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Problem Description

The original problem as given by given by Lars Bungum and Björn Gambäck:

Natural language processing grapples with an ever-changing and moving tar-

get. The focus of study, natural language, is natural because it changes, inter-

acts and evolves in various directions. The bio-inspired computational methods

described as evolutionary computation and/or genetic algorithms create compu-

tational models that evolve a population of individuals to find a solution to a

given problem. This project will investigate how evolutionary computation can

been employed in some natural language processing task, ranging from efforts

to induce grammars to models of language development through parameter opti-

mization and search.
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Summary

It is interesting how we can take a train of thought and transfer this into an other person’s

mind by pushing the air around us. Human language, this complex medium that distinctly

separates humans from animals, has baffled scientists for centuries. But as it lacks of historical

data, researchers wish to benefit from computer science and the field of artificial life to

understand the origin of language. This thesis illuminates the potential for using agent-

based models to investigate the relationship between biology, culture and behavior on an

individual level.

This is done in two parts. First, different theories and computational models experiment-

ing with language evolution are presented. This includes a thorough implementation of and

elaborations on one recent paper, where language acquisition is illustrated favorable over

multiple evolutionary time scales in an agent-based model. In the second part, a more bio-

inspired methodology is proposed to make the former model more robust and better suited

for extensions. This is demonstrated by letting the agents evolving some social biases, while

they are conducting a naming game in a social structure. A naming game is an abstraction,

often used in the research field, to model the spreading and diversity of language. Through

pair-wise dialogs, the goal of the game is to reach self-organized agreement on naming an ar-

bitrary object in their environment. Given the assumption that communication is beneficial

for social structure and that social structure is beneficial for reproduction, the experimental

work demonstrates that agents are able to build social structures that resembles real life so-

cial topologies, although the naming game might happen too rapid in respect to the evolving

social structure.

Hopefully, with support from other disciplines, the presented model is suited for further

investigation of social, or other functional, traits that can influence language evolution.
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Sammendrag

Det er interessant hvordan vi kan ta et tanketog og overføre dette til en annen persons sinn

ved å skyve luften rundt oss. Menneskelig spr̊ak, dette komplekse mediumet som tydelig

skiller mennesker fra dyr, har forbløffet forskere i århundrer. Og siden spr̊ak har lagt fra seg

særlig lite historiske data, ønsker forskere å dra nytte av inforamtikk og metoder i kunstig

liv å forst̊a opprinnelsen til spr̊ak. Denne avhandlingen belyser potensialet for bruk av

agentbaserte modeller for å undersøke forholdet mellom biologi, kultur og opptreden p̊a

individniv̊a.

Dette gjøres i to deler. Først er ulike teorier og beregningsmodeller som eksperimentere

med spr̊akevolusjon presentert. Dette omfatter ogs̊a en grundig implementering og ela-

borering av en nyere artikkel, der spr̊aketanskaffelse er illustrert gunstige over flere evo-

lusjonære tidsskalaer i en agentbasert modell. I den andre delen, er en mer bioinspirert

metodikk foresl̊att å gjøre den tidligere modellen mer robust og bedre egnet for utvidelser.

Dette er demonstrert ved å la agentene f̊a muligheten til å utvikle noen sosiale bias, mens de

prøver å gjennomføre et navnespill i en sosial struktur. Et navnespill er en abstraksjon, ofte

brukt i forskningsfeltet, for å modellere spredning og mangfold av spr̊ak. Gjennom parvis

dialoger, er målet med spillet å n̊a selvorganisert enighet om å navngi en vilk̊arlig objekt i

deres miljø. Gitt antagelsen om at kommunikasjon er gunstig for bygge sosial struktur og

at sosial struktur er gunstig for reproduksjon, s̊a viser de eksperimentelle resultatene her at

agenter er i stand til å bygge sosiale strukturer som ligner sosiale topologier i virkelig liv, selv

om navnespillet kanskje g̊ar for hurtig i forhold til utviklingen i den sosial strukturen.

Forh̊apentligvis, med støtte fra andre disipliner, kan denne presenterte modellen være eg-

net for videre undersøkelser av sosiale, eller andre funksjonelle, egenskaper som kan innflytelse

spr̊akets evolusjon.
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Chapter 1

Introduction

It is baffling how children can effortlessly acquire the structure and vocabulary of a whole

language despite receiving partial and noisy input. Researchers have for several decades tried

to understand the complex sociocognitive mechanisms underlying language and its evolution

— but there is still no comprehensive solution on the horizon. However, in the last two

decades, computational techniques have given the field of language evolution a lot of support,

mainly by offering models to validate, explore, and explain different theories.

In this thesis, different theories on language evolution are presented and different com-

putational models are discussed. In more detail, one particular model by Lipowska (2011)

is examined. A different methodology is proposed for the same model, more suitable for ex-

tensions. The proposal is demonstrated by co-evolving a communication system and a social

structure, inspired from recent literature.

This work started out with the topic “genetic algorithms for language processing”, two

terms equally fascinating. A genetic algorithm is in a bio-inspired heuristic search algorithm

based on the Darwinian idea of natural selection. It is used in a variety of scientific fields

where the solution to a problem lay in a complex and rough search space (Ross & Corne,

1994).

Here, language processing is the nail where a genetic algorithm would be the hammer.

How language is processed, both by man and machine, is an enormous research field — mainly

because it intersects with so many scientific disciplines (Bickerton, 2007; Gong et al., 2014).

The research field — including linguistics, biology, neural science, anthropology, archeology,

computer science, philosophy, and others — researchers are mostly motivated by two facts.

Firstly, understanding and applying language have obviously has great commercial potential,

both as a helping aid for those in need, but also as a tool in, for instance, statistical analyzes

and information extraction. And secondly, we do not fully comprehend the dynamics involved

1
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in language and therefore, scientists wish to identify and understand the origin and constraints

of this complex medium to truly come with an explanatory linguistic theory (Kirby, 2002b).

In this intersection, between the evolutionary computation paradigm (which also includes

evolutionary programming and evolution strategies) and language processing, lies a handful

of interesting topics. Typical applications in language processing are spelling and grammars

checking, text summarization, machine translation systems and induction — all which have

been tackled by evolutionary algorithms with various results (Bungum & Gambäck, 2010).

These endeavors can all be characterized as typical top-down approaches, whereas modern

language is split up into units, groups and relations, and then categorized and structured into

statistical and rule-based models. This surely gives great insights to how language behaves

and can be used on a daily basis, but it does not say much on its genesis. To study this,

a bottom-up approach could be used (Bedau, 2003). A language game, which this thesis is

focusing on, is such an approach. A language game is originally a philosophical concept,

first discussed by Wittgenstein (1953), where a functional language is woven and established

trough interactions between speakers and hearers, and particular actions in an environment.

From a computer science perspective, this concept was picked up in the 1990s (Steels, 1995).

Models on artificial life were adapted to study this and other linguistic phenomena. This

later picked up, and have been a corner stone in many bottom-up approaches to language

evolution. Computational simulations, such as these, allow researchers to test theories in

complex landscapes where intuition often is limited (Christiansen & Kirby, 2003a).

Throughout this thesis the term language will be used extensively. When not specified,

the term is used in a communication system sense, meaning its not necessarily directly

associated with human language unless context implies otherwise.

1.1 Objectives

The main objectives of this Master’s project are to address these following points.

1. Investigate the main dynamics in language evolution, and the computational models

trying to capture them. Advantages and limitations of these computational models will

be addressed.

2. One model from the recent literature will in examined in detail.

3. As language evolution is such a multidisciplinary research fields, a proposals for mod-

eling the different evolutionary forces simultaneously will be offered, by explanation

and demonstration. As for the demonstration, this thesis will pick up where others
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left off, by simulating relations between the emergence of language evolution and social

networks.

Problem Formulation

To understand how language works, how we apply it, its origin and fundamentals; we com-

monly tend to look at human language, probably our best source for analysis. It is a matter

of definition, but there are around 6000-8000 different human languages worldwide today, all

holding an extensive diversity of syntax and semantics, phonetics and morphology (Evans &

Levinson, 2009). That being said, these non-random languages represent perhaps only 2%

of all those thought to have ever existed (Pagel, 2000). And as not enough entropy is lost,

96% of the world’s population uses only 4% of the different languages that are alive today

(Crystal, 2002). From only studying these languages, can we draw hard constraints for what

human language really is, what biological/cultural assumptions it operates on, and how and

why it holds so much variation?

The questions raised in the last paragraph cannot simply be answered by analyzing to-

day’s situation, we have to look back at our ancestors. But there is a problem in linguistic

history — our reconstruction techniques can only take us back six or perhaps seven thousand

years. Beyond this point, researchers can only speculate on when and how human language

evolved: either as a slowly proceeding process starting millions of years (mega-annum, Ma)

ago, e.g., 7 Ma ago with the first appearance of cognitive capacity or 2.5 Ma ago with the first

manufacture of stone implements; or through some radical change taking place about 100 ka

ago with the appearance of the modern humans or 50–60 ka ago when they started leaving

(Tattersall, 2010; Klein, 2008). Before language, an early hominid wanting to trade a banana

for some nuts would not have the opportunity to do so, in the act he could just as easily get

mistaken for stealing or donating items. But somewhere around here, language emerged and

we were able to deal with such ideas. This trait, the ability to learn expressibility, would

soon be the foundation for so-called cumulative cultural evolution; how we transmit ideas

and wisdom (and language itself) from generation to generation through language.

Researchers want to shed light on the evolution of language to get better perspective and

deeper understanding of the dynamics of language, as well as on the brain and the human

linguistic phenomena we all are a result of. Moreover, they want to understand how it affects

our social affairs, such as how we connect networks (Lupyan & Dale, 2010).

Language evolution has said to be “the hardest problem in science” (Christiansen & Kirby,

2003b), mainly because investigating language change, language acquisition, and language

origin is such a highly interdisciplinary research field. Hence, this thesis focuses on how and
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why computer simulation can help answering parts of these questions.

1.2 Approach

This thesis is mainly investigating agent-based models of language evolution. These models

are often characterized by following decentralized and self-organization principles, which are

not only fascinating, but also very life like. From local behavior, constrained by certain rules,

an overall complex population (or system) can arise with properties greater then the sum of

it parts. A complex system is characterized as interacting entities and non-linear interactions

among them (Helbing & Balietti, 2011).

Human language can be seen as a complex (adaptive) system, which makes it theoretically

suitable for a bottom-up investigation (Loreto & Steels, 2007). Bottom-up models are not

necessarily motivated by predicting when human language first emerged — which is often

quite hard with stochastic phenomena in nature — but as explanatory toolkits for examining

how the dynamics of diversity can unfold (Epstein, 1999).

The approach in this thesis is two-folded. First, there would be some background theory

on different computational models experimenting with language evolution — which includes

a thorough implementation of and elaborations on one recent paper (Lipowska, 2011), where

language acquisition is illustrated favorable over multiple evolutionary time scales. Secondly,

another methodology is proposed, and extended with other innate traits, presumably more

suited for further research.

1.3 Limitations

Computer simulations of full-blown social phenomena are very rare — simply because they

are truly difficult to get right (Gilbert & Terna, 2000). Bottom-up or complex systems are

common in physics, with, for instance, observable thermodynamics and statistical models

underneath – but in social science, there are no implied laws for how the statistical models

should look like. Thus, researchers often practice with mean field (game) theory, lettering a

small number of individuals be the object of study when the numbers in reality are extensive.

As for language evolution in particular, as it exists in (historical) traceless utterances and

neurons firing in our yet unexplored brain — many simplifications must be done when mod-

eling such an adaptive system. Artificial neural networks are extremely simple, if sentences

are used in an agent-based model they tend to only be a couple of words long. For instance,

languages are often so abstract that simple holistic words are the only linguistic dynamics

involved. This intersects with specificity, as single topics can be investigated and others are
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ignored — for example, no semantics or pragmatics are involved when studying language

change, or biology tends to get ignored when simulating cultural aspects (Gong & Shuai,

2013).

1.4 Contribution

This introduction raises some far-reaching questions about language evolution. Admittedly,

there will not be drawn any over-ambitious conclusions from social science or linguistic points

of view. Instead, this thesis will look at different computations models used to investigate

parts of these questions, discuss different naming game models within these frameworks, and

demonstrate how this can be done slightly differently by combining a few recent models from

the literature using a genetic algorithm.

Language evolution is a highly interdisciplinary topic, hence it must be tackled from more

than one angle simultaneously. As this thesis has a solely computer science background, this

work can be taken as insight for other fields — such as mathematical, empirical or other

experimental work on language evolution — when they are ready for further examination.

Parts of the two first objectives in this theses have already been published (Lekvam et al.,

2014), mainly the reimplementation of a model in the literature. This will be elaborated

much more thoroughly through the thesis, before presenting a model and demonstrating this

model as stated in the last objective. Hopefully, this can give inspiration and ideas for other

researchers in the field of language evolution.

1.5 Structure of the Report

The rest of the report is structured as follows. Chapter 2 will give an overview of related work

and introduce some terminology, In Chapter 3, a model from the literature will be presented,

reimplemented, and discussed. Chapter 4 will suggest improvements and extensions. The

results will be viewed in Chapter 5 and a final discussion with conclusions and directions for

further work is given in Chapter 6.



Chapter 2

Background

This chapter will draw a line from different theories and aspects on language evolution and

through computational models. Lastly, some words on network theory and genetic algorithms

are presented.

2.1 Language Evolution

There are two main ideas in biological evolution as to why humans developed communication

through speech. According to the first, language, or more precisely the ability to bear the

full structure of language, came as an epiphenomenon, a byproduct of an unrelated mutation

This theory, outlined mainly by Chomsky (1986), states that a mental language faculty could

not by itself evolve by natural selection; there would simply be too many costly adaptations

for it to be possible. He argues that there exists a figuratively language acquisition device in

the human brain that can understand a universal grammar. This universal grammar then

holds a finite number of rules that can carry any language. This view is often in the beholders

of nativists. According to the second, and more mainstream idea, that language emerged in

a strictly Darwinian process as Pinker & Bloom (1990) proposed, all explained by natural

selection as with other complex traits like echolocation in bats or stereopsis in monkeys.

Their much cited paper caused a new spark in the area of language evolution, and most work

in recent years is based Darwinian ideas because of this. A very recent debate is how much

individual and social learning is influencing this Darwinian approach. Christiansen & Chater

(2008), for example, argue that language is entirely build by cultural conventions and thus

shaped to fit the existing cognitive abilities in the brain and not the opposite.

As mentioned, the evolution of language is a widespread research field — and to tackle

this, one has to approach the domain from several disciplines simultaneously. Foremost,

the conventional theories on language evolution must be understood from three different

6
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perspectives (Steels, 2012); biological evolution, cultural transmission and learning on the

individual and social levels.

This section will elaborate on these three different adaptive systems and look at theories

and computational models of language evolution with this in mind.

2.1.1 The Evolutionary Forces

• Biological evolution is the slowest force of the three, and is often said to be working on

a phylogenetic time scale. Language initially requires some cognitive capacities before

emerging within a species. These capacities face a pressure as both increased ecological

and linguistic complexity co-emerges (Steels, 2012).

• Culture evolution works on a glossogenetic time scale, a much faster time scale. Here,

change can be viewed in terms of whole languages. Within a social group or community

there are shared linguistic paradigms, rules, norms and phonology that exclusively get

transfered culturally, from individual to individual, from generation to generation. In

this way, language can co-evolve with biology, as it changes and grows cumulative on

top of biological cognitive abilities (Kirby et al., 2008). While cultural change could be

influenced by selective pressure in biological evolution, cultural changes can also guide

biological evolution to some extent (see Section 2.1.3).

• Individual and social learning must be looked at within an individual’s lifetime, on a

ontogentic time scale. This is clearly an important aspect of how language is built,

as newborn humans go from expressing no language to several possible languages in

a fairly short time. Through each individual’s lifetime, small variations in speech

patterns, morphology, and so on works as fuel of the cultural evolutionary engine.

2.1.2 Origins

Before taking a computer science perspective — let us look at the actual language. Prior to

the emergence of human language as we know it today, there had to be some intermediate,

a simpler language. It is a debated topic, but there is to some point agreement upon the use

of a protolanguage with holistic symbols, a simple language toolbox where discrete sounds

or gestures would map directly to meanings or concepts (Christiansen & Kirby, 2003a).

This naturally assumes that there was something beneficial to communicate about, as for

instance the need of food or to warn of danger. Thus, this argues that there should be a

connection between the emergence of language and the emergence of cognitive abilities and
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social intelligence — even though few can agree on what the connections might be (Bickerton,

2007).

Since no other species in nature is known to have the same extensive language capabilities

as humans, comparative methods are difficult. Primates can show several of the same com-

municative signs as humans, for example, giving warning sounds in the case of danger, but

as discussed by, for example, Cheney & Seyfarth (2005) they seem not to be able to do this

with communicative intent: listeners acquire information from signalers who do not really

intend to provide it, at least not in a human sense. Thus, songbirds have shown similarities

in their abilities to learn sophisticated auditory perception and vocal production — however,

they seem to lack the abilities to map “words” to meanings other essential cognitive abilities

(Bolhuis et al., 2010). This is often used as an argument for speech and other cognitive

abilities being two different evolved traits (Berwick et al., 2013).

Having syntax, the ability to express a vast of meanings efficiently with the help of

structure, is perhaps what distinguishes humans from other animals the most. The question

arises, if this syntactic ability evolved before a protolanguage (as a similar neural mechanism

for something else) or afterwards — but there does not seem to be any consensus (Bickerton,

2007).

Although, genetic researchers did in 1995 find a language related gene in the human DNA

that was functionally different from chimpanzees. They called it Forkhead-box P2 (FOXP2)

and mutation of this gene was observed to give both heavy speech and language disorder.

This was quickly interpreted as the ’grammar gene’, but researchers soon falsified this to

be the only genetic factor making humans capable of language. While studying the FOXP2

gene further it was discovered that the gene also is associated with gut, lung, and heart

function (Chater et al., 2009) and that we share this gene with a number of animals lacking

communication abilities (Fitch, 2005).

2.1.3 The Baldwin effect

Even more interesting — there is the Darwinian idea that cultural learning can guide bi-

ological evolution, a process known as the Baldwin effect (Baldwin, 1896; Simpson, 1953).

The theory argues that cultural learned traits (as for instance an universal understanding of

grammar, or a defense mechanism against a predator) could assimilate into a specie’s genetic

makeup. Teaching each member in a population the same thing over and over again comes

with great cost (time, faulty learning, genetic complexity), and the overall population saves

a lot of energy if this learned trait would become innate. On the other side, there is a cost

connected to genetic assimilation as it can prohibit plasticity in future generations and make

individuals less adaptive to unstable environments. So in other words, the Baldwin effect is
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a two step process. First, a population of individuals can increase their reproduction abil-

ities if they are able learn to deal with a curtain threat or benefit, through their lifetime,

in their environment. In the next step, if the environment is sufficiently stable, there will

be a selective pressure towards individuals who get these traits innate and thus do not need

more costly learning. There have been much debate in recent time whether language is a

result of the Baldwin effect or not (Zollman & Smead, 2010; Evans & Levinson, 2009; Chater

et al., 2009; Lipowska, 2011; Kuechle & Rios, 2012; Suzuki & Arita, 2013), but questions,

hypotheses, and computer simulations flies in multiple directions. For instance, Chater et al.

(2009), based on their simulation argue that only the stable parts of language may be able to

assimilate into the genetic makeup, as the variation (in word-order, morphology, cases, and

so on) within the linguistic environment is to unstable to be a target of natural selection.

Watanabe et al. (2008), on the other hand, use a similar model and argue that genetic assim-

ilation not necessarily needs an unstable linguistic environment to unfold (see Section 2.6 for

an elaboration on the methods in these models). The Baldwin effect should however not be

confused with the Lamarckian mechanism, a very similar effect. The theory of Lamarckian

inheritance states that acquired characteristics (through one’s lifetime) can be genetically

inherited directly (Sasaki & Tokoro, 1999), in contrast to the Darwinian approach where

only the learning apparatus can be genetically inherited.

2.1.4 Computational Models

We can divide computational models on language evolution into three groups; evaluation,

exploration and exemplification (Christiansen & Kirby, 2003a).

Models that evaluate mathematical methods can help researchers determine and under-

stand, or simply underline, the soundness of different theories. Computational models by

exploration have the advantages, unlike models in for instance psychology, to audit every

agent’s mental state at any time, as well as add and remove cognitive or external influences

and study the effect. Although it must be done in a careful manner, this could give rise to

new theories. The most common might be the models of exemplification where scientists

from different disciplines wish to illustrate a point by constructing artificial life in a suitable

environment. However, simulations can be combinations of two, or all three types,

The field is highly influenced by the prominent work of Steels (see his review (Steels,

2011)). A recent review also worth mentioning is Gong & Shuai (2013).

Simulations of this kind are of course not full-blown simulations of how the human lan-

guage works, the idea of such as simulation is too far fetched (Helbing & Balietti, 2011; Gong

& Shuai, 2013). Computational research in this field are limited to modeling very simplified
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features of human language in isolation, such as strategies for naming colors (Bleys & Steels,

2011; Puglisi et al., 2008), different aspects of morphology (Dale & Lupyan, 2012), grammat-

ical agreement (Beuls & Steels, 2013), simulations of dialect diversity (Livingstone, 2002),

word-order (Gong, 2011), how our phonetics might have evolved (de Boer, 1997), emergences

of different language families (De Oliveira et al., 2008), and so on. There have also been a lot

of studies trying to establish the relationships between linguistic features and social struc-

tures, both on syntactical and phonological structure of language (Lupyan & Dale, 2010).

This simplicity is important to keep in mind, since it is conceivable that certain features of

language can be highly influenced by other features in real life.

There have also been studies trying to cover the emergence of compositional structures,

although under the assumption that there is a specialized acquisition mechanism prior to the

emergence of syntax, which is not necessarily true (Vogt, 2005; Kirby, 2002a). However, there

have been studies trying to capture the role of such a learning apparatus, mainly through

studying the Baldwin effect (Lipowska, 2011; Munroe & Cangelosi, 2002). Hinton & Nowlan

(1987) were the first to computational demonstrate this in their much cited paper, with the

use of a simple neural network and a genetic algorithm. They argued that learning can

facilitate evolution of in finding “a needle in the haystack” (see Section 2.6).

2.2 Language Games

A computational language game (hereafter called a language game), first introduced by Steels

(1995), is a model where artificial agents in turn interact with each other in order to reach

a cooperative goal; to make up a shared language of some sort, all while minimizing their

cognitive effort. All agents are to some degree given the cognitive ability to bear language,

but they are not given any prior knowledge of how language should look like or how the

consensus should unfold. There are no centralized anchors involved, a simulation is all self-

organized. In that paper, Steels argued that this kind of mechanism, aligning communication

systems among artificial agents through conversations, would open up for new exciting lines

of linguistic research — and he was right.

In a basic language game, two agents are chosen (mostly at random) as hearer and

speaker, and they are made to exchange an utterance about a certain arbitrary concept

or meaning in their environment. If the agents use the same language — meaning the

utterance is understood by both parties — the conversation is a success. If the speaker utters

something unfamiliar to the hearer, the conversation is termed as a failure. As mentioned in

the introduction, language does not need to be verbal, language games consider both verbal
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and gesture interaction, together or apart.

If an agent wants to express a certain meaning or concept without having any term for it,

the agent is assumed to have the ability to make one up and add this to its memory. While

interpretation in real life is a complex affair, it is mostly assumed that there is a more direct

connection between utterance and actual meaning in language game models (emotions and

social situations do not bias how language is interpreted). An utterance can be represented

as a simple binary signal (Cangelosi & Parisi, 2002), holistic words (Lipowska, 2011), or

structured grammar with multiple words (Gong et al., 2004). How these are implemented

in the different models varies from neural networks (Cangelosi & Parisi, 2002; Batali, 1998),

Fluid Construction Grammar (Steels, 2011), rule-based systems (Kirby, 2002a), and others.

Further, most language games deal with alignment strategies (Lei et al., 2010; van Trijp &

Steels, 2012), a term used for scoring or weighting each agent’s utterance-concept mapping.

Alignment strategies help the agents reach agreement faster and more efficiently by giving

feedback and adjust weights after each dialog. Strategies tend to vary, but lateral inhibition

might be the most common one, where successful usage of a particular mapping also dampers

other mappings with the same utterance. The most extreme use of lateral inhibition is when

only the transmitted utterance is kept after a successful dialog (see Section 2.2.7).

A language game is typically split up into four categories (Wagner et al., 2003), as in a

two by two matrix, determined by the two factors structured and situated. A language game

is termed as structured if it aims to cover language with grammars and unstructured if the

language is holistic. Further, a language game is said to be situated if the simulation takes

place in a virtual world where agents perceive their environment and act upon it in addition

to verbal interactions. In contrast, a non-situated language game’s only focus is the language

interactions, therefore agents can be abstract models without any meaningful environment.

Almost all language games share a common goal of reaching a single coherent and consis-

tent language, but there are also studies where the aim is to simulate the emergence of bilin-

gualism or multilingualism with different models (Lipowska, 2011; Roberts, 2013; Castelló

et al., 2008).

As there have been a lot of computational work on this, language games have also been

studied on humans, often based on earlier computational models (Scott-Phillips & Kirby,

2010).

If used, cultural evolution is captured by

1. horizontal communication between adults or individuals in the same generation, often

with bi-directional dialogs, or

2. vertical communication from adults to children, where dialogs most often are uni-
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directional. The latter typically lets the agents breed, age and die (this endeavor is

more recently known as the iterated learning model, see Section 2.3).

In the next subsections a presentation of different classical language games will be given,

and some examples will be brought up.

2.2.1 Guessing game

A guessing game is a setup — most often used with embodied robots — where there are

only two agents involved, one acts as a speaker and one as a hearer. The speaker’s role is to

utter a term about an object or concept in an environment and the hearer tries to point out

what object or concept the speaker have in mind. The best, and maybe the first, example

of this simple language game is the Talking Head Experiment by Steel’s team (Steels, 1999).

Here, the environment is perceived and then modeled with discrimination trees or similar.

How the world gets modeled is the most important aspect of a guessing game as it forms the

conceptualizations and thereafter the language itself.

2.2.2 Grounding game

The grounding game is a lot like a guessing game, but there are often more agents, and

they are endorsed with improved cognitive functions for conceptualizations and semantics.

In every simulation, agents are — embodied or not (much of L. Steels’ leading work is about

grounded embodied agents) — situated in an environment with objects and with perceptual

input from a camera or similar. Every agent uses a semiotic network (Steels & Loetzsch, 2012)

to conceptualize the arbitrary objects (often called prototypes) and their features. Semiotics

is the study of meaning-making, and how signs and symbols can refer to different concepts.

Agents try to agree upon a shared vocabulary with ordinary language game conventions by

relating utterances between the closest prototypes (by some measure in a suitable search

space). By doing this relation, the agents are said to meet on “common ground”, hence the

name.

2.2.3 Classification Game

A classification game shares similarities with grounding games, but focuses more on a partic-

ular problem, which autonomous agents are set out to solve or classify, all through evolving

a shared language (see Swarup & Gasser (2009, 2010)).
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2.2.4 Signaling Games

A signaling game puts the natural language aside and focuses on more direct (and often

innate (Noble, 1999)) communication systems. While natural language (words, letters, and

sentences) can be difficult to handle in a neural network, a signaling game can facilitate this

by using only signals (as discrete or continuously numbers) as word representation. This

makes it easier to model the emergence of compositionality and recursive structures, studied

in the work by Suzuki & Arita (2008) and Zollman & Smead (2010).

2.2.5 Spatial Naming Games

There have also been studies where agents in an environment have to communicate and

differentiate between the location of objects in the environment. This is a language game

where choice between different strategies is essential for reaching consensus. For instance,

which spatial references you are using when naming different objects in a room, does your

utterance rely on your view or your hearer’s view, or does one simply use a global reference

system such as a cardinal system (Spranger, 2013).

2.2.6 Action Game

Another language game is one that tries to model the cognitive dynamics of naming different

body actions. The research done on action games is mainly by Steels et al. (2012), naturally

with the use of embodied agents. The agents build up semiotic networks to bind relations

between invented words, visual prototypes and motoric behaviors.

2.2.7 Naming Game

A naming game (Steels, 1995) takes the semiotic dynamics of a language game for granted

and looks more closely at the spreading of simple words in a population. Such a game can

be seen as a grounding game where there is only one object in the environment to perceive.

This is an often used abstraction for investigating cultural transmission horizontally, between

agents of the same generation. It also works over generations (Lipowska, 2011), for capturing

biological aspects such as the Baldwin effect (as discussed in Section 2.1.3).

A simple naming game is therefore typically non-structured (no evolving grammars) and

non-situated (no concrete environment). Agents, all equipped with internal inventories con-

taining known utterances, attempt to agree on one particular utterance through pairwise

dialogs. The inventories before and after a failed and successful dialog, with a simple align-

ment strategy without weights, can be viewed in Tables 2.1 and 2.2.
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In an ordinary, non-structured naming game, a simulation is characterized by two phases

(Baronchelli et al., 2006a). In the first phase, words spread around in the population, and

every agent’s lexicon grows even more rapidly (often up to populationSize/2, since inventories

are empty at the first time step and the first dialogs share one word with two agents). As

agents occasionally get successful dialogs, words start to disappear. This naturally increases

the possibilities of new successful dialogs, and the simulation enters its second phase; a

steady progress towards consensus, the state when every agent share the same word and can

understand each other. The simulation slows down at the end of the last phase, as getting

rid of the last words requires some chance. Thus, the function of successful dialogs through

the naming game simulation can resemble a cumulative distribution function (S-shaped).

2.3 Iterated Learning Model

While animals often use innate communication systems, humans’ mappings between signals

and meaning are not bound by genetic constrains. Oliphant (1999) presented a computational

model for investigating this shift — going from a simple innate communication system to a

system based on learning — in a population of agents where no reinforcement signal is used

(in contrast to most language games). Kirby (2002b) follows this paradigm in a cultural

setting, by addressing the concern of human language to solely being a result of natural

selection. He presented a tool called the iterated learning model and applied this to different

linguistic characteristics on a cultural timescale. The most interesting findings must be the

emergence of compositionality (Smith et al., 2003). Under the assumption that there exists

some innate ability to express words, the model shows that the structure of language can

Speaker Hearer
Gral Qjar
Kron Tram
Fjap

Speaker Hearer
Gral Qjar
Kron Tram
Fjap Kron

Table 2.1: Schematic rules for a dialog failure. The speaker utters the word “kron” which
the hearer is not familiar with. The hearer adds the transmitted word to his inventory.

Speaker Hearer
Gral Qjar
Kron Tram
Fjap Kron

Speaker Hearer
Kron Kron

Table 2.2: Schematic rules for a dialog success. The speaker utters the word “kron” which
the hearer is familiar with. Both agents clear their inventory for other words.
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be built on top of a strictly cultural level — even when the poverty of stimulus is present

(Chomsky’s (1980) idea that a language can be fully learned with minimal input, and that

there exists innate language “organ” that supports this). In their model, adults expose their

children to spoken language (so-called e-language, or external language) and the children

acquire this (or a similar) language (i-language, internal language). The learners rarely hear

all possible utterances and are therefore victims of a transmission bottleneck. As the language

travels through this bottleneck multiple times and more meanings are being transmitted, the

language adapts to be generalizable and to contain more structure — thus, the transmission

error rate goes down and the language becomes more learnable. However, most of their

simulations where conducted with relatively few individuals.

These findings have been supported from an empirical point of view. It has been argued

that languages tend to be morphologically simpler, less redundant and more regular as the

population increases and the community undergoes iterations of learning (Lupyan & Dale,

2010).

2.4 Network Theory

Before reviewing language games in more realistic graphs (next section), let first elaborate

on theories behind networks and why they matter. In recent years, an increasing amount

of research has been devoted to the ecology of multi-agent language games. Instead of

distributing the agents in a regular lattice (Lipowska, 2011; Baronchelli et al., 2006c; Lu

et al., 2009) or not structured at all (Noble, 1999; Baronchelli et al., 2006b), the focus has

shifted towards social networks (Gong et al., 2004; Lipowska & Lipowski, 2012).

In modern network theory (very recently also termed “network science”) the most promi-

nent discovery must be the fact that universality of real network topologies converges to sim-

ilar architectures across a lot of disciplines (Barabási, 2009; Baronchelli et al., 2013). Many

regularities in social science have been uncovered by studying the complex system through

network theory (Baronchelli et al., 2013). Other applications which have analytically bene-

fited from network theory is for instance Internet traffic, aviation, epidemic spreading, and

free word associations (Hernando et al., 2010) (see Costa et al. (2011) for an extensive sur-

vey). All of these share the characteristics of non-trivial topologies, as they follow either

random behavior, nor regular patterns.
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2.4.1 Definitions

Thus, networks that hold such non-trivial topologies are termed complex networks. A network

is in physics an applied graph, which is the mathematical term. A graph is a set of nodes

(often referred to as vertices) that are connected to each other by edges. A particular node can

have zero, one or multiple edges to other nodes, and the number of edges is called the node’s

degree. The neighbors of a given node, n, are the nodes connected to n by edges. Further,

edges are either directed (as arcs) or undirected. If not specified, edges can be assumed to

be undirected when spoken about through the rest of the thesis. An edge’s intensity can be

represented by adding weights.

Given two random nodes, their shortest path is intuitively the shortest path between the

two nodes through the graph. If the graph is weighted, the lowest weighted path can also be

used.

2.4.2 Measurements

A graph’s degree distribution is the probability distribution over the nodes’ degree through

the entire graph. P (k) is then the fraction of the nodes who degree is k. Each node has

an associated clustering coefficient which represents how concentrated the neighborhood is

(which corresponds to the term transitivity in social sciences (Baronchelli et al., 2013)). The

clustering coefficient for the node n is defined as

Cn =
number of edges between neighbors

number of potential edges between neighbors

If then C = 1 for a particular node, every node in its neighborhood would be connected

together. In a complete graph, where every node is connected to every other node, the

average clustering coefficient would naturally be 1. Degree is a measure of centrality in

graph theory. There do exist other measures under the same category, such as betweenness

(how often a node, or an edge, is included in the total set of shortest paths) and closeness (to

calculate a nodes independence) (Freeman, 1979) — but those are perhaps more important

for statistical approaches.

Different types of graphs can be categorized by their characteristics. The random graph

Erdös & Rèyi (1959) model can be viewed as the simplest complex network — as edges are

added between each possible pair of nodes with a probability p. This way, both the degree

distribution and the average clustering coefficient can be easily predicted. Unfortunately,

random networks are homogeneous and not very realistic in terms of modeling real world

systems. In contrast, the Watts & Strogatz (1998) model, often referred to as the small-
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world model has shown more resemblance. This model is characterized by having a low

average shortest path, as illustrated with the famous “six degrees of separation” concept —

while still having a high clustering coefficient. A small-world network can be constructed by

initially adding all nodes to a lattice with k nearest neighbors and then rewire every edge with

a probability p. There is also the scale-free model presented by Albert & Barabási (2002).

This model is driven by preferential attachment, meaning that new edges are attached to

nodes proportional to their degree. These networks naturally get a degree distribution which

to some extent follows a power law

P (k) ∼ k−γ

where γ typically is 2 < γ < 3 (Newman, 2003).

Although a network can be classified as either a random graph or a scale-free graph, both

can also resemble and be termed as small-world graphs at the same time.

2.5 Language Games on Social Networks

The relationships among humans are of course so complex and intricate that no mathemati-

cal models are anywhere near verifying every choice of trust, communication, partnership, or

religious beliefs. Ambitiously, the first systematic studies of social relations began around a

century ago, and since then both books and whole journals have been devoted to social net-

works (Costa et al., 2011). Some may argue that there has been a whole industry committed

to the field in the last, or the last couple of decades — following the exponential growth of

technology, Internet and social media.

The last decade, simulations on language and language change on social structures have

picked up a lot of attention. There is of course a vast number of social features that could

possibly influence linguistic (Gong et al., 2008), such as age, gender or religion — but with

both careful and bold abstractions, researchers keep exploring.

The paper by Baronchelli et al. (2006a) is a good example of the dynamics involved in a

naming game conducted on a social network. In contrast to ordinary non-structured language

games, with high amounts of total words and relatively fast consensus time — on scale-free

networks, the total amount of words in the simulation is rather low, but reaching consensus

takes much longer time. This is mainly because, when choosing speakers at random in scale-

free networks, there is a high probability that agents with a low degree are picked. When the

majority of the hearers are agents with high degrees, words do not spread that easily — and

when agents with high degrees occasionally are chosen as speakers, they tend to have such

large inventories that their contribution is of little worth. Thus, when choosing speakers in a

naming game on a social network, the random agents should always be chosen proportional
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to their degree.

An other approach to minimizing the consensus time in such simulations is by manually

making some long distance edges between random nodes in the network (Dall’Asta et al.,

2006). If these connections are not too long, this favors agreement in small-world networks.

This has also been supported when conducting similar experiments on empirical gathered

data (Lu et al., 2009). In this study, the social networks (high school friendships) where

manually altered by adding a small number of long distance edges between communities to

mimic a mass media effect in a naming game. They also experimented with simulations

where some agents in the population insisted on uttering only one certain word throughout

the naming game. In both cases, these alterations induced a much faster consensus among

the agents — as without, the population consensus was rarely reached. Whether or not the

analogy towards a mass media effect is coherent or not, the study highlights at least some of

the dynamics and tensions in social networks — as tipping point, where small influences can

make sudden shifts in the system (Helbing & Balietti, 2011).

As for what could influence language on a social network, take for example learning

(Maity et al., 2013b). In this paper, a naming game was attempted on both homogeneous

fully-connected networks as well as heterogeneous scale-free networks. In both cases, results

show that learning hinders the consensus and instead facilitates the emergence of small and

strong communities.

Recently, (Lipowska & Lipowski, 2012) examined a naming game on an fully connected

network. Here, every relation, has an associated weight. Through dialogs, the weights get

increased and decreased on dialog successes and failures respectively, with a small user-

given ε. A speaker is chosen at random. The speaker chooses among all the agents in the

population for a possible hearer, but proportional to the weights in the network. In most

cases, the simulations converges against a handful of words, spread out in contracted clusters

of different sizes.

It is said that the dynamics of a complex network comes from the interplay between

two factors, the state of the network and the topology of the network (Gross & Blasius,

2008). A network’s state can be thought of as the nodes’ values or features, and for the

latter, the pattern of connections between the nodes. When the nodes’ states change, this

can spark a topological change — and a change in the topology can again change the states

of different nodes. This can happen in both local parts of the network, or in the network

as whole. Although there have been several endeavors on co-evolving topologies with other

ecological phenomena — for instance in epidemic spreading (Marceau et al., 2010), or opinion

dynamics (Nardini et al., 2008) — few simulations on language evolution have done the same

(Quillinan, 2006); experiments are instead mostly carried out on static topologies.
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2.5.1 Social strategies

The animal kingdom is full of social learners. Social learning, in contrast to individual (or

asocial) learning, is often assumed to be preferred as it is a cheaper and safer way to new

information. Rendell et al. (2011) presented several different learning mechanisms; random

copying, strategies that are dependent on others choosing the same strategies, strategies

where individuals are only pointed in the right direction, strategies that depended on age,

gender, or dominance ranks and so on. The list is long, and it emphasizes how intricate

modeling culture can be in computer science and game theory. Even so, under certain

circumstances, social learning might not be more favorable then individual learning, as the

information gained through social learning might be wrong or outdated — a phenomenon

referred to as “Rogers’ paradox” (Rendell et al., 2010; Hashimoto et al., 2010).

The literature on self-emergent language games is full of examples where agents uses

social learning. For instance, Maity & Mukherjee (2012) reflected dominance by choosing

speakers with a probability proportional to their communication success rate. In a more

thorough fashion, Gong et al. (2008) have experimented both having more popular agents

among “ordinary agents”, and the balance between short and long distance communication.

As expected, having popular (and thus dominating) agents helps towards faster agreement.

Further, having multiple hearers has been tested (Li et al., 2013), as well as overhearing

(Maity et al., 2013a), both facilitating faster agreement in the population and significantly

decreasing cognitive efforts in terms of memory capacities.

2.6 Genetic Algorithms

A genetic algorithm (GA) (Holland, 1992) is a heuristic optimization algorithm which mimics

the Darwinian theory of natural selection. The idea works as follows; a population of possible

solutions to a particular problem is randomly generated. Each individual in the population

is evaluated by an objective function, hereafter suitably called a fitness function. Over gen-

erations, poorly fitted individuals die and the surviving individuals are allowed to reproduce.

Through genetic operations and the variation that they bring, new solution candidates are

born and new fitness values can be calculated.

2.6.1 Definitions

In more technical terms, a GA can be viewed as a set of genotypes analogous to a part of a

species’ DNA. These genotypes are mostly represented as strings of bits where each group of

bits can be interpret as a gene. Grey-encoding is one of the most used mechanisms for doing
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this. It is a straight forward casting from bits to real-values, but with some alterations so

that a single bit flip mutation always can both make slight and large changes to the decoded

value. As human DNA works as a blueprint for humans, a genotype works as a blueprint

for its phenotype. Therefore, a phenotype in a GA can be one of many candidates to a

solution to for instance, an electronic circuit design, the traveling salesman problem, or other

problems where the search space is huge and a suboptimal solution is good enough. Initially,

a random set of genotypes is generated and developed into a phenotype. Each gene in the

genotype is typically interpreted as a real-value or discrete building block for the phenotype.

A much used application is the construction of artificial neural networks, where genes are

interpreted as weights to the neural network (Belew et al., 1990). Further, the phenotype

can undergo some interaction with its environment before a fitness is calculated, rating the

candidate solution in terms of objectives. How the phenotype adapts to an environment is

termed phenotypic plasticity, thus high plasticity makes a phenotypic less constrained by its

genotype. When the first random generated candidates are tested and rated, a generation

is over. Here, a handful of the best fitted solutions are chosen by some selection strategy,

typically by a roulette wheel selection or tournament selection to get a good and biased

balance of both fitted solutions and solutions that are heading towards other (and perhaps

more profitable) parts of the search space. A roulette wheel selection is when an agent is

chosen at random, but proportional to its fitness. A tournament selection is when k agents

are selected for a “tournament” and n agents “win” by some metric. As these solutions

are chosen, they reproduce by combining their genotype in ways known to work in mother

nature. The combination is generally done by crossover, an operation which splits a pair

of genotypes in two or several parts, often between genes, and weave them together to new

genotypes. Occasionally, the genotypes are victims of mutations where one or more bits get

flipped. These new genotypes then get developed to new phenotypes and the algorithm runs

through generations until the solutions start to converge.

While this sounds like following a recipe, the challenge is choosing suitable development

and fitness functions. Development can be done in several ways, but the key is to make the

mapping between genotypes and phenotypes so that small mutations in a genotype also makes

small changes in a phenotype. Another important matter is to make sure all phenotypes in

the search space can be mapped from the genotypes. As for the fitness function, it is highly

dependent on the problem — but the essence is to make a function which can output an

arbitrary number for how good a solution is (objective), or how much better it is then

something else (subjective).

Overall, a GA provides a set of operators that can be used to achieve exploration (crossover),

exploitation (mutations), and both at the same time (with different selection strategies). The
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term fitness landscape is extensively used with in the research field of evolutionary compu-

tation. There is not any distinct definition of what a fitness landscape is, it is mainly used

figuratively to describe how “peaks”, “valleys”, and “ridges” can look like in vast search

space (Jones, 1995). The landscape intuitively enough resembles where the global and local

optimum or optima are located in terms of fitness. Particular problems for GAs are often

described as how their landscapes look like — for example, from unimodal to rugged, with

or without deceptions, or isolated “needle-in-a-haystack”, regions with misleading gradient

information. They are all typical problems in that must be accounted for by tuning the GA

in different directions (Weise et al., 2012).

2.6.2 Applications

Genetic algorithms have many applications other than optimization. They can for exam-

ple also be used for programming, where genotypes work as programing operators, or in

economics for development different bidding strategies, or in simulating ecology in terms

of host-parasite co-evolution and disease patterns (Mitchell, 1998). However, they can also

translate into a framework for social behavior, agent-based systems, and game theory. While

it might not translate directly, the methodology is still valid. For instance in the language

evolution territory, an objective function is not necessarily the best choice as a fitness function

— since the best communication system might not be known. Thus, a subjective function

can be applied to value a solution candidate relatively to other solutions by some measure.

An example of this is reviewed later on (Suzuki & Arita, 2013).

Surprisingly few have used GAs to investigate self-organizing language systems in agent-

based simulations. Noble (1999) used a GA in a “Prisoner’s dilemma” inspired signaling game

where cooperative and non-cooperative strategies evolve in an non-situated environment. A

recent paper from Gong & Shuai (2012) used a typical GA to model the co-evolution of joint

attention (the non-verbal activates that often aid communication, for instance pointing) and

language over both cultural and biological timescales. They demonstrate that assimilating

not-language specific abilities, such as different strategies for joint attention, could support

the emergence of language. Another interesting paper is the one from Munroe & Cangelosi

(2002). They simulated agents from an ecological perspective where agents were using neural

networks to evolve a simple grammatical language. The agents applied this language while

walking around in a situated world filled with edible and poisonous mushrooms. The agents

needed to agree upon what to eat and what not to eat, by perceiving information in the

environment and sharing this information with their offspring.

The simulation was split up into two phases. First, a number of agents, each provided
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with a random weighted feed-forward neural network, were placed in an environment for

a finite number of generations. Here they formed into a set of agents capable of finding,

handling and eating edible mushrooms. After this phase, the best genotypes (essentially the

neural network’s weights) were selected on the basis of the phenotype’s fitness and stepped

in as parents for a new group of visually impaired agents. The new group of agents could

only perceive the mushrooms and their features 10% of the time, and depended on the

caretakers output language to survive. From this point, the newborn had to learn what

features made mushrooms edible or not throughout listening to their parents instead of just

visually perceiving. They adjust their neural network weights with backpropagation at each

time step (analogous to how humans do individual learning, by trying and failing in general

tasks). Before the children become parents, they are allowed to visually perceive their whole

surrounding for some iterations, just enough to be get a better grip of what visual features

map to what linguistic signals. Over generations visual and linguistic features got more and

more assimilated into the genome and offspring got less and less dependent on learning. By

tweaking the simulation parameters, as (noise in) cultural variation, the Baldwin effect and

learning costs can be encouraged and damped. The compositional language in this model is

viewed as clusters of signals, where the different clusters server as different word types and

signals as different words (edible, poisonous, wash, cut, ...). It is an interesting model because

it is one of the first simulations carried out with a GA and where both the biological and

cultural aspect are represented in a situated, artificial life setting. As written theories tend

to be spoken about in very general terms, this model is good because it gives a somewhat

clear picture of how a concrete language can evolve.

From a more abstract perspective, Suzuki & Arita (2013) wanted to investigate how

negative effect of frequency-dependent selection could be tackled by evolving phenotypic

plasticity. Frequency-dependent selection in biology terms is when the fitness for a phenotypic

trait gets greater when the trait becomes more common (positive) or less common (negative).

An example used in the paper is the hypothesis that it can be hard for mutations in a hard-

wired language system to be beneficial if fellow participants do not understand the change.

In their GA, they let the individual’s genotype contain two real-values, one for an arbitrary

trait and one to express the phenotype’s plasticity. Communication success between agents

is measured by the distance between the agents’ trait values, and fitness is calculated from

this. Plasticity in this model allows the agents to adaptively skew their trait value (learning)

towards better fitness through their lifetime. Overall, Suzuki & Arita (2013) show that

learning allows the population to avoid getting stuck in local optima.

Chater et al. (2009) uses a similar model when they argue that only stable parts of the

linguistic environment encounter the Baldwin effect. In their simulations, they demonstrate
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that arbitrary linguistic properties in human language (such as word order, grammatical

agreement, and case) do not assimilate into the genetic makeup purely through adaptation

if cultural variance is too high. Their genotypes are made up by genes, where each gene

can have one of three discrete values; positive, negative, or a neutral. The values represent

biases towards a certain language principle, one bias for each principle. If an agent (has a

polarized bias towards the same principle used by other agents, there would be no need for

learning (high fitness) — but if the innate bias and the language principle are conflicting,

the communication will not succeed. Their experiment goes over three simulations, first,

language is assumed static and unchanged through generations. All the agents quickly adapt

to having genes favoring this language and thus the Baldwin effect is operating. In the second

simulation, the target language is changing between generations by flipping random principles

to represent cultural change. This dampers or eliminates the Baldwin effect completely,

depending on the change rate — and all agents adapt to having only neutral biases towards

the target language, relaying on a learning orientated communication system. In their last

simulation, they let the target language be influenced by the genetic biases among the agents

to if the Baldwin effect reemerges. Hence, it is only by “implausible” high values of genetic

influence the Baldwin effect emerges. These are the same people who proposed that language

is shaped by the brain instead of vice versa. They have later used the same methodology

where populations split up and evolve side by side and later merge without any problem,

similar to how Australasian populations have been largely isolated for 50,000 years but still

have no problem learning European languages (Baronchelli et al., 2012).



Chapter 3

The Lipowska Model

As this thesis wants to investigate the different evolutionary forces shaping human language

from a computer science perspective, it is appropriate to first look at previous studies where

similar questions have been raised. There have been other endeavors (Nowak et al., 1999;

Hashimoto et al., 2010; Munroe & Cangelosi, 2002), but the paper by Lipowska (2011) sticks

out. It is an interesting model because it was motivated by the combination of a model

from the interactive language game paradigm (which is focused on static one-generation

interactions) and the iterated learning model (Kirby, 2002a) (which concentrates on the

interactions between parents and children). On top of this, the model looks at how learning

can affect the emergence of a self-organizing language system over the different timescales

involved; the biological, the cultural and at an individual level.

Following are three sections; method, results, and discussion. The method includes the

basic setup Lipowska used in her experiments. This method will be implemented and results

will be presented. The discussion will explain some problems with the methodology and

present arguments for extensions.

3.1 Method

As this model adopts a language game, namely the naming game, it is said to be non-

structured (no grammar). However, it is to some degree situated as all of the agents are

structured in a regular lattice with size L.

The simulation unravel as follows; at each iteration i

1. a random agent is chosen, and

2. the agent is allowed, by a user-given probability p, to

initiate a dialog with a random neighbor and act as speaker, or

24
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by the probability 1− p, face a “population update”,

Thus, this p is of essence, being the ratio between communication attempts and the

population turnover. If p is small, there would be little interaction in the simulation —

and if it is high (or simply higher), agents have statistically more dialogs throughout their

lifetime.

As with naming games, every agent has an internal lexicon consisting of words. Here,

every agent has weights, w(w > 0), associated to their words. Whenever a chosen speaker

is to utter a word w, the agent selects a word wi from its lexicon with the probability of

wi/
∑

j wj. If the lexicon is empty, an agent is assumed to have the ability to make up

a new word. One of the nearest nine neighbors in the lattice is chosen as the hearer. If

both agents know the transmitted word, the game is deemed a success and if not; a failure.

Upon success, both selected agents increase the transmitted word’s weight in their lexica

by a learning ability variable (see Tables 3.1 and 3.2). This is an alignment strategy that

permits this learning ability to be favorable (and even possible), hence it also preserves the

culture variance as word do not get deleted upon dialog success (like in Section 2.2.7). Each

agent is equipped with a learnability variable l (0 < l < 1). An increasing learning ability is

meant to, in its simplicity, reflect the genetic assimilation of a language learning apparatus,

as discussed in Subsection 2.1.3.

Apart from the communication, the chosen agent is occasionally updated, with the prob-

ability 1−p. This is to establish the generation turnover emphasized in the iterated learning

Speaker (l = 0.6) Hearer (l = 0.8)
Gral (w = x) Qjar (w = x)
Kron (w = 1.8) Tram (w = x)
Fjap (w = x)

Speaker (l = 0.6) Hearer (l = 0.8)
Gral (w = x) Qjar (w = x)
Kron (w = 1.2) Tram (w = x)
Fjap (w = x) Kron (w = 0.8)

Table 3.1: Schematic rules of a dialog failure. The speaker utters the word “kron” which the
hearer is not familiar with. The hearer adds the transmitted word to its inventory with its
learnability, l = 0.8, as weight — and similar, the speaker subtracts l = 0.6.

Speaker (l = 0.6) Hearer (l = 0.8)
Gral (w = x) Qjar (w = x)
Kron (w = 1.2) Tram (w = x)
Fjap (w = x) Kron (w = 0.8)

Speaker (l = 0.6) Hearer (l = 0.8)
Gral (w = x) Qjar (w = x)
Kron (w = 1.8) Tram (w = x)
Fjap (w = x) Kron (w = 1.6)

Table 3.2: Schematic rules of a dialog success. The speaker now utters the word “kron” which
the hearer is familiar with after a dialog in the past. Both agents add additional weights to
the utterances with their learnability learnability l.
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model. Agents die or survive with the probability

psurv = exp(−at)[1− exp(−b
∑
j

wj/〈w〉)] (3.1)

by that takes age (t), knowledge (lexicon weights in respect to the population’s average

weights 〈w〉), and user-given coefficients into account (typically a = 0.05 and b = 5). Intu-

itively, this directly favors the agents’ learnability variable if there are any successful dialogs.

How age is calculated is not formally presented in Lipowska’s (2011) paper, therefore the

assumption is made here that every time an agent is allowed to communicate, its age gets

incremented. If the agent has a high-weighted lexicon and is young of age, the agent will

most likely survive. If the agent does survive, the agent is allowed to breed if there are

empty spaces among its neighbors. If an agent reproduces (asexually), a new agent spawns

in the empty cell and inherits the parent’s learnability with the probability 1 − m. m is

here the mutation rate, so if a mutation comes about, the new agent acquires a new random

learnability value. Lastly, the offspring inherits the parent’s highest weighted word with the

same probability 1−m, and can otherwise make one up.

Lipowska (2011) goes a bit further and experiments with a gradually increasing p in some

of her simulations, as well as seeding the population with pre-assimilated agents. These

experiments will not be implemented here, but discussed afterwards.

3.2 Results

Lipowska (2011) uses different parameters in her model. 0.2–0.3 is used for p , a = 0.05,

b = 5, m = 0.001, L = 60. Following are some figures (3.1 to 3.4) from a simulation run with

similar given parameters as in (Lipowska, 2011); However, with p = 0.4. The high p is due to

the fact that no significant progress is taking place with values lower then p = 0.3 (similar to

Lipowska’s value p <= 0.15, many words and small clusters). Moreover, 200,000 timesteps

are performed, the chances of learnability mutation is m = 0.01, and lattice size L = 25 (625

agents). Another factor that are not clearly stated are the initial values. Lipowska has used

different initial values for learning ability in her analysis — here, l = 0.5 is used, which makes

a decrease in learnability a part of the search space as well. For initial weights on invented

words, weights = 0.5 is used. All parameters which is not exactly the same are skewed in

favor of a sharper coherence.

In Figure 3.1a to 3.1e, each agent is a dot in each “heat map” and each dot is colored to

represent an agent’s value. Black dots indicate a dead agent, or in other words, an empty

space. The left column is the agent’s learnability, the center column is number of words in
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(a) After 10k timesteps

(b) After 50k timesteps

(c) After 100k timesteps

(d) After 150k timesteps

(e) After 200k timesteps

Figure 3.1: Naming game simulation. Every diagram is a heat map, representing some value
from every agent in the population. The left column shows learnability, the middle column
shows lexicon size, and the right column shows the highest weighted word in the agent’s
inventory (the colors are arbitrary).
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Figure 3.2: Average number of communication dialogs per agent. The x-axis is one point per
100 timesteps.

an agent’s lexicon, and the right column represents the highest weighted word per agent (the

colors and numbers are somewhat arbitrary — the interesting facts here are where the borders

go, and how the clusters characteristics over time). Already from timestep 10k, small groups

of agents agree upon different words (as seen in the right column), this abrupt transition from

disorder to order is mainly because of all the deaths. In only 10,000 iterations, a statistical

60% of random agents have faced death through Equation 3.1 (since p = 0.4), whereas many

have not survived, judging by there age and knowledge. With these, a lot of entropy vanish.

As mutations start to spread (left column), the groups turn fewer and their sizes grow.

Mutations that do not favor learnability quickly lead to death. In the center column, it is

easy to see where the different groups meet. The agents in these areas naturally know both

words on each side (or more) and can abstractly be seen as multilingual. By timestep 200k,

the population do not reach a single word agreement (as in most of Lipowska’s simulations),

but consensus get reached if the simulation is allowed to run further.

In Figure 3.2, the upper line represents the average number of communication dialogs per

agent alive. The other line represents the average number of successful dialogs. The number

of successful dialogs quickly follows the number of total dialogs after small linguistics groups

settle. The average age of each agent correlates with the upper line as it is measured from

the number of dialogs it participates in.

In Figure 3.3, the upper line represents the fraction of agents alive in the lattice. It is

initially fully populated, but the population decreases with time and balances at a point

where both death and birth are equally tensioned. The other graph is here the average

learnability in the population. This is s-shaped as a result of slow mutation rate in the first
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Figure 3.3: Fraction of agents alive and average learnability. The x-axis is one point per 100
timesteps.

Figure 3.4: Agent’s lifetime as a function of learnability. The x-axis is one point per 100
timesteps.

phase (few die of old age and no space to breed), accelerated around 150k as the favorable

learnability also gets inherited, and decreasing towards the end because a mutation is more

likely to ruin an agent learnability then (when l is at its upper limit).

In Figure 3.4, the agent’s lifetime as a function of learnability is plotted. Since the

surviving probability, ps, is influenced by the total number of words and weights in the

lexica, agents with higher learnability tend to live longer.

3.3 Discussion

Firstly, in order to replicate Lipowska’s (2011) results quite a few parameters where altered

(for instance, higher mutation rate, higher possibility of survival with richer lexicon/higher
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age). Presumptively, this is due to how age is calculated and how this affects the chance

of survival. In the replica, age is assumed to correspond to the number of dialogs an agent

participates in. Another possibility is to increment every agents’ age at every iteration, or at

every time there is a dialog, but then the results divert even more — and it makes little sense

in terms of small values of p (very little chance of communication). With that said, having

such a model where the calculation of age is so crucial seems curious. For instance, if age is not

carefully weighted in the survival equation (Equation 3.1), more agents might die than agents

that are allowed to breed. This effect is further enhanced if p is changed, as more population

updates make agents confront death more often. Furthermore, for different values of p, the

number of iterations needs to be adjusted to reach the same amount of dialogs. This is also

the case when changing the population size — if the population for instance is increasing, one

particular agent is less often chosen. Lipowska herself has compensated with higher mutation

rate on simulations with different population sizes, which could be two variables somewhat

more independent from each other in an ideal simulation.

At every iterations, or timestep, the simulation follows a sequential technique — where

each iteration can end in multiple closings. For instance, if an agent is chosen for population

update and it survives — it is allowed to breed, but if there are not any empty cells around,

the iteration just ends — and the simulation meets this endpoint almost 25% of the time.

From earlier literature on naming games, where only cultural transmission is simulated on

static populations, this timestep design is quite reasonable as it only has two outcomes per

dialog, success or failure. Reusing this design when expanding a from cultural inspection

only to both culture and biological analysis can thus be arguably messy.

If this naming game paradigm is the right tool for abstractly studying semiotic dynamics

on a phylogenetic time scale, generation turnover needs to be more vigorous than happening

in between dialogs. While this certainly is more lifelike in a contemporaneous universe,

it makes it difficult to make good computational models for further analysis. A typical

genetic algorithm could be a reasonable substitution, and could make the model more open

for studying other innate traits. This is the opening argument for the model presented in

Chapter 4.

As for the overall intention, illustrating the Baldwin effect, the model captures the essence.

Given metastable clusters of words (and thus a high average communication success rate),

agents with higher learnability are not killed as often as those who are without — meaning

they have greater possibilities for acquiring an empty cell for breeding. Although survival

is calculated upon their performance (or acquired characteristics), its is rather obvious that

learning is favorable. At least it is, when the linguistic performance is normalized on the

whole population. It is arguably less self-emergent if the fitness of an agent is valued in
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relation to other distant and non-threatening agents.

However, Lipowska’s main arguments are sound — it is clear that the ratio between

communication and population update is significant. There exists a balance, in which she

demonstrates in her paper, between cultural and biological transmission. Or said in other

words, how much one speaks before dying. This directly influences the relative variation

on both levels, which is the allover topic in the Baldwin effect debate in language evolution

(Chater et al., 2009).



Chapter 4

Methodology

Given the discussion in Chapter 3 (see Section 3.3) this thesis will examine a similar model

in more robust framework; a traditional genetic algorithm (in the sense of Section 2.6, hereby

just called a genetic algorithm). While Lipowska’s (2011) model can be seen as a genetic

algorithm, or at least is inspired by genetic algorithms, was constructed to show a specific

point and not very suitable for extensions. When exploring with learning, and other innate

traits, and how it influences agents’ lifespans in various environments, it is important — in

an computational model — to keep track of causality and make the right abstractions based

on this.

This chapter has three parts. Firstly, a brief clarification and justification is given for the

choices made in this chapter. Secondly, the experiment from Chapter 3 will be implemented

using a genetic algorithm. And finally, a similar naming game will be demonstrated using a

genetic algorithm where other innate traits are taken into account, namely social strategies

and some cognitive constraints. This is done to highlight the possibilities of using a genetic

algorithm while simulating aspects of language evolution.

4.1 Choices

Using a genetic algorithm simulating language evolution in artificial life will be justified by

the following two observations. Firstly, it is clear that language evolution must be looked at,

and dealt with, from three different viewpoints, namely the evolutionary forces surrounding

biology, culture, and choices done on an individual level (through learning) (Steels, 2011).

A good model for this must be capable of distinguishing between these co-existing adaptive

systems and somehow be able to give insights into the interactions between them. A genetic

algorithm is able to take this into account (Bedau, 2003; Hashimoto et al., 2010). Assuming

that learning, or a language learning apparatus, is assimilated and can be used — there may

32
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exists many other traits facilitating communication indirectly, such as social strategies ??.

A species’ assimilated (carefully chosen, abstract) biases and strategies for learning, social

interactions and other cognitive abilities, can be captured with a vector of bits — a genotype.

From this genotypes, development takes place at each individual’s birth. Then, depending

on the cultural environment, the individuals acts upon these strategies throughout their life

— as phenotypes. In other words, biology can be mapped to genotypes, culture to the

environmental interactions, and the individuals to phenotypes. Although life is continuous

and concurrent, a genetic algorithm applies temporal turnover by iterating generations. As a

genetic algorithm originally is a search optimization algorithm, it is common to only take a few

selected individual from generation it−1 and let them breed and mutate extensively to a fully

populated generation it. By skewing these parameters towards fewer deaths per generation

and fewer interactions between each generation, a more realistic continuing community of

artificial life can be achieved. Secondly, in the reviewed literature (Chapter 2) it has been

mentioned that a genetic algorithm would be a step in the right direction for simulating

different aspects of language evolution on social graphs, and no one seems to have picked it

up. A genetic algorithm was proposed as future work in the paper by Gong et al. (2004), in

their experiment where simple rule based syntax was evolving on different social networks.

Another example is the thesis by Quillinan (2006), where one-generation social networks co-

evolve with an abstract model of language and learning, the same proposal is pointed out as

an extension.

4.1.1 The Lipowska Model using a Genetic Algorithm

In Section 4.2, the experiment from Chapter 3 will be outlined using a genetic algorithm.

This is done for the purpose of demonstrating that the problems easily translated from a

sequential timestep model to a model where genotype and phenotypes are interacting between

generations, although it might over-engineer particular problem. This is justified as it makes

the model more suitable for extensions.

4.1.2 Co-evolving Communication Systems and Social Structure

As there is good indications for communication systems to affect social structure (Lipowska

& Lipowski, 2012) and vice versa (Quillinan, 2006) this will outline a model for investigating

such experiments in greater detail.

For the type of computer models (Subsection 2.1.4) this work is aimed at exemplifying

and highlighting the methodology towards this field of study. However, both motivation

and inspiration is gathered from the recent literature, so the overall contribution has an
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explorational touch to it.

To test and demonstrate the model, a total of seven different single-run simulations will

be conducted, where four innate traits are investigated.

• Extraversion. How far out in the social graph do an agent search for new friend.

This is inspired by Gong et al. (2008), where agents have a user-given probability for

speaking with other agents in either their own community or cross-communities. In

the discussion, they argue that these user-given probabilities should co-evolve with the

language evolution and social structure. This extraversion gene is a response to that

discussion. The gene’s value will be treated as probabilities to reflect innate biases and

not deterministic innate behavior.

• Teach child. This value reflects the probability that a parent is the first one to talk to

the child. If both parents have high values, a child gets its first dialogs from them —

and if the values are low, the child would have to make its first dialog with a random

agent. This was tested in a paper by Nowak et al. (1999), but not on a social graph.

They showed that learning from your own parents is highly favorable, but it could be

interesting to see how a social structure would respond to such behavior (or lack of

behavior). The gene’s value will also be treated as probabilities to reflect innate biases

and not deterministic innate behavior.

• Lexicon limit, a value which constrains the number of words an agent can remember

at once, as it is a rational for an agent to not have unlimited (computational) powers

(Epstein, 1999).

• Speech ability, a value reflecting the agent’s reliability of uttering the actually chosen

word, and not a random one. This is because it is a bit odd that every agent sponta-

neously is able to make distinct difference between a conceptual thought and a holistic

sound. This particular trait will only be added in one of the simulation, to see how it

affects the evolutionary process.

4.2 The Lipowska Model using a Genetic Algorithm

Defined

Going from the timestep model from from Chapter 3 to a traditional genetic algorithm is

relatively straight forward. The learnability translate to a single gene, encoded as a real

values from 0 to 1 using Grey encoding. However, the genetic operator crossover usually



CHAPTER 4. METHODOLOGY 35

splits between genes, and is therefore transparent in this case. Mutation m at birth works

as expected in a genetic algorithm (one bit gets flipped). Regarding population turnover, a

simple tournament selection is applied, k random agents are chosen and n of the best fitted

agents “win” the tournament. Between generations, d · populationSize dialogs are randomly

distributed. Every speaker chooses a random neighbor and act accordingly to the experiment

in Chapter 3. For the fitness function, psurv is used (Equation 3.1), where age is corresponding

to the number of generations an agent has survived.

4.3 Co-evolving Communication Systems and Social Struc-

ture Defined

This model can be split up in into two co-occurring processes, namely evolution of language

and evolution of social structure. The language evolution is adapted from the naming game,

as in the model in Chapter 3, except for learnability. In human language, it is not necessary

true that language arose simultaneously as with social structure. There is no clear answer

to what came first, and if, to what degree language worked as a catalyst to social structure,

or inversely. However, Dunbar (1997) argues that the two strongly correlates, and if any

connection, communication is perhaps the most natural cause of humans social structure.

Thus, in this model it is assumed that both social structure and a language arose coinciding.

So to set the scene, consider for example a group of early hominids with no strict relations

other then having part of the same environment.

The essence of the model is the following. Every agent seeks relationships, and only though

successful dialogs can these be established. This follows the work of Quillinan (2006), as

agents are only allowed to make ties with those they are similar with (often termed homophilia

bias or preferential attachment), although Quillinan experiments with other strategies for

attachment. Hence, fitness is evaluated in terms of number of friends, or in other words, the

node’s degree in the social network. The assumption that naturally follows is that having

more friends is beneficial for reproduction, and communication success (or gossip) is beneficial

for making such relationships. This might seem simplistic, but it is at least a more pragmatic

than letting a higher weighted lexicon favor the odds of survival directly. However, every

agent can not acquire unlimited relationships. As for establishing new friends, each agent can

only reach out to z new agents before concentration on maintaining these friendships. This

does not mean that an agent can only acquire a maximum of z friendships — if a lonesome

agent is to make contact with a popular agent with z relations, a connection can be made if

their dialog is a success. This hopefully forces agents to make introvert decisions when having



CHAPTER 4. METHODOLOGY 36

no relations and extrovert when social groups are established. This is also meant to reflect

an agent’s capacity to reach out for new friends — meanwhile, it makes the visualization

easier. In the network, every friendship is weighted with the number of successful dialogs. If

there happens to be more failed dialogs then successful ones, the friendship falls apart and

the edge is removed. This is regulated by adding 1.0 to weights on successful dialogs and

subtract 0.5 on failed one. It seems reasonable to give an established relationship a “second

change” if there suddenly is a miscommunication. The only other way a friendship can decay,

is if agents die.

Regarding the chosen traits mentioned in Section 4.1, the genetic makeup consists of four

genes (a Grey-encoded bit vector) decoded into values between 0 and 1.

• Extraversion. If a hearer has between 1 and z relations, the extraversion variable

would be the probability of searching only ply further (among friend’ friends) in the

graph before initiating a dialog. The maximum ply an agent can search is 3. A low

value will then increase the probability of the agent only choosing among its closest

friends.

• Teach child. This value reflects the probability that a parent is the first one to talk to

the child. If both parents have high values, a child gets its first dialogs from them —

and if the values are low, the child would have to make its first dialog with a random

agent.

• Lexicon limit. The limit is calculated from limit = geneV alue · 20. If an agent gets

more than limit words in its lexicon, the lowest weighted word gets pruned.

• Speech ability. The value is used as a probability. For low values, an agent will just

invent a new word despite of having chosen one in its lexicon — and for high values

the intended word is mostly uttered.

In generation 1, a population with a fixed number p of agents is developed from random

generated genotypes (random bit vectors). They interact, for every agent in the population,

d dialogs are distributed. Thus, for every generation there would be a total of p ∗ d dialogs

taking place. For every dialog, the speaker is first chosen with a probability proportional to

the agent’s number of relations (degree). If a speaker has no relations, a hearer is picked out

at random. If the agent has less then z relations, it searches for hearer accordingly to its

extraversion strategy, and if it has z or more relations, he chooses among one of its nearest

to reflect a sort of maintenance of neighborhood. When all dialogs are completed, a fitness
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score is calculated for every agent by

fitness = [exp(0.02 ∗ numberRelations)− 1] ∗ exp(−0.05 ∗ age) (4.1)

This gives a stable climb from 0 to 1 for 0 < numberRelations < 30 and by the time an

agent is around 15 generations old, it gets a 0.5 fitness, given it has a very high degree (see

Figure 4.1).

When fitness is calculated, the poorest fitted are chosen to die by a simple tournament

selection. k random agents are selected where the n (n <= k) best fitted are transfered into

the next generation. When 1 − n of the population is gone, the 1 − n best fitted agents

are selected for breeding. Each adult chooses a partner from its closest neighborhood, or a

random one if z = 0, to account for associative mating (so mating do not follow a random

pattern). Crossover is done between the adults’ genotypes, and the random selected genotype

(as crossover gives two) can mutate with the probability m = 0.01 (one bit gets flipped). The

newborns are allowed to join the next generation, and the simulation goes on like this for i

generations.

In summary, simple biological traits are captured in the genotypes and variation here is

offered by the different genetic operators. Culture can be seen as the diversity of words in

the population, and the evolving topology. On an individual level, agents wish to establish

relations with other agents by following their phenotypic constraints.

Figure 4.1: A representation of how the fitness function (Equation 4.1) looks like. An ideal
agent has a low age and has many relations.



Chapter 5

Results

In this chapter, the results from working using a genetic algorithm is presented. First, a

brief illustration and elaboration of how Lipowska’s model could be performed on a genetic

algorithm — and then some experiment work will be presented, using a genetic algorithm to

co-evolve language and social structure.

5.1 The Lipowska Model using a Genetic Algorithm

Here are the results from the model descried in Section 4.2. Simulations are done with

learnability being a solely gene in a simple genotype. The simulation goes over i = 200

generations, and with d = 5 dialogs per agent per generations. Population size is p = 1225

(35 · 35), m = 0.1, both the initial weights on learnability and invented words are 0.5 as in

the experiment from Chapter 3. Tournament selection uses k = 0.8 and n = 0.5, meaning

40% of the poorest fitted agents dies after each generation. That implies that 4500 dialogs

are held and 360 agents die thereafter, in every generation.

Figure 5.2 illustrates a very similar progress as earlier,

38
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Figure 5.1: Average fitness and the num-
ber of successful dialogs over a total of
dialogs.

Figure 5.2: Learnability over all agents
through the simulation.

Figure 5.3: Average fitness and the num-
ber of successful dialogs over a total of
dialogs.

By naively using Lipowska’s psurv (Equation 3.1), which can be characterized as a subjec-

tive function (and not an objective function), the average fitness score holds little information

about what goes on in regard to the agents’ weights (See Figure 5.1), only information about

the agents’ age is extractable. There are of course a small deviation in the fitness among the

agents, and better fitted agents are more often chosen as survivors.

There is another issue that can be accounted for in this simulation. Going from above

450 utterances (initially, one word is invented for every unique speaker-hearer pair, and some

words vanish as poor fitted agents die — so at the end of the first generation there is not

a total of 1225 words) to about 25 happens extremely fast. In only 5 generations, the dead
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agents drag along with most of the words, leaving “lucky ones” to keep spreading their

highest weighted words. Some of these lucky ones are probability newborn with a favorable

mutation, eager to promote the parent’s word.

As for learnability (Figure 5.2), this follows a steady progress as in the replica of Lipowska’s

model (Figure 3.3). The reduction from 25 to only a handful of dominant words happens as

the derivation of learnability is at its highest (around generation 15 to 30), and as positive

learnability spread out in the population the forces towards a single word are reduced. This

is a result of a decreased evolvability, meaning fewer and fewer offsprings turn up better than

their parents. In this particular simulation, the population ends up with two equally sized

groups of words (and some tiny groups with no future) — fewer words as in results presented

in Chapter 3; presumptively because of an increase in the number of total dialogs.

The little dip in fitness (and the learnability’s standard deviation) around generation 10 is

a result of starting all agents with age 0. Almost everyone grow old simultaneously, creating

some noise for the fitness function.
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5.2 Co-evolving Communication System and Social Struc-

ture

Following are the results from seven single-run simulations from the outlined methodology in

the previous chapter (Section 4.3). Just to emphasize, every simulation has genotypes evolv-

ing the three traits; extraversion, teach child and lexicon limit. Only one of the simulations,

Simulation 2, has the additional speech ability gene. The first simulations can be seen as the

main results, the following six, Simulation 2–7 illustrates how the model responds to other

parameters. Every simulation uses the parameters in Table 5.1 if not stated otherwise.

Parameter Description
a = 1000 Number of agents.
i = 100 Number of generations.
d = 1 Number of dialog per agent per generation, making a total of 100,000 dialogs.
z = 5 As maximum new relations an agent can make.
k = 0.9 90% of the whole population are allowed in tournament of generation turnover.
n = 0.8 80% of the k best fitted agents win, leaving 20% of the agents for death.
genesSize = 8 The number of bits a gene is made up from.
m = 0.01 1% chance for a mutation in a newborn.

Table 5.1: The parameters used in simulations.
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Simulation 1, Main Results

This is the main results from the model, with parameters all equal to those in Table 5.1.

The first, and most important (See Simulation 3), trait facing selective pressure is the one

making parents teach their own children a language after birth. This is not very surprising

as this is the probability of the cheapest way to make a relationship in the population. Only

afterwards do extroversion/introversion behavior emerge, and agents quickly find it favorable

to reach far out in the social network for new friends. Now, remember that an agent can

permit incoming dialogs even though the agent has reach z relations. As it might be, by

(selfish) intuition, preferable to bind with close one first (as these are more likely to share

your language/opinion) — biology might find it more favorable for a descendant if an agent

passes along a individual unprofitable mutation, as this might increase the descendant’s de-

gree (and therefor fitness) having such agents around.

The last phenotypic trait, memory limit, appear very sporadic in most simulations. Seem-

ingly, with these parameters, their is no need for either high, or low, memory ability. In

contrast to naming games on static topologies (Wang et al., 2007), a very low memory limit

is sufficient when agents are continuously dieing and breeding. As for coherence, it is only

once in a while a simulation reaches consensus. Two or three words are often left after

100,000 dialogs. This is very similar to work found in the literature on static scale-free net-

works. In particular, Baronchelli et al. (2006a) constructed a scale-free network with a power

law degree distribution and an average degree of 4, populated with 2000 agents and reached

consensus right after 10,000 dialogs (although they where not choosing speakers proportional

to their degree, but rather letting a random hearer choose its speaker) — this network is also

showing a power law degree distribution (See Figure 5.12a) and a average degree of 4.072.

(See Figure 5.4)

Count of most used words
536
461
3

Avg degree Avg shortest path
4.072 7.094

Table 5.2: Simulation 1, the count of most the used words, average degree, and average
shortest path in the network at generation 100.



CHAPTER 5. RESULTS 43

(a) The average of each gene over all the agents. (b) Average of fitness, the ratio between successful and
failed dialogs, and the clustering coefficient in the pop-
ulation.

(c) The number of unique highest-weighted words and
average inventory size.

(d) A snapshot of the social network at gen-
eration 20.

(e) A snapshot of the social network at gen-
eration 60.

(f) A snapshot of the social network at
generation 100.

Figure 5.4: Overview of simulation 1 in terms of communication success, genotypic values,
fitness, utterances, and social network.
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Simulation 2, Speech Evolving

An additional gene is added to capture the emergence of a dependable speech apparatus.

In this simulation, when no agent have the ability to make themselves understood, the

evolutionary progress is just drifting (no selection pressure) for the first 20 generations (See

Figure 5.5a). Here, three observations can be commented.

Firstly, the three different traits, speech, teach child probability, and extroversion are all

happening right after each other, respectively. This is often known as domino convergence,

and happens when features are encoded separately and have different contribution to the

fitness (Weise et al., 2012). Secondly, there is actually — in contrast to Simulation 1 — a

slight pressure towards introversion when the agents start to build a social structure. This

can be due to drifting, but the extroversion behavior is at least emerging much later then

in Simulation 1. When a few agents get there speech apparatus going and they happens get

a couple successful dialogs, these are very likely to stick around, because of higher fitness.

They breed, and those how are learning their children their highest-weighted words are even

more favorable. By generation 20 (see Figure 5.5d), a little community where everyone share

their highest weighted word is settled — and this group grows and dominates the simulation,

both biological and cultural. Thus, this leads to relatively safe consensus in the population.

Still, there are many disconnecting communities, however, this is not very surprisingly when

a small community agree on a language system before all parents adapt to letting their

newborn be a part of the community. This converges to one single cluster if the simulation

is allowed to run longer, as the extroversion behavior goes up.

Count of most used words
975
10
1

Avg degree Avg shortest path
3.762 4.470

Table 5.3: Simulation 2, the count of most the used words, average degree, and average
shortest path in the network at generation 100.
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(a) The average of each gene over all the agents. (b) Average of fitness, the ratio between successful and
failed dialogs, and the clustering coefficient in the pop-
ulation.

(c) The number of unique highest-weighted words and
average inventory size.

(d) A snapshot of the social network at
generation 20.

(e) A snapshot of the social network at
generation 60.

(f) A snapshot of the social network at
generation 100.

Figure 5.5: Overview of Simulation 2 in terms of communication success, genotypic values,
fitness, utterances, and social network.
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Simulation 3, Hard-wiring Low Child Learning Probability

From Simulation 1 and 2, a high probability for a parent to teach its own child tend to

evolutionary favorable. In this simulation, this trait is hard-wired to 0.15, meaning that each

parent initiates a dialog with its newborn only once in a while after breeding.

This one is rather intuitive, when only 15% of all parents get to have their their first

dialogs with their newborns, there are very few connections being made. Although, when

some agents do occasionally make a successful dialog, they are more likely than others to

breed (as they gain higher fitness), and if newborns occasionally learn from only one of their

parents, the word entropy starts to decrease (See Figure 5.6).

Count of most used words
135
122
107
36

Avg degree Avg shortest path
0.440 1.172

Table 5.4: Simulation 3, the count of most the used words, average degree, and average
shortest path in the network at generation 100.
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(a) The average of each gene over all the agents. (b) Average of fitness, the ratio between successful and
failed dialogs, and the clustering coefficient in the pop-
ulation.

(c) The number of unique highest-weighted words and
average inventory size.

(d) A snapshot of the social network at
generation 20.

(e) A snapshot of the social network at
generation 60.

(f) A snapshot of the social network at
generation 100.

Figure 5.6: Overview of Simulation 3 in terms of communication success, genotypic values,
fitness, utterances, and social network.
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Simulation 4, Hard-wiring Low Extroversion Probability

As seen in Simulation 1–2, the extroversion probability tend to be evolutionary favorable.

In this simulation where the value is hard-wired to 0.15, meaning that the agent most often

only initial new friendships with friend’s friends and not friends beyond that.

This share resemblance with Simulation 1 in terms of consensus (see Figure 5.7c) and

degree distribution (see Figure 5.12d) — but the social network is very disconnected as there

are no longer far reaching connections holding the graph together.

Count of most used words
552
413
21

Avg degree Avg shortest path
2.236 2.653

Table 5.5: Simulation 4, the count of most the used words, average degree, and average
shortest path in the network at generation 100.
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(a) The average of each gene over all the agents. (b) Average of fitness, the ratio between successful and
failed dialogs, and the clustering coefficient in the pop-
ulation.

(c) The number of unique highest-weighted words and
average inventory size.

(d) A snapshot of the social network at
generation 20.

(e) A snapshot of the social network at gen-
eration 60.

(f) A snapshot of the social network at
generation 100.

Figure 5.7: Overview of Simulation 4 in terms of communication success, genotypic values,
fitness, utterances, and social network.
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Simulation 5, Increasing Number of Dialogs

In this simulation the ratio between culture interaction and biological turnover is adjusted

by going from d = 1 to d = 5. To account for the total number of dialogs, there are only 25

generations in this simulation.

This is somewhat equal to adjusting Lipowska’s p in earlier experiments (see Section 3.1)

- as this adjusts the ratio between communication and “population update”. Changing the

number of dialogs in each generations allows for more connection to be made. This highly

condenses the communities; the average degree goes up to 5.570 and average shortest path

goes down to 3.461. It puts less pressure on extroversion behavior as a tight community do

not fall apart that easy — which leads to many invulnerable communities, each holding its

most dominant word. This is also the simulation which diverts the most from the power law

degree distribution (see Figure 5.12e).

Count of most used words
326
196
155

Avg degree Avg shortest path
5.570 3.461

Table 5.6: Simulation 5, the count of most the used words, average degree, and average
shortest path in the network at generation 25.
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(a) The average of each gene over all the agents. (b) Average of fitness, the ratio between successful and
failed dialogs, and the clustering coefficient in the pop-
ulation.

(c) The number of unique highest-weighted words and
average inventory size.

(d) A snapshot of the social network at gen-
eration 5.

(e) A snapshot of the social network at
generation 15.

(f) A snapshot of the social network at
generation 25.

Figure 5.8: Overview of Simulation 5 in terms of communication success, genotypic values,
fitness, utterances, and social network.
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Simulation 6. Scaling, 100 Agents

In this simulation the model is tested on a much smaller set of agents, only 100 agents.

Despite for the fact that the average shortest path goes down, this looks very much as

Simulation 1. The Figures 5.9d to 5.9f shows (with arbitrary colors matching words) how

very clearly that different agents are following different strategies, and hence making it both

non-regular and yet not random.

Count of most used words
76
24

Avg degree Avg shortest path
4.220 3.099

Table 5.7: Simulation 6, the count of most the used words, average degree, and average
shortest path in the network at generation 100.
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(a) The average of each gene over all the agents. (b) Average of fitness, the ratio between successful and
failed dialogs, and the clustering coefficient in the pop-
ulation.

(c) The number of unique highest-weighted words and
average inventory size.

(d) A snapshot of the social network at gen-
eration 20.

(e) A snapshot of the social network at gen-
eration 60.

(f) A snapshot of the social network at gen-
eration 100.

Figure 5.9: Overview of Simulation 6 in terms of communication success, genotypic values,
fitness, utterances, and social network.
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Simulation 7. Scaling, 10,000 Agents

In this simulation, the number of agents are increased to 10,000 agents. The simulation is

limited to 50 generations for computational reasons.

The model seems to scale up quite nicely and shows resemblance with Simulation 1 in

almost every aspect. It takes about 5 generations longer to reach the stable “few words”

phase, but thats not surprisingly as there are 10 times more words in the population (see

Figure 5.10c).

Count of most used words
8365
1201
141

Avg degree Avg shortest path
4.167 7.480

Table 5.8: Simulation 7, the count of most the used words, average degree, and average
shortest path in the network at generation 50.
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(a) The average of each gene over all the agents. (b) Average of fitness, the ratio between successful and
failed dialogs, and the clustering coefficient in the pop-
ulation.

(c) The number of unique highest-weighted words and
average inventory size.

Figure 5.10: Overview of Simulation 7 in terms of communication success, genotypic values,
fitness, utterances, and social network.
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Figure 5.11: The social network at generation 50 with 10,000 agents, one dominant word and
two smaller groups. The last one, with 141 agents, is out of scope.
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(a) Simulation 1 at generation 100. (b) Simulation 2 at generation 100.

(c) Simulation 3 at generation 100. (d) Simulation 4 at generation 100.

(e) Simulation 5 at generation 25. (f) Simulation 6 at generation 100.

(g) Simulation 7 at generation 50.

Figure 5.12: Degree distributions from Simulation 1-7.
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Not mentioned are the clustering coefficients. They all tend to stabilize to around 0.3,

even when the extrovert behavior is hard-wired to a low value. Precisely the cause is difficult

to say without having more data, but it is seems safe to assume that there are design flaws

involved, as there should have been more fluctuation while skewing different parameters.

A few words on the degree distributions (see Figure 5.12a to 5.12g). They all (with

the exception of Simulation 5) tend to display similarities with scale-free networks, having

few nodes with very high degree and a very dense amount of few-degree nodes. Although,

there are two irregularities with these distributions, most interestedly in Simulation 1 and

Simulation 7, as they represent the main results. Firstly, the number of nodes having zero

connections, hovering about 5%. This is due to remaining chance of child abandonment

(low teach child probability), and as friendships can decay through death and failed dialogs.

Another deflecting number is the degree of 5. This is naturally because of the constrain z

in the model. Agents ( living in the last generation) quickly fill up their quota after birth

and are then left for distant speakers to initiate dialogs. Having a fixed constrain z over all

agents might be a bit rough — handing out z variables following a normal distribution is

perhaps a better way to go. In other words, this 5-degree irregularity would probability ease

out if every agent had a more distribution mental capacity for establishing new friends.

In summary

• Conducting a naming game on a co-evolving social network (from nothing but nodes

and made-up words), shows multiple similarities to naming games in the literature

where the topology is pre-constructed.

• The population goes from high to low word entropy very quickly, even in Simulation 7

with 10,000 agents, as soon as small clusters are forming.

• There is no clear pressure towards having neither a high nor low memory constraint.

• The population rarely reaches consensus, except when there is a need for pre-adaptations,

as in Simulation 2.

• The count of different words, and the clusters’ density, at the end of the simulation is

highly influenced by the number of dialogs per generation as demonstrated in Simulation

5.
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Discussion and Conclusions

Considering the literature and the results from the two experiments from Chapter 5 — a

discussion is reasonable before drawing conclusions. The discussion has three subsections,

one for each model in Chapter 5, and one where they are seen together. Conclusions are

highlighted before giving suggestions for further work.

6.1 Discussion

The Lipowska Model using a Genetic Algorithm

First, some thoughts on using a genetic algorithm on the experiment from Chapter 3, demon-

strating the Baldwin effect. Using a genetic algorithm when the genotype only consists of one

gene might be an over-engineering — but it provides a modular and flexible implementation

environment (with genetic operators, different strategies for survival and adult selection, easy

to add new genes). While this is good — it also introduces another problem. Earlier, the

parameter p was the only factor determining the ratio between biological turnover and cul-

ture interaction — now, this is a dispute between number of dialogs per generation d and the

number of survivors w. The search for good simulation parameters was not very problematic

in this case, but it was at least more work then skewing a single p parameter. Although there

is a lot of conditional choices happening behind Lipowska’s (2011) population update, this

emphasizes the importance of her work in studying the relationship between cultural and

biological transmission.

Further, the psurv (Equation 3.1) was reused as a fitness function. This makes the fitness

function a subjective function, in contrast to an objective function which is ordinarily used

in evolutionary algorithms. In this simulation, it means that every agent is valued after how

every one else are doing. While this is not necessarily a wrong approach, it is a bit diverting

59
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in terms of self-emergence. For instance, if this model is to be tested on a vast number of

agents, it would not be fair to let agents be judged after how someone else is doing in a

distant community. At the very least, if a subjective function is to be used in a model like

this, a agent should be compared against other agents in its immediate surroundings. Of

course, this might introduce noise in a model which only serves as an example, but it is

surely more realistic. To clarify, an objective function would in comparison be something like

“how well is an agent doing in terms of optimal performance” — but then you would need

to know what the best agent, or solution, looks like. An objective function in this presented

model would not be a problem, but it could clearly make a difference in an emergent human

culture — with accumulating wisdom and health care — where there are no comprehensive

solution for individual performance.

Co-evolving Communication Systems and Social Structure

Following a sociobiological track, the presented genetic algorithm demonstrate how researchers

in the field of language evolution can investigate genetic constrained mechanisms with highly

cultural influence — both co-evolving with social structure, or other phenomena assumed

to be influenced by, or from, language change. However, this model lacks several important

factors before conclusions on language evolving could be made. For instance, it is not nec-

essarily true that a naming game is a suitable abstraction for the semiotic dynamics, the

process of mapping signals and signs to concepts or meanings. At least not when it is co-

evolving with a social structure (discussed later). When making this abstraction, there is

a loss in adaption on the individual level, as agents only participates in social learning and

not individual learning. The learning mechanisms used in this experiment is also arguably

naive, as agents only choose words randomly from their inventory proportional to success

weights. Furthermore, there are no distinct difference between who is the speaker and who

is the hearer, or in other words, who learns from whom — except for a child’s first dialog.

As in the work from both Hashimoto et al. (2010) and Munroe & Cangelosi (2002), agents

are assigned roles as teachers and students depending on their age which allows for a deeper

investigation of between social and individual learning. However, there is the obvious prob-

lem in computer simulations when dealing with animal and human learning; what should

the associated costs be? This is clearly a challenge in the presented model as well. For

instance, weights on the social network are added after successful dialogs with the weight 1.0

and subtracted by 0.5. In the present model, skewing this weights, or making them equal,

does not change the overall behavior much, but it matters. This is also true for the overall

parameters given to the simulations (Table 5.1), regarding the speed of cultural and biologi-

cal turnover. In both cased, the numbers have been set (although inspired by the literature)
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by what sounds and gives intuitive results — this emphasizes the importance of involvement

from other disciplines. In the same way, the costs of having a extrovert behavior in this

simulation is no more than risking a potential successful dialog. While this might be enough

to damper extrovert behavior at the start of each simulation, the real risk in making contact

with total strangers are naturally much higher.

The social strategies in the presented model follow a probabilistic nature, meaning no

agents have deterministic behavior solely based on their genetic makeup. While this might

make a more lifelike scene, it makes it difficult to determine what diverting behavior looks

like and how it influences the allover system, since agents are per definition diverting from

their strategies every now and then by chance. It is also debatable if the initial setup of

homogeneous agents is realistic — as social structure might preexist in the animal kingdom

prior to language. There are, for instance, evidence of social communities among animals,

depending on sex, age, and territories (Wolf et al., 2007). How strong these relations are in

contrast to relations establish on the basis of language and culture is still an opened question.

Hence, the model presented should perhaps start of with pre-seeded social networks, reflect-

ing a typical distribution of age and demography, instead of going from a homogeneous group

of “free-riders”. Although the topology in the final results from Simulation 1 (Section 5.2)

display high resemblance with social networks in modern human history (power law degree

distribution, low average shortest path) (Baronchelli et al., 2013), it is questionable if these

are the main characteristics in a social network right after the emergence of a language within

a species.

This could point to biases in the implementation and in the assumptions made in the model

— a known problem when modeling social phenomena (Helbing & Balietti, 2011).

As for some other observations. Simulation 2 (Section 5.2), which also includes the

emergence of a coherent speech apparatus, highlights an important point in language evolving,

namely pre-adaptations. Language, as we see it in humans, would indeed require some

adaptations that might not necessarily be directly favorable for reproduction itself, such

as certain cognitive abilities for mapping holistic sounds or gestures to concepts in nature,

or for instance strategies for joint attention (pointing, eye-gazing) (Gong & Shuai, 2012;

Christiansen & Kirby, 2003a). In this simulation, there is only one simple pre-adaptation,

working as a “needle-in-a-haystack” in the fitness landscape, but in reality there could be a lot

more. This is one of the most used arguments from nativists against Darwinian explanations

to language.

Further, as viewed through all the simulations, there does not seem to be any pressure
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facing the agents lexicon size. On one-generation static topologies, it has been shown that

the time to reach consensus on naming games is highly influenced by the lexicon size, and

intuitively, bigger lexica is better (Wang et al., 2007). But in this model it makes no differ-

ence, agents are simply dying before reaching their cognitive limits, or are born, raised and

retired in the same one-word stable community.

Overall

Conducting a naming game on a co-evolving social structure where fitness is based on the

number of friendships has some implications. When only a few agents get successful dialogs

and small cluster are emerging, these agents are naturally highly favored. It only takes

about 20 generations before all agents without relationships are replaced by newborns from

the small emergent clusters. This is also the only period in the simulation where there are

any clearly selection pressures. After this rapid transition, the majority of agents are mainly

satisfied with their adaptations. Only extrovert behavior can be biological preferable - as

this increases the low-degree agents’ chances to be selected as hearer by others. Even in

Simulation 2 (Section 5.2), not having a coherent speech apparatus makes lot of noise be-

tween the agents, the transition happens relatively fast. Thus, the naming game might be

“too easy” and happening too fast compared to the evolution of social structure — which is

unfortunate for the overall behavior, as it is assumed that language is the functional cause

for social structure in this experiment. Although in general, complex linguistic systems needs

many generations to forge — assuming there exists a language capability, a single generation

could be able to construct simple human languages through few, or even a single, generation

(Kirby, 2002b).

This leads us to an important point, namely the fitness function and if it includes the

right ingredients. In this simulation, language is naively assumed to be favorable for making

social ties. Perhaps this causality is too weak, and there should be even more in between,

for instance by using language as a coordination tool in resource gathering (Munroe & Can-

gelosi, 2002; Vogt, 2009). Language is by not doubt a complex affair, and when choosing

good parents for future generations, other aspects should also be considered — for instance,

cognitive effort, learning costs, teaching costs. While it is temping, we should at least not

calculate fitness solely based on communication success, as it would relate to “the classic

case of looking for your car-keys where the street-lamps are” (Bickerton, 2007, p. 522).

Also important is, what — or whom —- shall agents be compared to? In this thesis, both

a subjective function normalized over the population, and a objective function (number of
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relationships) have been used. A better approach might lay somewhere in between — for

instance, the number of social ties, weighted after the friends’ knowledge or popularity? This

could provoke conflicting behavior within the population, making the agents oscillate between

different optimal strategies.

A strength with a genetic algorithm is that we can change the whole experiment’s mo-

tivation and outcome with only a few lines of code, but that also emphasizes how careful

the function must be chosen initially. Allover, with support from other disciplines, this work

outline great potential in combining different theories and models with the use of an open

minded and explorational framework.

6.2 Summary and Conclusions

When exploring, validating or and exemplifying different theories in language evolution with

computation models it is necessary to make assumptions where knowledge is limited and

where computers lack representation. Although there is a lot of these assumptions, re-

searchers tend to lay little weight on the importance of one particular consensus; that lan-

guage evolution is influenced by both biology, culture, and different types of learning — all

simultaneously. While there are many simulation which obvious do not depend on biological

variation, a genetic algorithm as presented here, can still give a reliable set of tools for find-

ing good cultural parents in overlapping generations. In this thesis, several computational

models have been brought up, hopefully to give some insight to the potential in self-emergent

agent-based models in language evolution. One model from recent literature is examined in

detail, a model demonstrating the advantages assimilating an abstract learning apparatus

and applying it in a naming game, over both biological, cultural and individual timescales.

A slightly different and more robust approach is proposed, making a foundation for applying

other theories regarding language evolution over multiple timescales. Using the same naming

game, a co-evolution between language and social relations is demonstrated, where language

works as a dependency for assembling strong social networks. A naming game, which work

as an abstraction to semiotic dynamics, is perhaps a far too unrealistic model in terms of

evolving a early protolanguage when co-evolving social ties. However, both the methodology

and the experimental work reveal a great potential for future work.

6.3 Recommendations for Further Work

Referring to a part of this thesis’ objectives, this model is highly open for extensions and

explorations in different directions. Earlier work which has not considered either dynamic
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social networks or biological turnover, could be combined. The first and most interesting

aspect would be the emergence of compositionality and word order regularities with rule-

based systems (Gong, 2011; Vogt, 2005), or even neural networks (Munroe & Cangelosi, 2002).

Adapting neural networks could not only incorporate language, but also the social dynamics

and the perceptions in the environment. An additional emergence of compositionality would

probably increase the complexity so that the turnover of language and social structure would

become more equal, in terms of evolution.

A less dramatic change could be to add more arbitrary objects to the naming game for

agents to agree on. Or, the guessing game could be adapted, where all agents get to perceive

some object or objects, having, for instance, different color and size features. This is one

of many other language games often used when embodied agents are socially cooperating

(Steels, 2009).

This model may also be a foundation for studying the diversification of language and lan-

guage families with variation on both biological and cultural level (Levinson & Gray, 2012).

In particular, it might facilitate in the questions whether phylogenetic trees are adequately

to capture the diversification of language, or if a network is more suitable, as different lan-

guage families might interact over communities. Hence, demography and geography could

be introduced to make the model more realistic (Patriarca & Heinsalu, 2009).

Of course, experimenting with other types of social strategies could be done. For example,

adapting a more “Prisoner’s dilemma” type of interaction would be interesting. If initiating

a dialog with a total stranger has additional cost, there might be agents deflecting from this

strategy in order to only exploit other’s extrovert behavior. If everyone does this, no social

network would assemble, creating a social dilemma (Fehl et al., 2011).

Another interesting effort could be to add more distinct social roles, assigning the agents

as teachers and learners, depending on their age, to further investigate the learning dynamics

in an evolving graph.
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