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Abstract

Lagrangian coherent structures (LCSs) are dynamic surfaces that shape the flow patterns

in complex transport systems. Accurate identification of LCSs has applications in particle

transport, including dissemination of oil in water following major oil spills and airborne ash

after volcanic eruptions. While methods exist for identifying LCSs by use of their variational

theory in two-dimensional systems, limited effort has previously been given to extending these

methods to three dimensions. Where some systems are reasonably approximated as two-

dimensional, LCSs in other firmly three-dimensional systems have commonly been computed

by combining two-dimensional cross sections.

Aiming to develop a dedicated method for computing three-dimensional hyperbolic LCSs,

this study combines existing LCS theory with recognized methods for computing three-

dimensional manifolds. This approach is outlined with respect to its theoretical founda-

tion, as well as resource management and accuracy concerns. Moreover, reference test cases

are used to confirm method accuracy in terms of reproducing simple manifolds and LCSs.

Inquiring as to the robustness of these LCSs, we also apply the method to a well-known

three-dimensional steady velocity field, using a time-perturbed variation of the same field for

comparison. The high degree of similarity between the resulting LCSs indicate a high degree

of LCS robustness. This robustness is considered desirable, as it suggests low sensitivity to

the velocity field inaccuracies associated with commonly used gridded data models for flow

fields.

While these results seem promising, it remains to be seen whether the three-dimensional

approach is sufficiently advantageous in terms of accuracy and descriptive power to justify

the corresponding disadvantages with respect to complexity and resource requirements.
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Chapter 1

Introduction

Consider a highly complex transport system such as the oceanic currents or atmospheric

winds. Although the fundamental dynamics of these systems are well-known, their immense

complexity impedes accurate description. The main obstacles to our understanding of com-

plex transport systems are usually enormous computational requirements and limited data

availability. This prompts us to approach these transport problems in a less ambitious man-

ner, simply aiming to understand the macro-level structures of the underlying system. In

many cases, such an approach could prove sufficient, as the idiosyncrasies of individual par-

ticle flow trajectories are insignificant in the context of most practical applications.

Over the course of the past two decades, the concept of Lagrangian coherent structures

(LCSs) has been proposed and developed as a tool for understanding complex flow systems

on a macro-level. LCSs may be seen as the overarching structures, or skeletons, governing

the macro-level behavior of transport systems. Specifically, LCSs are the most repelling, at-

tracting or shearing formations that shape tracer trajectory patterns in unsteady dynamical

systems. Furthermore, LCSs may be divided into three main categories, namely: hyperbolic,

parabolic, and elliptic. Where parabolic and elliptic LCSs respectively describe maximally

shearing material lines and Lagrangian vortices, hyperbolic LCSs represent maximally re-

pelling or attracting material surfaces (Haller, 2015).

Hyperbolic LCSs are of particular interest with respect to application. This is because

transport barriers — often identified as hyperbolic LCSs through which no particle may move

within a specific timespan — are considered particularly useful in terms of anticipating key

system characteristics. Likely areas of application include predicting the spread of oil spills

in oceanic currents to aid cleanup efforts. Similarly, forecasting dissemination of volcanic ash

could provide airline companies with an opportunity to divert exposed flights.

Although significant work has been done detailing methods for LCS identification for two-

dimensional transport systems, little work has been dedicated to extending these methods to

three dimensions. It has been common practice to identify LCSs in three-dimensional systems
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Chapter 1. Introduction

by computing a set of two-dimensional LCSs, merging them into coherent surfaces by use of

some interpolation scheme (Oettinger and Haller, 2016). This approach is outlined by for

example Blazevski and Haller (2014). Although allowing us to investigate system dynamics in

three dimensions, this method ignores transport orthogonal to these two-dimensional system

slices.

While an adequate theoretical foundation for three-dimensional LCS theory exists, im-

plementing three-dimensional methods for identification of hyperbolic LCSs is impeded both

by increased complexity and hardware requirements. Moreover, many important transport

systems may reasonably be approximated as two-dimensional, neglecting dynamics of a sub-

ordinate axis. The extent to which it is beneficial to replace two-dimensional methods for

identification of LCSs with their three-dimensional counterparts is therefore still unknown

and probably case dependent.

This study aims to utilize the descriptions of LCSs provided by Haller (2011) and Oet-

tinger and Haller (2016), as well as the method of geodesic levelsets first described by

Krauskopf and Osinga (2003), to compute three-dimensional hyperbolic LCSs. Hoping to

demonstrate the efficacy of this approach, several reference results are computed, as well as

a case based on modelled ocean currents.

1.1 Background

Coined in 2000 by Haller and Yuan, the term ”Lagrangian coherent structure” (LCS) refers

to the overarching structures framing chaotic flow system behavior. LCS theory has over the

past two decades been developed as an alternative to traditional transport system modelling

for systems exhibiting high sensitivity to initial conditions. Early on, identification of hyper-

bolic LCSs was focused on utilizing finite-time Lyapunov exponent (FTLE) fields to identify

surfaces forming local extrema with regard to repulsion or attraction. A thorough and rig-

orous description of the FTLE approach to identification of hyperbolic LCSs may be found

in Shadden et al. (2005). However, Haller (2011) demonstrates that this approach produces

both false positives and false negatives, making the case for a variational method. A numer-

ical implementation of this method for two-dimensional systems is outlined in Farazmand

and Haller (2012a).

Noting that LCSs in three-dimensional systems have so far commonly been computed

by combining LCSs in two-dimensional domain cross sections, Oettinger and Haller (2016)

argue for using an autonomous dynamical system to compute trajectories within the target

LCS surfaces. While improving upon existing methods in terms of truly acknowledging

the three-dimensional dynamics of these systems, Oettinger and Haller (2016) seem content

with simply computing surfaces within which LCSs may exist. Inspired by Oettinger and

2



Chapter 1. Introduction

Haller (2016), this study aims to combine the use of this autonomous dynamical system with

the ideas of Haller (2011), as well as dedicated methods of computing manifolds in three

dimensions. Hoping to develop a method for identifying three-dimensional hyperbolic LCSs,

this investigation is intended as a reasonable extrapolation of Farazmand and Haller (2012a)’s

method to three-dimensional systems.
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Chapter 2

Theoretical Background

Providing the needed background for all subsequent considerations, the current chapter out-

lines the concepts of numerical analysis and LCS theory used throughout this study. In

particular, this pertains to solution of ordinary differential equations by use of Runge-Kutta

methods, spline interpolation, finite strain theory, and the theoretical foundation of hyper-

bolic LCSs. Finally, the latter concepts will be used to pose existence criteria, as well as

some key characteristics for hyperbolic LCSs.

2.1 Numerically solving ordinary differential equations

Particle transport problems are often governed by sets of ordinary differential equations

(ODEs) of the form

ẋ = v(t,x), (2.1)

where v is the velocity field function, t is time, and x and ẋ are the particle position and

corresponding time derivative, respectively. Solving equation (2.1) amounts to finding x(t).

As only a few exceptional ODE systems may be solved analytically, most cases require nu-

merical solution by use of a numerical ODE solver. The simplest and most intuitive of these

is the Euler method

xn+1 = xn + v(tn,xn)∆t, (2.2)

where tn is the nth time step and xn is an approximation of x(tn); the exact solution of

equation (2.1) at time tn. Note that tn = t0 + n∆t, where t0 is the start time and ∆t is the

time step length. Solving an ODE such as equation (2.1) numerically to find an approximation

of x(t), is known as numerical integration of the ODE.

4



Chapter 2. Theoretical Background

2.1.1 Runge-Kutta iterative ordinary differential equation solvers

Several of the most common numerical integrators are members of the Runge-Kutta family

of explicit iterative methods. In the two-variable case (e.g. t, x), these methods are of the

form

xn+1 = xn + ∆t(b1k1 + ...+ bsks). (2.3)

Here, xn and xn+1 are the current and coming iterations of the function value, respectively.

Intermediate time step slope evaluations are denoted by ki, while bi are the corresponding

weighting coefficients. The number of stages and order of the method are denoted s and p,

respectively. Note that in the case of ODEs, the two-variable case may easily be extended

by treating multiple dependent variables separately.

The Runge-Kutta explicit iterative methods may be considered as a generalization of the

classical 4th-order Runge-Kutta method to any order. The 4th-order classical Runge-Kutta

method, for an ODE ẋ = f(t, x), is given by

xn+1 = xn +
∆t

6
(k1 + 2k2 + 2k3 + k4),

tn+1 = tn + ∆t,

k1 = f(tn, xn),

k2 = f(tn +
∆t

2
, xn +

k1

2
∆t),

k3 = f(tn +
∆t

2
, xn +

k2

2
∆t),

k4 = f(tn + ∆t, xn + k3∆t),

(2.4)

and is commonly used for a wide range of applications due to its 4th-order accuracy, ease

of implementation, and moderate computational requirements. Specifically, Runge-Kutta

methods of order p > 4 require a larger number of stages s than their order, yielding a

reduced accuracy gain per additional function evaluation (Hairer et al., 2008).

2.1.2 Runge-Kutta method error bounds

Explicit Runge-Kutta methods of order p are defined by their partial derivatives matching

those of the underlying analytical solution up to and including order p (Hairer et al., 2008).

This attribute has implications for their error bounds in a single step, usually referred to as

local error. The local error e(∆t) is defined as

5



Chapter 2. Theoretical Background

e(∆t) = x(t0 + ∆t)− x1, (2.5)

where t0 may be identified as the time corresponding to the previous function value; x(t0) =

x0. As outlined in Bieberbach (1951), this may be analyzed by substituting equation (2.3)

into equation (2.5)

e(∆t) = x(t0 + ∆t)− x0 −∆t
s∑
i=1

biki (2.6)

and Taylor expanding

x(t0 + ∆t) = x0 + x′(t0)∆t+ x′′(t0)
∆t2

2!
+ . . .+ x(p+1)(t0 + q∆t)

∆tp+1

(p+ 1)!
, (2.7)

ki(∆t) = ki(0) + k′i(0)∆t+ . . .+ k
(p)
i (qi∆t)

∆tp

p!
, (2.8)

with 0 < q < 1 and 0 < qi < 1. Note that due to the partial derivatives up to and including

order p being identical, we are left with the terms in the Taylor expansions corresponding to

x and k of orders including and exceeding p+ 1 and p, respectively.

Consequently, if a Runge-Kutta method of order p is applied to a function f(t, x) with

existing and continuous partial derivatives up to order p, then the local error is strictly

bounded by

|x(t0 + ∆t)− x1| ≤ ∆tp+1

(
1

(p+ 1)!
max
q∈[0,1]

∣∣x(p+1)(t0 + q∆t)
∣∣+

1

p!

s∑
i=1

|bi| max
q∈[0,1]

∣∣∣k(p)
i (q∆t)

∣∣∣) ,
(2.9)

which gives

|e(∆t)| = |x(t0 + ∆t)− x1| ≤ C∆tp+1 (2.10)

for the order of the Runge-Kutta method local error, where C is some constant.

Given the iterative nature of Runge-Kutta methods, the way in which their local error

compounds into global error over n consecutive time steps is of great interest. The global

error of a numerical solution is the deviation from the analytical solution after several steps

given by

E = x(tn)− xn, (2.11)

6



Chapter 2. Theoretical Background

where xn is obtained by n successive iterative steps from x0 and x(tn) is the analytical solution

evaluated at tn. As described in detail in Hairer et al. (2008); if the local error of an iteration

of a Runge-Kutta method satisfies equation (2.10), then we have for the global error

|E| ≤ C̃∆tp, (2.12)

where C̃ again is a constant, in general different from C.

2.1.3 Adaptive step Runge-Kutta methods

The previously described ODE solvers are all constant step length methods. That is, we

choose a step length, manually or otherwise, balancing accuracy requirements with perfor-

mance restrictions. This step length is then used throughout the entire iterative solution,

unless a step length change is explicitly specified. This is problematic as the local behavior of

our target solution may require varying step lengths at different points in our computation.

As we have no a priori knowledge of this possibly changing local behavior, manually selecting

an optimal step length is impractical.

The idea of adaptive step methods is to constantly estimate the local error of our chosen

iterative solver. By defining a local error tolerance level εtol, we can then evaluate whether

the chosen step length was in fact adequate for this specific phase of our calculation. If the

local error is estimated to exceed our tolerance level, we reject and recompute the current

step with a shorter time step, while a comparatively small error prompts the solver to accept

the step and increase the step length for the subsequent iteration.

An error estimate may be computed by using the same discretization method for two

different step lengths. Alternatively, we may use one step length and two different Runge-

Kutta discretization methods of orders p and p + 1. These are called Runge-Kutta-Fehlberg

methods (Stoer and Bulirsch, 1996) and have the form

x̂n+1 = x̄n + ∆tφI(tn, x̄n; ∆t),

x̄n+1 = x̄n + ∆tφII(tn, x̄n; ∆t),
(2.13)

where φI(tn, x̄n; ∆t) and φII(tn, x̄n; ∆t) are Runge-Kutta methods of order p and p + 1,

respectively. We implement step length control by considering the difference

x̄n+1 − x̂n+1 = ∆t
(
φII(tn, x̄n; ∆t)− φI(tn, x̄n; ∆t)

)
. (2.14)

It follows from equation (2.10) that φI and φII have local errors of order p and p + 1,

respectively. We may therefore, for small ∆t, express the difference in equation (2.14) as

7



Chapter 2. Theoretical Background

x̄n+1 − x̂n+1 ≈ C(tn)∆tp+1, (2.15)

where C(t) is some function. Neglecting higher order error terms, we now use equation (2.15)

as an approximation for the local error associated with using φI(tn, x̄n; ∆t).

Suppose that we just completed a successful step, that is, we have

|x̄n+1 − x̂n+1| ≈
∣∣C(tn)∆tp+1

∣∣ ≤ εtol. (2.16)

Now, by assuming

C(tn) ≈ C(tn+1) ≈ |x̄n+1 − x̂n+1|
|∆tp+1|

, (2.17)

we can approximate our condition (2.16) by

|x̄n+1 − x̂n+1|
∣∣∣∣∆tnew

∆t

∣∣∣∣p+1

≤ εtol. (2.18)

Finally, we estimate the new step length by isolating ∆tnew according to

∆tnew = ∆t

∣∣∣∣ εtol

x̄n+1 − x̂n+1

∣∣∣∣1/(p+1)

. (2.19)

Whether x̄ or x̂ is used for the actual solution step depends on the particular method

implementation. Several adaptive step methods are available in literature. The widely used

Dormand-Prince method of orders p = 4 and 5 is outlined by for example Stoer and Bulirsch

(1996) and Dormand and Prince (1980). A higher order alternative, corresponding to orders

p = 7 and 8, is described by Prince and Dormand (1981).

2.1.4 Interpolation

Given that real world transport systems are known only by partial measurement or grid

based model output, considering the trajectories of particles moving between these sampling

or grid points necessitates use of interpolation. A two-dimensional interpolation problem

may be described by considering the family of functions

Φ(x, y; a0, . . . , an), (2.20)

each characterized by the n + 1 parameters a0, . . . , an. Having been given a set of n + 1

coordinates and corresponding function values (xi, yi, fi), where xi 6= xk for i 6= k and

fi = f(xi, yi), the interpolation problem amounts to determining the set of parameters {ai}ni=0

as to make Φ satisfy

8



Chapter 2. Theoretical Background

Φ(xi, yi; a0, . . . , an) = fi, i = 0, ..., n. (2.21)

Here, we name the coordinates (xi, yi), function values (fi), and points (xi, yi, fi) support ab-

scissas, support ordinates, and support points, respectively. Moreover, as long as Φ depends

linearly on the set of parameters ai, and may be written in the form

Φ(x, y; a0, ..., an) = a0Φ0(x, y) + a1Φ1(x, y) + ...+ anΦn(x, y), (2.22)

this may be classified as a linear interpolation problem. According to Stoer and Bulirsch

(1996), the linear class of interpolation problems includes among others polynomial interpo-

lation, trigonometric interpolation, and spline interpolation.

An interpolation problem is solved through spline interpolation by determining the set of

parameters {ai}ni=0 in equation (2.22) with the set of corresponding functions {Φi}ni=0 limited

to spline functions. These spline functions, also simply referred to as splines, are connected

by use of a partition. Considering the one-dimensional case for simplicity, the partition

∆ : a = x0 < x1 < ... < xn = b (2.23)

of the interval [a, b] gives the domains of the piecewise polynomial spline functions S in the set

S∆. These spline functions are connected at support abscissas, in the context of splines called

knots. Order k spline functions Sk may be defined as piecewise polynomial functions of order k

that are k−1 times differentiable at all interior knots of ∆ (that is, xi for 1 ≤ i ≤ n−1) (Stoer

and Bulirsch, 1996). These spline functions are entirely defined by their k + 1 coefficients,

determined by the k − 1 derivatives and the function value at their left bordering knot, as

well as the function value at their right bordering knot. In order to properly define splines

in the exterior subdomains [x0, x1] and [xn−1, xn], we impose boundary conditions. As the

splines are composed of polynomials, the k − 1 times differentiability condition at each knot

ensures the resulting spline interpolation Φ is k − 1 times differentiable at all points.

A special class of these piecewise polynomial functions, B-splines have some very useful

properties. That is, B-splines are nonnegative and evaluate to zero everywhere except the

contiguous interval [xi, xi+1] (Stoer and Bulirsch, 1996). This makes B-splines ideal for spline

interpolation.

A selection of spline interpolators applied to a discretely sampled 5th-order polynomial

is displayed in figure 2.1, highlighting the increased accuracy of higher order splines when

applied to continuous functions. Higher order spline interpolation schemes do however require

more input. Specifically, a kth order spline requires at least k+1 input coordinates. According

to Stoer and Bulirsch (1996), spline functions have seen increasing use in numerical methods

9



Chapter 2. Theoretical Background

due to yielding smooth interpolating curves with a limited prevalence of oscillations for higher

order polynomials.

Figure 2.1: Spline interpolation of orders 1, 2, 3, and 5 in solid red applied to a discretely sampled
fifth order polynomial (blue dashed line). We observe that higher order splines yield more accurate
interpolations.

2.2 Transport systems

LCS theory may be seen as a set of tools developed to gain useful insight into finite-time

transport systems that may be too sensitive to initial conditions to be accurately described by

conventional numerical modelling. Correspondingly, LCS theory deals with the transport of

passive tracers in velocity fields. Tracers are infinitesimal particles that follow the currents of

the system without influencing it, or each other, in any way. The underlying velocity field is

usually given, as the method by which this is obtained is inconsequential to the characteristics

of the system. Although the scope of the current investigation primarily treats the three-

dimensional case, considering the more well-known two-dimensional case is useful in terms

of outlining theoretical concepts.

10



Chapter 2. Theoretical Background

2.2.1 Transport system description and notation

Consider a transport problem in a finite-time three-dimensional unsteady velocity field of the

form

ẋ = v(t,x), x ∈ U, t ∈ [t0, t0 + T ], (2.24)

where x is position, t denotes time, v is the velocity field function, U is the function domain,

and t0 and t0 + T are the start and stop times, respectively. Considering a particle in the

system (2.24) of initial position x(t0) = x0, we denote its subsequent trajectory by

x(t; t0,x0). (2.25)

We then define the flow map Ft
t0

as

Ft
t0

(x0) := x(t; t0,x0), (2.26)

mapping the set of initial positions in U at time t0 to the corresponding positions at time t.

As noted in Haller (2015), the flow map retains the smoothness of the underlying velocity

field.

2.2.2 Deformation

As a set of passive tracer particles are transported, neighboring particles are likely to either

diverge or converge at various rates based on the local properties of the velocity field. These

local rates of repulsion or attraction may be described and quantified by considering the flow

maps of particles with nearly identical initial conditions. Specifically, we consider the flow

map three-dimensional Jacobian, or flow gradient, given by

∇Ft
t0

(x0) =



∂x

∂x0

∂x

∂y0

∂x

∂z0

∂y

∂x0

∂y

∂y0

∂y

∂z0

∂z

∂x0

∂z

∂y0

∂z

∂z0

 , (2.27)

where ∂
∂x0

etc. denotes differentiation with respect to initial position. The flow map Jacobian

provides a measure for the local strain of the set of tracer initial positions.

Consider a small perturbation or initial position deviation ε(t) = x2(t) − x1(t). Taking

the time derivative given by equation (2.24) with positions expressed by equation (2.25) and

using the Jacobian of the velocity field, we get

11
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ε̇ = ∇v(t,x(t; t0,x0))ε. (2.28)

According to Haller (2015), this perturbation may be expressed as

ε(t) = ∇Ft
t0

(x0)ε(t0), (2.29)

seeing as ∇Ft
t0

(x0) is the fundamental matrix solution of equation (2.28). We therefore

obtain, for the squared magnitude of the perturbation, at time t

|ε(t)|2 = 〈∇Ft
t0

(x0)ε(t0),∇Ft
t0

(x0)ε(t0)〉, (2.30)

where 〈A,B〉 signifies taking the inner product of A and B. This allows us to define the

right Cauchy-Green strain tensor Ct
t0

(x0) as (Truesdell and Noll, 2004)

Ct
t0

(x0) =
[
∇Ft

t0
(x0)

]∗∇Ft
t0

(x0), (2.31)

yielding

|ε(t)|2 =
〈
ε(t0),Ct

t0
(x0)ε(t0)

〉
, (2.32)

where [...]∗ signifies matrix transposition. Hence, the Cauchy-Green strain tensor maps po-

sition perturbations at time t0 to their magnitudes at a later time t. Due to the invertibility

of ∇Ft
t0

(x0), the Cauchy-Green strain tensor is positive definite (Haller, 2015). Furthermore,

in three dimensions, it satisfies the following eigenvector and eigenvalue relations:

Ct
t0

(x0)ξi(x0) = λi(x0)ξi(x0), |ξi(x0)| = 1, i = 1, 2, 3,

0 < λ1(x0) ≤λ2(x0) ≤ λ3(x0),

ξ1(x0) ⊥ ξ2(x0),

ξ1(x0) ⊥ ξ3(x0),

ξ2(x0) ⊥ ξ3(x0),

(2.33)

where λi and ξi are the eigenvalues and eigenvectors of Ct
t0

, respectively (Haller, 2011). The

dependence of λi and ξi on t and t0 has been omitted in the interest of notational simplicity.

Note that these quantities describing material deformation satisfy objectivity (see section

2.3). Moreover, for incompressible flow systems (div(v) ≡ 0), the eigenvalues of Ct
t0

(x0) also

satisfy

λ1(x0)λ2(x0)λ3(x0) = 1 (2.34)

12
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for all x0 (Haller, 2015).

2.2.3 Flow map dynamics

The flow map Ft
t0

(x0) obeys

d

dt
Ft
t0

(x0) = v
(
t,Ft

t0
(x0)

)
, (2.35)

as tracer positions move in the velocity field v. Useful for analyzing local deformation, the

time development of the Jacobian of the flow map ∇Ft
t0

(x0) (see equation (2.27)) is governed

by (Miron et al., 2012)

d

dt
∇Ft

t0
(x0) = ∇v

(
t,Ft

t0
(x0)

)
∇Ft

t0
(x0). (2.36)

In Cartesian coordinates, equation (2.36) constitutes 9 equations, each coupled with the three

equations corresponding to equation (2.35). Note that equation (2.36) may be expressed in

Cartesian form as

d

dt

(
∂Fi
∂xj

)
=
∑
k

∂vi
∂xk

∂Fk
∂xj

. (2.37)

Combined, equations (2.35) and (2.37) form a system of 12 coupled equations, solvable by

ordinary ODE methods.

2.2.4 Singular-value decomposition

Computing the Cauchy-Green strain tensor Ct
t0

(x0) eigenvectors and eigenvalues constitutes

a problem of the form

B∗BQ = QΛ, (2.38)

where Λ is the diagonal matrix

Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 . (2.39)

Here, λi are the eigenvalues of B∗B, where B is some 3×3 matrix. Moreover, Q is another 3×3

matrix, its ith column corresponding to the ith eigenvector of B∗B, denoted ξi. This problem

may be solved directly by computing B∗B and finding its eigenvalues and eigenvectors.

However, according to Watkins (2005), some information about the smaller eigenvalues is
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lost when computing B∗B in floating-point arithmetic. Instead, Watkins (2005) suggests

utilizing singular-value decomposition.

Singular-value decomposition may be seen as a generalization of eigendecomposition.

That is, as the eigendecomposition

B∗B = QΛQ−1, (2.40)

follows from (2.38), the more general singular-value decomposition follows from the relation

Bvi = σiui. (2.41)

Here, σi is the ith singular value of B, while vi and ui are the corresponding normalized right

and left singular vectors. This relation may also be rewritten as

BV = UΣ, (2.42)

where vi and ui form the ith columns of the orthogonal matrices V and U, respectively. Note

that for any orthogonal matrix A, we have A∗ = A−1. Moreover, Σ is of the form

Σ =


σ1 0 0

0 σ2 0

0 0 σ3

 , (2.43)

where σi are the positive and real singular values of B (Trefethen and Bau, 1997). As V is

orthogonal, we may multiply equation (2.42) by its inverse V∗ from the right to obtain

B = UΣV∗. (2.44)

This factorization corresponds to the most commonly used form of singular-value decom-

position (SVD) (Trefethen and Bau, 1997). Now, consider our problem of computing the

eigenvalues and eigenvectors of B∗B. By insertion of equation (2.44), we get

B∗B = VΣ∗U∗UΣV∗ = V(Σ∗Σ)V∗, (2.45)

where we used that U∗U = I for the orthogonal matrix U. Consequently, we may identify

the eigenvalues λi of B∗B as σ2
i . Moreover, by comparison of equation (2.45) with equations

(2.40) and (2.38), we notice that the columns of V correspond to the eigenvectors of B∗B.

Therefore, by performing singular-value decomposition on the matrix B, we are able

to implicitly compute the eigenvalues and eigenvectors of B∗B. As this is done without

actually computing B∗B, we limit numerical error due to use of floating-point arithmetic. In
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the context of deformation, this means that we may use ∇Ft
t0

(x0) to compute the eigenvalues

and eigenvectors of Ct
t0

(x0) =
[
∇Ft

t0
(x0)

]∗∇Ft
t0

(x0) directly.

2.3 Hyperbolic Lagrangian coherent structures

Inspired by coherent tracer patterns observed both experimentally and in nature, Lagrangian

coherent structure (LCS) theory emerged in the interface between nonlinear dynamics and

fluid mechanics as an alternative way of approaching and understanding transport in complex

fluid flow systems. Coined by Haller and Yuan (2000), the term Lagrangian coherent structure

refers to the most repelling, attracting or shearing material surfaces that guide the principal

structures of particle transport dynamics (Haller, 2015). Here, material surfaces refer to

time-evolving structures in a flow system, traceable by a set of particles following the set of

point trajectories defining the surface. As necessitated by their material surface nature, LCS

theory takes a Lagrangian perspective where the identities of individual particles are tracked

as they are advected in a velocity field. This is opposed to the Eulerian perspective, where

we consider the behavior of the flow field at stationary points in space. Here, particles are

simply viewed as realizations of the velocity field as they pass points in space, their identities

therefore irrelevant.

The concept of objectivity is also central to the development of LCS theory. Objectivity

is one of the fundamental axioms of mechanics and requires that any material response is

independent of the perspective of the observer. This makes it necessary to for example take

centrifugal forces and the Coriolis effect into account when calculating flow velocity fields on

a rotating planet.

Motivated by application in real world systems, LCS theory deals exclusively with finite-

time systems. Here, asymptotic concepts from nonlinear dynamics such as stable and unstable

manifolds lose their meaning, necessitating the use of finite-time tools. The three main types

of LCSs; hyperbolic, elliptic and parabolic, are examples of such finite-time tools used to

gain insights into overarching flow patterns. According to Onu et al. (2015), hyperbolic

LCSs are defined as the locally most repelling or attracting material surfaces in a specific

time interval [t0, t]. One useful property of these attracting and repelling LCSs is forward-

backward time duality. As described by Haller (2015), this permits us to compute attracting

and repelling LCSs using the same time interval [t0, t]. In the case of repelling LCSs, this is

done by ordinary advection, while attracting LCSs are computed by use of a reversed flow

map attained from backward-time advection.

Unlike hyperbolic LCSs, elliptic LCSs and parabolic LCSs are described as coherent La-

grangian vortex boundaries and Lagrangian jet cores, respectively (Onu et al., 2015). How-
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ever, all LCSs may be seen as consisting of a set of particles evolving with the particle

transport in time, like any other material surface.

2.3.1 Defining most repelling material surfaces

Focusing on hyperbolic LCSs, we now follow the argument of Farazmand and Haller (2012a)

endeavoring to quantify normal attraction and repulsion for a smooth curve M(t0) at time

t0 in a two-dimensional system. This is motivated by the previously discussed definition of

hyperbolic LCSs as locally most repelling or attracting material surfaces. While the main

focus of our discussion pertains to three-dimensional systems, the two-dimensional case is

useful in terms of coherently outlining this underlying argument.

As the system evolves, the material line M(t0) is transported according to the flow map

forming a time-dependent material line M(t) = Ft
t0

(M(t0)). Now, choose a normal vector

n0 for each initial position x0 ∈M(t0), as visualized in figure 2.2a.

Figure 2.2: Visualization of the repulsion rate ρtt0(x0,n0) for x0 on the material line M(t0). (a)
n0 denotes the normal vector of the material lineM(t0) at the point x0. (b) The vector ∇Ftt0(x0)n0

indicates how n0 has evolved in the time interval [t0, t], as defined by the advection of the particles
initially situated at its endpoints. The normal repulsion rate ρtt0(x0,n0) is then defined by the
component of this time-evolved vector that is normal to the advected material line M(t). The
normal of M(t) is denoted nt.

By considering the separation of the particles with initial positions x0 and x0 + n0,

the time evolution of n0 is given by ∇Ft
t0

(x0)(x0 + n0 − x0) = ∇Ft
t0

(x0)n0 (see equation

(2.29)). In order to measure the normal repulsion rate of the material line M(t0), we are

then interested in the component of this time-evolved normal vector that is perpendicular

to M(t). Denoting this component ρtt0(x0,n0), we may express the normal repulsion rate of

M(t) on the trajectory x(t; t0,x0) as

ρtt0(x0,n0) =

〈
∇Ft

t0
(x0)n0,nt

〉
|n0|

, (2.46)
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where nt is normal to M(t) (see figure 2.2b). The normal repulsion rate ρtt0(x0,n0) may

then be used to classify material lines as either repelling or attracting. Specifically, if

ρtt0(x0,n0) > 1 is satisfied, then M(t) is classified as normally repelling in the time interval

[t0, t]. Conversely, if ρtt0(x0,n0) < 1 is satisfied, M(t) is classified as normally attracting in

the same time interval.

As outlined by Farazmand and Haller (2012a), the normal repulsion rate may be computed

using the Cauchy-Green strain tensor

ρtt0(x0,n0) =
1√〈

n0,
[
Ct
t0(x0)

]−1
n0

〉 , (2.47)

where [...]−1 signifies taking the inverse. Using this description, Farazmand and Haller (2012a)

define a normally repelling material line in the time interval [t0, t] as a compact material line

segment M(t) on which

ρtt0(x0,n0) > 1, ρtt0(x0,n0) > |∇Ft
t0

(x0)e0| (2.48)

holds for any initial position x0 ∈ M(t0). Here, e0 is a tangential unit vector of M(t0).

Moreover, compactness ensures that M(t) is bounded. Satisfying equation (2.48) therefore

implies thatM(t) is repelling and that this repulsion is greater than tangential stretching for

all x alongM(t). Note that the above argument is easily transferable to material surfaces in

three dimensions. We do this by simply using the maximum of |∇Ft
t0

(x0)e0| for any tangent

vector e0 within the material surface in equation (2.48).

This now enables us to further specify our definition of hyperbolic LCSs as locally most

repelling or attracting material surfaces within a specific time interval. Dividing hyper-

bolic LCSs into attracting and repelling types, repelling types may only exist on normally

repelling material lines M(t). Moreover, these material lines M(t) must serve as point-

wise non-degenerate local maxima in terms of normal repulsion rate over the time interval

[t0, t] (Farazmand and Haller, 2012a). Here, the neighborhood in which M(t) forms a lo-

cal maximum consists of all sufficiently close continuously differentiable material surfaces.

Conversely, utilizing the forward-backward time duality, attracting LCSs may be defined as

repelling LCSs over the reversed time interval [t, t0].

Given that an LCS is invariably associated with the time interval over which it was

computed, there is no guarantee for the continued existence of the same LCS over preceding

or following time intervals. However, Farazmand and Haller (2012a) point out that as LCSs

are computed as a time interval aggregate, a small time interval perturbation causing small

changes to the repulsion rates of material surfaces is unlikely to materialize as notable changes

to the LCSs.
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2.4 Identifying repelling hyperbolic LCSs from their

variational theory

Using the definition of hyperbolic LCSs in terms of normally attracting or repelling material

lines described in section 2.3.1, Farazmand and Haller (2012b) derive a set of sufficient and

necessary existence criteria. Considering a compact material surfaceM(t) ⊂ U evolving over

the time interval [t0, t], M(t) is a repelling LCS over [t0, t] if and only if the following holds

for all initial positions x0 ∈M(t0):

1. λ2(x0) 6= λ3(x0) > 1,

2. 〈ξ3(x0), Hλ3(x0)ξ3(x0)〉 < 0,

3. ξ3(x0) ⊥ Tx0M(t0),

4. 〈∇λ3(x0), ξ3(x0)〉 = 0.

(2.49)

Here λ2, λ3, and ξ3 are eigenvalues and eigenvectors of the Cauchy-Green strain tensor (see

section 2.2.2), while Tx0M(t0) is the tangent space ofM(t0). The Hessian of the λ3-field (see

equation (2.50)) is denoted Hλ3 . By reference to the forward-backward time duality property,

M(t) is an attracting hyperbolic LCS if the same criteria hold over the reversed time interval

[t, t0]. Note that condition 2 in (2.49) is derived from the general result in Farazmand and

Haller (2012b). This computation is shown in appendix A.

Continuing the use of objective deformation theory (see section 2.2.2), condition 3 estab-

lishes that the Cauchy-Green strain tensor eigenvector ξ3(x0), associated with the largest

eigenvalue λ3(x0), is at all points perpendicular to M(t). Combined with condition 1, this

ensures that M is normally repelling. This is because ensuring ξ3(x0) ⊥ M(t0) makes the

unit vector ξ3(x0) coincide with n0. Note that we drop the tangent space notation for the

sake of simplicity. Therefore, λ3 > 1 corresponds to ρtt0(x0,n0) > 1. Moreover, requir-

ing λ2(x0) < λ3(x0) assures that the second inequality in equation (2.48) holds, even when

adapted to the three-dimensional case.

Conditions 2 and 4 (see equation (2.49)) ensure that M(t) is a local maximum in terms

of normal repulsion quantified by λ3. Specifically, condition 4 establishes that the gradient

of λ3 at x0 along the perpendicular vector ξ3(x0) is 0, indicating that M(t) is either a

ridge, a valley, or a saddle point with respect to λ3. The Hessian test imposed in condition

2, analogous to the second derivative test in one dimension, then assures that this local

extremum is in fact a maximum. In three dimensions, the Hessian is given by

18



Chapter 2. Theoretical Background

Hf =



∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z

∂2f

∂y∂x

∂2f

∂y2

∂2f

∂y∂z

∂2f

∂z∂x

∂2f

∂z∂y

∂2f

∂z2


. (2.50)

2.4.1 Autonomous dynamical system captures all LCSs in three-

dimensional flows

As may be inferred from the preceding discussion, repelling hyperbolic LCSs are at all points

normal to the eigenvector ξ3(x0), corresponding to the largest Cauchy-Green strain tensor

eigenvalue. According to Oettinger and Haller (2016), any hyperbolic or elliptic LCS initial

positionM(t0) is at all points normal to a linear combination of ξ1(x0) and ξ3(x0). That is,

material surfaces M(t0) within which hyperbolic or elliptic LCSs may exist, are necessarily

everywhere perpendicular to a vector field given by

n = aξ1(x0) + bξ3(x0). (2.51)

Specifically, where attracting hyperbolic LCSs are at all points perpendicular to ξ1(x0),

repelling hyperbolic LCSs are perpendicular to ξ3(x0). Moreover, elliptic LCSs may be

obtained from surfaces that are perpendicular to certain linear combinations of ξ1(x0) and

ξ3(x0) (Oettinger and Haller, 2016). All hyperbolic or elliptic LCSs must therefore necessarily

be subsets of manifolds defined as invariant manifolds of the system

x′0 = (1− p)ξ2(x0) + pξi(x0), p ∈ [0, 1], (2.52)

where i = 1 for repelling LCSs and i = 3 for attracting ones, while p is some scalar. This

means that any trajectory in a system given by a linear combination of ξ2(x0) and ξi(x0)

starting out within M(t0), is bound to remain within M(t0). We use x′ here instead of ẋ

to distinguish the pseudo-time derivative of manifold defining ODEs from the actual time

dependence of transport system ODEs.

Note that as these LCS candidate surfaces are all orthogonal to linear combinations of

ξ1(x0) and ξ3(x0), they are all invariant manifolds of the autonomous dynamical system

x′0 = ξ2(x0). (2.53)

That is, any integral curve following the ξ2-field starting from a point withinM(t0), remains

confined to M(t0) (Oettinger and Haller, 2016). Constituting the main finding of Oettinger
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and Haller (2016), this allows us to identify possible hyperbolic or elliptic LCS surfaces by

computing long trajectories defined by the ODE (2.53).
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Method

Outlining the various choices, motivations, and approaches used during the current project,

this chapter details our method for identifying three-dimensional hyperbolic LCSs. Starting

out by summarizing the numerical treatment of system velocity fields and resulting strain

characteristics, we describe methods for efficiently performing the necessary field interpolation

and solving ODEs. The hyperbolic LCS existence criteria outlined in chapter 2 are then

adapted as to facilitate numerical analysis. Prompted by these criteria, we then adapt the

method of geodesic levelsets first described by Krauskopf and Osinga (2003) to compute LCS

candidate manifolds. Two different approaches to adapting the method of geodesic levelsets

are presented and compared with respect to accuracy, performance, and clarity. We finally

devise a method for extracting hyperbolic LCSs from these candidate manifolds.

3.1 Tracer advection

Aiming to describe the overarching structures of complex flow systems in a finite-time interval,

efforts of LCS identification are usually developed from flow maps. As discussed in section

2.2, the flow map Ft
t0

(x0) maps the initial position at t0 of each particle in the system to

its position at time t. In numerical analysis, a flow map is developed by advecting a set of

particles in a velocity field by use of an iterative ODE solver. The velocity field for a fluid flow

system may for example be attained by use of the Navier-Stokes equations, or in principle

— if not necessarily in practice — by direct measurements. Attainment of the velocity field

is however beyond the scope of this investigation.

Forming the basis of all further analysis, the flow map Ft
t0

(x0) is computed for a regular

grid of N = NxNyNz initial positions on and within the boundaries of the region of interest

U . This is done by advecting tracer particles initially placed at the initial positions x0 in

the governing velocity field. As outlined in section 2.2.3, the flow map is developed in time

while simultaneously solving the variational equation (2.36), also providing us with the flow
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map Jacobian ∇Ft
t0

(x0). This corresponds to simultaneously solving the set of 12 coupled

equations given by the Cartesian forms of equation (2.35) and equation (2.36). We do this

by use of the Dormand-Prince adaptive step method of orders 7 and 8. See sections 2.1 and

3.1.1 for further details.

Performing this computation is quite costly for large grids consisting of millions of trac-

ers, requiring the use of parallel computing. As each tracer particle is independent of the

remaining grid, this is easily done, for example by use of MPI and the mpi4py Python li-

brary. Specifically, the tracer particles are distributed evenly among all available processing

cores, where the variational equations are solved for the considered time interval. Finally,

the results are passed to the main process for further analysis.

The system of 12 coupled equations carries an added computational load compared to

simply advecting the tracer particles. Consider however that the most notable alternative

approach, proposed by Farazmand and Haller (2012a), for computing the flow map Jacobian

entails advecting an additional auxiliary grid of six tracers per main grid tracer. The number

of equations needed to be solved per time step is therefore 21N for Farazmand and Haller

(2012a)’s approach, and only 12N for the current one. While adding some complexity to

the computation, the method of variational equations is therefore preferred both due to its

superior accuracy (Oettinger and Haller, 2016) and efficiency.

3.1.1 Implementation of automatic step control

The flow map advection described in section 3.1 and the point search trajectories to be

described in section 3.4.3 are both computed by use of the Dormand-Prince method of orders

7 and 8. As noted in section 2.1.3, this method uses the difference between a 7th- and an 8th-

order Runge-Kutta solution, x̄n+1 − x̂n+1, to automatically control step length. Here, x̂n+1

is the 7th-order (n + 1)th Runge-Kutta ODE solution step, while x̄n+1 is the corresponding

8th-order solution. Inspired by Hairer et al. (2008), we control the step length by limiting

the componentwise error according to

|x̄i − x̂i| ≤ sci, (3.1)

where

sci = Atoli + max (|x̄i| , |x̂i|) · Rtoli, (3.2)

is our componentwise error limit and the parameters

Atoli = Rtoli = 10−7 (3.3)
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are used consistently. This allows us to define our error measure

err =

√√√√ 1

N

N∑
i=1

(
x̄n+1,i − x̂n+1,i

sci

)2

, (3.4)

(where N is the number of simultaneously computed variables) and use εtol = 1 in equation

(2.16), yielding the step acceptance criterion

err ≤ 1. (3.5)

Finally, the ideal step length ∆topt is determined by inserting εtol = 1 into equation (2.19),

yielding

∆topt = ∆t

(
1

err

) 1
p+1

, (3.6)

where p = 7 is the order of the least accurate Runge-Kutta method.

Now, all steps that satisfy equation (3.5) are accepted, while steps that do not satisfy

(3.5) are rejected. That is, as long as equation (3.5) is satisfied, we adopt the approximation

xn+1 = x̄n+1 for next next time step tn+1 = tn + ∆t. The new step lengths are computed

according to

∆tnew =

min (facmax ·∆t, fac ·∆topt) if step is accepted

fac ·∆topt if step is rejected.
(3.7)

Here, fac = 0.8 and facmax = 2.0 are numerical safety factors, preventing excessive increases

in step length and increasing the likelihood of the next step being accepted.

Note that while each coordinate in the three-dimensional system is managed indepen-

dently, the corresponding time step lengths must be identical, prompting us to — for each

step — apply the largest ∆tnew to all coordinate ODEs.

Also note that the Dormand-Prince ODE solver, used to compute manifold points (see

section 3.4.3), was implemented in Cython as to improve performance. This was done in order

to retain the ease of development, as well as comprehensibility, of Python, while maximizing

performance in computationally heavy operations.

3.1.2 Velocity field interpolation

Unlike investigations of three-dimensional analytical velocity fields, analysis of time-varying

gridded model data in three dimensions requires the use of a quadrivariate interpolator.

Specifically, this is needed to compute the accompanying flow map. Considering each velocity
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field component separately, they are interpolated in time as well as the three spatial coordi-

nates. As suggested by van Hinsberg et al. (2013), this was done by use of cubic B-splines

(see section 2.1.4). Several multidimensional B-spline interpolation libraries are currently

available. Choosing the Bspline-Fortran library for its performance and comprehensive doc-

umentation (Williams, 2018), quadrivariate velocity field interpolation was carried out using

the bspline 4d derived type. This Fortran tool was made available in Python through the

Fortran standard C interoperability. By writing a C++ wrapper class, the solver was made

available in Python via Cython. Note that memory duplication was minimized by use of the

Fortran reference-based subroutine call structures, as well as pointers at the C-level. This

is critical, as large memory requirements could limit the efficiency of parallelization. Specif-

ically, memory-intensive tasks could require us to use several computing cores per parallel

process in order to pool memory, dramatically increasing resource usage.

3.2 Computing Cauchy-Green strain tensor eigenvalue

and eigenvector fields

Enabling further deformation analysis and identification of LCSs, the Cauchy-Green eigen-

vectors ξi(x0) and eigenvalues λi(x0) were computed at the tracer initial position grid by

use of singular-value decomposition. As outlined in section 2.2.4, this allows us to implic-

itly determine ξi(x0) and λi(x0) without having to compute the Cauchy-Green strain tensor

Ct
t0

(x0). In this way, we limit the error introduced by floating point arithmetic (Watkins,

2005). Singular-value decomposition algorithms are widely available, for example in the

NumPy library (Oliphant, 2015).

3.2.1 Cauchy-Green eigenvalue field interpolation

Identifying LCSs in the previously described discrete eigenvector and eigenvalue fields neces-

sitates use of interpolation. That is, as we analyze off-grid points in U with regard to the

existence conditions 2.49, we will need interpolated values for the eigenvalue fields λ2(x0)

and λ3(x0).

These eigenvalue fields were interpolated by use of cubic trivariate B-splines, ensuring

continuous first and second derivatives. Note that this use of cubic B-splines, ensuring

continuous second derivatives, is necessary for evaluating the Hessian of λ3(x0) in existence

condition 2 (see equation (2.49)). This was done by use of the bspline 3d derived type from

the Bspline-Fortran library. Like previously described in section 3.1.2, this method was made

available in Python by use of Cython.
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3.2.2 Cauchy-Green eigenvector field interpolation

Accompanying the interpolated eigenvalue fields, LCSs identification requires a continuous

ξ3-field. That is, as we construct surfaces according to condition 3 in equation (2.49), it

becomes necessary to evaluate the ξ3-field between grid points.

While ultimately treated in the same way as the eigenvalue field — using the bspline 3d

derived type from the Bspline-Fortran library — the eigenvector field requires some addi-

tional treatment. Specifically, as the stretching along ξi(x0) and −ξi(x0) is the same, there is

no a priori reason to assume the singular-value decomposition consistently chose any specific

orientation. As our cubic B-spline interpolation routine imposes continuity of the eigenvec-

tor components, it is critical that the underlying field exhibits this trait. Otherwise, it is

likely that the resulting B-spline interpolation will be inaccurate. Continuity of eigenvector

components was ensured by use of a three-dimensional local orientation correction scheme,

adapted from the two-dimensional case outlined by Onu et al. (2015).

Local orientation continuity is ensured by considering the set of 64 nearest neighbor

grid points of the considered coordinate. Note that 43 = 64 is the smallest number of

nearest neighbor grid eigenvector values required to compute a local trivariate cubic spline

interpolation. Assuming that the extent of this neighborhood is small compared to the scale

over which significant orientational changes may occur in the eigenvector field, we ensure

that no input grid vectors are oriented in opposing directions. This is done by selecting

the eigenvector of a neighborhood corner as a reference direction. All remaining grid point

eigenvectors are then compared to this reference direction by means of computing their inner

product. Whenever this inner product evaluates to less than zero, the current grid point

eigenvector is reversed. That is, we exchange ξ3(x0) for −ξ3(x0). The two-dimensional

equivalent of this algorithm is demonstrated in figure 3.1. Note that while unsuited for

representation in a two-dimensional figure, the three-dimensional scheme remains completely

analogous.

Following this local orientation correction, the neighborhood grid is passed to the Bspline-

Fortran interpolator method. The three-component output is finally normalized, conforming

with the convention of normalized eigenvectors.

3.3 Limit search to LCS existence subdomain

As previously discussed in section 2.4, three-dimensional hyperbolic LCSs may be identified

as material surfaces forming local repulsion maxima. In order to limit the search for LCSs to

the regions of the domain in which such maxima may exist, a subdomain of U is defined as

the set of points where conditions 1, 2 and 4, given by equation (2.49), hold. Here, condition

1 establishes that a direction of maximum repulsion exists, while condition 2 excludes all
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regions where no local maximum of λ3 may occur. Finally, compliance with condition 4

ensures that any given point x0 is a local maximum of λ3 along the direction defined by

ξ3(x0). Farazmand and Haller (2012a) note that condition 2 may be made more appropriate

for numerical analysis by also allowing for equality with zero. Moreover, compliance with

condition 4 may be checked by comparing λ3(x0) to λ3(x0 + εξ3(x0)) and λ3(x0 − εξ3(x0)),

where ε is some appropriately chosen scalar. The resulting conditions used to obtain an

“ABD subdomain” UABD are

(A) λ2(x0) 6= λ3(x0), λ3(x0) > 1, (3.8)

(B) 〈ξ3(x0), Hλ3(x0)ξ3(x0)〉 ≤ 0, (3.9)

(D) λ3(x0) > max(λ3(x0 − εξ3(x0)), λ3(x0 + εξ3(x0))), (3.10)

where Hλ3(x0) is the Hessian matrix (see equation (2.50)) of the largest Cauchy-Green eigen-

value. Hλ3(x0) was computed by taking the partial derivatives of the cubic spline interpola-

tion of λ3(x0).

Figure 3.1: Visualization of the chosen local orientation correction scheme in two dimensions.
Allowing for cubic interpolation, the 42 = 16 nearest neighbor eigenvector grid points of the evalu-
ated point (in gray) are extracted and corrected using the lower left corner eigenvector (no arrow
fill) as a reference. Considering each extracted vector, its inner product with the lower left cor-
ner eigenvector is evaluated. If this inner product evaluates to less than zero, the eigenvector is
turned 180◦ before passing to the interpolation routine. Note the dashed arrows indicating original
eigenvector orientations where corrections have been performed. The resulting interpolated vector
is presented in gray. This algorithm is generalized to three dimensions by using a grid of 43 = 64
nearest neighbor eigenvectors.
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Subdomains UABD obtained by applying conditions A, B, and D to the ABC flow test

cases, as well as the fjord gridded model data set, described in sections 4.3-4.5, are presented

in figures 4.7, 4.11, and 4.14.

3.4 Computing manifolds in Cauchy-Green eigenvector

field by use of geodesic levelsets

As shown by Oettinger and Haller (2016) and described in section 2.4.1, hyperbolic LCSs

in three-dimensional systems are invariant manifolds of the autonomous dynamical system

described by equation (2.52). This suggests an approach to three-dimensional repelling LCS

identification centered around computing these manifolds, producing surfaces that satisfy

condition 3 in (2.49), alternatively expressed as

(C) M(x0, t0) ‖ aξ1(x0) + bξ2(x0), (3.11)

where a and b are scalars. In other words, the manifold M is at any point x0 tangent to

the plane spanned by the vectors ξ1(x0) and ξ2(x0). As already noted in section 2.4, this is

equivalent to M being perpendicular to ξ3(x0) at all points. Also accounting for conditions

A, B and D, presented in equations (3.8), (3.9) and (3.10), the locally most repelling surfaces

are identified as hyperbolic LCSs.

As noted by Krauskopf et al. (2005), computing accurate multidimensional invariant mani-

folds is challenging, necessitating dedicated algorithms. Among other alternatives, Krauskopf

et al. (2005) suggest approximation by geodesic levelsets, originally described by Krauskopf

and Osinga (2003). Although initially intended for investigating manifolds described by func-

tions of the form x′ = f(x), the method of geodesic levelsets may reasonably be adapted to

identify manifolds defined by equation (2.52). This method is based on computing successive

sets of points forming topological circles, each point computed by developing a trajectory

in the underlying direction field from the preceding levelset. Points are then inserted or

removed as to keep the level of mesh detail consistent. The result is a mesh M comprising

radial strands of points along the invariant manifold, emanating from the initial position

from which the manifold is developed. Some of the main terminology used to describe the

method of geodesic levelsets is illustrated in figure 3.2.
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Figure 3.2: Illustration of some of the main terminology used to describe the method of geodesic
levelsets. (a) The set of mesh points covered by the shaded area form a geodesic levelset Mi. The
corresponding dashed line is referred to as a topological circle Ci. (b) The outlined set of points
emanating radially outwards is referred to as a point strand.

3.4.1 Selecting initial positions and computing subsequent mesh

points

Having identified an initial position r0 in the target invariant manifold M described by

equation (2.52), a set of points are selected forming a small circle of radius rinit centered at

r0 in the plane spanned by ξ1(r0) and ξ2(r0). This is shown in figure 3.3. The selected points

form the initial levelset M1, which is subsequently interpolated as to form a continuous circle

C1. This was carried out by use of a cubic spline interpolation scheme. A more detailed

description of this topological circle interpolation scheme may be found in section 3.4.2.

Figure 3.3: The initial levelset M1 approximating a circle of radius rinit around the initial position
r0. The points M1,j are computed as various linear combinations of ξ1(r0) and ξ2(r0) added to
the initial position r0. Choosing a sufficiently small radius rinit and noting that as both ξ1(r0) and
ξ2(r0) are perpendicular to ξ3(r0), we assume that the set of points {M1,j} are all very close to the
target manifold M. The dashed topological circle C1, approximated by interpolation of M1, (see
section 3.4.2) is highlighted in blue.

Each point in the first levelset M1 is then used to compute a point in the subsequent

levelset M2. In the same way, all subsequent levelsets Mi+1 are initially computed starting

with the prior levelset Mi. For the sake of brevity and intuitiveness in the coming discussion,
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we here denote the starting points in Mi ,and new points in Mi+1, ancestor and descendant

points, respectively. Moreover, the set of points consisting of an initial levelset point M1,j

and and all its descendants {Mi,j}mi=2, where m is the total number of levelsets, are referred

to as a point strand. Here, point j in levelset i is denoted Mi,j. This is illustrated in figure

3.2.

In order to identify a new mesh point, consider the jth point Mi,j in the ith levelset

Mi. We search for a new point from the target manifold M in the half-plane Fr through

Mi,j. This half-plane is orthogonal to Ci at Mi,j and stretches outwards, as defined by the

vector Mi,j −Mi−1,j. As may be seen in figure 3.4, this restricts us to searching for points in

the outward radial direction, while allowing for local curvature in the underlying manifold.

Krauskopf et al. (2005) suggest computing the normalized half-plane defining tangent vector

at Mi,j as

T(Mi,j) =
Mi,j+1 −Mi,j−1

|Mi,j+1 −Mi,j−1|
. (3.12)

However, in practice, it was found that simply inheriting the tangent vector from M1,j yielded

smoother manifolds that are less exposed to accumulation of numerical noise. That is, we

define the initial normalized tangent vector according to

Tj = T(M1,j) =
ξ3(M1,j)× (M1,j − r0)

|ξ3(M1,j)× (M1,j − r0)|
, (3.13)

subsequently passing it on to all following points along the same strand.

We start the search for a new point Mi+1,j within the target half-plane Fr by defining a

position “guess” raim, presumed to be close to the intersection of M with Fr. In order to

choose raim, we begin by computing a single 4th-order Runge-Kutta step of length ∆i from

Mi,j. This is done by computing the cross product of the normalized tangent vector T and

the underlying ξ3-field (see section 3.5 for details). Here, ∆i is the prescribed inter-levelset

step length, detailed in section 3.4.5.

We find the point Mi+1,j by computing trajectories along linear combinations of ξ1(r) and

ξ2(r) from the prior topological circle Ci, aimed at raim. A point along one of these trajectories

is accepted as Mi+1,j if it is both found to be within Fr and appropriately distanced from

Mi,j. That is,

||Mi+1,j −Mi,j| −∆i| < Γ∆∆i (3.14)

is satisfied, where Γ∆ is an inter-levelset separation tolerance factor. Moreover, sufficient

proximity to Fr is defined as satisfying
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r−Mi,j

|r−Mi,j|
·Tj < ΓFr , (3.15)

where r is the current trajectory position and ΓFr is some scalar tolerance parameter. Note

that as no given trajectory is certain to produce an acceptable point, this process may have

to be repeated for several initial positions on Ci. This trial and error process is outlined in

section 3.4.3. Also notice that by construction, Mi+1,j may only be situated on — or very

close to — the half-circle within Fr, centered at Mi,j, of radius ∆i. Refer to figure 3.4 for a

visual representation of this approach.

Figure 3.4: Computing a new mesh point Mi+1,j within the half-plane Fr. Using the inherited
and normalized tangent vector Tj to define Fr, the aim point raim is determined by taking a single
4th-order Runge-Kutta step of length ∆i within Fr. This 4th-order Runge-Kutta step is computed
using the cross products of Tj and ξ3(r), oriented along the vector Mi,j −Mi−1,j , where r is the
current trajectory position. The trajectories from Ci (black dashed curves) are then computed by
projecting the vector raim−r into the local plane characterized by orthogonality to ξ3(r) (see section
3.4.3). These trajectories are terminated whenever they reach Fr, as defined by equation (3.15).
If the concluding point of the trajectory rend is approximately ∆i away from Mi,j (see equation
(3.14)), it is accepted as Mi+1,j . Otherwise, a new trajectory is computed from a different initial
position on Ci. This choice of initial positions is outlined in section 3.4.3. The white dashed line
represents the intersection of the target manifold M with the half-plane Fr. Note that imposing
the inter-levelset step length ∆i ensures that the selected point is located at the displayed half-circle
in the half-plane Fr.
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3.4.2 Constructing topological circles from geodesic levelsets

Providing an approximation of the topological circle corresponding to levelset i, Ci is com-

puted as a parametric spline interpolation. Considering the levelset Mi, the set of points

{Mi,j}nj=1 are ordered clockwise. Point Mi,l is then given a normalized parameter value sj=l

based on the cumulative interpoint Euclidean distance along the list. Specifically,

sj=l =

∑l−1
j=1 |Mi,j+1 −Mi,j|∑n−1
j=1 |Mi,j+1 −Mi,j|

, (3.16)

where n is the number of points in the levelset Mi. As to smooth out the junction at Mi,1,

Mi,1 is added to the end of the ordered list of levelset points {Mi,j}nj=1. Now, the strictly

increasing list of parameters {s} corresponding to {Mi,j}nj=1 +Mi,1 is given by

{s} = [0, sj=2, sj=3, ..., sj=n, 1], (3.17)

where sj=l by definition is equal to 0 and 1 for the first and last entries, respectively. Con-

sidering each of the Cartesian coordinates of the point Mi,l as a univariate function of the

parameter sj=l, cubic B-splines were made for each set of coordinates by use of the bspline 1d

derived type from the Bspline-Fortran library. This method was made available in Python,

by use of Cython, as previously described in section 3.1.2.

3.4.3 Computing trajectories in the Cauchy-Green strain tensor

eigenvector field

As outlined in section 3.4.1, new descendant pointsMi+1,j are found by computing trajectories

along ξ1(r) and ξ2(r), starting in Ci and continuing until a point is found that satisfies

equations (3.14) and (3.15). Consider an initial position Ci(sk) somewhere along Ci. A

trajectory is then computed along M by use of a Runge-Kutta iterative solver, specifically

the Dormand-Prince method of orders 7 and 8. AsM is everywhere orthogonal to ξ3(r), the

local direction of this trajectory may be chosen as any linear combination of ξ1(r) and ξ2(r).

That is, these trajectories could be computed according to

r′ = aξ1(r) + bξ2(r), (3.18)

where a and b are scalars.

In order to limit the number of operations needed for the trajectory to reach Fr, this linear

combination should be chosen as to make r′ as similar to r′aim = raim − r as possible. That

is, r′ is continuously chosen within the local plane spanning ξ1(r) and ξ2(r) as to guide the

trajectory towards raim. In order to reduce memory requirements, this was done by removing
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the components of r′aim parallel to ξ3(r), leaving only the orthogonal components. In this

way, we are able to construct trajectories in ξ1(r) and ξ2(r) with no need for retaining the

corresponding ξ1- and ξ2-interpolations in memory. Specifically, the trajectory is computed

according to the ODE

r′ =
r′aim − (r′aim · ξ3(r)) ξ3(r)

|r′aim − (r′aim · ξ3(r)) ξ3(r)|
, (3.19)

where the convention of unit length eigenvectors is implicit.

That is, r′ is computed as the component of the direction towards raim that is orthogonal

to the eigenvector ξ3(r). As this limits r′ to the local plane spanned by ξ1(r) and ξ2(r) (see

equation (2.33)), there is no need to compute ξ1(r) and ξ2(r) explicitly. This approach is

illustrated in figure 3.5.

Notice that while the Dormand-Prince method is a variable step ordinary differential

equation solver, a maximum step length should be specified as to prevent the trajectory

from overstepping the half-plane Fr. This was done by setting a maximum trajectory step

length of |raim − r|. Also note that while simpler in terms of implementation, choosing

a constant step iterative solver is problematic in terms of choosing step length. While it

seems natural to choose a fraction of the inter-levelset step ∆i, such an approach would

couple trajectory accuracy to the prescribed level of mesh detail. This kind of dependency

is undesired, especially as ∆i is changed dynamically over the course of computing a single

manifold. Alternatively, the user could specify a constant step length which may or may not

be appropriate for the considered eigenvector field.

Figure 3.5: Illustration of algorithm for guiding trajectories in ξ1(r) and ξ2(r). The vector raim−r
is projected into the plane spanned by ξ1(r) and ξ2(r). The resulting vector is normalized and passed
to the Runge-Kutta iterative solver.
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The trajectory is terminated and the final point rend returned if rend satisfies equations

(3.14) and (3.15). If no such point is found, the trajectory is terminated when it accumulates

a length exceeding lmax |raim − Ci(sk)|, where lmax is a scalar parameter greater than 1. Here,

trajectory length is computed as the sum of all constituent steps dr. As there is no guarantee

for finding a point that satisfies both conditions (3.14) and (3.15) with any given trajectory

originating from Ci, several attempts may be needed from different initial positions.

As to limit the number of trajectories we compute in order to find any single point,

we track how each trajectory is terminated. Specifically, we note whether each trajectory,

corresponding to a specific start point Ci(sk) along Ci, reaches Fr. If the trajectory hit Fr,
we also track whether the distance |rend −Mi,j| overshot or undershot with regard to ∆i.

For example, if we find that |rend −Mi,j| < ∆i, we consider the corresponding trajectory

to undershoot with respect to the target point Mi+1,j. Conversely, if |rend −Mi,j| > ∆i, we

consider the corresponding trajectory to overshoot. This feedback information allows us to

dynamically choose the next initial position along Ci. We do this by increasing step length

as long as there is no output status change, and conversely backtracking and reducing step

length when a status change is detected.

Consider the search for a new descendant point Mi+1,j from the ancestor point Mi,j.

We use an imagined trajectory originating in Mi,j to set the initial conditions in terms of

trajectory termination status. Specifically, as Mi,j is part of Fr, this imaginary trajectory is

immediately terminated and considered as undershooting with respect to Mi+1,j. We then

move by one small step dsmin clockwise along Ci(s) and compute a trajectory according to the

previously outlined method. If this trajectory also reaches Fr, undershooting with respect to

∆i, the step length ds is increased by a factor 10 before moving on. A third trajectory will

then be computed using s = sstart+11dsmin. In general, as long as the feedback status — that

is, success at reaching Fr and under or overshoot with respect to ∆i — does not change, the

step length ds is increased until reaching a maximum value dsmax. However, if this feedback

status changes, we backtrack to the last initial position before the status change. Then we

attempt to move forward by one tenth of the last step forward. The step length is reduced

by a factor of 10 until either no status change is detected, or the minimum step length dsmin

is reached. In both of these cases we move on, refraining from increasing the step length

unless the status change was overstepped using dsmin. This process is illustrated in figure

3.6, where we proceed from undershooting with respect to ∆i to subsequently overshooting.

Note that status changes going from overshooting to undershooting are treated in exactly

the same way. This is also the case for status change regarding whether or not the trajectory

reached the half-plane Fr before being terminated due to exceeding the maximum trajectory

length lmax |raim − Ci(sk)|.
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Figure 3.6: Illustration of algorithm for determining trajectory initial positions along the topologi-
cal circle Ci(s), parameterized by s. Along the horizontal axis is the parameter s of the interpolated
topological circle Ci(s) on which trajectories to find new grid points are started. On the horizontal
axis we correspondingly have the distance from the resulting trial point rend to the ancestor point
Mi,j . This distance |rend −Mi,j | is denoted ∆(s) and assumed to be a continuous function of s.
The target inter-levelset step length ∆i is signified with a dashed white line within a grey field in-
dicating the accompanying numerical tolerance (see equation (3.14)). Note that ∆(sstart = 0) = 0,
as Mi,j is part of the half-plane Fr. Starting at the initial position Ci(s1 = smin), a trajectory
is developed in the ODE given by equation (3.19) until reaching the target half-plane Fr. As the
resulting distance of separation ∆(s1), like ∆(s0), is considered too small, ds is increased by a factor
of 10 proceeding to Ci(s2). As we also have ∆(s2) < ∆i, ds is increased once more, reaching the
imposed maximum dsmax. Sucessive steps of dsmax are then made along Ci(s) until we encounter
∆(s7) > ∆i. Backtracking to Ci(s6 + dsmax/10), we get ∆(s8) < ∆i. Reusing the same step length,
we get ∆(s9) > ∆i, prompting the algorithm to backtrack again to Ci(s8 + dsmax/100). This initial
position Ci(s10) yields an acceptable point, as defined by equation (3.14). Note that this dynamic
step management treats any endpoint status change, including failure to reach Fr, in the same way.

This method for choosing initial positions Ci(s) along the levelset topological circle rests

on the assumption that the distance ∆(s) = |rend(s)−Mi,j| behaves like a continuous func-

tion, possibly exhibiting asymptotic behavior near regions in which it is undefined. That

is, initial positions for which the corresponding trajectories fail to reach the half-plane Fr
within the allotted trajectory length. Based on this premise, we use the intermediate value

theorem to conclude that if ∆(s1) < ∆i and ∆(s2) > ∆i, then ∆(s) = ∆i for some s such

that s1 < s < s2. In order to limit the number of necessary trajectory attempts, we there-

fore endeavor to move along Ci with large steps wherever we are far from any intersections

∆(s) = ∆i. However, whenever we may locate an intersection within a subdomain of Ci(s),
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we decrease the step length ds as to maximize our probability of finding this intersection. In

order to manage resource requirements, we do not allow the step length to decrease beyond

the minimum step length dsmin. Conversely, we limit the step from being increased beyond

a maximum dsmax as to avoid stepping over regions of two or more intersections ∆(s) = ∆i.

Note that moving past an even number of such intersections would render these intersections

invisible to our method based on the intermediate value theorem, as no change in trajectory

termination status would be detected.

As we anticipate asymptotic behavior close to any regions in which ∆(s) is undefined,

these regions are also of great interest. We therefore manage ds in the same way here as

for the neighborhoods that are close to intersections ∆(s) = ∆i. This is the case both when

moving from a region in which ∆(s) is undefined and when we move into such a region. In

both cases, we endeavor to find an intersection within the aforementioned possible asymptotic

behavior.

In principle, all initial positions along Ci(s) could be tried in order to find the new point

Mi+1,j. However, trajectories from points that are far removed from Mi,j are likely to require

a long integration path, resulting in increased numerical error. Moreover, this accumulated

numerical error may decrease the likelihood of reaching Fr. In order to further limit the

number of computed trajectories, we therefore restrict the choice of initial positions to points

within a certain parameter interval sstart ± slim around the starting position. Specifically, we

start by moving clockwise around Ci(s) until reaching sstart +slim. We then move back to the

start position Mi,j = Ci(sstart) and proceed counter-clockwise in the same way until reaching

sstart − slim. If no new point Mi+1,j has been found after completing this search, we prompt

the exception management algorithm described in section 3.4.6.

3.4.4 Managing mesh point density and accuracy

As new levelsets Mi are constructed, the distance separating neighboring points usually

increases. Combined with the inter-levelset step length ∆i, these nearest-neighbor distances

determine the mesh density of the computed manifold. As the point mesh M is ultimately

converted into a continuous manifold by use of linear interpolation (see section 3.7), we note

that the accuracy of this resulting manifold depends on the mesh density of M . We manage

this mesh density by specifying upper and lower boundaries for nearest neighbor separation,

denoting these ∆F and δF , respectively. By requiring

δF ≤ ∆i ≤ ∆F (3.20)

for the inter-levelset step length and
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δF ≤ |Mi,j+1 −Mi,j| ≤ ∆F (3.21)

for levelset neighbor points, we hence limit the error of the following manifold interpolation

(see section 3.7).

After a set of descendant points {Mi+1,j}nj=1 have been computed from the ancestor points

{Mi,j}nj=1, according to the previously discussed method, all nearest neighbor separation

distances are reviewed. If any of these exceed ∆F , new points are inserted inbetween. We do

this by use of the same algorithm as before, except that we use ghost ancestor points, placed

on Ci halfway between the two nearest points. Specifically, if we have |Mi+1,j+1 −Mi+1,j| >
∆F , we use a ghost ancestor point Mi,j+1/2 between Mi,j and Mi,j+1 to compute Mi+1,j+1/2.

In this way, no new points are inserted using interpolations over larger separations than ∆F .

Note that as the ghost ancestor point does not itself have an ancestor to inherit a tangent

vector from, Tj+1/2 is computed as a weighted average of Tj and Tj+1. This weighting is

given by the distance from their respective mesh points to the ghost ancestor point.

In some cases, notably the spherical LCS described in section 4.2, nearest neighbor sep-

aration may instead decrease below δF . In this case, a point should be removed as long as

doing so does not result in any nearest neighbor separations exceeding ∆F . As may be seen in

figure 3.7, if any of the two neighboring points may be removed without violating the upper

limit of condition (3.21), the one resulting in the shortest interpoint separation is removed.

If no point may be removed without violating the upper limit of condition (3.21), no action

is carried out, as the minimum mesh point density threshold imposed by condition (3.21) is

critical in terms of limiting interpolation error.

Figure 3.7: Mesh density management by insertion or removal of points. (a) The distance
|Mi,j−1 −Mi,j−2| is identfied as greater than the maximum nearest neighbor distance ∆F . Con-
versely, the distance |Mi,j+1 −Mi,j | is found to be smaller than the minimum nearest neighbor
distance δF . (b) A new point Mi,j−3/2 is inserted between Mi,j−2 and Mi,j−1, as to keep nearest
neighbor distance smaller than ∆F . Noting that we have |Mi,j+1 −Mi,j−1| < |Mi,j+2 −Mi,j | and
δF ≤ |Mi,j+1 −Mi,j−1| ≤ ∆F , Mi,j is removed to keep nearest neighbor distance larger than δF .
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3.4.5 Curvature-guided step management

As detailed in section 3.4.4, all nearest neighbor manifold points are required to be separated

by a distance in the range specified by conditions (3.20) and (3.21). This leaves us with some

flexibility with regard to choice of the inter-levelset step length ∆i. As suggested by Krauskopf

et al. (2005), this is managed by monitoring local curvature. Aiming to represent local

manifold behavior with appropriate detail, we adjust ∆i dynamically. We start by defining

minimum and maximum angular offset thresholds, denoting these αmin and αmax, respectively.

The local curvature boundary parameters αmin and αmax specify an interval of acceptable

axial angle offsets α. As illustrated in figure 3.8, αi,j is defined as the angular offset between

the vectors Mi,j −Mi−1,j and Mi+1,j −Mi,j, both projected into Fr. A second analogous

criterion compares the product α∆i with corresponding upper and lower boundaries (∆α)min

and (∆α)max. By choosing appropriate bounds (∆α)min and (∆α)max, this criterion allows

us to set stricter axial angle offset requirements for large values of ∆i. Conversely, small

inter-levelset step lengths ∆i are allowed larger α-values. In the same way, large ∆i steps are

allowed smaller α-values. That is, we require that for each point Mi+1,j in a new levelset we

have

αmin < αi,j < αmax (3.22)

and

(∆α)min < ∆iαi,j < (∆α)max. (3.23)

Figure 3.8: Illustration of the axial angle offset α. We define αi,j as the angle between the vectors
Mi,j −Mi−1,j and Mi+1,j −Mi,j .

Having completed a levelset Mi+1 of descendant points, using the step length ∆i, we

review all angles {αi,j}nj=1. If any of these angles violate the upper thresholds (see equations

(3.22) and (3.23)) and ∆i ≥ 2δF , Mi+1 is discarded and recomputed using half the initial

step-length. Conversely, if for all αi,j, both lower thresholds are violated and 2∆i ≤ ∆F ,

the levelset is kept, but the inter-levelset step length ∆i is doubled for the next levelset.

Otherwise, ∆i is unaltered. Note that these local curvature tests are not used for inserted

points. This is because an inserted point ghost ancestor does not itself have an ancestor, nor
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a vector Mi,j+1/2−Mi−1,j+1/2 from which to compute an angular offset. However, when using

the inserted point Mi+1,j+1/2 as an ancestor, local curvature αi+1,j+1/2 is estimated by use of

the vector Mi+1,j+1/2 −Mi,j+1/2. That is, by use of the ghost ancestor point.

3.4.6 Handling failure to identify satisfactory point

As noted in section 3.4.3, no given trajectory from the topological circle Ci is certain to

produce an acceptable point in the half-plane Fr. It is therefore possible that none of the

attempted initial positions {Ci(sk)} along Ci yield acceptable points. Since any single missing

point prohibits us from computing further levelsets, proper handling of elusive points is

critical.

Although impossible to guarantee, the probability of finding any given point may be

significantly increased by taking appropriate measures in response to an initially failed point

search. The chosen strategy was centered around introducing incremental adjustments to

raim, while progressively relaxing the conditions for accepting candidate points.

Specifically, raim is adjusted by introducing an angular offset ∆φ along the half-circle of

radius ∆i in Fr (see figure 3.9). Note that while the range of such angular offsets should

be guided by the chosen maximal axial angle offset αmax, the number of trial offsets should

be guided by runtime considerations. Specifically, the angular offsets ∆φ should roughly

range from −αmax to αmax, ranging most or all acceptable axial angle offsets. In this way, we

attempt to correct poor initial choices of raim.

Figure 3.9: Adjustment of raim by introducing an angular offset ∆φ along the half-circle of radius
∆i in Fr. This adjustment is introduced as to account for poor initial choices of raim.

Having repeated the point search algorithm described in sections 3.4.3 using all raim

defined with all offsets {∆φ} without obtaining an acceptable manifold point, the conditions
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for point acceptance are relaxed. This is done progressively by increasing the tolerances ΓFr

and Γ∆ up to predetermined maxima Γmax
Fr

and Γmax
∆ . Having increased the point acceptance

tolerances to their maximum values without finding an acceptable point, the incomplete

levelset is discarded and recomputed with ∆i = δF . If the step length ∆i was already set to

its minimum δF , the procedure terminates.

3.4.7 Limiting accumulation of numerical noise

Early tests of the method of geodesic levelsets indicated that error buildup over many levelsets

would result in unexpected behavior for some non-analytical test fields. Specifically, small

ridges in the mesh would grow for every levelset, eventually resulting in seemingly chaotic

manifold structures. In some cases, this would cause loops in Ci, or otherwise make the

manifold fold into itself. This behavior is highly problematic as manifolds described by

equation (2.52) are by definition unable to self-intersect in any way.

In order to curb this accumulation of noise, we review each completed levelset Mi. Con-

sider a point Mi,j on this completed levelset. If any non-nearest neighbor Mi,j+k, k > 1 is

sufficiently close to Mi,j, the intervening levelset points are removed. That is, we cut Ci

short whenever |Mi,j+k −Mi,j| is sufficiently small compared to both the maximum nearest

neighbor separation ∆F and the accumulated Euclidean nearest neighbor separations along

the intervening points. Specifically, as we move along Ci, if for any point Mi,j+k, where k > 1,

we have

|Mi,j+k −Mi,j| < ∆F (3.24)

and

|Mi,j+k −Mi,j| < carc

k−1∑
l=0

|Mi,j+l+1 −Mi,j+l| , (3.25)

all pointsMi,j+l for l = 1, 2, ..., k−2, k−1 are removed. Here, carc is some constant 0 ≤ carc ≤ 1

used to control bulge tolerance. Specifically, carc determines by how much arc length, repre-

sented by cumulative nearest neighbor Euclidean norm, must be reduced in order to justify

point removal. That is, a large carc allows for removal of blunt bulges in Ci, while a small

carc only allows for removal of sharp bulges or loops. An example demonstrating this method

is displayed in figure 3.10. Note that while possibly causing some loss of manifold detail,

requiring compliance with conditions (3.24) and (3.25) prevents deletion of most conceivable

large bulge formations. Also notice that since no new points are added, no error is introduced

by this correction algorithm.
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Figure 3.10: Visualization of presently described noise removal algorithm. (a) The interpoint
distance |Mi,j+k −Mi,j | is found to be smaller than the minimum of ∆F and the parameter carc

times the accumulated Euclidean distance between nearest neighbor points from Mi,j to Mi,j+k.
(b) The levelset points intervening between Mi,j and Mi,j+k have been discarded, smoothing out
the corresponding topological circle Ci.

3.4.8 Termination criteria

As to avoid computing needlessly large manifolds, we define a maximum manifold size. We

use geodesic distance — the smallest distance along the manifold from r0 to the outer levelset

— as a proxy variable indicating size. This geodesic distance rM is approximated by the sum

of all completed inter-levelset steps according to

rM =
∑
i

∆i. (3.26)

To limit manifold size, we define a maximum geodesic distance rmax, requiring the method

to terminate whenever rM exceeds rmax. This was done in order to ensure that no manifolds

would become unnecessarily large, possibly straining the available memory.

A second criterion for immediate termination is implemented in order to prevent manifold

self-intersections. As already noted in section 3.4.7, this behavior should by definition not

occur and could therefore be considered an indication of failure. Evaluating whether every

new topological circle Ci intersects any previous topological circle Ck<i, we define the self-

intersection geodesic distance tracker variable q. Initially set to zero, q is incremented by ∆i

whenever a new levelset Mi is found to cause a self-intersection, and conversely reset to zero

whenever no new self-intersections are detected. In order allow for some numerical error, we

define the tolerance parameter qmax, requiring the manifold generation method to terminate

whenever q exceeds qmax.

Self-intersections are detected by use of triangle interpolations. As will be described

in detail in section 3.7, the complete mesh M is interpolated into a continuous surface by

forming triangular surface elements between neighboring mesh points. This is essentially done

by trilinear interpolation. Having computed a new levelset Mi, the area between Ci−1 and Ci
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is covered by triangles, whereupon each new triangle is compared with all previously added

triangles. If one or more of these triangles are found to intersect with any of the previously

added triangles, the levelset Mi is flagged as self-intersecting. Intersections between new and

previously added triangles were detected with the Möller-Trumbore ray-triangle intersection

algorithm, using a detection sensitivity parameter εMT = 10−8 (Möller and Trumbore, 1997).

Our algorithm for detecting triangle intersections is outlined in figure 3.11.

Figure 3.11: Flowchart describing our approach to identifying manifold self-intersections. This
was done by applying the above algorithm to all interpolation triangles A (see section 3.7) in a
pending levelset, each compared to all previously added interpolation triangles B. If one or more
intersections between any new triangle A and and existing triangle B is identified, the pending
levelset is flagged as self-intersecting.

As neighboring triangles defined with the chosen triangulation approach (see section 3.7)

share sides, intersections along sides were allowed. Although unlikely to occur, a side effect

of allowing shared sides is that two or more triangles are also allowed to coincide perfectly.

Note that this exception also allows for self-intersections, as long as the corresponding in-

tersecting triangles do so in exactly two points, each on the sides of both triangles. This

case, as well as the case of neighboring triangles, are both shown in figure 3.12. As could be

expected when using the double-precision number representation, these issues were found to

be insignificant. Even if a single triangle intersection is missed due to these inconsistencies,

neighboring triangles are very likely to be flagged as intersecting.
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Figure 3.12: Illustration of triangle intersection special cases. (a) Neighboring triangles sharing
a single side are accepted as these are a natural part of our triangulation algorithm (see section
3.7). (b) Unintended, but unproblematic, case of triangle intersections evading detection from the
algorithm presented in figure 3.11. As the triangle sides intersect in exactly two points, this case is
not recognized as a self-intersection.

3.4.9 Boundary treatment

The method of geodesic levelsets requires adding new points in complete levelsets forming

topological circles. In addition to prohibiting addition of further points after failing to com-

plete a single levelset, this forbids us from adding new levelsets after exceeding the domain

boundaries within which the Cauchy-Green eigenvalues and eigenvectors are defined. That

is, reaching these domain boundaries at a single point prohibits further development of the

manifold. In order to consistently detect the manifold behavior near the boundaries of the

region of interest U , the domain in which the Cauchy-Green eigenvalues and eigenvectors are

defined should extend some distance beyond U . In the case of periodic systems, such as the

ABC flow (see section 4.3), this is simply an exercise of utilizing this periodicity.

In aperiodic flow fields however, this requires us to perform advection and compute eigen-

values and -vectors for an extended domain enclosing the region of interest U . However, in

the absence of such a padding region, imposing periodic boundary conditions on the interpo-

lated eigenvector field allows us to continue the computation — even as parts of the manifold

have left the defined domain. Note that as long as no points outside U are selected as parts

of the resulting LCS (see section 3.8), this treatment will not introduce any error unless a

point strand returns to U after previously having left the domain of interest.

It should also be noted that the trajectories used to identify new mesh points are likely

to reach these domain boundaries before the actual mesh points. This unpredictability may

be controlled by limiting the maximal trajectory length parameter lmax (see section 3.4.3).
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3.5 Simplifying the method of geodesic levelsets by use

of radial trajectories

The method of geodesic levelsets was initially developed to compute manifolds defined by

being everywhere tangent to a single direction field r′ = f(r). That is, an initial position

in M, transported by f(r) for any time t remains within and spans the manifold M. As-

suming continuous trajectory changes while moving continuously along the topological circle

Ci, new points are found by simply advecting these initial positions in f(r). As noted by

Oettinger and Haller (2016), hyperbolic repelling LCSs are subsets of manifolds defined by

their orthogonality to the ξ3-field. In contrast to the trajectories used by Krauskopf and

Osinga (2003) and Krauskopf et al. (2005), trajectories in these manifolds are free to move

within the local ξ1-ξ2-plane. That is, these trajectories have an additional degree of freedom.

As described in section 3.4.3, this allows us to minimize trajectory travel distance by aiming

each trajectory towards a position expected to be close to the next mesh point.

A more direct approach than the previously described adaptation was implemented by

utilizing radial trajectories within the half-planes Fr. These trajectories are defined by the

cross product of the ξ3-field and the local tangent vector of C according to

r′ = ξ3(r)×Tj. (3.27)

The resulting direction r′ is then compared with |Mi,j −Mi−1,j|, reversing r′ if their inner

product evaluates to less than zero. This approach is further illustrated in figure 3.13.

Using the cross product of ξ3 and the Fr plane normal vector Tj to compute trajectories

requires special handling of the case where ξ3(r) ‖ Tj. This is because ξ3(r) × Tj goes to

zero as ξ3 is orthogonal to Fr. Specifically, whenever the condition

|ξ3(r)×Tj| ≥ Γ⊥ (3.28)

is violated, r′ is copied from the last step. Here, Γ⊥ is some scalar input parameter. Note

that condition (3.28) also serves the purpose of preventing numerical round-off error from sig-

nificantly altering the computation as ξ3(r)×T(r) becomes small. Since trajectories defined

by equation (3.27) necessarily remain within the half-plane Fr, equation (3.14) constitutes

the only remaining acceptance criterion for trajectory points. In other words, the trajectory

originating from the ancestor point Mi,j is developed according to equation (3.27) until equa-

tion (3.14) is satisfied. In order avoid overstepping, the Dormand-Prince method step length

dr is continuously limited from above according to

dr ≤ ∆iΓ∆. (3.29)
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Figure 3.13: Illustration of point search trajectories being generated by use of forced radial
trajectories within the half-plane Fr. A single trajectory is computed from the ancestor point
Mi,j by use of an adaptive step Runge-Kutta iterative ODE solver (see section 3.1.1). The input
directional vectors r′ are computed as the cross product of the inherited tangent vector Tj and
ξ3(r), oriented along Mi,j −Mi−1,j . That is, if the inner product r′ · (Mi,j −Mi−1,j) evaluates to
less than zero, r′ is reversed. The trajectory is terminated and the concluding point returned if
|r−Mi,j | is sufficiently close to ∆i (see equation (3.14)). The white dashed line represents the
intersection of the target manifold with the half-plane Fr.

That is, we impose a maximum step length given by the inter-levelset step tolerance. Finally,

the trajectory is terminated if no acceptable point has been found after accumulating an arc-

length exceeding lmax∆i, where, again, lmax is a scalar input parameter greater than 1. In

this case, the algorithm attempts to decrease the inter-levelset step length ∆i to δF and

recompute the levelset. If the failed levelset was computed using ∆i = δF , the computation

is terminated.

Note that while altering trajectory development, this simplified approach of radial tra-

jectories otherwise follows the same process as the previously described adaptation of the

method of geodesic levelsets. This includes construction of the initial levelset, management

of mesh density, elimination of numerical noise, and self-intersection control (see sections

3.4.1, 3.4.4, 3.4.7, and 3.4.8, respectively).
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3.6 Comparing adaptation approaches for the method

of geodesic levelsets

Sections 3.4 and 3.5 outline two related approaches to adapting the method of geodesic

levelsets for manifolds defined by orthogonality to a vector field ξ3(r). The first approach

relies on estimating the location of new points in order to guide trajectories in ξ1(r) and

ξ2(r). In contrast, the latter simply computes trajectories by forming the cross product of

the vector ξ3(r), to which the manifold is orthogonal, with a levelset tangent vector, inherited

from the initial circular levelset M1.

While we in both approaches follow trajectories in the ξ3-orthogonal manifold and add

points in a mesh of topological circles, they differ significantly both in terms of speed and

consistency. The approach of forced radial trajectories within Fr was found to be approx-

imately two orders of magnitude faster than the alternative method. This is because each

radial trajectory is bound to the half-plane Fr, essentially guaranteeing that it produces an

acceptable mesh point as long we choose a reasonable maximum arc length lmax∆i. That

is, we only compute a single trajectory per new mesh point. This one-to-one relationship

between computed trajectories and new mesh points is contrasted by the method of guided

trajectories, where thousands of trajectories may be needed to add a single mesh point. As

the probability of trajectories terminating with an acceptable mesh point is highly dependent

on having an appropriate aim point, the first method also suffers heavily in terms of speed

from erratic manifold behavior. Moreover, as all radial trajectory points are necessarily suffi-

ciently close to Fr, we only require a single acceptance criterion in the alternative approach,

given by equation (3.14).

In addition to superior performance, the method of forced radial trajectories has the

advantage of being significantly simpler in terms of implementation. The added complexity

associated with the approach of guided trajectories is mostly due to the added task of selecting

appropriate trajectory initial positions along the circle interpolation Ci. Moreover, the not

insignificant probability of being unsuccessful in locating a specific mesh point, even after

searching from initial positions along most of Ci, necessitates elaborate exception handling.

As outlined in section 3.4.6, this includes adjusting the aim point while gradually relaxing

our point acceptance criteria. The differences in complexity between the two considered

adaptation approaches may be seen by comparing the implementation structure overviews

presented in figures 3.14 and 3.15.

Like performance, the actual mesh point positions in the approach of guided trajectories

were found to be sensitive to the choice of aim points. Specifically, the accuracy of this

approach, in terms of reproducing reference manifolds, was found to be highly sensitive to

the algorithm for selecting aim points. For example, when replacing identification of the aim
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Figure 3.14: Outline of interaction between algorithm elements in the approach of guided tra-
jectories. Indicating our approach to object orientation, the numbered gray fields represent our
organization of the algorithm into separate layers, actualized as Python objects. (1) In the manifold
layer we combine levelsets into the resulting manifold, constantly monitoring termination criteria
and handling exceptions raised in the lower layer algorithm components. Specifically, this pertains
to failure with regard to identifying points, prompting us to reduce inter-levelset step length ∆i, or
ultimately terminate the process. (2) At the geodesic levelset layer, we combine points into sets,
handling exceptions raised in the point search algorithm by calling the elusive point management
algorithm (see section 3.4.6). This is also where suggested sets are revised by controlling mesh
density, axial angle offset, and removing unnecessary bulges and loops (see sections 3.4.4, 3.4.5, and
3.4.7, respectively). Finally, the corresponding interpolation triangles are added (see section 3.7).
(3) At the point layer, new mesh points are computed either by use of an existing ancestor point,
or by a ghost ancestor point chosen from the previous topological circle Ci−1. This start point is
then used to compute a trajectory in ξ1(r) and ξ2(r) toward the aim point raim within Fr. This is
done by first setting the initial conditions for our dynamic search for initial positions Ci(s). We do
this by imagining a trajectory from the start point Mi,j , immediately terminating as Mi,j is in Fr.
Subsequent initial positions are then computed and used to generate trajectories providing feedback
to the initial position selection algorithm. Whenever an acceptable point is found, it is returned to
the geodesic levelset layer. Alternatively, if no such point is found an exception is raised.
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Figure 3.15: Outline of interaction between algorithm elements in the approach of radial tra-
jectories. Indicating our approach to object orientation, the numbered gray fields represent our
organization of the algorithm into separate layers, actualized as Python objects. (1) In the manifold
layer we combine levelsets into the resulting manifold, constantly monitoring termination criteria
and handling exceptions raised in the lower layer algorithm components. Specifically, this pertains
to failure with regard to identifying points, prompting us to reduce inter-levelset step length ∆i, or
ultimately terminate the process. (2) At the geodesic levelset layer we combine points into levelsets.
Note that no elusive point management routine is necessary, as we are virtually guaranteed to find
an acceptable point with each attempted trajectory. This is also where suggested sets are revised by
controlling mesh density, axial angle offset, and removing unnecessary bulges and loops (see sections
3.4.4, 3.4.5, and 3.4.7, respectively). Finally, the corresponding interpolation triangles are added
(see section 3.7). (3) The point layer simply consists of trajectory generation, returning acceptable
points to the geodesic levelset layer. Alternatively, if no such point is found, an exception is raised.
Note that failure to identify an acceptable point is very rare when using forced radial trajectories.

point raim by linear extrapolation of Mi,j −Mi−1,j with the Runge-Kutta step described in

section 3.4.1, we experienced large gains both in terms of performance and accuracy. This

accuracy discrepancy is surprising, as all mesh candidate points are computed by developing

trajectories in ξ1(r) and ξ2(r), regardless of choice of aim point. Consequently, all mesh

point position error should originate either from the Runge-Kutta iterative ODE solver, the

initial levelset approximation (see section 3.4.1), or the topological circle interpolations Ci

used to insert ghost ancestor points. Although it is conceivable that these observations could

be accounted for by shortening of trajectory arc lengths, hence reducing accumulated error,

this behavior lessens the credibility of the approach of guided trajectories.

Due to its superior speed, consistency, and simplicity, the approach of forced radial tra-

jectories was found preferable. All results presented in this report are generated by use of
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this method. It should however be noted that while deemed inferior for the purposes of this

project, the approach of guided trajectories with appropriate choice of aim points, yielded

practically identical results to those of forced radial trajectories in selected test cases.

3.7 Constructing manifold surfaces from point meshes

Having identified a point mesh M sampled from the target manifold M, we attempt to

reproduce M by use of a linear interpolation scheme. Linear interpolation was chosen as

implementation of higher order interpolation schemes is complicated considerably by the

irregular structure of M .

Our primary objective for reproducing continuous manifold approximations is visual rep-

resentation, rather than providing analytical expressions for M. Therefore, no such approx-

imated analytical expressions are computed. Instead, three-dimensional plotting algorithms,

such as the triangulated surface plotting routine plot trisurf from the Python matplotlib

library, may be used to produce visual representations of manifolds and LCSs.

These surface plotting schemes require the use of some triangulation algorithm to define

the triangular surface elements constituting a manifold. Standard triangulation algorithms

such as Delaunay triangulation (Berg et al., 2008) were found unsuitable for this purpose,

as these do not take the specific mesh structure of M into account. For instance, Delaunay

triangulation was not only found to omit necessary surface triangles, but also included unde-

sirable surface triangles, especially close to manifold creases. A custom triangulation method

was therefore devised based on the method of geodesic levelsets and the corresponding mesh

structure. Like in the method of geodesic levelsets, new triangles are added by starting in

the manifold initial position r0 and moving progressively outwards through the levelsets Mi.

Within a levelset Mi, we move clockwise around Ci, adding triangles covering the surface

intervening between Ci and Ci+1.

As illustrated in figure 3.16, this triangulation scheme primarily handles four main cases.

In order to outline these cases, we consider a single point Mi,j. The first of these, displayed

in figure 3.16a, is the base case where no points have been added or removed as to manage

mesh density, or eliminate numerical noise. Following the convention that triangles associated

with Mi,j should cover the surface approximating the quadrilateral Mi,jMi,j+1Mi+1,jMi+1,j+1,

two triangles are added. Expressed by their vertices, these are Mi,jMi+1,jMi+1,j+1 and

Mi,jMi,j+1Mi+1,j+1 (see figure 3.16). Notice how, when adding quadrilaterals according to

this algorithm for each point, surfaces are formed between all neighboring points within

M . The exception to this is the surface between the manifold initial position r0 and the

first topological circle C1. This surface is simply reconstructed by forming triangle surfaces

{M0M1,jM1,j+1}nj=1, where M0 denotes the manifold initial position r0 and n is the number
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of points in the initial levelset. Also note the implicit convention of periodic intra-levelset

numbering, that is, Mi,j+n = Mi,j.

Figure 3.16: Illustration of our dedicated triangulation algorithm. (a) The fundamental case
where each new point has an ancestor and no points have been removed as to preserve mesh density.
Associated with pointMi,j , we then insert the trianglesMi,jMi+1,jMi+1,j+1 andMi,jMi+1,j+1Mi,j+1,
each expressed by their vertices. (b) The extra point Mi+1,j+1/2 in gray has been inserted as to
preserve the prescribed mesh density. Replacing the righmost quadrilateral in case (a), we now
use the three triangles Mi,jMi+1,jMi+1,j+1/2, Mi,jMi+1,j+1/2Mi,j+1, and Mi,j+1Mi+1,j+1/2Mi+1,j+1.
(c) The point Mi+1,j has been removed as to retain the prescribed mesh density. Here, the mesh
point Mi,j−1 is merely associated with the triangle Mi,j−1Mi,jMi+1,j−1, while Mi,j is associated
with Mi,jMi+1,j−1Mi+1,j+1, and Mi,jMi,j+1Mi+1,j+1. (d) A bulge has been removed. Note that
while this case is handled in exactly the same way as situation (c), we could possibly be required
to remove several points forming a larger bulge or loop. This instance may cause some overlap as
several points in Mi−1 form triangles with the bulge-bordering points Mi,j and Mi,j+k. However,
the uncommon nature of such sudden bulges prompted us to accept this problematic case.

The two remaining cases are necessary to handle point insertion and removal. As described

in sections 3.4.4 and 3.4.7, this is necessary to preserve the specified mesh density and limit

accumulation of numerical noise. When an extra point Mi+1,j+1/2 is inserted between Mi+1,j

and Mi+1,j+1, the surface approximating the quadrilateral Mi,jMi,j+1Mi+1,jMi+1,j+1 is recon-

structed by use of three triangular surfaces. Again expressed by their vertices, these are

Mi,jMi+1,jMi+1,j+1/2, Mi,jMi,j+1Mi+1,j+1/2, and Mi,j+1Mi+1,j+1/2Mi+1,j+1 (see figure 3.16b).

Now, instead consider the final case where the point Mi+1,j has been removed, either to

preserve the desired mesh density, or to remove a bulge or loop. In this case, the surface

approximating the two quadrilaterals Mi,j−1Mi,jMi+1,j−1Mi+1,j and Mi,jMi,j+1Mi+1,jMi+1,j+1
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are reconstructed using the three triangular surfacesMi,j−1Mi,jMi+1,j−1, Mi,jMi+1,j−1Mi+1,j+1,

and Mi,jMi,j+1Mi+1,j+1. This may be seen in figure 3.16c. Note that the nearest neighbors

of the the removed mesh point Mi+1,j are used in these triangulations, regardless of whether

these are descendant points or inserted points. As may be seen in figure 3.16d, removal of

loops or bulges consisting of one or more points are handled in the exact same way. Note

that if several consecutive points are removed like this, the resulting triangle surface elements

may be uncharacteristically large, or even partly overlap. This was however found to be a

very unusual occurrence with insignificant effects on the computed LCSs.

3.8 Identifying repelling hyperbolic LCSs as manifold

subsets

Starting by identifying a large number of manifolds defined by equation (2.52), developed

from initial positions within UABD, we aim to identify a sufficiently comprehensive set of

surfaces that satisfy LCS condition C. That is, we identify surfaces in our domain of interest

that are everywhere perpendicular to the direction of maximal repulsion. For the sake of

simplicity, these initial positions are selected among the grid of tracer initial positions used

to compute the flow map and its derived properties. In other words, we select the subset of

these tracer initial positions that fall within UABD. The number of selected manifold initial

positions may be controlled by superimposing a mask onto the tracer initial position grid

points, evaluating only every nf
th point in each direction. In this way, we effectively select

initial positions within UABD from a grid of prescribed density. This is done in order to reduce

the number of redundant initial positions, that is, initial positions that are members of the

same manifold.

As the repelling hyperbolic LCSs of the system should be a subset of the resulting surfaces,

we then proceed by applying existence criteria A, B and D to the computed manifolds.

Consider a computed manifold mesh M . Each point Mi,j in M is reviewed and categorized

based on its inclusion in UABD, or lack thereof. This is done by evaluating equations (3.8),

(3.9), and (3.10), using the interpolated eigenvalue and eigenvector fields (see section 3.2),

yielding the mesh point sets {MABD} and {M���ABD}. Note that while conditions A and B

are independent of our parameter choices, D is sensitive to our choice of ε (see equation

(3.10)). This choice determines our tolerance to offsets from the actual LCS. That is, as

we compare the considered point Mi,j with neighboring points, separated by a distance ε

in each ξ3-direction, we could detect a peak in terms of λ3 as long it is within the interval

[Mi,j − εξ3(Mi,j),Mi,j + εξ3(Mi,j)] along ξ3(Mi,j).

It seems natural to choose ε based on the tracer initial position grid spacing; it being

indicative of the smallest scale of eigenvalue field detail. That is, if we choose ε larger than
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this grid spacing, we risk overstepping significant field behavior. Conversely, if chosen too

small, we risk missing LCSs that do not pass sufficiently close by any mesh points. This is

particularly crucial when selecting manifold initial positions in UABD from the tracer initial

position grid points, as there is no a priori reason to assume that these points are close to

the underlying LCSs. In conclusion, it seems reasonable to choose ε approximately one order

of magnitude smaller than the tracer initial position grid spacing.

Starting from the manifold initial position — assumed to be part of the LCS candidate

— and moving clockwise around levelsets in the order they were added, the mesh points

{MABD} are included if for any of the previously added points {Lk}

|MABD − Lk| < ΓABD∆F (3.30)

holds. That is, mesh points found to be part of UABD are added if they are sufficiently close

to any previously added point. This distance threshold is defined by the maximal nearest

neighbor mesh point separation ∆F and the scalar input parameter ΓABD. In this way,

we ensure that LCSs extracted from a single manifold are in fact coherent by avoiding the

addition of isolated points.

Subsequently, we add all mesh points outside UABD, {M���ABD}, that satisfy

|M���ABD − Lk| < ΓABD∆F (3.31)

for any k. Note that {Lk} now consists of — and is limited to — all the previously added

points from {MABD}. These new points are included in order to account for numerical

error with respect to the Cauchy-Green eigenvalue and eigenvector interpolations, used to

determine ABD subdomain inclusion. Moreover, they support development of continuous

LCS candidate surfaces that are more conducive to analysis by inspection. Note that along

with the added mesh points, we also add all the corresponding interpolation triangles for

which all vertices are part of the LCS. Finally, as to smoothen out our LCS boundaries,

all manifold triangle surface elements for which at least two out of three vertex points have

been accepted, are added to the LCS candidate visual representation. An example of this

extraction process is displayed in figure 3.17.

Having extracted the manifold subsets on which conditions A, B, and D (see equations

(3.8), (3.9), and (3.10)) are satisfied, we are left with surfaces that, when allowing for some nu-

merical error, have been determined to comply with all the LCS acceptance criteria proposed

by Farazmand and Haller (2012b). In the interest of clarity, the smallest LCS candidates

are discarded, as these may be expected to have limited impact on the flow system (Faraz-

mand and Haller, 2012a). This is done by computing LCS area according to equation 3.34

and defining a minimum area threshold Amin. Finally, as a sanity check, any LCS candi-
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(b) Extracted LCS from sample manifold
displayed in (a).

Figure 3.17: LCS extraction from sample manifold. The sample manifold was computed using
the steady ABC flow system described in section 4.3.

dates with average repulsion λ̄3 smaller than 1, are removed. This is done to ensure that all

identified repelling hyperbolic LCS are in fact repelling, as established by condition A. The

remaining LCS candidates are then accepted as repelling hyperbolic LCSs.

The repulsion average λ3 was determined for each LCS candidate surface by a weighted

average of λ3, evaluated at all its constituent points. Note that, as the interpolated eigenvalue

field may exhibit oscillatory behavior, some points were found to exhibit λ3-values several

orders of magnitude different from all neighboring points. In order to prevent small numbers

of outlier points from severely skewing λ3, some data points were neglected. Specifically, the

adjusted repulsion average λ̂3 was computed iteratively by alternately removing max(λ3) and

min(λ3). Each adjustment was then accepted if∣∣∣∣λ3

λ̂3

− 1

∣∣∣∣ > 0.1, (3.32)

prompting us to accept λ̂3 as the new baseline average λ3. These adjustments were repeated

until neither max(λ3) nor min(λ3) could be removed without violating condition (3.32).

The weighting of this repulsion average was chosen to approximate the surface area rep-

resented by each sampled point Mi,j. Specifically, the weight of Mi,j, Wi,j, was computed

as

Wi,j =
∆i + ∆i−1

2

|Mi,j −Mi,j−1|+ |Mi,j+1 −Mi,j|
2

. (3.33)

That is, the weight of each manifold point Mi,j is defined as to approximate the region of

M that is closer to Mi,j than to any other mesh point in M . The physical analogue to this

weighting is illustrated in figure 3.18. Accordingly, we define the weight of the initial position

point M0 as π(rinit/2)2. Moreover, the pseudo-surface area AM, corresponding to the mesh
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accumulated total of these point weights, is used as an estimate for the LCS surface area.

We compute AM as

AM =
∑
i,j

Wi,j. (3.34)

Note that all weights are computed prior to extraction of LCS points. The pseudo-surface

area AM is then computed by summing the weightings corresponding to its constituent mesh

points.

Figure 3.18: Visualization of the weighting used to compute surface average repulsion λ̄3 and
surface pseudo-surface area AM. The weight of Mi,j is an approximation of the region ofM that is
closer to Mi,j than any other mesh point (shaded in gray). This is done by computing the area of
the rectangle of sides equal to the average of Mi,j nearest neighbor distances in the radial direction,
as well as along Ci.

Note that while the preceding discussion focuses on identification of repelling hyperbolic

LCSs, the method is very easily adapted as to instead identify attracting hyperbolic LCSs.

This may be done by advecting tracer particles in the time-reversed interval [t, t0] and there-

after proceeding as discussed.
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3.9 Managing computing time and resource require-

ments

Given that large numbers of manifolds have to be computed from initial positions in order to

ensure sufficient coverage of potential LCSs, significant performance gains may be attained

from dividing manifold development into separate processes. As each manifold may be com-

puted independent of all other manifolds, no communication is required between the various

processes. We disperse the workload among several computation cores by use of MPI. Specifi-

cally, this was done by use of the mpi4py library in Python. Given the levelset based structure

exhibited by the method of geodesic levelsets, it seems highly impractical to parallelize the

development of individual manifolds. In particular, the dynamic inter-levelset step length

described in section 3.4.5 and setwise monitoring of numerical noise and self-intersections

described in sections 3.4.7 and 3.4.8, would not only require significant overhead in terms

of inter-process communication, but also prohibit rapidly progressing point strands from

progressing ahead of slower ones.

Like development of manifolds, the flow map and flow map Jacobian “advection” is easily

parallelizable with minimal needs for inter-process communication. This was done by evenly

dispersing the grid particles among all available processing units and subsequently gathering

the results after completing each computation. In this way, performance for computing the

flow map and flow map Jacobian on large grids may be increased greatly. The potential for

speedup is usually limited by the available number of processing units. Representing a much

smaller fraction of the total computational load, preparation of manifold initial positions was

distributed within a single cluster node by use of the Python multiprocessing library.

The majority of code used in this project was written in Python as to promote accessibility,

as well as ease of development. However, as manifolds could consist of tens of thousands of

points, each iteratively computed using a Runge-Kutta ODE solver, performance issues may

quickly arise. Unsurprisingly, systematic line profiling of the code implementation revealed

that time expenditure was largely concentrated in computation of point search trajectories,

self-intersection checks, and noise removal.

Most prominent of these, computation of point search trajectories is performed for each

new mesh point, possibly requiring a large number of Dormand-Prince method iterations.

In order to improve performance, the Dormand-Prince iterative solver, as well as acceptance

criteria controls, were reimplemented as C-functions. This was done by use of Cython, an

optimizing static compiler that allows for calling C-code from Python, as well as tuning

Python code to C performance. Specifically, the Runge-Kutta solver, as well as frequently

used functions such as vector normalization and computing Euclidean norms were optimized

in C and called directly from Python. This yielded large performance gains.
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Similar treatment was given to the self-intersection check and noise reduction implemen-

tations, yielding major performance benefits. However, as these modules were comparatively

less demanding in terms of workload, the associated absolute performance benefits were

moderate.
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Results

Highlighting the strengths and limitations of the previously outlined method, the present

chapter includes results presented as plots and charts, key insights, and accompanying con-

siderations with regard to further application. Starting out by demonstrating the efficacy

of our adapted method of geodesic levels in terms of reproducing a reference manifold, we

subsequently consider a reference LCS before finally displaying some case examples. In ad-

dition to an analytical flow test example, we also investigate the oceanic currents found in a

Norwegian fjord, supplied by a gridded velocity field model.

4.1 Manifold identification reference test case

In order to test the performance of the adapted method of geodesic levelsets in terms of

computing manifolds defined by equation (2.52), an analytical test case was defined according

to

ξ3(x, y, z) =

2 cos(2x) sin(2y)

2 sin(2x) cos(2y)

−1

 . (4.1)

That is, we define a ξ3-field by equation (4.1) and use that ξ1 and ξ2 are both orthogonal

to ξ3 to compute a manifold defined by equation (2.52). Starting from the initial position

[π, π, π], the target manifold is analytically given by

z = f(x, y) = sin(2x) sin(2y) + π. (4.2)

As to investigate convergence, 7 manifolds were computed using different mesh densities.

Four of the resulting manifolds are presented in figure 4.1, while the input parameters corre-
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sponding to figure 4.1c may be found in table 4.1. Note that only the mesh density defining

parameters δF and ∆F , were varied, leaving the remaining input parameters constant.

Table 4.1: Manifold computation input parameters applied to the sinusoidal field, spherical LCS,
and ABC flow test cases. Note that for sinusoidal field and ABC flow convergence tests, the mesh
density parameters δF and ∆F were both varied simultaneously. That is, a factor K change in δF
was matched with a corresponding factor K change in ∆F . Parameters expressed in terms of δF
were also changed accordingly.

Parameter Value Description
rinit 0.001 Radius of initial levelset
∆1 2δF Initial inter-levelset step length
δF 0.04 Minimum nearest neighbor separation
∆F 0.16 Maximum nearest neighbor separation
Γ∆ 0.005 Inter-levelset separation tolerance factor
αmin 5 Minimum axial angular offset (◦)
αmax 25 Maximum axial angular offset (◦)

(∆α)min 2αminδF Lower axial angular offset parameter
(∆α)max 2αmaxδF Upper axial angular offset parameter
lmax 5 Maximum arc length to initial separation factor
qmax 5δF Maximal distance of continuous self-intersections
rmax 2π Maximum cumulative geodesic distance
Γ⊥ 10−4 Eigenvector field orthogonality tolerance
carc 0.7 Noise removal arc length tolerance

As may be seen in figure 4.1, the manifolds computed using minimum inter-levelset sep-

arations δF of 0.12, 0.08, 0.04, and 0.01 all succeed in terms of capturing the large-scale

behavior of the target manifold. It is however clear that increased mesh density contributes

towards increased accuracy. The relation between mesh density and error for this test case is

presented in figure 4.2. Here, the average absolute value mesh point error Ē is computed as

the average of absolute value z-offsets between mesh points and the function value of (4.1)

at the corresponding xy-coordinate. Denoting the coordinates of the mesh point Mi,j as xi,j,

yi,j, and zi,j, respectively, Ē is computed as the LCS mesh point average of

Ei,j = |zi,j − sin(2xi,j) sin(2yi,j)− π| . (4.3)

It seems that, in the investigated mesh density interval, the average position error of com-

puted manifold points scales quadratically with the minimum nearest neighbor separation.

This is likely primarily due to the decreased interpolation spans necessary to insert ghost

ancestor points (see section 3.4.4). Moreover, as the mesh density is increased, the linear

mesh interpolation becomes more accurate, accounting for the main visual discrepancies in

figure 4.1.
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Figure 4.1: Convergence test for the sinusoidal field target manifold described in equation (4.2).
Note that all non-mesh density parameters are kept constant (see table 4.1). We notice that,
while lacking the apparent smoothness of higher mesh density manifolds, subfigures (a) and (b)
display all the appropriate principal characteristics of the target manifold. Moreover, while using
approximately a factor 1/16 as many mesh points as the highest density alternative, the manifold
representation in (c) is visually indistinguishable from (d).

Like manifold point position accuracy, the number of points necessary to constitute a

manifold of a given size increases quadratically as minimum nearest neighbor separation is

decreased. From this we may infer an approximately reciprocal function relationship between

average mesh point error Ē and mesh density. Note that this increased mesh density is

expensive both in terms of computation time and working memory. This is because our most

expensive operations — computing trajectories to identify new points and performing self-

intersection checks — scale linearly and quadratically with respect to number of manifold

points, respectively. Moreover, our memory requirements naturally increase as the number

of mesh points increases.
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Figure 4.2: Error scaling of the sinusoidal field (see equation (4.2)) convergence test. Denoting
the average deviation of mesh points from the target manifold Ē, this average error is plotted as
a function of the minimum nearest neighbor separation δF . Using δF as an indicator variable for
mesh density, we uncover a quadratic relation Ē ≈ δ2

F . Note that as grid density, that is points per
area, is expected to scale with 1/δ2

F for this test, we anticipate a reciprocal function relationship
between average mesh point error and mesh density.

4.2 Lagrangian coherent structure identification refer-

ence test case

Verifying the efficacy of our method for identifying repelling hyperbolic LCSs requires a

reference test example. An analytical flow system displaying a single spherical repelling

hyperbolic LCS for short time intervals is given by

ẋ =

x sin(π(|x| − k))/ |x|
y sin(π(|x| − k))/ |x|
z sin(π(|x| − k))/ |x|

 , (4.4)

where k is the radius of the spherical LCS and |x| =
√
x2 + y2 + z2. As may be seen in

figure 4.3, this system exhibits a sharp peak in terms of radial repulsion at |x| = k. This was

assessed by transporting an evenly distributed 200×200×200 tracer particle grid covering the

domain U = (x, y, z) ∈ [−2, 2]3 for 1 time unit with k = 1. The corresponding Cauchy-Green

eigenvalues and eigenvectors were then computed as described in chapter 3. The resulting
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average λ̄3(|x|), obtained by use of SVD (see section 2.2.4), was then plotted as a function

of radius. Given that we have ẋ(|x| = 1) = 0, there is no non-radial repulsion here. We

therefore expect to find a repelling hyperbolic LCS forming a sphere of radius k = 1. Note

that these considerations only hold for short time intervals, as trajectories in equation (4.4)

eventually converge at stationary points. The rather short time interval of 1 time unit was

chosen to account for this system feature.

0.0 0.5 1.0 1.5 2.0

|x|

0

100

200

300

400

500

λ̄
3

Figure 4.3: Domain average λ3 as a function of distance from the origin. We notice that, while
repulsion remains very modest for most of the interval, we have a sharp peak near |x| = 1. This
result indicates that any manifold following the sphere of radius |x| = 1 is exceedingly likely to be
a repelling hyperbolic LCS, as such a surface would function as a local maximizer in terms of λ3.

Employing the same particle grid covering the domain U = (x, y, z) ∈ [−2, 2]3, 291 initial

positions within UABD (see equations (3.8), (3.9), and (3.10)) were computed and used to

identify candidate manifolds. Note that these initial positions were selected from a total of

2329833 candidate positions using nf = 20 (see section 3.8). The resulting manifolds were

computed using the parameters displayed in table 4.1. Repelling hyperbolic LCSs were then

extracted from the candidate manifolds using the method described in section 3.8, employing

a smoothing tolerance of ΓABD = 1.2, Amin = 1, and ε = 0.005 (see equation 3.10). Note that

this ε is one fourth of the tracer initial position grid spacing of 0.02. The result, displayed in

figure 4.4, was a total of 3 LCSs, all clustered at the sphere of radius k = 1. As the target
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LCS was successfully reproduced, avoiding false positives, this test example was found to

substantiate the efficacy of our method.
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Figure 4.4: Identified LCSs in the system described by equation (4.4), considering the time interval
t ∈ [t0, t0 + 1]. The resulting LCS structure consists of 3 component structures, each overlapping
onto the sphere of unit radius. Noting the sharp peak in repulsion observed in figure 4.3, this result
seems reasonable. Moreover, we note from the velocity field definition (see equation (4.4)) that
ẋ(x) = 0, as long as |x| = 1. Therefore, at |x| = 1, all repulsion must necessarily be radial. These
considerations prompt us to expect to find this spherical LCS of unit radius.

4.3 Steady ABC flow

Previously targeted for investigated with regard to LCS theory by for example Oettinger and

Haller (2016), the Arnold-Beltrami-Childress flow (ABC flow) is a three-dimensional solution

to the Euler equations given by

ẋ = A sin(x) + C cos(y)

ẏ = B sin(x) + A cos(z)

ż = C sin(y) +B cos(x).

(4.5)
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Here, A, B, and C are scalars. Note that the ABC flow is divergence free and displays

2π-periodicity in x, y, and z.

Using the same scalar parameters as Oettinger and Haller (2016); A =
√

3, B =
√

2,

and C = 1, a grid of 256 × 256 × 256 particles evenly distributed over the domain U given

by (x, y, z) ∈ [0, 2π]3 was advected according to the description in section 3.1 over the time

interval t ∈ [0, 5]. Having computed the corresponding Cauchy-Green eigenvalues and eigen-

vectors by use of SVD, continuous ξ3-, λ2-, and λ3-fields were reconstructed by use of periodic

tricubic interpolation (see sections 3.2.1 and 3.2.2).

With the purpose of limiting memory requirements, as well as computation time — while

still preserving reasonable manifold accuracy — convergence tests were conducted in order

to determine adequate mesh density for this system. A representative result, focusing on

a single manifold, is displayed in figure 4.5. We notice that more details are distinguished

as mesh density is increased. It is however clear that all displayed manifold reproductions

capture the same principal structures. Moreover, we observe that the manifold reproduction

presented in figure 4.5d exhibits some undesirable behavior. Specifically, the bulge visible at

approximately x = 2, y = 2, z = 1.5 may be the result of numerical noise, as this structure

seems uncharacteristic of the surrounding neighborhood.

Noting our previous considerations with respect to performance and accuracy highlighted

in section 4.1, as well as the noise found in very high density meshes, it seems reasonable to

continue using the input parameters displayed in table 4.1. Limiting mesh density according

to these parameters allows us to compute sufficiently large manifolds without exhausting

available memory.

Given that all trajectories defined by equation (3.18) should be entirely contained in a

single manifold, such trajectories are useful in terms of confirming manifold behavior. As can

be seen in the example case displayed in figure 4.6a, developing 200 trajectories from the same

initial position on the manifold substantiates that our selected manifold successfully captures

the dynamics of the interpolated Cauchy-Green eigenvector field. This was generally found

to be the case. Note that these trajectories are each defined as a unique linear combination

of ξ1 and ξ2.

While displaying convincing agreement with our manifold representation, we observe that

these trajectories in ξ1 and ξ2 tend to converge on some parts of the manifold, while evading

other regions. In order to confirm the behavior of the manifold in these evaded regions, a sec-

ond set of tests were carried out using radially forced trajectories (see equation (3.27)). Still

employing the test case from figure 4.6a, these trajectories are presented in figure 4.6b. The

highly convincing agreement between these trajectories and our manifold representation is

however expected, as all manifold points are computed using trajectories defined by equation

(3.27).
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Figure 4.5: Convergence test for a selected steady ABC flow manifold. Note that all non-mesh
density parameters are kept constant (see table 4.1). We also notice that while lacking the apparent
smoothness of higher mesh density manifolds, figures (a) and (b) display all the appropriate principal
characteristics of the higher density representations. Another interesting aspect of this convergence
test is the noise increase observed for δF = 0.01. That is, we observe oscillatory behavior that is
uncharacteristic of the surrounding domain.

Using the Cauchy-Green eigenvector and eigenvalue fields with equations (3.8), (3.9), and

(3.10), we evaluate the previously described 256 × 256 × 256 particle grid according to the

method described in section 3.8. The grid points that satisfy conditions A, B, and D, not

only form our set of manifold initial positions, but also approximate the underlying ABD

subdomain UABD, where LCSs may exist. This ABD subdomain representation corresponding

to the steady ABC flow of equation 4.5 is displayed in figure 4.7.

Selecting 618 initial positions from the gridded steady ABC flow ABD subdomain of

340951 candidate positions using nf = 8, manifolds were developed and LCSs extracted

according to the method described in chapter 3. These LCSs were extracted using an ABD

subdomain tolerance ΓABD of 1.75 (see section 3.8), a minimum pseudo-surface area of Amin =

6, and ε = 0.005. Note that this ε corresponds to approximately one fifth of the tracer initial

position grid spacing. The resulting LCS structure, consisting of 22 LCS element surfaces,

is highlighted in figure 4.8. We observe that although 22 LCS surfaces were identified,

these form two largely smooth and coherent structures. While these structures are partly
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(a) Trajectories as linear combinations
of ξ1(x0) and ξ2(x0) superimposed onto
a sample manifold.
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(b) Forced radial trajectories computed ac-
cording to equation (3.27) superimposed
onto a sample manifold.

Figure 4.6: Trajectories within the target manifold defined by equation (2.52) superimposed onto
the corresponding sample computed manifold. Notice that while the trajectories in (a) correspond
very well to the computed manifold, they converge and diverge according to the local nature of the
underlying field, making certain regions hard to investigate. In order to propely verify the manifold
behavior in these regions, a second test was devised by use of the forced radial trajectories described
in section 3.5. Note that the highly convincing agreement displayed in (b) is unsurprising, as these
trajectories are computed in the same way as the manifold mesh points.

connected, they are clearly distinct and therefore highlighted in different colors. Note the

clear correspondence between our ABD subdomain and the accompanying LCSs. This is

particularly evident when inspecting figure 4.7b and figure 4.8b, noticing the middle-right

side tubular structure. Note that the viewing angles of figures 4.7a, 4.7b, 4.7c, and 4.7d

correspond to those of figures 4.8a, 4.8b, 4.8c, and 4.8d, respectively.

Having extracted repelling hyperbolic LCSs from manifold candidates, we expect particles

initially situated on opposite sides of the LCS to diverge rapidly under advection in the

original velocity field over the considered time interval. As highlighted in figure 4.9, this

was tested by advecting two sets of initial positions, each situated on opposite sides of an

identified LCS over the considered time interval t ∈ [0, 5]. We observe that while the LCS

triangulation breaks down, the opposite-side particle groups have diverged notably from

figure 4.9a to 4.9b. Moreover, each particle group remains fairly compact, indicating that

the region of large stretching is situated between them. Note the large stretching observable

between the LCS mesh points. From this we infer that the target LCS crosses our LCS

reproduction, leaving significant portions of the mesh points on each side. This behavior

is not unexpected, as LCSs have infinitesimal width. Due to this infinitesimal width, any

numerical errors are expected to leave LCS mesh points slightly off the target LCS.
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(b) ABD subdomain viewed along the y-axis.
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(c) ABD subdomain viewed along the x-axis.
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(d) ABD subdomain isometric view.

Figure 4.7: Steady ABC flow subdomain UABD from various viewing angles. The ABD subdomain
is here represented as a partly transparent scatter plot of the constituent tracer initial position grid
points. That is, degree of coloring indicates ABD subdomain concentration along the respective
viewing angles. Note the clearly distinct tubular structures, particularly visible in (b) and (c).
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(a) LCSs viewed along the z-axis.
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(b) LCSs viewed along the y-axis.
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(c) LCSs viewed along the x-axis.
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(d) LCS isometric view.

Figure 4.8: Steady ABC flow repelling hyperbolic LCSs from various viewing angles, each main
structure indicated by distinct coloring. Note the agreement between the ABD subdomain displayed
in 4.7 and the corresponding LCSs.
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(a) Sample LCS and selected tracers prior
to advection (t = t0).
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(b) Sample LCS points, as well as the se-
lected tracer points after advection (t = t0 +
5).

Figure 4.9: LCS fragment along with selected tracer particles prior to and after advection over the
selected time interval t ∈ [0, 5]. Note that while the coherent LCS surface structure breaks down
after advection, the selected tracer particles are clearly separated based on initial placement. Also
notice the change in scale between (a) and (b), witnessing the large repulsion we expect to find at
the LCS. While the breakdown of the LCS surface structure is undesirable, it is not unexpected.
This is because the infinitesimal width of the target LCS structure makes mesh point placement
error unavoidable. An accurate LCS identification algorithm is therefore still likely to place similar
portions of the constituent mesh points on each side of the actual LCS, likely resulting in extensive
stretching like we observe in (b).
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4.4 Unsteady ABC flow

As demonstrated by Oettinger and Haller (2016), we may modify the ABC flow system by

perturbing the scalar parameters A, B, and C, producing a similar unsteady flow example.

This system is defined by

ẋ = A sin(x) + C̃(t) cos(y)

ẏ = B̃(t) sin(x) + A cos(z)

ż = C̃(t) sin(y) + B̃(t) cos(x)

. (4.6)

where

B̃(t) = B +B · k0 tanh(k1t) cos((k2t)
2)

C̃(t) = C + C · k0 tanh(k1t) sin((k3t)
2)
. (4.7)

Like Oettinger and Haller (2016), we choose k0 = 0.3, k1 = 0.5, k2 = 1.5, and k3 = 1.8.

The effect of introducing this time dependence can be seen in figure 4.10. We observe that

the range of the oscillations in B̃ and C̃ is over half the magnitude of B and C, respectively.

We therefore expect significant differences in terms of field behavior, although the principal

field behavior remains.

Treating this unsteady flow system in the same way as its steady counterpart (see section

4.3), we arrive at the ABD subdomain displayed in figure 4.11. This result is surprisingly

similar to its steady flow equivalent, displaying all the same principal structures. There are

however significant differences, both in terms of the sizes of the ABD subdomain openings,

as well as the general distribution density of ABD subdomain points. For example, by closely

inspecting figures 4.7a and 4.11a, we notice that the upper middle gap structure is somewhat

larger in the unsteady case. We also notice that the rather sharp outlines visible in figure

4.7b are accompanied by larger dark patches, indicating high density of ABD subdomain

points in figure 4.11b. Again, note that the viewing angles of figures 4.7a, 4.7b, 4.7c, and

4.7d correspond to those of figures 4.11a, 4.11b, 4.11c, and 4.11d, respectively.

Once again, we treat this unsteady ABC flow case in the same way as its steady equivalent.

Now with 676 initial positions extracted from 361461 candidate positions using nf = 8, we

develop manifolds using the parameters displayed in table 4.1. LCSs are then extracted using

ΓABD = 1.75, Amin = 6 and ε = 0.005. Note that this ε again corresponds to approximately

one fifth of the tracer initial position grid spacing. The resulting LCS formations are presented

in figure 4.12. These structures consist of 31 LCS surface elements organized into three

separate formations indicated by coloring. Although displaying larger differences from its
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Figure 4.10: ABC flow coefficient perturbations over time τ . We note that the perturbations
to B =

√
2 and C = 1 involve oscillations of range approximately equal to half the unperturbed

coefficients.

steady counterpart (see figure 4.8) than seen for the steady and unsteady ABD subdomains,

there are clear similarities. This is particularly clear when inspecting figures 4.7b and 4.11b,

as well as figures 4.7d and 4.11d. We notice that the two largest structures in the unsteady

case correspond very well to the structures found in the steady case. In addition to these

we have gained a third formation, separate from the original two. This new addition seems

reasonable by inspection of the accompanying ABD subdomain, for instance completing the

middle-left tubular structure now visible in both figures 4.11b and 4.12b.
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(a) ABD subdomain viewed along the z-axis.
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(b) ABD subdomain viewed along the y-axis.
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(c) ABD subdomain viewed along the x-axis.
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(d) ABD subdomain isometric view.

Figure 4.11: Unsteady ABC flow subdomain UABD from various viewing angles. The ABD
subdomain is here represented as a partly transparent scatter plot of the constituent tracer initial
position grid points. That is, degree of coloring indicates ABD subdomain concentration along the
respective viewing angles. Note the clearly distinct tubular structures, particularly visible in (b)
and (c), as well as the apparent similarities to the steady ABC flow ABD subdomain (see figure
4.7).
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(a) LCSs viewed along the z-axis.
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(b) LCSs viewed along the y-axis.
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(c) LCSs viewed along the x-axis.
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(d) LCS isometric view.

Figure 4.12: Unsteady ABC flow repelling hyperbolic LCSs from various viewing angles, each
main formation indicated by distinct coloring. Note the agreement between the ABD subdomain
displayed in 4.7 and the corresponding LCSs. Moreover, two of the three identified LCSs are very
similar to the steady ABC flow LCSs displayed in figure 4.8.
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4.5 Gridded ocean model data example

More typical of real world application, we finally apply our method to a gridded model data

set describing the oceanic currents of the Førde fjord in western Norway. This case is of

particular interest due to current plans for using the fjord as a mine tailings deposit. The

data set covers large parts of the fjord over six days, using time steps of one hour. However,

as tracer behavior at the coastline is ill-defined, tracer initial positions were selected within

a 500× 500 m region in the middle of the fjord. In this way we ensure that very few tracers

reach the coastline. The exact location of this domain U within the larger Førde fjord area

may be found highlighted by a white square frame in figure 4.13.

61.4◦N

61.5◦N

61.6◦N

4.9◦E 5◦E 5.1◦E 5.2◦E 5.3◦E 5.4◦E 5.5◦E

Figure 4.13: Overview of the outer Førde fjord area. Note the white square frame specifying
the investigated domain within the larger gridded model domain, indicated by current vectors and
dynamic coloring. Here, darker colors signify larger depths. The surrounding area is shaded in light
blue and green to indicate water bodies and land area, respectively.

Consisting of a rectangular velocity field grid, the Førde fjord data set has a constant

nearest neighbor grid point separation within the horizontal plane of 53.3 m. Vertical res-

olution is however variable, with grid points separated by 5-25 m from 50 m depth to 300

m. Using the entire fjord velocity data set, a 200 × 200 × 100 regular tracer grid, covering

the domain U , was advected over a 12-hour period, using the velocity field interpolation

described in section 3.1.2. Again computing continuous Cauchy-Green eigenvalue and eigen-

vector fields, from gridded data (see sections sections 2.2.4, 3.2.1, and 3.2.2), 1631 manifold
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initial positions were identified from 209945 candidate positions using nf = 5. This ABD

subdomain is presented in figure 4.14.
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(a) ABD subdomain viewed along the z-axis.
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(b) ABD subdomain viewed along the y-axis.
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(c) ABD subdomain viewed along the x-axis.
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(d) ABD subdomain isometric view.

Figure 4.14: Fjord current ABD subdomain from various viewing angles, z = 0 corresponding
to the fjord surface. The ABD subdomain is here represented as a partly transparent scatter plot
of the constituent tracer initial position grid points. That is, degree of coloring indicates ABD
subdomain concentration along the respective viewing angles. Note the clearly distinct horizontal
layers, particularly visible in (b) and (c).

Having computed the corresponding manifolds with the parameters summarized in table

4.2, LCSs were extracted using ΓABD = 1.2, Amin = 20000 m2, and ε = 0.1 m. Note that this

ε corresponds to approximately 1/25 of the tracer initial position grid spacing. The resulting

LCSs are displayed in figure 4.15, where LCS surface segments have been shaded according

to relative average normal repulsion (measured by λ̄3). The more strongly repelling LCS

segment surfaces are colored bright yellow while less repelling ones are indicated by darker

colors. Specifically, coloring was determined according to

γ =
log λ̄3

max(log λ̄3)
, (4.8)

where γ corresponds to the color scale displayed in figure 4.15e. Notice how the domain

boundary LCS behavior is captured in figure 4.15. This boundary description was enabled

by imposing periodic boundary conditions on the eigenvector interpolator (see section 3.4.9).
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Note how the nearly horizontal layers observable in figures 4.14b and 4.14c are recovered

in the LCS structure, visible in figures 4.15b and 4.15c. This indicates limited vertical mixing

of horizontal water layers in the investigated fjord region. An LCS neighbor tracer advection

test, similar to that of figure 4.9, for the most repelling fjord LCS is displayed in figure 4.16.

The clear separation of opposite-side neighboring tracers seems to confirm the transport

barrier characteristics of the intervening LCS surface.

Table 4.2: Manifold computation input parameters applied to the Førde fjord test cases. Note
that the units of derived input parameters correspond to those of their constituent base parameters.

Parameter Value Description
rinit 0.1 Radius of initial levelset (m)
∆1 4 Initial inter-levelset step length (m)
δF 2 Minimum nearest neighbor separation (m)
∆F 8 Maximum nearest neighbor separation (m)
Γ∆ 0.005 Inter-levelset separation tolerance factor
αmin 5 Minimum axial angular offset (◦)
αmax 25 Maximum axial angular offset (◦)

(∆α)min 2αminδF Lower axial angular offset parameter
(∆α)max 2αmaxδF Upper axial angular offset parameter
lmax 5 Maximum arc length to initial separation factor
qmax 5δF Maximal distance of continuous self-intersections
rmax 20000 Maximum cumulative geodesic distance (m)
Γ⊥ 10−4 Eigenvector field orthogonality tolerance
carc 0.7 Noise removal arc length tolerance
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(b) LCSs viewed along the y-axis.
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(c) LCSs viewed along the x-axis.

x

50

250

450y

50

250

450

−100
−150
−200
−250

(d) LCS isometric view.

(e) LCS surface element repulsion color scale. LCS surface element color value
is computed as the log of its average repulsion (see section 3.8) divided by the
log of the largest observed average repulsion.

Figure 4.15: Fjord current repelling hyperbolic LCSs from various viewing angles, each surface
element’s repulsion rate indicated by its color. Note the agreement between the ABD subdomain
displayed in 4.14 and the corresponding LCSs. Like in figure 4.14, z = 0 indicates the fjord surface.
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(a) Sample LCS and selected tracers prior
to advection (June 13 2013, 00:00).
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(b) Sample LCS points and selected tracer
points after advection (June 1 2013, 12:00).

Figure 4.16: LCS fragment along with selected tracer particles prior to and after advection over
the selected time interval of 12 hours. Note that while the coherent LCS surface structure breaks
down after advection, the selected tracer particles are clearly separated based on initial placement.
Although the partial breakdown of the LCS surface structure is undesirable, it not unexpected.
This is because the infinitesimal width of the target LCS structure makes mesh point placement
error unavoidable. An accurate LCS identification algorithm is therefore still likely to place similar
portions of the constituent mesh points on each side of the actual LCS, likely resulting in some
stretching like we observe in (b).
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Discussion and Conclusions

A thorough discussion is warranted in order to properly contextualize and scrutinize the

various choices, experiences and results that have been utilized or obtained throughout this

study. Most prominently, this pertains to the set of assumptions and choices that were made

in absence of an adequate preexisting method for LCS identification in three dimensions.

Furthermore, the results presented in chapter 4 warrant some consideration. Finally, explor-

ing the successes and shortcomings of this exercise yields suggestions for further work in the

field.

5.1 Computing Cauchy-Green eigenvalue and eigenvec-

tor fields

As outlined in section 3.1, tracer advection and calculation of the flow map and flow map

Jacobian was performed by use of the variational equations (2.35) and (2.36). This approach,

suggested by Oettinger and Haller (2016), was chosen due to its superior accuracy. While

some complexity is added by solving a set of twelve equations as opposed to three, we avoid

having to compute auxiliary grids (Farazmand and Haller, 2012a) and introducing the accom-

panying error from finite differencing. It should however be noted that this method requires

bounded first order velocity field partial derivatives with respect to the spatial coordinates

(see equation (2.37)). This requires us to use differentiable analytical test cases and higher

order interpolation methods for gridded data models. Cases in which this is impossible or

impractical should therefore be handled by use of auxiliary grids and finite differencing, as

outlined by Farazmand and Haller (2012a).

Also pertaining to velocity field interpolation is the use of cubic quadrivariate interpo-

lation. Requiring us to keep the entire velocity field data set in working memory while the

interpolation is being used, this approach may be prohibitively expensive for some applica-
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tions. Consider for example a data set of 100 time steps, over a 500 × 500 × 100 grid of

three component double precision velocity vectors. Using quadrivariate interpolation for this

data set requires us to keep in excess of 60 GB in memory while advecting tracer particles,

which is impractical. This issue may be resolved by dividing the time interval into several

segments, each computed with separate interpolations that are passed from memory when-

ever we leave the corresponding time segment. Note that the number of time steps included

in each segment must allow the desired order of time dimension interpolation. In the case of

cubic interpolation, this corresponds to four time steps or more.

Alternatively, we may drop the quadrivariate interpolation in favor of trivariate interpo-

lation in the three spatial dimensions. Using a Runge-Kutta method without intermediate

step slope approximations, such as the trapezoidal rule (Hairer et al., 2008), allows us to

solve the system of (2.35) and (2.36) without time interpolation. It should however be noted

that this approach prohibits us from detaching our solution steps from the time step of the

data set. Moreover, using a lower order integrator such as the second order trapezoidal rule

carries significant disadvantages, as such methods are inferior to higher order adaptive step

methods in terms of efficiency.

It should be noted that tracer initial position grid density could be critical in terms of

identifying some LCSs. Specifically, the spherical test case LCS described in section 4.2 was

indiscernible when using a lower tracer initial position grid density. This is reasonable, as no

manifold initial positions were placed sufficiently close to the sphere of heightened repulsion

with these configurations. It is hard to tell a priori what tracer density is sufficient for any

given application. We therefore recommend to run the highest tracer initial position grid

density that is practical on the available hardware setup.

5.2 Adapting the method of geodesic levelsets

Managing the added degree of freedom gained when defining manifolds according to equa-

tion (2.51), compared to manifolds defined by ODEs of the form x′ = f(x), the method of

geodesic levelsets described by Krauskopf and Osinga (2003) was modified by forcing radial

trajectories. As previously discussed in section 3.5, this approach was preferred over that

of guided trajectories due to superior speed, clarity, and accuracy. The approach of radially

forced trajectories with inherited target half-planes Fr also permits a departure from the

structuring of points into topological circles. Although useful in terms of managing mesh

grid density, as well as guiding our triangulation algorithm, this hierarchical structure carries

major disadvantages.

As highlighted by the fjord current LCS case (see section 4.5), the organization of points

into levelsets, approximating topological circles, requires us to use periodic eigenvector field
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boundary conditions in order to consistently determine the boundary behavior of the LCS

system. In section 3.4.9, we noted that this treatment may introduce false positive LCS frag-

ments if mesh point strands return to U after initially having moved beyond the boundaries

of the domain of interest.

This issue can be managed by use of an extended initial position tracer grid domain. That

is, by defining eigenvalue and eigenvector fields extending outside U, boundary behavior may

be more adequately explored. However, this approach is computationally demanding and in

some cases unworkable. An alternative, and much less costly, solution involves partly depart-

ing from the convention of adding manifold points only as complete levelsets representing

topological circles. This may be done by organizing points into strands of descendants, each

associated with a certain tangent line on the initial circular levelset curve C1. This allows

us to continue adding points even after parts of a levelset has left the region of interest

U . Moreover, this partly bypasses the problem of point search trajectories potentially never

reaching an acceptable new point. The strand in question would stop, but all other active

strands could continue irrespective of this local error.

Organizing points into descendant strands instead of levelsets forming topological circles

raises the question of how to manage grid density. This is because the topological circles

{Ci} are useful for inserting ghost ancestor points wherever inserting an additional point is

necessary. We could handle this by simply computing a new strand using an intervening

target half-plane Fr. Discarding all unnecessary points, we would then be left with the

required point. Note that in order to maintain a similar point structure conducive to proper

mesh triangulation, the constant inter-levelset — or in this case inter-strand point — step

length should be kept equal. That is, strand step n in strand i, should be of the same length

as strand step length n in strand j 6= i. In this way, the same circular structure of the method

of geodesic levelsets is maintained unless a domain boundary or local error intervenes.

Although the same curvature-guided step management could be maintained in this ap-

proach, it is not necessarily desirable. While seemingly useful in terms of adapting mesh

density to the local neighborhood of the target manifold, this approach was found to add

very little in terms of value to the overall method. Specifically, the curvature-guided step

management method was found to exclusively decrease inter-levelset step length. In practice,

the manifold generator would continue using the default step length until encountering any

rough neighborhood. It would then immediately decrease step length to the minimum allowed

amount, never to be increased. This is unsurprising, as a rough neighborhood intersecting

anywhere with the current levelset would prohibit us from decreasing the inter-levelset step

length. As geodesic distance — and consequently topological circle Ci arc length — is in-

creased, the likelihood of encountering at least one such neighborhood becomes very large.

Given that point placement accuracy is disconnected from inter-levelset step length, the value
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of this step guidance method is limited to managing the interpolation error associated with

mesh triangulation. While this may be critical for some applications, it seems reasonable

that an appropriately chosen constant inter-levelset step length may be sufficient.

Departing from the choices of Krauskopf and Osinga (2003), we decided to refrain from

recomputing the half-plane defining tangent vector T for every added point. That is, where

Krauskopf and Osinga (2003) computed T as the vector spanning between the ancestor

point nearest neighbors, we elected to compute T in the initial levelset, passing it along the

corresponding mesh point strand. This modification was prompted as the recomputed tangent

vectors of Krauskopf and Osinga (2003) were found to cause mesh structure inconsistencies.

Specifically, mesh point strands were found to occasionally intersect. Moreover, this approach

to defining T causes it to be highly sensitive to the small-scale behavior of C near the

considered ancestor point. In some cases, the tangent vector of Krauskopf and Osinga (2003)

was found to be poor in terms of representing the larger scale structure of the topological

circle. Resulting in irregular nearest neighbor separations and even strand intersections, this

behavior prompted us to redefine grid point placement. That is, points are placed along a

family of planes defined by constant angles {θ} in the cylinder coordinate system centered

on the manifold initial position r0 with, the z-axis along ξ3(r0). Although not explored in

this investigation, there are multiple alternatives to the method of geodesic levelsets that

could be investigated with regard to LCS theory application. Several such approaches are

summarized by Krauskopf et al. (2005).

5.3 Determining repelling hyperbolic LCSs from man-

ifolds in the Cauchy-Green eigenvector field

Unlike our approach to manifold identification, the construction of repelling hyperbolic LCSs

from candidate manifolds was found to be heavily dependent on parameter choice. While

the point comparison distance ε of condition D may be chosen based on tracer grid point

separation, choosing ABD subdomain tolerance ΓABD and minimum surface area Amin is

largely left up to personal judgment. This leaves room for the user to define these parameters

to tailor the result with regard to the number and sizes of LCSs. Although possibly useful

for application, this is unsatisfactory from a scientific point of view.

User choice of ΓABD and Amin should ideally fall into one of two approaches. The first

of these, referred to as the cluster approach, uses small values for both ΓABD and Amin with

the intent of treating clusters of overlapping LCS surface elements as single LCSs. While

requiring the user to manually, or otherwise, sort these LCS surface elements by structure

association, this approach is convincing in terms of low reliance on our tolerance parameters.
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As opposed to the cluster approach, what may be termed the carve-out approach utilizes

large values for ΓABD and Amin to extract LCSs from single manifolds. Specifically, we

attempt to choose ΓABD and Amin such that we get a small number of large LCS surfaces.

This approach yields smoother, more coherent LCSs by relying heavily on our tolerance

parameters. The result is often a more visually appealing set of LCSs, albeit less convincing

in terms of accuracy.

The results presented in chapter 4 were all computed using the cluster approach, most

identified LCS structures consisting of several surface segments. This is particularly evident

for the ABC flow data where each identified LCS structure consists of anywhere between

3 and 23 LCS surface segments. This approach was found preferable, not only due to its

presumed superior accuracy, but also because the carve-out approach was found impractical.

Most prominent for the ABC flow test cases, this was because most computed manifolds were

too small to extract sufficiently large LCSs. That is, our manifold identification method was

often unable to produce sufficiently large manifolds with the allotted time. This issue could

be alleviated by implementing some of the aforementioned method alterations, or simply allo-

cating more computation time. Based on practical considerations, manifold construction was

limited to 1 hour of wall clock time, while allowing the process an extra hour to terminate.

This margin of safety was introduced as no manifold would be saved in the case of failure

to terminate within the reserved cluster wall time. This strategy should ideally be combined

with an accompanying reduction of Runge-Kutta method error tolerance parameters, reduc-

ing error accumulation as to decrease the prevalence of procedure termination prompted by

continuous self-intersections.

5.3.1 Implementing criterion of requiring LCSs to be locally most

repelling

Although simple in mathematical terms, the LCS existence conditions suggested by Faraz-

mand and Haller (2012a) are not entirely clear-cut in terms of implementation. This specif-

ically pertains to condition 4 in (2.49), intended to establish the LCS as a local repulsion

maximum. It could be argued that simply noting the presence of a local repulsion maximum

is of limited value in terms of application. That is, by following Haller (2011)’s criteria, we

might be selecting large numbers of inconsequential LCSs, cluttering a system interpretation

intended to highlight only major system-defining structures. This despite requiring a mini-

mum LCS surface area. We could view this as a weakness of the present approach, it being a

rather close adaptation of Farazmand and Haller (2012a)’s criteria. This shortcoming could

possibly be alleviated by either requiring a certain LCS repulsion rate, or by only selecting
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a single LCS from any given LCS grouping. Note that the latter of these requirements may

not be paired with the previously mentioned cluster approach to choosing ΓABD and Amin.

5.3.2 Alternative methods

There are several alternative approaches to LCS selection from manifold candidates, each

with accompanying advantages and disadvantages, as compared to the present method. A

very simple approach could be devised by defining LCS neighborhoods as rectangular cuboids

within the domain of interest U . LCS selection could then be carried out by selecting the

most repelling of the LCS candidates present in a single neighborhood. Note that as condition

4 in (2.49) is approximated by this act of comparison and selection, we substitute the ABD

subdomain described in section 3.3 with an analogous AB subdomain. That is, we drop

condition D (see equation (3.10)), performing mesh point selection with criteria A and B

(see equations (3.8) and (3.9)). While simple in terms of implementation and cheap in

terms of computational resources, this method is quite far removed from the theoretical

foundation given by condition 4 in equation (2.49). This method does however provide a

large amount of flexibility in terms of neighborhood selection, requiring the user to exercise

personal judgment.

A second possible alternative can be construed by generalizing the approach of Farazmand

and Haller (2012a) to three dimensions. This approach entails computing LCS candidate sur-

faces using the aforementioned AB subdomain. Intersections of the resulting LCS candidates

with a selection of horizontal and vertical planes are then identified and used to define lo-

cally neighboring LCS candidates. The most repelling LCS candidate surface within each

such plane intersection neighborhood is then selected as an LCS. This approach has the ad-

vantage of inherently choosing the most repelling among nearby LCS candidates. It should

however be noted that two LCS candidates, identified as neighbors at a plane intersection,

may rapidly diverge elsewhere in the domain. This is indeed also a weakness of the method

as originally proposed in the two-dimensional case.

Note that while approximating condition 4 in equation (2.49) more closely than the

method of neighborhood volumes, the likely divergence of identified neighbor surfaces may

cause major discrepancies from the theoretical definition. More robust algorithms for iden-

tifying neighboring LCS candidate surfaces could be conceived by use of various clustering

algorithms.

5.4 Results and prospects for application

Having applied our method for identification of repelling hyperbolic LCSs to various distinct

cases, we are now able to draw some conclusions regarding these systems, as well as the
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prospects for further use of the method itself. Specifically, the efficacy — or lack thereof

— of our method in terms of unveiling useful system insights could guide us with regard to

further development and utilization.

5.4.1 ABC flow system

As previously discussed in section 5.3, manifold selection in the ABC flow systems was done

according to the cluster approach. In addition to allowing limited use of numerical tolerance,

this approach is less dependent on large input manifolds. This latter advantage was found to

be crucial in the case of the ABC flow system. That is, manifold development was frequently

stunted by complicated eigenvector field regions. Specifically, for the steady and unsteady

ABC flow cases, manifolds in the Cauchy-Green eigenvector fields were found to frequently

display self-intersections, causing the algorithm to terminate. This behavior was likely caused

by small numerical errors making one or more mesh points jump onto a neighboring manifold.

In these chaotic regions, even closely neighboring manifolds would diverge significantly from

the target manifold, possibly causing the unphysical self-intersections. These issues could

possibly be mitigated, either by increasing the accuracy requirements of the selected adaptive

step Runge-Kutta method, or eliminating our use of topological circle curve interpolations

for inserting intervening mesh points (see section 5.2).

The small differences observed between the results of the steady and unsteady ABC flow

systems are also interesting. This indicates that although considerable, the added perturba-

tion in the unsteady flow field did not significantly alter the principal system characteristics.

Although certainly requiring a more rigorous investigative approach, this result is sugges-

tive of the robustness thought to be characteristic to LCSs. That is, the small differences

observed in terms of ABD subdomains and resulting repelling hyperbolic LCSs caused by

rather large changes to the underlying flow system, are indicative of LCSs in fact being largely

independent of the idiosyncrasies of small scale flow patterns.

Forming large and largely coherent particle transport boundaries, the LCSs detected in

the steady and unsteady ABC flow systems exhibit many desirable attributes with regard to

possible application. Specifically, the formation of clear boundaries, effectively separating the

investigated domain into sections, is exactly the kind of useful insight sought by application

of LCS theory. It should however be noted that the observed breakdown of the LCS surface is

problematic in terms of some applications. While computing initial position LCSs is sufficient

in terms of investigating large scale tracer mixing patterns, we gain little insight with regard

to the actual transport barriers. That is, unless we are able to accurately transport our LCS

surfaces in time, we are unable to track the transport barriers deemed so desirable in terms of

application. Techniques for increasing the accuracy of LCS transport in the two-dimensional

case are described by Farazmand and Haller (2012a).
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5.4.2 Førde fjord system

Less difficult in terms of manifold development, the Førde fjord data set was successfully

analyzed with comparatively small ABD subdomain tolerance ΓABD. The resulting, largely

horizontal, LCSs are interesting in that they suggest minimal vertical mixing across horizontal

water layers. If possible to reproduce for larger parts of the fjord area, this is a useful insight

with regard to the present issue of using the Førde fjord as a deposit for mine tailings.

It could be speculated that this behavior is due to sudden steps in terms of water layer

density caused by sharp changes in either salinity or temperature. The exact causes for the

observed LCSs is however beyond the scope of this investigation.

5.4.3 Prospects for application

Based on our test cases, it seems plausible that the present method — either after minor

modifications, or in its current form — could be useful in terms of application to real world

flow systems. This view is substantiated both from the seemingly valuable insights gained

from application to the Førde fjord data set, as well as the seeming robustness of our LCSs

to flow field perturbations. The latter argument is particularly interesting as it suggests

imperfect gridded data models could be sufficient in order to accurately reproduce real world

LCSs.

The most significant detriment to further application of our method of three-dimensional

LCS identification is likely its complexity. As computing LCSs in three dimensions is sig-

nificantly more costly — both with respect to development and resources — than its two-

dimensional counterpart, strong arguments in terms of result accuracy and insights are needed

to justify a change in practices. It is intuitively clear that the argument for using three-

dimensional LCS identification is stronger for systems where all three dimensions are of

similar importance to overall system characteristics. Fjord flow systems, such as the one

exhibited in section 4.5, may be seen as examples of such systems, their depth often being

of similar magnitude to their width and their vertical transport significantly altering system

dynamics. Conversely, the surface layer of the oceanic within which buoyant materials, such

as some types of plastic, are often contained, is an example of a nearly two-dimensional

system.

Supplementing considerations of system dimensions, comparative studies of two- and

three-dimensional LCS identification could be used to guide approach selection. This could

be done numerically, or in the field by deploying tracers in well-knowns flow systems. Such

studies could be very useful in terms of determining the applicability of three-dimensional

LCS identification as a part of a larger toolbox consisting of existing and coming methods.
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5.5 Recommendations for further work

As described by Oettinger and Haller (2016), identification of LCSs in three-dimensional

systems has traditionally been done by identifying two-dimensional LCS layers, combining

them to surfaces by use of interpolation. This approach, outlined by Blazevski and Haller

(2014), is clearly problematic as it completely ignores all 3rd-dimension system dynamics.

Moreover, the method proposed by Oettinger and Haller (2016), while flexible, does not

yield coherent surfaces conducive to further analysis. However, as suggested by Oettinger

and Haller (2016), combining LCS theory with dedicated manifold identification methods

yields a more practical approach to identification of three-dimensional hyperbolic LCSs.

Further inquiries as to LCS identification in three-dimensional systems could focus on

different methods for reconstructing manifolds. Several such dedicated methods, including

the method of geodesic levelsets utilized in this investigation, are outlined by Krauskopf

et al. (2005). An investigation of the efficacy of these various methods with regard to LCS

identification in three-dimensional systems could be of great value with respect to application.

This also pertains to the various LCS extraction approaches outlined in section 5.3.

More specific to the current approach, exploring the previously described method al-

terations could potentially yield improvements in terms of comprehensibility, speed, and

accuracy. Particularly, departing from the strict ordering of mesh points into levelsets could

allow better boundary treatment, as well as general improvements in terms of accuracy (see

section 5.2). Sensitivity analysis with regard to ODE solver error tolerances, as well as in-

terpolation order and tracer grid density, could also prove valuable in terms of identifying

sources of error.

Furthermore, as many flow systems may reasonably be approximated as two-dimensional,

comparative studies of two-dimensional and three-dimensional approaches to LCS identifica-

tion could be very useful as to determine proper application of each tool. That is, for what

applications are the comparatively simpler two-dimensional approaches sufficient to capture

the most critical system dynamics.

Finally, combining available gridded data models with physical tracers deployed in real

world flow systems could allow us to verify the robustness of our LCS identification tools to

the inaccuracies of these data models. One such pilot experiment, known as the NSF-ALPHA

Sea Experiment 2017 was conducted by Filippi et al. (2018). A similar approach was applied

to the Scott Reef atoll in Western Australia by Ross et al. (2018). Further experiments are

planned by the NSF-ALPHA project in the near future.
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Appendix A

Existence criteria for repelling

hyperbolic LCSs in three dimensions

According to Farazmand and Haller (2012b), a compact material surface M(t) ⊂ U is a

repelling LCS over the time interval [t0, t] if and only if the following conditions hold:

1. λn−1(x0) 6= λn(x0) > 1,

2. The matrix L(x0) is positive definite for all x0 ∈M(t0),

3. ξn(x0) ⊥ Tx0M(t0),

4. 〈∇λn(x0), ξn(x0)〉 = 0.

(A.1)

Here, n is the number of dimensions of the system. In three dimensions, the matrix L(x0)

takes the form

L(x0) =


∇2C−1[ξ3, ξ3, ξ3, ξ3] 2λ3−λ1

λ1λ3
〈ξ1,∇ξ3ξ3〉 2λ3−λ2

λ2λ3
〈ξ2,∇ξ3ξ3〉

2λ3−λ1
λ1λ3

〈ξ1,∇ξ3ξ3〉 2λ3−λ1
λ1λ3

0

2λ3−λ2
λ2λ3

〈ξ2,∇ξ3ξ3〉 0 2λ3−λ2
λ2λ3

 . (A.2)

Note that we have dropped dependence on t0 and t for notational simplicity and adhere to

Haller (2011)’s convention of ∇2 denoting the Hessian. In order to simplify condition 2, we

need the following relation given by Haller (2011) (for n = 3)

∇2C−1 [ξ3, ξ3, ξ3, ξ3] = − 1

λ2
3

〈
ξ3,∇2λ3ξ3

〉
+ 2

2∑
q=1

λ3 − λq
λ3λq

〈ξq,∇ξ3ξ3〉2 . (A.3)
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Now, according to Sylvester’s theorem (Gilbert, 1991), the matrix L(x0) is positive definite

if and only if all its leading principal minors are positive. For the three-dimensional case

(n = 3), this corresponds to the following requirements

∇2C−1 [ξ3, ξ3, ξ3, ξ3] > 0, (A.4)

2∇2C−1 [ξ3, ξ3, ξ3, ξ3]
λ3 − λ1

λ1λ3

− 4
(λ3 − λ1)2

(λ1λ3)2
〈ξ1,∇ξ3ξ3〉2 > 0, (A.5)

and

4∇2C−1 [ξ3, ξ3, ξ3, ξ3]
(λ3 − λ1)(λ3 − λ2)

λ1λ2λ2
3

− 8
(λ3 − λ1)2(λ3 − λ2)

λ2
1λ2λ3

3

〈ξ1,∇ξ3ξ3〉2

− 8
(λ3 − λ1)(λ3 − λ2)2

λ1λ2
2λ

3
3

〈ξ2,∇ξ3ξ3〉2 > 0

. (A.6)

Inserting equation (A.3) into equations (A.4), (A.5), and (A.6) and performing basic

algebraic manipulations yields the simplified conditions

λ3 − λ1

λ1

〈ξ1,∇ξ3ξ3〉2 +
λ3 − λ2

λ2

〈ξ2,∇ξ3ξ3〉2 −
1

2λ3

〈
ξ3,∇2λ3ξ3

〉
> 0, (A.7)

λ3 − λ2

λ2

〈ξ2,∇ξ3ξ3〉2 −
1

2λ3

〈
ξ3,∇2λ3ξ3

〉
> 0, (A.8)

and

〈
ξ3,∇2λ3ξ3

〉
< 0. (A.9)

Now, note that λ3 ≥ λ2 ≥ λ1 > 0 such that all the scalar prefactors in equations (A.7)-

(A.9) are nonnegative. Moreover, the square of the real inner products must be nonnegative.

Therefore, whenever condition (A.9) is satisfied, so are equation (A.7) and (A.8). We are

therefore left with equation (A.9) as the simplified condition 2 in (A.1).
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