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Abstract

This master thesis looks at how clustering techniques can be applied
to a collection of scientific documents. Approximately one year of server
logs from the CERN Document Server (CDS) are analyzed and pre-
processed. Based on the findings of this analysis, and a review of the
current state of the art, three different clustering methods are selected
for further work: Simple k-Means, Hierarchical Agglomerative Clustering
(HAC) and Graph Partitioning. In addition, a custom, agglomerative
clustering algorithm is made in an attempt to tackle some of the problems
encountered during the experiments with k-Means and HAC. The results
from k-Means and HAC are poor, but the graph partitioning method
yields some promising results.

The main conclusion of this thesis is that the inherent clusters within
the user-record relationship of a scientific collection are nebulous, but
existing. Furthermore, the most common clustering algorithms are not
suitable for this type of clustering.
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Chapter1Introduction

1.1 Motivation

The motivation for this thesis starts out in the current situation of open source
systems within search and cataloging. Even though there are several popular systems
in this area, there are none that has prioritized implementing a recommender system
that utilizes the extensive research done in the field. Recommender systems are
common in commercial systems, such as Amazon, eBay and Netflix, as they are
valuable for improving the usability of the system. By the use of several different
techniques – some derived from Information Retrieval (IR) techniques, and some
specifically developed for recommender systems – recommendations can be made
with background in previous interests and behavior.

This master thesis subsequently focuses on taking the next step towards creating
a recommender system for Invenio. Collaborative filtering is an area of research
where the algorithms and approach can be highly specific, possibly yielding superior
results over a generic, one-size-fits-all algorithm. By analyzing the access logs of
Invenio’s biggest user – the CERN Document Server (CDS) – the hope is to show
that there exists a solid basis for creating clusters that can be used in a collaborative
filtering algorithm.

A user study among the physicists in the High Energy Physics (HEP) field shows
that currently, only 6.5 to 10.9% consider collaborative tools and personalization as
a very important feature, compared to search accuracy and depth of coverage, which
are at 59.5% and 72.7% respectively [1]. However, 15.4% consider "Recommendation
of documents of potential interest" a very important feature for the ideal scientific
information system. In addition, 45% of the respondents have used HEP search
engines for over 10 years, and there is a clear trend among the younger physicists
for using Google and Google Scholar, both of which utilize more advanced ranking
and recommendation than the current HEP repositories. This suggests that smarter
recommender systems are becoming more and more commonly used, also within

1



2 1. INTRODUCTION

scientific circles.

On a more general note, Huang et al. [2] states that "Recommendations comprise a
valuable service for users of digital libraries". As such, Invenio needs to make an effort
in improving the user experience and increasing the usability, and a recommender
system is an important tool in achieving this goal.

1.2 Invenio and CERN Document Server

Invenio is a digital library system developed by CERN1 to run the CERN Document
Server (CDS). It was launched as a stand-alone open source software July 2006,
while still being maintained by a core team of developers at CERN [3]. Invenio is a
full featured digital library, capable of handling both text documents, audio, video,
photos and several other formats. The records are organized in collections, and can
be navigated through the use of keywords, categories and other metadata. User
registration is also supported, providing access control for restricted records, as well
as some personalization options. Since its release, it has been adopted by many large
institutions, such as the École polytechnique fédérale de Lausanne (EPFL) and the
Deutsches Elektronen-Synchrotron (DESY) [4].

CDS is the main library of CERN, and is the original reason Invenio was de-
veloped. With over 1.3 million scientific articles and preprints [5], it is one of the
top institutional repositories[6]. It has over 30 thousand visitors each month. CDS
contains not only articles but also images, video and other texts. It has approximately
8000 registered users, most of which are researchers of HEP [4].

1.3 Digital Libraries

Although an intuitive term, it is hard to properly define Digital Libraries (DLs).
Several approaches to the area exist, and each with their own main focus. A well-
covering definition suitable for the context of this thesis states [7, p. 712]:

Complex information systems that help satisfy information needs of
users, provide information services, and organize, present, and communi-
cate information with users in usable ways.

Hence, the key features of a Digital Library (DL) are searching and browsing
capabilities, preservation of content (assuring satisfactory, permanent access regardless
of content type), and tools for maintaining quality control. In addition, they are

1http://home.web.cern.ch/
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often specialized within a certain field, such as scientific areas like HEP, medicine and
biology, or to maintain collections of data within enterprises or other organizations.

1.4 Scope and limitations

Because of the time constraints for this thesis, the scope is narrowed to collaborative
filtering in scientific collections, a very specific application of recommender systems.
Despite these limitations, the ultimate goal of this thesis is to improve recommender
systems for open source systems in general, and Invenio in particular. This thesis
thus serves a sort of first step in this effort, attempting to perform effective clustering
on usage logs of the CDS. The limitations of this thesis are explained below.

Only scientific collections considered

The thesis will only consider collections of scientific papers. This decision was made
to impose a limitation on the workload, but also because the thesis tries to show
how recommender systems can be tailored to specific applications. While this thesis
choses to focus on scientific collections in general, it is part of a larger effort to
improve the usability of Invenio. There is reason to believe that scientific institutions
will be the largest user base of Invenio in the future, which will increase the value of
such a specialized tool. In addition, the original idea for this thesis was based on the
hypothesis that academic collections have special attributes with regards to usage,
which allows for specialized recommendation algorithms. This hypothesis will be
further elaborated in Chapter 4.

Only collaborative filtering considered

While there exist numerous directions within the research field of recommender
systems, a choice had to be made on the construction of the algorithm. In the
preparatory work done for this work, several different recommender techniques were
selected for a final, distributed recommendation system. When selecting a path for
further work, collaborative filtering in combination with scientific collections stood
out as the one method with most potential.

1.5 Problem definition

With basis in the above-mentioned introduction, the problem definition has been
condensed in the following main research question:

How can clustering methods utilize the document collection
and access logs of CDS to generate recommendations?



4 1. INTRODUCTION

1.5.1 Objectives

The objective of this thesis is to investigate the current state of the art in the field
of collaborative filtering recommender systems. More specifically, it will focus on
methods of analyzing usage data used by recommender systems. The state of the art
research will be evaluated in terms of how it can be used for clustering collections
of academic papers. In addition, an overview of the CDS usage will be presented,
based on statistical analysis of access logs over a 13 month period. Based on this
research, clustering methods will be applied to the processed logs, and the results
will be evaluated.

The thesis’ sub-objectives are formulated into the following three questions:

• Q1: How can the usage logs of CDS best be processed to allow for effective
analysis of usage patterns?

• Q2: How can clustering methods be adapted to identify user groups from
automatic analysis of usage logs?

• Q3: How can the the resulting clusters of the usage logs be utilized in a way
that mitigates information bubbles?

1.6 Document structure

The thesis is organized as follows:

Chapter 2: Background presents the relevant background information and theory,
as well as surrounding theory that might improve the understanding of the
state of the art.

Chapter 3: State of the Art provides an overview of the current state of the art,
with focus on methods in recommender systems theory.

Chapter 4: Approach contains a documentation of the approach, together with
intermediate results and reflections made during the process. It starts with an
overview of the process leading up to the research, followed by a step by step
report on the work.

Chapter 5: Results and discussion presents the results, discussing them against
each other and highlighting strengths and weaknesses.

Chapter 6: Conclusion rounds off the thesis by presenting the final results, lessons
learned, and the answers to the objectives found in section 1.5.1. In addition,
the chapter gives suggestions to further work on the experiments, and looks at
possible future applications of the results.



Chapter2Background and preliminary study

In this chapter, we will present the basic theoretical concepts mentioned in the thesis.
Most of it is later referenced in State of the Art (Chapter 3) and Approach (Chapter
4), and serve as a further explanation of the concepts mentioned there. The most
relevant background sections are Clustering techniques (2.3), Graph partitioning (2.5
and Recommender systems (2.2). The other sections mainly serve to give background
theory for the introduced concepts previously used within recommender systems and
collaborative filtering.

2.1 Similarity models

Similarity models are used in information retrieval systems to find relevant results
based on a query. The goal of a similarity model is to present results with high recall
and high precision. This essentially means that the results should include as many
of the relevant records as possible (recall), while excluding as many of the irrelevant
records as possible (precision). There exist several different similarity models, each
utilizing different principles which have different strengths and weaknesses. Those
presented in this section are the basis for current recommender system implemented
in the CDS.

2.1.1 Boolean model

The boolean model within information retrieval is the most basic similarity model
used for retrieval of results in search systems. Systems using the boolean model uses
boolean algebra as the query language, and the records are returned if they match
the given query [8]. The boolean model has no inherent concept of ranking; the
records either match the query, or they do not. As an example, lets look at the query
[q = t1 OR (t2 AND t3)]. This will return any document that either contains the
term t1, the terms t2 and t3, or all three terms.

5



6 2. BACKGROUND AND PRELIMINARY STUDY

While this model is both fast and simple, it has several drawbacks. It does not
consider term weighting, has no concept of gradual relevance, and the queries have a
tendency to either return too many, or too few results [7]. As an attempt to overcome
these limitations, an extended boolean model has been created. Similarly to the
Vector Space Model, this model represents documents as term vectors, and is a step
towards more advanced similarity models.

2.1.2 Vector Space Model

The vector space model seeks to extend the limitations imposed by the Boolean model,
and introduces a way of partial matching. It represents documents as n-dimensional
vectors, where n is the number of indexed terms in the IR system. Documents are
compared to the query string using cosine similarity, which is a similarity measure
that compensates for differences in vector length (i.e. the number of terms present
in the document and query).

sim(d1, d2) =
~V (d1) · ~V (d2)
|~V (d1)||~V (d1)|

(2.1)

where ~V (d1) and ~V (d2) are the vector representations of the two documents.

Ranking is often further done by applying the TF-IDF similarity measure, as explained
below. Here, term frequency represents a weight measuring the occurrence of a term in
a given document, while inverse document frequency acts as a sort of counterbalance,
penalizing terms that are common throughout the collection. There exists several
variants of both measures, and two of them are presented below:

TFt,d = 0.5 + 0.5× ft,d
max{f(w, d) : w ∈ d} (2.2)

where ft,d is the frequency of term f in document d and max{f(w, d) : w ∈ d}
denotes the frequency of the most common word in the given document.

IDFt = logN
nt

(2.3)

where N is the number of documents in the collection, and nt is the document
frequency of term t.

The TF-IDF score of a term in a document is then given by

TF-IDFt,d = TFt,d × IDFt (2.4)
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2.2 Recommender systems

A recommender system is a type of information retrieval system that gives item
suggestions to a user based on previously associated items (bought, downloaded,
viewed etc), the explicitly stated preferences by the user, or by utilizing known
information about the user, i.e. location, profession, age etc [9, p. 1]. It is often
deployed in commercial systems with a large amount of items (e.g. music, news,
movies etc), and aims to help the user or customer to find interesting items with
little to no effort on their part.

The motivation for recommender systems comes from the observation that humans
often rely on peer recommendation for the choices in daily life [9, p. 13]: we eat at
the restaurants recommended by friends, we buy brands recommended by friends,
and we read books and watch movies based on the reviews we trust. With the growth
of Internet, the information available in many areas has increased to a size where it
is not possible to make informed choices based solely on browsing. By implementing
recommendation in information retrieval systems, we introduce an improved browsing
experience that helps reduce the amount of options, which leads to a better usability
for the system.

Recommender systems are often specialized for one particular implementation,
and employs different methods developed for recommender systems that utilizes the
special properties of the problem at hand. For example, the recommender system
implemented at Amazon.com uses an item-to-item collaborative filtering. This helps
keeping the calculations needed for the recommendations local, and helps with the
scaling in a system with massive datasets and sparse user data [10].

There are two main approaches to recommender system [11]: content-based rec-
ommendation promotes items similar to those items the user have previously bought,
viewed, downloaded or otherwise shown interest in; and collaborative recommendation
analyzes usage patterns and identifies users similar to the given user, and recommends
items these users have liked.

2.2.1 Content-based recommendation

As stated in the previous paragraph, content-based recommendation is based on
presenting items similar to what the user has previously liked, viewed or bought
[9, p. 74]. There are several advantages of content-based recommendation. Most
notably, it works well for new items; item similarity can be calculated without any
usage statistics. In addition, the recommendations are based solely on the behavior
of the current user, which allows for good recommendations in systems with fewer
users. On the other hand there are also some noteworthy drawbacks: content-based
recommendation is prone to over-specialization, where the metadata and information
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used to find recommendation is too specific, producing recommendations with very
specific relevance.

Exactly how to calculate the similarity between items is what separates the differ-
ent methods within content-based recommendation. There are two main approaches
to this type of recommendation.

Word similarity

Word similarity is a technique derived from the widely known TF-IDF concept,
and uses regular and inverted indices. These indices are created by analyzing each
document in the collection. After removing stop words (and, but, while, etc), the
remaining terms of the documents are stemmed and added to an index (see Table
2.1). Similarity, an entry is made in the inverted index of how many times the term
is used (see Table 2.2). An inverted index may also contain the location of where the
term is used, to add support for phrase search.
The word similarity uses a simple principle to retrieve relevant results. The n most
frequently used terms in the source document are selected from the regular index.
The inverted index is then consulted using these terms as index keys, and the resulting
documents are then retrieved and ranked (e.g. based on TF-IDF).

Document Terms
d1 search(2), filter(3)
d2 library(1)
d3 filter(2)
d4 filter(1), library(3), search(2)

Table 2.1: Index

Terms d1 d2 d3 d4
filter 3 - 2 1
library - 1 - 3
search 2 - - 2

Table 2.2: Inverted index

Metadata utilization

In searchable collections, like eCommerce systems and libraries, metadata can be
utilized to create collections of elements. A typical way of employing this would
be to recommend books by authors you have read, or items of similar function or
theme (like recommending gardening books to a user that has bought gardening
tools)[10]. The challenge of this method is to obtain the user profile, i.e. gathering
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the user information needed to create useful recommendations. This is most often
done through some type of relevance feedback — either gathered explicitly through
feedback given by the user (ratings, like/dislike etc) or through implicit feedback.
Implicit feedback methods are based on looking at the users consumption history
(view/download/buy etc) and other significant user actions, and using this data for
profiling algorithms [9, p. 150].

2.2.2 Collaborative filtering

Collaborative filtering is the principle of utilizing the behavior of the users in a system
to predict recommendations for specific users. This approach overcomes some of the
limitations of content-based recommendation. Most notably, while content-based
recommendation relies heavily on being able to identify items based on content,
collaborative filtering has no such inherent requirement, which makes it suitable
for information systems containing several types of information objects (i.e. books,
images and video) [9, p. 111]. On the other hand, collaborative filtering requires a lot
of data on user activity to be able to produce good recommendations. Collaborative
filtering methods can be classified as either neighbor based or model based [11].

Neighborhood based collaborative filtering

In neighborhood based methods, the recommended items are calculated by identifying
users with a similar usage pattern as the current user. A list of recommendation
candidates are then selected from the items these users have consumed, omitting any
items already known to the current user. This approach is intuitively understandable,
and relatively easy to implement.

Model based collaborative filtering

Model based collaborative filtering analyzes how the system is used, and creates
models to use as a basis for recommendation, where users are categorized by how they
match the models. This approach has shown to yield more precise recommendations
than neighborhood based collaborative filtering [9, p. 112]. In addition, the main
part of the work is done creating and adjusting the models, a task that can be done
asynchronously.

The main drawback of model based collaborative filtering is regarding the nature
of the recommendations. Although the recommendations are precise, they lack
serendipity [9, p. 112]. Serendipity introduces the concept of "lucky encounters", in
this case meaning how the recommendation system can present elements that are not
necessarily ranked highest, but might still be interesting to the user. More important,
it means providing the user with alternatives she might not have discovered otherwise.
To illustrate, let us say the system in question is a music streaming service. If our
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user listens to the genres jazz and country. A model based recommender system
would identify these distinct interests and recommend music within either, while a
neighborhood based recommender system would look at what other similar users
have listened to, and most likely recommend something within a similar genre, for
example blues.

2.2.3 Explicit feedback

Explicit feedback is a method where the user of a system gives input, either by
rearranging the results from a query or click on some predefined button that says
"this is relevant to my query". The feedback is defined as explicit only when the user
know that that the feedback provided is treated as relevance judgements. The user
can indicate the relevance either as a binary value, relevant or not relevant, or by
using a graded system like relevant, somewhat relevant or very relevant.

The feedback information can be used to expand the original query to improve
the performance of the search, or to create user profiles utilized by collaborative
filtering.

2.2.4 Implicit feedback

Where explicit feedback collects information from users deliberate actions of feedback,
implicit feedback is given by the users implicit actions when using the system. For
instance, which documents the user do and do not select for viewing, the duration of
time spent viewing a document or interaction like scrolling or browsing actions. The
main difference between explicit and implicit feedback is that implicit feedback is
given for all users, and is thus a more reliable source of input. The quality of explicit
feedback is however often higher [12, p. 172].

2.2.5 More Like This (MLT)

More Like This (MLT) is a type of recommender system where the recommendations
are made on basis of a record, providing the user with similar records. While there
are several approaches to this functionality, they all have in common that they
use some information from the source record to produce search results. A typical
implementation of More Like This (MLT) is the "People who bought this also bought"
list presented in most eCommerce web sites.

Search-based recommendation

Search-based recommendation utilizes metadata of the given record to produce recom-
mendations. The systems search engine is utilized, providing a cheap implementation
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of MLT with often satisfactory results. Search-based recommendation can be imple-
mented using for example word similarity, where the terms of the source document is
used to create a query, providing similar documents through word similarity search;
or by performing a search on some of the metadata, e.g. author, journal, collection
etc.

2.3 Clustering techniques

Clustering is a type of unsupervised classification which groups elements in a data
set by similarity. This grouping is done through the use of distance measures, which
are mathematical tools that calculate the distance between two elements, or between
an element and some coordinate. There are several different distance measures, each
tailored to different types of data. Clustering methods can broadly be categorized
into flat, and hierarchical clustering. Flat clustering groups the data in separate
partitions, while hierarchical clustering produces a tree of nested clusters, where the
higher level clusters contains smaller subclusters [9, p. 61].

2.3.1 K-means clustering

Among flat clustering methods, K-means is the most widely used, and is considered
the most important algorithm[8]. The algorithm tries to classify all elements into k
clusters, by minimizing the average squared Euclidean distance to the closest centroid.
This measure effectively calculates the distance between two elements in Euclidean
space, by computing an absolute difference between the elements for every dimension:

|~x− ~y| =

√√√√ M∑
i=1

(xi − yi)2 (2.5)

Initially, the k centroids are placed at random, or according to some rule of
separation. Through several iterations, each element is then assigned to a centroid,
or cluster, and a new position for each centroid is calculated. The algorithm is
complete either after N iterations, at the point where the centroids does not move,
or when the algorithm falls below a certain threshold of improvement. As a measure
for evaluating the position of centroids, Residual Sum of Squares (RSS) is used. This
method calculates the squared distance of each element to its assigned cluster, and
the total RSS score is the sum of this distance over all clusters:

RSSk =
∑
~x∈ωk

|~x− ~µ(ωk)|2 (2.6)
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RSS =
K∑
k=1

RSSk (2.7)

where ωk is the cluster k, ~µ(ωk) is the centroid of cluster k, and ~x is the elements in
cluster k.

As the algorithm requires a pre-specified number of clusters, it can often be
difficult to pinpoint the optimal clustering. The solution for this is to select the
range in which the optimal number of clusters is suspected to lie, and apply the
algorithm for each integer in that range. The total RSS score is then calculated
for each resulting clustering, and graphed, showing how the clustering improves as
k increases. When graphing these values, a certain "knee" can often be observed,
pinpointing the number of clusters where the RSS decrease flattens, i.e. where the
increase in clusters loses its effectivity (see Figure 2.1). If several similar knees are
present, a selection must be made on basis of other available information.

The complexity of the K-means clustering algorithm is O(IKNM), where I is
the fixed number of iterations, K the number of clusters, N the number of elements,
and M the dimensionality of the data.

2.3.2 Hierarchical Agglomerative Clustering

HAC is a clustering technique that produces a hierarchy of clusters. The algorithm
starts by considering every element as a leaf-level cluster, and proceeds by merging
pairs of clusters by comparing the similarity, or distance, between them. In contrast
to K-means clustering, HAC does not need to predefine the amount of clusters, and
will continue to merge clusters until there is only one left, producing a dendrogram
of clusters (see Figure 2.2 for example). The clustering can also be stopped when
a certain numbers of clusters have been reached, or when the similarity needed for
merging clusters is below a certain threshold. A common method of finding the opti-
mal number of clusters is to compare these similarities on a graph. If the similarity
requirement for merging suddenly drops, it is likely that the algorithm has passed
the number of natural clusters in the data. This can be observed in the dendrogram
as a large gap between consecutive merges, see for example at similarity = 0.4 on
the y-axis in Figure 2.2. This is comparable to finding the "knee" when graphing
performance of K-means clustering (as mentioned in section 2.3.1).

The similarity of elements can be computed using several different similarity
measures. The two most important for the context of this thesis are Euclidean
distance and Jaccard distance. The Euclidean distance is explained in section 2.3.1.
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Figure 2.1: Graph of RSS as a function of the numbers of clusters in K-means. A
knee can be observed at k = 4 and k = 9. The collection represented in this graph
have four categories, so k = 4 should be selected. Figure from [8]

The Jaccard similarity measure was initially developed for comparing biological
species, and is designed for sets of binary attributes. It computes the similarity by
dividing the intersection by the union of the two elements [12, p. 65]. The Jaccard
distance Jδ is simply 1− J(A,B).

J(A,B) = |A ∩B|
|A ∪B|

(2.8)

Jδ = 1− J(A,B) (2.9)

For comparing clusters, there are three principles of calculating the similarities:
single-link clustering, complete-link clustering and average-link clustering. Single-link
clustering compares clusters by looking at the minimum distance between them, i.e.
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Figure 2.2: Example of dendrogram produced through hierarchical agglomerative
clustering. The y-axis show the similarity score at which the clusters are merged.
Figure from [8]

finding the elements within each cluster that is closest to the other cluster. Complete-
link compares the clusters by looking at the distance between the two furthest
elements in the clusters. Average link computes the distance between every element
of the two clusters, and produces the average of these values as the resulting distance.
Each principle have their strengths and weaknesses. The local evaluation of distance
in single-link makes the method prone to "chaining", where the cluster expands by
adding long tails of single elements. The complete-link clustering prefers compact
clusters, but is more sensitive to outliers. Average-link clustering, or Group-Average
Agglomerative Clustering (GAAC), avoids the pitfalls of the previous methods, but is
more computationally expensive [8]. The complexity of HAC is O(N2logN), making
it magnitudes slower than K-means clustering.
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2.4 Dimensionality reduction

For large sets of multi-dimensional data, dimensionality reduction can be an effective
optimization Through these methods, the data is analyzed for subsets of similar
attributes, which are gathered in feature attributes. This process is called feature
selection. The feature vectors reduce the total dimensionality of the data, and serve
to reduce the efficiency of clustering and classification. In addition, they also help
to reduce overfitting; in adding a generalizing step to the clustering process, new
documents are more easily added to the clusters, because the dimensionality reduction
makes it more similar to the pre-existing documents [7]. The dimensionality reduction
can be done through several methods, including latent semantic indexing.

Latent Semantic Indexing (LSI) is a type of dimensionality reduction where the
relevance matrix is decomposed using a mathematical technique called Single Value
Decomposition (SVD)

M = K · S ·DT (2.10)

where K is a matrix of eigenvectors from the term-term correlation matrix given by
M·MT , S is a diagonal matrix containing the singular values of M, and DT is a matrix
of eigenvectors from the document-document correlation matrix given by MT ·M.
SVD is often used in feature extraction or matrix approximations. By excluding
the singular values with the lowest values, the resulting matrix approximation MS

can contain the most important features of M, while still having reduced size and
complexity. The resulting matrix KS which contain the term-term eigenvectors of the
reduced feature set, can be used to find neighboring terms, by containing information
on every terms relationship with all other terms.

2.5 Graph partitioning

Graph partitioning is a concept not often used within information retrieval. The
primary areas of focus for these methods include distributing workloads for parallel
computation [13], network traffic routing and similar cases, where the goal is to
minimize network, or graph traffic. Graph partitioning seeks to split a graph into N
equally sized partitions, such that the edge cut (number of edges running between
partitions) is minimized. For graphs with weighted edges, the accumulated edge
weight across partitions is minimized.

2.5.1 Multi-level graph partitioning

A multi-level graph partitioning algorithm consists of three phases, where the original
graph is first reduced to a coarse set of vertices. The coarsening process constructs
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several smaller graphs Gl = (Vl, El) based on the original graph G0 = (V0, E0).
Each graph is constructed from the previous by finding maximal matches within
the graph, and merging these vertices. The best matching algorithms are also the
slowest, making this choice a tradeoff between performance and quality. All the
methods essentially try to find locally strong connection between vertices, that is
wi,j is comparable to min{maxk, wik,maxk, wkj}, where wij is the strength between
vertex i and j [14].

Figure 2.3: Illustration of graph coarsening. The shaded figures shows which
vertices are combined for the coarsening, producing the graphs below. Figure from
[15].

When the coarsening process is done, the small, resulting graph is then bisected
in a way that minimizes edge cut. Several methods are available for this step as well,
including spectral bisection, geometric bisection and combinatorial methods [16]. In
the last phase, the graph is iteratively uncoarsened back to the original graph. For
each step, the coarsened vertices of graph Gk+1 are split back to the original vertices
and edges of Gk. If the content of a coarsened vertex is split by the bisection, the
bisection of this subgraph is refined, further reducing edge cut [16]. An illustration
can be seen in Figure 2.4.
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Figure 2.4: Illustration of Multi-level Graph Bisection. Figure from [16]





Chapter3State of the art

In this chapter, we will present the most interesting result of the preliminary literature
study, and try to give an image of the current research situation in the specific area
of collaborative filtering. The findings will be broadly grouped by theoretical field.
Lastly, we will be reviewing the current state of the art, and discuss it in light of the
research questions of this thesis.

3.1 Co-clustering

A common and intuitive way of addressing recommendation systems is to create
a relevance matrix, as seen in Table 3.1. Recommendations are then created by
computing the similarities between the given user and the rest of the users. The
similarities are computed using a distance function, for example cosine similarity
or Euclidean distance[9, p. 309]. In principle, this method does not scale well, as
the relevance matrix increases as a product of users × records. To address this
problem, several methods of dimensionality reduction have been applied, attempt-
ing to cluster the relevance matrix along both axes (see Table 3.2). Banerjee et
al. [17] propose a co-clustering method where Bregman divergences are used to
create reduced matrix approximations, reducing the dimensionality, or size, of the
matrix. Long et al. [18] utilize block value decomposition to discover block structures
(co-clusters) in the relevance matrix effectively reducing the computational load of
calculating recommendations. Entries of new records and users into clusters is briefly
mentioned by George et al. [19], who propose a method of incremental training
which assigns the new entities to an intermediate cluster while waiting for the next
evaluation of co-clusters. Zhang et al. [20] mentions the concept of "cold start",
which concerns the challenges related to new users and documents, and claims having
addressed these by allowing for reevaluation of sub clusters separately from the
complete relevance matrix. Co-clustering then seems like an effective method for
extracting subgroups in large collections of user-item relationships, both considering
scalability and performance.

19
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u1 u2 u3 u4 u5 u6 u7 u8 u9
d1 X X X
d2 X X
d3 X X X
d4 X X
d5 X X
d6 X X X
d7 X X
d8 X X X
d9 X X X
d10 X X
d11 X X
d12 X X X

Table 3.1: Example of relevance matrix. Each row represents a document, while
each column represent a user. An X in the matrix represents a connection between
the two. The relevance matrix can also be populated by relevance weights.

u8 u5 u3 u9 u2 u6 u7 u1 u4
d1 X X X
d10 X X
d6 X X X
d4 X X
d5 X X
d3 X X X
d11 X X
d8 X X
d9 X X X
d2 X X
d7 X X
d12 X X X

Table 3.2: The relevance matrix from Table 3.1, co-clustered by document and user

3.2 User behavior logging

Collaborative filtering can be based on both explicit and implicit feedback. For
implicit feedback however, methods must be implemented to collect information on
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user behavior. Using Invenio and the CDS as a basis, Gvianishvili et al. [4] explores
different ways of collecting user behavior data, both by analyzing server access logs
and through Invenios implemented logging abilities. The server logs are analyzed,
and data related to the access patterns to each record is saved. They state:

Four types of counts are extracted from the logs:

• Number of detailed page views: for each record we count the occur-
rences of record abstract being viewed

• Number of downloads: for each record we count the occurrences of
the associated full-text being downloaded

• Number of displays: for each record we count the occurrences of the
record being listed on the results pages

• Number of seens: for each record we count the occurrences of record
being seen. We mark all records seen from the first up to the one on
which an action has been performed (download/view). For example,
if a user downloads record #6 we mark all records from #1 up to
#6 as seen by the user. This count provides us with an approximate
result of records seen, since there is no guarantee that the user has
really seen those records.

Their conclusion states that user behavior and record access logging is a good
foundation for further development of ranking methods, recommender systems and
other extensions of the current search engine.

A more advanced approach to user behavior analysis is done by Xie et al. [21]. In
addition to collecting information from web server logs, they propose to use a belief
function to assign users to clusters, by analyzing the basic probability assignments
(BPA) associated with each user. The algorithm displays satisfactory results on
experimental data, and their conclusion emphasizes the importance of being able to
create proper recommendation solely by implicit feedback. They do however point
out that the algorithm needs improvement with regard to scalability.

3.3 Citation based ranking

In the area of scientific research, an evident feature for ranking methods is citations.
Previous methods exploiting this feature counted the number of citations of a given
record, and assigned this as a weight for the ranking of search results. Several
problems has been identified with this approach. The two most prominent are
that it does not prioritize citations from important/popular papers, and it does not
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differentiate between old and new citations. In addition, there are problems with
phantom citations, deflation and inflation[22].

To improve on this situation, Marian et al. [23] presents a citation graph based
ranking method. By extracting citations from each record in the collection, a citation
graph can be constructed – linking related records to each other. This graph can
then be scored by an algorithm similar to the PageRank algorithm used by Google
to score websites. In addition, they apply a time decay function to the records to
promote new entries. To account for missing citations internally in the experimental
framework, an external citation authority was added to increase the completeness of
the citation graph. The proposed method performs better when compared to citation
count or basic PageRank.

The problem with incomplete citation graphs is also addressed by Sugiyama et
al. [24], who propose to extend the graph by identifying "potential citation papers"
through collaborative filtering. By doing this, they claim to address the cold start
problem of cutting edge research. The experimental results are significant, and
potential citation papers proves to be an effective way of dealing with sparse citation
graphs.

Another approach to citation based ranking is taken by Caragea et al. [25]. Here,
the mathematical method SVD (see Section 2.4) is used to extract latent semantic
factors in the citation graph, which is then used to predict interesting records for the
recommendation. The results presented in this paper are positive, and the authors
argue that the method is quite versatile: “SVD allows for easy incorporation of
additional information [...] (e.g. textual information, author, venue)”

3.4 Graph based collaborative filtering

A different approach to collaborative filtering can be done by looking at access
data as a bipartite graph, connecting users U to items I. Similarities can then be
calculated by traversing this graph (a very simple example could be to collect all
users that share items with a given user). Huang et al. [2] propose a graph based
method where a graph is constructed linking related users and items, as well as
connecting similar users and items respectively. Recommendation is then done by
graph traversal, collecting items related to similar users and ranking them by the
degree of association.

O’Connor and Herlocker [26] propose to mitigate the problems of collaborative
filtering in large, heterogenous collections (movies within genres) by performing a
preliminary clustering. This divides the collection into smaller, more homogenous
collections with lower dimension. Four clustering methods were applied: hierarchical
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clustering using average link evaluation; Robust Clustering Algorithm for Categorical
Attributes (ROCK) – a specialized clustering algorithm believed to have increased
performance on categorical data; and kMetis and hMetis[16] – two graph partitioning
algorithms developed at the University of Minnesota. Their results showed poor
results for the hierarchical clustering; a low k resulted in one large cluster containing
almost all the elements, while a high k produced small, useless clusters. The ROCK
algorithm performed even worse. The Metis algorithms showed promising results,
producing similar sized clusters with good coverage and reasonable Mean Absolute
Error (MAE). Recommendations based on the resulting partitions did not consistently
outperform unpartitioned recommendation. The authors suggest one reason for this
is the fact that none of the applied clustering techniques support soft clustering,
where one item may belong to several clusters.

3.5 Reviewing the state of the art

From the research on previous accomplishments within clustering for recommender
systems, it is apparent that there are several paths to the target. In this section we
discuss the state of the art in light of the research questions of this thesis.

User behavior logging is very relevant for this thesis. The groundwork done by
Gvianishvili et al. [4] shows the possibilities present in current digital libraries, and
underpins the importance of utilizing advanced user statistics in future recommender
systems. While Xie et al. [21] mention problems related to scalability for their
method, they do emphasize the importance of being able to rely solely on implicit
feedback methods in recommender systems. Further reasoning upon this idea is done
in Chapter 5.

The co-clustering methods presented in section 3.1 seems like a very interesting
approach to the current problem, and effort should be made to evaluate these methods
on the scientific collections. Dimensionality reduction provide an effective method
of reducing the size and complexity of the recommendation calculation, although
not without problems. Unfortunately, the time restrictions of this thesis prevented
elaborate studies of a field with the complexity of co-clustering.

The concept of citation based ranking is not discussed in this thesis, but a review
has been done in the area because of its importance in the field of recommender
systems within scientific collections. However, a few elements can be picked up from
this approach. Organizing records in a graph where related documents are linked to
each other, is a different approach than using relevance matrices. This is something
that should be examined. In the same area of graph based recommendation, work
has been done to connect records based on similarity measures, rather than citations.
This avoids the problems of connectivity and completeness related to citation based
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graphs, but introduces new ones. The choice of similarity measure is important;
classical, continuous ones like Euclidean distance will not work unless a cut-off
similarity value is set (lest the graph will have edges from and to every vertex). A
few measures could be shared citations, shared users (user has downloaded/accessed
both records) and shared tags or other metadata.

3.5.1 Conclusion

Through this review, we can see that there are several different approaches to
clustering for collaborative filtering. There is one important difference separating the
methods, namely how similarity between elements is calculated. Not only are several
similarity measures implemented, but there are different approaches to what makes
two elements similar. Marian et al. [23], while not applying clustering techniques,
uses citations as a way of connecting records, while Huang et al. [2] uses word
similarity.

What has not been found is an approach where the similarities between elements
is calculated from implicit user behavior. The closest research found is from O’Connor
and Herlocker [26]. They review clustering methods on the MovieLens dataset, which
contains explicit movie ratings by the users.

Our approach then, will attempt to fill this gap, by applying clustering algorithms
to the dataset containing user-record relationships, creating clusters of both users
and records As no concrete conclusion can be drawn as to what clustering method
to use, three different variants will be applied to the dataset: K-means, HAC and
graph partitioning. There are some suspicions as to how the different algorithms will
behave: The K-means algorithm should be the fastest of the two clustering methods,
while the HAC should better illustrate the natural clustering occurring in the dataset.
The graph partitioning should be able to create similarly sized partitions.
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As mentioned in Chapter 1, the hypothesis on which this thesis is based is that
the user groups of scientific collections have quite distinct usage patterns, creating
a good foundation for using clustering techniques in recommender systems. The
objective of this master thesis is to lay the foundation for a recommender system
based on collaborative filtering, specialized for collections of academic papers. More
specifically, the focus is to successfully create a clustering from the chosen dataset,
such that extraction of recommended records is possible.

4.1 Experimental setup

The CERN Document Server (CDS) collection was chosen as the basis for the
experiments performed in this thesis, because it is one of the largest, publicly
available collections of academic papers. As mentioned in section 3.5.1, the approach
of this thesis will attempt to perform a dual clustering on both records and users,
where the user and record clusters would be pairwise related. The idea is that
recommendations can then be made by looking at records in the corresponding record
cluster for users in a user cluster.

The collection can be broadly grouped into the following collections, giving an
idea of the number of clusters to expect:

• CERN Accelerators (29,400)

– All CERN Accelerators documents (22,033)

– PS Complex (10,719)

– SPS and CNGS (6,365)

– LHC (3,868)

– Projects, Upgrade and Consolidation Projects (71)

25
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– R&D and Studies (25)
– EU Funded Projects (905)
– Decommissioned Facilities (2,769)
– Accelerators and Facilities outside CERN (12)
– Technologies, Systems, Accelerator Physics and Processes (4,651)

• CERN Experiments (53,005)

– LHC Experiments (43,578)
– Fixed Target Experiments (2,810)
– Recognized Experiments (748)
– LEP Experiments (5,569)
– PS Experiments (313)

• CERN R&D Projects (2,962)

– CERN Accelerator R&D Projects (1,440)
– CERN Detector R&D Projects (28)
– EU Projects (2,105

The methodology of the research approach is based on the one proposed by
Kazanidis et al. [27], and consists of thee main parts: Data pre-processing, clustering
and evaluation. During the pre-processing, analysis of the data will be done, along
with an evaluation of what data to keep. In the clustering process we will attempt
to apply different clustering algorithms on the dataset, and evaluate the results
consecutively. Lastly, we present the full set of results, and provide a more thorough
evaluation of the research.

4.2 Hardware

The data pre-processing was done on a Macbook Air mid 2013, with a dual core
1,3 GHz Intel Core i5 processor and 4 GB RAM. Clustering algorithms were run on
NTNUs calcfarm – a server installation with two 6-core 2,66 GHz Intel Xeon 5650
processors and 192 GB RAM.

4.3 Data pre-processing

The initial raw log file spanned from 2010-10-04 to 2012-03-15, with a size of 40.11
gigabytes, containing over 184 million log entries. Before the pre-processing could
start, a decision had to be made about what type of data to retrieve from the logs.
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Given the size of the initial data, the decision was made to exclude all but the
strongest connection between an IP and a record. The first step on pre-processing
then was to isolate the entries of IPs downloading a Portable Document Format
(PDF) file. This reduced the file size by 95,8% to 1.7 gigabytes – around 16 million
log entries.

Remaining entries

68.81%

GoogleBot

29.93%

"spider" and "urllib"
1.26%

Figure 4.1: Pie chart showing the composition of log entries for downloaded
documents. As can be seen, bot activity accounts for a large part of the total traffic
for the CDS

Furthermore, a basic bot removal script was applied, excluding all access from user
agents containing the words "GoogleBot", "spider" and "urllib". A pie chart showing
the composition of the log entries can be seen in Figure 4.1. At this point, the log
was condensed to a comma separated file, containing IP, record ID, and timestamp
(see appendix A.2.2). Further analysis showed however, that until Febuary 2011, the
logging was sporadic and did not represent a proper usage pattern. For better log
integrity, the log was therefore cropped to the period from 2011-02-17 to 2012-03-15.

To help with giving an overview of the data, two scripts were made to create a
sorted list of each record with their corresponding accessing IPs, and a list of each IP
with their accessed records. These scripts can be seen in appendix A.2.3 and A.2.4.
The resulting files also served a purpose in later scripts, by allowing quick access to
this otherwise expensive sorted list.
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Figure 4.2: Bar charts presenting the usage patterns of potential bots. a) and c
represents suspected users, while b) and d) represents bots. Records not downloaded
by the IP is not included in the histogram.

Having removed the most obvious bots, a deeper dive was now done to assure the
integrity and quality of the resulting log. A more manual approach was taken, and the
most active IPs (those with more than 500 downloads) were extracted to separate log
files, which were then analyzed by histogram (appendix A.2.5 and A.2.6). Figure 4.2
show the different types of charts represented by these IPs. Subfigure a) was believed
to be a real user, which was further substantiated by looking at the corresponding
server log. Similarly, subfigure b) was confirmed as a bot. This evaluation was done
by looking at the distribution of entries; the IP would be classified as a bot if the
usage pattern showed a very high activity over a short timespan (i.e. 100 downloads
within a few minutes).

By analyzing these histograms, the immediate thought was that users and bots
might perhaps be separated by the total number of log entries. However, further
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analysis showed potential users with greater activity than confirmed bots (subfigure
c) vs. b) in Figure 4.2), as well as bots with less activity than recognized users
(subfigure d) vs. a) in Figure 4.2). This removed any direct distinction of users and
bots based on activity, and resulted in the development of a more advanced bot
detection algorithm that removed every IP downloading more than 60 documents
within one hour (see appendix A.2.1). A new histogram analysis confirmed the
efficiency of this algorithm, as no bots were found among the IPs with high activity.
At this point, the log file had been reduced to 86 megabytes and 1779292 lines, with
444825 IPs accessing 159794 records.

Figure 4.3: Records accessed per user, sorted from active to inactive. The graph
shows that about 270000 (60%) of the users have accessed only one record.

The next step of the log pruning was removing inactive users and records. The
threshold for user contribution was set to having downloaded 3 records. As can be
seen in Figure 4.3, this removes around 76% of the IPs, while being a reasonable
requirement for participating (one will most likely have downloaded more than two
documents before noticing the need for a recommender system). Based on the graph
presented in Figure 4.4, the threshold for record popularity was set to 3. This
removes around 55% of the records, increasing quality of the dataset, while still being
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Figure 4.4: Number of IPs accessing each record, sorted from popular to unpopular.
The graph shows that about 40000 (25%) of the records have been accessed by only
one IP.

a reasonably low threshold for participating. The scripts for performing this pruning
can be seen in appendix A.2.7 and A.2.8.

The final step was removing duplicates. The proposed clustering pays no attention
to how often a user has downloaded a document, so this was a convenient simplification.
See appendix A.2.9 for source code of this script.

The resulting log file was 24 megabytes and 495221 lines, with 70006 IPs accessing
65754 records.

4.4 Clustering algorithms

The scientific field of clustering is large and complex, and there exists hundreds
of clustering and partitioning algorithms which might be suitable for this problem.
To do an exhaustive study of all possible clustering algorithms is not within the
scope of this thesis. In total, four methods were attempted, presenting a somewhat
progressive learning approach:

• Simple K-means Clustering
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• Hierarchical Agglomerative Clustering (HAC)

• A custom designed clustering algorithm

• Metis k-Way Graph Partitioning

4.4.1 Simple K-means Clustering

As mentioned in section 2.3.1, K-means clustering is widely considered to be the
most important flat clustering algorithm. As such, it seemed a reasonable method
for the initial experiments. Furthermore, its complexity is low, which would indicate
that it could handle the large dataset from the CDS.

4.4.2 Hierarchical Agglomerative Clustering

A clustering method often mentioned alongside K-means is HAC, which made it
a natural choice for this thesis. Additionally, it was selected partly because of its
coverage: by design, every element is part of a cluster. The idea was also to use
the resulting dendrogram to illustrate how the records in the dataset are related on
different levels of similarity.

The HAC implementation used in this experiment was supplied in Matlab. This
uses pdist as a similarity function, which among other includes the two similarity
measures Euclidean and Jaccard distance.

4.4.3 Custom clustering algorithm

Although the HAC had several promising qualities, the performance issues hindered
the use of this algorithm directly. As an attempt to overcome these issues, a custom,
greedy, and agglomerative algorithm was created, where thoroughness was sacrificed
for reduced complexity (see appendix A.1 for source code). The algorithm was
developed to cluster IPs on the basis of shared records. Had the clustering been
successful, an additional opposite version would have been made, clustering records
on the basis of shared IPs.

Where a regular HAC initially would consider every IP as a separate cluster, our
algorithm starts by creating pairs of IPs along with their shared records. Pairs were
only made for IPs that shared three or more records, and one IP could be assigned to
several pairs. To avoid expensive similarity computation and sorting, the assignment
of IP pairs to clusters was done in a very greedy manner. Clustering started by
iterating through the list of IP pairs. For every pair, the algorithm searched existing
clusters for both IPs, and checking for four possible cases (see algorithm 0):
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• If both IPs were found within the same cluster, the records of the current pair
would be added to that cluster, and the cluster variable internal_connections
would increase by one.

• If only one of the IPs were found in a cluster, the other IP would be added
along with their shared records.

• If the IPs were found in different clusters, the cluster link between the two
clusters would be increased by one, and the shared records would be added to
this link.

– If the link between the two clusters was stronger than five, the clusters
would be merged, and the records in the link added to the resulting cluster.

• If none of the IPs were found in a cluster, a new cluster would be created,
containing the two IPs and their shared records.

The algorithm completed when the iteration of the IP pairs list was done. The
pseudocode for the most important parts of the algorithm can be seen in Algorithm
4.1 and 4.2.

Parameter selection

There are two important parameters in the custom clustering algorithm: threshold
for IP pairing, and the limit for merging clusters. The initial placement of these
values were somewhat arbitrary, and several values were tested. Changes in the
threshold for IP pairing did not produce any observable changes, but changing the
merge limit showed the same types of results as observed by O’Connor and Herlocker
[26] when applying the HAC algorithm: for low limits of merging, the result was one
large cluster and several small, but useless clusters. For stricter limits, the resulting
clusters were of better shape (up to 326 IPs per cluster), but the coverage 1314 of
25304 IPs – an alarming 5.2%. This was due to the cut off value set for including
clusters in the result. For this experiment, it was placed at 25 IPs per cluster –
again an arbitrary value, but it still illustrates the low quality of the majority of the
clusters.

4.4.4 Metis graph partitioning

Through the research done by O’Connor and Herlocker [26], the concept of graph par-
titioning was introduced to the thesis. More specifically, the Metis graph partitioning
tool was discovered. In their report, two variants of the graph partition tool Metis
was applied: kMetis (or Metis) and hMetis – the latter being a hypergraph variant.
Additionally, the hMetis algorithm has an unbalance parameter, which allows for the
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Algorithm 4.1 Cluster assignment
Input: ip1, ip2, records
for all clusters do

if ip1 ∈ cluster then
ip1_cluster ← cluster
if ip2 ∈ cluster then . Both IPs found in the same cluster

cluster ← records
cluster.internal_connections += 1

return
end if

end if
if ip1 ∈ cluster then

ip2_cluster ← cluster
end if

end for
if ip1_cluster and ip2_cluster then . IPs found in separate clusters

Create link between cluster 1 and 2
limit ← 5 Merge_clusters(ip1_cluster, ip2_cluster, link, limit)

else if ip1_cluster then . One of the IPs are found
Add ip2 and records to cluster 1

else if ip2_cluster then
Add ip1 and records to cluster 2

else . None of the IPs are found
clusters.add(new Cluster(ip1, ip2, records))

end if

Algorithm 4.2 Merge clusters
function Merge_clusters(cluster1, cluster2, link, limit)

ratio = no. of records in link
link.strength

if ratio < limit then return
end if
cluster1← cluster2.ips, cluster2.records
cluster1← link.records
cluster1.int_connections += cluster2.int_connections+ link.strength
cluster2.deleted = True

Cluster.update_links(cluster1, cluster2)
end function
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creation of partitions of unequal size. In their experiments, both algorithms perform
similarly, and they recommended using kMetis because of its faster run time. Given
that the input formats of the algorithms are different, the regular Metis algorithm
was chosen for this experiment.

The Metis tool was initially developed in 1995 at the University of Minnesota,
by Karypis, George and Kumar, Vipin [16]. It points to better performance than
comparable algorithms, both regarding running time and resulting partitioning.
Metis is a k-way graph partitioning tool, where the input graph is separated into k
partitions of similar size, minimizing the edge cut. It uses multi-level graph partition,
which is explained in detail in section 2.5.1. Four coarsening schemes, as well as
four partitioning schemes are implemented in Metis [15]. A brief summary of these
techniques follow below.

Coarsening schemes

Random Matching (RM). RM selects vertices from the graph in random order,
and compares them to the neighboring vertices. If these vertices have not yet been
visited, they are matched with the randomly selected vertex. It is a greedy algorithm
that does no computation to find the optimal matching.

Heavy-Edge Matching (HEM). HEM has a more advanced approach. The
vertices are still selected from the graph in random order, but is only matched with
the vertex connected through the heaviest edge of the randomly selected vertex.
While being more expensive than RM, they still has the same complexity.

Light Edge Matching (LEM). LEM works opposite of HEM, by matching vertices
connected by the lightest edge. While this may seem counter-intuitive, the idea is
that the resulting graph Gk+1 has an average degree significantly higher than that
of Gk. This is optimal for some partitioning schemes, such as the KL algorithm
(explained below).

Heavy Clique Matching (HCM). HCM finds cliques within the graph, and
collapses them into a coarsened vertex. The cliques are found by analyzing subgraphs
GU = (U,EU ) and comparing the cardinality (i.e. size or amount) of the vertices U
and edges EU therein. The ratio between these values is calculated by

R = 2|EU |
|U | (|U | − 1) (4.1)

If the subgraph is a clique, R will be equal to 1, and the value will decrease the
looser the connection in the subgraph.
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Partitioning schemes

Spectral Bisection (SB). SB uses the spectral information of the graph to create a
partitioning. The graph is organized into an adjacency matrix A, where ai,j denotes
the edge between vertex i and j; and a diagonal degree matrix D, where the values
di,i denotes the degree of vertex i.

ai,j =
{
ew(vi, vj) if (vi, vj) ∈ Em,
0 otherwise.

(4.2)

di,i =
∑

(vi,vj)∈Em

ew(vi, vj) (4.3)

The algorithm then finds the second smallest eigenvector y from the Laplacian
matrix Q = D −A. This eigenvector (called the Fiedler vector) contains a value for
each of the vertices in the coarsened graph. From their value in this vector, vertices
are assigned to two partitions: Let r be the weighted median of the y values. Each
value of y is then compared to r; if yj ≤ r, the corresponding vertex is assigned to
one partition, else is assigned to the other.

KL algorithm. This algorithm starts with a bisection of the graph, and improves
this partitioning by doing local changes, moving a vertex from one partition to the
other, improving edge cut. The initial bisection can be random, or found through
some other method. If the bisection is random, the KL algorithm is often run several
times, and the best resulting partitioning is chosen. The gain from moving a vertex
is calculated by

gv =
∑

(v,u)∈E∧P [v]6=P [u]

w(v, u)−
∑

(v,u)∈E∧P [v]=P [u]

w(v, u) (4.4)

where w(v, u) is the weight of the edge between vertex v and u, and P is the set
of partitions. If gv is positive, the edge cut of the partition can be reduced by gv,
and the vertex should change partition. However, after moving a vertex from one
partition to the other, the edge cut of adjacent vertices may have changed. Therefore,
these vertices should be reevaluated.

Graph Growing Partitioning algorithm (GGP). GGP bisects the graph by
starting at a random vertex, and grow a selection of vertices by increasing one at the
time in a breadth-first manner, where all of the adjacent vertices are included before
moving further. The bisection is complete when this selection contains half of the
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vertices, or half of the total vertex weight. As for the KL algorithm, this method is
sensitive to poorly chosen starting vertex. It is therefore often run several times to
reduce the risk of suboptimal partitions.

Greedy Graph Growing Partitioning algorithm (GGGP). GGGP works sim-
ilarly to GGP, but increases its selection in a greedy fashion, including the vertices
that provides the smallest increase in edge cut. It is less sensitive to starting vertex,
and performs better, both in regard to running time and resulting partition.

4.5 Experimental procedure

In this section, the experimental process will be elaborated. Some results will be
mentioned, but the full result report will be saved for Section 4.6.

4.5.1 Simple K-means

After the logs were pre-processed and ready for clustering, the first attempt was
done using Simple K-means Clustering in the knowledge analysis tool Weka Explorer.
To prepare for this, the log was converted to a relevance matrix using the script in
appendix A.2.10, which increased the file size from 24 megabytes to 9.2 gigabytes.
Record IDs were prefixed with "rec_", i.e. converting the attribute from numerical
to nominal, thus allowing clustering on this class.

Importing a file of this size to Weka proved counterproductive, as the import
process still had not completed after two days. This did not bode well for the actual
clustering that was to follow, so a selection of the original matrix had to be made.
By using the awk1 program, a selection of every 10th line was written to a new file:

awk ’ ! (NR%10) ’ matr ix_fu l l . csv > e10th_matr ix_ful l . csv

This file was then imported to Weka without problems. K-means clustering was
then applied, with k = 2. The procedure completed after about an hour, but yielded
no usable results. It was apparent that the numbers of clusters had to be increased.
Using the collections presented in section 4.1 as a guide, one can see that the realistic
number of clusters would lie in the range 15 < k < 25, effectively increasing the
runtime to a full day.

To speed things up, a further reduction was done, reducing the filesize and number
of records to 1

100 of the original matrix. The resulting matrix was easily imported to
Weka, and a test run with k = 2 was done in around one minute (see appendix B.1).
The algorithm was then run with k = 25. After five hours however, the process was

1http://www.grymoire.com/Unix/Awk.html

http://www.grymoire.com/Unix/Awk.html
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cancelled. According to the complexity formula of K-means, an increase in k from 2
to 25 should only increase the runtime with a factor of 12,5 (linearly). At a factor of
150, it seemed that further experiments using K-means in Weka was not worthwhile.
A contributing factor to this decision was also that the similarity model of K-means
is not optimal for binary relevance data: the centroids computed from the Euclidean
distance function does not fully match any elements, and so the difference between
elements belonging to a cluster and the rest is too small for effectively assigning
clusters.

4.5.2 Hierarchical Agglomerative Clustering

The application of the HAC algorithm was done in Matlab. The 1
10 -matrix was

imported, and the clustering initiated. This first attempt stalled, because the
memory usage had exceeded the allowed limit (30 gigabytes). The 1

100 -matrix was
then imported, and the clustering successfully completed. The resulting dendrogram
showed no sign of any strong clusters however. This might be because of the
downsampling, but most likely the reasons are related to the similarity function. The
default similarity function used in Matlabs HAC is the Euclidean distance, and as
mentioned in section 4.5.1, this is not optimal for binary data.

The algorithm was run again, using Jaccard similarity – a similarity measure
designed for binary values. Unfortunately, the results were just as bad, with no
natural clustering appearing. This is further mentioned in Section discussed in
Section 5.2.

4.5.3 Custom clustering algorithm

As neither K-means nor HAC could handle the large dataset, a custom clustering
algorithm was created. This algorithm used the agglomerative nature of HAC, but
sought to reduce the complexity by its very greedy nature. The algorithm was not
especially quick, and gave results similar to those presented in [26]: Strict parameters
produced several, useless clusters; while looser parameters produced one, giant cluster
and some additional, smaller ones. The development of this algorithm stopped after
a few test runs, as it became apparent that fixing the drawbacks meant developing
something that became more and more like traditional HAC. More specifically, the
results shows that the greedy assignment to clusters does not work satisfactory. A
more refined prioritization of which IP pairs to cluster could have made the algorithm
work better, but the increased complexity this would cause makes it unfit for the
Python language (which is several times slower than C for heavy algorithms).
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Reevaluating the initial design

At this point, the cost of clustering was apparent. A reevaluation of the initial design
was therefore done, to see if any improvements could be done reducing the practical
cost of implementation. The decision was made to omit the user clustering. The
reasoning behind this was that cluster affiliations could most likely just as effectively
be calculated by analyzing a user’s accessed documents directly.

4.5.4 Graph partitioning

The idea of swapping the classical clustering techniques with graph partitioning came
from O’Connor and Herlocker [26], who faced many of the same problems as those
appearing in this chapter. Before being able to apply graph partitioning to the data,
it first had to be converted to a graph. This was done by creating weighted edges
between every record based on how many common users they share. In essence, if
three users have read the same two documents, an edge with weight 3 is created
between them. The Metis graph partition tool was used, and the very compact graph
notation format required by this tool resulted in a graph file of 730 megabytes.

At this point, we had to find the optimal number of partitions. When increasing
the number of partitions, the edge cut will most likely also increase. However, the
increase in edge cut is likely to slow down when the number of partitions come close
to the optimal number. For partitionings above the optimal number, the increase in
edge cut will speed up again. The principle is illustrated in Figure 4.5, 4.6 and 4.7.
Based on this assessment, the edge cut for N = [2, . . . , 300] partitions was graphed.
This graph showed a "knee", and the optimal partitioning could be found in a manner
similar to finding the optimal number of clusters for K-means clustering. The size of
the "knee" also says something about how prominent the natural partitions in the
collection are; if the edge cut decreases when the partition number increases, a well
fitting partitioning has been found.

The resulting output was saved for each iteration. Additionally, a text file was
created with partition assignment for each vertex/record. From the graph produced
by plotting the edge cuts for the different partitionings, a proposed number of 25
partitions was found, which is close to the number of collections presented in Section
4.1 The output of this partitioning can be seen in Appendix B.3, and the graph in
Figure 4.10.
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Figure 4.5: 2-way partitioning of a graph that has three natural partitions.

Figure 4.6: 3-way partitioning of the same graph. The edge cut is has increased
from the 2-way partitioning, but it is apparent that this is the correct partitioning.
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Figure 4.7: 4-way partitioning of the same graph. As the partitioning needs to
split up natural partitions, the edge cut increases drastically. While this is probably
not the optimal 4-way partitioning, it illustrates the point.

4.5.5 Evaluating clusters

As the Metis algorithm produces potentially useful partitions, an evaluation method
had to be devised to assess the quality of the results. One of the most common
methods for evaluating clusters is the purity function. It is defined as follows:

purity(Ω,C) = 1
N

∑
k

max
j
|ωk ∩ cj | (4.5)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cj} is the
set of classes[8]. However, this method needs a blueprint – a definitive set of right
and wrong classification. This does not exist for the CDS, and the creation of this
collection is a major task. Still, if the work on clustering user behavior in CDS is to
continue, a way of evaluating the clusters must be made possible.

4.6 Experimental results

No interesting results were produced by the K-means algorithm, mostly because the
relevance matrix for the full log was too large to handle for the Weka tool. Still, the
research suggests that K-means is not the optimal clustering method to user for this
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Figure 4.8: Resulting dendrogram from the HAC clustering of every 100th record.
Using Euclidean distance.

type of data. The output of the 2-Means clustering of the 1
100 -matrix can be found

in appendix B.1.

As can be seen in Figure 4.9, no similarity gap can be observed in the dendrogram
for the HAC algorithm, neither by using Euclidean nor Jaccard similarity. Even
though the result from Euclidean similarity is poor, there is at least some prioritization
as to which clusters to merge first. Using Jaccard similarity, every cluster is evaluated
at a distance of 1.0 to every other cluster, which suggests a failure in the application
of the method.

The graph partitioning did produce some interesting results. As can be seen
in Figure 4.10 and 4.11, an optimal number of partitions can be guessed from the
bend at N ≈ 25. The appearance of this bend suggests promising results from graph
partitioning.



42 4. APPROACH

Figure 4.9: Resulting dendrogram from the HAC clustering of every 100th record.
Using Jaccard-similarity.

Figure 4.10: The edge cut for [2, . . . , 300] partitions. Note the bend at N ≈ 25.
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Figure 4.11: A closer look at the area of the bend.





Chapter5Discussion

5.1 Simple K-means

Experimentation with the K-means algorithm presented several problems. The input
format increased the size from 24 megabytes to 9,2 gigabytes, or by a factor of around
383. The resulting relevance matrix is thus far too sparse to justify this approach.
It was however discovered that the Weka tool does support a format specialized for
sparse data, but unfortunately too late to allow repeating the experiments. Through
our experiments, we also discovered that the similarity function used in K-means
(Euclidean distance) was suboptimal for binary attribute values. Additionally, it
became apparent that the Weka Explorer tool (a GUI front-end for the Weka library)
uses an unnecessary amount of memory. Thus, a better approach would have been
to use the Weka clustering libraries directly in a custom application.

5.2 Hierarchical Agglomerative Clustering

As suspected, this method proved to be too complex and expensive for the full
dataset. Although both Euclidean and Jaccard distance was tested, the results of
clustering with reduced dataset showed no signs of natural clustering. HAC using
Jaccard distance showed puzzling results, apparently calculating a similarity of 1.0
between every record. This suggests that the method did not work properly. One
reason why the method did not work might be because of lost information in the
dataset reduction, but a more likely explanation is that the inherent clusters in the
dataset are too vague for the algorithm to pick up.

5.3 Custom Clustering Algorithm

Although an exciting way to learn about the quirks and pitfalls of clustering, the
results of this approach were not especially successful. It is apparent that the way
this algorithm greedily assigns objects to clusters does not work satisfactory.

45
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Two major problems were found: Due to its greedy nature, the algorithm might
"steal" users from its true cluster. If there are N documents which are read by almost
all of the users in the collection, and these documents are connected to a cluster, this
cluster will act as a magnet – attracting users that belong to other user groups. In
addition, these documents might create artificial links between clusters, increasing
the connection strength between this magnet cluster and other clusters. This may
ultimately lead to the merging of clusters which have no real connection. One way of
mitigating this effect would be to exclude documents read by more than X users,
however to pinpoint the value of X might prove difficult.

Another problem is that the merge function will either merge way too few clusters,
producing a large number of small, useless clusters; or to often, which essentially
produces one, huge cluster containing almost all the documents. A way of mitigating
this could be to do one iteration of all the clusters with a given merge limit, and then
decrease this limit for each subsequent iteration. However, given that this would be
even less effective than regular HAC, the development was stopped at this point.

5.4 Graph partitioning

This method was the only one producing interesting results. In addition, it spawned
an unexpected contribution, presented in detail in Section 4.5.4. The reason why this
method of deciding the optimal number of partitions is not widespread is probably
because graph partitioning is not often used in situations where the number of
partitions is unknown. The most common usage for graph partitioning is within
network separation and distribution of workloads in a distributed system — all
situations where the number of partitions is mostly known beforehand.

The graph in Figure 4.10 shows an optimal partitioning at N ≈ 25, which is close
to the number of collections listed in Section 4.1. While it is tempting to make the
connection between these two, the size of the listed collections vary greatly, while
the graph partitioning inherently produces partitions of similar size. As can be seen,
this might not always reflect the nature of the collection. A way to mitigate this
could be to apply the hMetis tool mentioned in Section 4.4.4, experimenting with
the unbalance parameter.

Exactly how accurate the partitions created by this method are, is hard to say
without doing a proper evaluation, which unfortunately was not possible. In addition,
it is difficult to do a coarse evaluation by manually comparing the most important
documents within the partitions, because the partitions have no measure of internal
degree of affiliation. For use in a recommender system, the records would therefore
have to be ranked by some external ranking method.
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5.5 General observations and discussion

While this thesis concerns the clustering user-record relations, the experiments are
performed on a server log where the users are represented by IPs. This is of course
not ideal, and may be a source of error for three reasons. Firstly, a user may access
the collection from several locations, increasing their associated IPs. In addition,
re-leasing of dynamically allocated IP addresses might cause a single location user to
change IP. Secondly, the same DHCP issue might cause an IP to be shared by two
or more users, causing the users to merge. Thirdly, several users might be hidden
behind the same Network Address Translation (NAT) hub (e.g. a router), presenting
them with a common IP address to the CDS server. Unfortunately, data containing
actual user profiles does not exist. However, when asked about this problem, the
CDS chief engineer replied that the relationship between users and IP was sufficiently
permanent to avoid significant errors.

When pre-processing the server logs to retrieve a dataset for the clustering, the
decision was made to focus on downloaded PDFs, stripping the log of any type of
softer connection. As mentioned in Section 3.2, these types of relationships can
provide valuable data for use in recommender systems. However, the clustering
approach of this thesis uses a binary relationship between users and records. Thus,
to ensure the quality of the dataset, only the strongest connections between users
and records were selected.

Through our experiments, it was discovered that clustering both users and records
was unnecessary. A connection from the users to the record clusters could be found
in cheaper ways – for example by looking at the clusters associated with the user’s
download history. This also allows the user to be connected to more than one cluster,
supporting the user with diverse interests.

The lack of a proper tool for evaluating the resulting partitions is evident. The
consequence is that no definitive conclusion can be drawn on the results from the
graph partitioning.

One might argue that soft, or fuzzy, clustering should be tested. While all of
the clustering methods used in this experiment are in principle "hard" (in that they
separate the elements into distinct clusters where an element is contained in only
one cluster), there exists fuzzy, or soft, variants of each algorithm. These would
allow records to belong to several clusters. The vague nature of the partitions found
during the experiments might suggest that fuzzy clustering should be used. These
algorithms were not included in this thesis, but should be kept in mind for further
work.

Although a large number of established recommender systems are based on
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explicit feedback, we have in this thesis decided to focus on implicit feedback. Even
though explicit feedback often has a higher information value than implicit, it is
often sporadic. This is especially true for areas where the users are not used to
or expecting the need to give feedback. We believe that this applies to scientific
collections, and that utilization of the existing implicit feedback is the best approach
to recommender systems in this area.
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In this thesis, we have looked at three different clustering methods, and evaluated
their application on a collection of scientific papers. Approximately one year of
server logs from the CERN Document Server (CDS) was acquired and analyzed. The
idea was to apply different clustering techniques, to see if any latent usage patterns
could be discovered from the data. Three clustering methods were chosen: K-means,
Hierarchical Agglomerative Clustering (HAC) and graph partitioning. In addition, a
custom, agglomerative clustering algorithm was made in an attempt to tackle some
of the problems encountered during the experiments with K-means and HAC.

The results from K-means clustering were poor, mostly due to a poor choice of
input format, and the use of the WEKA Explorer. In addition, it was discovered that
the similarity model used in K-means was not optimal for the binary type of data used
in this experiment. Before running the HAC method, the data was down-sampled to

1
100 of the original size. The resulting dendrograms showed no recognizable patterns,
neither with the default Euclidean distance nor the Jaccard similarity measure. The
custom algorithm showed interesting trends, but was ultimately too greedy to produce
any satisfactory results.

As we look back on the process described in this thesis, we note a few elements
that should have been handled differently. The most important element is the lacking
tools of evaluation. Ideally, a test set should be crafted from the CDS collection – or
a similar, large collection of scientific documents. This tool should be present before
any further in-depth research on recommender systems in this area. Furthermore,
the thesis would most likely have benefited from a more thorough theoretical research
on clustering tools; the procedure presented shows signs of a progressive learning
approach, where better knowledge of the systems used would have streamlined the
research somewhat.

As a final conclusion of the thesis, the research questions from section 1.5.1 will
be repeated and replied in order:

49
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Q1: How can the usage logs of CDS best be processed to allow for effective analysis
of usage patterns?

The main objective of the pre-processing was to create a representation of user-
record relationships that gave the best result for clustering. Given the large amount
of input data given, the decision was made to exclude all but the strongest connection
type, just including the entries of downloaded records. With this approach, the idea
was to concentrate the dataset to a more manageable size, while maintaining the
quality of the data.

Q2: How can clustering methods be adapted to identify user groups from automatic
analysis of usage logs?

While K-means and HAC proved not to be optimal for the clustering problem
of this thesis, the graph partitioning did provide promising results. This shows the
presence of at least loose natural clusters within the dataset, and suggests further
experiments using fuzzy alternatives, as mentioned in Section 5.5.

Q3: How can the the resulting clusters of the usage logs be utilized in a way that
mitigates information bubbles?

The partitions provided by the graph partition algorithm needs an external ranking
before being useful as recommendations. An intuitive way of proceeding would be
to use the partitions as a document selection from which the recommendations are
done, as suggested by O’Connor and Herlocker [26]. However, this introduces the
problem of information bubbles, where documents are excluded from consideration
based on affiliation. A better approach would be to combine the cluster basted
recommendation with other, less discriminating ranking methods. In this way, new
documents are more easily included in the clusters, and the serendipity of the system
increases.

Another way of producing generalized recommendations could be by applying a
collaborative ranking method on the partitions, and collecting the top ranked records
from each of them. This would produce a diverse set of highly attractive records,
which would help in mitigating information bubbles.

6.1 Future work

As the thesis has concluded, there are still some loose threads that might prove
useful to pursue. The clustering methods chosen for this thesis are not an exhaustive
representation of the available methods. As such, a further survey should be done to
evaluate even more clustering methods.
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One specific clustering tool that should be evaluated in further work is Cluto.
It is specialized for datasets from areas such as information retrieval and customer
purchasing transactions, which indeed looks promising. This was not included in this
thesis, simply because it came to our attention just a few days before delivery. It is
created by the same developers as the Metis tool. If further work is done on finding
better clustering methods, both fuzzy clustering techniques and co-clustering should
also be evaluated.

The most important task left for future work is the creation of a test set, either
from the CDS, or another similar collection. With this tool, the graph partitioning
method can be evaluated properly, and a decision can be made about whether to
pursue this concept or not. Still, creating such a test set is a tedious task, and might
in some cases not provide an absolute definitive classification.

The idea to an alternative evaluation method arose when looking at the graph
in Figure 4.10. Further analysis of the shape of this graph might produce some
metric describing the quality of the partitioning, based on the graph. This metric
might be the degree of which the graph decreases its growth. For rapid declines, it
is reasonable to believe that the resulting partition has found a natural number of
clusters, where the number of edges between the clusters are low.

Furthermore, the concept of utilizing graph partitioning methods on user-content
relations should be extended to other types of collections, to test whether it can be
applied to digital libraries in general.

Future applications

As stated in the introduction of this thesis, the work done is considered a step on
the way to implementing specialized recommender systems for open source systems.
As such, this section contains some ideas for further approaching this goal. The
resulting partitions of the experiments conducted in this thesis provide an unranked,
unnamed classification of records. The possible applications for these partitions can
be broadly grouped into two types.

Personalized hit sets The partitions can be used to generate personalized hit sets
for users, based on their download history. For example, if 40% of the users
downloaded documents are in cluster A, and 60% in cluster B, recommendations
could be made from ranking elements from these clusters, with a default score
of 0.4 and 0.6 respectively. These hit sets can be used both within recommender
systems, and as additional ranking boosts within ordinary search and MLT
systems. This is quite similar to the procedure of O’Connor and Herlocker [26],
where clustering is used to minimize the load for applied recommender systems.
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Automatic classification If evaluation of the partitions is made possible and the
clusters prove good enough, it can be used as a tool for creating automatic
collections or categories based on usage. This can again either be combined with
tools for automatic naming of collections, or be proposed to a site administrator
as collections, requiring a manual input of names.
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AppendixASource code

A.1 Custom clustering algorithm

from c o l l e c t i o n s import d e f a u l t d i c t
from recordtype import recordtype
import copy
import sys
import csv
import thread ing

ClusterL ink = recordtype ( ’ Link ’ , ’ count␣ r e co rd s ’ )

class Clus te r ( ) :

# S t a t i c c l a s s v a r i a b l e f o r c l u s t e r l i n k s
l i n k s = d e f a u l t d i c t (lambda : d e f a u l t d i c t (lambda :

C lusterL ink (0 , set ( [ ] ) ) ) )
_next_id = 0
_id_lock = thread ing . RLock ( )

@classmethod
def _new_id( c l s ) :

with c l s . _id_lock :
new_id = c l s . _next_id
c l s . _next_id += 1

return new_id

def __init__( s e l f , ips , i n t e rna l_connec t i on s ) :
s e l f . id = s e l f . _new_id ( )
s e l f . i p s = set ( i p s )
s e l f . i n t e rna l_connec t i on s = inte rna l_connec t i on s

57



58 A. SOURCE CODE

s e l f . r e co rd s = d e f a u l t d i c t ( int )
s e l f . d e l e t ed = False

def __str__( s e l f ) :
r e turn_str = " \n\ nCluster ␣ "+str ( s e l f . id ) +\

" \n============\n" \
+ str ( len ( s e l f . i p s ) )+" ␣ us e r s : \ n "

re turn_str += " \n\n" + str ( s e l f . i n t e rna l_connec t i on s
) + " ␣ i n t e r n a l ␣ connec t i ons "

s e l f _ l i n k s = Clus te r . ge t_l inks ( s e l f . id )
i f len ( s e l f _ l i n k s ) > 0 :

re turn_str += " \n\nConnected␣ c l u s t e r s : ␣ "
for id , s t r ength in s e l f _ l i n k s . i t e r i t em s ( ) :

re turn_str += str ( id ) + " ␣ ( " + str ( s t r ength )
+ " ) , ␣ "

re turn_str += " \n\n"+str ( len ( s e l f . r e co rd s ) )+" ␣
r e co rd s "

re turn_str += " \nMost␣ popular : \ n "
s e l f_so r t ed_reco rd s = sorted ( s e l f . r e co rd s . i tems ( ) ,

key=lambda x : x [ 1 ] , r e v e r s e=True )
counter = 0
for record_id , count in s e l f_so r t ed_reco rd s :

i f counter > 14 :
break

re turn_str += str ( record_id ) + " ␣ ( " + str ( count )
+ " ) , ␣ "

counter += 1

return re turn_str

def add_ip ( s e l f , new_ip ) :
s e l f . i p s . append (new_ip )

@classmethod
def add_link ( c l s , c l1 , c l2 , r e co rd s ) :

c l s . l i n k s [ c l 1 ] [ c l 2 ] . count += 1
c l s . l i n k s [ c l 1 ] [ c l 2 ] . r e co rd s . update ( r e co rd s )

@classmethod
def get_l inks ( c l s , s ta r t_id ) :
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l i nk s_d i c t = d e f a u l t d i c t (lambda : C lusterL ink (0 , set
( [ ] ) ) )

i f s ta r t_id in c l s . l i n k s :
for l inked_id , c l u s t e r_ l i nk in c l s . l i n k s [

s ta r t_id ] . i t e r i t em s ( ) :
l i nk s_d i c t [ l inked_id ] = c l u s t e r_ l i nk

for l ink_id , l inked_ids in c l s . l i n k s . i t e r i t em s ( ) :
i f s ta r t_id in l inked_ids :

l i nk s_d i c t [ l ink_id ] = c l s . l i n k s [ l ink_id ] [
s ta r t_ id ]

return l i nk s_d i c t

@classmethod
def update_l inks ( c l s , from_id , to_id ) :

new_link_dict = copy . deepcopy ( c l s . l i n k s )

for id_1 , i d s in c l s . l i n k s . i t e r i t em s ( ) :

i f id_1 == from_id :
new_link_dict [ to_id ] . update ( c l s . l i n k s [

from_id ] )
del new_link_dict [ from_id ]
continue

for id_2 , count in i d s . i t e r i t em s ( ) :
i f id_2 == from_id :

new_link_dict [ to_id ] [ id_1 ] . count += c l s .
l i n k s [ id_1 ] [ id_2 ] . count

new_link_dict [ to_id ] [ id_1 ] . r e co rd s .
update ( c l s . l i n k s [ id_1 ] [ id_2 ] . r e co rd s )

del new_link_dict [ id_1 ] [ id_2 ]

c l s . l i n k s = new_link_dict

class d e f a u l t l i s t ( l i s t ) :
def __init__( s e l f , fx ) :
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s e l f . _fx = fx

def __setitem__( s e l f , index , va lue ) :
while len ( s e l f ) <= index :

s e l f . append ( s e l f . _fx ( ) )
l i s t . __setitem__( s e l f , index , va lue )

def as s ign_to_c lus te r ( c l u s t e r_ob j e c t s , ip1 , ip2 , r e co rd s ) :
# Check every c l u s t e r to see i f they conta in the IP
i p1_c lu s t e r = −1
ip2_c lu s t e r = −1
for c l u s t e r_ob j e c t in c l u s t e r_ob j e c t s :

# Any o f the IPs in the c l u s t e r ? I f not , cont inue
i f not ip1 in c l u s t e r_ob j e c t . i p s and not ip2 in

c l u s t e r_ob j e c t . i p s :
continue

i f ip1 in c l u s t e r_ob j e c t . i p s :
i p1_c lu s t e r = c lu s t e r_ob j e c t . id

# I f both are a l r eady in c l u s t e r , add records ,
+1 to i n t e r n a l connec t ions and re turn

i f ip2 in c l u s t e r_ob j e c t . i p s :
for record in r e co rd s :

c l u s t e r_ob j e c t . r e co rd s [ r ecord ] += 1

c lu s t e r_ob j e c t . i n t e rna l_connec t i on s += 1
return

i f ip2 in c l u s t e r_ob j e c t . i p s :
i p2_c lu s t e r = c lu s t e r_ob j e c t . id

# IPs are found in separa t e c l u s t e r s . Add a l i n k
i f i p1_c lu s t e r >= 0 and i p2_c lu s t e r >= 0 :

Clus te r . add_link ( ip1_c lus te r , ip2_c lus te r , r e co rd s )

# Add records to both c l u s t e r s
for record in r e co rd s :

c l u s t e r_ob j e c t s [ i p1_c lu s t e r ] . r e co rd s [ r ecord ] +=
1
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c l u s t e r_ob j e c t s [ i p2_c lu s t e r ] . r e co rd s [ r ecord ] +=
1

# Also , merge c l u s t e r s i f the l i n k i s s t r onge r than
f i v e

merge_clusters ( c l u s t e r_ob j e c t s , ip1_c lus te r ,
ip2_c lus te r , 5)

# IP1 found . Add IP2 to i t s c l u s t e r
e l i f i p1_c lu s t e r >= 0 :

c l u s t e r_ob j e c t s [ i p1_c lu s t e r ] . add_ip ( ip2 )
for record in r e co rd s :

c l u s t e r_ob j e c t s [ i p1_c lu s t e r ] . r e co rd s [ r ecord ] +=
1

c l u s t e r_ob j e c t s [ i p1_c lu s t e r ] . i n t e rna l_connec t i on s +=
1

# IP2 found . Add IP1 to i t s c l u s t e r
e l i f i p2_c lu s t e r >= 0 :

c l u s t e r_ob j e c t s [ i p2_c lu s t e r ] . add_ip ( ip1 )
for record in r e co rd s :

c l u s t e r_ob j e c t s [ i p2_c lu s t e r ] . r e co rd s [ r ecord ] +=
1

c l u s t e r_ob j e c t s [ i p2_c lu s t e r ] . i n t e rna l_connec t i on s +=
1

# None o f the IPs are found . Create new c l u s t e r
else :

new_cluster = Clus te r ( [ ip1 , ip2 ] , 1)
for record in r e co rd s :

new_cluster . r e co rd s [ r ecord ] += 1
c l u s t e r_ob j e c t s [ new_cluster . id ] = new_cluster

def merge_clusters ( c l u s t e r_ob j e c t s , ip1_c lus te r , ip2_c lus te r
, l im i t ) :
ip1_ip2_l inks = Clus te r . ge t_l inks ( ip1_c lu s t e r ) [

i p2_c lu s t e r ]

r a t i o = f loat ( len ( ip1_ip2_l inks . r e co rd s ) / f loat (
ip1_ip2_l inks . count ) )
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i f ip1_ip2_l inks . count < 3 or r a t i o < f loat ( l im i t ) :
print " \nRatio ␣ "+str ( r a t i o )+" ␣<␣ "+str ( l im i t )+" . ␣Not␣

merging "
return False

c l u s t e r 1 = c l u s t e r_ob j e c t s [ i p1_c lu s t e r ]
c l u s t e r 2 = c l u s t e r_ob j e c t s [ i p2_c lu s t e r ]

# Add a l l IPs from c l u s t e r 2 to c l u s t e r 1
c l u s t e r 1 . i p s . update ( c l u s t e r 2 . i p s )

# Add a l l r ecords from c l u s t e r 2 to c l u s t e r 1
for record in c l u s t e r 2 . r e co rd s :

c l u s t e r 1 . r e co rd s [ r ecord ] += 1

# Add the common records to c l u s t e r 1
for record in ip1_ip2_l inks . r e co rd s :

c l u s t e r 1 . r e co rd s [ r ecord ] += 1

# Increase the number o f i n t e r n a l connec t ions to the sum
p lu s the number o f l i n k s

# between the c l u s t e r s
c l u s t e r 1 . i n t e rna l_connec t i on s += ( c l u s t e r 2 .

i n t e rna l_connec t i on s + ip1_ip2_l inks . count )

# Change a l l c l u s t e r− l i n k s to r e f l e c t the merge
Clus te r . update_l inks ( c l u s t e r 2 . id , c l u s t e r 1 . id )

return True

def c r e a t e_c l u s t e r s ( i npu t_ f i l e ) :
try :

l og = open( i nput_f i l e , ’ r ’ )
except IOError :

print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+
inpu t_ f i l e+" \n "

sys . e x i t ( )
log_reader = csv . DictReader ( log , d e l im i t e r=" , " )
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# Create the data s t r u c t u r e s
ip_recs = d e f a u l t d i c t ( set )
rec_ips = d e f a u l t d i c t ( set )
ip_pai r s = d e f a u l t d i c t (lambda : d e f a u l t d i c t ( set ) )
c l u s t e r s = d e f a u l t l i s t (lambda : C lus te r )

print " Creat ing ␣ s e t s . . . "
for l i n e in log_reader :

ip_recs [ l i n e [ ’ IP ’ ] ] . add ( l i n e [ ’ Record ’ ] )
rec_ips [ l i n e [ ’ Record ’ ] ] . add ( l i n e [ ’ IP ’ ] )

print " \ nBui ld ing ␣IP␣ r e l a t i o n s h i p s . . . "
counter = 0
for ip , r e co rd s in ip_recs . i t e r i t em s ( ) :

for record in r e co rd s :
i f ip in rec_ips [ r ecord ] :

for r e l_ ip in rec_ips [ r ecord ] :
i f ip != re l_ ip :

ip_pai r s [ ip ] [ r e l_ ip ] . add ( record )

counter += 1
sys . s tdout . wr i t e ( " \ rProces sed ␣ " + str ( counter ) + " ␣

o f ␣ " + str ( len ( ip_recs ) ) + " ␣ i p s " )
sys . s tdout . f l u s h ( )

print " \n\nCreating ␣ c l u s t e r s . . . "
pa i r_length = len ( ip_pai r s )
counter = 0
for ip , r e l_ ip s in ip_pa i r s . i t e r i t em s ( ) :

for re l_ip , r e co rd s in r e l_ ip s . i t e r i t em s ( ) :

# I f the IP <−> IP r e l a t i o n s h i p has l e s s than 3
shared records , don ’ t c l u s t e r them

i f len ( r e co rd s ) < 3 :
break

# Check every c l u s t e r to see i f they conta in the
IP

as s ign_to_c lus te r ( c l u s t e r s , ip , re l_ip , r e co rd s )

counter += 1
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sys . s tdout . wr i t e ( " \ rProces sed ␣ " + str ( counter ) + " ␣
o f ␣ " + str ( pa i r_length ) + " ␣ ip ␣ pa i r s " )

sys . s tdout . f l u s h ( )

print " \n\nFound␣%d␣ c l u s t e r s " % len ( c l u s t e r s )

# Remove c l u s t e r s wi th l e s s than 25 i p s
pruned_clusters = [ ]
ip_lm = 25
for id , c l u s t e r in enumerate( c l u s t e r s ) :

i f len ( c l u s t e r . i p s ) >= ip_lm :
pruned_clusters . append ( c l u s t e r )

print "Removed␣ " + str ( len ( c l u s t e r s ) − len (
pruned_clusters ) ) + \

" ␣ c l u s t e r s ␣ ( l e s s ␣ than␣ " + str ( ip_lm ) + " ␣ use r s ) "

# Print the r e s u l t i n g c l u s t e r s
sorted_pruned_clusters = sorted ( pruned_clusters , key=

lambda x : len ( x . i p s ) , r e v e r s e=True )
return sorted_pruned_clusters

def main ( ) :
for c l u s t e r in c r e a t e_c l u s t e r s ( sys . argv [ 1 ] ) :

print c l u s t e r

i f __name__ == "__main__" : main ( )

A.2 Scripts

In this section, all the scripts used for log pre-processing are pasted. The most
interesting scripts are shown first, while smaller utility scripts follow. Please note
that some inconsistencies between files might exist, as the files has changed somewhat
during the process.

A.2.1 Bot removal
from c o l l e c t i o n s import d e f a u l t d i c t
import csv
import sys
from u t i l s import date_converter as dc
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f i l ename = sys . argv [ 1 ]
print "Removing␣ bots ␣ from␣ "+f i l ename

try :
l og = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+f i l ename
sys . e x i t ( )

reader = csv . DictReader ( log , d e l im i t e r=’ , ’ )

# count the number o f l i n e s in the input f i l e , f o r use in
progre s s r epo r t i n g

with open( f i l ename , " r " ) as f :
f i l e _ l i n e s = sum(1 for _ in f )

# Li s t con ta in ing a l l IPs we want to exc lude
b l a c k l i s t = [ ]

# per_ip [ IP ] = [ timestamps ]
per_ip = d e f a u l t d i c t ( l i s t )

print " Separat ing ␣ timestamps␣by␣IP . . . "
counter = 0
for l i n e in reader :

per_ip [ l i n e [ ’ IP ’ ] ] . append ( l i n e [ ’Timestamp ’ ] )
counter += 1
i f counter % 10000 == 0 :

percentage = int (round(100∗ f loat ( counter ) / f loat (
f i l e _ l i n e s ) ) )

sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

print " \nChecking␣ every ␣IP␣ log ␣ f o r ␣100␣ e n t r i e s ␣with in ␣1␣
hours . ␣ B l a c k l i s t ␣ i f ␣ found . "

ip_count = len ( per_ip )
counter = 0
for ip , timestamps in per_ip . i t e r i t em s ( ) :
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counter = 0
i f len ( timestamps ) > 100 :

while len ( timestamps ) > 100+counter :
i f dc . s e c_d i f f ( timestamps [100+ counter ] ,

timestamps [ counter ] ) < 3600 :
b l a c k l i s t . append ( ip )
break

counter += 1
percentage = int (round(100∗ f loat ( counter ) / f loat ( ip_count

) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

# Reset the l o g reader
l og . seek (0 )
reader . __init__( log , d e l im i t e r=’ , ’ )

print " \nWriting␣output␣ f i l e . . . "

new_fi le = open( " sans_bots_ " + f i l ename , ’w ’ )
new_fi le . w r i t e l i n e s ( "Timestamp , Request , IP\n" )

counter = 0
for l i n e in reader :

i f l i n e [ ’ IP ’ ] not in b l a c k l i s t :
new_fi le . w r i t e l i n e s ( l i n e [ ’Timestamp ’ ] + " , " + l i n e [ ’

Request ’ ] + " , " + l i n e [ ’ IP ’ ] + " \n " )
counter += 1
i f counter % 10000 == 0 :

percentage = int (round(100∗ f loat ( counter ) / f loat (
f i l e _ l i n e s ) ) )

sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

print " B l a c k l i s t e d : ␣ " + str ( len ( b l a c k l i s t ) )
for ip in b l a c k l i s t :

print ip

A.2.2 CSV converter
import apachelog
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import sys
import csv

# Format cop ied and pas ted from Apache conf − use raw s t r i n g
+ s i n g l e quo te s

log_format = r ’%h␣%l ␣%u␣%t␣\"%r \" ␣%>s␣%B␣\"%{Re fe r e r } i \" ␣
\"%{User−Agent} i \" ’

p = apachelog . pa r s e r ( log_format )

for f i l ename in sys . argv :
i f f i l ename == " conver t e r . py " :

continue

print " Converting ␣ "+f i l ename

try :
l og = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+

f i l ename+" \nContinuing . . . "
continue

new_filename = f i l ename . s p l i t ( " . " ) [0 ]+ " . csv "

with open( f i l ename , " r " ) as f :
f i l e _ l i n e s = sum(1 for _ in f )

new_fi le = open( new_filename , ’w ’ )
wr i t e r = csv . wr i t e r ( new_fi le , d e l im i t e r=’ , ’ )
counter = 0
f a i l s = 0

# Fi r s t l i n e determines a t t r i b u t e names
wr i t e r . writerow ( [ ’Timestamp ’ , ’ Request ’ , ’ IP ’ ] )

print f i l e _ l i n e s

for l i n e in l og :
counter += 1
l i n e = l i n e . r ep l a c e ( " , " , " ␣ " )
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l i n e = l i n e . r ep l a c e ( "%" , " " )
try :

data = p . parse ( l i n e )
except apachelog . ApacheLogParserError :

print " Fa i l ed ␣ at ␣ l i n e ␣ " + str ( counter )
f a i l s += 1
continue

wr i t e r . writerow ( [ data [ ’%t ’ ] , data [ ’%r ’ ] , data [ ’%h ’
] ] )

i f counter % 10000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat (

f i l e _ l i n e s ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

print " Fa i l ed ␣ " + str ( f a i l s ) + " ␣out␣ o f ␣ " + str ( counter )
+ " ␣ l i n e s "

A.2.3 Extract IP → records
from c o l l e c t i o n s import d e f a u l t d i c t
import sys
import csv

f i l ename = sys . argv [ 1 ]

print " Generating ␣ s t a t i s t i c s ␣ f o r ␣ "+f i l ename

try :
l og = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+f i l ename
sys . e x i t ( )

new_filename = " ip_recs_ " + f i l ename

ip_dict = d e f a u l t d i c t ( set )

new_fi le = open( new_filename , ’w ’ )
reader = csv . DictReader ( log , d e l im i t e r=’ , ’ )
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for l i n e in reader :
ip_dict [ l i n e [ ’ IP ’ ] ] . add ( l i n e [ ’ Record ’ ] )

new_fi le . w r i t e l i n e s ( " IP , Records \n " )
for ip in sorted ( ip_dict , key=lambda x : len ( ip_dict [ x ] ) ,

r e v e r s e=True ) :
l i n e = ip + " , " + " ; " . j o i n ( ip_dict [ ip ] )
l i n e += " \n"
new_fi le . w r i t e l i n e s ( l i n e )

A.2.4 Extract Record → IPs
from c o l l e c t i o n s import d e f a u l t d i c t
import sys
import csv

for f i l ename in sys . argv :
i f f i l ename == " record_hi t s . py " :

continue

print " Generating ␣ s t a t i s t i c s ␣ f o r ␣ "+f i l ename

try :
l og = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+

f i l ename+" \nContinuing . . . "
continue

new_filename = " record_stats_ " + f i l ename

r e c o r d_ l i s t = d e f a u l t d i c t (lambda : d e f a u l t d i c t ( int ) )

new_fi le = open( new_filename , ’w ’ )
reader = csv . DictReader ( log , d e l im i t e r=’ , ’ )

for l i n e in reader :
i f not isinstance ( r e c o r d_ l i s t [ l i n e [ ’ Record ’ ] ] , dict )

:
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r e c o r d_ l i s t [ l i n e [ ’ Record ’ ] ] = { l i n e [ ’ IP ’ ] , 1}
else :

r e c o r d_ l i s t [ l i n e [ ’ Record ’ ] ] [ l i n e [ ’ IP ’ ] ] += 1

for record , i p s in sorted ( r e c o r d_ l i s t . v iewitems ( ) , key=
lambda x : len ( x [ 1 ] ) , r e v e r s e=True ) :
l i n e = record
for ip , amount in i p s . i tems ( ) :

l i n e += " , " + ip + " , " + str ( amount )
l i n e += " \n"
new_fi le . w r i t e l i n e s ( l i n e )

A.2.5 Extract IPs with over 500 downloads
import sys
import csv

l o g f i l e = sys . argv [ 1 ]
s t a t f i l e = sys . argv [ 2 ]
print " Extract ing ␣ a c t i v e ␣ i p s ␣ from␣ "+l o g f i l e+" ␣based␣on␣ "+

s t a t f i l e

try :
s t a t = open( s t a t f i l e , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+s t a t f i l e+

" \nContinuing . . . "
sys . e x i t ( )

s tat_reader = csv . DictReader ( s tat , d e l im i t e r=" , " )

try :
l og = open( l o g f i l e , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+l o g f i l e+"

\nContinuing . . . "
sys . e x i t ( )

log_reader = csv . DictReader ( log , d e l im i t e r=" , " )

i n t e r e s t i n g_ ip s = [ ]
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for l i n e in s tat_reader :
i f int ( l i n e [ ’ amount ’ ] ) > 500 :

i n t e r e s t i n g_ ip s . append ( l i n e [ ’ IP ’ ] )
else :

break

with open( l o g f i l e , " r " ) as f :
f i l e _ l i n e s = sum(1 for _ in f )

l i n e s = 0

for l i n e in log_reader :
l i n e s += 1
i f l i n e [ ’ IP ’ ] in i n t e r e s t i n g_ ip s :

n ew f i l e = open( l i n e [ ’ IP ’ ]+ " _extracted_log . csv " , " a " )
n ew f i l e . wr i t e ( l i n e [ ’Timestamp ’ ]+ " , "+l i n e [ ’ Request ’ ]+

" , "+l i n e [ ’ IP ’ ]+ " \n " )
n ew f i l e . c l o s e ( )

i f l i n e s % 1000 == 0 :
percentage = int (round(100∗ f loat ( l i n e s ) / f loat (

f i l e _ l i n e s ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

A.2.6 Plot histogram of record accesses
from c o l l e c t i o n s import d e f a u l t d i c t
import matp lo t l i b . pyplot as Plt
from os import l i s t d i r
import csv
import re

import sys

arg_length = len ( sys . argv ) − 1
counter = −1
r eque s t s = d e f a u l t d i c t ( int )
ex ist ing_img = [ ]
imgdir = l i s t d i r ( ’ img ’ )
for f i l e in imgdir :

i f re . s earch ( " . png " , f i l e ) :
f i l e = f i l e . r e p l a c e ( " . png " , " " )



72 A. SOURCE CODE

exist ing_img . append ( f i l e )

for f i l ename in sys . argv :
counter += 1
reque s t s . c l e a r ( )
access_counter = 0

i f f i l ename == " bar_chart . py " :
continue

ip = f i l ename . s p l i t ( "_" ) [ 0 ]
i f ip in exist ing_img :

print " Image␣ a l r eady ␣ e x i s t s "
continue

print " \ rCreat ing ␣ p lo t ␣ " + str ( counter ) + " ␣ o f ␣ " + str (
arg_length ) + " : ␣ " + ip

try :
l og = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+log+"

\nContinuing . . . "
sys . e x i t ( )

log_reader = csv . r eader ( log , d e l im i t e r=" , " )

for l i n e in log_reader :
access_counter += 1
reque s t s [ l i n e [ 1 ] ] += 1

print " \ rDrawing␣ p l o t "

Plt . y l ab e l ( " Accesses " )
Plt . t i t l e ( " Access ␣ d i s t r i b u t i o n " )
Plt . bar ( range ( len ( r eque s t s ) ) , r eque s t s . va lue s ( ) , l og=

True )
Plt . s a v e f i g ( ’ img/ ’+ip+’ . png ’ , bbox_inches=’ t i g h t ’ )

sys . s tdout . f l u s h ( )

A.2.7 IP pruning
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import sys
import csv

l o g f i l e = sys . argv [ 1 ]
s t a t f i l e = sys . argv [ 2 ]
print "Removing␣ IPs␣ from␣ "+l o g f i l e+" ␣based␣on␣ "+s t a t f i l e

try :
s t a t = open( s t a t f i l e , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+s t a t f i l e+

" \nContinuing . . . "
sys . e x i t ( )

s tat_reader = csv . DictReader ( s tat , d e l im i t e r=" , " )

try :
l og = open( l o g f i l e , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+l o g f i l e+"

\nContinuing . . . "
sys . e x i t ( )

log_reader = csv . DictReader ( log , d e l im i t e r=" , " )

new_fi le = open( " gt2ip_ "+l o g f i l e , "w" )

ignored_ips = set ( [ ] )

with open( s t a t f i l e , " r " ) as f :
s t a t f i l e _ l i n e s = sum(1 for _ in f )

counter = 0
print " Reading␣ s t a t f i l e "
for l i n e in s tat_reader :

i f int ( l i n e [ ’ amount ’ ] ) < 3 :
ignored_ips . add ( l i n e [ ’ IP ’ ] )

i f counter % 1000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat (

s t a t f i l e _ l i n e s ) ) )
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sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

counter += 1

with open( l o g f i l e , " r " ) as f :
l o g f i l e _ l i n e s = sum(1 for _ in f )

new_fi le . wr i t e ( "Timestamp , Record , IP\n" )

counter = 0
print " \nWriting␣new␣ f i l e "
for l i n e in log_reader :

counter += 1
i f l i n e [ ’ IP ’ ] not in ignored_ips :

new_fi le . wr i t e ( l i n e [ ’Timestamp ’ ]+ " , "+l i n e [ ’ Record ’ ]+
" , "+l i n e [ ’ IP ’ ]+ " \n " )

i f counter % 10000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat (

l o g f i l e _ l i n e s ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

A.2.8 Record pruning
from c o l l e c t i o n s import d e f a u l t d i c t
import csv
import sys

f i l ename = sys . argv [ 1 ]
rec_ips = d e f a u l t d i c t ( int )
count_ l i s t = [ ]
print "Removing␣ r e co rd s ␣ from␣ "+f i l ename

try :
f i l e = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+f i l e
sys . e x i t ( )

log_reader = csv . DictReader ( f i l e , d e l im i t e r=" , " )
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new_fi le = open( " gt2rec_ "+f i l ename , "w" )
# count the number o f l i n e s in the input f i l e , f o r use in
# progre s s r epo r t i n g
with open( f i l ename , " r " ) as f :

f i l e _ l i n e s = sum(1 for _ in f )

print " Reading␣ r e co rd s "
counter = 0
for l i n e in log_reader :

rec_ips [ l i n e [ ’ Record ’ ] ] += 1

counter += 1
i f counter % 10000 == 0 :

percentage = int (round(100∗ f loat ( counter ) / f loat (
f i l e _ l i n e s ) ) )

sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

new_fi le . wr i t e ( "Timestamp , Record , IP\n" )

f i l e . s eek (0 )
log_reader . __init__( f i l e , d e l im i t e r=" , " )

counter = 0
print " \nWriting␣new␣ f i l e "
for l i n e in log_reader :

counter += 1
i f rec_ips [ l i n e [ ’ Record ’ ] ] > 2 :

new_fi le . wr i t e ( l i n e [ ’Timestamp ’ ]+ " , "+l i n e [ ’ Record ’ ]+
" , "+l i n e [ ’ IP ’ ]+ " \n " )

i f counter % 10000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat (

f i l e _ l i n e s ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

A.2.9 Remove duplicates
from c o l l e c t i o n s import d e f a u l t d i c t
import csv
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import sys

f i l ename = sys . argv [ 1 ]
e n t r i e s = d e f a u l t d i c t ( int )
print "Removing␣ dup l i c a t e s ␣ from␣ "+f i l ename

try :
f i l e = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+f i l e
sys . e x i t ( )

log_reader = csv . DictReader ( f i l e , d e l im i t e r=" , " )

new_fi le = open( "nodup_"+f i l ename , "w" )

# count the number o f l i n e s in the input f i l e , f o r use in
# progre s s r epo r t i n g
with open( f i l ename , " r " ) as f :

f i l e _ l i n e s = sum(1 for _ in f )

print " Reading␣ r e co rd s "
counter = 0
for l i n e in log_reader :

e n t r i e s [ ( l i n e [ ’ Record ’ ] , l i n e [ ’ IP ’ ] ) ] += 1

counter += 1
i f counter % 10000 == 0 :

percentage = int (round(100∗ f loat ( counter ) / f loat (
f i l e _ l i n e s ) ) )

sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

new_fi le . wr i t e ( "Timestamp , Record , IP\n" )

f i l e . s eek (0 )
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log_reader . __init__( f i l e , d e l im i t e r=" , " )

counter = 0
print " \nWriting␣new␣ f i l e "
for l i n e in log_reader :

counter += 1
i f e n t r i e s [ ( l i n e [ ’ Record ’ ] , l i n e [ ’ IP ’ ] ) ] == 1 :

new_fi le . wr i t e ( l i n e [ ’Timestamp ’ ]+ " , "+l i n e [ ’ Record ’ ]+
" , "+l i n e [ ’ IP ’ ]+ " \n " )

i f counter % 10000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat (

f i l e _ l i n e s ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

A.2.10 Convert to relevance matrix
import sys
import csv

record_stat s = sys . argv [ 1 ]
ip_stat s = sys . argv [ 2 ]
ou tput_f i l e = sys . argv [ 3 ]

try :
l og = open( record_stats , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+

record_stat s+" \n "
sys . e x i t ( )

rec_reader = csv . reader ( log , d e l im i t e r=" , " )

try :
l og = open( ip_stats , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+ip_stat s+

" \n "
sys . e x i t ( )

ip_reader = csv . DictReader ( log , d e l im i t e r=" , " )
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print " Counting␣ r e co rd s . . . "
with open( record_stats , " r " ) as f :

records_count = sum(1 for _ in f )
print "Done . \ n "

print " Creat ing ␣ array ␣ o f ␣ IPs . . . "
ip_array = [ ]
for l i n e in ip_reader :

ip_array . append ( l i n e [ ’ IP ’ ] )
print "Done . \ n "

print " Writing ␣ legend ␣ f i r s t ␣ l i n e . . . "
o fh = open( output_f i l e , "w" )
f i r s t _ l i n e = " Record "
for ip in ip_array :

f i r s t _ l i n e += " , " + ip
ofh . wr i t e ( f i r s t _ l i n e+" \n " )
print "Done . \ n "

print " Writing ␣output ␣ f i l e . . . "
counter = 0
for l i n e in rec_reader :

# The new l i n e s t a r t s wi th record ID
newl ine = " rec_ "+l i n e [ 0 ]

# Create a s e t o f IPs having read the record
record_ips = set ( )
i = 1
while i < len ( l i n e ) :

# We only want odd e lements
i f i % 2 == 1 :

record_ips . add ( l i n e [ i ] )
i += 1

# I t e r a t e through master ip array and match f o r curren t
record . Add 0 ’ s and 1 ’ s r e s p e c t i v e l y

for ip in ip_array :
i f ip in record_ips :
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newl ine += " ,1 "
else :

newl ine += " ,0 "

ofh . wr i t e ( newl ine+" \n" )
counter += 1

# Print p rogre s s
sys . s tdout . wr i t e ( " \ r " + str ( counter ) + " ␣ r e co rd s ␣

proces sed " )
sys . s tdout . f l u s h ( )

A.2.11 Generate Metis graph
from c o l l e c t i o n s import de f au l t d i c t , OrderedDict , Ca l l ab l e
import csv

import sys

class DefaultOrderedDict ( OrderedDict ) :
def __init__( s e l f , d e f au l t_ fac to ry=None , ∗a , ∗∗kw) :

i f ( de f au l t_ fac to ry i s not None and
not isinstance ( de fau l t_fac tory , Ca l l ab l e ) ) :
raise TypeError ( ’ f i r s t ␣argument␣must␣be␣ c a l l a b l e

’ )
OrderedDict . __init__( s e l f , ∗a , ∗∗kw)
s e l f . d e f au l t_ fac to ry = de fau l t_ fac to ry

def __getitem__( s e l f , key ) :
try :

return OrderedDict . __getitem__( s e l f , key )
except KeyError :

return s e l f . __missing__( key )

def __missing__( s e l f , key ) :
i f s e l f . d e f au l t_ fac to ry i s None :

raise KeyError ( key )
s e l f [ key ] = value = s e l f . d e f au l t_ fac to ry ( )
return value
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def __reduce__( s e l f ) :
i f s e l f . d e f au l t_ fac to ry i s None :

args = tuple ( )
else :

a rgs = s e l f . de fau l t_fac tory ,
return type ( s e l f ) , args , None , None , s e l f . i tems ( )

def copy ( s e l f ) :
return s e l f .__copy__( )

def __copy__( s e l f ) :
return type ( s e l f ) ( s e l f . de fau l t_fac tory , s e l f )

def __deepcopy__( s e l f , memo) :
import copy
return type ( s e l f ) ( s e l f . de fau l t_fac tory ,

copy . deepcopy ( s e l f . i tems ( ) ) )
def __repr__( s e l f ) :

return ’ OrderedDefaultDict(%s , ␣%s ) ’ % ( s e l f .
de fau l t_fac tory ,

OrderedDict .__repr__
( s e l f ) )

i p_ s t a t f i l e = sys . argv [ 1 ]
r e c_ s t a t f i l e = sys . argv [ 2 ]
n ew f i l e = sys . argv [ 3 ]

print " Generating ␣IP␣graph␣ from␣ "+i p_ s t a t f i l e+" ␣and␣ "+
r e c_ s t a t f i l e

try :
f i l e = open( i p_ s t a t f i l e , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+

i p_ s t a t f i l e
sys . e x i t ( )

ip_reader = csv . DictReader ( f i l e , d e l im i t e r=" , " )

try :
f i l e = open( r e c_ s t a t f i l e , ’ r ’ )
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except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+

r e c_ s t a t f i l e
sys . e x i t ( )

rec_reader = csv . reader ( f i l e , d e l im i t e r=" , " )

ip_recs = DefaultOrderedDict ( set )
rec_ips = d e f a u l t d i c t ( set )

for l i n e in ip_reader :
ip_recs [ l i n e [ ’ IP ’ ] ] . update ( l i n e [ ’ Records ’ ] . s p l i t ( " ; " ) )

for l i n e in rec_reader :
rec_ips [ l i n e [ 0 ] ] = [ l i n e [ i ] for i in range ( len ( l i n e ) ) i f

i % 2 != 0 ]

tota l_edges = 0
graph = [ [ ] ]
ne ighbors = d e f a u l t d i c t ( int )
rec_num = de f a u l t d i c t ( int )
counter = 0

print " Creat ing ␣graph␣ l i s t . . . "
for rec , i p s in rec_ips . i t e r i t em s ( ) :

counter += 1
ne ighbors . c l e a r ( )
n od e l i s t = [ ]
rec_num [ rec ] = counter
for ip in i p s :

for n_rec in ip_recs [ ip ] :
i f n_rec == rec :

continue
ne ighbors [ n_rec ] += 1

tota l_edges += len ( ne ighbors )
for rec , count in ne ighbors . i t e r i t em s ( ) :

n o d e l i s t . append ( rec )
n od e l i s t . append ( count )

graph . append ( n od e l i s t )
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i f counter % 1000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat ( len (

ip_recs ) ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

print " \ nReplacing ␣ r e co rd s ␣with␣ l i n e ␣numbers . . . "
counter = 0
for x , n od e l i s t in enumerate( graph ) :

counter += 1
for y , elem in enumerate( n od e l i s t ) :

i f elem in rec_num :
graph [ x ] [ y ] = rec_num [ elem ]

i f counter % 1000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat ( len (

graph ) ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

new_fi le = open( newf i l e , "w" )

new_fi le . wr i t e ( str ( len ( graph )−1) + " ␣ " + str ( tota l_edges /2)
+ " ␣001 " )

counter = 0
print " \nWriting␣new␣ f i l e "
for node in graph :

counter += 1

new_fi le . wr i t e ( " ␣ " . j o i n ( str ( x ) for x in node )+" \n " )

i f counter % 1000 == 0 :
percentage = int (round(100∗ f loat ( counter ) / f loat ( len (

graph ) ) ) )
sys . s tdout . wr i t e ( " \ r " + str ( percentage ) + "%" )
sys . s tdout . f l u s h ( )

A.2.12 Extract score from graph partitions
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import glob
import re
import sys

numbers = re . compile ( r ’ (\d+) ’ )

def numer ica lSort ( va lue ) :
par t s = numbers . s p l i t ( va lue )
par t s [ 1 : : 2 ] = map( int , pa r t s [ 1 : : 2 ] )
return par t s

new_fi le = open( " pa r t i t i on_s co r e s . csv " , "w" )

for o u t f i l e in sorted ( g lob . g lob ( " ∗ . out " ) , key=numer ica lSort )
:
p a r t i t i o n s = int ( o u t f i l e . s p l i t ( "−" ) [ 0 ] )
print " Finding ␣ edge␣ cut ␣ f o r ␣ p a r t i t i o n ␣ "+str ( p a r t i t i o n s )
fh = open( o u t f i l e , " r " )
l i n e s = fh . r e a d l i n e s ( )

try :
edge_cut = re . search ( " Edgecut : ␣ (\d+) , " , l i n e s [ 1 4 ] )

except IndexError :
print "Edge␣ cut ␣not␣ found␣ f o r ␣ "+o u t f i l e
print l i n e s
continue

try :
par t_s i ze = re . search ( " d e s i r ed : ␣ (\d+) , " , l i n e s [ 2 0 ] )

except IndexError :
print " Pa r t i t i on ␣ s i z e ␣not␣ found␣ f o r ␣ "+o u t f i l e
print l i n e s
continue

s c o r e = ( int ( edge_cut . group (1 ) ) / p a r t i t i o n s ) / int (
par t_s i ze . group (1) )

new_fi le . wr i t e ( str ( p a r t i t i o n s )+" , "+str ( int ( edge_cut .
group (1 ) ) )+" \n " )

A.2.13 Map records to partitions
from c o l l e c t i o n s import d e f a u l t d i c t
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import csv
import sys

num_partit ions = sys . argv [ 1 ]
try :

t e s t = int ( num_partit ions )
except ValueError :

print " Error : ␣ input ␣must␣be␣number "
sys . e x i t ( )

a s s i gnment_f i l e = " f u l l . graph . part . "+num_partit ions

# The record s t a t s f i l e ho l d s the order o f records
# corresponding to l i n e numbers in the p a r t i t i o n f i l e
r e c o rd_s t a t s_ f i l e = "

record_stats_gt2rec_gt2ip_b_rec_sorted_nobots_pdf_ful l .
csv "

print "Mapping␣ r e co rd s ␣ to ␣ "+num_partit ions+" ␣ p a r t i t i o n s "

try :
assignment_fh = open( as s ignment_f i l e , ’ r ’ )

except IOError :
print " Error : ␣no␣ p a r t i t i o n ␣ f i l e ␣ f o r ␣ "+num_partit ions+" ␣

p a r t i t i o n s . "
sys . e x i t ( )

try :
record_stats_fh = open( r e co rd_s ta t s_ f i l e , ’ r ’ )

except IOError :
print " Error : ␣ record ␣ s t a t s ␣ f i l e ␣not␣ found "
sys . e x i t ( )

record_reader = csv . r eader ( record_stats_fh , d e l im i t e r=" , " )

# Se t t i n g up v a r i a b l e s
pa r t i t i on_d i c t = d e f a u l t d i c t ( set ) # mapping a l l

r ecords to t h e i r r e s p e c t i v e p a r t i t i o n
ass ignments = [ ] # a l i s t con ta in ing

a l l p a r t i t i o n ass ignments

# Popu la t ing the p a r t i t i o n i n g in to a l i s t
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for l i n e in assignment_fh :
ass ignments . append ( l i n e . s t r i p ( ) )

i = 0
for l i n e in record_reader :

# Add each record to the p a r t i t i o n e d as s i gned
pa r t i t i on_d i c t [ ass ignments [ i ] ] . add ( l i n e [ 0 ] )

i += 1

# Write the p a r t i t i o n d i c t to f i l e
ou t_ f i l e = open( "mapped_"+num_partit ions+" _par t i t i on s . csv " ,

"w" )

for pa r t i t i on , r e co rd s in pa r t i t i on_d i c t . i t e r i t em s ( ) :
new_line = pa r t i t i o n + " , " + " , " . j o i n ( r e co rd s ) + " \n "
ou t_ f i l e . wr i t e ( new_line )

A.2.14 Plot edge cut values
from c o l l e c t i o n s import d e f a u l t d i c t
import matp lo t l i b . pyplot as Plt
import csv

import sys

#fi l ename = sys . argv [ 1 ]
f i l ename = " pa r t i t i on_s co r e s . csv "

print " P l o t t i ng ␣ s c o r e s ␣ from␣ "+f i l ename

try :
f i l e = open( f i l ename , ’ r ’ )

except IOError :
print " Error : ␣can \ ’ t ␣ f i nd ␣ f i l e ␣ or ␣ read␣data : ␣ "+f i l e
sys . e x i t ( )

log_reader = csv . r eader ( f i l e , d e l im i t e r=" , " )
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# count the number o f l i n e s in the input f i l e , f o r use in
# progre s s r epo r t i n g
with open( f i l ename , " r " ) as f :

f i l e _ l i n e s = sum(1 for _ in f )

s c o r e s = [ ]

print " Reading␣ s c o r e s "
for l i n e in log_reader :

s c o r e s . append ( int ( l i n e [ 1 ] ) )

f i g = Plt . f i g u r e ( )
Plt . y l ab e l ( "Edge␣ cut " )
Plt . t i t l e ( "Edge␣ cut ␣ f o r ␣ [ 2 . . 3 0 0 ] ␣ p a r t i t i o n s " )
ax = f i g . add_subplot ( 1 , 1 , 1 )
ax . p l o t ( s c o r e s )
Plt . show ( )
Plt . s a v e f i g ( ’ p l o t ’+f i l ename . s p l i t ( ’ . ’ ) [0 ]+ ’ . png ’ ,

bbox_inches=’ t i g h t ’ )



AppendixBResults
B.1 Output from k-Means, 1

100 of full matrix (k=2)
=== Run in format ion ===

Scheme : weka . c l u s t e r e r s . SimpleKMeans −N 2 −S 5
Re lat ion :

e100th_matrix_nodup_gt2rec_gt2ip_b_rec_sorted_nobots_pdf_full

I n s t ance s : 657
Att r ibute s : 70006

[ l i s t o f a t t r i b u t e s omitted ]
Test mode : C la s s e s to c l u s t e r s eva lua t i on on t r a i n i n g

data
=== Model and eva lua t i on on t r a i n i n g s e t ===

kMeans
======

Number o f i t e r a t i o n s : 2
Within c l u s t e r sum of squared e r r o r s : 4733.471036585119

Clus te r c en t r o i d s :

C lus t e r 0
Mean/Mode : 0 .0274 0 .0274 0 .0213 0 .029 0 .0259 [ . . . ]
Std Devs : 0 .1635 0 .1635 0 .1446 0 .1678 0 .159 [ . . . ]

C lus t e r 1
Mean/Mode : 0 0 0 0 0 0

[ . . . ]

87
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Std Devs : 0 0 0 0 0 0
[ . . . ]

C luste red In s tance s

0 656 (100%)
1 1 ( 0%)

Class a t t r i b u t e : Record
C la s s e s to C lu s t e r s :

0 1 <−− as s i gned to c l u s t e r
1 0 | rec_1343076
1 0 | rec_1308178
1 0 | rec_1360177
1 0 | rec_1279383
1 0 | rec_1361683
1 0 | rec_1350835
1 0 | rec_242313
1 0 | rec_589989
1 0 | rec_1129810
1 0 | rec_1343460
1 0 | rec_746295
1 0 | rec_1384132
1 0 | rec_1269075
1 0 | rec_1358865
1 0 | rec_1308703
1 0 | rec_1309505
1 0 | rec_1158505
1 0 | rec_1177416
1 0 | rec_1344086
1 0 | rec_1347252
1 0 | rec_1168026
1 0 | rec_1277654
1 0 | rec_1359224
1 0 | rec_1374933
1 0 | rec_1374136
1 0 | rec_1298856

[ . . . . . . . . . . . . . . . . . . . ]



B.2. OUTPUT FROM CUSTOM DEVELOPED ALGORITHM 89

1 0 | rec_389306
1 0 | rec_343956
1 0 | rec_990939
1 0 | rec_456902
1 0 | rec_1010320
1 0 | rec_315607
1 0 | rec_508256
1 0 | rec_1309911
1 0 | rec_328385
1 0 | rec_478005
1 0 | rec_436674
1 0 | rec_379371
1 0 | rec_471567
1 0 | rec_560529
1 0 | rec_490321
1 0 | rec_268593
1 0 | rec_1311877

Clus te r 0 <−− rec_1343076
Clus te r 1 <−− rec_1378097

I n c o r r e c t l y c l u s t e r e d i n s t an c e s : 655 .0 99 .6956 %

B.2 Output from custom developed algorithm
Creat ing s e t s . . .
Pruning s e t s . . .

Bu i ld ing IP r e l a t i o n s h i p s . . .
Processed 25304 o f 25304 i p s

Creat ing c l u s t e r s . . .
Processed 25258 o f 25258 ip pa i r s

Found 99 c l u s t e r s
Removed 87 c l u s t e r s ( l e s s than 25 us e r s )

C lus t e r 2
============
326 use r s
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325 i n t e r n a l connect i ons

Connected c l u s t e r s : 11 ( Link ( count=1, r e co rd s=s e t
( [ ’ 1 344820 ’ ,

’1322645 ’ , ’ 1334838 ’ ] ) ) ) , 59 ( Link ( count=1, r e co rd s=s e t (
[ ’ 1330358 ’ , ’1330342 ’ , ’ 1334563 ’ ] ) ) ) , 10 ( Link ( count=1,
r e co rd s=s e t ( [ ’ 1 362007 ’ , ’1361300 ’ , ’ 1361687 ’ ] ) ) ) , 35
( Link ( count=1, r e co rd s=s e t ( [ ’ 1 361670 ’ , ’1341818 ’ ,

’ 1330327 ’ ] ) ) ) ,

297 r e co rd s
Most popular :
1361706 (18) , 1330654 (17) , 1330327 (16) , 1325590 (13) ,
1340242 (13) , 1325591 (12) , 1345449 (12) , 1334563 (12) ,
1329573 (11) , 1336158 (11) , 1331560 (11) , 1330358 (11) ,
1313485 (11) , 1345327 (11) , 1363300 (11) ,

C lus t e r 10
============
258 use r s

257 i n t e r n a l connect i ons

Connected c l u s t e r s : 9 ( Link ( count=1, r e co rd s=s e t ( [ ’ 1 322424 ’ ,
’1330366 ’ , ’1355699 ’ , ’ 1333398 ’ ] ) ) ) , 2 ( Link ( count=4,
r e co rd s=s e t ( [ ’ 1 281330 ’ , ’1370067 ’ , ’1345743 ’ , ’632530 ’ ,
’1301521 ’ , ’451614 ’ , ’1340242 ’ , ’1308459 ’ , ’1337087 ’ ,
’1283470 ’ , ’1355703 ’ , ’1287902 ’ , ’1286306 ’ , ’ 1313485 ’ ] ) ) ) ,
59 ( Link ( count=3, r e co rd s=s e t ( [ ’ 1 338579 ’ , ’1362003 ’ ,
’ 1343488 ’ , ’ 1338570 ’ , ’1361669 ’ , ’1334563 ’ , ’ 1281367 ’ ] ) ) ) ,
71 ( Link ( count=1, r e co rd s=s e t ( [ ’ 1 361771 ’ , ’1110290 ’ ,

’ 1363355 ’ ] ) ) ) ,

113 r e co rd s
Most popular :
1287902 (82) , 1322424 (57) , 1323900 (55) , 1340242 (49) ,
1331186 (46) , 1330366 (43) , 1345743 (42) , 1337782 (36) ,
1335395 (34) , 1356587 (32) , 1338575 (32) , 1355703 (30) ,
1350835 (28) , 1332217 (25) , 1380298 (25) ,
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Clus te r 14
============
66 use r s

65 i n t e r n a l connect i ons

Connected c l u s t e r s : 42 ( Link ( count=1, r e co rd s=s e t
( [ ’ 1 033945 ’ ,

’1323812 ’ , ’1353579 ’ , ’1358188 ’ , ’ 1333091 ’ ] ) ) ) , 12
( Link ( count=1, r e co rd s=s e t ( [ ’ 1 356235 ’ , ’1367848 ’ ,
’ 1370447 ’ ] ) ) ) , 23 ( Link ( count=2, r e co rd s=s e t ( [ ’ 1 357029 ’ ,
’1288822 ’ , ’1357323 ’ , ’1349965 ’ , ’1297646 ’ , ’1333667 ’ ,
’ 1311236 ’ ] ) ) ) ,

70 r e co rd s
Most popular :
1357319 (11) , 1311236 (11) , 1288822 (11) , 1333668 (9 ) ,
1367848 (9 ) , 1361729 (8 ) , 1333091 (8 ) , 1297646 (8 ) ,
1348441 (8 ) , 1357325 (8 ) , 1355423 (7 ) , 1344501 (7 ) ,
1357025 (7 ) , 1357036 (7 ) , 1370447 (7 ) ,

C lus t e r 3
============
56 use r s

78 i n t e r n a l connect i ons

89 r e co rd s
Most popular :
277615 (33) , 454178 (21) , 400319 (20) , 400320 (19) ,
1165534 (18) , 1100537 (18) , 630753 (17) , 593687 (9 ) ,
865929 (7 ) , 376642 (7 ) , 691793 (7 ) , 828987 (5 ) ,
532789 (5 ) , 808372 (5 ) , 866791 (5 ) ,

C lus t e r 1
============
53 use r s
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52 i n t e r n a l connect i ons

Connected c l u s t e r s : 9 ( Link ( count=2, r e co rd s=s e t ( [ ’ 1 356587 ’ ,
’1356196 ’ , ’1358623 ’ , ’1356194 ’ , ’1371903 ’ , ’ 1369487 ’ ] ) ) ) ,
26 ( Link ( count=1, r e co rd s=s e t ( [ ’ 1 361385 ’ , ’1347788 ’ ,

’1327643 ’ ,
’ 1353583 ’ ] ) ) ) , 59 ( Link ( count=1, r e co rd s=s e t ( [ ’ 1 330358 ’ ,
’1329491 ’ , ’ 1347747 ’ ] ) ) ) , 18 ( Link ( count=1, r e co rd s=s e t (
[ ’ 1366381 ’ , ’1335111 ’ , ’1365689 ’ , ’ 1363019 ’ ] ) ) ) ,

36 r e co rd s
Most popular :
1356196 (25) , 1356194 (24) , 1355704 (21) , 1356190 (21) ,
1356189 (18) , 1347747 (11) , 1365689 (11) , 1323316 (9 ) ,
1351506 (7 ) , 1356587 (7 ) , 1366381 (7 ) , 1363019 (6 ) ,
1335111 (5 ) , 1337785 (5 ) , 1269912 (3 ) ,

C lus t e r 7
============
50 use r s

14 i n t e r n a l connect i ons

50 r e co rd s
Most popular :
1367064 (3 ) , 1371903 (3 ) , 1334560 (3 ) , 1358178 (3 ) , 1366095

(2 ) ,
1329467 (2 ) , 1344425 (2 ) , 1350791 (2 ) , 1333398 (2 ) , 1329851

(2 ) ,
1337288 (2 ) , 1334563 (2 ) , 1327968 (2 ) , 1335399 (2 ) , 1337015

(2 ) ,

C lus t e r 9
============
50 use r s

63 i n t e r n a l connect i ons
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Connected c l u s t e r s : 1 ( Link ( count=2, r e co rd s=s e t ( [ ’ 1 326900 ’ ,
’1356587 ’ , ’1350488 ’ , ’1353213 ’ , ’1316163 ’ , ’1347747 ’ ,
’ 1354267 ’ ] ) ) ) , 10 ( Link ( count=15, r e co rd s=s e t ( [ ’ 1 328033 ’ ,
’1287902 ’ , ’1371897 ’ , ’1316163 ’ , ’1328968 ’ , ’1350791 ’ ,
’1369613 ’ , ’1329397 ’ , ’ 1331518 ’ , ’ 1313485 ’ , ’1356196 ’ ,
’1356587 ’ , ’1336499 ’ , ’1329888 ’ , ’1299479 ’ , ’1324522 ’ ,
’1350215 ’ , ’1335399 ’ , ’1337784 ’ , ’1357913 ’ , ’1369572 ’ ,
’1337270 ’ , ’1373736 ’ , ’1366639 ’ , ’1330366 ’ , ’1337072 ’ ,
’1344425 ’ , ’1332198 ’ , ’1353221 ’ , ’1371816 ’ , ’1328280 ’ ,
’1281333 ’ , ’1358178 ’ , ’1326900 ’ , ’ 1322424 ’ ] ) ) ) , 59
( Link ( count=2, r e co rd s=s e t ( [ ’ 1 337015 ’ , ’1328275 ’ , ’1334563 ’ ,
’1373736 ’ , ’ 1334560 ’ ] ) ) ) , 9 ( Link ( count=5, r e co rd s=s e t (
[ ’ 1368457 ’ , ’1354189 ’ , ’ 1329467 ’ , ’ 1329851 ’ , ’1369836 ’ ,
’1327968 ’ , ’1351541 ’ , ’1337015 ’ , ’1350791 ’ , ’1334563 ’ ,
’1351101 ’ , ’1353896 ’ , ’1334560 ’ , ’1328275 ’ , ’1344079 ’ ,
’ 1337288 ’ ] ) ) ) ,

119 r e co rd s
Most popular :
1316163 (10) , 1337015 (9 ) , 1334560 (9 ) , 1369836 (9 ) ,
1331518 (8 ) , 1314226 (7 ) , 1326900 (7 ) , 1329888 (7 ) ,
1334563 (7 ) , 1287902 (7 ) , 1329826 (6 ) , 1329467 (6 ) ,
1330366 (6 ) , 1337072 (6 ) , 1322424 (6 ) ,

C lus t e r 5
============
38 use r s

33 i n t e r n a l connect i ons

20 r e co rd s
Most popular :
603056 (23) , 235242 (20) , 425460 (19) , 813710 (15) , 923393

(14) ,
1071486 (12) , 212880 (8 ) , 115976 (8 ) , 306421 (8 ) , 254420 (7 )

,
211448 (6 ) , 402784 (5 ) , 181071 (4 ) , 705845 (2 ) , 1158462 (2 ) ,

C lus t e r 16
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============
38 use r s

47 i n t e r n a l connect i ons

Connected c l u s t e r s : 16 ( Link ( count=5, r e co rd s=s e t ( [ ’ 2 54420 ’ ,
’ 813710 ’ , ’1071486 ’ , ’ 402784 ’ , ’ 603056 ’ , ’211448 ’ , ’ 212880 ’ ,
’1158462 ’ , ’923393 ’ , ’ 425460 ’ , ’181071 ’ , ’235242 ’ , ’ 115976 ’ ,
’ 306421 ’ , ’ 3 99425 ’ ] ) ) ) ,

24 r e co rd s
Most popular :
181071 (10) , 603056 (7 ) , 254420 (7 ) , 1158462 (6 ) , 115976 (6 )

,
425460 (6 ) , 235242 (6 ) , 212880 (5 ) , 923393 (4 ) , 399425 (4 ) ,
813710 (4 ) , 179307 (4 ) , 1071486 (3 ) , 306421 (3 ) , 402784 (3 ) ,

C lus t e r 23
============
29 use r s

29 i n t e r n a l connect i ons

Connected c l u s t e r s : 14 ( Link ( count=2, r e co rd s=s e t
( [ ’ 1 357029 ’ ,

’1288822 ’ , ’1357323 ’ , ’1349965 ’ , ’1297646 ’ , ’1333667 ’ ,
’ 1311236 ’ ] ) ) ) ,

71 r e co rd s
Most popular :
1313753 (5 ) , 1298604 (5 ) , 1369245 (4 ) , 1100376 (4 ) , 1288822

(4 ) ,
1100261 (4 ) , 1287107 (3 ) , 1376436 (3 ) , 1297646 (3 ) , 1346063

(2 ) ,
1333554 (2 ) , 1297663 (2 ) , 1319039 (2 ) , 1183835 (2 ) , 1278153

(2 ) ,

C lus t e r 17
============
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28 us e r s

27 i n t e r n a l connect i ons

29 r e co rd s
Most popular :
341617 (11) , 421753 (10) , 362934 (8 ) , 580346 (7 ) , 967216 (7 )

,
677435 (6 ) , 1009713 (5 ) , 1207101 (4 ) , 339248 (4 ) , 358331 (4 )

,
593231 (4 ) , 259570 (4 ) , 702811 (4 ) , 802428 (3 ) , 589989 (3 ) ,

C lus t e r 13
============
25 use r s

38 i n t e r n a l connect i ons

9 r e co rd s
Most popular :
1012969 (38) , 940929 (33) , 789872 (28) , 856258 (24) , 919852

(24) ,
856012 (16) , 226990 (7 ) ,
957584 (6 ) , 952805 (3 ) ,
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B.3 Output from Metis, N = 25
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
METIS 5 .0 Copyright 1998−13 , Regents o f the Un ive r s i ty o f

Minnesota
(HEAD: , Bu i l t on : Jul 1 2014 , 1 4 : 2 3 : 4 4 )
s i z e o f idx_t : 32 b i t s , rea l_t : 32 b i t s , idx_t ∗ : 64 b i t s

Graph Informat ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Name : /Users / bl ixhavn /PycharmProjects / Co l l F i l t e r /metis / f u l l

. graph , #Ver t i c e s : 69981 , #Edges : 46584779 , #Parts : 25

Options −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ptype=kway , objtype=cut , ctype=shem , rtype=greedy , iptype=

metisrb , dbg lv l =0, u f a c t o r =1.030 , no2hop=NO, minconn=NO,
cont i g=NO, nooutput=NO, seed=−1, n i t e r =10, ncuts=1

Direc t k−way Pa r t i t i o n i n g −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
− Edgecut : 28143116 , communication volume : 1384839.

− Balance :
c on s t r a i n t #0: 1 .030 out o f 0 .000

− Most overweight p a r t i t i o n :
pid : 1 , a c tua l : 2883 , d e s i r ed : 2799 , r a t i o : 1 . 0 3 .

− Subdomain conne c t i v i t y : max : 24 , min : 24 , avg : 24 .00

− The o r i g i n a l graph had 1243 connected components and the
r e s u l t i n g p a r t i t i o n i n g a f t e r removing the cut edges has
1294 components .

Timing Informat ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I /O: 9 .435 sec
Pa r t i t i o n i n g : 23 .113 sec (METIS time )
Report ing : 2 .820 sec

Memory Informat ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Max memory used : 1441.920 MB

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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