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Abstract

This thesis presents an algorithm to solve a variant of the bin packing prob-
lem with additional constraints on the order of items. The performance of
this algorithm is tested, both for optimal solutions and approximations
given by early termination, and is found to be limited for optimal solu-
tions, but fairly efficient for decent approximations.

Denne oppgaven presenterer en algoritme for å løse en variant av bin
packing problem med ekstra begrensninger p̊a rekkefølgen av elementene.
Ytelses blir testet, b̊ade for optimale løsninger og tilnærminger gitt av tidlig
avsluttning, og blir funnet til å være begrenset for optimale løsninger, men
forholdsvis god for tilnærminger.
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1 Introduction

1.1 Overview

This paper presents and tests an algorithm to solve a variant of the
bin packing problem with constraints on the order of items.
It starts with presenting some background knowledge required for the
remainder of the paper and subsequently presents a more formal prob-
lem definition and motivation for this problem (section 1.3). Section
2 presents a new algorithm, based on branch and bound, to solve this
problem. The performance and characteristics of this algorithm are
tested and presented in section 3 and discussed in section 4. Possibil-
ities for further work to improve this algorithm are mentioned in the
discussion and summed up in section 6.
The appendix includes the implementation used for performance test-
ing, more detailed results from the testing and various additions.

1.2 Background

This paper assumes that the reader has a general understanding of
algorithms, including Big-O notation and the basics of complexity
classes (this is used in the paper, but is not critical to the general
understanding of the algorithm or discussion), and pseudo-code. For
literature on this topic see Introduction to Algorithms [4] or similar.
Additionally it relies and builds heavily on the bin packing problem
and the branch and bound approach for combinatorial algorithms,
both of which are explained in brevity below.



2

1.2.1 Bin packing problem

The bin packing problem is a classical algorithmic problem where
items with a given size are to be divided into a minimum number
of uniformly sized bins. This is most commonly presented with con-
straints in only one dimension (for example weight or length), but 2-D
(area), 3-D (volume) and more abstract k-D problems exist. Even
the 1-dimensional problem is strongly NP-hard [8], but many decent
approximation algorithms exist [6] [5] and several fairly efficient exact
algorithms [12] [14].

1.2.2 Branch and bound

The branch and bound approach works by iterating through the search
space (all valid, but not necessarily optimal, solutions), but discarding
large sets of solutions based on upper and lower bounds of the optimal
solution.
This works by incrementally building a plausible solution one step
at a time. Starting with an empty node this then considers each
valid expansion towards a solution, creating a new set of nodes, then
this recursively continues with each of these nodes in the same way,
building a tree. But at each node a lower bound and upper bound is
compared. If the current lower bound (how this is computed varies
greatly from algorithm to algorithm) is greater than or equal to the
global upper bound (typically the best solution found so far, but any
technique will work correctly) the node can be safely discarded without
recursing on its children, which can potentially yield large performance
gains. This can be done because any complete solution generated in
this branch must be worse (or equal to) the best currently known
solution and therefor cannot improve upon it.
For a more extensive discussion on this subject, see literature such as
Algorithmics for Hard Problems [9] or similar.
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1.3 Problem

1.3.1 Problem definition

Given a set of N items, A = (A1, A2 . . . AN−1), where element k has
a weight of Wk ≤ BinSize, and set of order constraints, C = ((Al →
Am), . . . ), with each constraint (Aa → Ab) specifying that item a must
come before item b. We want to fit these items into an ordered list
of bins with a maximum capacity of BinSize, an upper limit of the
sum of all items in each bin, without violating the given order con-
straints. A feasible solution is any combination of all items placed in
any number of bins that does not violate any order constraint or size
constraint on the bins. An optimal solution is any feasible solution
which uses the lowest possible number of bins1.

1.3.2 NP-hardness

Without the order constraints, this problem is identical to the original
bin packing problem (BPP). This makes reducing BPP to our prob-
lem trivial and can be done simply by having an empty set of order
constraints. Since BPP is NP-hard [8] and trivially reduceable to our
problem, our problem must be NP-hard.

1.3.3 Motivation

The reason for this study is that it appeared as the underlying prob-
lem for a rehearsal scheduling problem studied in the authors previous
depth study [11]. This study found it to be too hard for the approach
presented and concluded that a dedicated algorithm was the most

1 A problem instance can, and often will, have multiple optimal solutions



4

plausible approach to achieve sufficent performance.

1.4 Related work

The bin packing problem, and many variants thereof, have been stud-
ied extensively for decades and several good algorithms exist for both
exact optimal solutions [12] [14] and approximations [7] [13]. The com-
mon variants are with different spacial constraints, the classical prob-
lem is 1-dimensional, but 2- and 3-dimensional variants have practical
applications. Even more abstract k-dimensional problems have been
studied, but no previous work has been found for constraints on the
order of items. This is plausible as the applications for bin packing
generally is minimizing the containers needed for each bulk of items,
where the order is irrelevant.
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2 Algorithm

2.1 Overview

This section presents an algorithm that solves the problem. The al-
gorithm is not based off anything more specific than the general basic
branch and bound technique, but some aspects are inspired from the
MTP [12] and BISON [14] algorithms which solve the traditional bin
packing problem fairly efficiently. This section will incrementally build
to the complete algorithm starting from a basic branch and bound ap-
proach, which works but is very slow. Following this we will make
more complex additions and changes to vastly improve performance.
Complete pseudo code can be found in section 2.7 and an implementa-
tion, written in C, for performance and correctness testing is included
in appendix D.

2.2 Basic branch and bound

This branch and bound based algorithm builds possible solutions by
adding one item for each node and keeps track of only available space
in the current bin. When an item is added it is either put in the
current bin and the available space reduced, or, if it doesn’t fit in the
current bin, a new bin is created and the current cost is increased.
When the last item is added, the path down the tree represents a
possible solution, if the currently best solution has a higher cost than
this solution it is replaced by the new solution, otherwise nothing is
done (thus discarding the new, inferior, solution).

2.2.1 Branching

This initial algorithm uses a conceptually very simple technique for
branching; try every valid edge. This is improved upon in later sec-
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tions, but is kept simple here because it still requires noticeable book-
keeping (and running time) to keep track of which items are valid.
To keep track of valid items, we use an array with statuses for each
item. Each status is then either UNAVAILABLE, AVAILABLE or
USED. Initially all items are either unavailable or available, depend-
ing on whether they depend on any other item. Then, when an item
is added, it is marked USED and each edge from it (an edge from a to
b represents that b is dependant on a) is considered: if the connected
item is UNAVAILABLE and has no edges going to it from any item
that is not marked USED, the connected item is marked AVAILABLE.
Or, less formally; every item dependent on the added item is checked
on whether it depends on any items not already added, and if so, is
marked available for use in subsequent branchings.

2.2.2 Cutting

When entering a new node we immediately make a decision whether
to continue branching or stopping in this node (cutting a piece of the
search tree). This is done by comparing a lower bound estimate of the
remaining items to the best solution discovered so far. We compute
the lower bound with a very simple technique, simply removing the
integrality requirement of the items and calculating the total size of all
remaining items and dividing by the bin size and adding the number
of bins already used.

LowerBound = BinsUsed+

∑
Si −RemainderInBin

BinSize
(1)

This estimate has a worst case of 0.5 ∗ OPT, which is not very good,
but will usually perform very well and can be computed in constant
time in each node (the summation can be stored and modified in each
step, removing the need for iteration). If the algorithm is applied to



7

problems where the items are large (relative to bin size) it could be
beneficial to use more precise (and expensive) estimates.

2.2.3 Proof of correctness

It is fairly easy to show that this algorithm produces an optimal solu-
tion. Branch and bound in general is trivial, as it tries every solution
not proved not to be an improvement (cutting). This moves the cor-
rectness issue to whether the branching and cutting is correct.
The branching keeps a set of branch choices which are items that are
not dependent on other non-used items, ergo it contains all (and no
other than) valid branch possiblities and since the algorithm explores
every branch, every solution must thus be tested.
Branch and bound requires the lower bound estimate to be a strict
lower bound for the cutting to be correct. This is trivial as the esti-
mate is filling all bins completely and thus cannot be improved.
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2.2.4 Pseudo code

Algorithm 1 Basic branch and bound

1: procedure Basic branch and bound(graph)
2: N ← length of graph.items
3: BestSolutionValue← Infinity
4: BestSolution← [−1] ∗N
5: CurrentSolution← [−1] ∗N
6: S ← [AVAILABLE] ∗N
7: TotalRemainder← 0
8: for i← 0→ N do
9: TotalRemainder← TotalRemainder + graph.items[i].weight

10: for j ← 0→ N do
11: if graph.edges[i, j] then
12: S[j]← UNAVAILABLE

13: Recurse(0, 1, BinSize)

14: procedureRecurse(step, cost, remainderWeight, totalRemainder)
15: // Cut, if possible
16: lowerBound = cost+Ceiling((TotalRemainder−remainderWeight)/BinSize)
17: if BestSolutionValue ≤ lowerBound then
18: return
19: // In leaf node, update best solution if an improvement is found
20: if step = N then
21: if cost < BestSolutionValue then
22: BestSolutionValue← cost
23: BestSolution← CurrentSolution
24: return
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25: for i← 0→ N do
26: if S[i] = AVAILABLE then
27: S[i] = USED
28: CurrentSolution[step]← i
29: // Update status of nodes
30: for j ← 0→ N do
31: if graph.edges[i, j] and S[j] = UNAVAILABLE then
32: S[j] = AVAILABLE
33: for k ← 0→ N do
34: if graph.edges[k, j] and S[k] 6= USED then
35: S[j] = UNAVAILABLE

36: // Recurse
37: weight← graph.items[i].weight
38: if remainderWeight− weight ≥ 0 then
39: Recurse(step + 1, cost, remainderWeight− weight,

totalRemainder− weight)
40: else
41: Recurse(step+1, cost+1, BinSize−weight, totalRemainder−

weight)

42: // Remove added nodes
43: for j ← 0→ N do
44: if graph.edges[i, j] then
45: S[j] = UNAVAILABLE

2.3 Edge system

Our first improvement is a new system to keep track of available items.
As we can see (line 30 to 35 in algorithm 1) updating the available
items has a worst case of Θ(|V |2) and all problems will have an average
of at least ω(|V |).
To improve this we make two changes. First, we introduce an array
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with N integers, which keeps track of the number of constraints from
non-USED items for each item. This changes the updating procedure
to just going through every edge from the chosen node, and decre-
menting the counter of the receiving item. This also removes the need
for index-based lookups for the receiving end of an edge, which leads
us to the second change: Changing the neighbor matrix to an array
of N variable sized lists.
The updating step is shown in algorithm 2. Some other changes are
necessary as well (mainly the removal step and some initialization),
but these are trivial based on the update step and not shown here (see
section 2.7 for complete pseudo code).
This clearly has a worst case of O(|V |), and will for many problems

Algorithm 2 Update step with the improved edge system

for j ← 0→ graph.edges[i].length do
idx← graph.edges[i][j]
dependencies[idx] –= 1
if dependencies[idx] = 0 then

S[idx] = AVAILABLE

even be constant, and is a very significant performance gain.

2.4 Found fit

Our next change is a small, but effective, change to the branching
strategy. It also translates very well to the next major change in the
way we branch.
The change is based on a simple observation; if any item fit in the
current bin, branching with a bigger item to a new bin cannot produce
a better results than including it. For our algorithm this means if any
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item small enough to fit in the current bin has been found, we can
safely discard all items that do not fit.
Proof of correctness: Looking at an arbitrary node, we have
a partitioning of the items into two sets; the used, U , and unused,
F , items. U requires CU bins and F requires CF , the total cost of
solution is then CU + CF . When branching we move an item from
F to U ′. If any item is put in the current bin, CU ′ does not change
and the remaining F ′ is a strict subset from the original F . Since
CF ′ ≤ CF (this is trivial as the worst case is the missing items in F ′

leaves unfilled space in the solution for F ), this branch is clearly as
good as, or better than, creating a new bin.

2.5 Sorting - Biggest fit branching

Since our currently best found solution is critical for cutting the search
space, it is very important to quickly find a good approximation and
always try the branches most likely to improve this first.
For the original bin packing problem, the best fit decreasing [7] and
first fit [6] approximation algorithms are simple, efficient and give very
good estimates, but our additional constraints make them unsuitable
here. Instead, we make a derivation inspired by the two, which also
is better suited for branching. The idea is to greedily try to fit the
biggest item into the current bin until no items can fit, then create a
new bin and start again. The worst case for this is bound (likely not
a tight bound, but a proof for this is beyond the scope of this paper)
by 2 ∗ OPT, but will (especially with item sizes small relative to the
bin size) perform very well. The fact that the biggest items are tried
first is also perfect for our lower bound calculation on the remaining
items since it generally performs better with smaller items.
To try every possible solution (which is needed for the branch and
bound method approach to be correct) we simply try the next biggest
item when backtracking. This also fits very well with the observation
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we made in section 2.4, that if any item fit, it is unnecessary to branch
with items that don’t fit. With our sorted list, this can be done very
effciently, simply go through the list until an item that fits is found
and start our main loop from there. If no item is found, simply start
from the beginning.
To try the items in decreasing order, we obviously need a sorted list of
the available items. Implementation-wise, we have two general choices:
Either sort the set of available items in each node, or maintain a sorted
list at all times. To decide our approach, let us first discuss which op-
erations that will be used. Each iteration in the main loop (line 25 to
45 in algorithm 1) tries one item, this item is removed from the set
before the recursive call (because it is now used) and added back again
after the recursive call. The exact opposite (adding before the recur-
sive call, and removing afterwards) is necessary for every item that
becomes available, this will on average happen once per iteration (any
item can obviously only be made available once per possible solution).
This set of available items will usually be quite small, but as this will
be done extremely frequently performance is paramount. Sorting can
be done linearly (given a few very reasonable assumptions) [10], but is
still quite expensive and will still require additional bookkeeping for
adding and removing the nodes into the unsorted set. Maintaining
a sorted list can be done in several ways, the method we use here
uses a double linked list with naive linear insertion. Removing and
adding the item being tried can be done in constant time (because
the changes done to the list in between are all undone). Each item
made available (on average 1, as discussed) can be inserted in linear
time (with respect to the number of items in the list) and removed in
constant time (with an addition discussed below). Thus maintaining
this list will on average only require iterating through half the list in
each iteration and is a logical choice even though the worst case per-
formance is asymptotically worse than sorting in each step.
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Fig. 1: Example of triply linked list. The normal arrows shows the
standard doubly linked list and the dashed horizontal lines show our
added third link.

2.5.1 Triply linked list

Above we claimed to be able to remove each item in constant time from
the sorted list, but this is not entirely trivial as the naive approach
requires iterating through the list to find the items. Since on average
there will only be one item, this is very wasteful. To improve this we
introduce a third link to our normal doubly linked list, linking to the
next item on this ’level’ (as items are always symmetrically2 added
and removed on different depths in the recursive calls, they are nicely
grouped into what is essentially a stack). With the trivial addition of
another ”starting” pointer for the first item added on each level, this
allows for very efficient removal of all the items by simply traversing
the list given by this third link. Figure 1 gives an example of how such
a list could look.

2 Note that items can be (and usually are) added on one level and removed on
another lower level, but as the lower removal is reversed before returning to the
upper level and it is invisible for all practical purposes.
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2.6 Removing intra-bin redundancies

Our current branching strategy creates a significant amount of branches
that are for our purposes identical, and thus redundant. These can be
grouped into two:
The first being internal order of items inside a bin. Say the set of
items contains A, B and other items, we could then branch by trying
A first, then adding B in the same bin and continuing the same proce-
dure until the set is empty and we have a possible solution. When we
then backtrack back until A is removed, we try the next item which
could be B. Continuing we add A into the same bin and continue
until we have found the same solution (except the order of A and B)
as before. Because the order of items inside the bin does not affect
the solution at all, this is very wasteful.
The second redundancy is the order of bins. Imagine two bins filled
with distinct sets of items. If there are no constraints between these
bins (or the constraints have been fulfilled), the order of these two bins
does not affect the cost or validity of the solutions in any way, but all
permutations can be computed in a situation similar to the previous
example.
The problem is greatly alleviated by our cutting. Since the extra
branching cannot compute a better solution than we already have, a
good lower bound estimate (which we usually have) will help discard
these fairly quickly, but there is still a very significant waste. The lat-
ter issue is hard to remove in an efficient manner, but we can improve
upon the first.
Let us start by ignoring our order constraints for simplicity. Since we
branch with items in decreasing order we can simply force the order of
the items in each bin to be identical to that of the sorted list3, giving
each distinct bin only one allowed order and thus completely removing

3 Note that this is an identical order, not just decreasing, meaning that two
items of the same size will have an decided order.
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the redundancies. We can implement this efficiently by simply pass-
ing the next possible (ignoring size) item in the recursive call, and this
gives a starting point for iterating for the first (if any) fitting item.
Thus, if any bigger item could be put in the current bin, we know that
this already has been tried. If no item can fit, it is simply ignored
when starting at the beginning of the list, which is exactly what we
want, as a new bin will be created.
There is however a problem with this elegant improvement, it can
incorrectly discard items that are added to the list by fulfilling its
constraint in the same bin. Say A must be before B, but B is bigger
than A, when adding A to a bin (and thus B to the sorted list) the
next item to be tried must be smaller than A since all bigger seem-
ingly have been tried, but as B was not available earlier it has not
been tried and is thus a valid (and necessary) branching choice that
is incorrectly ignored. We work around this by instead of just passing
the next smaller item, we pass the either the next smaller item, or
(if any exist) the biggest newly added item that is bigger than the
next smaller item. This is effectively just relaxing the new internal
ordering constraint when the issue occurs. This relaxation will allow
some redundancies to remain because items between the newly added
item and the next biggest item will now be considered again, but this
is not a big issue. A technique with a boolean array for each bin in-
dicating which items have been tried was tested, but even with tricks
for no allocation in the recursive calls, the performance loss in each
node far outweighed the gain by removing the last redundant branches.
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2.7 Complete pseudo code

The following is the complete pseudo code of the algorithm. The aux-
iliary methods used can found in appendix A.

2.7.1 Pseudo code

Algorithm 3 Complete algorithm

1: procedure Pack bins(graph)
2: N ← length of graph.items
3: BestSolutionValue← Infinity
4: BestSolution← [−1] ∗N
5: CurrentSolution← [−1] ∗N
6: TotalRemainder← 0
7: for i← 0→ N do
8: TotalRemainder← TotalRemainder+graph.items[i].Weight

9: GlobalLowerBound← Ceiling(TotalRemainder/BinSize)
10: ListHead← New list item
11: ListHead.weight← Infinity
12: for i← 0→ N do
13: for j ← 0→ graph.edges[i].length do
14: graph.edgeCounters[graph.edges[i][j]] += 1

15: for i← 0→ N do
16: if graph.edgeCounters[i] = 0 then
17: InsertSorted(ListHead, graph.items [i].Weight, Total-

Remainder, i)

18: Recurse(0, 1, BinSize, nil)
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19: procedureRecurse(step, cost, remainderWeight, totalRemainder, nextItem)
20: // Cut, if possible
21: lowerBound = cost+Ceiling((totalRemainder−remainderWeight)/BinSize)
22: if BestSolutionValue ≤ lowerBound then
23: return
24: // In leaf node, update best solution if an improvement is found
25: if step = N then
26: if cost < BestSolutionValue then
27: BestSolutionValue← cost
28: BestSolution← CurrentSolution
29: return
30: // Find the first item to try. See sections 2.5 and 2.6 for rationale.
31: iterator← nextItem
32: while iterator 6= nil do
33: if iterator.weight < remainderWeight then
34: break
35: iterator← iterator.next
36: if iterator = nil then
37: iterator ← ListHead.next
38: // Main loop
39: while iterator 6= nil do
40: i← iterator.itemIndex
41: DetachItem(iterator)
42: CurrentSolution[step]← i
43: // Add newly available items to list
44: newItemsHead, newItemsTail, newItemsBiggest← nil
45: for j ← 0→ graph.edges[i].length do
46: idx← graph.edges[i][j]
47: dependencies[idx] –= 1
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48: if dependencies[idx] = 0 then
49: newItem← InsertSorted(ListHead, graph.items[idx].weight, idx)
50: if newItemsHead = nil then
51: newItemsHead, newItemsTail, newItemsBiggest←

newItem
52: else
53: // Set the third link in our linked list, see section 2.5.1
54: newItemsTail.NextAtLevel← newItem
55: newItemsTail← newItem
56: if newItemsBiggest.weight < newItem.weight then
57: newItemsBiggest← newItem

58: // Recurse
59: next← iterator.next
60: if newItemsBiggest = nil or next = nil or next.weigth >

newItemsBiggest then
61: nextItem← next
62: else
63: nextItem← newItemsBiggest

64: weigth← iterator.weight
65: totRemainder← totalRemainder− weight
66: if remainderWeight ≥ weight then
67: Recurse(step+1, cost, remainderWeight−weight, totRemain-

der, nextItem)
68: else
69: Recurse(step+1, cost+1, BinSize−weight, totRemain-

der, nextItem)

70: // Increment edge counters
71: for j ← 0→ graph.edges[i].length do
72: idx← graph.edges[i][j]
73: dependencies[idx] += 1
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74: // Remove added nodes from list
75: while newItemsHead 6= nil do
76: temp← newItemsHead.NextAtLevel
77: RemoveItem(newItemsHead)
78: newItemsHead← temp

79: // Make tried item available again
80: AttachItem(iterator)
81: iterator← iterator.next

2.8 Early termination for approximate solution

As increasing problem sizes rapidly become infeasible to solve for an
optimal solution with NP-hard problems, approximations become im-
portant for practical usage.
The algorithm we just presented can trivially be modified to be an
approximation algorithm, by its nature it always4 has a feasible solu-
tion that is best currently found. The algorithm can thus terminate
early (before it has completed the search) and this solution will be an
approximation that is guaranteed to be feasible, but not optimal5.
This solution can naturally only improve the longer the algorithm runs,
which raises the question of when to terminate. The natural options
are either when a given time has elapsed, when a solution is within
a certain error margin, or a combination of both. What is preferred
will vary with problem size and the resources available to the user.
An error margin can easily be found by computing a lower bound,
by the same technique we use in every node, for the entire problem
and comparing this to our solution. However, there are issues with
this approach. The rather simplistic lower bound will never improve,

4 Technically only after the first path down the search tree has been completed,
but this happens very quickly.

5 The solution can be optimal, but is not guaranteed to be.



20

while our solution will converge towards optimality. This means that
the longer the algorithm runs (to achieve a more precise solution) the
less accurate our estimate of distance to the optimal solution will be.

3 Results

3.1 Benchmarking setup

To measure how well this algorithm perform, we run a suite of problem
instances and record relevant data. For the optimal solution we record
how long the algorithm takes to finish. To evaluate its usefullness as
an approximation algorithm we store the global lower bound, how long
it takes to give a solution that is within 5% and 1% error margins, and
the best solution it finds before terminating. Each problem is run for
a maximum of 2 minutes. The information presented here is a subset
of all the measurements, for complete tables see Appendix C.2. Time
is measured with the clock function in C [1] with a resolution of 10ms.
Specifications for the test computer can be found in Appendix B.
Note that the error margin limits are calculated with CEIL(LowerBound∗
Margin), this makes a significant difference for smaller problems, but
becomes more or less negligible rather quickly.
The problem instances we use can be grouped into two families. The
first is generated the same way as was done in the study. A problem
of size N has N arrays of N items (giving a total of N2 items, thus the
complete size is quadratic to the size presented), where each item in
the arrays has to come after the previous item in the array. Sizes vary
from 6.25% to 25% of the bin size. The only parameter we control
here is N . For details about these problems and the practical problem
it represents, see the depth study [11] that preceded this paper. These
problems are useful because they both represent a practical problem
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and gives us the ability to compare the performance of our algorithm
to the solution given in the depth study.
The second family of problems is randomly generated with a num-
ber of given parameters. It takes a number of items, which is self-
explanatory. A percentage of constraint ”density”, given k, every item
will be dependent on k% of the previous items (any item i will have
required to come after k

100
∗ i items chosen randomly from all items

with an index lower than i). Additionally, it takes upper and lower
limits for item sizes, given in percent of the bin size, all item sizes
are uniformly distributed within this range. These problems are es-
sentially a worst case, as they will have a high number of possible
branches relative to the number of constraints, but the flexibility of
generation is useful for testing specific effects.

3.2 Comparison with depth study implementation

Here we compare our algorithm to the approach presented in the depth
study [11] that inspired this paper.
The approach taken there is forming a binary integer programming
(BIP) model and solving it with a third party solver. The solver used
here is Gurobi [2], which was the vastly superior solver tested in the
study. For details about the BIP approach, see the depth study pa-
per [11].
The problem instances used here are from the depth study family,
and are identical between the two solvers. Timing the BIP solution
was done with the linux time-command [3], which introduces a slight
imprecision, but as we see this difference is negligible relative to the
performance difference.
Figure 2 shows the two compared visually, complete recorded data is
in appendix C.2.
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Fig. 2: Comparison with the BIP approach.

3.3 Time for 1% error margin

Using the same problem family, but with much larger instances, we
measure how long the algorithm takes to come an solution that is at
most 1% more than the global lower bound, which thus is within 1%,
but likely significantly closer, to the optimal solution. The results are
presented graphically in figure 3 and complete data is given in ap-
pendix C.1
Note again the number of items is quadratic to the size presented (thus
the largest problem instance tested, of size 180, has 32400 items).
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3.4 Progression of best solution over time

Here we use a fairly large problem instance (size 170, with 28900 items)
of the depth study problem family and see how the algorithm’s best
currently found solution improves over time. The results are presented
in figure 4.
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3.5 Effects of constraints on estimate accuracy

To see how the number of order constraints affect our algorithm we
run similar problems, with different amounts of constraints and com-
pare the best found solution with lower bound. The problems used
are from the randomized family, generated with 1000 items with sizes
between 10% and 50% of the bin size.
The difference is given as the percentage difference between the lower
bound and best solution and is shown in figure 5.
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Fig. 5: Effects of constraints on guaranteed approximation accuracy.

3.6 Effects of item size on estimate accuracy

We measure the effects of item sizes with running randomized prob-
lems with varying sizes, and all other parameters constant. Note that
this does not really give an identically sized problem because item size
greatly affects number of bins, but is likely more representative than
decreasing number of items to maintain a constant number of bins.
We run problems with 1000 items, 10% order constraints and increas-
ing item sizes. For a run with k average size, sizes are uniformly
distributed between k − 20 and k + 20 (in percent of bin size).
Results can be seen in figure 6.
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4 Discussion

4.1 Optimal solution performance

It is difficult to evaluate the algorithms performance for finding a guar-
anteed optimal solution because there is very little to compare it to.
The only other solution for similar problems are from the depth study
which was made with different goals, but can (given enough time) solve
all problems this algorithm can. As section 3.2 shows, our algorithm
very clearly outperforms the previous solution. The latter begins to
require infeasible amounts of time at just over 100 items, while our
algorithm performs exceptionally with all instances to over 200 items
and for some instances over with over 500 items. While this is a very
significant improvement, they are still fairly small instances, and other
problem families can run into performance problems at even smaller
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instances.
But it is important to remember that the problem is NP-hard, and
thus no polynomial time algorithm exist for conventional computers,
unless P = NP [9]. And with non-polynomial running times, it is
very hard to avoid performance problems even at rather small prob-
lem instances.
A curious thing to note is that almost every test run either com-
pleted very fast (less than 10 milliseconds) or did not complete before
aborted. The tests presented here were aborted after 2 minutes, but
other tests were run where the problems were just slightly larger than
problems that ran fine, and these ran for several hours without com-
pleting (in fact, no better solution was found in hours, than those
found in the first few seconds). Additionally, of the tests that did
complete, essentially all of them found an solution with the same cost
as the lower bound, and thus completing immediately6.
This suggests that it is common, but not ubiquitous, that the algo-
rithm actually finds the optimal solution very quickly, but unless this
is equal to the lower bound, it will spend impractical amounts of time
exploring the search space to guarantee that this solution is indeed
optimal. It is, however, very hard to verify this hypothesis without a
more efficient algorithm to find the optimal solution so these can be
compared.

6 If the best found solution is equal to the global lower bound, all local lower
bounds must be either equal or higher, thus causing the cutting step to stop
exploring.
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4.2 Approximation performance

Again, this is difficult to evaluate without other solutions to compare
it to, and usability depends heavily on what error margins are ac-
ceptable. But as we saw in sections 3.3 and 3.4, we are able to find
solutions guaranteed to be within a few percent of the optimal solu-
tion in just a few seconds for problem instances with well over 10000
items and even the very first feasible solution found, which is found
very quickly, is often within 5-10% of the optimal solution.
Additionally, our error margins are calculated based on our lower
bound for an optimal solution, not the optimal solution. Mathemati-
cally speaking, Lower bound ≤ Optimal ≤ Approximation, thus some
portion of the difference between our solution and the lower bound
is the difference between the lower bound and the optimal solution.
This means that our approximations are likely closer to the optimal
solution than we can guaraantee, but how significant (and prevalent)
this difference is, is very hard to measure without having the optimal
solution, which is computationally infeasible to find with this algo-
rithm7.
Despite the limitations in quantifying which factor contributes more
to the error, we can make some observations. Firstly, the lower bound
algorithm, while good, is extremely simple and ignores important con-
straints, and is never improved upon during subsequent execution.
While our estimate is often good from the beginning, and constantly
improves during execution and in fact converges towards the optimal
solution. Considering this, it seems unlikely that the lower bound is

7 One corner case that can be (and was) measured, is problems from the ran-
domized family, with 100% constraints. These will only have 1 feasible solution,
which is found quickly and must be optimal. These suggest (see figure 6) that
much of the difference is indeed from the lower bound, not our estimate. But as
this is essentially a best case for our algorithm, and a worst case for the lower
bound algorithm, it cannot be used to draw any general conclusions.
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closer to the optimal solution than our estimate.
Additionally, if we consider figure 4 (which is follows a near universal
pattern for that problem family), we see that the estimate converges
towards a solution at, or slightly below, the 1% line. This strongly
supports our previous observation, but is still insufficient to guarantee
anything, as the algorithm cannot guarantee (despite it being likely)
that it will converge uniformly.

4.3 Effects of problem characteristics

In sections 3.5 and 3.6 we explore the effects of item sizes and order
constraint density on the guaranteed accuracy of the approximation.
Note that this guaranteed accuracy is just the difference between the
approximation and the lower bound, and thus the difference with re-
spect to the optimal solution must be equal or, more likely, less.
Both item sizes and constraint density affect this accuracy very sim-
ilarly, with a rather dramatic decrease in accuracy. If we just con-
sider our algorithm, these are quite unexpected results. Intuitively,
increased constraint density should improve our estimate, as it greatly
limits the search space. And item sizes should not make much dif-
ference because even though it in effect slightly increases the problem
size, it will also (on average) increase empty space in bins which means
our lower bound improves faster and thus more of search space can be
ignored. However, if we consider the lower bound, which is used as a
reference for the accuracy, it makes more sense. The lower bound is
computed by dropping the main constraints of the problem, integrality
and order, which makes the problem very simple. This corresponds
very well to our measurements, less order constraints naturally leads
to less difference when these are dropped and smaller item sizes makes
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the integrality constraint less important8. This also strongly supports
the hypothesis above, suggesting that much of the error margin is due
to an inaccurate lower bound, not an inaccurate approximation.

4.4 Improving the lower bound

As we have seen above, improving lower bounds could yield significant
gains, both increasing how much search space we can discard during
exploration and give tighter guarantees for how far our estimate is from
the optimal solution. But it can be useful to view these seperatly, our
global lower bound (which we use to guarateen an error margin for
our best solution) is run only once, while local lower bounds (which
are used to cut the search space) are run extremely frequently. The
local lower bound is thus so performance sensitive that just iterating
through that remaining (non-used) items is likely to be too expensive.
This imposes a strict limitation on what algorithms could be used and
it is unlikely that we could significantly improve upon the technique
currently used. But for our global lower bound, we are much less
restricted. In fact, the time used by virtually any polynomial time
algorithm will be negligible compared to the rest of our algorithm.
Our current lower bound is found by relaxing the general problem
by removing the integrality constraint and the order constraints, and
then solving it exactly, which happens to be very easy. If we try the
same approach, but relaxing our problem less, we come to two options,
removing just one of these constraints instead of both. If we only re-
move the integrality constraint, we will get the exact same cost, but it
will be slightly more expensive to compute9. This is obviously useless.

8 Smaller item sizes will (on average) give less wasted space in bins, which is
closer to the non-integrality case, where all (except the last) bins must be full.

9 It will be more expensive to compute as the constraints have to be considered,
but the cost cannot be higher because the lack of an integrality constraint will still
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If we only remove order constraints, we are left with the original bin
packing problem, and while this is still a very hard problem, it has
also been extensively studied. For some problem instances it could
even be feasible to solve this exactly with a dedicated algorithm such
as MTP [12] or Bison [14], but more likely, we would still want a lower
bound algorithm such as those proposed by Martello and Toth [13].
This would improve (or equal, in smaller problem instances) our global
lower bound10 for all problem instances, but the difference will natu-
rally vary greatly depending on problem characteristics. It could be a
major improvement for problems with large item sizes, but will likely
be less useful when order constraints is the cause of error.

5 Conclusion

We have created a working algorithm based on the branch and bound
approach that can be used either to find an optimal solution or to
find a feasible approximation by terminating early. Its performance
is, in general, lacking for guaranteed optimal solutions, but could be
sufficient for certain types of problems and smaller instances. The al-
gorithm performs significantly better when optimal solutions are not
necessary and can produce good approximations quickly for fairly large
problem sizes, despite limitations with the global lower bound used to
calculate error margins, and could be useful for practical applications.

cause all (except possibly the last) bins to be filled completly.
10 It could also help local lower bounds (in constant time) since we could use the

highest lower bound of the global and currently computed local as a local lower
bound, but this would likely be a rather insignificant improvement.
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6 Further Work

As discussed in section 4.4, improving our global lower bound could
be very beneficial when used as an approximation algorithm. Devel-
oping new algorithms dedicated to this problem could be challenging,
but even using existing lower bound algorithms for the original bin
packing problem could make a significant difference for many problem
instances.
Additionally, some preprocessing could be used. For example it would
not be very hard to remove redundant order constraints, given con-
straints A → C, A → B, and B → C, the first could be ignored
because of the transitive property of the dependencies. For certain
problem types it could also be possible to handle certain special cases,
for example if the items of a problem could be grouped into sets A and
B, where all items in A must come before every item in B, it would
be possible and extremely beneficial to treat this as two almost11 in-
dependent problems.
It would also be interesting to compare the approximations found with
this algorithm to optimal solutions. These optimal solutions are cur-
rently infeasible compute, but this can change if more efficient exact
algorithms are developed.

11 The remaining used space in the last bin of the first subproblem would affect
the second subproblem. This must be taken into account, but does not make the
problem significantly harder.
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A Pseudo code for auxiliary methods

Algorithm 4 InsertSorted

procedure InsertSorted(listHead, item)
// Find insertion point
iterator← listHead
while iterator.next 6= nil and iterator.next.weight > item.weight

do
iterator← iterator.next

// Insert
last← iterator.next
iterator.next← item
item.previous← iterator
item.next← last
last.previous← item
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Algorithm 5 DetachItem

procedure DetachItem(item)
before← item.previous
after← item.next
if before 6= nil then

before.next← after

if after 6= nil then
after.previous← before

Algorithm 6 AttachItem

procedure AttachItem(item)
before← item.previous
after← item.next
if before 6= nil then

before.next← item

if after 6= nil then
after.previous← item
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B Test computer specifications

• Dell Vostro 1220. 2010

• Intel Core 2 Duo P8700 2.53GHz (2-core)

• 8GB DDR2 RAM

• Ubuntu 12.04 LTS 64bit (Linux kernel 3.2)

• GCC 4.6.3

• Gurobi Optimizer 5.6
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C Complete measurements

These tables show the complete measurements for the tests where
graphs presented only give a subset of information gathered.
The columns show the size of problem (number of items is quadratic to
this size), the global lower bound (LB), the first solution found within
the 5% error margin (5% v) and how long it took (5% t) and similar
for the 1% error margin. Addtionally, it shows the best solution found
before timeout (Best) and how long it took to find it (TB), the opti-
mal solution if it was found (Opt) and when the algorithm completed
(Done). The comparison with the depth study also includes the time
gurobi used to complete (Gurobi).
Times are given in milliseconds, except gurobi timing which is given in
seconds. -1 indicates an not available (timeout, or not found because
of timeout).
Note that first solution within the 5% error margin is often the first
solution found and can be significantly better than 5% off.
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C.1 Time for 1% error margin

Size LB 5% v 5% t 1% v 1% t Best Opt TB Done
10 14 15 0 15 0 14 14 0 0
20 61 64 0 62 0 62 -1 0 -1
30 136 142 0 138 0 137 -1 0 -1
40 244 255 0 247 0 246 -1 10 -1
50 386 403 0 390 20 390 -1 20 -1
60 552 576 0 558 60 557 -1 70 -1
70 766 799 0 774 160 774 -1 160 -1
80 985 1028 0 995 360 995 -1 360 -1
90 1258 1312 0 1271 590 1271 -1 590 -1

100 1547 1614 0 1563 1140 1562 -1 1210 -1
110 1874 1956 0 1893 1900 1893 -1 1900 -1
120 2239 2336 0 2262 3110 2261 -1 3250 -1
130 2617 2730 0 2644 4720 2643 -1 4910 -1
140 3063 3195 0 -1 -1 3096 -1 6740 -1
150 3488 3638 0 3523 11230 3523 -1 11230 -1
160 3985 4158 0 -1 -1 4027 -1 15740 -1
170 4490 4684 10 4535 22740 4535 -1 22740 -1
180 5035 5254 0 -1 -1 5087 -1 30400 -1
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C.2 Depth Study comparison

Size LB 5% v 5% t 1% v 1% t Best Opt TB Done Gurobi
1 1 1 0 1 0 1 1 0 0 0.01
4 2 2 0 2 0 2 2 0 0 0.01
5 4 4 0 4 0 4 4 0 0 0.02
6 6 6 0 6 0 6 6 0 0 0.02
7 8 8 0 8 0 8 8 0 0 0.11
8 10 10 0 10 0 10 10 0 0 0.11
9 12 12 0 12 0 12 12 0 0 0.82

10 14 15 0 15 0 14 14 0 0 4.7
11 17 18 0 18 0 17 17 0 0 8.4
12 21 22 0 22 0 21 21 0 0 89
13 26 27 0 27 0 26 26 0 0 -1
14 31 32 0 32 0 31 31 0 0 -1
15 34 36 0 35 0 34 34 0 0
16 38 40 0 39 0 38 38 0 0
17 42 44 0 43 0 43 -1 0 -1
18 48 50 0 49 0 48 48 0 0
19 54 56 0 55 0 54 54 0 0
20 61 64 0 62 0 62 -1 0 -1
21 69 72 0 70 0 69 69 0 0
22 74 77 0 75 0 74 74 0 0
23 80 83 0 81 0 80 80 0 0
24 86 90 0 87 0 87 -1 0 -1
25 93 97 0 94 0 94 -1 0 -1
30 136 142 0 138 0 137 -1 0 -1
35 192 200 0 194 0 194 -1 0 -1
40 244 255 0 247 0 246 -1 10 -1
45 308 322 0 312 10 311 -1 20 -1
50 386 403 0 390 20 390 -1 20 -1
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D Implementation

Complete sample implementation written in C. The exact implemen-
tation used for benchmarking.
Compiled with ’gcc -O2 -std=c99 -Wall -Wextra -g main.c -o solver’.

#include<s t d i o . h>
#include<s t d l i b . h>
#include<s tdboo l . h>
#include<s t r i n g . h>
#include<l i m i t s . h>
#include<time . h>

#define UNUSED( x ) (void ) x ;
#define PRINT DEBUG 0

#define BENCHING 1

// 0 o f f , 1 co s t only , 2 co s t and combination
#define PRINT COMBINATION 1

const int MaxWeight = 8∗60 ;

typedef struct Node
{

char∗ Label ;
int Weight ;

} Node ;

typedef struct List I tem List I tem ;

struct List I tem {
List I tem ∗ Previous ;
L i s t I tem ∗ Next ;
L i s t I tem ∗ NextAtDepth ;
int Weight ;
int Index ;
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int Depth ;
} ;
L i s t I tem ∗ I n s e r t A f t e r p ( Li s t I tem ∗ item , Li s t I tem ∗ newItem )
{

List I tem ∗ l a s t = item−>Next ;
newItem−>Previous = item ;
newItem−>Next = l a s t ;
item−>Next = newItem ;
i f ( l a s t != NULL)

l a s t−>Previous = newItem ;
return newItem ;

}
List I tem ∗ I n s e r t A f t e r ( L i s t I tem ∗ item , int weight , int index

, int depth )
{

List I tem ∗ newItem = malloc ( s izeof ( L i s t I tem ) ) ;
newItem−>Index = index ;
newItem−>Weight = weight ;
newItem−>Depth = depth ;
newItem−>NextAtDepth = NULL;
return I n s e r t A f t e r p ( item , newItem ) ;

}

List I tem ∗ I n s e r t S o r t e d ( Li s t I tem ∗ s t a r t , int weight , int
index , int depth )

{
List I tem ∗ i t = s t a r t ;
while ( i t−>Next != NULL && it−>Next−>Weight >

weight )
{

i t = i t−>Next ;
}
return I n s e r t A f t e r ( i t , weight , index , depth ) ;

}
List I tem ∗ In s e r tSo r t edp ( Li s t I tem ∗ s ta r t , L i s t I tem ∗ item )
{

List I tem ∗ i t = s t a r t ;
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int weight = item−>Weight ;
while ( i t−>Next != NULL && it−>Next−>Weight >

weight )
{

i t = i t−>Next ;
}
return I n s e r t A f t e r p ( i t , item ) ;

}

void RemoveItem ( Lis t I tem ∗ item )
{

List I tem ∗ be f o r e = item−>Previous ;
L i s t I tem ∗ a f t e r = item−>Next ;
i f ( be f o r e != NULL)

be fore−>Next = a f t e r ;
i f ( a f t e r != NULL)

a f t e r−>Previous = be fo r e ;
item−>Next = NULL;
item−>Previous = NULL;
f r e e ( item ) ;

}
void DetachItem ( Lis t I tem ∗ item )
{

List I tem ∗ be f o r e = item−>Previous ;
L i s t I tem ∗ a f t e r = item−>Next ;
i f ( be f o r e != NULL)

be fore−>Next = a f t e r ;
i f ( a f t e r != NULL)

a f t e r−>Previous = be fo r e ;
}
void AttachItem ( Lis t I tem ∗ item )
{

List I tem ∗ be f o r e = item−>Previous ;
L i s t I tem ∗ a f t e r = item−>Next ;
i f ( be f o r e != NULL)

be fore−>Next = item ;
i f ( a f t e r != NULL)

a f t e r−>Previous = item ;
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}

void DeinitNode (Node∗ node )
{

i f ( node−>Label != NULL)
f r e e ( node−>Label ) ;

}

typedef struct Graph
{

Node∗ Nodes ;
int Count ;

int∗ EdgeCounters ;
int∗ EdgeCounts ;
int ∗∗ Edges ;

} Graph ;

Graph∗ InitGraph ( int v )
{

Graph∗ g = mal loc ( s izeof ( Graph ) ) ;
g−>Nodes = mal loc ( s izeof (Node ) ∗v ) ;
g−>Count = v ;
g−>Edges = mal loc ( s izeof ( int ∗) ∗v ) ;
g−>EdgeCounters = mal loc ( s izeof ( int ) ∗v ) ;
g−>EdgeCounts = mal loc ( s izeof ( int ) ∗v ) ;
for ( int i = 0 ; i < v ; i++)
{

g−>Edges [ i ] = NULL;
g−>Nodes [ i ] . Label = NULL;
g−>EdgeCounters [ i ] = 0 ;

}
return g ;

}
void GenerateEdgeData ( Graph∗ g )
{
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int c = g−>Count ;

for ( int i = 0 ; i < c ; i++)
{

for ( int j = 0 ; j < g−>EdgeCounts [ i ] ; j++)
{

g−>EdgeCounters [ g−>Edges [ i ] [ j ] ]++;
}

}
}
void DeinitGraph ( Graph∗ graph )
{

int v = graph−>Count ;
for ( int i = 0 ; i < v ; i++)
{

DeinitNode(&graph−>Nodes [ i ] ) ;
i f ( graph−>Edges [ i ] != NULL)

f r e e ( graph−>Edges [ i ] ) ;
}
f r e e ( graph−>Edges ) ;
f r e e ( graph−>EdgeCounters ) ;
f r e e ( graph−>EdgeCounts ) ;
f r e e ( graph−>Nodes ) ;
f r e e ( graph ) ;

}

void BranchAndCut ( Graph∗ graph ) ;

int random ( int lower , int upper )
{

// This t echn i que i s i n s t ead o f the usua l modulus ,
to maintain un i formi ty .

f loat r = ( ( f loat ) rand ( ) ) / ( ( f loat )RAND MAX) ;
int d i f f = upper−lower ;
int r i n t = ( int ) ( r ∗( f loat ) d i f f ) ;
return r i n t+lower ;

}
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void uniqueConstra int s ( int∗ array , int maxValue , int count )
{

int v a l s [ maxValue ] ;
for ( int i = 0 ; i < maxValue ; i++)

v a l s [ i ] = i ;

for ( int i = 0 ; i < maxValue ; i++)
{

int idx = random ( i , maxValue ) ;
int tmp = v a l s [ i ] ;
v a l s [ i ] = v a l s [ idx ] ;
v a l s [ idx ] = tmp ;

}
for ( int i = 0 ; i < count ; i++)
{

array [ i ] = v a l s [ i ] ;
}

}

Graph∗ GenerateRandomizedProblem ( int seed , int items , int
c o n s t r a i n t s , f loat s izeLower , f loat s izeUpper )

{
int sizeLow = ( int ) ( s izeLower ∗( f loat )MaxWeight ) ;
int s izeUp = ( int ) ( s izeUpper ∗( f loat )MaxWeight ) ;
srand ( seed ) ;

Graph∗ g = InitGraph ( items ) ;
for ( int i = 0 ; i < i tems ; i++)
{

int l ength = random ( sizeLow , s izeUp ) ;
g−>Nodes [ i ] . Weight = length ;
int cons = ( c o n s t r a i n t s ∗ i ) /100 ;
g−>Edges [ i ] = mal loc ( s izeof ( int ) ∗ cons ) ;
g−>EdgeCounts [ i ] = cons ;
i f ( cons > 0)
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uniqueConstra int s ( g−>Edges [ i ] , i ,
cons ) ;

}
GenerateEdgeData ( g ) ;
return g ;

}

Graph∗ GenerateDepthStudyProblemInstance ( int scenes , int
reps )

{
Graph∗ g = InitGraph ( s cene s ∗ reps ) ;
for ( int i = 0 ; i < s c ene s ; i++)
{

int l ength = ( ( i % 7)+2) ∗15 ;
for ( int j = 0 ; j < reps ; j++)
{

int idx = i ∗ reps+j ;
g−>Nodes [ idx ] . Weight = length ;

i f ( j != reps −1)
{

g−>Edges [ idx ] = mal loc (
s izeof ( int ) ∗1) ;

g−>EdgeCounts [ idx ] = 1 ;
g−>Edges [ idx ] [ 0 ] = idx +1;

}
else
{

g−>EdgeCounts [ idx ] = 0 ;
g−>Edges [ idx ] = mal loc (

s izeof ( int ) ∗0) ;
}

}
}
GenerateEdgeData ( g ) ;
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#i f PRINT DEBUG
int c = g−>Count ;
for ( int i = 0 ; i < c ; i++)
{

p r i n t f ( ”Edges from node %i : ” , i ) ;
for ( int j = 0 ; j < g−>EdgeCounts [ i ] ; j++)
{

p r i n t f ( ” %i ” , g−>Edges [ i ] [ j ] ) ;
}
p r i n t f ( ”\n” ) ;

}

for ( int i = 0 ; i < c ; i++)
{

p r i n t f ( ”EdgeCounter[% i ] : %i \n” , i , g−>
EdgeCounters [ i ] ) ;

}
#endif

return g ;
}

c l o c k t s t a r t ;
int timePassed (void )
{

c l o c k t stop = c lo ck ( ) ;
return ( int ) ( stop−s t a r t ) /(CLOCKS PER SEC/1000) ;

}

int main ( int argv , char∗∗ argc )
{

#i f BENCHING// p r i n t immediat ly , to avoid l a c k o f
output when termina t ing wi th timeout−t o o l .

s e tbu f ( stdout , NULL) ;
#e n d i f
i f ( argv < 2)
{

p r i n t f ( ” i n v a l i d input .\n” ) ;
return −1;
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}

int type = a t o i ( argc [ 1 ] ) ;
Graph∗ graph ;
i f ( type == 1)
{

i f ( argv < 3)
{

p r i n t f ( ” i n v a l i d input f o r type\n” ) ;
return −1;

}
int s i z e = a t o i ( argc [ 2 ] ) ;
graph = GenerateDepthStudyProblemInstance (

s i z e , s i z e ) ;
}
else i f ( type == 2)
{

i f ( argv < 7)
{

p r i n t f ( ” i n v a l i d input f o r type .
r equ i r ed : seed items
c o n s t r a i n t s s izeLower s izeUpper
\n” ) ;

return −1;
}
int seed = a t o i ( argc [ 2 ] ) ;
int i tems = a t o i ( argc [ 3 ] ) ;
int c o n s t r a i n t s = a t o i ( argc [ 4 ] ) ;
f loat s izeLower = ( ( f loat ) a t o i ( argc [ 5 ] ) )

/100 .0 f ;
f loat s izeUpper = ( ( f loat ) a t o i ( argc [ 6 ] ) )

/100 .0 f ;
graph = GenerateRandomizedProblem ( seed ,

items , c o n s t r a i n t s , s izeLower ,
s izeUpper ) ;

}
else
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{
p r i n t f ( ”Unsupported type\n” ) ;
return −1;

}
s t a r t = c lo ck ( ) ;
BranchAndCut ( graph ) ;
int ms = timePassed ( ) ;
p r i n t f ( ”done − %i \n” , ms) ;

DeinitGraph ( graph ) ;

return 0 ;
}

int∗ r e s ;
int resHead ;
int∗ bes t imate ;
int best imateVal ;
L i s t I tem ∗ l i s t S t a r t ;
Graph∗ graph ;

void Recurse ( int step , int currentCost , int remainder , int
totalRemainder , L i s t I tem ∗ nextInQueue ) ;

void BranchAndCut ( Graph∗ graph )
{

int c = graph−>Count ;
r e s = mal loc ( s izeof ( int ) ∗c ) ;
resHead = 0 ;
bes t imate = mal loc ( s izeof ( int ) ∗c ) ;
best imateVal = c +1;
graph = graph ;

int tota lWeight = 0 ;
for ( int i = 0 ; i < c ; i++)
{

tota lWeight += graph−>Nodes [ i ] . Weight ;
}
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p r i n t f ( ”Lower bound : %i \n” , ( tota lWeight+MaxWeight
−1)/MaxWeight ) ;

L i s t I tem ∗ l i s t S t a r t = mal loc ( s izeof ( L i s t I tem ) ) ;
l i s t S t a r t −>Previous = NULL;
l i s t S t a r t −>Next = NULL;
l i s t S t a r t −>NextAtDepth = NULL;
l i s t S t a r t −>Index = −1;
l i s t S t a r t −>Weight = INT MAX;
l i s t S t a r t −>Depth = −1;

l i s t S t a r t = l i s t S t a r t ;

for ( int j = 0 ; j < c ; j++)
{

i f ( graph−>EdgeCounters [ j ] == 0)
I n s e r t S o r t e d ( l i s t S t a r t , graph−>

Nodes [ j ] . Weight , j , 0) ;
}

Recurse (0 , 1 , MaxWeight , totalWeight , NULL) ;
#i f 0
p r i n t f ( ” Best (% i ) : ” , best imateVal ) ;
for ( int i = 0 ; i < c ; i++)

p r i n t f ( ” %i ” , be s t imate [ i ] ) ;
p r i n t f ( ”\n” ) ;
#e n d i f

f r e e ( r e s ) ;
f r e e ( be s t imate ) ;
graph = NULL;

}

void Recurse ( int step , int currentCost , int remainder , int
totalRemainder , L i s t I tem ∗ nextInQueue )

{
i f ( currentCost >= best imateVal | | best imateVal

<= ( currentCost+(totalRemainder−remainder+
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MaxWeight−1)/MaxWeight ) )
return ;

int l en = graph−>Count ;
i f ( s tep == len )
{

// p r i n t f (”(%.2 f ,% i ) ” , ( f l o a t ) timePassed ()
/1000.0 f , currentCost ) ;

#i f PRINT COMBINATION >= 1
p r i n t f ( ”Combination %i − %i : ” ,

currentCost , t imePassed ( ) ) ;
#i f PRINT COMBINATION >= 2
for ( int i = 0 ; i < l en ; i++)

p r i n t f ( ” %i ” , r e s [ i ] ) ;
#e n d i f
p r i n t f ( ”\n” ) ;
#e n d i f

i f ( currentCost < best imateVal )
{

best imateVal = currentCost ;
for ( int i = 0 ; i < l en ; i++)

bes t imate [ i ] = r e s [ i ] ;
}
return ;

}

List I tem ∗ i t = nextInQueue ;
i f ( i t == NULL)

i t = l i s t S t a r t −>Next ;
while ( i t != NULL)
{

i f ( i t−>Weight < remainder )
break ;

i t = i t−>Next ;
}
i f ( i t == NULL)

i t = l i s t S t a r t −>Next ;
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while ( i t != NULL)
{

int i = i t−>Index ;

DetachItem ( i t ) ;
r e s [ resHead++] = i ;

L i s t I tem ∗ f i r s tAtDepth = NULL;
Lis t I tem ∗ lastAtDepth = NULL;
Lis t I tem ∗ biggestAtDepth = NULL;

//Decrement edge counters and update
p o t e n t i a l nodes

for ( int j = 0 ; j < graph−>EdgeCounts [ i ] ;
j++)

{
int idx = graph−>Edges [ i ] [ j ] ;
graph−>EdgeCounters [ idx ]−−;
i f ( graph−>EdgeCounters [ idx ] == 0)
{

List I tem ∗ item =
I n s e r t S o r t e d ( l i s t S t a r t
, graph−>Nodes [ idx ] .
Weight , idx , s tep +1) ;

i f ( f i r s tAtDepth == NULL)
{

f i r s tAtDepth = item
;

lastAtDepth = item ;
biggestAtDepth =

item ;
}
else
{

lastAtDepth−>
NextAtDepth =
item ;

lastAtDepth = item ;
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}
i f ( biggestAtDepth−>Weight

< item−>Weight )
biggestAtDepth

= item
;

}
}

//Recurse
int weight = i t−>Weight ;
L i s t I tem ∗ nxt = biggestAtDepth == NULL | |

i t−>Next == NULL | | i t−>Next−>Weight >
biggestAtDepth−>Weight ? i t−>Next :
biggestAtDepth ;

i f ( remainder − weight < 0)
Recurse ( s tep + 1 , currentCost + 1 ,

MaxWeight − weight ,
totalRemainder − weight , nxt ) ;

else
Recurse ( s tep + 1 , currentCost ,

remainder − weight ,
totalRemainder − weight , nxt ) ;

// Increment edge counters
for ( int j = 0 ; j < graph−>EdgeCounts [ i ] ;

j++)
{

graph−>EdgeCounters [ graph−>Edges [
i ] [ j ] ]++;

}

//Remove added p o t e n t i a l nodes
List I tem ∗ i t 2 = f i r s tAtDepth ;
while ( i t 2 != NULL)
{

List I tem ∗ tmp = it2−>NextAtDepth ;
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RemoveItem ( i t 2 ) ;
i t 2 = tmp ;

}

resHead−−;
AttachItem ( i t ) ;
i t = i t−>Next ;

}
}

E Benchmarking script

cont=1

#f i l e=” bench depth . txt ”
#s tep=1
#l i m i t =100

#f i l e=” bench depth approx . txt ”
#s tep=10
#cont=10
#l i m i t =180

#f i l e=” bench randomized const ra int s . txt ”
#cont=0
#s tep=5
#l i m i t =100

f i l e=” bench randomized s i ze s . txt ”
cont=25
step=5
l i m i t =60

#f i l e=” bench te s t . txt ”
#s tep=1
#cont=1
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#l i m i t=1

echo ”cont , lb , o f f 5 v , o f f 5 t , o f f 1 v , o f f 1 t , best v , opt v ,
be s t t , done t ” > $ f i l e

while [ $cont − l e $ l i m i t ] ; do

#r e s=$ ( timeout 120 . / s o l v e r 1 180) #t e s t i n g

#r e s=$ ( timeout 120 . / s o l v e r 1 $cont ) #bench depth .
txt

#r e s=$ ( timeout 120 . / s o l v e r 1 $cont ) #
bench depth approx . txt

#

type seed items c o n s t r a i n t s
s izeLower s izeUpper

#r e s=$ ( timeout 30 . / s o l v e r 2 0 150 10 20 30)
#r e s=$ ( timeout 120 . / s o l v e r 2 0 1000 $cont 10 50) #

bench randomized const ra int s
r e s=$ ( timeout 120 . / s o l v e r 2 0 1000 10 $ ( ( $cont−20)

) $ ( ( $cont +20) ) ) #bench randomized s i ze s

lb=−1

o f f 5 t=−1
o f f 5 v=−1
o f f 5 l =−1
o f f 1 t=−1
o f f 1 v=−1
o f f 1 l =−1

b e s t t=−1
bes t v=−1

done t=−1
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opt v=−1

while read −r l i n e ; do
#echo ” ln : $ l i n e ”
i f [ [ $ l i n e == ”Lower bound”∗ ] ] ; then

lb =‘echo $ l i n e | cut −d ’ ’ −f 3 ‘
o f f 5 l=$ ( ( ( $ lb ∗ 105+99) /100) )
o f f 1 l=$ ( ( ( $ lb ∗ 101+99) /100) )

#echo ” o f f 5 l : $ o f f 5 l ”
#echo ” o f f 1 l : $ o f f 1 l ”
#echo ” lower bound : $ lb ”

f i
i f [ [ $ l i n e == ”Combination”∗ ] ] ; then

cmb=‘echo $ l i n e | cut −d ’ ’ −f 2 ‘
time=‘echo $ l i n e | cut −d ’ ’ −f 4 ‘
i f [ [ $ o f f 5 t −eq −1 ] ] && [ [ $cmb
− l e $ o f f 5 l ] ] ; then

o f f 5 t=$time
o f f 5 v=$cmb
#echo ”5 o f f ($cmb) − $time ”

f i
i f [ [ $ o f f 1 t −eq −1 ] ] && [ [ $cmb
− l e $ o f f 1 l ] ] ; then

o f f 1 t=$time
o f f 1 v=$cmb
echo ”1 o f f ($cmb) − $time ”

f i
be s t v=$cmb
b e s t t=$time
#echo ”mtc : $cmb − $time ”

f i
i f [ [ $ l i n e == ”done”∗ ] ] ; then

done t =‘echo $ l i n e | cut −d ’ ’ −f
3 ‘

opt v=$bes t v
echo ”Done : $done t ”

f i
done <<< ” $ r e s ”



58

echo ”Done with i t e r a t i o n : $cont . $bes t v / $ lb −
$done t ”

echo ”$cont , $lb , $o f f 5 v , $ o f f 5 t , $o f f 1 v , $ o f f 1 t ,
$best v , $opt v , $be s t t , $done t ” >> $ f i l e

cont=$ ( ( $cont+$step ) )
done

#echo ” Best found ( $bes t v ) − $ b e s t t ”
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