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To evaluate the prototype, the steps outlined in Section 3.3.2 were followed. Two

groups consisting of 2 and 3 people respectively were asked to find recommenda-

tions individually, in a group of two people, and in a group of three people, for two

different timespans (18/02/2014-03/03/2014 and 05/03/2014 and 09/07/2014),

and two different cities (London and New York). When the second group was

asked to find recommendations for a group of 3 people, a user from the first group

was added to the recommendation process.

For each step, the participants rated each of the algorithms on how satisfied they

were with the recommendations given on a scale from 1-5, where 1 is Very satisfied

and 5 is Very dissatisfied.

7.2.1 Results

The raw data from the Quality Evaluation can be found on Github (see Appendix

C.1).

As seen in Table 7.7, the MF algorithm was overall picked as giving the most

appealing results 7 out of 40 times, the kNN algorithm 16 out of 40 times, and

the hybrid approach in 17 out of 40 cases. Overall, the kNN algorithm received

an average rating of 2.28 in the 40 responses, the Hybrid approach 2.38, and the

MF algorithm an average of 3.13 as seen in Table 7.8. Table 7.9 shows the average

ratings for each of the algorithms when the recommendation process was performed

with users that was created with 5 and 10 of their favorite artists respectively.

Going from 5 to 10 users resulted that the average rating given to the k-Nearest

Neighbor algorithm went from 2.5 to 1.8. For the other algorithms, no significant

changes were observed.

As seen in Table 7.10, when going from one person in a group to two and three,

the average ratings given for the kNN and Hybrid approaches increased. For the

MF approach however, the average ratings decreased slightly from 3.3 for one

user to 2.9 for three users in a group. The average ratings for the kNN approach

increased from 1.8 to 2.3 for two users and to 2.5 for three users. The average
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Algorithm Number of selections Percentage

Matrix Factorization 7 17.5%
k-Nearest Neighbor 16 40.0%
Hybrid approach 17 42.5%

Table 7.7: Preferred algorithm selection by users

Algorithm Average rating Variance Standard Deviation n

Matrix Factorization 3.13 0.73 0.85 40
k-Nearest Neighbor 2.28 0.92 0.96 40
Hybrid approach 2.38 0.75 0.87 40

Table 7.8: Overall Average statistics per algorithm

ratings for the Hybrid approach increased from 2.3 for one user, and 2.4 for two

users to 2.6 for three users. The same can be said for the Variance and Standard

Deviation of ratings given to each algorithm. For the kNN algorithm, the variance

increased from 0.62 for one user in a group to 1.17 for three users in a group, and

the standard deviation from 0.78 to 1.08. The variance for the hybrid approach

increased from 0.68 to 0.93 and the standard deviation from 0.82 to 0.97.

These results show a clear trend that the kNN and the Hybrid approach tend to

produce more satisfying recommendations than the MF approach as the average

ratings given to the two are generally lower, and they were picked as the favorite

algorithms significantly more. An overall average rating of 2.28 and 2.38 out of

5 from the kNN and Hybrid approaches respectively, indicates that the partici-

pants were reasonably satisfied with the results given, however with some room

for improvement.

In general, recommendations given for users created based on 10 of the user’s

favorite artists, produced more satisfying results than for when 5 artists were used

in the user creation process. Going from one user in a group, to two and three

users, overall led to lower satisfaction with the recommended concerts.
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Average rating Variance Standard Deviation n

Algorithm 5 10 5 10 5 10

Matrix Factorization 3.6 3.3 0.27 0.46 0.52 0.67 10
k-Nearest Neighbor 2.5 1.8 0.72 0.62 0.85 0.79 10
Hybrid approach 2.2 2.3 0.62 0.68 0.79 0.82 10

Table 7.9: Statistics when 5 and 10 artists were used in user creation

Average rating Variance Standard Deviation

Algorithm 1 user 2 users 3 users 1 user 2 users 3 users 1 user 2 users 3 users

Matrix Factorization 3.3 2.7 2.9 0.46 1.12 0.77 0.67 1.06 0.88
k-Nearest Neighbor 1.8 2.3 2.5 0.62 1.12 1.17 0.78 1.06 1.08
Hybrid approach 2.3 2.4 2.6 0.68 0.93 0.93 0.82 0.97 0.97

Table 7.10: Statistics when recommendations were given for groups consisting
of 1, 2 and 3 users respectively

7.3 Discussion

7.3.1 Threat to Validity

The QE was performed with two groups of 2 and 3 people. This low number of

participants means that each participant had a significant impact on the results.

The statistics produced when a user was created with 5 and 10 favorite artists

(Table 7.9), were based on n = 10 samplings each; answers for questions Q1 and

Q3; and Q5 and Q7 respectively.

The same can be said with the statistics produced for the results with varying

group sizes (Table 7.10). They were based on n = 10 samplings each; answers

for questions Q5 and Q7 for groups with one user; Q9 and Q11 for groups with

two users; and Q13 and Q15 for groups with three users. The overall statistics

(Table 7.8) was created based on answers to questions Q1, Q3, Q5, Q7, Q9, Q11,

Q13 and Q15 which for 5 users lead to a sample size of n = 40.

By looking at the top social tags used for the artists each of the users registered as

seen in Table 7.11, it is apparent that the users’ taste in music are quite different

as they share few top tags amongst them (except for User 3 and 4). However,
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User 1 User 2 User 3 User 4 User 5

Rock Pop Electronic Electronic Rock
Progressive metal Hip-Hop Electro house House Classic rock
Metal Rnb House Dance Classical
Alternative rock dance Electro Progressive House Instrumental
Alternative Rock Dubstep Electro Violin
Progressive rock Electronic Dance Electro House Hard rock
Sludge Alternative Electronica Dubstep Pop

Table 7.11: Top tags for the participating users

because of the low number of users and sample sizes, even with this diversity, it

can’t be said that these five users are representative for the whole potential user

base, and therefore, further testing should be performed to measure the Quality

of Recommendations created by the prototype.

Even though more testing is needed, there still is a strong indication that the

kNN and Hybrid approaches perform better than the MF approach as suggested

in Section 7.2.1 with a sample size of n = 40. Similarly, it can be said that the five

users testing the prototype were reasonably happy with the results.

7.3.2 Novelty and Serendipity in Concert Recommenda-

tion Systems

In section 2.1.6.3, there was put an emphasis on that a recommendation system

should provide novel and serendipitous recommendations. The emphasis should

be put on the lesser known artists, the long tail of the listen count curve. However,

during the development and testing of this prototype, it was observed that a full

focus on this may not be the best approach for a CRS. People tend to prefer to go

to concerts with artists they are already familiar with. The concert scene might

not be the place were people try to be adventurous and discover new music. It is

easier, more convenient, and cheaper to discover and becoming familiar with new

artists first, before deciding to attend a concert with them. This might be one of

the causes in why the kNN and Hybrid approaches received better ratings from

the test users when it came to quality of recommendations, as CF approaches tend
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kNN MF

Artist # of listeners Artist # of listeners

Avicii 548 Arctic Monkeys 2388
Katy Perry 676 Lorde 554
Arctic Monkeys 2388 Beyoncé 585
Disclosure 535 Metronomy 418
Kanye West 1578 Cut Copy 378
Nine Inch Nails 1270 Alkaline Trio 383
The National 1687 Panic! at the Disco
Drake 712 Slowdive 308
Interpol 784 Katy Perry 676
Arcade Fire 2165 Pretty Lights 234

Average 1234.3 Average 632

Table 7.12: Number of listeners for the top artist playing at the top 10 concerts
between 18/02/2014 and 17/07/2014 in London for user simensma

to have a popularity bias causing the more popular artists to be recommended (see

Section 2.1.6.4). An example of this can be seen in Table 7.12, where the top artist

and how many users have listened to them for the 10 top concerts recommended

for the user simensma in London between 18/02/2014 and 17/07/2014, can be

seen. The 5 most frequently used tags to describe simensma’s top artists are elec-

tronic,house,dance,indie, and electro house. On average, 1234 users had listened

to each of the artists recommended by the kNN algorithm whereas 632 users on

average had listened to each of the artists recommended by the MF algorithm.



Chapter 8

Conclusion and Further Work

8.1 Further work

From this thesis, many directions for further research are possible. The results

clearly shows that the MF approach underperforms compared to the kNN and

Hybrid approach, a further investigation into why this happens can be done. By

extending the framework provided, other algorithms for recommendation systems

can be implemented and compared to the existing ones to see how they perform.

Another way to go from here is to have a look at the context aware part of the

application. Is there any benefit in making relaxation of context an implicit part

of the algorithm instead of something performed by the user explicitly? How

would other context variables, such as listen recency affect the satisfactions when

recommending concerts? In Section 7.1.5, some usability problems and suggestions

to new functionality for the prototype were identified, and can be a good starting

point when utilizing the framework provided.

87



Chapter 8. Conclusion and further work 88

8.2 Conclusion

In this thesis, a prototype of a Context Aware group Recommendation System for

Concerts was presented. The prototype implemented three different algorithms,

a Matrix Factorization algorithm, a k-Nearest Neighbor algorithm and a Hybrid

approach of the two. The goal for the thesis, was to improve the usability and qual-

ity of recommendations given by the prototype implemented during the author’s

semester project fall 2013 [1].

The usability of the prototype was evaluated using the System Usability Scale

(SUS) and an Application Specific Survey (AS). 15 people were asked to under-

take these surveys. In total, the prototype got a SUS score of 79.83 which is a

good indication on that the users found the usability of the prototype satisfactory.

However, the comments from the free text answers shows that there still are room

for improvements.

The AS mainly focused on the usability of the Context relaxation part of the pro-

totype, to find out if it was easy to find concerts close to the parameters specified

when it comes to time and location. The results from the AS showed that the

users in general were satisfied with how this process worked.

The goal for this prototype was to recommend concerts to a user within the loca-

tion and timespan given that the user could be interested in attending. To evaluate

how well this was achieved, a Recommendation Quality Evaluation(QE) was un-

dertaken with two groups consisting of 2 and 3 people respectively. Through a

range of scenarios, the groups were told to find recommendations for the dates

and location asked about, and for each algorithm, rate how satisfied they were

with the results. The results from the QE showed that the users generally were

satisfied with the kNN implementation and the Hybrid approach, whereas they

were less satisfied with the MF approach. The QE was also undertaken to see

how different group sizes affected the quality of recommendations. The results

showed that the users became less satisfied when the number of members in the

group increased from one to two and three respectively, which is to be expected as
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different preferences has to be taken into account in larger groups. However, the

QE was only performed with five participants, so there is a need for an evaluation

with more participants to able to draw any final conclusions.

All in all, these results show that well known methods for recommendation sys-

tems can be applied successfully to a Context Aware Recommendation System for

Concerts.





Appendix A

Usability Survey

Section A.1 contains the SUS schema used for usability evaluation. The AS survey

used in the same evaluation can be found in section A.2. The survey used to gather

background information on the subjects can be found in section A.3. Section A.4

contains the free-text answers gathered from questions AS5, AS6 and AS7.
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A.1 System Usability Scale (SUS)

Figure A.1: System Usability Scale
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A.2 Aplication Specific Survey (AS)

Figure A.2: Application specific survey
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A.3 Background information (BI)

Figure A.3: User background information
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A.4 Feedback

AS5. What additional functionality would you like to see in this application?

”When clicking on a concert, I would like to see the date of the concert. I would
also like to see website and a google map of the location.
It should connect your user to your user on applications such as last.fm, instead
of having to create a new user if I already have one on a different site.”
Seeing ticket prices or adjusting the search for ticket prices
”Ability to choose genres.
Also some information about what it means when you add a person to the group.
I felt the information about the features were lacking in general. Explain what
users you are adding from what service.”
User preferences imported directly from my last.fm or Spotify account.
Where to find concerts sitt favourite artists not included in the reconnendation.
”En m̊ate å endre brukerens band/artistforslag.Edit user rett og slett ;) Og det
burde kanskje bli lagt til flere locations å velge mellom.” (Translated as: A way to
change a users group/artist recommendation. Simply put edit user functionality
:) Also, maybe more locations to choose from should be available)
I would like to be able to see all the concerts in the specifide location and dates
show genres for concerts. Also an overview of all concerts ata place
It would be nice to be able to filter concerts based on genre

Table A.1: AS5 comments

AS6. How do you think the features in this application could be improved to
better help find concerts that are relevant for your group of users?

Some people live in places where there’s not that many options for concerts. Maybe
have an option that lists all concerts within an area on a given date(s)?
Not sure :P
”Maybe ability to find ones friends through facebook or the underlaying user base.
Also, maybe the ability to exclude some results or genres. Say ””hide”” or ””I don’t
wan’t to go to this concert””.”
1. Possibly include some hint of genre in the initial concert overview. Though I
hadn’t heard about several of the artists before, I might still be interested. Having
an idea of the genre in the initial overview would allow me to choose which concerts
to consider more carefully, even when I don’t know the band.
”Question like: If you like .....you might like......”

Table A.2: AS6 comments
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AS7. Do you have any extra suggestions, comments or feedback?

Looks good, and the developer is handsome.
”there are severe delays when getting recommendations.
the recommendations did not show any performers known to me, and can therefore
not be particularly relevant.”
I love you <3 :)
”Maybe change the color of the text. Blue is not very good for reading. Make it a
lighter shade of blue.
Very cool animations and a cool project in general! :)”
It’s a bit scary leaving the group setup view in order to register new users. If it
was somehow emphasized that I would not lose my current state I would feel more
comfortable.
Use clear and easy messages in the startup.
I generally think music recommendation are a quite waste of time. It is hard to
predict what people like. For instance, one person may like one song of an artist on
a album, while it does not like another song on the same album. So it is extremely
hard for computers to know such things.
It looks nice!

Table A.3: AS7 comments



Appendix B

Code

All the code produced while developing the prototype presented in this thesis is

available at https://github.com/simensma/GroupRec. It is released under a GNU

General Public License, version 21. Due to copyright restrictions, the dataset

used for evaluation purposes is not part of the distributed code. However code to

reconstruct a similar one is provided.

Section B.1 contains the code used for calculation of features for the MF algorithm.

Section B.2 shows how ratings are predicted for an artist.

1http://www.gnu.org/licenses/gpl-2.0.html
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B.1 Matrix factorization

public void calculateFeatures(int maxFeatures, int maxIterations,

double lambda, double gamma, double minImprov) {

double rmse = 2.0;

for (int feature = 0; feature < maxFeatures; feature++) {

double rmse_last = Double.POSITIVE_INFINITY;

for (int iter = 0; (iter < maxIterations)

|| (rmse <= rmse_last - minImprov); iter++) {

double squareError = 0;

rmse_last = rmse;

for (int i = 0; i < ratings.length; i++) {

ArtistlisteningWrapper rating = ratings[i];

int artistId = rating.getArtistId();

int userId = rating.getUserId();

double predictedRating = predictRating(artistId, userId,

feature, maxFeatures, rating.getCache(),true);

double error = (1.0 * rating.getListenCount() - predictedRating);

squareError += Math.pow(error, 2);

userFeatures[feature][userId] += gamma

* (error * artistFeatures[feature][artistId]

- lambda * userFeatures[feature][userId]);

artistFeatures[feature][artistId] += gamma

* (error * userFeatures[feature][userId]

- lambda * artistFeatures[feature][artistId]);

}

rmse = Math.sqrt(squareError / ratings.length);

}

for (int i = 0; i < ratings.length; i++) {

ratings[i].setCache(predictRating(ratings[i].getArtistId(),

ratings[i].getUserId(), feature, maxFeatures,

ratings[i].getCache(), false));

}

}

}

Listing 13: Calculating latent features (based on Development [45])

B.2 Artist rating prediction with k-Nearest Neigh-

bor
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/**

* artistListenings: Map of list of tuples that contains (userId, rating)

* pairs for the artists that should get a predicted rating.

*

* userSimilarities: Contains similarities (Double) between all the users

* (Integer) that have listened to some of the artists found and the user

* being processed.

*

* artists: Artists ids that a rating should be predicted for

*

* returns: Predicted ratings for the artists being processed.

*/

protected Map<Integer, Double> calculateArtistScores(

Map<Integer, List<Tuple<Integer, Double>>> artistListenings,

Map<Integer, Double> userSimilarities, List<Integer> artists, int k) {

Map<Integer, Double> artistScores = new HashMap<Integer, Double>();

for (Integer artistId : artists) {

/*

* List of tuples, (userId, listeningFrequency), which describes the

* listening frequency to the artist being processed for all the

* users that have listened to that artist.

*/

List<Tuple<Integer, Double>> listens = artistListenings

.get(artistId);

// Find the k most similar users

k = (int) Math.sqrt(listens.size());

Collections.sort(listens, new Comparator<Tuple<Integer, Double>>() {

@Override

public int compare(Tuple<Integer, Double> t1,

Tuple<Integer, Double> t2) {

return t2.getY().compareTo(t1.getY());

}

});

listens = listens.subList(0, k);

double sum = 0;

double totSim = 0;

for (Tuple<Integer, Double> tuple : listens) {

totSim += Math.pow(userSimilarities.get(tuple.getX()), 2);

}

// Calculate a rating for artistId

// Each user in listens contributes to the final rating with

// rating*sim/totSim

for (Tuple<Integer, Double> tuple : listens) {

double sim = Math.pow(userSimilarities.get(tuple.getX()), 2);

double rating = tuple.getY();

sum += rating * sim / totSim;

}

artistScores.put(artistId, sum);

}

return artistScores;

}

Listing 14: kNN calculation of artist score





Appendix C

Quality Survey

Section C.2 contains the 4 schemas used for the Quality Survey.

C.1 Results

The raw results from the Quality Evaluation can be found in this projects Github

repository, at https://github.com/simensma/GroupRec/blob/master/evaluation/

Evaluation.xlsx.

C.2 Quality Survey
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Figure C.1: System Quality Survey Schema part 1
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Figure C.2: System Quality Survey Schema part 2
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Figure C.3: System Quality Survey Schema part 3
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Figure C.4: System Quality Survey Schema part 4
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