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Problem Description

Context-Aware Recommendation Systems (CARS) model and predict user prefer-

ences by incorporating pre-existing contextual information into the recommenda-

tion process by explicitly incorporating additional categories of data. In a group

recommendation system, this context is applied to a recommendation process

where recommendations are given to a group of people instead of to individual

persons.

A prototype of such a system has been developed, looking at concert recommenda-

tion for groups of people. This thesis aims to improve the recommendations given

by the prototype and improve its usability.

New functionality should be added to the prototype and it should be evaluated

in a rigorous manner. The project is expected to follow a design science research

approach, producing and evaluating an artifact in a scientifically sound manner.

Code produced should be made available under an open source license. It is pre-

ferred that the project report is written in English. The results from a good project

should be possible to be used as a basis for developing a scientific publication.



Abstract

For a group of friends going to a concert or a festival, finding concerts that everyone

is happy with can be challenging as everyone have their own preferences and wishes

when it comes to music.

In this thesis, a prototype of a group recommendation system for concerts is pre-

sented to solve this issue. The prototype is context sensitive; it takes a user’s

location and time into account when giving recommendations. The prototype im-

plements three algorithms to recommend concerts by taking advantage of what

users have listened to before: a collaborative filtering algorithm (k-Nearest Neigh-

bor), a Matrix Factorization algorithm, and a Hybrid approach of these two. The

thesis was written following the Design Science Research paradigm.

The thesis covers the design and implementation of the prototype in addition to

a brief state of the art of the recommendation systems literature. The usability of

the prototype was evaluated using the System Usability Scale and a user centered

evaluation was performed to evaluate the quality of recommendations. The results

from the usability evaluation shows that users generally were satisfied with the

usability of the prototype. The results from the Quality Evaluation shows that the

k-Nearest Neighbor and Hybrid approach produces satisfactory results whereas the

Matrix Factorization implementation is lagging a bit behind. The users testing the

prototype were generally satisfied with the quality of recommendations, however

further evaluation is needed to draw any final conclusions.



Sammendrag

Som en gruppe personer som er p̊a en festival og vil g̊a p̊a en konsert, det å finne

konserter alle er fornøyde med kan være en utfordring siden alle har sine egne

preferanser og ønsker n̊ar det kommer til musikk.

I denne oppgaven vil en prototype av et gruppeanbefalingssystem for konserter

bli presentert for å gjøre dette lettere. Prototypen er kontekstsensitiv; den tar

en brukers lokasjon og tid med i beregningen n̊ar den lager anbefalinger. Proto-

typen implementerer tre algoritmer for å anbefale konserter ved å bruke data om

hva brukere har hørt p̊a før: en collaborative filtering (k-Nearest Neighbor); en

matrisefaktoriseringsalgoritme; og en kombinasjon av disse. Oppgaven ble gjen-

nomført ved å følge Design Science Research metodologien.

I denne oppgaven presenteres designet og implementeringen av prototypen i til-

legg til en kort state of the art av anbefalingssystemlitteraturen. Prototypens

brukervennlighet ble evaluert med en System Usability Scale, og en brukersentrert

evaluering er brukt til å evaluere kvaliteten p̊a anbefalingene. Resultatene viser at

brukerne generelt var fornøyde med brukervennligheten til prototypen. Kvalitet-

sevalueringen viser at k-Nearest Neighbor - og Hybrid algoritmen produserte til-

fredsstillende resultater, mens matrisefaktoriseringen er litt bak n̊ar det kommer

til dette. Generelt var brukerne som testet prototypen fornøyd med anbefalingene

gitt, men testing med flere brukere m̊a gjøres før endelige konklusjoner kan trekkes.
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Chapter 1

Introduction

A Context Aware Group Recommendation System is a Recommendation System

that recommends items for groups of people instead of a single person. The group

and context part adds additional challenges compared to a normal Recommenda-

tion System. A group of people is more dynamic than a single person. You have to

consider how the group is formed, how you can combine the group so that unified

recommendations for the whole group can be provided, and the dynamics within

the group. Context comes in many forms, but can be seen as external constraints

that affects the recommendation process. This naturally makes the algorithms

more complicated when it has to be considered. The purpose of this thesis is

to construct a Context Aware Group Recommendation System for Concerts that

takes the location and time of a user into account when making recommendations.

This is done to show that traditional methods for Music Recommendation Systems

can also be applied when concerts are recommended and extra context have to be

considered.

1
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1.1 Motivation

Recommendation Systems are becoming an increasingly important part of large

systems such as Amazon.com and eBay.com, and also in the music industry for

example Spotify, iTunes and Last.fm. The field is changing rapidly with a lot

of interesting research going on. Even though Group Recommendation Systems

have been explored, they are not as thoroughly explored as normal Recommenda-

tion Systems. The same can be said for Recommendation Systems for Concerts,

and Context Aware Group Recommendation systems, where next to no existing

research was found.

1.2 Previous work

This thesis is based on the outcome from the authors specialization project [1]

in the course ”Computer Science, Specialization Project (TDT4501)” at NTNU,

where a prototype of a context aware group recommendation system for concerts

was developed and empirically evaluated. This prototype utilized a similar col-

laborative filtering approach as the one described in Chapter 4.6.1 to provide

recommendations. It utilized previous listening habits from users that are similar

to the user getting recommendations, to predict a rating for all concerts within the

given context. This was then done for all of the members of the group, and the re-

sults from each individual user was combined into a final set of recommendations.

The prototype was evaluated by constructing a set of scenarios and discussing the

outcome of them. The discussion concluded with that there was a need for an

improvement in the recommendations given by the prototype. In addition to this,

a brief review of the state of the art of the recommendation systems literature was

performed.

To summarize, the work done in the specialization project consisted of:
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� A brief review of the state of the art of the recommendation systems liter-

ature, explaining Recommendation Systems, Group Recommendation Sys-

tems, and Context Aware Recommendation Systems.

� A prototype of a Context Aware Group Recommendation System for Con-

certs implementing a k-Nearest Neighbor algorithm.

� An empirical evaluation of the prototype that concluded that there was a

need to improve the recommendations given by the prototype.

1.3 Contributions

The main contributions from this thesis are:

� A more in depth review of the state of the art based on the authors spe-

cialization project [1], explaining: Music Recommendation Systems; the use

of Matrix Factorization; challenges with recommendation systems; and an

explanation of Recommendation Systems, Group Recommendation Systems

and Context Aware Recommendation Systems.

� A prototype of a Context Aware Group Recommendation System for Con-

certs, including explanations on how the algorithms were designed and im-

plemented. The prototype was based on the prototype implemented in the

authors previous work [1]. The k-Nearest Neighbor algorithm was changed,

a Matrix Factoriazation algorithm and a Hybrid approach of the two were

implemented. In addition, the user interface of the prototype was improved

to increase its usability.

� An evaluation of the prototype, where its usability and quality of recommen-

dations were evaluated.
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1.4 Readers guide

This thesis starts with a state of the art of the recommendation systems literature

in Chapter 2. Topics covered here includes Recommendation Systems, Group Rec-

ommendation Systems, Music Recommendation Systems, and context awareness.

Chapter 3 describes the methodology used for research and evaluation, includ-

ing Design Science Research and the System Usability Score. It also describes

how the prototype is going to be evaluated. Chapter 4 starts by identifying the

requirements for the final prototype before formalizing the notion of a Group Rec-

ommendation System for Concerts. After this, an algorithm based on the well

known k -Nearest Neighbor and Matrix Factorization algorithms that can be used

for such problems, is presented. Chapter 5 describes the main architecture of the

prototype, and how the algorithms described in Chapter 4 were implemented. In

Chapter 6, the prototype with its main functionality is presented. Chapter 7 de-

scribes the outcome from the evaluation of the prototype as described in Chapter 3.

Chapter 8 summarizes the thesis, including the most important results found in

Chapter 7. It also features possible directions of research that can be taken based

on the work done in this thesis.



Chapter 2

Background

2.1 Recommendation systems

A recommendation system is, as Ricci et al. [2] says, “software tools and techniques

providing suggestions for items to be of use to a user”. These items, to name a few

examples, can range from music in services such as Spotify1, last.fm2 and iTunes3;

movies in Netflix4; or physical objects at eBay5 or Amazon6. Recommendation

systems can be used for a variety of purposes, as Herlocker et al. [3] states by

identifying the 11 typical tasks a recommendation system can assist with seen in

the list below:

� Find good items Finding a ranked list of items for a user and a prediction

on how much the user would like them (for example star ratings). This usage

area is the focus for this thesis.

� Find all good items Finding all the good items, and only the good items

for a user. Sometimes it is necessary to find all the good items for a user,

1http://www.spotify.com
2http://www.last.fm
3http://www.apple.com/itunes
4http://www.netflix.com
5http://www.ebay.com
6http://www.amazon.com

5
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not only some of them. Examples of this would be in medical, financial and

legal situations, where if present, false positives could potentially have huge

consequences.

� Annotation in context Finding useful items in the current context of

the user. For example providing recommendations such as ”Customers who

bought this item also bought this” or ”Similar movies” when looking up a

movie.

� Recommend Sequence Finding a sequence of items for a user that is

”pleasant as a whole” instead of just good as an individual. An example

of such a recommendation system is song playlist generation and the radio

function in Spotify.

� Just Browsing Assisting users that want to browse a set of items by pro-

viding suggestions that is relevant for them. Recommendations like these

can be found in services such as Amazon.com and eBay.

� Find Credible Recommender Some users tend to not trust recommenda-

tion systems. They can play around with the system and see how the system

behaves in different settings, for example by changing their profile. Recom-

mendation systems can help asserting their credibility by also including why

a given item was recommended in the results, for example ”this song was

recommended because you listened to xy.”

� Improve Profile By rating items, a user can help improving the outcome

of the recommendation algorithm as the algorithm can get a better under-

standing of what kind of items the user likes.

� Express Self Users can also rate items because they like it, they like to

express themselves and feel good about it. The main goal isn’t to improve

the results of the recommendations, but to express your feelings about an

item

� Help Others The main goal for rating an item might also be to help others.

If you for example have a bad experience with a tour company, posting a



Chapter 2. Background 7

response and rating on a web site such as tripadvisor.com to warn others

might be your motivation for using the recommendation system.

� Influence Others Recommendation systems can be used to promote a busi-

ness. Sites such as hotels.com and tripadvisor.com can be used to give ratings

to hotels amongst other things. By getting people (for example employees)

to extensively give high ratings to your business and give lower ratings to

competitors, recommendations for other people can be influenced to promote

your business.

Multiple approaches are used to provide these recommendations, some of the more

popular ones being Content based filtering, Collaborative filtering, and more re-

cently, Matrix Factorization. Each of the approaches have their strengths and

weaknesses, so making hybrid solutions of the approaches can be a viable option

to overcome these.

2.1.1 Content based filtering

Content based filtering algorithms are designed around the idea of recommending

items similar to the items a user have liked before [4]. The items a user has liked

and interacted with before can be seen as the user’s profile. Depending on what

type of system it is, the user profile can for example be what movies a user have

watched, when and what type of music the user has listened to, and what kind of

news articles the user has viewed. To find items to recommend, items are compared

against this user profile, and recommendations are given based on how well they

match the profile.
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2.1.2 Collaborative filtering

Instead of recommending items based on their similarity to the items a user has

listened to before as with a Content-based filtering approach, a Collaborative Fil-

tering (CF) approach utilizes ”the power of the crowd”. Recommendations are

based on what items similar users to the one being recommended for have inter-

acted with before.

Generally, CF approaches are split into two groups, memory based and model

based approaches. In memory based solutions, recommendations are created based

on the whole dataset of users, ratings and items. In a model based approach, a

model of user ratings is created that is used to predict a user’s rating to items

based on previous ratings [5]. The model can be created using machine learning

algorithms such as Bayesian classification and different clustering algorithms.

2.1.2.1 Neighborhood models

In many memory-based CF approaches, a neighborhood of users that previously

rated similar items as the user, is created [5]. These neighborhoods can be formed

with nearest neighbor algorithms such as a k-Nearest Neighbor algorithm using

Cosine Similarities (see Section 4.6.1.2) or Pearson Correlation to find similarities

between users. The ratings of this neighborhood are then aggregated and compared

to provide a list of top-N items for the user.

2.1.3 Matrix Factorization

Matrix Factorization (MF) is based on the idea of latent features; a set of un-

derlying features of the data that can’t be explicitly captured, but describes the

interactions between the elements of the dataset [6]. The original matrix of user-

item-ratings are factorized into matrices of reduced dimensionality describing these

latent features. Depending on how much the dimensionality of the matrix is re-

duced, one could potentially save significant amounts of space and computing
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power in addition to removing noise data from the matrix as Osmanli and Toroslu

[7] explains.

These latent feature matrices can then be used to approximate the original matrix.

Matrix factorization can also be used as a basis for collaborative filtering or content

based filtering, by calculating user or item similarities from the factorized matrices

instead of the actual ratings. An example of a MF algorithm is Singular Value

Decomposition (SVD).

2.1.3.1 Singular Value Decomposition

SVD is a technique for matrix factorization. It first reduces the dimensionality

of a matrix, before using the outcome of this process to approximate the original

scores. SVD reduces an mxn matrix into three matrices, U, S and V [8].

R =USV ′ (2.1)

U and V are two orthogonal matrices of size m× r and n× r where r is the rank

of the matrix R. S is a r × r matrix and contains all the singular values of R

as its diagonal entries. The dimensionality of the matrices can be reduced by

choosing S to only contain the k largest singular values of R. This makes Sk a

k× k matrix, and since reduction can also be applied to the U and V matrices

by removing (r− k) columns from U and (r− k) rows from V , the dimensionality

of USV ′ can be greatly reduced into UkSkV ′
k, thus saving space and computing

power in addition to removing noise data from R [7]. The outcome of performing

SVD on R is therefore Rk, a reduced dimensionality version of R.

Rk =UkSkV ′
k (2.2)

These matrices can then be used to predict a rating r a user u would give to an

item i.
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2.1.4 Hybrid approaches

Another popular method of providing recommendations is the use of a hybrid ap-

proach of different recommendation algorithms. As Adomavicius and Tuzhilin [9]

explains, you can either implement the different systems separately and combine

the results, incorporate characteristics from one of one of the systems into the

others, or create a unifying model that has characteristics from the systems imple-

mented. The use of multiple algorithms can potentially eliminate each algorithms’

weaknesses, and thus provide more satisfying results than the individual ones.

2.1.5 Context awareness

The term context is used in many situations such as in data mining, information

retrieval, and E-commerce personalization [10]. Bazire and Brézillon [11] analyzes

150 definitions of context coming from different domains. Therefore, it is impor-

tant to have a clear definition of context. In this thesis, context is defined as “Any

information that can be used to characterize the situation of an entity, where the

entity is a person, place, or object that is considered relevant to the interaction be-

tween a user and its application, including the user and the application themselves”

[11].

In many cases, additional context other than ratings might affect what a user

thinks about an item. For example, in a tourist recommendation system, a user

might find hiking less desirable when it is snowing than when sunny, and would

want different recommendations depending on the weather. A tourist in London

might want recommendations for things to do in London and not in New York.

Research exist on how to take such additional relevant contextual information into

account when making recommendations for a user [10, 12, 13], however research

when it comes to incorporating such contextual information into recommendation

algorithms for groups isn’t as explored. A model that supports context-aware

group recommendations is presented by Stefanidis et al. [14]. Context is here

modelled as a set of parameters affecting a user. Each parameter is individually
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arranged in a hierarchy so that the higher up the hierarchy you are, the more

general information you will receive. An example of such a parameter could be

location, which could be arranged as City ≺ State ≺ Country ≺ All. A context

state is defined as the state of these variables at a given time. A user may define

preferences for an item for a given context state. An example on this could be

that a user prefers to go to indoor concerts if it is raining, and outdoor concerts if

it is sunny. This hierarchical structure would allow for relaxing of context states

if not enough recommended items for the context state in question was found. An

example could be if there are not enough concerts playing on a given Saturday then

recommendations for the whole weekend are given instead. This hierarchical and

context state model is then incorporated into a collaborative filtering algorithm

using a memory based approach. Individual preferences of each user are aggregated

into a common user profile, which then is used to create recommendations. This is

done using a least misery (see Section 2.2.2) approach combined with a fair design

method.

Wang et al. [15] uses a fuzzy bayesian network to infer if a user is in a given

state based on sensor data gathered from a mobile device. The characteristics of a

group are modelled as four separate parts: Leader, Expert, Social and Similarity.

Leader and Expert describes a single user whereas Social and Similarity describes

relationships between users. Expert and similarity are based on the content, Leader

and Social are based on the social structure of the group. These characteristics in

combination with the context state inferred is used to provide recommendations.
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2.1.6 Challenges with Recommendation Systems

Most approaches to recommendation systems comes with well known challenges

that should be tackled to ensure that a good result is attained. Some of these

challenges are the cold start problem, novelty and serendipity, popularity bias,

and implicit/explict data.

2.1.6.1 Cold start

One known challenge, especially when it comes to CF, is the cold-start problem.

When a new user joins the recommendation system, no information about his usage

habits or ratings are available. Therefore, finding users similar to him based on this

is impossible, and thus recommendations for him will be difficult to provide. The

same problem comes to light when a new item is put into the system. As no user

have rated or used the item yet, it probably won’t be picked for recommendation

by the algorithm as there is no way to connect it to a user. Solutions to the

cold start problem could be to ask a user to rate a subset of the items available,

or find items that he likes to establish a starting profile for him. In addition,

content based approaches could be utilized to overcome at least the new item

problem, for example by utilizing acoustic analysis (see Section 2.3.1) for music

recommendations or text analysis (see Section 2.3.2) for movie recommendations,

and then finding similar items to the new item and recommending them.

2.1.6.2 Sparse data

In a recommendation system, the user-item-rating matrix is usually sparse, mean-

ing that a user usually rates or interacts with only a very small subset of the

available items. This can lead to challenges when it comes to providing satisfy-

ingly accurate results.
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2.1.6.3 Novelty and Serendipity

The usual approach to recommendation system research has been to produce the

one with the most accurate recommendations based on metrics such as RMSE, not

the recommendations that are actually the most useful for a user. McNee et al.

[16] goes as far as saying that “not only has this narrow focus been misguided, but

has even been detrimental to the field”. An example on this would be a movie

recommendation system where the 7 last Harry Potter movies are recommended

because you watched the first Harry Potter movie. From a statistical perspective,

this might provide the most accurate results as it is likely they are the most similar

movies, however it might not be a very interesting choice for a user. This is similar

to a music recommendation system where only songs that you have listened to

before are recommended. While this might provide the most accurate results, it

might not be very interesting for a user. Users might not be interested in the items

that are most similar to what they have listened to before or the highest rated

items, they want recommendations for items that they wouldn’t have thought of

themselves. Another example on this would be a music recommendation system

that frequently produces only widely known artists. McNee et al. [16] describes a

system that recommends The Beatle’s “White Album” most frequently. As this is

a widely known album, it can be said that this is accurate. However, a user might

not get very much out of the recommendation, as a user most likely knew about

it from beforehand and has either chosen to listened to it or not.

These examples show that there is a need for serendipity and novelty in recommen-

dation systems, finding items that might be seen as surprising and not discovered

in other ways, and items that a user hasn’t encountered before. Celma [17] puts an

emphasis on the importance of focusing on artists on the long tail of the listening

count curve in a MRS, the lesser known artists.
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2.1.6.4 Popularity bias

A problem related to Novelty and Serendipity as described above is popularity

bias or, as it is more commonly referred to, the rich gets richer. This problem

often occurs in CF systems [17]. It is based on the fact that popular items have

more connections to other items in the dataset, and thus they are more likely to be

recommended. This might lead to more interesting items in the long tail being left

out because of these popular items. This popularity bias will reinforce itself when

the popular items are recommended, since the interactions with them will increase

and they will gain more connections in the dataset, and become recommended

even more often.

2.1.7 Implicit/explicit data

Generally, two types of data are being utilized in recommendation systems: im-

plicit and explicit data. Implicit data is data the system automatically gathers

about a user. This can be for example, how many times a user has listened to a

song, what books a user has bought, how much time a user has spent viewing an

item, or the time of day the user listened to what kind of music, just to give a few

examples. Explicit data is data the user explicitly give to the system. This can be

for example ratings of an item, a list of preferences on what kinds of items the user

likes or demographic information. In the recommendation system literature, there

is a heavy emphasis on explicit data and especially ratings to items. This emphasis

is mostly due to the Netflix challenge7 where the submission that would score the

best RMSE score on a predefined dataset of movies would win $1M. The Netflix

challenge resulted in a boom of research on recommendation systems, especially

Collaborative Filtering algorithms. Therefore, as the dataset was based on explicit

feedback, research on algorithms that utilize implicit feedback is lacking behind in

comparison. However, multiple solutions [18][17][19] are based on normalizing the

implicit feedback to behave as explicit feedback, and so, the algorithms developed

for explicit feedback systems can also be used for implicit feedback.

7http://www.netflixprize.com/
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2.1.7.1 Rating Normalization

As Celma [17] states, “it is common that a user’s listening habits distribution is

skewed to the right, so it shows a heavy-tailed curve”. A user typically listens to a

few artists a lot, whereas the rest have next to no listening counts in comparison.

An example of this can be seen in Figure 4.1, where the top 30 artists for a random

user and their respective play counts can be seen. In a traditional recommendation

system, these statistics tend to be more normalized, and in the case of an explicit

feedback recommendation system, in a predefined range. In an implicit feedback

recommendation system, there is no such predefined range; ratings (listen counts

in this case) can take on any positive value. Since a user can’t state anything

about an artist explicitly, there is no such thing as negative feedback in such a

system. A rating of 0 just means that a user have listened to the artist 0 times,

it doesn’t necessarily mean that the user doesn’t like the artist. To tackle these

challenges, there is a need to normalize the implicit feedback if traditional explicit

recommendation algorithms are to be applied.

2.2 Group Recommendation Systems

A Group Recommendation System (GRS) is a RS that provides recommendations

to a group of people instead of a single individual. There are two main approaches

of accomplishing this: calculating recommendations individually for each of the

members of the group, and then aggregating the individual results; or merging the

preferences of each of the members of the group, and then providing one set of

recommendations based on the merged profile. In either of the approaches, there

are many ways this merging can be accomplished [20]. This includes least misery,

average, and average without misery. The choice of aggregation strategies should

be decided based on the problem you are trying to solve, as there is no universal

best strategy that works in all cases.
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2.2.1 Average Aggregation

Average aggregation uses the average of the individual ratings for an item as a

final rating for that item. With this approach, nothing extra such as misery or the

dynamics between individual persons are taken into account, only the pure ratings

of the users. In some cases this might be to prefer, in other cases not.

2.2.2 Least Misery Aggregation

A least misery approach uses the minimum of the individual ratings of an item

as the group’s rating. This method basically says that a group is as happy as

its least happy member [20]. This might be a good strategy in some cases. For

example, if a member of a small group has an allergy to seafood, recommending a

seafood restaurant to that group might not be a good choice, even though the rest

of the group really want to go. However, this also means that one person with a

negative preference can decide the outcome of the recommendation even though

all the other members have a really positive preference to the item.

2.2.3 Average Without Misery Aggregation

With an average without misery approach, items with a rating below a threshold

for one of the users are excluded and the average of the rest of the items is used

as the score for the item. This approach is similar to the least misery approach in

that if a person has a really strong negative preference for an item, that item will

be excluded given that its rating is below the threshold. However this approach

might yield results that better reflect the wishes of all the members of the group

given that a proper threshold is chosen.
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2.3 Music Recommendation Systems

Recommendation Systems for Music (MRS) have increasingly become an impor-

tant part of music services. Services such as iTunes, Spotify, last.fm and Pandora

all incorporate music recommendations centrally in their user interface. With an

ever growing collection of music, these services compete in finding new and inno-

vative ways on how users can discover these wast amounts of data.

Celma [17] identifies three use cases typical for a MRS: neighbor finding, playlist

generation and artist recommendation. Neighbor finding consists of finding users

with a similar taste in music as you. Playlist generation usually means finding

songs to recommend for a user, but instead of just returning the top N songs,

songs that go well together are preferred. Artist recommendation usually consists

of finding artists based on a user’s profile, be it the artist with the highest predicted

rating or novel artists.

Different services apply a variety of techniques when it comes to the recommen-

dation process [21]. Some of them are acoustic analysis, text analysis, editorial

review, and the use of activity data.

2.3.1 Acoustic Analysis

Music can be recommended based on their acoustic characteristics such as rhythm

and beat. This can be used to find music that sound alike by comparing these

characteristics [22], or used to provide recommendations in different settings (for

example high beat music when a user is working out, and low beat when a user

wants to sleep). Acoustic Analysis have also been used to identify music char-

acteristics and map them to mood [23][24]. Feng et al. [25] analyze the tempo

and articulation of music and classifies it into four categories of mood: happiness,

sadness, anger and fear, and lets users browse the categories in a 3D visualization.
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2.3.2 Text Analysis

Music can be analyzed and recommended based on text related to the music.

Echo Nest8 analyzes millions of music related webpages. They look for mentions

of artists in the pages analyzed, and parse the language used around them [21]. The

parsed text is then used to find terms describing the artists such as noun phrases

that is related to the artist. The most used terms found, can then be used to for

example find similar artists. This data is also combined with structured data such

as data from musicbrainz9 and Wikipedia10 to further improve the results given.

2.3.3 Editorial review

The popular internet radio Pandora11 employs professionals to listen and catego-

rize music by their genome; 400 attributes in categories such as melody, rhythm

and lyrics. These music genomes are then used to provide recommendations by

finding music with similar properties as the given artist.

2.3.4 Activity data

In an approach where activity data is used, the recommendation system utilizes

data it knows about the user. For example, this can be ratings the user have given

to artists, how many times a user have listened to different artists, and likes on

Facebook. This activity data form the basis for recommendations when collabora-

tive filtering algorithms such as the k-nearest neighbor and Matrix Factorization

algorithms (see Section 2.1.2) are used. The use of activity data forms the basis

of the approach taken in this thesis. Examples of the use of activity data can be

seen in [19]; [26] and [17]; where listening records from services such as Last.fm,

Yahoo! Music and Douban are used as a basis for recommendation.

8http://echonest.com/
9http://musicbrainz.org/

10https://www.wikipedia.org/
11http://www.pandora.com
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2.3.5 Types of users

A challenge for a MRS is the variety of users it has to consider when making

recommendations. Emap International Limited12 performed a study to map the

music fan economy as explained by Jennings [27]. They categorized listeners into

four groups: savants, enthusiasts, casuals and indifferents. Savants represented

7% of music listeners, and they were characterized by their huge interest in music,

”everything in life seems to be tied up with music”. Enthusiast represented 21% of

the listeners, ”music is a key part of life but is balanced by other interests”. Casuals

represented 32% of the listeners, ”Music plays a welcome role, but other things are

far more important”. Indifferents represented 40% of the listeners, ”Would not lose

much sleep if music ceased to exist”.

This study shows that people have different ways to think about music. Enthu-

siasts and savants might prefer to try out new and little known artists, whereas

casuals might prefer well known artists and the latest ‘big hits’. With such a di-

verse user base, creating a music recommendation system that works well for all

of them is challenging.

12http://www.emap.com/





Chapter 3

Methodology

3.1 Design Science Research

This project was undertaken using an approach based on the Design Science Re-

search methodology. Design Science “seeks to create innovations that define the

ideas, practices, technical capabilities, and products through which the analysis,

design, implementation, and use of information systems can be effectively and ef-

ficiently accomplished.”[28]. Hevner et al. [29] provides a framework with a set of

seven guidelines on how to conduct design science research (see Table 3.1). Design

science evolves around creating an artifact and rigorously evaluating it. Four types

of artifacts are also described in [29]: constructs, models, methods and instantia-

tions. Constructs are defined as concepts or vocabulary used in IT related domains

(e.g. entities, objects or data flows). Models can be seen as a combination of con-

structs that are used to aid problem understanding and solution development.

Methods are guidance on the models to be produced (e.g. formal mathematical

algorithms, methodologies). Instantiations are working systems that demonstrate

that constructs, models and methods can be implemented in a computer-based

system.

21
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Guideline Description

Guideline 1: Design as an Artifact Design-science research must produce a
viable artifact in the form of a construct,
a model, a method, or an instantiation.

Guideline 2: Problem Relevance The objective of design-science research
is to develop technology-based solutions
to important and relevant business prob-
lems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of
a design artifact must be rigorously
demonstrated via well-executed evalua-
tion methods.

Guideline 4: Research Contributions Effective design-science research must
provide clear and verifiable contributions
in the areas of the design artifact, de-
sign foundations, and/or design method-
ologies.

Guideline 5: Research Rigor Design-science research relies upon the
application of rigorous methods in both
the construction and evaluation of the de-
sign artifact.

Guideline 6: Design as a Search Process The search for an effective artifact re-
quires utilizing available means to reach
desired ends while satisfying laws in the
problem environment.

Guideline 7: Communication of Research Design-science research must be pre-
sented effectively both to technology-
oriented as well as management-oriented
audiences.

Table 3.1: Design-science research guidelines [29]

3.1.1 Application to this project

3.1.1.1 Guideline 1: Design as an Artifact

In this thesis an artifact will be created and evaluated. An instantiation of a

web-based group recommendation system for concerts will be created and the

algorithms used will be outlined.
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3.1.1.2 Guideline 2: Problem Relevance

A group of people wanting to attend a concert together might have trouble finding

a concert they all would be happy with. A easy to use group recommendation

system could help ease this problem by providing recommendations for concerts

based on what music each of them likes. Music Recommendation Systems are

more and more becoming a vital part of popular applications such as Spotify and

iTunes. They assist users in music discovery, and thus provide them with a more

personalized user experience.

3.1.1.3 Guideline 3: Design Evaluation

The prototype will be evaluated rigorously by first performing a usability evalua-

tion using the System Usability Scale (explained in Section 3.3.1.1). Then follows

another period of development, before the quality of recommendations will be eval-

uated in a user centred way through a scenario based evaluation method (explained

in Section 3.3.2).

3.1.1.4 Guideline 4: Research Contributions

The algorithms utilized for the recommendation process are explained in detail,

both how they were designed and implemented. In addition to this, all source code

used is made available so others can test and verify the results.

3.1.1.5 Guideline 5: Research Rigor

This thesis explains both the implementation and design of the recommendation

algorithms implemented to make sure the outcome of the thesis can be reproduced.

Reproduction of the results is made easier by making the code-base open source.

The prototype is also evaluated using the System Usability Scale, and a Quality

Evaluation.
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3.1.1.6 Guideline 6: Design as a Search Process

This project is based on what was produced in the author’s fall semester project

[1]. A prototype of a concert recommendation system was developed based on the

k-Nearest Neighbor algorithm and empirically evaluated. The user interface of

the prototype was then improved based on the feedback from the evaluation. This

development period was followed by a user evaluation using the System Usability

Scale. Based on the outcome of this evaluation, changes were made to the user in-

terface, and the recommendation algorithm was improved. Finally an evaluation of

the finished prototype was undertaken. These steps show that multiple iterations

were performed to search for better solutions to the problem in questions.

3.1.1.7 Guideline 7: Communication of Research

This thesis contains both technical descriptions of the implementation of the pro-

totype (see Chapter 4 and Chapter 5), and a more general description and presen-

tation of its main functionality in Chapter 6. This thesis will be publicly available

through NTNU. All source code will be publicly available at Github with a GNU

General Public License (GPLv21) license for others to test, use and extend (see

Appendix B).

3.2 Evaluation tools

Vital to the Matrix Factorization algorithm described in Section 4.6.2, is the choice

of constants to be used in the process. Choosing the optimal constants will signif-

icantly increase the accuracy of the algorithm. Two methods were used for this:

Root Mean Square Error and n-Fold Cross Validation.

1http://www.gnu.org/licenses/gpl-2.0.html
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3.2.1 Root Mean Square Error

Root Mean Square Error (RMSE) is the root of the average squared error between

two sets as seen in Equation 3.1, where x is the original value and x̂i is the pre-

dicted value. RMSE is commonly used to find the average error between original

ratings and predicted ratings in recommendation systems, and can be seen as a

measurement on how accurate a recommendation system predicts its ratings.

RMSE =
√

1
n
×

n∑
i=1

(xi − x̂i)2 (3.1)

Often, RMSE is used in combination with n-Fold Cross Validation to find the most

optimal parameters for such algorithms.

3.2.2 n-Fold Cross Validation

n-Fold Cross Validation is usually used to tackle the well known problem of over-

fitting in statistical evaluation of recommendation systems and other estimation

systems. Let’s say that the performance of a recommendation system is to be anal-

ysed by calculating the RMSE between the known ratings in its dataset and ratings

it predicts. If the system is trained with all the data (or a too large portion) of

the ratings known, it is not unreasonable that the RMSE could be close to perfect;

the system would just return the already known ratings, not actually make any

predictions. In n-fold cross validation, this problem is overcome by splitting the

set of items into n parts (folds). In turn, every of the n folds is used a validation

set, whereas the other n−1 folds are used as a training set. The model is trained

with the training set, and the validation set is used to validate the model. The

final error estimate is then the average of the error estimate from the individual

folds. By choosing an appropriate n (10 is frequently used), the model is evaluated

with actual predictions and not just predict ratings it already knows.
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This technique is used in this thesis to tune the Matrix Factorization algorithm

(see Section 5.4.3.1), by running it for different input parameters and choosing the

ones that yielded the lowest RMSE.

3.3 Evaluation plan

The prototype will be evaluated in two steps. After the first period of development,

the usability of the prototype will be evaluated using the System Usability Scale

(SUS). After the second development period, the quality of the recommendations

will be evaluated using a Quality Evaluation survey.

3.3.1 Usability Evaluation

After the first period of development, 15 users will be asked to play around with

the prototype and answer three questionnaires, the System Usability Scale (SUS),

an Application Specific survey (AS) and a questionnaire to gather Background

Information (BI). The System Usability Scale is used to evaluate the usability

of the prototype as explained in Section 3.3.1.1. The Background Information

(BI) schema is used to find out background information about the users, such as

their demographics and previous experience with recommendation systems. The

BI schema used can be seen in Appendix 7.2. The Application Specific Survey

(AS) asks more application specific about the prototype’s usability than the SUS

survey. The AS schema used can be seen in Appendix A.2.

The participants will be asked to undertake the following steps:

1. Answer the Background Information schema (see Appendix 7.2).

2. Create a user

3. Find recommendations for both a group of users and only the user that was

created (no information about dates or location was specified here)



Chapter 3. Methodology 27

4. Adjust the results to include nearby location and dates (relax context)

5. Answer the System Usability Scale schema (see Appendix A.1).

6. Answer the Application Specific Survey (see Appendix A.2).

3.3.1.1 System Usability Scale

Brooke [30] states that the System Usability Scale is a “reliable, low-cost usability

scale that can be used for global assessments of systems usability”. It gives a global

view of subjective assessments of usability. It contains ten statements where the

participants indicate how much they agree or disagree with the statement on a 5

point scale. These statements can be seen in Appendix A.1. The individual scores

to these questions forms the basis for a final score, the SUS score, that can help

determine the usability of an application.

Figure 3.1: SUS adjective rating scale (Bangor et al. [31])

The SUS score is as a single number that is ”representing a composite measure

of the overall usability of the system being studied”. Question 1, 3, 5 and 7

contributes to the final score with the score position minus 1. Question 2, 4, 6 and

8 contributes with 5 minus the score position. To get the final SUS score, this sum

is multiplied with 2.5. The final SUS score will be a number between 0 and 100.

Bangor et al. [31] proposes an adjective rating scale (see Figure 3.1) to help deter-

mine what SUS scores actually mean. They show that this Likert scale is highly

correlated with SUS scores (α< 0.01 with r = 0.822). Bangor et al. [32] adds to this

by stating that “products with scores above 70 are at least passable, better prod-

ucts have a score in the high 70s to upper 80s, and truly superior products score
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better than 90. Products with a score below 70 should be considered candidates

for increased scrutiny and continued improvement”.

3.3.2 Quality Evaluation

To evaluate the quality of the recommendations given by the prototype, two groups

of students will be asked to participate. First, for both the groups, each of the

members of the group will be asked to:

1. Create a user and rate 5 of your favorite artists

2. Find recommendations for the user created between 18/02/2014 and 03/03/2014

in London

3. Find recommendations for the user created between 05/03/2014 and 09/07/2014

in New York

4. Create a new user and rate 10 of your favorite artists.

5. Find recommendations for the new user between 18/02/2014 and 03/03/2014

in London

6. Find recommendations for the new user between 05/03/2014 and 09/07/2014

in New York

7. In a group of 2, find recommendations between 18/02/2014 and 03/03/2014

in London

8. In a group of 2, find recommendations between 05/03/2014 and 09/07/2014

in New York

9. In a group of 3, find recommendations between 18/02/2014 and 03/03/2014

in London

10. In a group of 3, find recommendations between 05/03/2014 and 09/07/2014

in New York
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After every task, the users will be presented with three sets of recommendations

(cases), one for each of the three algorithms implemented. The users will then

be asked to rate each of the cases on a scale from 1 to 5 on how satisfying the

recommendations given were, where 1 is Very Satisfied and 5 is Very Dissatisfied.

The user will also be asked to choose which of the cases looked most appealing.

The schemas, including the questions asked, used for this evaluation can be seen

in Appendix C.2.





Chapter 4

Design of Recommendation

Algorithm

4.1 Requirements

In the previous work on this project (described in Section 1.2), the following sce-

nario that describes how a group recommendation system for concerts could be

used, was presented:

Imagine that a group of friends are attending a one-day music festival

with a lot of different bands performing. Their tastes in music are quite

different, so choosing what concerts to attend is a challenge. Also, they

are not familiar with a lot of the bands playing. They would love an

application that would give them recommendations for which concerts

to attend based on what sort of music they have listened to before, and

their personal musical preferences. One of the group members heard

that other bands were playing nearby but not as part of the festival, so

they would also like to get recommendations for nearby concerts that

are not part of the festival. Additionally, the group is in town for a

week, so they would like to get recommendations for both the day of the

festival and for the remainder of the trip.

31
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ID Requirement

R1 Concert recommendations should be based on a user’s listening habits.
R2 The prototype should take the location of a concert into account (concerts

close to a user are preferred).
R3 The prototype should be able to provide recommendations for more

widespread locations if not enough concerts are found for the given lo-
cation.

R4 The prototype should take time into account; it should not recommend
concerts that already have taken place or concerts too far ahead in time.
It should recommend concerts within the users provided time constraints
if such is provided.

R5 If not enough concerts are found within the given time frame, the time
constraint should be relaxed.

Table 4.1: Prototype requirements

From this scenario, five requirements for the final prototype were extracted as

seen in Table 4.1. The same requirements will also be used in this thesis. As

suggested by the previous work done on this prototype, there is a need to improve

the outcome of the recommendation algorithms implemented. Therefore, ways

to improve the recommendation algorithms will be investigated, the prototype

will implement the proposed algorithms, the usability of the prototype will be

improved, and the prototype will be thoroughly evaluated. The project will be

following the Design Science Research paradigm.

4.2 Design approach

For the purpose of the design of the recommendation algorithm, a CRS is defined

as seen in Definition 4.1.

Definition 4.1. In a Recommendation System for Concerts (CRS), a set of concerts,

C; artists, A; and users, U; are used to provide concert recommendations for a

user u. Each of the concerts have a set of artists performing. Each of the users in

U have given a rating to a subset of the artists. A group, G ⊆U, consists of one

or more users. A set of context parameters CP(location, time) is defined, which

the concerts recommended should adhere to. The goal of the recommendation
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system is to provide the top N most relevant concerts C′ ⊆ C for G as a whole that

adhere to the context applied, CP, and the ratings, R, each of the members of G

previously have given.

In this project, three main algorithms were implemented and used for the recom-

mendation process. A k-Nearest Neighbor algorithm was implemented, finding the

k most similar users to the user finding recommendations, then using the artists

these users have listened to and using them for recommendation. A Matrix Fac-

torization algorithm utilizing a Gradient Descent (GD) method was implemented,

reducing the NxM artist listening matrix into two matrices Nxf and Mxf which

then can be used to predict ratings of the original matrix, including for records

not present in the original matrix. The third algorithm implemented is a hybrid

approach between these two, combining the results given by both of them.

The recommendation part of this project consists of five main phases:

1. Context definition

2. Listen count normalization

3. Filter dataset

4. Calculate individual recommendations

5. Make Hybrid recommendations.

In phase one, context definition, the context to be applied to the recommendation

process is defined. The context in this project is defined as the location and time

of a concert, in addition to the users requesting the recommendations. In phase

two, the number of times a user has listened to each of the artists are normalized

for the algorithms to work optimally. In phase three, the dataset is filtered, so that

only items that have an impact on the result will be considered. In the calculate

individual recommendations phase, the top N concerts for each of the members

of the group defined in phase one is found, using the k-Nearest Neighbor and MF

algorithms. Phase five consists of making Hybrid recommendations by aggregating
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the results given from the previous phase into a single list of recommended concerts

for all of the members of the group.

4.3 Phase 1: Context definition

The context parameters CP are defined as (location, time). In a CRS, the location

and time plays an important role in the recommendation process. A user would

probably want to get recommendations for concerts in locations close to where he

is located, and not get recommendations for concerts too far ahead in time, or for

concerts that already have taken place. Therefore, the definition of these context

parameters should be a central part of any CRS.

As the algorithms applied in this project are based on algorithms used for rec-

ommendation systems with explicit feedback, there is a need to normalize the

listening counts to a predefined scale so that the algorithms can work optimally.

4.4 Phase 2: Listen Count Normalization

The approach taken to listening count normalization in this thesis, is the one

proposed by Celma [17]. For each user, u, its listening counts for each artist, a, is

normalized using the Cumulative Distribution Function (CDF) of the artist plays

for u. The play counts for the user simensma can be seen in Figure 4.1, whereas

the associated CDF can be seen in Figure 4.2. The CDF for a variable x, F(x), is

the proportion of population with a value less than x.

As explained in Section 2.1.7.1, the listening habits for a user tends to be skewed.

A user tends to listen to a few artists a lot. It can be said that the listening curve

for the user tends to be heavy-tailed. To check if the listening count curve for

a user has heavy-tailed properties, the coefficient of variation, CV , is calculated.

CV is the standard deviation of the user’s listening counts divided by its mean.
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Figure 4.2: Cumulative Distribution Func-
tion with rating partitions for the listen

counts for a user

CV = σ

µ
(4.1)

If CV > 0.5, then the CDF, F(x), of the user listening counts for u is calculated.

The artists in the top 90% of this distribution will be assigned a rating of 10, the

top 80% a rating of 9, the top 70% a rating of 8, and so on until the artists at the

bottom 10% of the distribution will get a rating of 1.

If CV ≤ 0.5, then all artists will get a normalized rating of 5 as this is a signal of

that the listen count curve is not heavy-tailed.

To model the CDF for a user, F(x), the formula proposed by Kilkki [33] as seen

in Equation 4.2 is used. N50 is the number of objects that cover half of the whole

volume, α is the factor that defines the form of the function, β is the total volume

of the function, and x is the listening count to be normalized.

F(x)= β(
N50

x

)α
+1

(4.2)
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4.5 Phase 3: Filter Dataset

In the filter dataset phase, the dataset is filtered so that only records adhering to

CP remains for processing by the rest of the algorithm.

Definition 4.2. The function f ilter(Con ⊆ C,CP) returns the concerts C′ ⊆ C that

adhere to each of the context parameters CP given.

Definition 4.3. The function l istenedTo(u′ ∈U ,a ∈ A) returns whether or not the

user u′ has listened to the artist a.

The algorithm first reduces the data set to only contain the concerts in C that

adhere to CP.location and CP.time.

C′ ⊆ C = f ilter(C,CP) (4.3)

The context defined in the previous phase is applied to the dataset, filtering the

dataset to only contain records that will have an impact on the final outcome of the

recommendation process. In a MRS, normally all the available artists have to be

considered to find the ones that are best fitting. The approach taken, suggests that

only the artists playing at the concerts given in C′ have to be considered, as the

ones not part of it would not have an effect on the final result. The rating procedure

for an artist is not directly dependent on the rating procedure for another artist,

and therefore only the artists and concerts fitting with CF will have an impact.

This gives the following reduced set of artists A′ to consider for the individual

recommendation phase.

A′ = {
a :∀c ∈ C′∀a ∈ c

}
(4.4)
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4.6 Phase 4: Calculate Individual Recommenda-

tions

When the listen counts for the users have been normalized and the dataset has been

filtered, two algorithms are applied to the dataset to predict ratings for each of

the relevant artists: a k-Nearest Neighbor collaborative filtering algorithm, and a

Matrix-Factorization algorithm using a Gradient Descent method. The normalized

listened counts from phase 2 will in this section be referred to as ratings, as they

now have been normalized to the range 1-10.

4.6.1 k-Nearest Neighbor

The k-Nearest Neighbor algorithm is split into two phases:

1. Filter dataset

2. Recommend concerts

4.6.1.1 Filter Dataset

In a kNN approach, the k Nearest Neighbors of u is found and used as a basis for

recommendation. For simplicity reasons, we state that a user that hasn’t listened

to any of the artists in A′ cannot be considered by the algorithm. This can be

done because a user that hasn’t listened to any of the artists in A′, could only

contribute with a listening count of 0 to all of them, and therefore the user might

as well be left out (see Section 4.6.1.2).

Since the set of artists that is considered in the algorithm has been reduced to the

set of artists A′ playing at one of the concerts in C′, implicitly, the set of users

considered for the algorithm can be reduced to the set of users that have listened

to one or more of the artists in A′.

U ′ = {
u′ :∀u′ ∈U∃a ∈ A′l istenedTo(u′,a)

}
(4.5)
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4.6.1.2 Recommend Concerts

In a kNN algorithm, the k most similar users to u are found, and their ratings are

used as a basis for recommendation. To find these similar users, a measurement

of similarity between two users has to be designed.

The similarity measure chosen in this project, is the cosine similarity between two

user’s listening count for each artist. The cosine similarity between two vectors x

and y is defined as:

sim(x,y)= cosθ = x ·y
‖x‖×‖y‖ (4.6)

Definition 4.4. The function l istenCount(u′ ∈ U ,a ∈ A) returns the amount of

times u′ have listened to a.

The user vector wi for a user ui ∈U is defined as the vector of the users listening

counts to each of the artists in A.

wi = {l istenCount(i,a) : a ∈ A} (4.7)

For all unique pairs of users, the cosine similarity between their respective listening

vectors is calculated.

The similarity between two users, sim(u1,u2) then becomes

sim(u1,u2)= sim(w1,w2)= w1 ·w2

‖w1‖×‖w2‖
=

n∑
i=1

w1i ×w2i√
n∑

i=1
(w1i)2 ×

√
n∑

i=1
(w2i)2

(4.8)

In a normal k-Nearest Neighbor algorithm, the k users with the highest similarity

would now be identified and used as a basis for recommendation. For the purpose
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of a CRS, this isn’t enough. Here, a rating for each of the concerts, ci, in C′ has

to be predicted. Therefore, a 3 step process is undertaken for each of the concerts:

1. Find the K users, U ′′, with the highest similarity to u from the subset of U ′

that have listened to one or more of the artists performing at that concert.

2. Calculate the predicted rating for each of the artists a playing at the concert.

totalSimilarity is defined as the sum of similarities to u from each of the

users in U ′′. Each of the users, ui in U ′′, will contribute to the predicted

rating with a percentage of sim(ui ,u)
totalSimilarity . The actual contribution is influ-

enced by the rating given to a by ui, so this is multiplied with rating(ui,a).

The predicted rating for an artist i will then be:

artistRating i =
n∑

j=1

sim(u j,u)× l istenCount(u j,ai)
totalSimilarity

(4.9)

3. The overall predicted rating for the concert ci as a whole for user u is given

by the average of the predicted ratings to each of the m artists performing

at ci.

knnRatingu
ci
=

m∑
k=1

artistRatingk

m
(4.10)

4.6.1.3 Choice of Aggregation Strategy

An average aggregation strategy is used to aggregate individual ratings into a

combined rating for a concert in step 3 of the algorithm in the previous section. In

a MRS utilizing implicit feedback, there is no such thing as negative preferences.

A listen count of 0 doesn’t necessarily mean that a user doesn’t like the artist, just

that the user hasn’t listened to the artist before. The user might love the artist

but he hasn’t discovered it, or he might hate it; it’s impossible to know for certain.

Similarly, a low listening count might not mean that a user doesn’t like the artist,

he might just recently have discovered the artist, or just recently joined the system.

Again, it is impossible to know. Based on this, the use of misery in an aggregation
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method would here not make sense, as it is designed to avoid misery; which in this

case doesn’t exist. Therefore, an average strategy was utilized instead.

4.6.2 Matrix Factorization

The approach to Matrix Factorization (MF) taken in this project is similar to what

Koren et al. [6] describes in their paper, and the algorithm outlined by Funk [34].

The algorithm was made popular by Simon Funk as a submission for the Netflix

challenge1, that was a competition to produce the most accurate predictions for

movie ratings in the Netflix movie dataset.

This approach is closely related to a SVD approach such as the traditional approach

described in Chapter 2.1.3.1. For a traditional SVD approach, missing values in

the user-item matrix either have to be guessed first or the rows and columns

left out, as the SVD requires complete data [35]. This makes such an approach

infeasible, as the user-item matrix for the purpose of this thesis is very sparse.

The approach taken in this paper takes this into account, and is able to make

reasonable predictions in cases where ratings are missing.

As Koren et al. [6] explains: ”Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f , such that user-item interactions

are modelled as inner products in that space.” A latent factor is a variable that

is not observed externally but inferred from the external observed variables of a

data set. Latent factor models tries to extract these latent factors and use them to

produce recommendations instead of the actual values of the user-item matrices.

These models can then be used to predict a rating for a user-item pair, even if

the rating was not present in the matrix before. In this thesis, the items are the

artists of the dataset.

Similarly to what Koren et al. [6] does, the n×m user-artist matrix M is reduced

into a set of user vectors, V , where Vi ∈R f and artist vectors, B, where Bi ∈R f . f is

the number of latent factors to extract (dimensionality of the latent factor space).

1http://www.netflixprize.com/rules
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In this thesis, the user-artist matrix consists of the normalized listen counts for all

of the users in U and the artists in A.

To approximate a user u’s rating for an artist a, rua, the dot product between u’s

and a’s latent factor vectors, VuBa, is performed. As Koren et al. [6] says: this dot

product ”captures the interaction between user u and item i - the users’ s overall

interest in the item’s characteristics”.

rua = BT
a Vu (4.11)

B and V are found by minimizing the regularized squared error of the existing

ratings in the dataset (R) as seen in Equation 4.12. These ratings make up the

training set T; the pairs of artists a and users u, (u,a), where rua ∈ R.

min
B∗,V∗ =

∑
(u,a)∈T

(Rua −BT
a Vu)2 +λ(‖Ba‖2 +‖Vu‖2) (4.12)

The minimization of Equation 4.12 is done by using the gradient descent method

proposed by Funk [34]. For each of the user-artist pairs (u,a) in the training set

T of ratings, the prediction error eua is calculated. eua compares the existing

rating Rua with the predicted rating rua. If Rua doesn’t exist, Rua is set to be

the average of all the ratings a has received.

eua = Rua − rua (4.13)

The associated features Ba and Vu are then incremented as follows:

Ba = Ba +γ · (eua ·Vu −λ ·Ba) (4.14)

Vu =Vu +γ · (eua ·Ba −λ ·Vu) (4.15)
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γ and λ are constants that should be determined based on the dataset by for

example cross validation.

γ is by Funk [34] referred to as the learning rate, an arbitrary number that can be

set to tune how fast and thus how precise the outcome should be. λ is referred to

as K, an arbitrary number that is used for regularization to reduce overfitting of

the results.

The calculation of eua,Ba and Vu, is repeated for each feature to be extracted, until

the total Root Mean Square Error (RMSE) of e converges. The RMSE converges

when the improvement in RMSE compared to the previous iteration is less than

a set threshold; minimum improvement.

Having calculated V and B, the predicted ratings of all of the artists in A′ are

calculated for u.

Finally, a rating for each of the concerts ci in C′ is calculated.

The overall predicted rating for the concert ci as a whole for user u is given by

the average of the predicted ratings to each of the m artists performing at ci.

mf Ratingu
ci
=

m∑
k=1

ruk

m
(4.16)

4.6.2.1 Other applications

The latent factors can also be used to find the similarity between two users u1

and u2, by calculating the cosine similarity between the two users latent factor

vectors sim(Vu1,Vu2):

sim(u1,u2)= sim(Vu1,Vu2) (4.17)

They can also be used to find the similarity between two artists a1 and a2,

by calculating the cosine similarity between the two artists latent factor vectors

sim(Ba1,Ba2):
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sim(a1,a2)= sim(Ba1,Ba2) (4.18)

4.7 Phase 5: Make Hybrid recommendations

The predictions given by the algorithms in the previous two sections are in this

phase aggregated to produce the final top N concerts to return to the user. For

each of the concerts, ci, in C the final rating for the concert for u, ruci ∈ Ru is

given by:

rui c =
mf Ratingu

ci
+knnRatingu

ci

2
(4.19)

The N concerts with the highest rating ruci in R are selected and returned to the

user.





Chapter 5

Architecture and Implementation

5.1 Development environment

A wide range of tools were used in the development process of the prototype.

Development in Java was done in the Eclipse1 IDE. Dependency management and

the build process of the Java project was handled with Apache Maven2. The front

end part of the project was developed using Visual Studio 20133. The build process

for this part was performed using grunt, a JavaScript task runner that performs

tasks such as compilation, unit testing, linting, and minification [36]. By using

grunt and Maven, repetitive tasks that otherwise would have been done manually,

was automatically performed.

For evaluation purposes, the project was deployed to a 12GHz/2560MB cloud

server running Debian 74, with the Node.js5 http-server6.

1http://www.eclipse.org/
2http://maven.apache.org/
3http://www.visualstudio.com/
4https://www.debian.org/
5http://nodejs.org/
6https://www.npmjs.org/package/http-server

45
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5.2 Architecture

The application is divided into a Front End and a Back End part. The back end

is a Java application exposing a JSON REST interface. This was done to ensure

maximum flexibility when it comes to choice of front end technologies. The front

end is a pure HTML and JavaScript application utilizing AJAX to communicate

with the back end.

5.2.1 Front End

The front end of the prototype was developed using HTML5, JavaScript/JQuery

and CSS3. It is based on a Model View ViewModel design pattern and is built

using the Durandal.js JavaScript framework.

5.2.1.1 Model View ViewModel

Model View ViewModel (MVVM) is a design pattern that splits the source code

into Models, Views and ViewModels [37] as seen in Image 5.1. A Model contains

the data and business logic of the application, whereas the View is responsible for

the GUI part of an application; all the visual elements and capturing of keystrokes.

The Model is completely separate from the View, and thus, either of them can

easily be switched out if needed.

Figure 5.1: The Model View ViewModel pattern (based on Gossman [37])
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The ViewModel is the glue that connects the model and the view. In simple

applications, the controls of the view can simply display what the model contains,

the model is directly bound to the view. However in most applications, more logic

is involved. The ViewModel can be looked on as the middle man that converts data

from the model into data that can be displayed by the view. It can be said that it

”exposes data needed by a view (from a model) and can be viewed as the source

the views go to for both data and actions” [38]. To interact with the Model, the

View utilizes commands the ViewModel provides [37]. This mapping from a View

control to a ViewModel command, is called a data-binding. The main interactions

between these components can be seen in Image 5.1. The View communicates

with the ViewModel through data-bindings and commands, and the ViewModel

updates the Model based on these. When the model changes, the ViewModel is

notified and reacts to these changes. When the ViewModel changes, the changes

are propagated to the View.

5.2.1.2 Durandal.js

define([’artist’,’knockout’], function(artist,ko) {

...

});

Listing 1: Simple Durandal module

Durandal.js is a framework for building Single Page Applications in JavaScript. It

is built on JavaScript frameworks such as jQuery, Knockout.js and RequireJS[39].

Durandal is module based, which means that you can split your JavaScript code

into multiple modules, and let Durandal take care of the loading and dependency

handling between them. This is done utilizing the functionality of the RequireJS

framework, which is a JavaScript library that handles loading of files and modules

[40]. A module is defined as a pair consisting of a ViewModel (JavaScript file)

and a View (HTML file). The View is just a plain HTML file that can utilize the

properties and functions defined in the ViewModel. The basic syntax of a View-

Model can be seen in Listing 1. Durandal and RequireJS will here automatically
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load the artist and knockout modules specified by [’artist’,’knockout’], and inject

them into the function passed as arguments when the module is loaded.

/** artist.js */

/*

* Function that defines an artist

*/

function Artist(artistName){

this.artistName=artistName;

}

/** user.js */

/*

* ViewModel with properties and functions that will be exposed to the View

*/

define([’knockout’,’artist’],function(ko, artist){

var self=this;

self.newArtist=ko.observable();

self.name=ko.observable("Simen");

self.username=ko.observable();

self.listenedTo=ko.observableArray([new Artist("Eminem"),

new Artist("Metallica"),

new Artist("U2")]);

self.addArtist=function(){

self.listenedTo.push(new Artist());

self.newArtist(null);

}

self.removeArtist=function(artist){

self.listenedTo.remove(artist);

}

self.activate=function(username){

self.username(username);

}

});

Listing 2: User ViewModel

For this prototype, a Model View ViewModel pattern was utilized using Duran-

dals Knockout.js support. The view part of the MVVM pattern is in Knockout.js

one or more html files that through data-bindings communicate with the View-

Model, be it directly to underlying data or to methods exposed. In Knockout.js

these ViewModels are implemented in JavaScript. In Knockout.js, the underlying

data-bindings are two-ways, so if the state of the ViewModel changes, the View
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will automatically be updated. Likewise, if the state of the View changes, the

underlying ViewModel will change as well.

<!-- user.html -->

<!-- Display the name and username for the user specified -->

<div>Name: <span data-bind="text:name"></span></div>

<div>Username: <span data-bind="text:username"></span></div>

<!-- Display the artist name for each of the artists in the listenedTo array -->

<ul data-bind="foreach:listenedTo">

<li data-bind="text:artistName, click:removeArtist"></li>

</ul>

<!-- Bind the value of the input field to the newArtist text field, run the

function addArtist when the enter Key is pressed -->

Add artist: <input type="text" data-bind="value:newArtist, enterKey:addArtist"/>

Listing 3: User View

In the example shown in Listing 2 and 3, a simple user view is created that dis-

plays the name, username, and what artists a user has listened to. Artists can

dynamically be added and removed from that list. The ViewModel as seen in

Listing 2, is wrapped in a Durandal module. It specifies what data and functions

should be accessible from the view specified in Listing 3. The ko.observable() and

ko.observableArray() statement used in the ViewModel are ”special JavaScript

objects that can notify subscribers about changes, and can automatically detect

dependencies”[41], which means that when these properties changes, the HTML

elements bound to these properties through the ‘data-bind’ attribute will automat-

ically be updated. This example is a stripped down version of how the prototype

utilizes Knockout.js. The prototype additionally utilizes more advanced data-

bindings and self defined Knockout data-bindings, to interact with third party

libraries [42].

/** shell.js */

router.map([

{route: ’user/:username’, title:’User’, moduleId: ’viewmodels/user’},

{route: ’artist/name/:artistName’, title:’Artist Page’,

moduleId: ’viewmodels/artist’}

]).buildNavigationModel();

Listing 4: Simple routing in Durandal

Another central feature of Durandal is its routing capabilities. The routing func-

tionality allows for easy building of Single Page Applications by making it easy to
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define what modules are loaded when a specific URL is navigated to. Listing 4

shows an example on how the routing can be used in practice. If a user navigates

to http://www.yourwebsite.com/#artist/name/Metallica, the artist module will

be loaded and information about Metallica would be displayed. As seen, user-

specified parameters can be defined using the :VAR syntax. These variables can

be accessed by creating an activate function as seen in Listing 2, where the URL

parameter, username, defined in Listing 4, is accessed and can be used for further

processing. These routes can also be defined using regular expressions.

5.2.2 Back end

The back end is a Java Representational State Transfer (REST) service. It is

based on the Jersey7 REST framework and utilizes a layered architecture. The

application is split into three layers: the view, business logic, and data access

layers, as seen in Figure 5.2.

Figure 5.2: Layered architecture of the
back end

Figure 5.3: Back end package structure

The view layer primarily takes care of how the application looks for a user, be it

a human or a computer. The business layer acts as a processing layer between

the view and the model layer, it is here all the business logic such as similar-

ity and feature calculation resides. The model layer is responsible for persistent

7https://jersey.java.net
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storage and handling of the data the application uses. From the Java package

structure seen in figure 5.3, it can be seen that the application is divided into

three main packages: edu.ntnu.grouprec.business, edu.ntnu.grouprec.dataccess, and

edu.ntnu.grouprec.view.

All the business logic, including calculation of recommendations, resides in the

edu.ntnu.grouprec.business package; the REST service in the edu.ntnu.grouprec.view

package; and communication with the database and external services in the edu.ntnu.grouprec.dataccess

package. In addition, the edu.ntnu.grouprec.model and edu.ntnu.grouprec.util pack-

ages contains utility classes and classes that facilitates communication between the

layers.

5.2.2.1 Representational State Transfer

Representational State Transfer (REST) is an architectural style of networked

systems [43]. It is based on the characteristics described by Fielding [44] as seen

in Table 5.1.

Item Description

Client-Server The user interface is separated from the data storage. The two
components can therefore evolve independently, and Internet-scale
applications can be achieved

Stateless Communication between the client and the server must be state-
less. A request from a client must ‘’contain all of the information
necessary to understand the request, and cannot take advantage
of any stored context on the server”.

Cache Responses must have the capability of being cacheable or non-
cacheable to improve network efficiency.

Uniform Inter-
face

A RESTful application must have a standard, uniform interface
between components.

Layered System A RESTful web-service must be designed so that components
(such as a proxy server or load balancers) can be placed between
the client and the server in a way that the client won’t notice that
it is there.

Table 5.1: REST characteristics as described by Fielding [44]
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5.2.2.2 Jersey

The back end is written in Java, and is exposing a REST interface utilizing the

Jersey REST framework8. Jersey supports and extends JAX-RS9 and provides a

simple syntax for writing RESTful web-services. Listing 5 and 6 show the proto-

type REST support for retrieving user-data and creating a new user respectfully.

The @GET/@POST annotation specifies that this method should be activated

only on HTML GET/POST requests. @Path specifies what URL should trigger

the method. @Produces specifies what sort of data the response contains. @Con-

sumes specifies what format the data in the request body is in. Jersey allows

for automatically parsing of the data in the body of the request, so in the exam-

ple in Listing 6 where it is specified that the request body should contain JSON

data (through @Consumes), Jersey will automatically parse this JSON data into

a UserWrapper and it will be given as an argument for the method.

/** RestService.java */

/**

* Method that handles GET requests for a user based on a username.

* @return Response that contains a user parsed as JSON.

*/

@GET

@Path("/user")

@Produces(MediaType.APPLICATION_JSON)

public Response getUser(@QueryParam("username") String username) {

try {

UserWrapper u = userProvider.getUser(username);

if (u == null)

return Response

.status(404)

.entity("User with username: ’" + username +

" could not be found")

.build();

return Response.status(200).entity(u).build();

} catch (Exception e) {

e.printStackTrace();

return responseError;

}

}

Listing 5: REST interface for retrieving a user

8https://jersey.java.net/
9https://jax-rs-spec.java.net/
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/** RestService.java */

/**

* Method that handles POST requests to create a user.

* @return Response status 200 if user was successfully created

*/

@POST

@Path("/createuser")

@Consumes(MediaType.APPLICATION_JSON)

public Response createUser(UserWrapper s) {

try {

userProvider.saveUser(s);

System.out.println("CREATED USER"+s.getUsername());

return Response.status(200).entity(s.getUsername()).build();

} catch (Exception e) {

e.printStackTrace();

return responseError;

}

}

Listing 6: REST interface for retrieving a user

5.3 Dataset

A dataset was created for the purpose of this project using data from the popular

music service Last.fm10. The data was fetched using Last.fm’s publicly available

API11. The dataset, as seen in Table 5.2, consists of 2891 concerts in Vancouver,

New York, London, Oslo, and surrounding areas; between 18. February 2014 and

6. June 2014; the artists that is performing at these concerts; users that have

listened to these artists; and the top artists these users have listened to.

The dataset was built by first fetching concerts within a 100km radius from the

specified cities using the Geo.getEvents(location, radius) call. Then, information

about the artists performing at those concerts was fetched using the Artist.getInfo(artist)

call. Users that have listened to the artists found, were then fetched using the

Artist.getTopFans(artist) call, before the 30 most listened to artists for each user

are fetched and saved using the User.getTopArtists(username) call. In addition

to these data, information about the venue each concert is held at, and the most

used tags for each artist were added using similar calls. Usage of the algorithms

presented in Section 4.6 created additional data present in the dataset: 17025096

10http://www.last.fm
11http://www.last.fm/api
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Property Column Count

Users user 25720
Artists artist 80877
Concerts concert 2891
Listening counts artistlistenings 769370
Tags tag 159348
Tags for artists artisttag 1358715
Artist concert participation concertparticipation 6845
User similarities usersimilarity 17025096
Venues venue 596
User features userfeatures 17025096
Artist features artistfeatures 5085312

Table 5.2: Dataset properties

cosine similarities between users for the K-nearest neighbor algorithm; and 1648320

user features and 5085312 artist features for the MF algorithm.

The dataset was created using a MYSQL database with the database schema seen

in Figure 5.4.

The dataset used is not distributed as part of this project due to LastFm’s licensing

agreement, however code to build a similar dataset is provided (see Appendix B).
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Figure 5.4: Dataset schema
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5.4 Recommendation Algorithm Implementation

The k-Nearest Neighbor and Matrix Factorization algorithms described in Sec-

tions 4.6.1 and 4.6.2 both have parts that are resource intensive. Therefore, the

algorithm described in Section 4.2 is split into two parts, an offline resource in-

tensive part, and an online part performed on the fly. The main workflow of

the algorithm can be seen in Figure 5.5. Normalization of ratings, calculation of

similarities between users for the kNN algorithm, and calculation of user/artist

features for the Matrix Factorization algorithm, are performed offline; whereas the

actual prediction of ratings is performed online on the fly. The algorithms have

their own pre-calculation and rating-prediction steps, the other steps are similar

for both algorithms.

Figure 5.5: Algorithm flow chart
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5.4.1 Rating Normalization

The rating normalization part explained in Section 4.4, is performed using the

code provided by Celma [17] (the original code can be found on GitHub12). This

code is written in the R statistical programming language 13.

To be able to use the F(x) function, values to use for α, β and N50 have to be

estimated. This is done by fitting the listen counts for the user to F(x), using

the Gauss-Newton non-linear least squares regression model nls in R, as seen in

Listing 7.

#vector with the cummulative sums of listenCounts

cum = cumsum(as.numeric(listenCounts))

#vector with the cummulative sums of listenCounts as percentage of total

cum_pcnt = cum / cum[length(cum)] * 100

startN50 = N50(cum_pcnt)

startBeta = 1

startAlfa = 0.75

rank = 1:length(listenCounts)

dataset = data.frame(cum_pcnt)

#Fit cum_pcnt to the CDF function for heavy-tailed curves, F

fit = nls( cum_pcnt ~ F(rank, n50, beta, alfa), data = dataset,

start = list(n50=startN50, beta=startBeta, alfa=startAlfa) )

Listing 7: Fitting listen counts to F(X) with non-linear least squares in R
(based on Celma [17])

5.4.2 User Similarity Calculation for k-Nearest Neighbor

The offline part of the kNN algorithm consists of calculating user similarities.

This is done as described in Section 4.6.1.2, by calculating the cosine similarity

between their respective listen counts. The database stores all similarities greater

than zero. A missing similarity record can therefore be seen as an indication that

the similarity between the two users is zero. It is important to note here that

similarities between users are stored twice, similarities between users a and b are

12https://github.com/ocelma/long-tail-model
13www.r-project.org/
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stored both as (a,b, similarity) and (b,a, similarity). This is done for simplicity

and performance reasons, so that when you query for the users similar to a user,

you only have to perform the query on one column. Listing 8 shows how the cosine

similarity between two vectors is implemented.

/**

* Calculates the Cosine Similarity between vecA and vecB

*/

public static double calculateCosineSimilarity(double[] vecA, double[] vecB) {

if (vecA.length != vecB.length)

return 0.0;

double dotProduct = 0;

double magnA = 0;

double magnB = 0;

for (int i = 0; i < vecA.length; i++) {

dotProduct += vecA[i] * vecB[i];

magnA += Math.pow(vecA[i], 2);

magnB += Math.pow(vecB[i], 2);

}

magnA = Math.sqrt(magnA);

magnB = Math.sqrt(magnB);

if (magnA != 0.0 || magnB != 0.0) {

return dotProduct / (magnA * magnB);

} else {

return 0.0;

}

}

Listing 8: Calculating cosine similarities

5.4.3 Feature calculation for Matrix Factorization

The offline part of the MF algorithm consists of extracting the latent features of the

listening counts in the dataset as explained in section 4.6.2. The implementation

is based on Timely Developments14 implementation of the algorithm [45]. The

implementation of the feature calculation step can be seen in Appendix B.1. The

calculated features are then saved in the user f eatures and artist f eatures tables

of the database.

14http://www.timelydevelopment.com/demos/NetflixPrize.aspx
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Number of features Max iterations γ λ Minimum improvement

64 120 0.0009 0.3 0.000001

Table 5.3: Choice of constants for MF implementation

5.4.3.1 Choice of constants

The MF algorithm uses, as described, constants that should be decided based on

the dataset in question. Both λ; γ; maxIterations,the maximum amount of itera-

tions before the feature calculation terminates; minImprov, the minimum RSME

you can see before the feature calculation terminates because of convergence; can

be adjusted. To determine what value these constants should have, a 10-fold cross

validation was performed on the dataset. First, all the (user, artist, listenCount)

triples in the dataset were split into 10 equal parts. Then, in turn (fold) one of

the parts was used as a test set whereas the other 9 were used as a training set.

This means that the MF algorithm was performed on the training set to calculate

features. Then these features were used to predict the ratings of the (user, artist)

part of the triples in the test set. These predicted ratings was then compared to

the actual ratings of the triple to calculate the RMSE between them. The average

of these 10 RMSE values were saved as a score for the given parameters.

The RMSE values can be seen as a measurement on how well the algorithm predicts

the ratings already present in the dataset. Therefore, the parameters with the

lowest RMSE score were chosen to be used for the prototype. The parameters

chosen after running the cross validation on multiple possible parameters can be

seen in Table 5.3. These parameters yielded a RMSE score of 2.94, and an average

error in rating prediction of 2.48 out of 10.

5.4.4 Context definition

The definition of context consists of defining a group to calculate recommendations

for, in addition to define where and in what timespan the recommended concerts

should be in. This is all performed by the user in a web browser. Groups are defined
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by searching for users and clicking on them as seen in Image 6.2. Timespan and

location are selected by using the controls provided as seen in Image 6.4 and 6.5.

5.4.5 Filter dataset

As explained in Chapter 4.5, the dataset is filtered before predicting ratings with

the MF and kNN algorithms, so that data irrelevant to the results can be left out.

5.4.5.1 Filter concerts

After the context defined arrives at the backend-server through its REST interface,

the context is applied to the dataset to filter out irrelevant data. First, concerts

happening within the given timespan and at, or close to the location specified, are

fetched with the SQL query in Listing 9.

SELECT conc.id, cp.artistId, conc.distance

FROM ((

SELECT c.id AS id, cp.artistId AS artistId,

DISTANCE() AS distance

FROM concert c, citylocation cl, venue v

WHERE c.startdate>=START_DATE

AND c.startdate<=END_DATE

AND v.city!=LOCATION

AND cl.city=LOCATION

AND v.id=c.venueId

AND(enddate IS NULL OR enddate>=?)

ORDER BY distance ASC LIMIT 100

) conc

)

LEFT JOIN concertparticipation AS cp ON conc.id=cp.concertId;

Listing 9: Filter dataset based on distance

5.4.5.2 Relaxing of context

To enable for relaxation of the location parameter, the 100 concerts closest to the

location specified is also fetched. This is done by utilizing the Haversine formula
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as seen in Listing 10 (DISTANCE()). This formula can be used to estimate the

shortest distance between two points on the earth surface[46]. In addition, concerts

within 5 days of the date range specified is fetched to support relaxing of the date

range parameter.

SELECT (6371 *

ACOS(COS(RADIANS(v.geolat)) * COS(RADIANS(cl.geolat))

* COS(RADIANS(cl.geolong) - RADIANS(v.geolong))

+ SIN(RADIANS(v.geolat)) * SIN(RADIANS(cl.geolat))))

AS distance

FROM venue v, concertlocation cl

Listing 10: The DISTANCE() function, calculating distance between two
points on the earth surface.

After these concerts have been fetched, the kNN and MF algorithms will predict

ratings for these concerts and select the k concerts with the highest predicted

ratings.

5.4.6 Predict ratings with kNN

As specified in section 4.6.1.2, the outcome of kNN is based on what ratings the

most similar users to the user in question have given to the artists performing at

the relevant concerts. Therefore, the users with a similarity to the user in question

greater than 0, and that have listened to one or more of the artists performing at

the concerts found before, are fetched for each of the members of the group. This

is done with the SQL query in listing 11.

SELECT a.userId, a.artistId, a.listenCount, us.similarity

FROM artistlistenings a, usersimilarity us

WHERE us.userA=GROUP_USER

AND a.userId=us.userB

AND artistId IN LIST_OF_ARTIST_IDs

Listing 11: Fetch artist listeners

For each of the artists found in the previous step, a rating is predicted using the

code in Appendix B.2. For each of the artists, the k most similar users to the user
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being processed that also have listened to the artist, is selected. Each of these k

users contribute to the final rating for the artist with its rating of the artist times

its similarity to the user being questioned squared, divided by the total similarity

of the k users (sim2/totSim). The division ensures that the most similar users

contribute most to the final rating. By squaring the similarities, this contribution

from the most similar users is even greater.

After each of the artists have got a predicted rating, a final rating for each of the

concerts is predicted by using the average predicted rating from all of the artists

performing at that concert.

The steps above (starting from section 5.4.6) is then repeated for all the members

of the group.

When all of the members of the group have got a predicted rating for each of the

concerts, the final combined predicted group ratings for the concerts are calculated

by using the average rating for that concert.

5.4.6.1 Choice of k

Choosing k in a k-Nearest Neighbor algorithm has a great impact on the predic-

tions given. A choice of k too high might result in recommendation of only popular

items. A k too low can introduce noise data into the recommendations as only a

small set of people decide the prediction.

By observation, a fixed k doesn’t work well in the case of a CRS, where the number

of items that can be recommended is greatly reduced based on the context applied.

Firstly, all of the k users have to have listened to one or more of the same artists

as the user asking for recommendations. Secondly, all of the k users have to have

listened to artists performing at the concert a rating is being predicted for. For

lesser known artists, the number of users that meet these criteria can be low, and

thus k users cannot be found for the artist. This will lead to an extra emphasis on

well known artists, however when no well known artists are performing within the

given time and location constraints, potentially no concerts will get a final rating.
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This shows the need for an adaptive k for each artist. Therefore, in this thesis, k

is set as
p

n, where n is the number of people having listened to the artist being

evaluated, a, and also have a similarity >0 with the user the recommendations

are for, u. By choosing this k, noise data is removed when predicting ratings

for well known artists as k is likely to be high, but at the same time, it allows

for recommendation of concerts that otherwise wouldn’t be recommended because

they wouldn’t have k users that fit the criteria.

kua =
p

n (5.1)

5.4.7 Predict ratings with Matrix Factorization

In the MF approach, a rating for each of the artists found in section 5.4.5 is first

predicted. This is done by performing the dot product between the latent feature

vector for the user being processed and the latent feature vector for the artist as

explained in section 4.6.2. An implementation of this can be seen in Listing 12.

double predRating = rating.pseudoAvg;

for (int f = 0; f < maxFeatures; f++) {

predRating += artistFeatures[f][artistId] * userFeatures[f][userId];

if (predRating > MAX_RATING)

predRating = MAX_RATING;

if (predRating < MIN_RATING)

predRating = MIN_RATING;

}

return predRating;

Listing 12: MF calculation of artist score

Similarly to the kNN approach, the predicated rating for a concert from a user is

the average of the predicted ratings for the artists playing at that concert. These

steps are also here repeated for all the members of the groups. The final combined

predicted group ratings for the concerts are also here the average rating predicted

for that concert.
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5.4.8 Merge results (Hybrid Recommendation)

As explained in Section4.7, after each concert have got a predicted rating from

both the MF and the kNN algorithm, the final rating for a concert is defined as

the average between the results from the two algorithms. These ratings makes up

the rating given by the Hybrid algorithm.

The 10 concerts with the highest predicted rating within the given context, the 10

top concerts from the 100 extra concerts fetched based on distance, and the top

10 concerts from the extra concerts based on date are finally returned to the front

end for viewing by a user.

5.5 New users

The algorithm outlined above has an offline part performed when deemed neces-

sary, and an online part that is performed on the fly. When a new user registers,

data for that user has to be calculated and inserted into the database to be able

to receive recommendations. However, since the offline part of the algorithm is

not frequently run, the new user wouldn’t be able to get recommendations until

it is run again. This is not feasible for instant recommendations as this is a very

time consuming process. For the kNN part of the algorithm, this is overcome

by calculating the similarity between the new user and the users already in the

database, using the artists the user specified on the registration page. When these

similarities have been calculated, kNN can be used as normal also for that user.

For the MF part of the algorithm, the latent factors of the most similar user to the

user created based on the artists specified, is used in the recommendation process

until the offline part of the algorithm is run again.
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Prototype

In this chapter, the main functionality of the prototype and how it can be used

in practice, is presented in addition to how the prototype meets the requirements

identified in Chapter 4.1. It shows how users can be created (Section 6.2), how

groups can be formed (Section 6.1), how context can be specified (Section 6.1),

how the recommendation process can be initialized, and what the results from the

recommendation process look like (Section 6.4). It also shows how the context can

be relaxed by a user (Section 6.4.1).

6.1 Main View

Image 6.1 shows the main view of the prototype. A user can here specify which

users should be added to the group that is used for recommendations, and specify

the context (location and time) for the recommended concerts. Users can be added

to a group as seen in Image 6.2 and 6.3. Dates for the concerts can be chosen via a

simple date picker (see Image 6.4), and locations can be selected from a dropdown

list (see Image 6.5). This shows that the prototype takes the location and time into

account when providing recommendations as requirements R2 and R4 specifies.

65
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Figure 6.1: Prototype main view

Figure 6.2: Prototype user search view Figure 6.3: Prototype group view

Figure 6.4: Prototype date selection view

Figure 6.5: Prototype location selection
view



Chapter 6. Prototype 67

6.2 User Creation View

A new user can be created in the user creation view (see Image 6.6) by specifying

a unique username, and rating at least 5 artists that defines the new users music

taste. By requiring the user to specify these artists, the well known cold start

problem of collaborative filtering algorithms (see Section 2.1.6.1) is mitigated.

The user specifies these artists by searching amongst all the artists in the Last.fm

dataset(see Image 6.7) which then are imported into the dataset if necessary.

Figure 6.6: Prototype create user view

Figure 6.7: Prototype artist selection view

Requirement R1 stated that concert recommendations should be based on a user’s

listening habits. The prototype fulfils this by requiring new users to specify and

rate their favorite artists. This data is the basis for the kNN and MF algorithms

as explained in Chapter 4.2.

6.2.1 Import User from Last.fm

Instead of specifying artists manually, a user can also import his listening details

from Last.fm by specifying his Last.fm username and clicking the Fetch user but-

ton as seen in Image 6.8. His listening habits will then be fetched from Last.fm

and added to the above list as seen in Image 6.9.
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Figure 6.8: Import of user from last.fm

Figure 6.9: Artist-listenings for an im-
ported user

6.3 User and Artist view

By clicking on a user link, the artists most listened to, and the tags most used

for those artists, are displayed as seen in Image 6.10. Similarly, if an artist link is

clicked, information about the artist is displayed in addition to the tags most used

to described the artist (see Image 6.11).

Figure 6.10: Prototype user view

Figure 6.11: Prototype artist view
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6.4 Result view

By clicking the “Get recommendation” button in the main view after all the fields

are filled out, the view switches to the result view (see Image 6.12), where the

recommended concerts can be seen in ascending order. The predicted rating of a

concert can be seen in the upper hand corner of a concert tile (yellow star). The

left side of the concert tile shows the artists performing at the concert, sorted in

descending order based on the highest predicted rating. The right hand of the

concert tile shows the top tags for the artists playing at the concert, in descending

order based on tag frequency.

Figure 6.12: Prototype result view
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6.4.1 Context relaxation

The application automatically fetches concerts in the areas surrounding the speci-

fied location so that the user easily can relax the location parameter and find extra

concerts if wanted. This can be achieved by using the slider on the top left of the

page (see Image 6.13), that dynamically shows or hides extra concerts within the

radius specified by the slider.

Similarly to location relaxation, the application automatically fetches concerts in

the dates surrounding the specified dates with the date relaxation feature. A user

can then easily relax the date parameters to show concerts for date ranges smaller

or bigger than the one originally specified. This is done by utilizing the sliders on

the top right of the page (see Image 6.14). New concerts are then dynamically

added or hidden based on the new date range specified by the sliders.

As seen, a user can relax the location and time of the concerts by utilizing the

sliders provided. This shows that requirements R3 and R5 are fulfilled.

Figure 6.13: Relaxing location
parameter

Figure 6.14: Relaxing date pa-
rameters
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6.5 Concert view

By clicking one of the concert tiles, a view of the concert will be visible (see

Image 6.15). Here, information such as the location and time, a description of

the concert, the top tags of the artists playing at the concert, and links to ticket

distributors (if present) will be displayed.

Figure 6.15: Prototype concert view





Chapter 7

Evaluation

Evaluation of the prototype was performed in two phases. After the first period

of development, the usability of the prototype was evaluated using the System

Usability Scale and an Application specific Survey. After the second period of

development, the Quality of the Recommendations given was evaluated with a

user centered method.

7.1 Usability evaluation results

To evaluate the usability of the prototype, 15 users were asked to perform the

steps outlined in Chapter 3.3.1.

7.1.1 Number of test subjects

15 users participated in the usability survey performed after the first period of

development. Nielsen [47] suggests that 5 users are enough to find the majority

of usability problems of a system, those 5 participants could reveal about 80%

of all usability problems. This can be achieved by running many small tests and

iterations. Faulkner [48] states that this number is dependent on the types of users

participating. It was shown that in some cases, 5 participants found 99% of the

73
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Question Item N %

Gender Female 2 13
Male 13 86.7

Age 15 1 6.67
22 1 6.67
23 6 40
24 3 20
25 2 13.33
27 1 6.67
57 1 6.67

Occupation Student 14 93.33
Teacher 1 6.67

Device Smart-phone 2 13
Tablet 1 7
Laptop 10 67
Desktop Computer 2 13

Table 7.1: Usability survey demographics

problems and in other cases only 55%. With 10 users participating, the minimum

of problems found was 82% and with 15 participant the minimum number of

problems found was 90%. In general, one should run usability tests with as many

participants that schedules, budgets, and availability allow.

7.1.2 Demographics

Table 7.1 lists some demographic information about the participants, including

gender, age, occupation and what device the survey was undertaken on. The

table shows that 13 of the participants were male (86.7%), and 2 of them female

(13%). The age of the participants varied between 15 and 57 years, with a mean

of 27.6 years, median of 24 years and standard deviation of 13.5 years. Most

participants listed Student as their occupation (93% of the participants). 67% of

the participants used a laptop when performing the survey.
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7.1.3 User Background Survey results

The participants were asked to answer four simple questions to determine if they

had previous knowledge of other music recommendation systems, and how satisfied

they were with the recommendations provided from them. The results from this

survey can be seen in Table 7.2.

Question Item N %

BI1: How often do you use a
recommendation service for
concerts such as LastFm,
Eventful or Bandsintown?

Every day 0 0
A few times a week 0 0
A few times a month 1 7
Less often 3 20
Never 11 73
Don’t know 0 0

BI2: In general, how satisfied
are you with the quality of
recommendation from these
services?

Very dissatisfied 0 0
Dissatisfied 1 7
OK 3 20
Satisfied 0 0
Very satisfied 0 0
Don’t know 11 73

BI3: How often do you listen to
music recommended to you by
services such as Spotify, ITunes,
LastFm or Pandora?

Every day 0 0
A few times a week 7 47
A few times a month 6 40
Less often 2 13
Never 0 0
Don’t know 0 0

BI4: In general, how satisfied
are you with the quality of
recommendation from these
services?

Very dissatisfied 1 7
Dissatisfied 0 0
OK 7 47
Satisfied 6 40
Very satisfied 1 7
Don’t know 0 0

Table 7.2: Usability survey user background

The results from question BI1 shows that 73% of the participants never had used

a concert recommendation service before. The ones that had tried it before, used

it a few times a month or less often. 3 out of the 4 participants that had tried

such a service before, said that they were OK with the recommendations provided

of the service, and 1 participant was dissatisfied. The fact that only 4 out of

15 participants had tried a concert recommendation service for concerts, might
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indicate that either the demand for such a service is not there, or the quality of

existing services are not appealing to the users. The results from question BI3

shows that all the participants had tried a music recommendation service before.

47% of them are using it a few times a week, 40% a few times a month and 13%

less often. 87% of the participants answered either OK or Satisfied when asked

how satisfied they were with the quality of recommendation from these music

recommendation services. From these results it is apparent that the participants

in general use music recommendation systems from time to time, however there

are still some to improve the recommendations given.

7.1.4 System Usability Scale results

Results, question by question, from the SUS survey can be seen in Table 7.3.

Utilizing the method described in Section 3.3.1.1, the results yield a SUS score of

79.83 as seen in Table 7.4. According to the adjective rating scale outlined, a SUS

score of 79.83 would be rated as somewhere between Good and Excellent. There

is no absolute when it comes to usability, but a score of 79.83 is a good indication

on that the users found the usability of the prototype satisfactory.

Strongly disagree Disagree Undecided Agree Strongly agree

Question N % N % N % N % N %

SUS1 2 13 2 13 8 53 3 20 0 0
SUS2 7 47 6 40 2 13 0 0 0 0
SUS3 0 0 0 0 2 13 6 40 7 47
SUS4 15 100 0 0 0 0 0 0 0 0
SUS5 0 0 1 7 2 13 8 53 4 27
SUS6 6 40 5 33 4 27 0 0 0 0
SUS7 0 0 0 0 0 0 6 40 9 60
SUS8 7 47 6 40 2 13 0 0 0 0
SUS9 0 0 2 13 4 27 5 33 4 27
SUS10 12 80 2 13 0 0 1 7 0 0

Table 7.3: SUS results
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Question Average SUS Score

SUS 1: I think that I would like to use
this system frequently

2.8

SUS 2: I found the system unnecessarily
complex

1.67

SUS 3: I thought the system was easy to
use

4.33

SUS 4: I think that I would need the sup-
port of a technical person to be able to
use this system

1

SUS 5: I found the various functions in
this system were well integrated

4

SUS 6: I thought there was too much in-
consistency in this system

1.87

SUS 7: I would imagine that most peo-
ple would learn to use this system very
quickly

4.6

SUS 8: I found the system very cumber-
some to use

1.67

SUS 9: I felt very confident using the sys-
tem

3.73

SUS 10: I needed to learn a lot of things
before I could get going with this system

1.33

SUS score 79.83

Table 7.4: SUS scores

7.1.5 Application Specific Survey results

Table 7.6 shows the results from the Application Specific Survey (AS). The par-

ticipants were asked to answer four question specific to the prototype. 66% of

the participants checked 4 or 5 when asked if they believe they could get use of

this application in the future. When asked if the application provided recommen-

dations relevant for the user, the average response was 3.27 on a scale from 1 to

5 where 1 is defined as strongly disagree and 5 as strongly agree as seen in Ta-

ble 7.5. The average response when asked if a participant found it easy to find

recommendations with a location close to the location specified was 4.1 on the

same scale. The average response when asked if a participant found it easy to find

recommendations on days close to the date range specified was 4.27.
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From these results it is apparent that the participants had mixed feelings about

how relevant the recommendations given were, which is the main focus of the

second period of development. Average scores of over 4.1 for both AS3 and AS4

indicate that the participants were satisfied with how the current context relax-

ation options works.

Question Average Median Standard deviation

AS 1 3.73 4 1.33
AS 2 3.27 3 1.16
AS 3 4.1 4 1.1
AS 4 4.27 5 1.1

Table 7.5: Application specific survey result properties

Question Item N %

AS1: I believe I could get use of this
application in the future

1 2 13
2 0 0
3 3 20
4 5 33
5 5 33

AS2: The application provided
recommendations relevant for me

1 1 7
2 3 20
3 4 27
4 5 33
5 2 13

AS3: I found it easy to find
recommendations with a location close
to the location I specified

1 1 7
2 0 0
3 2 13
4 6 40
5 6 40

AS4: I found it easy to find
recommendations on days close to the
date range I specified

1 1 7
2 0 0
3 1 7
4 5 33
5 8 53

Table 7.6: Application specific survey results
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7.1.5.1 Usability problems

From the free-text answers to AS5, AS6 and AS7 seen in Appendix A.4, some

usability challenges were identified:

� No information about dates could be found when clicking on a concert.

� No ability to view all the concerts in a location or timespan

� No genres are displayed on concerts, so it’s impossible to say anything what

type of music new artists play

� Change color of text, blue is not very good for reading.

� Scary to leave group setup view to register new users, as there is no indication

that the state will be kept

� Lack of clear and easy to read messages

Solutions to Item 1 and 3; missing information about dates and no genres on con-

certs; were in the second period of development implemented as seen in Section 6.5

and Section 6.4 respectively. However, as the second development period focused

on improving the recommendation algorithm, the rest is left for future work.
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7.1.5.2 Feature suggestions

From the free-text answers to AS5, AS6 and AS7 as seen in Appendix A.4, some

suggestions to new functionality were identified:

� Plot concert location on map

� Import user details from Last.fm

� Import user details from Spotify or other similar services

� Edit user functionality

� Add new locations

� Filter concerts based on genre

� Finding friends through Facebook

� Ability to exclude concerts or genres from results.

The functionality for importing user details from Last.fm was implemented in

the second period of development (see Section 6.2.1). The rest of the suggested

features are left for future work.
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7.2 Recommendation Quality Evaluation

For the purpose of Quality Evaluation, the result view of the prototype was

slightly adjusted. Now, it displays three different paragraphs with recommen-

dations (cases) as seen in Image 7.1. One paragraph contains the results when

running the k-NN algorithm separately, one paragraph contains the results when

running the MF algorithm separately, and one paragraph contains the results when

running the hybrid version of the two. Each of the paragraphs are given “random”

case ids and placed in a random order, however which paragraph contains the

results from what algorithm can be deduced by looking at the source code of the

result page.

Figure 7.1: Result View of prototype for result evaluation
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To evaluate the prototype, the steps outlined in Section 3.3.2 were followed. Two

groups consisting of 2 and 3 people respectively were asked to find recommenda-

tions individually, in a group of two people, and in a group of three people, for two

different timespans (18/02/2014-03/03/2014 and 05/03/2014 and 09/07/2014),

and two different cities (London and New York). When the second group was

asked to find recommendations for a group of 3 people, a user from the first group

was added to the recommendation process.

For each step, the participants rated each of the algorithms on how satisfied they

were with the recommendations given on a scale from 1-5, where 1 is Very satisfied

and 5 is Very dissatisfied.

7.2.1 Results

The raw data from the Quality Evaluation can be found on Github (see Appendix

C.1).

As seen in Table 7.7, the MF algorithm was overall picked as giving the most

appealing results 7 out of 40 times, the kNN algorithm 16 out of 40 times, and

the hybrid approach in 17 out of 40 cases. Overall, the kNN algorithm received

an average rating of 2.28 in the 40 responses, the Hybrid approach 2.38, and the

MF algorithm an average of 3.13 as seen in Table 7.8. Table 7.9 shows the average

ratings for each of the algorithms when the recommendation process was performed

with users that was created with 5 and 10 of their favorite artists respectively.

Going from 5 to 10 users resulted that the average rating given to the k-Nearest

Neighbor algorithm went from 2.5 to 1.8. For the other algorithms, no significant

changes were observed.

As seen in Table 7.10, when going from one person in a group to two and three,

the average ratings given for the kNN and Hybrid approaches increased. For the

MF approach however, the average ratings decreased slightly from 3.3 for one

user to 2.9 for three users in a group. The average ratings for the kNN approach

increased from 1.8 to 2.3 for two users and to 2.5 for three users. The average
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Algorithm Number of selections Percentage

Matrix Factorization 7 17.5%
k-Nearest Neighbor 16 40.0%
Hybrid approach 17 42.5%

Table 7.7: Preferred algorithm selection by users

Algorithm Average rating Variance Standard Deviation n

Matrix Factorization 3.13 0.73 0.85 40
k-Nearest Neighbor 2.28 0.92 0.96 40
Hybrid approach 2.38 0.75 0.87 40

Table 7.8: Overall Average statistics per algorithm

ratings for the Hybrid approach increased from 2.3 for one user, and 2.4 for two

users to 2.6 for three users. The same can be said for the Variance and Standard

Deviation of ratings given to each algorithm. For the kNN algorithm, the variance

increased from 0.62 for one user in a group to 1.17 for three users in a group, and

the standard deviation from 0.78 to 1.08. The variance for the hybrid approach

increased from 0.68 to 0.93 and the standard deviation from 0.82 to 0.97.

These results show a clear trend that the kNN and the Hybrid approach tend to

produce more satisfying recommendations than the MF approach as the average

ratings given to the two are generally lower, and they were picked as the favorite

algorithms significantly more. An overall average rating of 2.28 and 2.38 out of

5 from the kNN and Hybrid approaches respectively, indicates that the partici-

pants were reasonably satisfied with the results given, however with some room

for improvement.

In general, recommendations given for users created based on 10 of the user’s

favorite artists, produced more satisfying results than for when 5 artists were used

in the user creation process. Going from one user in a group, to two and three

users, overall led to lower satisfaction with the recommended concerts.
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Average rating Variance Standard Deviation n

Algorithm 5 10 5 10 5 10

Matrix Factorization 3.6 3.3 0.27 0.46 0.52 0.67 10
k-Nearest Neighbor 2.5 1.8 0.72 0.62 0.85 0.79 10
Hybrid approach 2.2 2.3 0.62 0.68 0.79 0.82 10

Table 7.9: Statistics when 5 and 10 artists were used in user creation

Average rating Variance Standard Deviation

Algorithm 1 user 2 users 3 users 1 user 2 users 3 users 1 user 2 users 3 users

Matrix Factorization 3.3 2.7 2.9 0.46 1.12 0.77 0.67 1.06 0.88
k-Nearest Neighbor 1.8 2.3 2.5 0.62 1.12 1.17 0.78 1.06 1.08
Hybrid approach 2.3 2.4 2.6 0.68 0.93 0.93 0.82 0.97 0.97

Table 7.10: Statistics when recommendations were given for groups consisting
of 1, 2 and 3 users respectively

7.3 Discussion

7.3.1 Threat to Validity

The QE was performed with two groups of 2 and 3 people. This low number of

participants means that each participant had a significant impact on the results.

The statistics produced when a user was created with 5 and 10 favorite artists

(Table 7.9), were based on n = 10 samplings each; answers for questions Q1 and

Q3; and Q5 and Q7 respectively.

The same can be said with the statistics produced for the results with varying

group sizes (Table 7.10). They were based on n = 10 samplings each; answers

for questions Q5 and Q7 for groups with one user; Q9 and Q11 for groups with

two users; and Q13 and Q15 for groups with three users. The overall statistics

(Table 7.8) was created based on answers to questions Q1, Q3, Q5, Q7, Q9, Q11,

Q13 and Q15 which for 5 users lead to a sample size of n = 40.

By looking at the top social tags used for the artists each of the users registered as

seen in Table 7.11, it is apparent that the users’ taste in music are quite different

as they share few top tags amongst them (except for User 3 and 4). However,
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User 1 User 2 User 3 User 4 User 5

Rock Pop Electronic Electronic Rock
Progressive metal Hip-Hop Electro house House Classic rock
Metal Rnb House Dance Classical
Alternative rock dance Electro Progressive House Instrumental
Alternative Rock Dubstep Electro Violin
Progressive rock Electronic Dance Electro House Hard rock
Sludge Alternative Electronica Dubstep Pop

Table 7.11: Top tags for the participating users

because of the low number of users and sample sizes, even with this diversity, it

can’t be said that these five users are representative for the whole potential user

base, and therefore, further testing should be performed to measure the Quality

of Recommendations created by the prototype.

Even though more testing is needed, there still is a strong indication that the

kNN and Hybrid approaches perform better than the MF approach as suggested

in Section 7.2.1 with a sample size of n = 40. Similarly, it can be said that the five

users testing the prototype were reasonably happy with the results.

7.3.2 Novelty and Serendipity in Concert Recommenda-

tion Systems

In section 2.1.6.3, there was put an emphasis on that a recommendation system

should provide novel and serendipitous recommendations. The emphasis should

be put on the lesser known artists, the long tail of the listen count curve. However,

during the development and testing of this prototype, it was observed that a full

focus on this may not be the best approach for a CRS. People tend to prefer to go

to concerts with artists they are already familiar with. The concert scene might

not be the place were people try to be adventurous and discover new music. It is

easier, more convenient, and cheaper to discover and becoming familiar with new

artists first, before deciding to attend a concert with them. This might be one of

the causes in why the kNN and Hybrid approaches received better ratings from

the test users when it came to quality of recommendations, as CF approaches tend
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kNN MF

Artist # of listeners Artist # of listeners

Avicii 548 Arctic Monkeys 2388
Katy Perry 676 Lorde 554
Arctic Monkeys 2388 Beyoncé 585
Disclosure 535 Metronomy 418
Kanye West 1578 Cut Copy 378
Nine Inch Nails 1270 Alkaline Trio 383
The National 1687 Panic! at the Disco
Drake 712 Slowdive 308
Interpol 784 Katy Perry 676
Arcade Fire 2165 Pretty Lights 234

Average 1234.3 Average 632

Table 7.12: Number of listeners for the top artist playing at the top 10 concerts
between 18/02/2014 and 17/07/2014 in London for user simensma

to have a popularity bias causing the more popular artists to be recommended (see

Section 2.1.6.4). An example of this can be seen in Table 7.12, where the top artist

and how many users have listened to them for the 10 top concerts recommended

for the user simensma in London between 18/02/2014 and 17/07/2014, can be

seen. The 5 most frequently used tags to describe simensma’s top artists are elec-

tronic,house,dance,indie, and electro house. On average, 1234 users had listened

to each of the artists recommended by the kNN algorithm whereas 632 users on

average had listened to each of the artists recommended by the MF algorithm.
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Conclusion and Further Work

8.1 Further work

From this thesis, many directions for further research are possible. The results

clearly shows that the MF approach underperforms compared to the kNN and

Hybrid approach, a further investigation into why this happens can be done. By

extending the framework provided, other algorithms for recommendation systems

can be implemented and compared to the existing ones to see how they perform.

Another way to go from here is to have a look at the context aware part of the

application. Is there any benefit in making relaxation of context an implicit part

of the algorithm instead of something performed by the user explicitly? How

would other context variables, such as listen recency affect the satisfactions when

recommending concerts? In Section 7.1.5, some usability problems and suggestions

to new functionality for the prototype were identified, and can be a good starting

point when utilizing the framework provided.

87



Chapter 8. Conclusion and further work 88

8.2 Conclusion

In this thesis, a prototype of a Context Aware group Recommendation System for

Concerts was presented. The prototype implemented three different algorithms,

a Matrix Factorization algorithm, a k-Nearest Neighbor algorithm and a Hybrid

approach of the two. The goal for the thesis, was to improve the usability and qual-

ity of recommendations given by the prototype implemented during the author’s

semester project fall 2013 [1].

The usability of the prototype was evaluated using the System Usability Scale

(SUS) and an Application Specific Survey (AS). 15 people were asked to under-

take these surveys. In total, the prototype got a SUS score of 79.83 which is a

good indication on that the users found the usability of the prototype satisfactory.

However, the comments from the free text answers shows that there still are room

for improvements.

The AS mainly focused on the usability of the Context relaxation part of the pro-

totype, to find out if it was easy to find concerts close to the parameters specified

when it comes to time and location. The results from the AS showed that the

users in general were satisfied with how this process worked.

The goal for this prototype was to recommend concerts to a user within the loca-

tion and timespan given that the user could be interested in attending. To evaluate

how well this was achieved, a Recommendation Quality Evaluation(QE) was un-

dertaken with two groups consisting of 2 and 3 people respectively. Through a

range of scenarios, the groups were told to find recommendations for the dates

and location asked about, and for each algorithm, rate how satisfied they were

with the results. The results from the QE showed that the users generally were

satisfied with the kNN implementation and the Hybrid approach, whereas they

were less satisfied with the MF approach. The QE was also undertaken to see

how different group sizes affected the quality of recommendations. The results

showed that the users became less satisfied when the number of members in the

group increased from one to two and three respectively, which is to be expected as



Chapter 8. Conclusion and further work 89

different preferences has to be taken into account in larger groups. However, the

QE was only performed with five participants, so there is a need for an evaluation

with more participants to able to draw any final conclusions.

All in all, these results show that well known methods for recommendation sys-

tems can be applied successfully to a Context Aware Recommendation System for

Concerts.





Appendix A

Usability Survey

Section A.1 contains the SUS schema used for usability evaluation. The AS survey

used in the same evaluation can be found in section A.2. The survey used to gather

background information on the subjects can be found in section A.3. Section A.4

contains the free-text answers gathered from questions AS5, AS6 and AS7.
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A.1 System Usability Scale (SUS)

Figure A.1: System Usability Scale
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A.2 Aplication Specific Survey (AS)

Figure A.2: Application specific survey
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A.3 Background information (BI)

Figure A.3: User background information
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A.4 Feedback

AS5. What additional functionality would you like to see in this application?

”When clicking on a concert, I would like to see the date of the concert. I would
also like to see website and a google map of the location.
It should connect your user to your user on applications such as last.fm, instead
of having to create a new user if I already have one on a different site.”
Seeing ticket prices or adjusting the search for ticket prices
”Ability to choose genres.
Also some information about what it means when you add a person to the group.
I felt the information about the features were lacking in general. Explain what
users you are adding from what service.”
User preferences imported directly from my last.fm or Spotify account.
Where to find concerts sitt favourite artists not included in the reconnendation.
”En m̊ate å endre brukerens band/artistforslag.Edit user rett og slett ;) Og det
burde kanskje bli lagt til flere locations å velge mellom.” (Translated as: A way to
change a users group/artist recommendation. Simply put edit user functionality
:) Also, maybe more locations to choose from should be available)
I would like to be able to see all the concerts in the specifide location and dates
show genres for concerts. Also an overview of all concerts ata place
It would be nice to be able to filter concerts based on genre

Table A.1: AS5 comments

AS6. How do you think the features in this application could be improved to
better help find concerts that are relevant for your group of users?

Some people live in places where there’s not that many options for concerts. Maybe
have an option that lists all concerts within an area on a given date(s)?
Not sure :P
”Maybe ability to find ones friends through facebook or the underlaying user base.
Also, maybe the ability to exclude some results or genres. Say ””hide”” or ””I don’t
wan’t to go to this concert””.”
1. Possibly include some hint of genre in the initial concert overview. Though I
hadn’t heard about several of the artists before, I might still be interested. Having
an idea of the genre in the initial overview would allow me to choose which concerts
to consider more carefully, even when I don’t know the band.
”Question like: If you like .....you might like......”

Table A.2: AS6 comments
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AS7. Do you have any extra suggestions, comments or feedback?

Looks good, and the developer is handsome.
”there are severe delays when getting recommendations.
the recommendations did not show any performers known to me, and can therefore
not be particularly relevant.”
I love you <3 :)
”Maybe change the color of the text. Blue is not very good for reading. Make it a
lighter shade of blue.
Very cool animations and a cool project in general! :)”
It’s a bit scary leaving the group setup view in order to register new users. If it
was somehow emphasized that I would not lose my current state I would feel more
comfortable.
Use clear and easy messages in the startup.
I generally think music recommendation are a quite waste of time. It is hard to
predict what people like. For instance, one person may like one song of an artist on
a album, while it does not like another song on the same album. So it is extremely
hard for computers to know such things.
It looks nice!

Table A.3: AS7 comments



Appendix B

Code

All the code produced while developing the prototype presented in this thesis is

available at https://github.com/simensma/GroupRec. It is released under a GNU

General Public License, version 21. Due to copyright restrictions, the dataset

used for evaluation purposes is not part of the distributed code. However code to

reconstruct a similar one is provided.

Section B.1 contains the code used for calculation of features for the MF algorithm.

Section B.2 shows how ratings are predicted for an artist.

1http://www.gnu.org/licenses/gpl-2.0.html
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B.1 Matrix factorization

public void calculateFeatures(int maxFeatures, int maxIterations,

double lambda, double gamma, double minImprov) {

double rmse = 2.0;

for (int feature = 0; feature < maxFeatures; feature++) {

double rmse_last = Double.POSITIVE_INFINITY;

for (int iter = 0; (iter < maxIterations)

|| (rmse <= rmse_last - minImprov); iter++) {

double squareError = 0;

rmse_last = rmse;

for (int i = 0; i < ratings.length; i++) {

ArtistlisteningWrapper rating = ratings[i];

int artistId = rating.getArtistId();

int userId = rating.getUserId();

double predictedRating = predictRating(artistId, userId,

feature, maxFeatures, rating.getCache(),true);

double error = (1.0 * rating.getListenCount() - predictedRating);

squareError += Math.pow(error, 2);

userFeatures[feature][userId] += gamma

* (error * artistFeatures[feature][artistId]

- lambda * userFeatures[feature][userId]);

artistFeatures[feature][artistId] += gamma

* (error * userFeatures[feature][userId]

- lambda * artistFeatures[feature][artistId]);

}

rmse = Math.sqrt(squareError / ratings.length);

}

for (int i = 0; i < ratings.length; i++) {

ratings[i].setCache(predictRating(ratings[i].getArtistId(),

ratings[i].getUserId(), feature, maxFeatures,

ratings[i].getCache(), false));

}

}

}

Listing 13: Calculating latent features (based on Development [45])

B.2 Artist rating prediction with k-Nearest Neigh-

bor
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/**

* artistListenings: Map of list of tuples that contains (userId, rating)

* pairs for the artists that should get a predicted rating.

*

* userSimilarities: Contains similarities (Double) between all the users

* (Integer) that have listened to some of the artists found and the user

* being processed.

*

* artists: Artists ids that a rating should be predicted for

*

* returns: Predicted ratings for the artists being processed.

*/

protected Map<Integer, Double> calculateArtistScores(

Map<Integer, List<Tuple<Integer, Double>>> artistListenings,

Map<Integer, Double> userSimilarities, List<Integer> artists, int k) {

Map<Integer, Double> artistScores = new HashMap<Integer, Double>();

for (Integer artistId : artists) {

/*

* List of tuples, (userId, listeningFrequency), which describes the

* listening frequency to the artist being processed for all the

* users that have listened to that artist.

*/

List<Tuple<Integer, Double>> listens = artistListenings

.get(artistId);

// Find the k most similar users

k = (int) Math.sqrt(listens.size());

Collections.sort(listens, new Comparator<Tuple<Integer, Double>>() {

@Override

public int compare(Tuple<Integer, Double> t1,

Tuple<Integer, Double> t2) {

return t2.getY().compareTo(t1.getY());

}

});

listens = listens.subList(0, k);

double sum = 0;

double totSim = 0;

for (Tuple<Integer, Double> tuple : listens) {

totSim += Math.pow(userSimilarities.get(tuple.getX()), 2);

}

// Calculate a rating for artistId

// Each user in listens contributes to the final rating with

// rating*sim/totSim

for (Tuple<Integer, Double> tuple : listens) {

double sim = Math.pow(userSimilarities.get(tuple.getX()), 2);

double rating = tuple.getY();

sum += rating * sim / totSim;

}

artistScores.put(artistId, sum);

}

return artistScores;

}

Listing 14: kNN calculation of artist score





Appendix C

Quality Survey

Section C.2 contains the 4 schemas used for the Quality Survey.

C.1 Results

The raw results from the Quality Evaluation can be found in this projects Github

repository, at https://github.com/simensma/GroupRec/blob/master/evaluation/

Evaluation.xlsx.

C.2 Quality Survey

101

https://github.com/simensma/GroupRec/blob/master/evaluation/Evaluation.xlsx
https://github.com/simensma/GroupRec/blob/master/evaluation/Evaluation.xlsx
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Figure C.1: System Quality Survey Schema part 1
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Figure C.2: System Quality Survey Schema part 2
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Figure C.3: System Quality Survey Schema part 3
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Figure C.4: System Quality Survey Schema part 4
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