outlined in sections 3.7

.

–3.10

.

.

Speci�cally, we computed a total of seven surface approximations, using the parameter
values provided in table 4.1

.

with di�erent values of ∆min, thereby using di�erent mesh
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point densities. Four of the resulting manifolds are shown in �gure 4.1

.

. Although all of the
presented manifolds successfully encapsulate the macroscale behaviour of the underlying
surface (given by equations (4.1

.

) and (4.3

.

)), increasing the mesh point density clearly facilitates
more accurate approximations. In particular, some of the visual discrepancies of �gure 4.1

.

can
be attributed to the linear interpolation inherent to our triangulation scheme (see section 3.9

.

).

Table 4.1: Parameter values used to approximate an analytically known three-
dimensional surface (see equations (4.1

.

) and (4.3

.

)) by the method of geodesic level
sets. Note that the interset distances ∆i were dynamically altered, as described in
section 3.8.3

.

. Accordingly, only the �rst interset distance, ∆1, was set explicitly.
Moreover, while we varied the overall mesh point density by altering ∆min and ∆max,
we kept the ratio between them constant.

Parameter Value Description

δinit 10−3 Separation of innermost geodesic level set
from the manifold epicentre, cf. �gure 3.4

.

∆min, ∆max
∆max
∆min

= 4 (Variable) boundaries for interpoint
separations (details found in section 3.8.1

.

)

∆1 2∆min
Interset distance used to compute the second
geodesic level set (see sections 3.7

.

and 3.8.3

.

)

γ‖ 10−4 Tolerance for detecting regions in which ξ3
is (anti-)parallel to ti,j (see equation (3.25

.

))

γ∆ 5 · 10−3 Tolerance for the separation of a mesh point
from its ancestor (per equation (3.26

.

))

γarc 5 Sets an upper limit to trajectory lengths as
γarc∆i (brie�y mentioned in section 3.7.1

.

)

γ	 7 · 10−1 Sets an upper limit to the extent of loop-like
segments of any level set (see section 3.8.2

.

)
α↑
α↓

(δα)↑, (δα)↓

8.7 · 10−2 rad (5°)
4.4 · 10−1 rad (25°)
2δminα↑, 2δminα↓

Used in a curvature-based approach to adjust
interset distances (outlined in section 3.8.3

.

)

γ∩ 5 Used for terminating the expansion of
self-intersecting manifolds (cf. section 3.10.1

.

)

In order to obtain a quantitative measure of how an increase in the mesh point density
impacts the accuracy of the overall approximation, we computed the root mean square
(hereafter abbreviated to RMS) error of each mesh point as

errRMS =

√
1
N

∑
i,j

��zi,j − д(xi ,yj)��2, (4.4)

where we sum over all of the N computed points, with д(x ,y) given by equations (4.1

.

)
and (4.3

.

). The RMS error is shown as a function of the mesh point density in �gure 4.2

.

.
It appears to scale quadratically with ∆min, the smallest permitted separation between
neighboring mesh points — which doubles as a measure of the overall mesh density.
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Figure 4.1: Geodesic level set approximation to an analytically known three-
dimensional surface. The underlying sinusoidal surface is given by equations (4.1

.

)
and (4.3

.

). The manifolds were all computed using the parameters given in table 4.1

.

,
with varying mesh point densities (given by the value of ∆min), where the mesh outlines
are shown explicitly for clarity. Each of the approximations were grown from the
initial position x0 = (π ,π ,π ). Note how all of the manifolds are able to capture the
macroscale behaviour of the underlying surface, although the microscale behaviour is
increasingly well-resolved when the mesh point density increases.
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Figure 4.2: RMS error of geodesic level set approximations to an analytically known
three-dimensional surface, as a function of mesh point density. Using seven di�erent
mesh point densities (here referred to by their ∆min), we computed approximations of
the sinusoidal surface de�ned by equations (4.1

.

) and (4.3

.

) — four of which are shown
in �gure 4.1

.

— whose RMS error (as de�ned in equation (4.4

.

)) are shown as solid dots.
Note how the RMS error appears to increase quadratically as a function of ∆min.
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Note that, due to the local (pseudo-)planar nature of the parametrization of manifolds by
means of points organized in level sets, the number of mesh points in the parametrization of
a manifold increases quadratically as ∆min decreases. Thus, the decrease in numerical error
comes at the cost of an increased consumption of computational resources. For instance, the
method’s most computationally costly operations (namely, generating trajectories to identify
new mesh points and checking for self-intersections, cf. sections 3.7

.

and 3.10.1

.

, respectively)
need to be performed far more frequently when the number of mesh points increases.
Perhaps more crucially, an increased number of mesh points leads to an increase in the
required memory. These considerations, together with the ones to follow in the immediately
forthcoming section, became the foundation on which we based our choice of mesh point
density for the computation of LCSs (which will be elaborated upon in sections 4.3

.

and 4.4

.

).

4.1.2 Sample manifolds computed from the steady ABC �ow

Figure 4.3

.

shows a sample manifold obtained for the steady ABC �ow (cf. section 3.1

.

),
computed for a few di�erent mesh point densities, and otherwise similar parameters as
were used in order to approximate the sinusoidal surface (see table 4.1

.

and �gure 4.1

.

). From
�gure 4.3

.

, it is apparent that increasing the mesh point density generally results in increased
resolution. However, there appears to be some density threshold, above which unwanted
numerical artefacts start to emerge. This is particularly evident in �gure 4.3d

.

, where the
sharp indentation appears to be out of place. Such oddities could be due to accumulation
of numerical error when computing new mesh points from �cticious ancestor points (as
described in section 3.8.1

.

) — which naturally occurs more often with increased mesh point
density. Accordingly, our choice of mesh point density for (both variants of) the ABC �ow
(which will be presented in table 4.2

.

) was guided by a desire to limit the amount of such
oddities, in addition to the memory required in order to store each manifold (as mentioned
in section 4.1.1

.

).

Motivated by remark 1

.

, we sought to verify that our computed manifolds, by virtue of
containing repelling LCSs, act as invariant manifolds for arbitrary linear combinations
of the ξ1- and ξ2-direction �elds. Figure 4.4

.

shows a sample manifold obtained for the
steady ABC �ow (described in detail in section 3.1

.

), using the parameter values provided
in table 4.2

.

— the very same that we used in order to compute LCSs in said �ow (more to
follow in section 4.3

.

). It also shows 200 di�erent trajectories launched from (a small circle
laying within the manifold, centered in) the manifold epicentre x0 and computed using the
Dormand-Prince 8(7) adaptive ODE solver (see table 2.4

.

and section 3.3.2

.

). In �gure 4.4a

.

, the
trajectories are solution curves of equation (3.24

.

), where ti,j was kept constant along each
trajectory. Meanwhile, �gure 4.4b

.

shows solution curves of equation (2.31

.

), for 200 di�erent
pairs of weights (a,b) such that the initial trajectory directions were evenly distributed in
the plane de�ned by the coordinate x0 and the unit normal ξ3(x0).

Unsurprisingly, the curves in �gure 4.4a

.

all stay within the computed manifold, as all of its
constituent mesh points were computed as endpoints of trajectories in a similarly de�ned
direction �eld (see section 3.7

.

). The same applies for the curves shown in �gure 4.4b

.

;
however, there seems to be some regions of the manifold which are particularly challenging
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Figure 4.3: Geodesic level set approximations with varying mesh point densities, for a
manifold in the steady ABC �ow (see section 3.1

.

). The manifolds were all computed
using the parameters given in table 4.1

.

, with varying mesh point densities (here noted
by their ∆min), where the mesh outlines are shown explicitly for clarity. Each of the
approximations were grown from the same initial position x0. Note how, although
the microscale behaviour generally is more well-resolved as the mesh point density
increases, there appears to be a threshold above which undesired numerical artefacts
— perhaps most notably near the left edge of the manifold shown in (d) — manifest.
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(a) Trajectories computed in the direction
�eld given by equation (3.24
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(b) Trajectories of the direction �eld given by
equation (2.31

.

), for various weights (a,b).

Figure 4.4: Trajectories orthogonal to the ξ3-direction �eld, superimposed onto a
computed manifold surface in the steady ABC �ow. The manifold was computed using
the parameters given in table 4.2

.

. The trajectories were computed as solution curves of
equations (3.24

.

) and (2.31

.

), respectively, starting at (a small circle laying within the
manifold, centered in) the manifold epicentre x0. Note how none of the trajectories
ever leave the manifold. The trajectories shown in (a) cover the entire manifold, which
is as expected, as the manifold mesh points were computed as end points of trajectories
in a similar direction �eld (cf. section 3.7

.

). The trajectories shown in (b) never leave the
manifold, but face di�culties reaching certain regions of it, as can be seen from locally
reduced density of trajectories. For trajectories passing through x0, such regions are
likely only accessible for very particular weights (a,b).
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to hit — signi�ed by a decreased trajectory density — it appears that very speci�c weights
(a,b) are required to reach them. Regardless, none of the computed trajectories ever leave
the computed surface, which con�rms that the surface is in fact an invariant manifold of
the ξ1- and ξ2-direction �elds, in compliance with LCS existence criterion (2.28c

.

) (see also
remark 1

.

).

4.2 Verifying our method of extracting LCSs from the
computed manifolds

In section 4.2.1

.

, we present an analytical �ow �eld de�ned to exhibit a single repelling
LCS, and how we may use the accompanying λ3 �eld (i.e., the largest Cauchy-Green strain
eigenvalues) to determine its location. We then show that, using the method outlined in
chapter 3

.

, we reproduce it exactly. Section 4.2.2

.

contains a description of how we veri�ed
that the computed LCSs are, in fact, repelling.

4.2.1 An analytical test case

As a veri�cation test case for our way of extracting repelling LCSs from the computed
manifolds (which is described in detail in section 3.11

.

), we de�ned the purely radial velocity
�eld

Ûx = v(x) = x
‖x‖ sin

(
π (‖x‖ − r )), (4.5)

which changes from being directed radially inwards, to pointing radially outwards, on the
sphere ‖x‖ = r (on which the velocity �eld is zero). We then computed strain eigenvalues
and -vectors over the time interval I = [0, 1] for an equidistant grid of 200 × 200 × 200
tracers in the domainU = [−2, 2]3, as outlined in sections 3.3.1

.

and 3.4

.

, for r = 1. Moreover,
we computed the arithmetic average of λ3(x0) across all solid angles in order to approximate
it as a function of radius alone. The dependence of λ3 as a function of radius is shown in
�gure 4.5

.

, which reveals a sharp repulsion peak at ‖x‖ = r = 1. This agrees well with the
underlying velocity �eld (equation (4.5

.

)); in particular, in passing through ‖x‖ = r , the �ow
direction changes from radially inwards to radially outwards (or vice versa). Accordingly, we
expect to �nd a single repelling LCS, forming a unit sphere.

Using ε = 5 · 10−3, a �ltering frequency ν = 20 (see section 3.5.1

.

and table 3.2

.

), and otherwise
the same parameters as given in table 4.2

.

, we developed manifolds from the set of 291 grid
points in the reducedU0 domain, by the method described in sections 3.5

.

and 3.7

.

–3.10

.

.
Then, by means of the method outlined in section 3.11

.

, we extracted repelling LCSs from
the computed manifolds, using a tolerance parameter γI = 1.2, keeping only the LCSs
with (pseudo-)surface area greater than or equal toWmin = 1. The result was a total of
three identical (to numerical precision) spherical LCSs of radius 1. These are shown in
�gure 4.6

.

. Seeing as the expected LCS was successfully reproduced without false positives,
we concluded that our LCS extraction routine functions as intended.
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Figure 4.5:Arithmetic average of λ3 across all solid angles, for the purely radial velocity
�eld given by equation (4.5

.

), using r = 1. Note in particular the sharp repulsion peak
at ‖x‖ = 1, which is a strong indicator for the presence of a repelling LCS.
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Figure 4.6: The single repelling LCS present in the purely radial velocity �eld given by
equation (4.5

.

) with r = 1. In computing the underlying manifolds, we used the �ltering
parameters ε = 5 · 10−3 and ν = 20 (cf. section 3.5.1

.

and table 3.2

.

), and otherwise the
same parameter values as given in table 4.2

.

. To extract LCSs, we used the tolerance
parameter γI = 1.2, keeping only the LCSs whose (pseudo-)surface area was greater
than or equal toWmin = 1 (see section 3.11

.

). This resulted in 3 identical (to numerical
precision) copies of a single, spherical, repelling LCS of unit radius — which is exactly
as expected, given the sharp repulsion maximum at ‖x‖ = 1, as shown in �gure 4.5

.

.
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4.2.2 Verifying that the computed LCSs are in fact repelling

Per de�nitions 5

.

and 6

.

, we expect lumps of particles which start out at opposite sides of a
repelling LCS to quickly diverge under transport in the underlying �ow system. Moreover,
courtesy of being material surfaces, no particle may ever cross a repelling LCS (see section 2.3

.

).
In order to verify the impenetrable and repelling nature of the computed LCSs, we used a
setup with two blobs of initial conditions, situated at opposite sides of an identi�ed LCS
surface in the steady ABC �ow (more on which to follow in section 4.3

.

). We then advected
the particle blobs and the points in the parametrization of the LCS for �ve units of time, in
the velocity �eld given by equations (3.1

.

) and (3.2

.

), using the Dormand-Prince 8(7) ODE
solver in similar fashion to how we “advected” the �ow map Jacobian �eld in the �rst place
(see section 3.3

.

). The initial and �nal states are shown in �gure 4.7

.

.
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x 0
3

6
9 y

0
5

10

z

−20
2
4

(b) Final state, at t = 5.

Figure 4.7: Advection of tracers in order to verify the repelling nature of the computed
LCSs. At t = 0, two blobs of initial conditions are placed at opposite sides of a repelling
LCS identi�ed in the steady ABC �ow — more on which to follow in section 4.3

.

—
as shown in (a). The two blobs, and the mesh points in the parametrization of the
LCS, are then advected by the velocity �eld given by equations (3.1

.

) and (3.2

.

) using
the Dormand-Prince 8(7) ODE solver, until t = 5, for which the corresponding state
is shown in (b). Note that, although the LCS triangulation breaks down under the
advection, the two blobs of particles remain on fairly compact, and remain on the
opposite sides of the LCS, never crossing the LCS surface. This indicates that the local
centre of strongest repulsion remains located inbetween the two blobs of particles
throughout — which is the exact behaviour we expect for a repelling LCS.

Figure 4.7

.

shows that, while the triangulated structure of the LCS breaks down, the two
blobs of particles have been far removed from each other in the transition from �gure 4.7a

.

to
�gure 4.7b

.

. Furthermore, particles belonging to a single blob remain reasonably compact,
indicating that the local repulsion centre was situated between the two blobs throughout —
i.e., along the LCS. One possible explanation for the relatively large amount of stretching of
the mesh points in the parametrization of the LCS under the aforementioned advection,
could be that (several of) the mesh points were slightly perturbed away from the actual
LCS surface, due to round-o� errors (which are practically unavoidable, as LCSs are of
in�nitesimal width per existence criterion (2.28b

.

)). Finally, the fact that none of the particles
belonging to either of the two blobs ever appear to move across the LCS mesh points supports
the notion that the computed LCSs do in fact act as repelling material surfaces, and thus
barriers to transport.

60



4.3 Computed LCSs in the ABC �ow

4.3 Computed LCSs in the ABC flow

Having computed Cauchy-Green strain eigenvalues and -vectors for both variants of the ABC
�ow (as presented in section 3.1

.

), we used theU0 domain — i.e., the grid points satisfying
the LCS existence criteria (2.28a

.

), (2.28b

.

) and (2.28d

.

) (the implementations of which are
described in section 3.5.1

.

) — as a �rst approximation to where we may reasonably expect to
�nd repelling LCSs. Four di�erent views of theU0 domains for the steady and unsteady
ABC �ows are shown as scatter plots with semi-transparent points in �gures 4.8

.

and 4.9

.

,
respectively.
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Figure 4.8: Four views of theU0 domain obtained for transport in the steady ABC
�ow, for the time interval I = [0, 5], identi�ed as the grid points which satisfy the
LCS criteria (2.28a

.

), (2.28b

.

) and (2.28d

.

) (details on the implementation are available in
section 3.5.1

.

). In total, the domain consists of 340 951 di�erent points (cf. table 3.2

.

).

Note that although theU0 domains for the two �ow variants do not contain the same number
of points (cf. table 3.2

.

), the macroscopic trends remain the same. The di�erences consist
of minute details, such as the topmost cavities in �gures 4.8a

.

and 4.9a

.

being of slightly
di�erent sizes, or the point densities along the north east “bands” in �gures 4.8b

.

and 4.9b

.

being somewhat dissimilar. This is as expected, seeing as the two underlying transport
systems are lightly perturbed versions of one another.

Using the �ltering parameters provided in table 3.2

.

, we identi�ed initial conditions for
the development of manifolds as subsets of theU0 domains — yielding a total of 618 and
676 points for the steady and unsteady variants of the ABC �ow, respectively. Then, we
computed manifolds and extracted LCSs using the parameters in tables 3.2

.

and 4.2

.

and the
method outlined in sections 3.5

.

and 3.7

.

–3.11

.

. This resulted in a total of 22 LCS surfaces for
the steady �ow, and 31 surfaces for the unsteady �ow.
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Figure 4.9: Four views of theU0 domain obtained for transport in the unsteady ABC
�ow, for the time interval I = [0, 5], identi�ed as the grid points which satisfy the
LCS criteria (2.28a

.

), (2.28b

.

) and (2.28d

.

) (details on the implementation are available in
section 3.5.1

.

). In total, the domain consists of 361 461 di�erent points (cf. table 3.2

.

).

The LCSs present in the steady �ow turn out to form two distinct, fairly smooth and coherent
structures, which are shown in �gure 4.10

.

. Completely analogous tests to that which is
outlined in section 4.2.2

.

verify that the computed LCSs do, in fact, act as repulsive transport
barriers. The structures lie close together, yet appear not to be connected — accordingly,
the two structures are highlighted by di�erent colors for the purpose of facilitating visual
comparisons. Note in particular the correspondence between the U0 domain, shown in
�gure 4.8

.

, and the computed LCSs, shown in �gure 4.10

.

— where the perspective of each
sub�gure is the same as that of the corresponding sub�gure in �gure 4.8

.

. Two prominent
similarities are the tunnel-like structure apparent in the middle right of �gures 4.8b

.

and 4.10b

.

,
and the indent which manifests near the bottom right corner of �gures 4.8c

.

and 4.10c

.

.

The computed LCSs in the unsteady �ow constitute three distinct, smooth and coherent
structures, which are shown in �gure 4.11

.

. Although the structures lie adjacent to each
other, they do not seem to be connected. Thus, the di�erent structures are indicated using
disparate colors, yet again to facilitate visual comparisons. Just like for the LCSs in the steady
�ow, the computed LCSs strongly resemble subsets of theU0, shown in �gure 4.9

.

— where
the viewing angle of eachU0 domain sub�gure is the same as that of the corresponding
sub�gure in �gure 4.11

.

. The two largest structures apparent in �gure 4.11

.

harmonize with the
two dominant structures found for the steady �ow (see �gure 4.10

.

). The smallest structure
appears reasonable when considered together with theU0 domain — shown in �gure 4.9

.

—
in particular, it further enhances the tubular structures manifesting in the middle right of
�gures 4.9b

.

and 4.11b

.

, and the middle top of �gures 4.9c

.

and 4.11c

.

.
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Figure 4.10: Four views of the repelling LCSs obtained for transport in the steady
ABC �ow, for the time interval I = [0, 5] (see section 3.1.1

.

). A total of 22 surfaces
constitute two distinct, fairly smooth and coherent structures, which are shown in
di�erent colors. We provide four di�erent viewing angles (the same as the ones used
in �gure 4.8

.

, which shows the computed U0 domain), chosen in order convey the
three-dimensional structures in as great detail as possible.
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Figure 4.11: Four views of the repelling LCSs obtained for transport in the unsteady
ABC �ow, for the time interval I = [0, 5] (see section 3.1.2

.

). A total of 31 surfaces
constitute three distinct, reasonably smooth and coherent structures, which are shown
in di�erent colors. We provide four di�erent viewing angles (the same as the ones
used in �gure 4.9

.

, which shows the computedU0 domain), chosen in order convey the
three-dimensional structures in as great detail as possible.
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Chapter 4 Results

Table 4.2: Parameters used to compute manifolds, and subsequently repelling LCSs,
in both variants of the ABC �ow (see section 3.1

.

). Note that the interset distances ∆i
were dynamically altered, as described in section 3.8.3

.

. Accordingly, only the �rst
interset distance, ∆1, was set explicitly.

Parameter Value Description

δinit 10−3 Separation of innermost geodesic level set
from the manifold epicentre, cf. �gure 3.4

.

∆min, ∆max 0.04, 0.16 Boundaries for interpoint separations
(details found in section 3.8.1

.

)

∆1 2∆min
Interset distance used to compute the second
geodesic level set (see sections 3.7

.

and 3.8.3

.

)

γ‖ 10−4 Tolerance for detecting regions in which ξ3
is (anti-)parallel to ti,j (see equation (3.25

.

))

γ∆ 5 · 10−3 Tolerance for the separation of a mesh point
from its ancestor (per equation (3.26

.

))

γarc 5 Sets an upper limit to trajectory lengths as
γarc∆i (brie�y mentioned in section 3.7.1

.

)

γ	 7 · 10−1 Sets an upper limit to the extent of loop-like
segments of any level set (see section 3.8.2

.

)
α↑
α↓

(∆α)↑, (∆α)↓

8.7 · 10−2 rad (5°)
4.4 · 10−1 rad (25°)
2∆minα↑, 2∆minα↓

Used in a curvature-based approach to adjust
interset distances (outlined in section 3.8.3

.

)

γ∩ 5 Used for terminating the expansion of
self-intersecting manifolds (cf. section 3.10.1

.

)

γI 1.75 Relaxation parameter for extracting LCSs from
the computed manifolds (see section 3.11

.

)

Wmin 6.0 Filters away the smallest LCSs measured in
(pseudo-)surface area (see section 3.11

.

)

4.4 Computed LCSs in the Førde fjord

Just like for the ABC �ow, we used theU0 domain — i.e., the grid points satisfying the LCS
existence criteria (2.28a

.

), (2.28b

.

) and (2.28d

.

) (the implementations of which are described
in section 3.5.1

.

) — obtained for the transport system governed by the oceanic currents
in the Førde fjord as a �rst approximation to where repelling LCSs can reasonably be
expected to be found. Four di�erent views of theU0 domain are shown as scatter plots with
semi-transparent points in �gure 4.12

.

. Compared to the corresponding domains for the
two variants of the ABC �ow (as shown in �gures 4.8

.

and 4.9

.

), the �ow in the Førde fjord
appears more chaotic, with fewer discernible macroscopic trends. Figures 4.12b

.

and 4.12c

.

do, however, indicate that the points in the oceanicU0 domain are loosely organized in
horizontal layers.

Using the �ltering parameters provided in table 3.2

.

, we identi�ed initial conditions for the
development of manifolds as a subset of theU0 domain; yielding a total of 1 631 points.
Then we computed manifolds and extracted LCSs using the parameters in tables 3.2

.

and 4.3

.
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4.4 Computed LCSs in the Førde fjord
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Figure 4.12: Four views of theU0 domain obtained for transport in the Førde fjord,
over a time interval of 12 hours (see section 3.2

.

), identi�ed as the grid points which
satisfy the LCS criteria (2.28a

.

), (2.28b

.

) and (2.28d

.

) (details on the implementation
are available in section 3.5.1

.

). Note that the axes are given in metres, where z = 0
corresponds to the surface level, increasing downwards. In total, the domain consists
of 1 631 points (cf. table 3.2

.

).

and the method outlined in sections 3.5

.

and 3.7

.

–3.11

.

. This resulted in a total of 110 LCS
surfaces. As �gure 4.13

.

indicates, these largely appear to be organized in a sequence of
horizontal layers. Furthermore, all of the LCSs are su�ciently large to warrant treating them
as individual entities. Thus, in contrast to the LCSs obtained in (either version of) the ABC
�ow (see section 4.3

.

), we elected to assign to each LCS a numerical value

Qi =
log

(
λ3

)
i

max
i

{
log

(
λ3

)
i

} , (4.6)

where
(
λ3

)
i , the repulsion average of LCS surface i , is de�ned in equation (3.32

.

). We then
used the (unit normalized) set of numbers

{Qi} to select a color for the corresponding LCSs,
drawn from a perceptually uniform colormap.

When comparing the computed LCSs (�gure 4.13

.

) to the correspondingU0 domain (�g-
ure 4.12

.

), the organization of the LCSs in horizontal layers seems reasonable. This is
particularly apparent from inspecting �gures 4.12b

.

and 4.13b

.

, and �gures 4.12c

.

and 4.13c

.

.
This indicates that the oceanic �ow undergoes the most stretching in the vertical direction.
Moreover, the repulsion appears to be largely uniform within any given depth layer.

Similarly to our treatment of an LCS surface in the steady ABC �ow in section 4.2.2

.

, we
placed two blobs of particles on either side of the most strongly repulsive LCS present in the
fjord subdomain — perhaps most easily spotted in the middle of �gures 4.13b

.

and 4.13c

.

—
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Chapter 4 Results

Table 4.3: Parameters used to compute manifolds, and subsequently repelling LCSs, in
the Førde fjord (see section 3.2

.

). Note that the interset distances ∆i were dynamically
altered, as described in section 3.8.3

.

. Accordingly, only the �rst interset distance, ∆1,
was set explicitly. Moreover, as the domain of interest is scaled in units of metre, so
too are δinit, ∆min, ∆max, and ∆1; whereasWmin is given in square metre.

Parameter Value Description

δinit 10−1 Separation of innermost geodesic level set
from the manifold epicentre, cf. �gure 3.4

.

∆min, ∆max 2, 8 Boundaries for interpoint separations
(details found in section 3.8.1

.

)

∆1 2∆min
Interset distance used to compute the second
geodesic level set (see sections 3.7

.

and 3.8.3

.

)

γ‖ 10−4 Tolerance for detecting regions in which ξ3
is (anti-)parallel to ti,j (see equation (3.25

.

))

γ∆ 5 · 10−3 Tolerance for the separation of a mesh point
from its ancestor (per equation (3.26

.

))

γarc 5 Sets an upper limit to trajectory lengths as
γarc∆i (brie�y mentioned in section 3.7.1

.

)

γ	 7 · 10−1 Sets an upper limit to the extent of loop-like
segments of any level set (see section 3.8.2

.

)
α↑
α↓

(∆α)↑, (∆α)↓

8.7 · 10−2 rad (5°)
4.4 · 10−1 rad (25°)
2∆minα↑, 2∆minα↓

Used in a curvature-based approach to adjust
interset distances (outlined in section 3.8.3

.

)

γ∩ 5 Used for terminating the expansion of
self-intersecting manifolds (cf. section 3.10.1

.

)

γI 1.2 Relaxation parameter for extracting LCSs from
the computed manifolds (see section 3.11

.

)

Wmin 20 000 Filters away the smallest LCSs measured in
(pseudo-)surface area (see section 3.11

.

)

and allowed the oceanic currents to transport the particles as well as the computed LCS for
the entirety of our 12 hour time interval of interest. The initial and �nal states are shown in
�gure 4.14

.

. Like for the ABC �ow case, the triangulated structure of the LCS breaks down,
yet the two blobs of particles diverge from each other in the transition from �gure 4.14a

.

to �gure 4.14b

.

. The particles belonging to either blob remain close together, and none of
them appear to move across the LCS mesh point. This suggests that, like the ones computed
for the ABC �ow, the LCSs obtained for �ow in the Førde fjord act as repelling material
surfaces, and thereby also as transport barriers.
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4.4 Computed LCSs in the Førde fjord
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(d) Approximately isometric view.

Figure 4.13: Four views of the repelling LCSs obtained for transport in the Førde
fjord, over a time interval of 12 hours (see section 3.2

.

). A total of 110 distinct surfaces
are shown, which are colored according to their relative repulsion averages (per
equation (4.6

.

)) using the perceptually uniform colormap shown at the top. We provide
four di�erent viewing angles (the same as the ones used in �gure 4.12

.

, which shows
the computedU0 domain), chosen in order to convey the three-dimensional structures
in as great detail as possible.
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(b) Final state, June 1 2013, 12:00.

Figure 4.14:Advection of tracers in order to verify the repelling nature of the computed
LCSs in the Førde fjord. At midnight June 1, 2013, two blobs of initial conditions are
placed at opposite sides of the most strongly repulsive LCS identi�ed for �ow in the
Førde fjord (see �gure 4.13

.

) as shown in (a). The two blobs, and the mesh points in
the parametrization of the LCS, are then advected in the model data for the oceanic
currents brie�y described in section 3.2.1

.

, using the Dormand-Prince 8(7) ODE solver,
for the 12 hour time interval of interest, where the �nal state is shown in (b). Note that,
although the LCS triangulation breaks down under the advection, the two blobs of
particles remain on fairly compact, and remain on the opposite sides of the LCS, never
crossing the LCS surface. This indicates that the local centre of strongest repulsion
remains located inbetween the two blobs of particles throughout — which is the exact
behaviour we expect for a repelling LCS.
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5 Discussion

The main focus of this chapter is the analysis and critique of our method for computing
LCSs in three-dimensional �ows (presented in chapter 3

.

). Sections 5.1

.

–5.3

.

contain thorough
examinations of our various choices and assumptions made in order to compute invariant
manifolds everywhere orthogonal to the direction of strongest repulsion. In sections 5.4

.

and 5.5

.

, we review our method of extracting repelling LCSs from the aforementioned
manifolds. Lastly, section 5.6

.

assesses the overall relevance of our method for computing
three-dimensional transport barriers. Throughout this chapter, we present potential topics
of further research, mainly in terms of further method re�nement.

5.1 Comments on the method of geodesic level sets

As mentioned in chapter 3

.

, our take on the method of geodesic level sets (see section 3.7

.

)
hinges on characteristic properties of hyperbolic LCSs (cf. de�nition 8

.

). For repelling LCSs
(see de�nition 6

.

), which we concentrated on for this project, the existence criterion given
in equation (2.28c

.

) states that these are everywhere orthogonal to the local direction of
strongest repulsion. The extra degree of freedom compared to manifolds de�ned as being
everywhere tangent to some direction �eld (such as the strange attractor in the Lorenz
system, as was considered by

.

Krauskopf, Osinga, et al. (2005)

..

) facilitated a more e�ective
(in terms of computational runtime) and conceptually simpler method of generating such
manifolds, than the more direct adaption of

.

Krauskopf, Osinga, et al.’s (2005)

..

method (which
is outlined in section 3.6

.

).

Although useful for managing the mesh accuracy (see section 3.8

.

), and central to our
triangulation algorithm (outlined in detail in section 3.9

.

), exclusively arranging mesh points in
closed topological circles has irrefutable weaknesses. In systems for which periodic boundary
conditions are not applicable, the addition of further level sets is promptly terminated when
one or more of the trajectories used to compute new mesh points (see section 3.7

.

) exits
the computational domain. This impedes the ability to resolve LCS behaviour near the
domain boundaries. Although this issue could be managed by computing strain eigenvalues
and -vectors in a domain containing the domain of interest and extending beyond it in all
directions — which is how we were able to resolve the boundary behaviour for the LCSs in
the Førde fjord (presented in section 4.4

.

) — this workaround is computationally demanding.
Depending on to what extent the underlying �ow system is known (or modelled), and the
location of the domain of interest, it might not even be possible.

On a related note, demanding that a new geodesic level set is computed using a mesh point
descending from each of the mesh points in the preceding level set renders computing the
underlying manifold in its entirety from a single focal point x0 (see section 3.5

.

) quite di�cult.
If a single point strand (that is, the set of mesh points which can be traced back to a single,
common ancestor) is terminated — either due to reaching the domain edges, or failure to
compute a new mesh point (see section 3.7.2

.

) — so too is the addition of further level sets.
Thus, unless the manifold as a whole expands as a perfectly planar, circular surface, as
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Chapter 5 Discussion

seen from the focal point x0, encapsulating it in its entirety by means of geodesic level sets
becomes impossible — even when ignoring the possibility of numerical error.

As mentioned in section 3.7

.

, we let each computed mesh point inherit its unit tangent t
from its direct ancestor, rather than computing new unit tangents using the interpolation
curve Ci . This was a conscious choice. In our experience, the computed level sets quickly
started to develop bulges, leading to notable local curvature along the interpolation curves.
This rendered selecting how far to either side of a given mesh point to move, in order
to approximate the local tangent vector by a �nite coordinate di�erence, hard to do in a
consistent manner. Simply using the coordinates of the mesh point’s nearest neighbors (as
originaly suggested by

.

Krauskopf, Osinga, et al. (2005)

..

) for this purpose was also found to
be inconsistent. Failure to compute tangent vectors consistently lead neighboring point
strands to form intersections, yielding disorderly meshes which in turn frequently lead the
points constituting a level set to not form a topological circle. These issues are not present in
our aforementioned inheritance-based approach. However, if a computed manifold were to
twist itself in such a way that a unit tangent t laid within it, this could result in failure to
compute one or more new mesh points, which would then lead to terminating the process
of adding new level sets (alternatively, terminating the process of expanding one or more
point strands, cf. the paragraphs to follow) prematurely. We addressed this issue using the
tolerance parameter γ‖ ; see section 3.7

.

and, in particular, equation (3.25

.

) for details.

Our variation of the method of geodesic level sets contains many degrees of freedom (see
e.g. tables 3.2

.

and 4.2

.

). Some of these parameters, mainly those governing the minimum
and maximum allowed separations between neighboring mesh points (see section 3.8.1

.

),
could reasonably be chosen based on considerations pertaining to the spatial extent of the
computational domain; alternatively, to what extent the small-scale details of the LCSs are to
be resolved. How to determine several other undeniably key parameter values — such as the
tolerances for the detection of intersecting manifolds (see section 3.10

.

), and the removal of
mesh points which form undesired bulges (which is outlined in section 3.8.2

.

) — remains less
obvious.

That being said, the parameters related to the curvature-guided approach to dynamically
adjust the interset separations were, in our experience, of less importance; as brie�y mentioned
in section 3.8.3

.

, the interset step length was rarely increased. More often than not, the
interset step length was quickly reduced to its lower limit, and remained at that level for
the generation of all subsequent level sets. This is not entirely unexpected, as su�ciently
large curvature within a single region of any given level set su�ced to lower the step length
(compare equations (3.28

.

) and (3.29

.

)). Moreover, as the geodesic level sets continuously
expand, encountering such a region becomes increasingly likely. As the accuracy of the
computed mesh points is independent of the density of mesh points, the main use of the
interset step size is to manage the interpolation error inherent to our linear triangulation
scheme (see section 3.9

.

and

.

Krauskopf and Osinga (2003)

..

). Thus, it seems reasonable to
forego the dynamic interset step length in favor of a �xed one. As tentatively suggested
in the above, doing so reduces the overall complexity of our method for generating mesh
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5.1 Comments on the method of geodesic level sets

points, in addition to reducing the number of free parameters.

Another way of organizing the mesh points, which could circumvent some of the afore-
mentioned limitations of the present approach, would be as a group of point strands, each
associated with a particular unit tangent t — determined using C1, the interpolation curve of
the innermost level set, in similar fashion to that which is described in section 3.5.2

.

. Treating
the expansion along each point strand independently would then permit further expansion
of a manifold even when one or more point strands would reach the domain boundaries; this
would also solve the possible issue of computed trajectories along any given strand failing to
yield acceptable mesh points (see section 3.7.2

.

) — in which case only the strands in question
need to be terminated, rather than prohibiting the addition of further geodesic level sets
entirely.

Aside from taking a step further away from the method of geodesic level set as originally
proposed by

.

Krauskopf, Osinga, et al. (2005)

..

, organizing mesh points as a group of point
strands would necessitate developing the mesh accuracy management method outlined in
section 3.8

.

further. In particular, the present approach utilizes the interpolation curve Ci in
order to insert mesh points inbetween nearest neighbor mesh points in level setMi+1 which
are deemed to lie too far away from each other (see section 3.8.1

.

). A reasonable approach for
the case of point strands could be to, having identi�ed two strands inbetween which a new
mesh point is needed, retrieve their respective ancestor points in the innermost level set, and
then compute (the trajectory of a) new point strand starting out at a point on C1, midway
inbetween said ancestors, keeping only the �rst point along the strand which is required to
maintain the point density.

Depending on the extent of the initial level set — that is, the circumference of its interpolation
curve C1 — and the required mesh point density, however, this approach could be prone to
errors arising from numerical round-o� errors in computing the start points of new point
strands. In order to maintain an overall mesh structure suitable for triangulation purposes,
the steps along each point strand should be equal; that is, mesh points i and i + 1 along
all point strands should be separated by the same distance ∆i , whereas all interpoint step
sizes {∆i} need not be equal. This way, a quasi-circular structure is maintained as the point
strands expand — that is, subject to one or more of them reaching the domain boundaries or
being terminated due to ending up in (approximately) closed orbits (see section 3.7.1

.

).

Lastly, several other methods of computing invariant manifolds of vector �elds exist; of
whom some might be well-suited in the context of LCSs. For instance, the method of geodesic
level sets is one of �ve methods presented by

.

Krauskopf, Osinga, et al. (2005)

..

; none of the
others were pursued as part of this work. Exploring the strengths and weaknesses of other
approaches to computing three-dimensional hyperbolic LCSs remains beyond the scope of
this project.
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5.2 On our approach to computing the
Cauchy-Green strain characteristics

We used an SVD decomposition of the �ow map Jacobian to �nd the Cauchy-Green strain
eigenvalues and -vectors, rather than computing these directly from the Cauchy-Green strain
tensor �eld — as described in sections 3.3

.

and 3.4

.

. This approach, suggested by

.

Miron et al.
(2012)

..

and endorsed by

.

Oettinger and Haller (2016)

..

, boasts superior accuracy compared to
the more conventional approach of approximating the directional derivatives of the �ow map
(i.e., the components of the �ow map Jacobian) by applying a �nite di�erence method and
then explicitly computing the Cauchy-Green strain tensor �eld (which

.

Farazmand and Haller
(2012a)

..

did in order to �nd LCSs in two-dimensional �ow) — at the cost of added mathematical
complexity in having to solve a set of twelve coupled transport equations, rather than three
independent ones. In particular, simple tests revealed that the property pertaining to the
Cauchy-Green strain eigenvalues for incompressible �ows (such as either variant of the ABC
�ow, cf. section 3.1

.

) given in equation (2.26

.

) was conserved when computing the �nal state
�ow map Jacobian directly, but lost when it was approximated using �nite di�erences.

Note that computing the time evolution of the �ow map Jacobian directly, relies on bounded
�rst spatial derivatives of the underlying velocity �eld — as is evident from inspecting
equation (2.22

.

). This should, however, not be an issue when considering smooth analytical
test cases, or when using a high (quadratic or higher, cf. section 2.1.2

.

) order interpolation
method for gridded data. Alternatively, the derivatives can be approximated by e.g. a
�nite di�erence method. Should any of these approaches prove impractical, the method of

.

Farazmand and Haller (2012a)

..

could be su�cient.

The resolution of the grid of tracers, on which the Cauchy-Green strain eigenvalues and
-vectors are computed (see sections 3.3

.

and 3.4

.

), plays a critically important role in the
successful detection of LCSs. For instance, di�culties arose for the test case presented in
section 4.2.1

.

when using excessively sparse grids of tracers, such that no initial conditions
for the generation of manifolds — that is, points satisfying the LCS existence criteria (2.28a

.

),
(2.28b

.

) and (2.28d

.

) — were su�ciently close to the strongly repulsive unit sphere (see
�gure 4.6

.

). To our knowledge, there is no way to determine a priori what density of tracers
will su�ce for any given �ow system. Thus, even though educated guesses based on the
scale at which one is interested in the microscopic behaviour in the system might be prudent,
we recommend to use as �ne a grid of tracers as possible, within the constraints set by the
available computational resources.

As mentioned in section 3.2

.

, we interpolated the velocity �eld modelling �ow in the Førde
fjord using quadrivariate, cubic B-splines — that is, cubic spline interpolation in time and all
spatial directions. This involved us having to keep the model data pertaining to the region of
interest (that is, the model data for a domain extending beyond said region in all directions,
in order to resolve the behaviour near the boundaries, cf. section 3.10

.

) for the entirety of the
considered time interval in working memory. Because of our data set’s disparate resolution
in the horizontal and vertical directions (as mentioned in section 3.2

.

), in addition to the
small spatial region of interest (in comparison to the entire fjord), the use of quadrivariate
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interpolation was unproblematic regarding the consumption of working memory. For other
applications, however, this is not necessarily the case, depending on the problem’s scale
(temporal and spatial) and the resolution of the model data.

Should memory consumption be an issue for a discrete data set, it is possible to forego
temporal interpolation entirely (provided that the sampling rate is adequate), and instead opt
for trivariate interpolation in space, generating an interpolation object for each time instance.
This renders the use of ODE solvers with adaptive step size — like the Dormand-Prince
8(7) method we wound up choosing (more on that to follow in section 5.3

.

) — moot, as the
solution time steps would then have to coincide with the time levels of the data set. Using
a lower order ODE solver, such as the explicit trapezoidal rule (which does not require
intermediary samples when moving from one time level to the next), does, however, yield
inferior performance, as high-order embedded Runge-Kutta solvers are generally much more
e�cient (

.

Løken 2017

..

).

5.3 Regarding our choice of numerical ODE solver

As previously mentioned, the Dormand-Prince 8(7) method was used for both the tracer
advection used to compute the Cauchy-Green strain eigenvalues and -vectors, and computing
new mesh points in the expansion of computed manifolds (as described in sections 3.3

.

and 3.4

.

, and section 3.7

.

, respectively). In contrast to traditional singlestep ODE solvers —
such as the classical 4th-order Runge-Kutta method (see section 2.1

.

) — which would typically
require di�erent step sizes for the two cases (as the scales at which the dynamics occurs in
the two systems can reasonably be presumed to be disparate), using an embedded method
with a single set of numerical tolerance parameters for the integration step adjustment (see
section 3.3.2

.

) means that the propagation of numerical round-o� errors can reasonably be
expected to have occurred in a consistent manner throughout.

Furthermore, the aforementioned tolerance levels can be selected independently of the scales
of the system; the results obtained by

.

Løken (2017)

..

suggest that using the Dormand-Prince
8(7) method with tolerance levels ranging from 10−10 to 10−5 are su�cient in order for
numerical round-o� error to be the main concern, compared to pure integration error,
when computing hyperbolic LCSs (albeit in two-dimensional systems). In addition, using
an embedded ODE solver meant that explicitly de�ning integration step sizes for the two
aforementioned transport processes (for the computation of strain eigenvalues and -vectors,
and for obtaining new mesh points, respectively) was not required. This is signi�cant,
because the present approach already involves several free parameters (see section 5.1

.

).

.

Løken (2017)

..

showed that the Dormand-Prince 8(7) method yields very accurate numerical
approximations at a very low computational cost — at least, that is, for smooth �ow systems
(see section 2.2

.

). As is apparent from de�nition 2

.

, however, the accuracy of numerical
solutions obtained by using Runge-Kutta solvers depend not only on the order of the method
itself, but also the smoothness of the underlying function. Although generally more accurate,
higher-order ODE solvers yield increasingly diminishing returns compared to their lower-
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order siblings when the order of the ODE solver exceeds the function’s number of smooth
derivatives.

Thus, for gridded model data — both regarding the oceanic currents of the Førde fjord
(section 3.2.1

.

), and the discretely sampled Cauchy-Green strain eigenvalue and -vector
�elds (sections 3.3

.

and 3.4

.

) — the interpolation routine sets an upper bound in terms of
the accuracy with which LCSs can be computed. For more complex systems than the ones
investigated here, the interaction between the integration and interpolation schemes could
be critical; both in terms of numerical precision and computational resource consumption.
Independently of the scales at which well-resolved LCSs are sought in a given transport
system, the aforementioned e�ects warrant further investigation — which is beyond the
scope of this project.

5.4 Reflections upon the process of identifying locally
most repelling material surfaces

To our knowledge, standardized algorithms for the detection of points which satisfy LCS
existence criterion (2.28d

.

) — which is used to identify points that might be local repulsion
maxima — have not yet been found. In particular, numerical round-o� error makes detecting
the zeros of inner products, like the one in condition (2.28d

.

), challenging. The conditions
given in equations (2.28a

.

)–(2.28c

.

) are quite unambiguous, in comparison. Moreover, while
the concept of local maxima for the normal repulsion is well-de�ned for analytical systems,
this is not the case for numerical simulations. In contrast to the in�nitesimal neighborhoods
one may consider for analytical �ow, the discrete nature of numerics — coupled with
possible numerical round-o� error — means that the regions within which one looks for
repulsion maxima must have �nite extent. Accordingly, the scale at which one performs
local comparisons becomes signi�cant. Our approach to �nding points which satisfy LCS
existence condition (2.28d

.

) is outlined in section 3.5.1

.

, where we used a small perturbation
parameter ε to de�ne the extent of the nearby regions within which we sought local repulsion
maxima. In particular, ε was chosen to be an order of magnitude smaller than the grid
spacing, in order for the local neighborhoods to be of the same approximate scale as the
smallest level of detail which the cubic interpolation schemes (see sections 3.2

.

and 3.4

.

) can
reasonably be expected to resolve.

An alternative way of checking if a point satis�es condition (2.28d

.

) could be extending the
work of

.

Farazmand and Haller (2012a)

..

from two to three dimensions. A direct adaption
would amount to �nding all intersections between the computed surfaces and a family of
planes, then, having organized the surfaces in bundles based on their intersections with
any given plane being su�ciently close, �agging the most repulsive surface within each
bundle as a local strain maximizer. This would not, however, fully solve the challenge of
translating the concept of locality to numerics. Furthermore, there does not appear to be an
unambiguous way of selecting the aforementioned family of planes — a notion which is
supported by

.

Farazmand and Haller (2012a)

..

failing to mention any details on the set of lines
(the two-dimensional equivalent of the family of planes) they used for their applications.
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Lastly, as the intersection between any material surface and a plane generally forms a curve,
rather than a unique intersection point, the process of identifying a material surface whose
intersections with any given plane lie su�ciently close to those of any other material surface
could easily become expensive in terms of computational resources.

Another option, somewhat similar to the approach of

.

Farazmand and Haller (2012a)

..

, would
be to simply divide the computational domain into a set of smaller domains, identifying the
computed surfaces which (partially) lie within each such region and then �agging the most
strongly repelling surface within each subdomain as a local repulsion maximizer. Like the
selection of planes in the aforementioned adaption of the method of Farazmand and Haller,
however, there does not (to our knowledge) exist an objective way to select the size nor
locations of these subdomains. Furthermore, the approach of comparisons within smaller
sets of the computational domain does not take the orientation of the material surfaces into
account — a weakness which is shared with the previously mentioned adaption of Farazmand
and Haller’s method. Conceptually, using direct comparisons of material surfaces in order
to detect the surfaces which form local repulsion maxima should not involve comparing
surfaces with disparate orientations. Neither should two surfaces for which only a small
subset of one lies anywhere near the other; such material surfaces would likely in�uence the
overall �ow patterns quite di�erently. Highly optimized algorithms would likely be needed
in order to check such extra comparison criteria without excess consumption of the available
computational resources.

To our knowledge, computing LCSs in three-dimensional �ow has not been attempted
particularly frequently, rendering us without reliable reference cases.

.

Blazevski and Haller
(2014)

..

construct three-dimensional LCSs by dividing their computational domain into a set
of planes. After computing LCSs within each plane as locally most repelling material lines,
they consider these LCS curves as the projections of three-dimensional structures onto the
plane family, whereupon they apply a curve �tting algorithm to connect the LCS curves and
form three-dimensional structures. This approach is not, however, fully three-dimensional,
as it ignores transport orthogonal to the planes; moreover, Blazevski and Haller do not
provide any evidence as to whether or not their approach is robust with regards to the
orientation (or density) of the plane family.

.

Oettinger and Haller (2016)

..

seemingly do not
even attempt to identify local repulsion or attraction maxima in their considerations of
hyperbolic LCSs (see de�nitions 6

.

–8

.

). Notably, Oettinger and Haller appear to be content
with identifying invariant manifolds of the ξ2- and ξ1-direction �elds (in the case of attracting
LCSs, the ξ1-direction �eld is replaced with the ξ3-direction �eld) as regions where LCSs
may reasonably be expected to exist (see remark 1

.

).

Although outside of the scope of this project, yet another alternative approach would be
to identify all material surfaces which lie reasonably close to each other, having similar
spatial orientation and (preferably) size, by means of some numerical clustering algorithm.
Then, the most strongly repulsive surface segments within each cluster could reasonably be
considered as the local repulsion maximizer. Possibly geared towards a project pertaining to
machine learning, this sort of approach would bene�t greatly from reliable reference cases.
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Furthermore, basing the selection process solely on the computed manifolds’ repulsion
averages (as de�ned in equation (3.32

.

)), or other macroscale quantities, need not necessarily
be the best possible approach in terms of extracting the most signi�cant LCSs. In particular,
subsets of large LCSs could exhibit signi�cant repulsion, without necessarily resulting in
large repulsion averages. Similarly, relatively small yet strongly repelling LCSs need not be
particularly signi�cant for the overall �ow pattern.

Compared with the aforementioned alternatives, one could argue that our approach of
checking whether or not each point in a computed material surface satis�es existence
criterion (2.28d

.

) by considering a small neighborhood around them (whose extent is de�ned
by the perturbation parameter ε , cf. section 3.5.1

.

) is more faithful to the underlying theory.
Note in particular that our approach is based on the local repulsion of small subsets (namely,
the points constituting the parametrization) of the computed manifolds, in contrast to
the global comparison of repulsion averages (or similar quantities) inherent to the other
methods. However, put simply, there is certainly room for further research with regards to
the numerical implementation of LCS existence criterion (2.28d

.

).

5.5 Thoughts on the extraction of LCSs as subsets of
the computed manifolds

While the perturbation parameter ε — used in order to identify local repulsion maxima
(discussed in section 5.4

.

) — may reasonably be chosen based on the density of advected
tracers (see section 3.3

.

), how to determine suitable values for the relaxation parameter γI
and the �ltering weightWmin used to extract repelling LCSs from our computed manifolds
(see section 3.11

.

) is less self-evident. Speci�cally, these might be selected based on user-
determined, subjective considerations, such as to modify the number of ensuing LCSs in
addition to their sizes. This might be useful in some settings, but is hard to reconcile with
the otherwise objective nature of our LCS generation routines.

Two main regimes exist regarding the choices of γI andWmin. Our preference — in the
following referred to as the clustering approach — involves selecting (relatively) small
values for both γI andWmin, and then treating clusters of (partly) overlapping LCS surface
elements as single entities. This necessitates a way of sorting the surface elements into
bundles of interconnected surfaces (manually or otherwise), yet yields LCSs which are not
particularly dependent on the parameter values. The other way — in the following referred
to as the carve-out approach — involves the use of large values for both γI andWmin, and
considering each resulting surface element as a standalone LCS. While this approach would
generally yield smoother and more aesthetically pleasing LCS surfaces, it may easily involve
signi�cant bias towards the largest material surfaces — without there being an obvious way
of determining whether or not these form the most signi�cant barriers to transport a priori
— and depends sensitively on the parameter choices.

Whether the clustering approach is the better choice in the general case, or if an intermediate
approach might be more sensible, remains to be seen. Moreover, for some applications, the
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assumption that only su�ciently large repelling LCSs in�uence the overall �ow patterns
signi�cantly (originally suggested by

.

Farazmand and Haller (2012a)

..

) might not hold; in
particular where small, yet very strongly repelling material surfaces are concerned. In such
cases, the use ofWmin to �lter away the supposed least coherent (i.e., those we believe to
be most a�ected by numerical noise, which might just not be LCSs at all) LCS surfaces is
problematic. Investigations pertaining to the general case, however, remain beyond the
scope of this project.

5.6 Remarks on the overall computation of
three-dimensional repelling LCSs

As brie�y alluded to in section 5.5

.

, all of the LCS surfaces presented in chapter 4

.

were
generated using the clustering approach, favored over the carve-out approach due to being
less reliant on large underlying manifolds (in addition to the conceptual advantages outlined
in section 5.5

.

). This proved important for LCS analysis in both variants of the ABC �ow,
for which the computed manifolds often terminated due to the detection of unphysical
self-intersections (see section 3.10

.

). Possibly caused by small numerical errors perturbing a
small number of mesh points onto an adjacent manifold — accompanied by the subsequent
interpolation curves Ci being distorted, yielding compound errors when inserting mesh
points from �cticious ancestor points (see section 3.8

.

) — this issue might be mitigated by
organizing mesh points as bundles of point strands rather than geodesic circles (as outlined
in section 5.1

.

).

Following manual bundling of (partly) overlapping surface elements, the LCSs in either
variant of the ABC �ow (see �gures 4.10

.

and 4.11

.

), were obtained as structures consisting of
between 3 and 23 unique surface elements. Similarly, the LCSs obtained in the Førde fjord
(see �gure 4.13

.

), were largely grouped in a sequence of horizontal layers. In this case, we
elected to color each surface element constituting the LCSs in the Førde fjord according to
their relative repulsion average, rather than assigning a single color to each layer, in order to
investigate whether or not the repulsion within a given horizontal layer is uniform. From
inspecting �gure 4.13

.

, this seems to be a reasonable conclusion.

Demonstrated in section 4.2

.

, our method for computing repelling LCSs appears to work as
intended. This notion is further supported by the LCSs obtained for the ABC �ows and
�ow in the Førde fjord conforming well with the computedU0 domains (see sections 4.3

.

and 4.4

.

). Interestingly, the conformity between theU0 domains and LCSs obtained for the
steady and unsteady ABC �ows (see section 4.3

.

) indicates that, although substantial, the time
perturbation in the case of the unsteady �ow (illustrated in �gure 3.1

.

) did not signi�cantly
alter its underlying stretch and strain properties. This result is indicative of the robustness
believed to be characteristic to LCSs. Moreover, considering the model velocity data to
provide a reasonable approximation of the actual oceanic circulation, this also suggests that
our computed LCSs provide a good estimate of (some of) the underlying transport barriers
in the Førde fjord — a conjecture which warrants further investigation.
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Seeing as computing LCSs in three dimensions is a considerably more convoluted process
than for two-dimensional �ows (compare our method, outlined in chapter 3

.

, to that of e.g.

.

Løken (2017)

..

), investigating whether or not the conceptually simpler quasi-three-dimensional
approach of e.g.

.

Blazevski and Haller (2014)

..

(and, to a lesser extent,

.

Oettinger and Haller
(2016)

..

) — elaborated upon in greater detail in section 5.4

.

— yields similar LCSs could certainly
be worthwile. This could reduce the need for computational resources, which in turn would
make the detection of LCSs in three-dimensional �ow systems more readily available. That
being said, the quasi-three-dimensional approaches will likely never be fully capable of
encapsulating the peculiarities of three-dimensional surfaces, regardless of which curve
�tting algorithm is used in order to extract them.

Overall, strong situational arguments in terms of accuracy requirements or a desire for
insight in the fully three-dimensional structure of transport barriers in a given system are
needed in order to justify computing LCSs in three dimensions rather than two. Generally,
we would advise computing LCSs in three dimensions only for systems in which all three
dimensions are of similar relevance; �ow in the Førde fjord (a subset of which was considered
here) constitutes an example of such a system, as its depth and width are typically similar
in magnitude, and signi�cant vertical transport can be observed. Conversely, transport
along oceanic surface currents — within which contaminations such as garbage patches or
oil spill remnants are frequently transferred — can reasonably be approximated as being
two-dimensional.

Pilot studies pertaining to the use of LCSs as predictors for transport by oceanic currents
have recently been conducted. For instance,

.

Filippi et al. (2018)

..

performed �eld experiments
on repelling and attracting transport barriers along the Scott Reef in Western Australia, while

.

Peacock et al. (2018)

..

did similar exercises in the vicinity of Martha’s Vineyard. Interestingly,
Peacock et al. investigated the fully three-dimensional transport characteristics of o�shore
currents, �nding complementary results to that suggested by Lagrangian analysis. This
suggests that designing �eld experiments in order to verify the repelling LCSs computed
by the method of chapter 3

.

is not beyond the realms of possibility — then again, doing so
remains beyond the scope of this project.
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Our method for computing repelling LCSs in three-dimensional �ow systems seems to
yield reasonable results. Analytically constructed test cases indicate that our method of
generating three-dimensional surfaces, in addition to extracting repelling LCSs as subsets
of computed manifolds which satisfy all the necessary and su�cient existence criteria,
works as intended. Moreover, the robustness of the LCSs obtained in the two variations of
the Arnold-Beltrami-Childress �ow considered here, suggests that the computed LCSs are
not particularly sensitive to imperfect model data — which is a characteristic property of
Lagrangian transport barriers. Accordingly, our computed LCSs for �ow in the Førde fjord
likely form reasonable approximations of the actual LCSs contained within.

There is certainly room for further research with regards to the identi�cation of locally most
repelling material surfaces. To our knowledge, a general, robust numerical routine for this
purpose is yet to be described in the literature. For instance, in a recent study conducted by

.

Oettinger and Haller (2016)

..

, who set out to compute quasi-three-dimensional hyperbolic
LCSs, the authors seemingly did not attempt to implement the aforementioned criteria
numerically, appearing to be satis�ed with reasonable suggestions as to where such LCSs
might be located. Our approach, based on identifying the individual points constituting each
manifold which form local repulsion maxima, involved one parameter which was determined
by use of the initial grid spacing, and another which �ltered away the smallest LCS surfaces
— as these were assumed not to impact the overall circulation signi�cantly (as originally
suggested by

.

Farazmand and Haller (2012a)

..

). A suggested alternative approach, which was
not investigated as part of this project, would be to utilize a sort of numerical clustering
algorithm to extract LCSs as the most repelling material surfaces in small neighborhoods,
where each of the considered sets of surfaces ideally would be of similar size and orientation.

Seeing as our method of computing fully three-dimensional LCSs is signi�cantly more
complex and consumes more computational resources than well established routines for
generating their two-dimensional counterparts (see e.g.

.

Onu, Huhn, and Haller (2015)

..

),
strong arguments regarding the additional insight from three-dimensional analysis are
needed in order to substantiate a change in practices. Moreover, computing fully three-
dimensional LCSs might not be necessary, depending on the type of transport phenomenon
under consideration. For instance, regarding the spread of debris and contaminations such
as garbage patches or oil spill remnants across the ocean surface, the underlying transport
system can reasonably be considered two-dimensional. Meanwhile, for circulation in rivers
or fjords, where the depth is of the same scale as the width and vertical transport is often
signi�cant, fully three-dimensional analysis might be more suitable. Simply put, for systems
in which all three dimensions are of similar relevance — i.e., systems which cannot reasonably
be regarded as two-dimensional — computing fully three-dimensional LCS surfaces might be
prudent; in contrast to the quasi-three-dimensional approach of

.

Blazevski and Haller (2014)

..

,
which loses out on the minute details of the extra dimension, and does not yield coherent
surfaces favorable for further inquiries.
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Suggestions for further work

Experimental methods for the veri�cation of Lagrangian �ow analysis have gained traction
lately. Investigations are currently being conducted as to the usefulness of LCSs as predictors
for di�usive �ow patterns, for which analyzing tracer trajectories of the overall circulation
might be insu�cient (

.

Haller and Karrasch 2018

..

). Moreover, recent pilot studies indicate
that Lagrangian analysis yields valid predictions for transport by oceanic currents (

.

Filippi
et al. 2018

..

) — including the fully three-dimensional circulation patterns arising in o�-shore
currents (

.

Peacock et al. 2018

..

). Thus, empirical studies pertaining to the validity of the LCSs
computed by use of our variation of the geodesic level set method remain within the realm
of feasibility.

In addition to the aforementioned issue of implementing the LCS existence criterion which
identi�es LCSs as surfaces which are locally most repelling, further research aiming to
enhance our approach for computing repelling LCSs could result in increased transparency
and e�ciency. Speci�cally, abandoning the strict ordering of mesh points in level sets forming
topological circles could allow for an increase in the resolution of LCS behaviour near domain
boundaries, and potentially yield more accurate surface approximations overall. Then again,
other options for computing invariant manifolds of three-dimensional vector �elds exist.
Aside from the method of geodesic level sets,

.

Krauskopf, Osinga, et al. (2005)

..

present four
others; investigating each of them in the context of computing hyperbolic LCSs could provide
valuable insights. Moreover, a method less demanding in terms of resource consumption than
the present approach would render the computation of three-dimensional LCSs a feasible task
without the need for supercomputers. Courtesy of facilitating three-dimensional Lagrangian
analysis for a wider audience, this could, in turn, accelerate the further development of LCS
computing tools as a whole.

Lastly, to our knowledge, little research has been conducted regarding the choice of interpo-
lation and integration methods in order to simulate transport phenomena in real-world
systems. High-order adaptive step size integration methods are generally used in conjunc-
tion with interpolated velocity �elds, seemingly with little awareness as to whether or
not the use of higher-order methods is warranted. For instance,

.

van Sebille et al. (2018)

..

provide a rigorous discussion of the currently available tools for computer simulated tracer
advection, yet do not treat integration methods in detail. The signi�cance of the choice
of interpolation scheme is generally recognized, though left largely unexplored. Whereas

.

Lekien and Marsden (2005)

..

developed a (locally) tricubic interpolation method intended
for use in simulating three-dimensional �ow (and computing three-dimensional LCSs) —
motivated by the observation that linear interpolation is largely insu�cient in terms of
yielding smooth velocity �elds from model data — the authors provide no arguments for
preferring cubic methods over even higher order alternatives. A third example is the article
by

.

Gough et al. (2017)

..

, in which the authors report having used a high-order adaptive step
size Runge-Kutta solver together with a cubic interpolation routine — much like what was
done for this project — in order to investigate oceanic transport patterns in the northwestern
Gulf of Mexico; yet fail to motivate their choices of integration and interpolation methods.
Based on the above, investigations with regards to the interaction between integration and
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interpolation schemes in the context of computing LCSs are appealing, due to their innate
relation to application.
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