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Abstract

Automatic classifications of well logs using machine learning techniques has gained improved

attention within the last couple of years among others for increasing the accuracy and speed of

lithofacies prediction on wireline logs. A supervised machine learning methodology written in R

combines initial wireline log signatures and computer assisted interpretations (CPI’s) to autom-

atize lithofacies predictions. The method utilizes the XGBoost algorithm, a gradient boosting

library with emphasis on computational speed and model accuracy. The study area is the Juras-

sic sequence of the prolific quadrant 30 in the Norwegian Northern North Sea, with 26 available

wells that consists of wells from structural Highs, Grabens and Terraces.

Raw well log data are preprocessed in order to obtain a consistent database and the well log

signatures from all 26 wells are analyzed concurrently with the use of boxplots. Seven different

lithoclasses are generated based on the CPI’s which are used as training data and validation

data. Three different machine learning models (initial, normalized and enhanced) are created

and optimalized. The initial model is created using only the raw logs without modifications

and the normalized model is created using standardized logs. The enhanced model is created

with several features and modifications added to increase prediction accuracy. The models are

applied to 11 wells and key differences between the models in terms of accuracy are presented.

The results show that the initial model provides a decent baseline accuracy while the nor-

malized model shows signs of underfitting. The enhanced model shows great promise in accu-

racy. The number of well logs available within a well has a direct influence on the accuracy of

the models. For an acceptable predicting power the wells should minimum contain the gamma

ray, density and neutron logs. To distinguish between water-bearing and hydrocarbon-bearing

zones in sandstones the resistivity logs should be present. The choice of petrophysical filters

when creating the lithoclasses has potential and will have more predicting power with improved

refinement according to the aim of the study. When implemented on a larger scale caution need

to be taken when introducing more geologic complexity in the input data.

Machine Learning shows good promise in assessing wireline logs and the ML design in terms

of training data should account for lateral variations such as depositional environment and

varying burial depth to achieve optimal prediction accuracy.
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Sammendrag

Automatisk klassifisering av brønnlogger ved bruk av maskinlæringsteknikker har fått økt opp-

merksomhet de siste par årene blant annet for å øke nøyaktigheten og hastigheten til litofa-

cies prediksjoner på wireline logger. En veiledet maskinlæringsmetode skrevet i R kombinerer

wireline signaturer og datamaskinassisterte tolkninger (CPI’er) til automatiske litofacies predik-

sjoner. Metoden benytter XGBoost-algoritmen, et "gradient boosting" bibliotek med særlig vekt

på beregningshastighet og modellnøyaktighet. Studien er utført i Jurassic-sekvensen i den pro-

duktive kvadrant 30 i Nordlige Nordsjøen, med 26 tilgjengelige brønner hvor Jura-intervallet

befinner seg på strukturelle graben, høyder og terrasser.

Råbrønnloggdata er forhåndsbehandlet for å oppnå en konsistent database og brønnlog-

gsignaturer fra alle 26 brønner analyseres samtidig med bruk av boksplot. Syv forskjellige litok-

lasser genereres basert på CPI’ene og brukes som treningsdata og valideringsdata. Tre forskjel-

lige maskinlæringsmodeller (initiell, normalisert og forbedret) genereres og optimaliseres. Den

opprinnelige modellen er generert kun ved å bruke de rå loggene og den normaliserte modellen

er generert ved hjelp av standardiserte logger. Den forbedrede modellen er generert med ekstra

egenskaper og modifikasjoner lagt til for å øke prediksjonsnøyaktigheten. Modellene er anvendt

på 11 brønner og viktige forskjeller mellom modellene med hensyn til nøyaktighet presenteres.

Resultatene viser at den opprinnelige modellen gir en adekvat innledende nøyaktighet, den

normaliserte modellen viser tegn på "underfitting" mens den forbedrede modellen viser en

kraftig økning i nøyaktighet. Antall brønnlogger tilgjengelig i en brønn har direkte innflytelse på

nøyaktigheten av modellene. For en akseptabel prediksjonskraft bør brønnene minst inneholde

gammastråling, tetthets- og nøytronlogger. For å skille mellom vannbærende og oljebærende

soner i sandstein bør resistivitetsloggene være tilstede. Valget av petrofysiske filtre når litok-

lassene blir laget har potensiale og prediksjonene vil ha økt prediksjonskraft etter en raffinering

i henhold til formålet med studien. Når metoden blir implementert på større skala må dette

gjøres med varsomhet med tanke på at dette kan introdusere økt geologisk kompleksitet i input-

dataene. Maskinlæring viser godt potensial i å anvendes på logger og designet av ML modellen

i hensyn til treningsdata bør ta høyde for laterale variasjoner i avsetningsmiljø og varierende

begravningsdyp for å oppnå optimal prediksjonsnøyaktighet.
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Chapter 1

Introduction
The oil industry has a tradition of quickly embracing up-and-coming technologies, if they

are seen as beneficial to the industry. Machine learning (ML) is emerging as a new tool which

can be applied to both seismic data and welldata to speed up routine or repetetive tasks. Within

seismics, recent work has focused on automatizing salt classifications (Waldeland and Solberg

2017) and horizon/structure interpretations (geoforskning (2017), GEOExPro (2017)) by using

deep learning. ML has also been used for seismic petrofacies characterization in the SW Barents

Sea (Honoré et al. 2018). For wells the focus has been on automatizing lithofacies classifications

using well logs with a competition by SEG in 2016 (Hall (2016), (Hall and Hall 2017)) generating

large amounts of publicity. Additionally, ML has been used to automate porosity and perme-

ability estimations based on well logs (Larsen (2018), Total (2018)). CGG released in June 2018 a

new version of it’s powerlog software which contains machine learning capabilities (CGG 2018)

such as facies predictions shown in Figure 1.1. The release proves that ML is highly relevant in

the oil industry today.

The aim of this thesis is to create a model for predicting lithofacies within the Jurassic se-

quence on specific wells in quadrant 30 by using supervised machine learning. For this pur-

pose well log data from 26 wells together with Computer Processed Interpretations (CPI’s) of the

wells performed by Exploro are used. I show how to analyze the well log distributions from all

26 wells concurrently with the use of boxplots and generate seven different lithoclasses based

on the CPI’s. I then create three different machine learning models (initial, normalized and en-

hanced) by using the XGBoost algorithm and apply the models on nine wells. Only raw well logs

and additional modifications of them are used when training and applying the models, the use

of the CPI is limited to lithoclasses generation and model validation.

A brief introduction to ML and its uses within the oil industry together with an overview

of gradient boosting is presented in the first part. The study area, well database and geologic

setting is presented in the following chapters. How the seven different lithoclasses are created
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CHAPTER 1. INTRODUCTION

based on a well selection from Exploro’s Toolkit part one (Marello et al. 2016) is then shown

followed by a filtering routine to remove bad data and the use of boxplots. The filtering routine

and the use of boxplots are both included to gain additional knowledge of the training and test

data, which is vital for generating a good ML model. Key differences between the ML models are

then presented along with how they are created and optimalized. The results in the following

chapter focus on model accuracy and how the models differ in terms of which lithoclasses they

predict. 100 meters of logging interval from well 30/9-14 and well 30/11-8 A is presented to show

how the ML models differ on a smaller scale.

Figure 1.1: CGG advertisement photo of its software update to Techlog in June 2018 which in-
troduces Machine learning-based facies predictions. Image courtesy of CGG GeoSoftware (CGG
2018).
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Chapter 2

Theoretical Background

2.1 A brief introduction to Machine learning

Machine learning (ML) is not something new. Algorithms used in machine learning today such

as logistic regression (Cox 1958), k-nearest-neighbour (Cover and Hart 1967), artificial neural

networks (Werbos 1974), decision trees (Quinlan 1986) and random decision forest (Ho 1995)

has been around for several decades.

Despite the availability of algorithms which can be used in ML, the popularity and usage of

ML has in the past been relatively low. However, in recent years this has changed dramatically.

Major E&P companies such as Total, ConocoPhillips, Equinor and AkerBP is investing heavily

into digitalization (Worldoil (2018), Equinor (2018), O&G-Journal (2017), Cognite (2018)), and

ML is a major part of this digitalization effort.

The rise of ML in recent years among the oil companies is therefore a product of a broader

digitalization shift within the oil industry, and there are several influental factors stemming from

the digitalization effort which has led to the recent increase in popularity of ML:

• Processing power is no longer as expensive and limited as it once was.

• Big data is more accessible than ever. Together with the increase in computing power

analysis can quickly be performed on the full dataset, not only on samples as done in the

past. The quality of the data has also increased, leading to better models and better results

from ML (Bryant et al. (2008), Frankel and Reid (2008)).

• Internet of Things (IoT) has emerged in recent years and resulted in a major increase of

data generation from sensors and measurement tools. New tools and analytical methods

are needed to interpret and make decisions based on the data and ML is one of these

methods (Gubbi et al. 2013).
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CHAPTER 2. THEORETICAL BACKGROUND

• High-dimensional challenges requires new methods and tools to get optimal results. While

humans can only visualize and interpret up to three dimensions, a dataset can have thou-

sands, even millions of variables. Analysis of such large amounts of data by a human is

not a realistic approach.

• High influx of open-source software and libraries in the recent years has led to ML be-

coming more accessible to the masses.

One of the most important aspects when building an ML model is the data used as training

data. The data available has in the recent years increased dramatically, and this has been a

significant contribution to the emergence of ML in recent years.

There are generally three main types of machine learning (Christopher 2016): Supervised,

unsupervised and reinforcement learning. Supervised and unsupervised learning will be ex-

panded upon in the following sections while reinforcement learning has seen little use within

the oil & gas industry and is therefore omitted.

2.1.1 Supervised learning

In supervised ML the user supplies the system with training data which contains multiple fea-

tures and is labeled. The system learns patterns from the training data and classifies/labels

unseen data in a best guess based on the training data.

Supervised learning is therefore task driven, meaning it is given a single task which it performs.

Supervised ML is categorized into two subcategories, regression and classification problems.

Regression problems are where the output is continous, such as given several wireline logs (e.g.

sonic, density and resistivity), an ML model may be tasked to predict the porosity or permeabil-

ity within an interval. Classification problems is where the output is discrete, e.g. given the same

wireline logs as in a regression problem, now an ML model may be tasked to classify/identify the

facies within an interval.

A recently presented regional reservoir quality distribution (facies classification) in the Bar-

ents Sea by using ML shows the merit in applying this methodology in the geoscience industry

(Larsen 2018) The results allowed them to utilize the large volume of data available, and gave

them ’More freedom and time to be creative and collaborate across disciplines’ (Larsen 2018).
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2.1. A BRIEF INTRODUCTION TO MACHINE LEARNING

2.1.2 Unsupervised learning

In unsupervised learning, the machine must realize by itself how to group and categorize clus-

ters of data, where it attempts to find patterns and structure in a unlabeled dataset. The struc-

ture is derived by clustering the data based on relationships among the variables within the data

(Christopher 2016). An advantage with this approach is that it is possible to approach problems

with little or no idea what the results should look like. Unsupervised learning is therefore data

driven unlike supervised learning which is task driven. It lets the data speaks for itself, and has

no clear objective on how it should classify or cluster the data.

An example of a unsupervised learning algorithm is a self-organizing map (SoM, Kohonen

(1982)). A SoM is a type of artificial neural network which returns grouped/clustered data based

on identified similarities within the dataset.

Statoil has applied SoM on seismic from the Oseberg field within quadrant 30 in the North-

ern North Sea, where the goal was to find disconnected sandstone channels within the Ness

formation (Thurmond 2018). According to John Thurmond, instead of finding the sandstone

channels they actually found the oil water contact within the formation. He also mentioned

that one of the challenges with this approach is that the resulting data clusters still required

interpretation (Thurmond 2018).

11
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2.2 Gradient boosting

Gradient boosting (Breiman 1997) is a machine learning technique for regression and classifica-

tion problems which builds a prediction model based on several weak prediction models. Build-

ing a ML model upon several ML models is called an ensemble method or ensemble model, and

the idea behind an ensemble method is that by combining multiple learning algorithms the re-

sult is a model which has higher prediction/classification accuracy than a single model (Opitz

and Maclin 1999).

The term boosting comes from the fact that the algorithm converts weak learners to strong

learners. A weak learner is defined as beeing slightly better than random guessing when classi-

fying unseen data, while a strong learner is seen as performing considerably better than a weak

learner when exposed to unseen data (Zhou 2012). In terms of statistics, a weak learner can

be seen as having "some" correlation with the true classification, while a strong learner can be

seen as having a good correlation with the true classification thus having a higher prediction

accuracy (Zhou 2012).

This thesis utilizes XGBoost (Chen and Guestrin 2016), a gradient tree boosting system as

the machine learning method. An introduction to key elements of the algorithm is therefore in

order and they will be outlined in the following section.

2.2.1 Decision trees and gradient tree boosting

There are two main types of decision trees in terms of machine learning: Classification trees and

regression trees.

• Classification trees are models where the prediction variable is within a discrete set of

values (e.g. deciding if a point within a well log is sandstone or shale).

• Regression trees are models where the prediction variable is continous, such as predicting

the porosity on a certain point within a well based on the values of the well logs.

A collective term for the two types of decision trees are Classification And Regression Tree (CART)

(Breiman 2017).

12



2.2. GRADIENT BOOSTING

Gradient tree boosting, also known as gradient boosting machine (GBM) is a highly effective

and widely used machine learning method. It utilizes multiple decision trees in the form of an

ensemble model to make predictions about a target variable. The following compressed math-

ematical introduction to gradient tree boosting is modified from (Chen and Guestrin 2016).

For a given data set with n examples and m features D = {(xi , yi )} (|D| = n,xi ∈ Rm , yi ∈ R), a

tree ensemble model uses K additive functions to predict the target variable

ŷi =φ(xi ) =
K∑

k=1
fk (xi ), fk ∈ F, (2.1)

where

F = { f (x) = wq(x)}(q : R→ T, w ∈RT ) (2.2)

is the space or set of all possible CART’s. ŷi is the predicted target variable, q is a representa-

tion of the structure of each tree that maps an example to its respective leaf index and T is the

number of leaves in the tree. Each fk corresponds to an independent tree structure q and leaf

weights w .

The tree ensemble model corrects what has been learned, then adds one new tree at a time.

To decide the set of functions fk the ensemble model should consist of, the following regularized

objective is minimized:

L(φ) =∑
i

l (ŷi , yi )+∑
k
Ω( fk ) (2.3)

where

Ω( f ) = γT + 1

2
λ‖w‖2. (2.4)

l is a differentiable convex loss function that measures the difference between the prediction

ŷi and the target yi . Ω punishes the complexity of the model, γ is the regularization parameter

and also the minimum the loss reduction to make a further partition on a leaf node of the tree.

Increasing γ will make the algorithm more conservative and if γ is set to 0, no regularization

occurs. λ is a L2 regularization term on weights, increasing this value will make the model more

conservative (less prone to overfitting).

Eq 2.3 is minimized to learn the set of functions used in the model. In general the optimal

model is a model which is both simple and predictive. By optimalizing one of the terms, the

13



CHAPTER 2. THEORETICAL BACKGROUND

other term is increased. This is also known as the bias-variance tradeoff in ML.

Because the tree ensemble model shown in Eq. 2.1 contains functions as parameters they

can not be optimized using traditional optimization methods in Euclidean space (Chen and

Guestrin 2016). The model is instead trained in an additive manner by using a second order

approximation to optimize the objective in Eq. 2.3. The mathematical steps involved can be

seen in Appendix B.
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Chapter 3

Geologic setting
The study area is located in the Northern North Sea and the stratigraphical time of interest

is the Jurassic. Figure 3.1 shows a structural map of the Northern North Sea at base Brent group

comprising of both relative structural highs (Terraces) and lows (Grabens), the study area (quad-

rant 30) is marked in red. The information within this chapter is mainly based on the article by

Sneider et al. (1995).

The North Sea basin has been formed during two major rift phases: The Permian-Triassic

and the Middle Jurassic to Early Cretaceous (Ziegler 1982). In Figure 3.2 the Permian/Triassic

rift can be seen within the Horda Platform and the Middle to Upper Jurassic rift visible in the

North Viking Graben. The Permian/Triassic rift can be seen within the Horda Platform in Figure

3.2 with the Middle to Upper Jurassic rift in the North Viking Graben.

The study area comprises of the Viking Graben which is a north-south oriented rift system

and relative structural highs located to the east and west of it (Fig 3.1). East of the Viking Graben

the narrow Oseberg Terrace is located. The E. Shetland Terrace, which is west of the Viking

Graben consists of rotated fault blocks. Further to the east is the E. Shetland Platform. Most of

the wells used in this study are drilled on the Oseberg Terrace in relation to the Oseberg Discov-

ery, whereas few of the wells are drilled within the North Viking Graben. As seen in Fig. 3.2 the

depth of the Jurassic interval is deeper within the North Viking Graben in relation to the Ose-

berg Terrace. This difference in burial depth is expected to have an impact on the differences

between the wells in regards to logging data such as density and porosity.

The location of two wells, 30/9-14 and 30/11-8A is shown on Figure 3.1. Logging sections

with machine learning results from these wells will be presented in detail. Well 30/9-14 is drilled

where the Jurassic interval is at a structural high (Oseberg Terrace) while well 30/11-8A is drilled

where the Jurassic interval is at a structural low (Viking Graben).

Figure 3.3 shows the lithostratigraphic chart for the Norwegian North Sea of Jurassic age

(NPD 2018). The Lower Jurassic strata consists predominantly of marine shales while the Middle
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Jurassic strata consists of sandy marginal marine to deltaic sediments (Brent Group) overlain

by marine shales in the Heather Formation of the Viking Group. The Upper Jurassic consists

mostly of marine shales with coarser clastic sequences developing locally. The Brent Group

consists of five formations from bottom to top: Broom Formation, Rannoch Formation, Etive

Formation, Ness Formation and the Tarbert Formation. The sedimentary rocks of the Brent

Group are considered to be deposits of a major river-delta system (Helland-Hansen et al. 1992).

Major oil & gas discoveries have been made on both sides of the Viking Graben and are

shown in Figure 4.1 in the following chapter.

Fig. 3.2

30/9-14

30/11-8 A

Figure 3.1: Structure map of Northern North Sea between 60−62 degrees at base Brent Group
with study area marked in red (quadrant 30). A W-E line indicates the location of a regional
seismic line in Fig. 3.2. Logging sections from wells 30/9-14 and 30/11-8A is presented in the
results. Figure modified from Sneider et al. (1995).
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Figure 3.2: Regional W-E seismic line across the northern part of the Viking Graben as shown in Fig. 3.1. The study area (quadrant
30) is within the red box. Many of the wells used in this study are from the Oseberg Terrace, with a minority of the wells within the
North Viking Graben itself. Figure modified from Sneider et al. (1995)

.
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CHAPTER 3. GEOLOGIC SETTING

Figure 3.3: Lithostratigraphic chart of the Norwegian North Sea showing the geological Groups
and Formations of Jurassic age. The geological Formations in the study area is below Tampen
Spur. The chart is modified from NPD (2018).
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Chapter 4

Database

4.1 Data available

For this project 26 wells with Computer Processed Interpretations (CPI) from quadrant 30 in the

Northern North Sea are made available for the study. The wells are extracted from and are part

of Exploro’s North Sea Toolkit - part 1 (Marello et al. 2016).

Figure 4.1 shows the positions of the wells within quadrant 30 in the Northern North Sea,

along with the fields and discoveries in the vicinity. The blue diamonds are wells with CPI per-

formed by Exploro. A large proportion of the wells are drilled within the Oseberg and Oseberg

south fields. NOAKA (North of Alvheim Krafla Askja) is a group of multiple smaller discoveries

currently in development phase by AkerBP and Statoil and is marked by the red circles, about

half of these discoveries are within quadrant 30.

Table 4.1 contains information about the CPI wells, such as the Jurassic interval for each well

and when the well was completed. The data is from the factpages of the Norwegian Petroleum

Directorate (NPD 2018), and the top and bottom Jurassic interval as well as the jurassic thick-

ness has been calculated using the data available. The top and bottom Jurassic is calculated by

selecting the Viking GP, Brent GP, Dunlin GP and Vestland GP. The next step is then to take the

maximum and minimum value within these groups for each well. The thickness is the difference

between maximum and minimum.

The table shows that most of these 26 analyzed wells contained hydrocarbons and only three

wells are dry wells. The top Jurassic depth and the total Jurassic thickness vary greatly between

the wells and is reflecting the lateral geologic variations outlined in figures 3.1 and 3.2. There is

also a large time difference between the first and last completed date, with the first well com-

pleted in 1975 and the last well completed in 2011, a time difference of 36 years.
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Wells with CPI
Fields
Discoveries

0 10 20 km

Troll

NOAKA
Frigg

Oseberg
Sør

Oseberg

Oseberg
Øst

Huldra

Martin
Linge

Brage

Veslefrikk

Statfjord

Kvitebjørn

Snorre

Valemon

Gullfaks

Visund

Figure 4.1: Map of Northern North Sea outside Norway where the study is performed, with most
of the significant fields named. Wells with CPI provided by Exploro and used in this study is
shown in blue. NOAKA is a group of multiple discoveries currently in development phase and is
marked in red. Fields and discoveries polygons from NPD (2018).
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4.1. DATA AVAILABLE

Table 4.1: Wells with Computer-processed interpretation (CPI) available for the study. The
depths and thicknesses are in meters and is given by measured depth (MD).

ID Name Top Jurassic Btm Jurassic Thickness Content Completed

1 30/2-1 3636 4110 474 gas/condensate 12.10.1982
2 30/3-1 R 3729 4227 498 shows 26.04.1982
3 30/3-2 R 2714 3228 514 oil/gas 16.02.1981
4 30/3-7 B 4261 5970 1709 oil/gas 04.08.1998
5 30/3-10 S 3708 4034 326 gas/condensate 29.04.2009
6 30/4-1 4387 5454 1067 dry 14.05.1979
7 30/5-3 A 4650 4746 96 gas 30.05.2009
8 30/6-4 2415 2942 527 oil/gas 11.05.1981
9 30/6-6 2587 3225 638 dry 24.03.1982
10 30/6-22 2497 3290 793 oil 13.07.1988
11 30/6-28 S 2376 2483 107 oil 29.03.2012
12 30/7-7 3878 4884 1006 gas shows 01.07.1979
13 30/8-1 S 3361 4688 1327 gas/condensate 01.03.1995
14 30/9-5 S 2236 2604 368 gas 19.07.1985
15 30/9-14 2968 3680 712 oil/gas 14.05.1993
16 30/9-16 2652 3457 805 oil/gas 08.08.1994
17 30/9-20 S 2750 3124 374 oil 11.02.2002
18 30/9-21 S 3597 4090 493 oil/gas 30.04.2008
19 30/10-5 4162 5049 887 oil/gas 01.05.1975
20 30/10-6 4344 5248 904 gas 09.11.1992
21 30/11-3 3285 4637 1352 oil/gas shows 14.03.1983
22 30/11-6 S 2961 3550 589 shows 02.07.2004
23 30/11-7 3722 4067 345 gas/condensate 03.02.2009
24 30/11-8 A 3671 4475 804 oil/gas/condensate 03.07.2011
25 30/11-8 S 3474 4043 569 oil/gas/condensate 20.05.2011
26 30/12-1 2795 3596 801 dry 07.03.1994
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4.2 Data preparation

The wells will be separated into two groups where one group will be used as training data for

the algorithm, and the other group will be used as test data. All practical work is done with

the programming language R (R Core Team 2018) in combination with Rstudio (RStudio Team

2018), a free and open-source integrated development environment (IDE) for R. Several addi-

tional libraries is also used in R, and a complete list of libraries used can be found in Appendix

A.

The first step is now to load the CPI files into the R environment and merge the wells into a

single, consistent dataset. All wells are in the .las ASCII format, and the internal overall structure

of the las files are consistent with a header of variable length depending on the number of vari-

ables followed by the well log data. By utilizing the consistent internal structure of the .las files

a script is written which automatically loads all files within a single folder into a list and assigns

the correct column names for each well.

Additional data from NPD factpages (NPD 2018) such as casing info, welltops (lithostrati-

graphic information) and mud type used is also merged into the dataset. The Jurassic interval

is extracted from each well by using the welltops provided by NPD in the same way as Table 4.1

was created. The casing info from NPD is originally in a string format displaying inches, and

needs to be converted into a numeric form, which is done by using multiple regular expres-

sions (Thompson 1968). This information can then be used as an additional large-scale quality

control by checking the casing diameter against the caliper log.

Altough the structure of each file are consistent, the column/log names are not. The technol-

ogy used when logging has changed dramatically since the pioneering days of the 1960’s-1970’s,

and this is reflected in the log names. The various oil service companies which has performed

the logging has used different names for the same measurements, and as the methods of logging

has changed, so has the log naming with it. It is therefore necessary to merge together columns

which has the same measurements, before it is possible to use the dataset in a Machine Learn-

ing setting. The assumption for performing the merge is that tools which measure the same

property but has different names give approximately the same measurements and that the dif-

ference between them is insignificant. This is a necessary database simplification in order to
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use the wells for Machine learning.

Table 4.2 shows the different tools available, the abbreviation used for each tool and which

tools that will be used for ML. Since the companies performing the well logging uses slightly

different tools, they have also developed their own log abbreviations. During loading and the

subsequent merging of well log data this is a challenge since the resulting merged dataset con-

sists of 30−40 additional redundant columns. This has been accounted for during the prepro-

cessing by identifying different column names for the same measurement and then merging the

data from the different abbreviation columns into the main respective column. The redundant

columns are removed from the dataset.

The result of the merge is that the number of variables are drastically reduced without losing

any information/data. The resulting dataset has a higher degree of consistency and is compact

in terms of columns. The different tools have consistent names and the next step in the prepro-

cessing can begin. The full dataset consists of 115.536 rows.

Table 4.2: Logs available in the study, abbreviations and which logs are beeing used for ML pur-
poses. Additional columns with other abbreviation names are renamed in order to get a consis-
tent dataset with less variables.

Log Abbreviation Used in ML

Caliper CALI
Gamma Ray GR x
Spontaneous Potential SP x
Bulk Density DEN x
Density Correction DENC
Delta-T Compressional (sonic) AC x
Delta-T Shear (ShearSonic) ACS x
Neutron Porosity NEU x
Formation Photoelectric Factor PEF x
Shallow Laterolog Resistivity LLS x
Medium Resistivity RMED x
Deep Resistivity RDEP x
Nominal Bit Size BS
Rate of penetration ROP
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Chapter 5

Methodology

5.1 Defining lithoclasses

The CPI performed on the wells contains information about the lithologies, e.g. percent sand-

stone, silt, wet clay, as well as information about the total and effective porosity and the water

saturation. Based on the lithology percentages it is possible to create lithoclasses by dividing the

percentages into several intervals, where each interval is assigned a lithoclass.

The starting point for defining the lithoclasses is the Classification of Fine-grained Sedimen-

tary rocks from Picard (1971). Volume wet clay (VWCL) is used together with water saturation

and coal flags to define the lithoclasses. This assumes that the Jurassic interval consists of differ-

ent fractions of sand and mudstone as well as coal. Table 5.1 shows descriptions of the different

lithoclasses chosen along with their abbreviations and which logs are used in their determina-

tion. Volume wet clay is used as a classifier for all classes except coal. This is done in order to

prevent classifying the same row multiple times, and to maintain consistency. To distinguish be-

tween hydrocarbon and water filled sandstones water saturation (SW) is used as an additional

classifier. Moving from sandstone with commercial hydrocarbons (Table 5.1) down to mudstone

the clay content is gradually increased and three different petrophysical filters is tested before

deciding on a model. Mud is used as a general term for clay and silt content. Deciding on the

petrophysical filters is a balancing act. From a reservoir perspective a lower VWCL is optimal as

it normally gives better reservoir properties, while from a sedimentological perspective shifting

the percentage higher for additional generalization is better.

Since the well interval is limited to the Jurassic age in the Northern North Sea there is a low

amount of carbonate sediments (Ramberg 2008). Thus excluding a carbonate class is not ex-

pected to make a significant difference. An additional group, carbonate "stingers" is discovered

in the data, defined by having a density at 3.0 g /cm3 or more and GR around 50. However there

were so few datapoints (approximately 70 meaning ≈ 10m cumulative thickness) that grouping
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them into a distinct group is not viable.

The CPI lithology interpretations is made up of different percentages of the lithologies which

sums up to 1. Effective porosity is included this percentage, and the lithology columns must

therefore first be normalized to get correct lithology intervals. The normalization is done with

the following equation

l i thol og ynm = l i thol og y

1−φe
, (5.1)

where l i thol og ynm is the normalized lithology andφe is the effective porosity. Eq. 5.1 is applied

on the VWCL and the resulting normalized VWCL together with water saturation (SW) is used

to generate the lithoclasses.

Three different petrophysical filters is tested before deciding on a model, and the different

limits are shown in Table 5.2. The main difference between the models is the upper limit for

VWCL content in sandstones, with maximum 15% for model A, 20% in model B and 25% in

model C. The VWCL content in the other classes are adjusted accordingly, to have a large enough

percentage interval for each class. The upper limit for the sandstone containing uncommercial

amounts of hydrocarbons is set relatively conservative to SW = 0.9 in order to prevent false

classifications.

Figure 5.1 shows the lithoclass distribution within the dataset based on the petrophysical

filters in Table 5.2. The distribution differences between the models can be seen in the differ-

ent sandstone classes and the sandy mudstone class. The waterfilled sandstone is doubled from

around 4000 points to approximately 8000 points when moving the upper limit from 15% to 25%

Table 5.1: Overview of the different lithofacies classes implemented by using data from the CPI.
Note that most the classes use volume wet clay in order to maintain consistency and prevent
assigning multiple classes to a single row.

ID Lithofacies description Abbreviation CPI used

1 Sandstone SS VWCL
2 Sandstone with uncommercial hydrocarbons SSUHC VWCL & SW
3 Sandstone with commercial hydrocarbons SSCHC VWCL & SW
4 Muddy sandstone MUDSS VWCL
5 Sandy mudstone SMUD VWCL
6 Mudstone MUDST VWCL
7 Coal COAL Coal flag
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and the hydrocarbon filled sandstone classes also see a major increase. The higher VWCL limits

for the sandstone classes will cause the treshold for the algorithm to classify the different sand-

stone intervals instead of a mudstone interval to go down. The result of this lowered treshold is

that the ML model will have increased leniency in its sandstone classifications and the number

of sandstone related class predictions is expected to increase. This is an important decision that

will directly influence how the ML model should behave. By using a low upper limit such as 15%

there is a risk of missing intervals containing HC, while setting the limit too high can cause the

algorithm to falsely classify uneconomic intervals as economic. A high limit is chosen because

it is expected to be easier to correct for uneconomic intervals than to actively look for intervals

which has not been picked up when reviewing the results. The model should be used as a tool

to speed up lithoclass decisions so that it is not necessary to create it from scratch but rather to

review the results from the ML model.

Table 5.2: Petrophysical filters used when dividing the dataset into lithological classes. Coal is
not included here as the CPI gives a coal flag (1/0 for each row with data).

Model CPI SS SSUHC SSCHC MUDSS SMUDST MUDST

A VWCL < 15% < 15% < 15% 15 – 30% 30-75% > 75%
A SW 60 – 90% < 60%
B VWCL < 20% < 20% < 20% 20 – 35% 35 – 75% > 75%
B SW 60 – 90% < 60%
C VWCL < 25% < 25% < 25% 25 – 40% 40 – 75% > 75%
C SW 60 – 90% < 60%
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Figure 5.1: Varying the upper limit for Volume Wet Clay (VWCL) when classifying lithologies has great impact on the group distri-
bution. Subfigures A-C shows the effect of changing the upper limit of VWCL from 15% (A) to 20% (B) and to 25% (C) in sandstones
with or without HC. Table 5.2 displays how the other parameters were changed when modifying VWCL limits for sandstones. The
petrophysical filters applied in subfigure C is chosen to be used for ML.

28



5.2. FILTERING THE DATASET

5.2 Filtering the dataset

Before applying ML on the dataset, identifying and removing or filtering out bad data is an es-

sential step. If this is not done, the weighting can be skewed and the results will be suboptimal.

From a well logging perspective, there are several reasons for why the filtering routine is neces-

sary. Some common examples for wrong measurements are:

• If the sonic tool(s) are not vertically aligned they may give false readings because the mea-

sured travel time from the source to receiver array is wrong (Ellis and Singer 2007).

• Washout zones, which are essentially cavities in the wellbore can cause the density tool to

give unrealistic low readings because the depth of investigation (DoI) is only about 15 cm

(Gluyas and Swarbrick 2013). The low DoI causes the tool to instead measure the drilling

mud.

• Areas close to where there is a casing change (reduction in borehole diameter) tends to

cause problems for the logger and may cause several tools to give abnormal values (Ellis

and Singer 2007).

• The borehole environment can damage well logging components while the logging is per-

formed and cause the tools to give false measurements (Ellis and Singer 2007).

A filter is therefore created and applied for each log. The upper and lower limit for each log is a

balancing act. If the filter is too strict the result may be that relevant information is lost and if

the filter is too mild false readings may be included and reduce the accuracy of the ML model.

The limits are therefore decided with a combination of visual inspection and from expected

values for each log from Rider (2011). The filter is relatively mild, and its main purpose is to

serve as an initial filter to remove the worst outliers which are expected to be false readings.

Table 5.3 shows the lower and upper limit of the filter for each log. Rows with data outside

these intervals are removed from the dataset. The filtering is applied to the whole dataset (both

training and test wells) and the filters reduce the number of rows within the dataset from 115536

to 114733. This is a difference of 803 rows, which is a 0.7% reduction of the original dataset.
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Table 5.3: The filters applied
to the dataset. Rows con-
taining values outside spec-
ified intervals are removed.

Log Interval

GR 0 – 250

PEF 0 – 20

AC 40 -200

ACS 70 – 400

DEN 1 – 3.5

NEU 0 – 0.8

SP 0 – inf

RDEP 0 – 2000

RMED 0 – 2000

LLS 0 – 2000

Figure 5.2 shows the filtered dataset with Gamma Ray (GR)

plotted on the x-axis against density (A), neutron (B), sonic com-

pressional (C), sonic shear (D), photoelectric factor (E) and SP

(F). Coal is trivial to distinguish by its low density in subfigure A,

high neutron and sonic signatures in subfigures B, C and D and

generally low PEF values in subfigure E except some spikes in the

data above PEF = 10. The different types of mudstone classes

can be partially separated by the GR log, however there is sig-

nificant overlap in the data which is expected when plotting the

whole dataset. The different sandstone classes is clustered to-

gether within the same GR interval of approximately 10-80, and

there is some overlap with the mudstone classes. Interestingly

the SP log in Figure 5.2F is divided into three different main plot

areas. A potential cause of this may be that different companies

use different tools, which has their own distinct signature.

Figure 5.3 shows the different resistivity logs; deep, medium and shallow, with linear scale

on the left and logarithmic scale on the right. Data from the deep resistivity logs (Figure 5.3A,B)

shows that there is some separation between the sandstone classes with and without commer-

cial amounts of hydrocarbons (HC). The medium and shallow resistivity logs do not show the

same amount of separation.

Several outliers with coal classification can be seen in all resistivity logs. A possible geologic

explanation for these abnormal values is that coal within deltaic sequences can give character-

istically strong readings (Mondol 2015), and this may be what is observed.
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Figure 5.2: Gamma Ray (GR) plotted against the standard logs. Coal is easy to identify in several
of the logs due to its distinct characteristics (e.g. low density, high neutron, high AC and ACS).
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Figure 5.3: Gamma Ray (GR) plotted against the resistivity logs. Linear scale on the left and log-
arithmic scale on the right. In subfig. B note the increased separation width on the logarithmic
scale when comparing waterfilled sandstone to sandstone filled with hydrocarbons.
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5.3 Data analysis

Figure 5.4: Key elements of a
Box-and-Whisker plot. Fig-
ure courtesy of flowingdata
(2008)

An important step in a ML workflow is to visually and statisti-

cally inspect the data. This is done to identify outliers and fea-

tures which may have a large impact on the prediction accuracy

(James et al. 2013). In this study, each well and its respective logs

can be seen as a separate dataset which is merged together. The

ideal approach would then be to analyze each well separately and

compare the wells with each other to look for potential outliers

and significant differences between the wells.

The Box-and-Whisker plot (also called boxplot) was intro-

duced by John W. Tukey (Tukey 1977) and provides a compact

summary of a distribution. It is particulary useful for compar-

ing distributions across groups (Wickham and Stryjewski 2011).

Multiple boxplots are therefore an effective way to plot all logs

from all the wells individually and compare them. It also gives a

great overview of each well, and shows which logs are available

for each well, without the need of analyzing each well separately.

Figure 5.4 shows the key elements of a boxplot with the median

seen as a line within the box. 50% of the data are above the median and 50% are below. Also

note that as the variation increases within a distribution, the box becomes stretched.

Figures 5.5, 5.6 and 5.7 shows boxplots for all the CPI wells, with one plot for each individual

log. Gamma ray (GR), density and neutron is shown in Figure 5.5 while sonic compressional and

shear as well as formation photoelectric factor (PEF) and spontaneous potential (SP) are shown

in Figure 5.6. The shallow, medium and deep resistivity logs is shown in Figure 5.4.

Well 30/6-28S is from the boxplots observed to only contain one log (PEF) and it is therefore

removed from the study.
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Figure 5.5: Boxplot of all CPI wells showing the distribution of Gamma Ray (GR), Density (DEN) and Neutron (NEU) logs. The GR log
has high variation in distribution between wells, while the density log readings are centered around 2.5 with significant outliers. The
outliers in the neutron log are mostly in the upper region.
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Figure 5.7: Logarithmic boxplot of the shallow, medium and deep resistivity logs from all wells with CPI made available by Exploro.
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5.3. DATA ANALYSIS

From Fig. 5.5 the GR distribution is seen to have significant variations between the wells. The

most probable cause of this variation is that the clay content is different from well to well, where

wells with higher amounts of clay has a higher median GR thus moving the boxes upwards.

Different tools and different logging companies may also have an influence as the reference

point for GR values may differ between tools. There is no source on the GR tool, but the detector

which is measuring the radioactivity may be calibrated differently between wells (Rider 2011).

Using barite or KCL in the drilling mud will also influence the GR log. Barium is efficent at

absorbing low-energy radiation, while potassium in the KCL mud is a source of radioactivity

(Ellis and Singer 2007). The timespan of when the wells was drilled is likely to also be a factor of

the variability in GR. Technology advances within these years may have led to different readings

and measurements troughout the years.

The density plot (Fig. 5.5) is the most stable in terms of variability, with all of the wells having

a median density of around 2.5. Almost all wells have significant outliers and the low density

outliers is probably caused by coal which has a low density as shown in Fig. 5.2 or the tool may

have read the casing or drilling mud (Rider 2011). Hydrocarbons will also cause the density

readings to go down slightly (Ellis and Singer 2007). Causes for the high density outliers may

be highly cemented zones or an invasion together with using barite mud as drilling fluid, since

barite has a density of 4.5 g /cm3 (Bertozzi et al. 1981).

The neutron logs (Fig. 5.4) shows more variation from well to well than the density log and

also has some outliers, mainly with high readings. As shown in the point plots from Fig. 5.2, coal

is the culprit for many of the high neutron readings. Additionally, the neutron log measures the

amount of hydrogen, and since hydrocarbons has long chains of hydrogen the readings go up

when measuring formations containing hydrocarbons (Rider 2011). The increase differ between

gas and oil, with gas giving the highest increase (Rider 2011).

From Fig. 5.6 it is evident that only two wells are missing the compressional log (AC), while

10/26 of the wells has shear log measurements. The AC distribution show variance between

wells and most of the wells has outliers in both the upper and lower region. Fig. 5.2 shows that

some of the higher outliers can be identified as Coal. This is logical as lower density causes

slower travel time (Ellis and Singer 2007), and the AC log is the inverted travel time.
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The PEF and SP log shown in Fig 5.6 are all represented in about one third of all wells. The

general PEF median is around 5, with many of the wells having significant outliers. Especially

well 30/3-2 R is extraordinary with values up to 20, the validity of those high values are question-

able since PEF values usuallly are below 10 with the exception beeing if the well has been drilled

with mud containing barite which will dominate the log response (Rider 2011).

The SP distribution is seen to be divided into three subgroups, with 30/9-14 having the high-

est readings, followed by 30/10-6 and 30/11-3. The rest of the wells have readings below 100,

except a few readings and outliers going slightly above. The subgrouping of the SP log indicates

that completely different tools has been used for the three wells with median value above 200.

This will cause problems for the ML model and the SP log in wells 30/10-6, 30/11-3 and 30/9-14

are therefore removed from the database.

The resistivity logs in Fig. 5.7 show that all wells except the removed 30/6-28S well has the

deep resistivity log and only well 30/9-14 is missing the medium resistivity in addition to the

removed well. 15/26 wells has the shallow resistivity log available and the median value of the

LLS log is the most stable in terms of variation and the deep and medium resistivity logs show

higher variability between the wells.
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5.4 Splitting the dataset

Before the ML model can be created, it is necessary to decide which wells are to be used as

training data, and which wells are to be used as test data. It is expected that to obtain the best re-

sults good regional coverage is necessary. Well 30/6-28S was removed because the data analysis

showed it consisted of one log. The remaining wells are therefore split in a way that optimalize

regional coverage for both the training data and test data set.

Table 5.4 shows how the wells are split, and how many rows of data each well contains. Four-

teen wells are used as training wells and eleven wells are used as test wells. All rows represent

the Jurassic sequence for its respective well. Well 30/3-7B is a sidestep well and has not been

vertically drilled (NPD 2018), which is the reason for it having an exceptional amount of rows

compared to the other wells. For an ML model to be successfull, it is necessary to supply it with

enough training data, and this is why a majority of the wells are chosen as training wells. The test

wells are removed from the dataset and the ML model can not see the CPI logs or the lithoclasses

when it is applied.

Table 5.4: The split between training wells and test wells, and how many rows of data each well
contains. The sum shows that a higher fraction of the data is used to train the model than to
apply it.

Training wells Rows Test wells Rows

1 30/10-5 5820 30/10-6 5895
2 30/11-3 8813 30/11-6S 3550
3 30/11-7 2095 30/11-8A 5248
4 30/12-1 5166 30/11-8S 3699
5 30/3-10S 2079 30/2-1 3093
6 30/3-2R 3275 30/3-1R 3267
7 30/4-1 7001 30/3-7B 11083
8 30/6-22 5135 30/5-3A 351
9 30/6-4 3379 30/6-6 4053
10 30/7-7 6598 30/9-14 4611
11 30/8-1S 7356 30/9-21S 2561
12 30/9-16 5229
13 30/9-20S 2346
14 30/9-5S 2328

Sum 66620 47411
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5.5 Generating models

Three different models are developed, applied and compared against each other. Fig. 5.8 shows

a simplified workflow on how the models are generated. The first step is to select the training

wells from the well database, perform model specific enhancements or modifications, then op-

timalize and train the model. Finally the model is applied on the test wells.

Figure 5.8: Workflow on how the different machine learning models are created and applied
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5.5.1 Initial model

The first model is created to act as a reference point for the other models and to study how

well the algorithm performs by limiting it to the raw logs without adding additional features or

modifying the logs.

Before applying the model the hyperparameters are optimalized with a grid search, where

the root-mean-square error (RMSE) (Tibshirani et al. 2013) is minimalized. Based on the docu-

mentation from the creators of xgboost (XGBoost 2016), important parameters to optimalize are

max_depth, min_child_weight and the learning rate. Max depth controls how close the training

data is connected to the model. Increasing max depth will increase the chances of overfitting

the data causing the model to perform poorly on unseen data. Reducing max depth will make

the model increasingly general however this runs the risk of underfitting, where the model is not

able to see key differences between the lithoclasses. The learning rate decides how many steps

the xgboost algorithm needs before reaching optimum. Increasing the learning rate will make

the computations go faster (since fewer steps/rounds are needed) (Laurae 2016) but may cause

the model to not be fully optimalized, if the model is complex.

The parameters are optimalized by performing a grid search where different combinations

are trained and tested against a unseen part of the training dataset. To further speed up the

process the grid search is parallelized with the parallel and DoParallel R packages. Figure 5.9

shows the results of the parameter optimalization. A learning rate of 0.1, max depth of 6 and

minimum child weight of 6 is found to be the optimal parameters for this model and is used

when the model is trained and applied to the test set.

An additional model were tested with max depth of 12. However this caused overfitting and

the model performed poorly compared to the model with max depth of 6.
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Figure 5.9: The effects of optimalizing hyperparameters on root mean square error (RMSE). Note
how the RMSE flattens out after max depth of 6 for the learning rates of 0.1 and 0.05.

5.5.2 Normalized model

The normalized model is generated by transforming all the well logs into normalized logs. Within

statistics this is also called standardization (Kreyszig 2010). The background for generating this

model is to look at the implications of weighting the variables involved differently. The expected

result of normalization is that outlying data is given reduced importance. The normalization

equation is given by

lognm = log −µl og

σl og
, (5.2)

where lognm is the normalized log, log is the original log, µlog is the mean and σlog is the

standard deviation. µl og and σl og are well specific and is calculated individually for each well

within the Jurassic sequence.

Figure 5.10 shows the hyperparameter optimalization where each line is with a different

learning rate, either 0.1, 0.05 or 0.01. The best parameters from the optimalization is a max
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depth of 12, learning rate = 0.1 and minimum child weight = 7.
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Figure 5.10: Hyperparameter optimalization of the normalized model.

5.5.3 Enhanced model

To further improve the accuracy of the model several additonal features are added to address

multiple challenges related to the welldata:

• The study area is large and the training wells are spread apart up to several tens of kilome-

ters.

• The geology on such a scale is expected to have natural variations such as the mineral

composition. This will affect the log signatures.

• The well logging has been performed over a large timespan and by different contractors.

The tools used and the measurements done is highly likely to have changed with time, e.g.

the detector used in GR measurements may differ.

The result of these variations between wells is that the log signatures may be different and can

create problems for the ML model when it is attempting to classify intervals. The introduction
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of specific additional features are designed to mitigate this problem by generalizing the log sig-

natures from each well.

First, the resistivity logs are transformed from a linear scale to a logarithmic scale with base

10. The differences between the linear and logarithmic scale can be seen in Figure 5.3. The large

variations in the resistivity logs is expected to cause reduced prediction accuracy. Transforming

the resistivity logs to a logarithmic scale will make the distribution more linear and may have a

positive effect.

Next, the P99 quantile is calculated for each log in each well, and the log is then divided by

the P99 value. The choice of using P99 instead of maximum value is that the P99 value gives a

more accurate representation of a high value within the log and is not affected by outliers in the

data in the same way as the maximum value. Even after the filtering is applied the likelihood

for outliers is still present and the P99 value has a lower likelihood of beeing influenced by the

outliers. It represents a more accurate depiction of the highest value within the log.

Figure 5.11 shows an extreme case of the difference between the P99 value and maximum

value for the GR log of well 30/6-4. The plot is flipped from the traditional way of plotting a well

log with depth on the y-axis to emphasize the GR values. The model is optimalized in the same

way as the initial and normalized model which is shown in Fig. 5.12. The RMSE value in the

enhanced model is lower than both the intial and normalized models shown in Figures 5.9 and

5.10. The chosen parameters based on the optimalization routine is a max depth of 12, learning

rate of 0.05 and minimum child weight of 8.
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Figure 5.12: Hyperparameter optimalization of the enhanced model. The RMSE value is lower
than the RMSE values in the intial and normalized models shown in Figures 5.9 and 5.10.
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Chapter 6

Results

6.1 Initial model

Figure 6.1 shows a confusion matrix (A) and a feature importance plot (B) for the initial model.

Within the matrix the true labels for each classification is along the vertical axis, and the predic-

tions are along the horizontal axis. The correct predictions are going along the diagonal from

the upper left corner to the lower right corner. The accuracy is calculated by taking the number

of correct predictions for a class and dividing it by the total sum of the lithoclass. E.g. the SS

accuracy is calculated in the following way

Accur ac ySS = 3208

3208+194+0+396+148+0+2
∗100% = 81.3%.

From Fig. 6.1A waterfilled sandstone (SS) has a high degree of accuracy with 81.3% while the

sandstone with uncommercial hydrocarbons (SSUHC) is challenging to predict with the lowest

degree of accuracy (22.5%). The sandstone with commercial amounts of hydrocarbons (SSCHC)

has a higher accuracy with 59.5%, while the predictions of muddy sandstone has an accuracy of

40.5%. When the mud content increases further the accuracy goes up significantly with 70.7%

and 71.4% for sandy mudstone and mudstone respectively. Coal has the highest degree of accu-

racy with 96.6%.

In the feature importance plot (Fig 6.1B) GR has the highest influence on class predictions

with almost 0.3, followed by the neutron and density log which are both around 0.2. There is a

significant jump in terms of importance from GR, density and neutron down to the rest of the

logs.
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Figure 6.1: Confusion matrix (A) and feature importance plot (B) from baseline model where
only the raw logs were used. Correct predictions are on the diagonal from upper left down to
lower right, while the other values on each row are false positives.
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6.2 Normalized model

Figure 6.2 shows the confusion matrix (A) and feature importance (B) for the normalized model.

Comparing the confusion matrix from the normalized model with the initial model shown in

Fig. 6.1 it is evident that the accuracy is reduced substantially for all lithoclasses except sandy

mudstone which has gone from 70.7% to 83.3%. By normalizing the log responses outliers and

unique tendencies becomes less weighted, and this is reflected in the results. Coal, which can

easily be identified in the logplots from Fig. 5.2 is a good example of this behavior. The accuracy

has been reduced from 96.6% in the initial model to 74.6% in the normalized model.

The feature importance plot shown in Fig. 6.2B has changed slightly when comparing it to

the initial model. Gamma ray is still the most important feature and the density log has become

more important than the neutron log. The shallow resistivity log (LLS) is now more important

than the deep resistivity log (RDEP).

6.3 Enhanced model

Figure 6.3 shows the confusion matrix and feature importance plot of the enhanced model.

Compared to the initial model there is an accuracy increase in sandstone, muddy sandstone,

sandy mudstone and coal predictions. A subtle difference is that the false predictions place-

ments are different than from the initial model. For example, the SSUHC false predictions has

moved from MUDSS and SMUDST to primarily SS. The same pattern can be seen in the SSCHC

lithoclass.

Compared to the normalized model (Fig. 6.2) there is a significant accuracy increase across

all lithoclasses except SMUDST which has a slight decrease.

The confusion matrix in Fig. 6.3B shows the impact from the implementation of relative

features. Especially the relative features of GR, density and neutron has made a large impact.
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Figure 6.2: Confusion matrix (A) and feature importance plot (B) of the normalized model. Com-
pared to the initial model, accuracy in predictions has been significantly reduced for all classes
except sandy mudstone.
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Figure 6.3: Confusion matrix (A) and feature importance plot (B) of the enhanced model. The
feature importance plot shows the 15 most important features.
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6.4 Model accuracies and lithoclass distribution

Table 6.1 shows the well prediction accuracy for the three different models and how many logs

are available in each of the test wells. Figure 6.4 shows a bar graph of the accuracy distribution

for the wells. For the initial and enhanced model, the two wells that scores poorest in terms of

accuracy are 30/2-1 and 30/3-1R. The two wells has five logs available in the Jurassic interval

and from the boxplots in Figures 5.5, 5.6 and 5.7 the logs available are GR, AC and the three

resistivity logs RDEP, RMED and LLS. In the normalized model, well 30/3-1R has doubled its

accuracy compared to the initial and enhanced models and well 30/2-1 also has increased ac-

curacy compared to the other models. Well 30/9-14 and 30/11-6S are the two wells with highest

accuracy, where the enhanced model scores highest. The two wells also has a high amount of

logs available, with 7 and 9 for 30/9-14 and 30/11-6S respectively. The general trend is that a

higher amount of logs gives a higher degree of accuracy for the initial and enhanced model.

Figure 6.5 shows the total number of lithoclass predictions for each model and the refer-

ence model. All models are predicting a higher amount of sandstone compared to the correct

number in the reference model. The models also underpredicts the number sandstone with

commercial/uncommercial amounts of hydrocarbons.

Table 6.1: Well prediction accuracies for the three different ML models and how many logs were
available in each well. Note how the number of logs available has an influence on the accuracy.

Wellname Initial Normalized Enhanced #Logs

30/10-6 57.4 74.4 72.3 7
30/11-6S 74.5 59.4 83.8 9
30/11-8A 69.6 45.1 69.6 8
30/11-8S 77.1 59.7 79.1 8
30/2-1 49.4 69 58.7 5
30/3-1R 34.5 70.6 35.7 5
30/3-7B 62.1 60.9 68.2 6
30/5-3A 73.8 70.4 75.8 6
30/6-6 81.2 67.3 76.4 9
30/9-14 74.5 62.7 88.1 7
30/9-21S 78.9 48.5 62.4 8
Avg acc. 65.5 62 70.4
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Figure 6.4: Bar plot of model accuracy for each well. The normalized model has the highest accuracy of the models on wells 30/2-1
and 30/3-1R which also has the lowest amount of logs available.
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6.5 Well 30/9-14

Figure 6.6 displays gamma ray (GR), water saturation (SW), volume wet clay (VWCL) and the

results from the three different models together with the correct classification in a section be-

tween 3100 and 3150 meter in the well. The SW and VWCL are from the CPI and is used for

lithology classifications shown in the Reference column.

The initial model is seen to be interpreting mostly sandy mudstone instead of muddy sand-

stone several places in the interval. In addition it does not accurately recognize the hydrocarbon

zones, instead classifying them as sandstone intervals. This is especially noticeable at approx-

imately 3125m, where it predicts sandstone or sandstone with uncommercial amounts of HC

where the correct classification is sandstone filled with commercial amounts of HC.

The predictive behavior of the normalized model is significantly different than the initial

model. A general tendency to predict lithologies with lower clay content is evident, e.g. where

the model predicts muddy sandstone instead of sandy mudstone or sandstone instead of muddy

sandstone.

The enhanced model shows the highest degree of accuracy when compared to the reference

model, and accurately predicts the main features of the interval (HC and sand zones). At ap-

proximately 3101− 3103m the enhanced model predicts an uncommercial HC zone while the

reference model classifies it as a muddy sandstone. From the VWCL and SW values the refer-

ence classification is at the border between classifications (Table 5.2), and the differences be-

tween the lithologic classes are so small that it does not manage to distinguish between them.

At approximately 3119 meter and between 3124−3128 meters the enhanced model accurately

predicts the HC zones, with few significant errors.

Figure 6.7 shows the interval between 3350−3400 meters which has high presence of coal.

Between 3354 and 3369 meters the initial model is seen to falsely predict mudstone instead of

sandy mudstone, while the other models have a greater accuracy in their predictions in the same

interval. The coal is predicted accurately in all models except at approximately 3384 meters

where the normalized model fails to identify the coal layer. In general all three models accurately

identifies the sandstone layers, with some minor errors such as interpreting muddy sandstone

instead of sandstone in some parts.
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Figure 6.6: Log interval between 3100 to 3150 meters (Tarbert Fm.) from well 30/9-14 showing
GR, SW, VWCL and a comparison of the different ML models. When water saturation drops
below 100% it is shown in green and is a indication of HC. Coal is not present in this log interval.
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Figure 6.7: Log interval between 3350 to 3400 meters (Ness Fm.) from well 30/9-14. The white
stripes in the log are intervals with missing data or because of filtering in the preprocessing.
High amount of coal is present and all ML models accurately predict the presence of coal.
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6.6 Well 30/11-8 A

Figure 6.8 shows the interval 3590− 3640 meters (Heather Fm.) in well 30/11-8 A. The upper

part of the figure shows a mudstone acting as a barrier or trap for the hydrocarbons within the

rock below. The VWCL values within the hydrocarbon interval is right at the border between

muddy sandstone and a sandstone filled with hydrocarbons (VWCL >= 25% for muddy sand-

stone). This is reflected in the reference model where the classification changes between sand-

stone with commercial amounts of HC and a muddy sandstone. Major differences can also be

seen in the classifications between the reference well and the three models within this interval.

All three models classifies sandstone with commercial amounts of HC instead of muddy sand-

stone troughout the interval, and the normalized log is picking up many of the smaller intervals

where the water saturation is reduced by only 10−15%.

Figure 6.9 shows the interval 4100− 4150 meters (Ness Fm.) in the well. Based on the ref-

erence log the lithology in the section consists mainly of sandy mudstone and mudstone along

with some sandstone intervals. There is a small HC section at 4105 m, and a larger section at

approximately 4116−4120 meters. Coal is present troughout the section. The initial model ac-

curately classifies most of the interval, except mixing the sandy mudstone and mudstone some

places. There is also a falsely predicted HC interval at the bottom of the section. The normalized

log generally predicts sandy mudstone instead of mudstone troughout the interval, and also has

some errors in the main HC interval (4116−4120m). Additionally, the normalized log has some

errors in its coal classifications, which can be seen at approximately 4115m and 4131m.

The classifications of the enhanced model are accurate troughout the section, with some

errors in the HC interval where it classifies a commercial sandstone interval as a waterfilled

sandstone interval.
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Figure 6.8: Log interval between 3590− 3640 meters (Heather Fm.) from well 30/11-8 A . The
upper part of the log shows a mudstone acting as a barrier or trap for the hydrocarbons within
the interval 3598−3620m.
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Figure 6.9: Log section (4100 − 4150m) from well 30/11-8 A in the Ness Fm. One major HC
interval can be seen between 4116−4120m. The normalized model is the least accurate, while
the initial and enhanced model fares better.
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Discussion
Lithoclasses and the model’s ability to correctly classify them is first to be discussed followed

by the prediction accuracy in individual wells with emphasis on the wells with the highest and

lowest accuracies. Finally, a summary comparison between the models is discussed.

7.1 Lithoclasses and prediction ability

Based on the confusion matrixes shown in Figures 6.1A, 6.2A and 6.3A, a predominant observa-

tion is that the sandstone class is easy to predict with high accuracies in all models. The high

accuracy can be related to the filters used when creating the lithoclasses shown in Table 5.2,

with the sandstone class having between 0−25% VWCL. This provide a good coverage of train-

ing data and makes it easier for the algorithm to identify it than if the upper limit was set 15 or

20%. From the point plots in Figures 5.2 and 5.3 the sandstone class is clearly distinguishable

within the data, especially in the GR log which is the most important feature. This is expected to

be the main reason for the accurate predictions.

When looking at the SSUHC and SSCHC classes, they are are less accurate than the SS class

and especially SSUHC is difficult to correctly classify. There are several reasons which may ex-

plain the poor results. The first is the treshold values used when creating the classes. The SSUHC

class is created with using SW between 90 and 60% and VWCL below 25%, and this distinction

may not be good enough to separate it from a SSCHC. The SSCHC class was created with the SW

between 60 and 0% SW, and this gives it a clear distinction, especially for the deep resistivity logs

(Fig. 5.3) and I believe this is the main reason for it having significantly higher accuracy than the

SSUHC.

The muddy sandstone class (MUDSS) is suffering from the same problem as the SSUHC

class. The VWCL interval for this class is between 25− 40% giving it an interval of 15 percent

points. This is significantly different from the SMUDST and MUDST class which have 40−75%
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and 75− 100% VWCL content respectively giving them both a 35 percent points interval. The

higher interval width gives the algorithm additional prediction leniency, meaning that the data

may vary more within the class. The false predictions within the MUDSS, SMUDST and the

MUDST is mostly shared between the three different models. While the normal and enhanced

models all have their false predictions fall mainly between the three classes, the normalized

model is seen to predict in a more erratic fashion. This is likely related to the effects of normal-

ization, where outliers does not get weighted as much.

Coal is in a class of its own in terms of accuracy, with the initial and enhanced model having

96.6% and 98.1% accuracy respectively. This high accuracy is interpreted to be related to its

distinct features. From the logplots in Fig. 5.2, coal is easily distinguished by its low density and

its high neutron and sonic readings which makes it easy for the XGBoost algorithm to correctly

predict it. These distinct features are dampened/mitigated when normalizing the data and is

reflected in the poor accuracy of 74.6% for the normalized model shown in Fig. 6.2.

7.2 Prediction accuracy in individual wells

Table 6.1 provides details on how the prediction accuracy is influenced by the number of well

logs available. By using the enhanced model as reference, wells 30/3-1 R and 30/2-1 are the

least accurate with 35.7% and 58.7% respectively. Coincidentally the wells has a high accuracy

in the normalized model with 70.6% for 30/3-1R and 69% for 30/2-1. The normalized model

has a tendency to predict a higher amount of sandy mudstone than the other models as shown

by the total distribution in Figure 6.5. Figure 7.1 shows distribution plots of the two wells and

the reference distribution shows that both wells has a high amount of sandy mudstone. The

abnormally high accuracy by the normalized model in the two wells can therefore be explained

by the lithoclass distribution within the wells.

The feature importance plots from Figures 6.1B, 6.2B and 6.3B show how the density and

neutron logs play a major part in the lithology classification. Without the presence of those logs,

the accuracy will suffer. Wells 30/9-14 and 30/11-6 S has the highest degree of accuracy with

88.1% and 83.8% with seven and nine logs available respectively. There is therefore a link re-

lated to how many logs available in a well, and the prediction accuracy of the ML model. The
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higher amount of logs available, the more accurate the predictions can be expected to be. Addi-

tionally, with increasing amount of logs available, it may be possible to have additional classes

and still expect the model accuracy to be within acceptable accuracy since there will be enough

difference within the data to distinguish between the classes.

The poor accuracy may also stem from overlap within lithoclasses, they are not different

enough within the data for the algorithm to correctly distinguish between two or three classes

which are highly similar.
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Figure 7.1: Distribution plots of well 30/3-1R (A) and 30/2-1 (B). The wells contains high
amounts of sandy mudstone and combined with the normalized model’s tendency to predict
sandy mudstone the result is a falsely perceived high accuracy for the normalized model.
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7.2.1 30/9-14

Well 30/9-14 is the well that scored highest in terms of accuracy with 88.1% using the enhanced

model. There are some key properties of this well which may have impacted the accuracy in a

positive way: The Jurassic interval in the well is seen in Figure 3.1 to be on a structural high and

table 4.1 shows that the top Jurassic is at 2968 meters, while the bottom Jurassic is at 3680 meters

(MD). The well is vertical and the differences between measured depth and true vertical depth

are negligible. The Jurassic thickness is 712 meters and the well is drilled within the confines of

the Oseberg Sør field (NPD 2018).

The fact that the well has been drilled on the Oseberg Terrace has given it a good amount of

correletable data. Table 4.1 Figures 3.1 and 4.1 show that a majority of the wells included in this

study has the Jurassic interval on a structural Terrace or Graben high. The implications of this

is that the majority of the Jurassic interval in the wells used for training data and well 30/9-14

has low differences in burial depth. The low differences is expected to cause good correlation

between the training data and well 30/9-14 as the burial depth has a direct influence on the

porosity and density values (Ramm and Bjørlykke 1994).

From Fig. 6.6 the normalized model is seen to be predicting more sand than the other models

in the interval 3100−3135m. The GR values within this interval are slightly lower than similar

intervals in well 30/11-8A and from the feature importance plot of the normalized model in

Fig. 6.2B it is evident that the GR log plays a significant role when predicting the lithoclasses.

This combination is likely the reason for the normalized model having such high amounts of

sandstone predictions, while the other two models does not rely on the GR log as much in their

predictions.
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7.2.2 30/11-8A

Well 30/11-8A has equal accuracy in the initial and enhanced model with an accuracy of 69.6%

(Table 6.1) and 45.1% for the normalized model. Figure 3.1 shows that the Jurassic interval is

within a structural low (Viking Graben) and Table 4.1 shows that the top Jurassic is at 3671 me-

ters and the bottom Jurassic is at 4475 meters (MD). The well is a deviation well and the equiva-

lent top and bottom depths in TVD is 3472−4263 meters (Marello et al. 2016). The difference of

approximately 500 meters in burial depth between Top Jurassic of 30/9-14 and 30/11-8A may be

a contributing factor for the reduction in accuracy, as it can cause lower correlation between the

training set and the well in terms of log signatures. The porosity reduction trend for sandstone

is quite steep steep between 2−3.5 km (Blazevic Vucelic 2017) and the reduction will increase

the density and reduce the neutron log signatures which can affect the prediction accuracy.

The interval between 3600−3620m in well 30/11-8A (Fig. 6.8) shows the challenge with the

petrophysical filters. The VWCL is defined at the border between sandstone with hydrocarbons

and a muddy sandstone, and this is reflected in the reference log where it is alternating between

two lithoclasses. From a geologic standpoint, the interval would be marked as a commercial

zone, and the ML models do interpret a high percentage of the zone as a hydrocarbon zone. The

primary cause of this is because the models does not see the VWCL and SW values their limits are

less rigid than the reference model. Therefore the accuracies shown in the confusion matrixes

(Figures 6.1A, 6.2A, 6.3A) and Table 6.1 should be interpreted as indicative, not absolute.

It is also evident that the petrophysical filters defined in Table 5.2 gives a floating transition,

not a rigid one and in a geological view that can be interpreted as a good trait. Varying the

limits of the petrophysical filters allows us to fine-tune how the zones should be defined, e.g.

from an economic perspective or from a sedimentological perspective. In the interval between

3620−3640 in Fig. 6.8 there are several smaller hydrocarbon zones which are not identified by

the ML models, this may be further improved by fine-tuning the petrophysical filters.
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7.3 Model comparisons

To generalize the models, the initial or baseline model shows the maturity and potential of ap-

plying ML on well logs, whereby only using the raw logs without any modifications it was able

to achieve an average accuracy of 65.5% (Table 6.1).

The normalized model shows a general decrease in accuracy and based on it’s accuracy show

no applicability at all. The model seems to be a classic example of underfitting, where the model

is too general to capture the underlying structure of the data. This is especially noticeable in the

Coal lithoclass which should be easy to identify as seen for the other two models.

The enhanced model improves the accuracy significantly in wells where a high amount of

well logs are available when compared to the initial model and is a good example on how gen-

erating additional features can improve the quality of a ML model. This accuracy is expected

to be improved even further by generating additonal features and performing more rigorous

optimalization of the algorithm parameters.
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Conclusions
This thesis has generated and applied three different models for predicting lithofacies within

the Jurassic sequence on specific wells in quadrant 30 by using supervised machine learning.

Well log data from 26 wells has been concurrently analyzed with the use of boxplots and seven

different lithoclasses has been defined based on CPI’s provided by Exploro. One well was re-

moved due to lack of data in the Jurassic interval. The models have been trained by using well

log data from 14 wells without the use of CPI’s and they have been applied to 11 wells.

The key findings from this study are:

• Structured machine learning enables working on multiple wells and performing adjust-

ments on data input, number of categories and number of well logs in a short period of

time and in a fast and consistent manner. Lateral variations in terms of depositional envi-

ronment and varying burial depth need to be addressed when deciding on which wells to

include in the training data to achieve optimal prediction accuracy.

• The preprocessing steps involving loading and merging of well data, analysis and removal

of bad data is the most critical part of a machine learning routine. A lackluster effort in

this area will result in a poor ML model performance.

• The choice of petrophysical filters makes the lithoclass grouping rigid/strict and does not

take into account the natural variability of geology. This affects the reference model and

the perceived accuracy of the models, where from a geologic perspective the perceived er-

rors are in many cases not significant. A refinement of the lithoclass definitions combined

with manual quality control of the classes within the training data is expected to lead to

better results.

• The number of well logs has a direct influence on the accuracy of the machine learning

models, where a higher number of well logs available led to better results for the initial
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and enhanced model. For an acceptable predicting power the wells should contain mini-

mum the gamma ray, density and neutron log. To accurately differentiate between water-

bearing and hydrocarbon intervals in sandstones the resistivity logs should be present.

• The enhanced model improves the accuracy significantly in a majority of the wells com-

pared to the other models and is the best option for further use in additional wells. The

addition of relative features by dividing multiple logs by their P99 value proved to be a

valuable feature enhancement operation.
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Implications of work
The impact of this presented work has high potential in exploration, as high resolution in-

formation about lithological changes is a crucial knowledge in exploration. Detailed well knowl-

edge need to be accounted for in order to reduce the exploration risk. In the mature province of

Northern North Sea, the large amount of data is challenging as the time required to organize and

quality ensure the data is huge. The use of ML in this thesis has shown that it is a system that pro-

vides quick and consistent high resolution lithology interpretations which represents a solution

to utilize the enormous amount of data available. Additional refinement of this methodology

with its improved lithology results can gain more predicting power for:

1. Localizing lithological heterogeneity and boundaries

2. Estimate borehole quality

3. Define zonation’s of intervals with similarly petrophysical characteristics including hydro-

carbon bearing intervals.
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Further work
• The petrophysical filters used are rigid and in some cases they generated overlapping

problems, where multiple classes had similar data signatures. A refinement of the classes

e.g. by using different petrophysical filters would probably lead to improved results. Addi-

tionally there are several ways to define the lithoclasses, developing classes in collabora-

tion with a sedimentologist or petrophysicist may lead to a different group of lithoclasses.

• A natural extension to the lithofacies predictions in this thesis is predictions of deposi-

tional environment and transition zones between them. Bad hole zones may also be iden-

tified by adding another class.

• Both the normalized and the enhanced model used a max depth of 12 as hyperparameter

setting. This may have been too high and can have caused overfitting of the models. The

implications of applying a lower max depth should be assessed in the future.

• A significant portion of the work done in this thesis has focused on data quality and prepa-

ration. Further improvement is possible by performing more advanced data analysis to

understand the process variables. One possibility is to use principial component analysis

(PCA) as done in Brandsegg et al. (2010).

• The work done in this thesis has concentrated on using supervised ML. Unsupervised ML

has shown good potential for grouping/clustering data with large variations or unstruc-

tured data (Thurmond 2018). The combination of unsupervised and supervised ML may

result in a better understanding of patterns within the data which has not been observed

in the supervised ML routine alone and vice versa.
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Appendix A

Libraries used in R
Table A.1 summarize the libraries used with R, sorted by topic.

Table A.1: R libraries used

Data management
data.table High-performance version of base R’s data.frame.
xlsx Read/write .xlsx files

ML related
xgboost R interface of the XGBoost algorithm
MLmetrics Misc ML functions
caret Hyperparameter optimalization interface (grid search)
parallel Parallelization of grid search
doParallel Parallelization of grid search

Data visualization
ggplot2 Generation of figures
cowplot Extension to ggplot2, adds custom theme
egg Misc functions for ggplot2, used when generating logplots.

Misc
maptools Generating shapefile from well coordinates
rgdal Shapefiles load/write and UTM zone conversions
stargazer Automatic LATEX table generation from data.table
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Appendix B

Optimalization of tree ensemble model
The following derivation is based on the derivation from (Chen and Guestrin 2016).

In ML, regularization is a process where additional information is introduced in order to

prevent overfitting or to solve a ill-posed problem (Bühlmann and Van De Geer 2011). Thus the

goal of introducing regularization in supervised ML is to reduce model complexity which leads

to a reduction in over-fitting. A common regularization approach to Boosted trees is to reduce

the number of nodes (leaves) to make simpler trees. For a full overview, let’s start by looking at

how a tree ensemble model predicts the output:

Because the tree ensemble model shown in Eq. 2.1 contains functions as parameters they

can not be optimized using traditional optimization methods in Euclidean space (Chen and

Guestrin 2016). The model is instead trained in an additive manner by using a second order

approximation to optimize the objective in Eq. 2.3. Let ˆy (t )
i be the prediction of the i -th instance

at the t-th iteration. To minimize the following objective it is necessary to add ft

L(t ) =
n∑

i=1
l (yi , ŷ (t−1)

i + ft (xi ))+Ω( ft ). (B.1)

The result is that the ft which has the highest improvement to the model in Eq. 2.3 is greedily

added. Greedy in this context means that the algorithm uses several iterations to compute the

result. For each iteration, the algorithm assumes that the result is obtained by selecting the best

result. Thus the global optimum is obtained by selecting the local optimum at each iteration.

To quickly optimise the objective, a second order approximation can be used (Friedman et al.

2000)

L(t ) w
n∑

i=1
[l (yi , ŷ (t−1))+ gi ft (xi )+ 1

2
hi f 2

t (xi )]+Ω( ft ), (B.2)

where gi = ∂ ˆy (t−1) l (yi , ˆy (t−1)) and hi = ∂2
ŷ (t−1) l (yi , ŷ (t−1)) are first and second order gradient statis-

tics on the loss function. By removing the constant terms the following simplified expression at
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step t can be obtained

v
L

(t )
=

n∑
i=1

[gi ft (xi )+ 1

2
hi f 2

t (xi )]+Ω( ft ). (B.3)

Define I j = {i |q(xi ) = j } as the instance set of leaf j . By expanding Ω in Eq B.1 it can be

rewritten into

v
L

(t )
=

n∑
i=1

[gi ft (xi )+ 1

2
hi f 2

t (xi )]+γT + 1

2
λ

T∑
j=1

w 2

=
T∑

j=1
[(

∑
i∈I j

gi )w j + 1

2
(
∑

i∈I j

hi +λ)w 2
j ]+γT

(B.4)

For a fixed structure q(x) the optimal weight w∗
j of leaf j can be computed with

w∗
j =−

∑
i∈I j

gi∑
i∈I j

hi +λ
, (B.5)

and calculate the corresponding optimal value by

v
L

(t )
(q) =−1

2

T∑
j=1

(
∑

i∈I j
gi )2∑

i∈I j
hi +λ

+γT. (B.6)

Eq B.6 can then be used as a scoring function to measure the quality of a tree structure q . Due to

the sheer size of of all the possible tree structures q it is usually impossible to enumerate all of

them. Instead it is possible to use a greedy algorithm that starts from a single leaf and iteratively

adds branches to the tree (Chen and Guestrin 2016). Assume that IL and IR are the instance sets

of left and right nodes after the split. By letting I = IL ∪ IR the loss reduction after the split is

given by

Lspl i t =
1

2

[
(
∑

i∈IL gi )2∑
i∈IL hi +λ

+ (
∑

i∈IR gi )2∑
i∈IR hi +λ

− (
∑

i∈I gi )2∑
i∈I +hi +λ

]
−γ (B.7)

This equation is usually used in practice for evaluating the split candidates.
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