
A mobile application for public art
Utilising smartphones and crowdsourcing to

enable users to discover and learn about

public art

Ole Andreas Rydland

Master of Science in Computer Science

Supervisor: Sobah Petersen, IDI

Department of Computer and Information Science

Submission date: February 2014

Norwegian University of Science and Technology

A mobile application for public art - Utilizing

smartphones and crowdsourcing to enable users

to discover and learn about public art

Ole Andreas Rydland
oleandry@stud.ntnu.no,

NTNU - Norwegian University of Science and Technology,
Faculty of Information Technology, Mathematics and Electrical Engineering,

Department of Computer Science,
Supervisor: Sobah Abbas Petersen

February 3, 2014

ii

Summary

This thesis follows the background research and development of an Android
application meant to utilize crowdsourcing and other techniques to build a
database and share knowledge about art in public places.

iii

iv SUMMARY

Oppsummering

Denne masteroppgaven flger bakgrunnsforskningen og utviklingen av en An-
droid applikasjon som skal bruke crowdsourcing og andre teknikker for bygge
en database og dele kunnskap om kunst i offentlig rom.

v

vi OPPSUMMERING

Abstract

This report describes the work done in a Master Thesis conducted at the Nor-
wegian University of Science and Technology from september to february. The
purpose of the project is to design and develop a proof of concept Android
application that enables the public to learn about art in public places. The
application is meant to use ideas from crowdsourcing and social tools to build a
database of information about art in public places. It should also enable users
to access this information.

The project was conducted by studying literature and related applications
before starting development on the application.

This paper provides information about the research that has helped design
the functionality of the application and the details of the implementation of the
application.

The paper summarizes the project in relation to the goals of the thesis, and
provides suggestion for further work to improve the application. In the end, the
paper concludes that the idea of utilizing crowdsourcing for the goal of helping
people learn about public art is a valid one, even though it also provides several
challenges that has to be solved.

vii

viii ABSTRACT

List of Figures

3.1 Access to mobile phones and smartphones in Norway 2010-2012. 11
3.2 The map screen in ArtAround . 12
3.3 Art information screen in ArtAround 13
3.4 Adding new art in ArtAround . 13
3.5 Adding a comment in ArtAround 14
3.6 Reading comments in ArtAround 14
3.7 Map with favorites enabled . 15
3.8 The categories of places in foursquare 15
3.9 The best nearby list in . 16
3.10 Additional search filters in foursquare 16
3.11 Map showing search results in foursquare 17
3.12 A place in foursquare . 18
3.13 A list in foursquare . 18
3.14 Badges in foursquare . 19
3.15 Social network in foursquare . 19
3.16 Adding a report in Waze . 20
3.17 A user with their score and avatar in Waze 21
3.18 The user profile showing the score you have achieved 22
3.19 A task to visit a place in Waze 22
3.20 The turn by turn interface in Waze 23
3.21 Wikipedia’s front page . 24
3.22 Wikipedia talk page . 24
3.23 Wikipedia talk page grading . 25
3.24 Wikipedia article revision history 25

4.1 Architecture . 30
4.2 Datastore model . 33
4.3 The interaction between interface elements 35
4.4 The actionbar . 36
4.5 The actionbar buttons explained 36
4.6 Illustration of the overflow functionality 36
4.7 The choose account dialog . 37
4.8 Map screen after account created 38
4.9 Markers on the map screen . 38

ix

x LIST OF FIGURES

4.10 The information fragment . 39
4.11 Artwork information screen. The picture is a static picture loaded

locally. 40
4.12 User adds rating . 41
4.13 The dialog shown when user presses create new on the actionbar 42
4.14 The empty create new artwork screen 42
4.15 The category spinner . 43
4.16 Filled out new artwork screen . 44
4.17 Picture added to the new artwork screen 44
4.18 Adding a new route . 45
4.19 List of routes . 46
4.20 Routes . 47
4.21 Routes order . 47

Contents

Summary iii

Oppsummering v

Abstract vii

1 Introduction 1
1.1 Purpose . 1
1.2 Motivation . 1
1.3 Research Questions . 2
1.4 Project goals . 2
1.5 Development methodology . 3

2 Application concept 5
2.1 Application’s goal . 5
2.2 Functionality . 5

2.2.1 Add, get and edit information 5
2.2.2 Routes . 5
2.2.3 Assisting users in finding artworks 6

2.3 Requirements . 6
2.3.1 Functional Requirements 6
2.3.2 Non-Functional Requirements 7
2.3.3 Availability . 7

3 Research 9
3.1 Literature review . 9

3.1.1 Crowdsourcing . 9
3.1.2 Attracting and motivating users 10
3.1.3 Learning and mobile devices 10

3.2 Related applications . 11
3.2.1 ArtAround . 11
3.2.2 FourSquare . 14
3.2.3 Waze . 20
3.2.4 Wikipedia . 24

xi

xii CONTENTS

3.3 Previously implemented features 26

3.3.1 Data storage . 26

3.3.2 Network . 26

3.3.3 Android application . 26

4 Implementation details 29

4.1 Architecture description . 29

4.1.1 Datastore . 31

4.1.2 Data transfer . 33

4.1.3 Android client . 34

4.2 Tools and libraries . 48

4.2.1 Client . 48

4.3 Back-end . 49

4.3.1 Google App Engine . 49

4.3.2 Google App Engine Datastore 49

4.3.3 Google Cloud Endpoints 50

4.3.4 Objectify . 50

5 Further work 51

5.1 Application . 51

5.1.1 Usability features . 51

5.1.2 Routes . 52

5.1.3 Efficiency . 52

5.1.4 Offline storage and syncing 52

5.1.5 Photos and albums . 52

5.1.6 Other media . 53

5.1.7 Search . 53

5.1.8 Further recommendation system 53

5.2 Navigation . 53

5.3 Gamification . 54

5.4 Web interface . 54

5.5 Administration tools . 54

5.6 Social Media . 55

6 Results and discussion 57

6.1 Results . 57

6.1.1 Research questions . 57

6.1.2 Project goals . 58

6.2 Discussion . 59

6.2.1 Limitations . 59

6.2.2 Development methodology 59

7 Conclusion 61

Bibliography 64

CONTENTS xiii

A Installation Guide 65

B Produced Source Code 67
B.1 Android Client . 67
B.2 App Engine . 96

B.2.1 Datastore . 96
B.2.2 Endpoints . 102

xiv CONTENTS

Chapter 1

Introduction

This thesis is a continuation of a depth study performed during the spring term
2013 at the Norwegian University of Science and Technology. The thesis started
as a very broad topic of utilizing an Android application with crowdsourcing,
social media and similar concepts to enable users to learn about art in public
spaces. However, the scope of the thesis has been specified significantly since
then.

While it is based on a previous project, the relevant information will be
summarized in such a way that reading the previous paper will not be necessary.

1.1 Purpose

The purpose of this thesis is two-fold. First, the thesis will conduct research
how we can utilize crowdsourcing and geo-location technology in smartphones
to build a database of information about art in public places. Secondly, the
thesis will describe the design and implementation of an Android application
that will enable users to help building and accessing this database. It will
look into the potential advantages and drawbacks of using the approach of
crowdsourcing to construct this database and propose solutions to efficiently
dealing with these potential problems. Of particular interest is the ability to
allow users to construct routes, which are an ordered list of artworks with a
specific context.

1.2 Motivation

The motivation for this project is to find a way to utilize crowdsourcing and
mobile phones to help create attention about art in public places. The problem
with public art is that there are seldom any commercial interest in it. On the
other hand, galleries, museums and exhibitions usually have ticket sales and
marketing campaigns. This means that it is hard to justify spending money on
marketing or other ways to create attention about public art.

1

2 CHAPTER 1. INTRODUCTION

1.3 Research Questions

While the primary goal of this thesis is to develop an application as a proof of
concept, the thesis will also aim to research important questions related to the
application’s functionality.

1 How can we motivate users to use and contribute to the application?

2 Are there other concepts than the ones mentioned that could be used to
improve this application?

3 What can we do to help users find the art they are interested in?

4 What can we learn from other similar applications that can be utilized in
this application?

There are 3 methods that will be used to answer these research questions.
There will be a literature study. The literature study aims to look into typical
user patterns and challenges in crowdsourcing and social media applications.
The study will also look into how smartphones can be utilized in learning.
Second, there will be a study of other related application that uses one or more
of the concepts this project aims to utilize. As more features are implemented
in the application, simple user tests will be conducted to receive feedback on
the usability of the application. At the same time, users will be asked to fill out
short surveys to help prioritize the next feature to be implemented.

1.4 Project goals

The goal of this project is to develop a software artifact. The artifact is an
android application that will serve as a proof of concept for a crowdsourcing
application. The application is not intended to be a complete product by the
end of the project. Thus the functionality to be developed has been narrowed
down to the following features:

1 Allow users to add information about artworks to a database

2 Allow users to get information added by other users

3 Allow users to edit or add to information already added to the database

4 Allow users to create routes of several different artworks

5 Assist users in finding artworks or routes they are likely to be interested
in

What separates this application from other applications that uses geo-location
and crowdsourcing for similar concepts, is the addition of routes. The applica-
tion also brings together concepts from different applications. It aims to gather
knowledge from the crowd and make publicly available, like Wikipedia. But at

1.5. DEVELOPMENT METHODOLOGY 3

the same time, it will attempt to utilize location-context and interactivity like
the other applications mobile applications we will study.

Naturally, the thesis will also describe why the application is designed as it
is and ideas to make the application complete.

This report will attempt to describe the reasoning behind the design of
the application’s user interface, functionality, the cloud back-end service and
the communication between the user client application and the cloud back-end
service.

1.5 Development methodology

As there is only a single developer working on the application, the development
will take an iterative approach. The plan is to conduct small user tests as new
features are implemented, and conduct surveys to prioritize new tasks as tasks
are completed.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Application concept

The intention of this section is to describe the application’s functionality and
goals in non-technical terms.

2.1 Application’s goal

The goal that the application is intended to fulfill is to help create attention
around public art, by assisting users in both discovering and learning about
public art.

2.2 Functionality

2.2.1 Add, get and edit information

Users should be able to add new artworks and get and edit artworks other users
have added. This means that there needs to be a central database that users
connect to via internet. Since this is an Android application, users can connect
via wi-fi or 3G network.

Users should also be able to rate artworks.

2.2.2 Routes

The addition of routes is critical for this application concept to be a valuable
addition to the functionality of geo-location/crowdsourcing applications.

Routes are a simple concept, in general they are mostly an ordered list of
artworks. They have their own description and rating.

There are two different ways to create routes. Users can create a route,
choose which artworks are included in it and save it to the database. However,
users should also be able to be given a route by the application, based on
certain criteria. In the scope of this project these criteria should be the top
rated artworks, artwork categories and distance.

5

6 CHAPTER 2. APPLICATION CONCEPT

2.2.3 Assisting users in finding artworks

The application should make it easier for users to discover artworks they might
be interested in. For this thesis the implemented features for this will be the
ability for users to mark their interest in certain artwork categories, see the
top rated artworks, overall and within each category, and the generated routes
described in the previous section.

2.3 Requirements

The functionality described earlier can be condensed into the following struc-
tured functional requirements.

2.3.1 Functional Requirements

The application shall:

FR1 Allow users to locate artworks on a map

FR2 Allow users to add a new artwork at their current location

FR3 Allow users to describe the artwork by the following items:

FR3.1 Name

FR3.2 Artist

FR3.3 Year of creation

FR3.4 Category

FR3.5 A short description

FR3.6 Historical background

FR3.7 A photo

FR4 Allow users to see the information about existing artworks:

FR5 Allow users to rate existing artworks

FR6 Allow users to see the average rating of an artwork

FR7 Allow users to add routes consisting of several artworks.

FR8 Describe routes by the following items:

FR8.1 Name

FR8.2 A list of artworks

FR8.3 A short description

FR8.4 Historical background

FR9 Allow users to rate existing routes

2.3. REQUIREMENTS 7

FR10 Allow users to see the average rating of a route

FR11 Allow users to add an artwork to their favorites

FR12 Allow users to see a list of their favorite artworks

2.3.2 Non-Functional Requirements

Modifiability

There’s a big chance that this application will either be extended or built upon
to keep improving the concept of a geo-location/crowdsourcing application to
help create attention to public art. Therefore, modifiability of the application
is very important. This means that it should be easy to add or remove specific
functionality or features without breaking the application. It also means that
the code has to be readable and easy to understand for other developers.

2.3.3 Availability

While availability is extremely important to the user experience, most of the
responsibility has been delegated to the cloud service. However, it is still im-
portant to provide understandable feedback to the user in case of errors.

Security

The application utilizes functionality built into the Android framework to rec-
ognize users. It only uses the email address, and doesn’t require a password to
log in, so security is not a concern.

Usability

Usability is a high priority for this application. This means both that the
application should be intuitive and easy to use for users, but also that when
errors happens, the users need to receive understandable error messages and
clear instructions on how to fix the error.

While this thesis does not intend to produce a fully functioning complete
application, usability should be considered throughout planning and develop-
ment. To assist in improving usability, some user testing will be conducted
during development to receive feedback on the application.

Performance

Performance is not something this project intends to focus on, as the application
will not reach the stage of readiness where this is a priority. However, especially
network performance will be important in a finished product, as a lot of the
user interaction depends on getting and sending data to the server. This means
that users have to wait for data for the application to update, and users want
to wait as short as time as possible.

8 CHAPTER 2. APPLICATION CONCEPT

Chapter 3

Research

This section will describe the research done before application development
starts. It will look at literature and related applications.

3.1 Literature review

The literature review aims to look into typical user patterns in related applica-
tions, crowdsourcing platforms and geo-location applications.

3.1.1 Crowdsourcing

Since crowdsourcing is such an integral part of the application, conducting re-
search on the benefits, drawbacks and challenges of crowdsourcing is important.

The term crowdsourcing was first used by Jeff Howe in a now famous article
[1] published in Wired Magazine in 2006. Crowdsourcing means outsourcing
tasks to a general crowd. Today there are several different examples of major
crowdsourcing projects, such as the gigantic online encyclopedia

1 where both articles and translations are done and moderated by users,
or OpenStreetMap 2 which is a world map made by mappers and available to
anyone for free. An example mentioned in the original article is the open-source
software movement, where the source code of software is available to everyone,
either to learn from or to improve upon.

Crowdsourcing provides obvious advantages. It provides access to a very
wide variety of knowledge and it’s cheap, often free. However, utilizing crowd-
sourcing also comes with several challenges. A paper about the quality of the
data provided to OpenStreetMaps [2] points out several difficulties with vali-
dating the information received. One issue is finding a source to compare the
data with. Another paper that researches the quality of Wikipedia articles[3]
concludes that a simple way to determine the probability of the content having

1www.wikipedia.org
2http://www.openstreetmap.org/

9

www.wikipedia.org
http://www.openstreetmap.org/

10 CHAPTER 3. RESEARCH

a high quality is having more interaction between contributors. This does intu-
itively make sense - the more people contributing to the content and the more
interaction between them, the higher the probability that the content is correct.

Another study on Wikipedia[4] concludes that an important contributor to
the quality of articles is the ability for users to discuss the content on a page, and
thus being able to challenge and verify information added by other users. It also
points out how helpful it is to have a community that cares about the quality of
the dataset is. Yet another study [5] shows the importance of so-called ”elite”
users in the early days of Wikipedia. These users were responsible for a large
percent of the content added. But as the dataset contained in Wikipedia grew,
so did the contribution from average users. While ”elite” users kept providing
the same amount of content as before, the percentage of the total amount of
content they provided fell dramatically.

Another conclusion made in[4] is that giving extra attention to quality ar-
ticles through featuring them on the front page inspires users to strive for the
same quality when adding their own content.

3.1.2 Attracting and motivating users

A study [6] on Amazon’s Mechanical Turk 3 platform shows that a user’s per-
ceived ”meaning” (i.e. importance) of the tasks they solve increase both the
quality, motivation and quantity of the work done on the task. Another study
[7] on the same platform concludes that increased payment of completing the
task also improves the quality of the work. It also concludes in agreement with
[6] that the intrinsic value perceived by the worker increases the quality of the
work, at least at low payment values.

On motivating users [8] conducts a study that shows that turning crowd-
sourcing into a game is an efficient way to motivate users to complete tasks for
less, or even no, pay. However, on the topic of gamification [9] shows that while
it is an effective strategy to motivate users, care must be taken that it is applied
appropriately.

3.1.3 Learning and mobile devices

While not the primary goal for the scope of this thesis, part of the goal of
creating this application is to enable learning about the art in public places. A
large literature review [10] in mobile technology and learning looks into different
ways to incorporate mobile devices in learning. In Figure 3.1 4 we see that a
large percentage of the population in Norway has access to mobile phones, and
over half are smartphone users. The most likely way the application being
developed in this thesis could be applied according to the activities described
in [10] would be ”supporting intentional and accidental learning episodes” by
providing users information while on the move. In a study[11] 48 students were

3https://www.mturk.com/mturk/
4https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=

MedieElektron&KortNavnWeb=medie&PLanguage=1&checked=true

https://www.mturk.com/mturk/
 https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=MedieElektron&KortNavnWeb=medie&PLanguage=1&checked=true
 https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=MedieElektron&KortNavnWeb=medie&PLanguage=1&checked=true

3.2. RELATED APPLICATIONS 11

given PDAs with information and pictures while visiting a museum. The PDAs
allowed the students to follow trails through the museum. The study concluded
that the students experienced positive results in learning, with the technical
aspect of using PDAs being the main limiting factor. With the availability
of mobile devices and smartphones as shown in Figure 3.1, students could use
their phone as a familiar device while following a trail like the ones described in
the[11] study.

A study[12] conducted on the use of mobile devices for learning points out
the advantaged of using familiar devices, as this naturally improves the usability
of the devices. We could imagine the application proposed in this thesis being
used by a school class to provide an interactive learning experience through
their home city.

Figure 3.1: Access to mobile phones and smartphones in Norway 2010-2012.

3.2 Related applications

This section describes the related applications that have been researched and
what relevance they have for the application being developed in the thesis.

3.2.1 ArtAround

Unfortunately, it seems that this application has been removed from the Google
Play Store during the project, and is now only available on the iPhone. However,
the website is still accessible, and screenshots were taken before it was removed,

12 CHAPTER 3. RESEARCH

so the research conducted will still be applied to the thesis. The application is
open-source.

Website: http://theartaround.us/
GitHub repository: https://github.com/ArtAround

Description

ArtAround is the most similar application to the concept of this thesis, in both
the goal of the application and the functionality. It utilities both crowdsourcing
and geo-location.

(a) Map screen in Ar-
tAround

(b) Information fragment on
touch

Figure 3.2: The map screen in ArtAround

Like our concept, ArtAround uses a map where each marker is an artwork.
Pressing a marker brings up an information fragment on top of the map that
shows a picture, the address and a short description of the artwork as shown
in Figure3.2. Pressing this information fragment brings the user to a new page
where they can view more detailed information about the artwork, view several
pictures if they exist and read other user’s comment about the artwork as shown
in Figure 3.3

Pressing the add new art button brings the user to the screen in Figure
3.4). In this screen the user can input the art’s name, artist, year, category,
a description, as well as an area and a ward and a description of the location.
The user can also add a photo of the art.

ArtAround allows users to comment on existing art, which are shown at
the bottom of the art’s information page as shown in Figure 3.5 and reading
comments as shown in Figure 3.6

http://theartaround.us/
https://github.com/ArtAround

3.2. RELATED APPLICATIONS 13

Figure 3.3: Art information screen in ArtAround

Figure 3.4: Adding new art in ArtAround

The application includes the option for users to favorite art. On the art
information page a user can press the favorite button, represented by a heart
icon, to add the art to their favorites. The user can view all their favorites from
the map screen. This filters away all art on the map screen that is not part of
the favorite list, and the resulting screen looks like what is shown in Figure 3.7

Relevance

Among the researched applications, ArtAround is the application that is most
similar to the concept described in this thesis. Letting users add, edit and find
art functions in a similar manner envisioned in this application. However, it

14 CHAPTER 3. RESEARCH

Figure 3.5: Adding a comment in ArtAround

Figure 3.6: Reading comments in ArtAround

does not include the concept of routes, top rated artworks or the ability for
users to choose their interests by category. It is also quite obviously geared
towards american cities, as areas are pre-defined, and are connected to a ward.

3.2.2 FourSquare

FourSquare is an application that aims to help people find ”places”. In foursquare’s
context ”places” includes places you can visit, like restaurants, cafes, nightclubs,
parks, scenic places, shopping, entertainment, etc. Figure 3.8 shows most of the
types of places a user can select to search for in the application.

When users first start the application, they are required to create an account.

3.2. RELATED APPLICATIONS 15

Figure 3.7: Map with favorites enabled

Figure 3.8: The categories of places in foursquare

However, they can sign in directly with facebook or twitter accounts.

Foursquare relies on users searching for places, instead of just browsing the
map. The search allows you choose a category, like food, nightlife, coffee, shop-
ping, etc. It also allows you to choose ”best nearby”, which shows you the
highest rated nearby places of any category as shown in Figure 3.9.

The search can also filter on more things, like distance, show only visited/un-
visited places, etc. In Figure 3.10 we see some of the more advanced filtering
options provided.

When a search is completed, the map is updated with blue circles showing
the places that are returned and the news feed is replaced by a list of the places

16 CHAPTER 3. RESEARCH

Figure 3.9: The best nearby list in

Figure 3.10: Additional search filters in foursquare

returned by the search. Pressing the map will make the list disappear and the
map fills the screen as shown in Figure3.11, while pressing an item in the list
will make the map zoom to that place. Pressing the place again will bring the
user to a new screen, where more information about this place is shown.

The place’s information screen shows of many of foursquare’s features:

Save Foursquare allows users to save places to their to-do list, which is meant
to be a list of places they want to visit in the future.

Check-in Users can check-in to a place. This allows you to share with other
users what you did her, add a photo, tag a friend and share the check-in
on facebook and/or twitter.

3.2. RELATED APPLICATIONS 17

Figure 3.11: Map showing search results in foursquare

Leave a tip Leave a tip enables users to leave a short comment about the
place. This could be a particularly good dish at a restaurant, etc.

Like/Dislike Users can like/dislike places to improve the recommendations
foursquare gives them.

View lists Foursquare allows users to create custom lists. From the place’s
information screen you can get a list of all the lists this place are in.

Mayor ”Mayor” is a part of foursquare’s gamification elements, and is awarded
to the user that has checked into a place the most times during the last
60 days.

Suggest an edit The user can suggest changes or additions to the place’s in-
formation, but this has to be approved.

We can see part of the place screen in Figure 3.12 while the list interface can
be seen in Figure 3.13

A recent update also added a gamification element to foursquare. Users can
earn badges by using the application. The badges are given for completing tasks
like visiting a place, rating, editing information, etc. The badge screen is shown
in Figure 3.14

Lastly, foursquare has it’s own social network. Users can import friends
from other social networks like twitter and facebook, but will provide a special
newsfeed for friends’ activity in foursquare. Figure 3.15 shows how you can find
friends in foursquare.

Relevance Foursquare is the application that has had features that are most
similar and relevant to the concept application in this thesis.

18 CHAPTER 3. RESEARCH

Figure 3.12: A place in foursquare

Figure 3.13: A list in foursquare

The use of lists is of particular interest to this thesis. The ability to create
custom lists and see which lists a venue is a part of is similar to the idea of
routes in the application. However, this application goes a step further, enabling
routes to contain a strict order of artworks, or suggest the best order to visit
each artwork in a route in.

3.2. RELATED APPLICATIONS 19

Figure 3.14: Badges in foursquare

Figure 3.15: Social network in foursquare

20 CHAPTER 3. RESEARCH

3.2.3 Waze

Waze is navigation application for both iOS and Android. It provides turn-by-
turn navigation while driving, but also allows users to share other data, like gas
prices, traffic congestions, road work, etc. The add report screen is shown in
Figure 3.16, and the report is automatically added to the current location of
the user.

Figure 3.16: Adding a report in Waze

Waze is a little different from the other applications reviewed, as it doesn’t
utilize things like ”places” or similar. However, it does utilize a concept referred
to as ”passive crowdsourcing”. This means that users don’t have to actively
provide information. If users choose to do so, they can passively provide infor-
mation to Waze while their phone is connected to the internet. The application
will then gather the user’s average speed, and provide this information to other
users. This means that when using the app for navigation, you can also see the
speed with which other users are moving, as shown in Figure3.17. This way
users can anticipate traffic congestion and decide to take another road if they
wish to.

Like many other crowdsourcing applications, Waze also offers several gam-
ification elements. Users receive points for completing tasks, like adding new
content, adding friends, etc. Receiving points allows users to level up. Leveling
up again gives users access to new avatars and trophies, so they can show off to
other users. Waze’s user profile score is shown in Figure 3.18.

One particularly interesting feature in Waze is that the application will gen-
erate tasks for users to visit certain areas, as shown in Figure 3.19. This mo-
tivates users to visit areas where the application is missing data, or haven’t
received updated data from in a long time.

Waze also offers turn-by-turn navigation as shown in Figure 3.20. This is
unique for the applications studied for this thesis.

3.2. RELATED APPLICATIONS 21

Figure 3.17: A user with their score and avatar in Waze

Relevance While foursquare’s user interface and structure of places is more
relevant to the application being developed in this thesis, Waze does have some
interesting features. Especially the ability to provide turn by turn navigation
might be useful to help users discover art. Waze also has an interesting approach
in using gamification to motivate users to add information that is needed in the
application.

22 CHAPTER 3. RESEARCH

Figure 3.18: The user profile showing the score you have achieved

Figure 3.19: A task to visit a place in Waze

3.2. RELATED APPLICATIONS 23

Figure 3.20: The turn by turn interface in Waze

24 CHAPTER 3. RESEARCH

3.2.4 Wikipedia

Although not a mobile application, the application to be developed in this thesis
shares some features with Wikipedia when it comes to building a database based
on crowdsourcing. The literature study showed that several studies have been
done on the quality of data added to Wikipedia.

Figure 3.21: Wikipedia’s front page

Figure 3.21 shows the front page of Wikipedia. Here we can see some of the
features discussed in the literature review, particularly the use of the featured
article. The featured article is highlighted to give users an example of the quality
of content the Wikipedia staff wishes for.

Figure 3.22: Wikipedia talk page

Figure 3.22 shows what the ”talk” page of Wikipedia looks like. Here we can
see users discussing changes to a page, either content that they mean should be
added or removed, or users volunteering to review the sources and citations of
the page.

Figure 3.23 shows another part of Wikipedia’s talk page of the same article.
Here we see can see how Wikipedia grades the article as a high quality article,
but still encourages users to add content if they feel they can improve upon it.

In Figure 3.24 the revision history of another featured article is shown. This
allows users to track changes to the article. This way, every user can review
changes made, and start a discussion on the changes made if they disagree.

3.2. RELATED APPLICATIONS 25

Figure 3.23: Wikipedia talk page grading

Figure 3.24: Wikipedia article revision history

Relevance While not as technically relevant as the mobile applications re-
viewed in this section, there are several lessons to be learned from Wikipedia.
Combining the literature reviewed and the examples shown here, we can see
the importance of attracting elite users that are interested in creating quality
content. The content added by these users can then be highlighted to set the
bar for new content to be added.

As we saw in the literature study, Wikipedia is probably one of the best
crowdsourcing examples to study, if one is interested in creating quality content
for without paying participants. Promoting discussion, proper research and
source revision are important to constantly improve the quality of the content.

26 CHAPTER 3. RESEARCH

3.3 Previously implemented features

As mentioned in the introduction, this thesis is based on a project conducted
during the spring term in 2013. This subsection will summarize the features
that were implemented during that project.

The previous project intended to implement most of the basic functionality
needed to be able to continue with the route and user account implementation
for this thesis.

3.3.1 Data storage

The database implemented in the previous project was a Google App Engine
application. This is an application that runs on Google infrastructure and au-
tomatically scales as needed. Google App Engine applications are very easy to
integrate with Android applications, which was the main reason this was chosen
as a back-end.

The only entity that was implemented was the ArtWork entity. This entity
consisted of the following fields:

Name The name of the artwork

Artist The name of the artist that made the artwork

Year of creation The year the artwork was made

Category A set of pre-defined categories the artwork can belong to.

Short description A short description of the artwork that is shown on the map screen infor-
mation fragment

Long description A longer description that is shown on the artwork information page.

The datastore was implemented using JDO annotations. This has now been
changed to another annotation library called Objectify. This was done because
it was very hard to manipulate data storage in JDO, and objectify provides a
lower level interaction with the datastore.

3.3.2 Network

The project used a library to generate a HTTP API to handle sending and
getting data from the datastore over an internet connection. The same library
is used in this project, but has been extended with more methods, and will be
described further in the implementation details section.

3.3.3 Android application

Most of the development effort in the previous project was spent on creating
the user interface in the android application. The implemented features were:

3.3. PREVIOUSLY IMPLEMENTED FEATURES 27

1. Actionbar to navigate application

2. The map screen.

(a) Get all artworks and create a marker for them

(b) On marker click, show small information fragment

(c) Clicking on information fragment brings user to artwork information
screen

3. Add artwork screen

(a) Automatically gets longitude and latitude

(b) All the required textfields

(c) A dropdown box to select category

4. Artwork information screen

28 CHAPTER 3. RESEARCH

Chapter 4

Implementation details

This section will describe the planning and implementation in technical detail.
It will show off the implemented features with screenshots, description, explain
the way they work and the interaction between them.. For further detail, the
source code is included in Appendix B.

4.1 Architecture description

The project technically consists of two applications.

1. The back-end:

(a) The datastore

(b) The HTTP API that allows the datastore to be accessed over a net-
work connection

2. The Android client

Figure 4.1 illustrates the architecture and interaction between these appli-
cations.

29

30 CHAPTER 4. IMPLEMENTATION DETAILS

Figure 4.1: Architecture

4.1. ARCHITECTURE DESCRIPTION 31

4.1.1 Datastore

The datastore contains the following entities:

1. ArtWork

2. UserAccount

3. ArtworkRoute

ArtWork

The ArtWork entity contains the following fields:

Id This field is the primary key for each artwork. It is therefore unique for each
entry, and auto-assigned by the datastore when a new artwork is created.
Type: Long

Name The name of the artwork. Type: String

Artist The name of the artist that created the artwork. Type: String

Category The category of artwork. In the client, this is selected from a pre-
defined list. Type: String

Year of creation The year the artwork was created. Type: Integer

Short Description A short summary of the artwork to be shown in the infor-
mation fragment. Type: Text

History A longer description of the artwork, intending to explain the history
and background of the artwork. Type: Text

Latitude The GPS-coordinate latitude of the artwork. Type: Float

Longitude The GPS-coordinate longitude of the artwork. Type: Float

Ratings This field is slightly more complicated. It contains a list of an embed-
ded class. The embedded class consists of the fields:

UserEmail The email of the user that added the rating. Type: String

Rating The rating the user gave the artwork. Type: Integer

The way this list ends up being stored in the datastore is as two lists with
a strict order. This way we ensure that the first entry in the list of user
emails corresponds to the first entry in the user ratings, and so forth.

Average rating This field is updated each time a new rating entry is added
or updated in the list of Ratings. It calculates the average rating of the
artwork. Type: Integer

32 CHAPTER 4. IMPLEMENTATION DETAILS

UserAccount

The UserAccount entity’s function is to be able to remember users, so we can
keep track of their ratings. It contains the following fields:

UserEmail The primary key that uniquely identifies a user. It is an email
address selected by the user in the client application. Type: String

Favorites A list containing the IDs of ArtWorks the user has added to their
favorites. Type: List<Long>

ArtworkRoute

The datastore allows users to save routes of artwork they create manually. The
entity contains the following fields:

Id This field is the primary key for each route. It is therefore unique for each
entry, and auto-assigned by the datastore when a new route is created.
Type: Long

Name The name of the route. Type: String

Artworks A list of the ids of the artworks in the route. Type: List<Long>

Ratings This field is slightly more complicated. It contains a list of an embed-
ded class. The embedded class consists of the fields:

UserEmail The email of the user that added the rating. Type: String

Rating The rating the user gave the route. Type: Integer

The way this list ends up being stored in the datastore is as two lists with
a strict order. This way we ensure that the first entry in the list of user
emails corresponds to the first entry in the user ratings, and so forth.

Average rating This field is updated each time a new rating entry is added
or updated in the list of Ratings. It calculates the average rating of the
route. Type: Integer

Short Description A short summary of the route. Type: Text

History A longer description of the route, intending to explain the history and
background of the route. Type: Text

This datastore model is illustrated in Figure 4.2.

4.1. ARCHITECTURE DESCRIPTION 33

Figure 4.2: Datastore model

4.1.2 Data transfer

To transfer data between the client and the datastore, a library called Google
Cloud Endpoints1 was used. This tool is integrated with Google App Engine,
and is therefore somewhat simple to start using. By annotating our code with
JDO2 or Objectify3 annotations, the tool can auto-generate methods in the
back-end and client to:

1. List all entities of a kind

2. Get an entity by it’s id

3. Delete an entity by it’s id

4. Edit an entity by it’s id

5. Add a new entity

In addition, methods to insert user ratings, get top rated items, get user
ratings, get an artwork’s name by passing id, add favorites and get favorites has
been added.

The methods to do these operations will typically have a return type (or
void for inserting/updating/deleting), a specified HTTP method and required
parameters. The method will then conduct the database call by querying and/or
manipulating the datastore, before returning the result if not a void method.

As an illustration, here is the code for the addFavorite endpoint method:

1https://developers.google.com/appengine/docs/java/endpoints/
2https://developers.google.com/appengine/docs/java/datastore/jdo/overview-dn2
3https://code.google.com/p/objectify-appengine/

https://developers.google.com/appengine/docs/java/endpoints/
https://developers.google.com/appengine/docs/java/datastore/jdo/overview-dn2
https://code.google.com/p/objectify-appengine/

34 CHAPTER 4. IMPLEMENTATION DETAILS

/**

* This method adds an artwork id to the list of favorites

* It uses HTTP PUT

*

* @param id the id of the artwork to be added

* @param useraccount the entity to add the artwork id to

*/

@ApiMethod(name = "addFavorite", httpMethod = "PUT", path = "addFavorite"

)

public void addFavorite(@Named("id") Long id, @Named("accountName")

String accountName) {

UserAccount userAccount = ofy().load().type(UserAccount.class).id(

accountName).get();

userAccount.addFavorite(id);

ofy().save().entity(userAccount).now();

}

To see all the endpoints method, see Appendix B.

4.1.3 Android client

The Android client is the application that users will interact with. This appli-
cation targets Android version 3.0 and newer. This is mainly because version
3.0 implemented the actionbar, and creating an actionbar for older versions of
the operating system requires more external libraries.

User Interface

The user interface is divided into the different screens that users will interact
with. There is also an actionbar that is consistent across every screen.

The interaction between these screens are shown in figure 4.3

4.1. ARCHITECTURE DESCRIPTION 35

Figure 4.3: The interaction between interface elements

36 CHAPTER 4. IMPLEMENTATION DETAILS

The actionbar The actionbar is the primary means for users to navigate
between most of the screens in the application. It is consistent across all screens,
to make it easy for users to use.

Figure 4.4: The actionbar

Figure 4.4 shows how the actionbar looks in the implemented application.
Figure 4.5 shows a closer explanation of the buttons in the actionbar.

The buttons have the following functionality:

Map/center on location This button will bring the user to the map screen.
If they are already on the map screen it will center on their current loca-
tion.

Add Artwork/Route When the user presses this button they will be shown
the dialog depicted in Figure 4.13 which queries the user whether they
wish to add a route or an artwork. After making their choice and clicking
the ok-button, the application goes to the respective creation screen.

List Routes This button takes the user to the screen containing the list of all
routes.

List Favorites This button takes the user to the screen containing the list of
all their favorite artworks.

Help This button takes the user to the help screen.

If more buttons were to be added to the actionbar, they would be shown in
an overflow menu as shown in 4.6.

Figure 4.5: The actionbar buttons explained

Figure 4.6: Illustration of the overflow functionality

4.1. ARCHITECTURE DESCRIPTION 37

The map screen The map screen is the start screen of the application. The
map screen is the primary way for users to look for a new artwork as long as
search is not implemented. Currently the application loads all the available
artworks in the datastore and marks each one with a marker on the map. As
described in the application details section, pressing the marker shows a small
information fragment about the artwork.

The first time the user loads the application, they are prompted to choose an
account to identify with, as shown in Figure 4.7. In the current implementation,
the application only allows users to choose a Google account, but lists all the
Google accounts the user has registered on the device.

It is possible to extend this method to allow other types of accounts too, such
as social media account like Facebook or Twitter. This functionality utilizes the
AccountPicker4 provided by the Android Framework.

Figure 4.7: The choose account dialog

After the user has chosen an account, they are informed that the account
has been created, and the map loads as shown in Figure 4.8.

The application will now start loading the list of artworks from the datastore
in an AsyncTask, and mark each artwork with a marker as shown in Figure 4.9.
This is also how the application will start when if the user has already chosen
an account by running the application before.

The user can now zoom the map in and out by using the standard pinching
movement on the screen and navigate the map by swiping in the direction they
want the map to move. This can also be done while the artworks are loading,
since the application performs the fetching in a background thread by delegating
it to an AsyncTask.

Pressing a marker brings up the information fragment, as shown in Fig-

4http://developer.android.com/reference/com/google/android/gms/common/

AccountPicker.html

http://developer.android.com/reference/com/google/android/gms/common/AccountPicker.html
http://developer.android.com/reference/com/google/android/gms/common/AccountPicker.html

38 CHAPTER 4. IMPLEMENTATION DETAILS

Figure 4.8: Map screen after account created

Figure 4.9: Markers on the map screen

ure 4.10 and centers the screen on the marker. This fragment only shows the
name and short description of the artwork. The user can now press the in-
formation fragment to go to the artwork’s information screen. To remove the
fragment, the user can press anywhere outside the fragment. Pressing another
marker will bring up that artwork’s information screen instead, and center on
the new artwork.

4.1. ARCHITECTURE DESCRIPTION 39

Figure 4.10: The information fragment

40 CHAPTER 4. IMPLEMENTATION DETAILS

The artwork information screen When the user presses the information
fragment, they are brought to the artwork’s information screen. This screen is
shown in Figure 4.11. Note that since the storage of pictures was not completed
the picture shown is loaded locally from a static file on the device included in
the project. It is meant to illustrate how the screen would look with a picture
of the artwork included.

(a) The top of the artwork
information page

(b) The bottom of the art-
work information page

Figure 4.11: Artwork information screen. The picture is a static picture loaded
locally.

The screen is contained within a scrollview, so the user can scroll down the
screen. The data is presented in the following order:

Name The name of the artwork.

Artist The artist that created the artwork.

Category The category of the artwork.

Year The year the artwork was created.

Short Description The short description of the artwork

Picture The picture of the artwork. As mentioned, not implemented, so picture
is loaded from a static file on the device.

Average Rating This is the average rating stored in the database. This is
implemented in the database and loaded from the database, but unfortu-
nately the UI doesn’t update correctly.

4.1. ARCHITECTURE DESCRIPTION 41

Your rating The rating given by the user to the artwork. This is not im-
plemented completely either, so it doesn’t update if the user has already
rated the artwork previously, even though the data is fetched from the
datastore. If the user gives the artwork a new rating, the old rating is
replaced by the new one in the datastore, and the average rating in the
datastore is updated. After the user has added a rating, the rating bar
will be updated as shown in Figure 4.12.

Long description This is the longer, historical description of the artwork.

Edit Artwork This button is intended to take the user to a screen similar to
the create artwork screen, but with the information of the artwork filled
out in the fields. The user can then edit the fields and save the new
information. Unfortunately this has not been implemented.

Add to favorites This will add the artwork to the user’s list of favorites. This
is done by adding the ID of the artwork to the favorites list of the UserAc-
count entity in the datastore. The user’s chosen account is passed along
with the ID to add the artwork to this user’s favorites.

Add offline This is meant to add the artwork’s information locally on the
phone, so the user can access the information without being connected
and having to download the information. But this functionality has not
been implemented.

Figure 4.12: User adds rating

42 CHAPTER 4. IMPLEMENTATION DETAILS

The add artwork screen When the user presses the add new button on the
actionbar, they will be shown the dialog depicted in Figure 4.13

Figure 4.13: The dialog shown when user presses create new on the actionbar

By selecting ”Artwork” and pressing ”OK”, the user will be brought to
the add new artwork screen. The screen will initially be empty, as shown in
Figure 4.14. Each field will contain a ”hint”, which is text that describes the
intended content of the field, but disappears as soon as the user touches the
field and starts typing.

Figure 4.14: The empty create new artwork screen

When the user presses the Category field, a spinner5 is shown, as seen in Fig-

5http://developer.android.com/guide/topics/ui/controls/spinner.html

http://developer.android.com/guide/topics/ui/controls/spinner.html

4.1. ARCHITECTURE DESCRIPTION 43

ure 4.15. The spinner shows a set of pre-defined categories, currently painting,
sculpture or architecture. These fields are a string-array defined in the projects
res/values/strings folder. There is no validation in the datastore of the value of
these fields.

Figure 4.15: The category spinner

The year field will automatically open the numerical keyboard on the user’s
device, since the value of the input is defined as a number. This means that
it is not actually possible to enter anything other than numbers into this field.
However, the category and year field are the only fields that contain any kind of
pre-defined data validation, so technically it is possible to leave all other fields
empty and still save the artwork. When all the fields are filled out, the screen
will look something like what is shown in Figure 4.16.

If the user presses the Add Media button, the application automatically
launches the device’s default camera app. The user can then take a picture, and
choose to save it, or discard it. Should the user choose to discard the picture,
the camera app will still continue running. The user will have to press the back
button on their device to return to the create artwork screen. If the user chooses
to save the picture they took, the picture will be shown on the create artwork
screen as depicted in Figure 4.17.

When the user presses the Add artwork to database button, the application
launches a background thread by using AsyncTask that passes the data to the
database. However, as explained previously, the functionality to save media has
not been implemented in the datastore, so the picture is simply discarded.

44 CHAPTER 4. IMPLEMENTATION DETAILS

Figure 4.16: Filled out new artwork screen

Figure 4.17: Picture added to the new artwork screen

4.1. ARCHITECTURE DESCRIPTION 45

The add new route screen Should the user instead choose to add a new
route in the dialog shown in Figure 4.13, they will be brought to the add new
route screen.

Figure 4.18: Adding a new route

The new route screen is somewhat similar to the add new artwork screen at
first. It contains the following items:

Name The name the user wants to give the route

Short description A short description of the route

Long description Intended to fulfill the same goal as the long description/his-
torical background of artworks.

Add Media Intended to function like the add media button in add artworks
screen. But since the ability to store pictures in the datastore has not
been implemented, it currently does nothing.

Add route to database This button adds the route to the database.

List of artworks Currently, this simple implementation of routes just list all
the artworks available in the database. They are identified by name. Next
to the name is a checkbox. If this checkbox is checked, the artwork’s id
is added to the route’s list of artworks in the database when the route is
stored.

Obviously, this is a very simple implementation. Users should be able to
search for artworks by several fields, instead of remembering the name of art-
works. It is also not possible for users to select the order of the artworks, as
they will be stored in the order they appear in the list.

46 CHAPTER 4. IMPLEMENTATION DETAILS

The list of routes screen The list of routes screen loads all the routes in
the database and shows them in a list, as depicted in Figure 4.19.

Figure 4.19: List of routes

The routes are listed by showing their name in large text and the description
in smaller text. Ideally, there should be a way to see which artworks are included
in the route, but this has not been implemented.

4.1. ARCHITECTURE DESCRIPTION 47

Map screen with routes When a user presses a route in the list of routes,
they are brought to the map screen with the route drawn. Currently, the route
is drawn in the order that the artworks appear in the list, which as mentioned
previously, is the order that they appear in the add route list of artworks. In
Figure 4.20 we see how the line between two artworks is drawn. The drawing
uses Android Maps’ addPolyLine6 method.

Figure 4.20: Routes

The problem with the ordering of artworks is illustrated in Figure 4.21

Figure 4.21: Routes order

6https://developers.google.com/maps/documentation/android/reference/com/

google/android/gms/maps/model/Polyline

https://developers.google.com/maps/documentation/android/reference/com/google/android/gms/maps/model/Polyline
https://developers.google.com/maps/documentation/android/reference/com/google/android/gms/maps/model/Polyline

48 CHAPTER 4. IMPLEMENTATION DETAILS

The favorites screen This screen is meant to list all the favorites the user
has added to the list. The interface and the back-end has been implemented,
but unfortunately the HTTP method required has not been finished. However,
the code produced is included in Appendix B, in the FavoritesActivity.java class.

The top rated lists screen Unfortunately, this functionality was partially
added to the back-end, but there was not enough time to start creating the user
interface. The back-end code is included in Appendix B.

Helper classes

There are a few classes in the client that are not user interfaces, but still provide
important functions in the application.

MyBaseActivity The MyBaseActivity class was created so every UI-class
can inherit the actionbar. This makes it easy to make the actionbar consistent
across all UI-screens.

The GeoLocationHelper The GeoLocationHelper class handles getting and
updating the user’s location using Android’s location provider.

4.2 Tools and libraries

This section will explain the libraries and tools used in the development of this
project in further detail.

4.2.1 Client

Android

The android framework provides several tools for creating mobile application
that have been utilized in the client.

Android maps API

The android maps API allows developers to access many of Google Maps fea-
tures inside an Android application. The API automatically handles gestures
like panning and zooming. The API enables developers to add their own map
markers and line segments to the map interface.

Activity

An Activity7 is a window that the user can interact with. Within this window,
users are presented with a full-screen interface. The user interface is defined
using XML to define and position elements within the window, and called when

7http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

4.3. BACK-END 49

the activity is created by calling setContentView(int)8 in the activity’s onCre-
ate() method.

Every Android application needs to define a MainActivity, which acts as
the startup activity for the application. In this application, this will be the
MapActivity.

There are several more advanced functions provided by Android’s Activity
framework, but they are not used in this application.

AsyncTask

AsyncTask provides an easy way to perform background operations without
having to deal with threading. By subclassing AsyncTask, the task is given a
thread from Android’s thread pool to execute the task. This allows users to
still interact with the UI while the task is executing. In this application, the
AsyncTask class is used to send and get data to and from the database without
blocking the UI thread. When created, the task will automatically perform the
doInBackground method of the task. When the task finishes, the result can be
used by executing the onPostExecute method.

4.3 Back-end

While most of the code produced has been in the client, the most time consuming
effort has definitely been the back-end and database. Structuring the database
and relations among the objects proved more difficult than initially expected.
Implementing an API for network traffic, was also more difficult than expected
when custom methods had to be created.

4.3.1 Google App Engine

Google App Engine9 allows developers to create web application that runs on
Google’s infrastructure. This provides automatic scaling with user requests.
However, it does impose some limits too, especially on the structuring of data.
This is because there is no guarantee that the data will exist on the same physical
server.

4.3.2 Google App Engine Datastore

The datastore10 is the database provided by the app engine framework. It is
not a relational database like SQL-based database and similar. Instead it is a
schemaless object datastore. This means that datastore objects are stored as
entities that have one or more properties. A property is a name-value pair. The
type of a property’s value can be any of primitive types, the wrapper classes

8http://developer.android.com/reference/android/app/Activity.html#

setContentView(int)
9https://developers.google.com/appengine/?csw=1

10https://developers.google.com/appengine/docs/java/datastore/

http://developer.android.com/reference/android/app/Activity.html#setContentView(int)
http://developer.android.com/reference/android/app/Activity.html#setContentView(int)
https://developers.google.com/appengine/?csw=1
https://developers.google.com/appengine/docs/java/datastore/

50 CHAPTER 4. IMPLEMENTATION DETAILS

for the primitive datatypes, a String object or some Java collections, like Lists.
Each entity is identified by it’s kind and it’s primary key. The primary key can
either be a

4.3.3 Google Cloud Endpoints

Google Cloud Endpoints11 is the tool used to generate the REST-API used to
request and pass data over the internet between the server and the client. It
is generated by recognizing the Objectify annotated code, and generating some
basic API-methods to list all, get one, delete and edit the entity. For more
advanced requests, the developer has to create their own methods.

4.3.4 Objectify

Objectify12 is a library that simplifies querying the datastore. Initially, the web
application utilized JDO to structure and query the data. However, JDO ended
up limiting the of structure of lists of data. Objectify provides a lower-level
access to the datastore. This allows developers more control over how they
store and access the data.

11https://developers.google.com/appengine/docs/java/endpoints/
12https://code.google.com/p/objectify-appengine/

https://developers.google.com/appengine/docs/java/endpoints/
https://code.google.com/p/objectify-appengine/

Chapter 5

Further work

5.1 Application

This section will detail some specific features that should be implemented to
make this a complete application. It will also discuss tools that the literature and
related application reviews have shown to be effective tools for crowdsourcing
and geo-location applications.

5.1.1 Usability features

There are several smaller features needed to complete the application, especially
regarding usability.

Search A search function is necessary for several reasons.

1. Assist users in finding artworks they are interested in.

2. Let users search for artworks to add to their routes. Obviously, listing
all the artworks is not a scalable solution.

3. Users might want to find artworks they have heard about from other
sources, either by name or some other parameter. Having to find this
artwork on the map will be a chore.

To-do list A to-do list similar to the one in foursquare. The proposed recom-
mender system could then calculate the most efficient way for a user to
visit their to-do list. While users can save artworks they are interested in
to their favorites, the favorite list is likely to also contain artworks they
have visited.

Comments Users should be able to leave comments on artworks.

There should also be user testing and surveys conducted to receive feedback
on the usability of the system and requested features from users.

51

52 CHAPTER 5. FURTHER WORK

5.1.2 Routes

There is still a lot of work to do regarding routes.

1. Users should be able to decide the order of the artworks in the route

2. Allow users to remove or add specific artworks in a route, and let the route
be redrawn with the changes implemented

3. Display the total distance of a route

5.1.3 Efficiency

Both the performance of the application and the efficiency of the data transfer
has been largely neglected during the development of the prototype applica-
tion in this thesis. For a complete application, this will obviously have to be
improved.

Performance is important for the user experience, as waiting for loading
will frustrate users and means they will be less likely to continue using the
application.

Data transfer efficiency is important for two reasons.

1. Users are likely to be on a limited data plan while using 3G network. This
means they want the application to use as little data traffic as possible.

2. Limiting data traffic also means that all the tasks the application performs
that are dependent on getting data from server are performed faster and
the application appears more responsive to the user.

5.1.4 Offline storage and syncing

It would be possible to add a kind of local data storage on the user’s phone.
The user would have to select which artworks/routes they wanted to add to the
local storage. This would allow users to download places they are interested
in visiting from their home wi-fi before leaving. This feature will help further
reduce the data load.

2 different ways of adding offline storage has been researched. Android
provides the possibility of using a local SQLite database on the device. This
would require mapping entities from the non-relational datastore to a SQL-based
relational database. The other approach is using the SharedPreferences class.
This behaves more similar to the key-value pairs provided by the AppEngine
datastore, however, it is not how SharedPreferences is intended to be used.

5.1.5 Photos and albums

The ability to add photos to artworks/routes was not completed in this project.
If this is added, there needs to be a way to organize the photos added to the
artwork/route in an album. There also needs to be a way to determine what

5.2. NAVIGATION 53

should be the primary picture of an artwork shown on the information fragment
on the map screen.

5.1.6 Other media

Users might be interested in adding other media too, like audio clips or videos.
There are currently not any similar android applications that offer this feature,
possibly due to the size of audio/video files.

5.1.7 Search

The ability to search for artworks/routes has not been implemented during this
thesis, but will obviously be necessary if the database gets somewhat large.
Search criterias should include all the fields of the entities.

5.1.8 Further recommendation system

As shown in the literature study, being able to guide users to artworks they
are likely interested in is very helpful. There are several criterias that could be
employed in the recommender system:

Distance Like we saw in other similar applications, the user could select a
maximum distance they are willing to travel, and all artworks or routes
outside of this distance would be excluded.

Interests The user could could select certain categories they are interested in,
and artworks of these categories would be higher weighted in the recom-
mender system.

Rating The system could look at artworks or routes other users rate highly,
and weigh these artworks or routes higher in the recommender system.

Metadata Other metadata could be connected to ratings, such as if users
with similar interests rate an artwork or route highly, the item could be
weighted higher for the first user too.

Social Media If social media is integrated into the application, routes or art-
works rated highly by your friends could be weighted higher.

5.2 Navigation

One idea is to let the application implement a navigation system, similar to the
one that was looked at in Waze. However, the navigation would have to be able
to navigate by walking. Google Maps have a feature like this in public beta
testing.

54 CHAPTER 5. FURTHER WORK

5.3 Gamification

Gamification means to add elements from games to other areas to increase
motivation for employees or using an application. A very simple and typical
example is giving users points for completing tasks, and having a high score
lists so users can show off their score.

This is often heavily utilized in crowdsourcing applications to motivate users
to provide information.

Gamification can also be used to improve the quality of information added
by users. One could imagine allowing other users to rate the information a
user has entered. This way people would strive to enter correct information to
achieve a high rating.

In the literature review studies showed that while gamification is an effective
tool for user motivation, it must be designed correctly.

5.4 Web interface

As seen in the research of the related applications, many applications that wish
to assist users in finding places, and rely on users providing information about
geographical locations utilize a web interface in addition to a geo-location mobile
application.

There are several advantages the addition of a web interface would provide
to the PubArt application.

In the literature review studies showed the effect discussion pages had on the
quality of content on Wikipedia. A web interface would allow users to discuss
changes to artwork and route information pages. A web interface would also
make it easier to add more thorough information about an artwork, as typing
extensive information could prove difficult on mobile devices. It would also be
simpler to include links to other artworks from the information pages.

5.5 Administration tools

One of the main challenges of crowdsourcing is validating the information users
add or edit. For this some sort of administration tools needs to be implemented
for the application. The best way to do this would probably be to integrate the
administration tools with a web-interface.

There are different ways of implementing administration moderation of in-
formation. One could not let any addition/edit users make take effect until an
administrator approve it. The other way would be to let the change take effect
immediately, but keep a backup of older versions of the information, and allow
administrators to rollback any changes made.

5.6. SOCIAL MEDIA 55

5.6 Social Media

Several of the related applications that have been researched in this thesis con-
tain elements of social media and/or are integrated with existing social media
like facebook or twitter.

Especially allowing content from the application to be shared to other social
media like facebook and twitter would be a very effective tool, both to engage
users and to assist in getting new users to try the application.

56 CHAPTER 5. FURTHER WORK

Chapter 6

Results and discussion

This section will discuss the result of the thesis.

6.1 Results

6.1.1 Research questions

How can we motivate users to use and contribute to the application?

Through our literature study and review of relevant applications, we have seen
examples of different ways to motivate users to contribute. One way we have
seen used in several applications and discussed in literature is using gamification
elements to motivate users. However, some care must be taken when using
gamification. It is important that the game is not more important than the
information added by the users.

Are there other concepts than the ones mentioned that could be used
to improve this application?

In our study of Wikipedia, we saw that one of the most important ways to
motivate users to add quality content is to instill a sense of community and
ownership of the product they produce. Considering our application is more
about sharing knowledge than the other applications studied, it is important to
consider ways to validate the information added.

What can we do to help users find the art they are interested in?

We have seen that the other popular crowdsourcing applications utilizes social
networking, recommendation systems, ratings and comments to assist users in
discovering interesting places.

57

58 CHAPTER 6. RESULTS AND DISCUSSION

What can we learn from other similar applications that can be utilized
in this application?

As already mentioned, gamification is an element heavily utilized in crowdsourc-
ing applications, and seems to be an effective way to motivate users to contribute
and use the application.

Other discoveries

We have seen that there is much research into incorporating mobile devices
to provide interactive learning experiences. We could definitely incorporate
features into this application that would support such a goal.

6.1.2 Project goals

Allow users to add information about artworks to a database

The ability to add information was already added during the depth study, how-
ever, the functionality was extended during this thesis. Users are now uniquely
identified by their chosen Google account. The functionality to add media has
been implemented in the client, but can not be stored in the database.

Allow users to get information added by other users

This was also added during the depth study, but the presentation of the data
has been significantly approved.

Allow users to add to or edit information already added to the database

The ability to edit information has not been added, but users can now rate the
artworks and routes in the database, and the average rating of the items will be
updated.

Allow users to create routes of several different artworks

The ability to create routes has been implemented, but the functionality is very
limited.

Assist users in finding artworks or routes they are likely to be inter-
ested in

While a recommendation system has not been added, some of the features re-
quired has been started. By letting users rate content it is possible to extract
metadata about some features the artwork they like share. The ability to cal-
culate average ratings also means that users can be shown

6.2. DISCUSSION 59

6.2 Discussion

6.2.1 Limitations

The results of the project is naturally limited by the fact that both the research
and development has been conducted by a single person. The goals of the thesis
has been quite broad, which means that some of the research conducted has
been more superficial than it should have been.

Due to limited time, only 4 related applications were studied in detail. There
are many more crowdsourcing platforms out there, that employ a huge variety
of methods in motivating users and assuring the quality of the content provided.

The thesis originally planned to conduct user surveys as more features were
implemented would have provided a broader range of ideas and valuable feed-
back to limit the drawback of bias implicated by having a single person respon-
sible for the research and specifications.

The research conducted by the project would have benefited from a more
focused research area. The research tried to look into many different ways of
employing the application for different goals. It would probably have been a
good idea to specify a clearer goal of the research, whether into crowdsourcing
and the related problems, learning and the way the application could support
it or gamification and similar concepts to motivate users.

6.2.2 Development methodology

One issue with the development of the application has been that the goals and
requirements were not defined clearly enough. The functionality should have
been specified further. Even though the idea of an iterative approach is good,
especially for a single developer, it can be difficult to keep moving forwards
when critical components of the application prove harder to implement than
expected.

The development part of the thesis should have conducted a more thorough
research into possible libraries and frameworks to utilize in the development of
the project. For example, if the project had used the objectify datastore library
from the beginning, a lot of time and frustration would have been saved.

Had the implementation gotten further, letting users test the application
would have given valuable feedback to the usability features.

60 CHAPTER 6. RESULTS AND DISCUSSION

Chapter 7

Conclusion

Through the study of related applications we have seen that there are several
successful mobile apps that rely on users providing knowledge and information
through crowdsourcing. However, our study has also shown that it is hard
to motivate users to provide this information for free, and that validating the
information provided is a major challenge.

The combination of our literature study and review of other applications we
have seen that the use of interactive mobile devices like PDAs and producing
trails in museums has been attempted, and that the idea of lists of items in
crowdsourcing applications has been made, but the two have not been combined
into an interactive learning experience.

Unfortunately this thesis hasn’t implemented all the features planned. How-
ever, it has shown that the concept of a crowdsourcing application that can be
used to enable learning about public art is definitely valid. It has been shown
that by combining features like gamification and social network of popular appli-
cations like FourSquare and Waze with the quality assurance of a crowdsourcing
encyclopedia like Wikipedia we could fulfill the need for an interactive learn-
ing experience about art in public places. The thesis suggests further work
to complete the application, and possible ways to motivate users to add their
knowledge and provide quality assurance to the information gathered.

61

62 CHAPTER 7. CONCLUSION

Bibliography

[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp. 1–4, 2006.

[2] M. Haklay, “How good is volunteered geographical information? a compar-
ative study of openstreetmap and ordnance survey datasets,” Environment
and planning. B, Planning & design, vol. 37, no. 4, p. 682, 2010.

[3] M. Hu, E.-P. Lim, A. Sun, H. W. Lauw, and B.-Q. Vuong, “Measuring
article quality in wikipedia: models and evaluation,” in Proceedings of the
sixteenth ACM conference on Conference on information and knowledge
management, pp. 243–252, ACM, 2007.

[4] B. Stvilia, M. B. Twidale, L. Gasser, and L. C. Smith, “Information quality
discussions in wikipedia,” in Proceedings of the 2005 international confer-
ence on knowledge management, pp. 101–113, O’Reilly, 2005.

[5] A. Kittur, E. Chi, B. A. Pendleton, B. Suh, and T. Mytkowicz, “Power of
the few vs. wisdom of the crowd: Wikipedia and the rise of the bourgeoisie,”
World Wide Web, vol. 1, no. 2, p. 19, 2007.

[6] D. Chandler and A. Kapelner, “Breaking monotony with meaning: Moti-
vation in crowdsourcing markets,” Journal of Economic Behavior & Orga-
nization, 2013.

[7] J. Rogstadius, V. Kostakos, A. Kittur, B. Smus, J. Laredo, and M. Vukovic,
“An assessment of intrinsic and extrinsic motivation on task performance
in crowdsourcing markets.,” ICWSM, 2011.

[8] C. Eickhoff, C. G. Harris, A. P. de Vries, and P. Srinivasan, “Quality
through flow and immersion: gamifying crowdsourced relevance assess-
ments,” in Proceedings of the 35th international ACM SIGIR conference
on Research and development in information retrieval, pp. 871–880, ACM,
2012.

[9] T. Y. Lee, C. Dugan, W. Geyer, T. Ratchford, J. Rasmussen, N. S. Shami,
and S. Lupushor, “Experiments on motivational feedback for crowdsourced
workers,” in Seventh International AAAI Conference on Weblogs and Social
Media, 2013.

63

64 BIBLIOGRAPHY

[10] L. Naismith, M. Sharples, G. Vavoula, and P. Lonsdale, “Literature review
in mobile technologies and learning,” 2004.

[11] R. Reynolds, K. Walker, and C. Speight, “Web-based museum trails on
pdas for university-level design students: Design and evaluation,” Comput-
ers & Education, vol. 55, no. 3, pp. 994–1003, 2010.

[12] G. Vavoula, M. Sharples, P. Rudman, J. Meek, and P. Lonsdale,
“Myartspace: Design and evaluation of support for learning with multime-
dia phones between classrooms and museums,” Computers & Education,
vol. 53, no. 2, pp. 286–299, 2009.

Appendix A

Installation Guide

The application has mainly been tested on a Samsung Galaxy S2 device running
Android 4.1.2 and a Samsung Galaxy S4 running Android 4.2.2. However, the
application should be fully functional on any device running Android 3.0 or
newer. It will not work for any older versions of Android.

To run the application on an android device it is necessary to download
and install some specific software. The Eclipse IDE is required to be able
to run the code on android devices. Eclipse can be downloaded here: http:

//www.eclipse.org/.

When Eclipse is installed, the Android Development Tools 1 plugin needs to
be installed. To install it follow these steps:

1. Select the ”Help” menu in eclipse.

2. Select ”Install new software”.

3. Click ”Add” in the top-right corner.

4. In the Add Repository dialog, enter ”ADT Plugin” for the Name and the
following url for Location: https://dl-ssl.google.com/android/eclipse/

5. Click ”OK”.

6. Select checkbox nect to ”Developer Tools” and click ”Next”.

7. A list of tools appears, click ”Next”.

8. Read and accept the license agreements, click ”Finish”.

9. When the installation is complete, restart eclipse.

1http://developer.android.com/sdk/installing/installing-adt.html

65

http://www.eclipse.org/
http://www.eclipse.org/
http://developer.android.com/sdk/installing/installing-adt.html

66 APPENDIX A. INSTALLATION GUIDE

After this, right click inside the package explorer in eclipse, choose import,
select from archive file and select the .zip file delivered with the thesis. The
import should include everything, like classpaths, folder structure, etc.

Now, connect the Android Device to the computer with a USB cable. When
connected, run the project and select your device as the target device. The
application should start automatically. The application will connect to the
database illustrated in this project.

However, using the Google plugin for eclipse, it is also possible to deploy the
application on your own to see how it works. To do this, install the Google plugin
for eclipse as described here: https://developers.google.com/eclipse/.

When this has been installed, create a web application here: https://

appengine.google.com/. When you have been given an application ID, right
click the PubArt AppEngine project, select Google -¿ App Engine settings. En-
ter the application ID into the application ID field and click OK. Right click the
project again and select Deploy to App Engine. Press Deploy. If you now go to
https://appengine.google.com the project should appear, and if you click on
it you will be brought to the application’s developer console. More information
is available here: https://developers.google.com/eclipse/docs/getting_

started

https://developers.google.com/eclipse/
https://appengine.google.com/
https://appengine.google.com/
https://appengine.google.com
https://developers.google.com/eclipse/docs/getting_started
https://developers.google.com/eclipse/docs/getting_started

Appendix B

Produced Source Code

It’s hard to separate the code produced during the depth study and this thesis
as some features during the thesis was added to the existing classes. Therefore
this appendix contains all the code produced for entire project.

B.1 Android Client

package com.example.pubart;

public class AddArtworkActivity extends MyBaseActivity {

private static final int TAKE_PICTURE_REQUESTCODE = 1112;

private static final String TAG = "AddArtworkActivity";

private EditText etName;

private EditText etArtist;

private Spinner categorySpinner;

private EditText etYear;

private EditText etTextualDescription;

private EditText etTextualBackground;

private ImageView artworkPhoto;

private GeoLocationHelper geoLocationHelper = new GeoLocationHelper();

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Set contenview to XML file

setContentView(R.layout.activity_add_artwork);

findViewsById();

geoLocationHelper.startRetrievingLocation(this);

}

public void startCameraButton(View view) {

dispatchTakePictureIntent(TAKE_PICTURE_REQUESTCODE);

67

68 APPENDIX B. PRODUCED SOURCE CODE

}

private void dispatchTakePictureIntent(int actionCode) {

Intent takePictureIntent = new Intent(MediaStore.

ACTION_IMAGE_CAPTURE);

startActivityForResult(takePictureIntent, actionCode);

}

private void handleSmallCameraPhoto(Intent intent) {

Bundle extras = intent.getExtras();

artworkPhoto.setImageBitmap((Bitmap) extras.get("data"));

artworkPhoto.setScaleType(ImageView.ScaleType.FIT_CENTER);

}

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent

data) {

if (requestCode == TAKE_PICTURE_REQUESTCODE && resultCode ==

RESULT_OK) {

handleSmallCameraPhoto(data);

}

}

public void addArtworkButton(View view) {

new AddNewArtworkTask().execute(getApplicationContext());

Toast.makeText(getApplicationContext(), "Artwork added to database

",

Toast.LENGTH_LONG).show();

}

private class AddNewArtworkTask extends AsyncTask<Context, Void, Long> {

protected Long doInBackground(Context... contexts) {

Artworkendpoint.Builder artworkEndpointBuilder = new

Artworkendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

});

Artworkendpoint artworkEndpoint = CloudEndpointUtils.

updateBuilder(

artworkEndpointBuilder).build();

try {

ArtWork artwork = new ArtWork();

artwork.setName(etName.getText().toString());

artwork.setArtist(etArtist.getText().toString());

artwork.setCategory(categorySpinner.getSelectedItem

()

.toString());

B.1. ANDROID CLIENT 69

artwork.setYear(etYear.getText().toString());

artwork.setTextualBackground(etTextualBackground.

getText()

.toString());

artwork.setTextualDescription(etTextualDescription.

getText()

.toString());

artwork.setLatitude(geoLocationHelper.

getCurrentLocation()

.getLatitude());

artwork.setLongitude(geoLocationHelper.

getCurrentLocation()

.getLongitude());

artwork.setAverageRating(0);

ArtWork result = artworkEndpoint.insertArtWork(

artwork)

.execute();

} catch (IOException IOE) {

IOE.printStackTrace();

Log.e(TAG, "IO exception on doInBackground", IOE);

}

return (long) 0;

}

protected void onPostExectue() {

Toast.makeText(getApplicationContext(),

"Artwork added to database", Toast.

LENGTH_LONG).show();

}

}

private void findViewsById() {

etName = (EditText) findViewById(R.id.editTextName);

etArtist = (EditText) findViewById(R.id.editTextArtist);

categorySpinner = (Spinner) findViewById(R.id.spinnerCategory);

ArrayAdapter<CharSequence> spinnerAdapter = ArrayAdapter

.createFromResource(this, R.array.categories_array,

android.R.layout.simple_spinner_item)

;

spinnerAdapter

.setDropDownViewResource(android.R.layout.

simple_spinner_dropdown_item);

categorySpinner.setAdapter(spinnerAdapter);

etYear = (EditText) findViewById(R.id.editTextYear);

etTextualDescription = (EditText) findViewById(R.id.

editTextDescription);

etTextualBackground = (EditText) findViewById(R.id.

editTextBackground);

artworkPhoto = (ImageView) findViewById(R.id.ivArtworkPhoto);

}

}

70 APPENDIX B. PRODUCED SOURCE CODE

package com.example.pubart;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import android.app.Activity;

import android.content.Context;

import android.content.SharedPreferences;

import android.os.AsyncTask;

import android.os.Bundle;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ArrayAdapter;

import android.widget.CheckBox;

import android.widget.CompoundButton;

import android.widget.CompoundButton.OnCheckedChangeListener;

import android.widget.EditText;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.Toast;

import com.example.pubart.artworkendpoint.Artworkendpoint;

import com.example.pubart.artworkendpoint.model.ArtWork;

import com.example.pubart.artworkrouteendpoint.Artworkrouteendpoint;

import com.example.pubart.artworkrouteendpoint.model.ArtworkRoute;

import com.example.pubart.helpers.MyBaseActivity;

import com.google.api.client.extensions.android.http.AndroidHttp;

import com.google.api.client.http.HttpRequest;

import com.google.api.client.http.HttpRequestInitializer;

import com.google.api.client.json.jackson.JacksonFactory;

public class AddRouteActivity extends MyBaseActivity {

private static final String TAG = "addrouteactivity";

ListView lv;

ArrayList<ListItem> artworksToList;

private SharedPreferences preferences;

private String accountName;

EditText etName, etDescription, etBackground;

ArrayList<Long> artworksToAdd;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_add_route);

preferences = getSharedPreferences(PREFS_NAME, 0);

if (preferences.getString("ACCOUNT_ID", "None").equals("None")) {

Toast.makeText(getApplicationContext(), "Could not get

account",

Toast.LENGTH_SHORT).show();

} else {

B.1. ANDROID CLIENT 71

accountName = preferences.getString("ACCOUNT_ID", "No

account");

}

etName = (EditText) findViewById(R.id.etRouteName);

etDescription = (EditText) findViewById(R.id.etRouteDescription);

etBackground = (EditText) findViewById(R.id.etRouteBackground);

artworksToAdd = new ArrayList<Long>();

artworksToList = new ArrayList<ListItem>();

new getArtworksTask().execute();

}

private void populateListView(ArrayList<ListItem> items) {

ArrayAdapterItem adapter = new ArrayAdapterItem(this,

R.layout.list_view_one_name, items);

ListView listViewItems = (ListView) findViewById(R.id.artworkList)

;

listViewItems.setAdapter(adapter);

listViewItems

.setOnItemClickListener(new

onItemClickListenerListViewItem());

}

public void addRouteButton(View view) {

new AddNewRouteTask().execute(getApplicationContext());

Toast.makeText(getApplicationContext(), "Route added to database",

Toast.LENGTH_LONG).show();

}

private class getArtworksTask extends AsyncTask<Void, Void, List<ArtWork

>> {

@Override

protected void onPostExecute(List<ArtWork> artworks) {

if (artworks == null || artworks.isEmpty()) {

Toast.makeText(getApplicationContext(),

"Failed to load artworks", Toast.

LENGTH_SHORT).show();

} else {

for (ArtWork artwork : artworks) {

artworksToList.add(new ListItem(artwork.

getName(), artwork

.getId()));

}

populateListView(artworksToList);

}

}

@Override

protected List<ArtWork> doInBackground(Void... parms) {

List<ArtWork> artworks = new ArrayList<ArtWork>();

72 APPENDIX B. PRODUCED SOURCE CODE

Artworkendpoint.Builder artworkEndpointBuilder = new

Artworkendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

});

Artworkendpoint artworkEndpoint = CloudEndpointUtils.

updateBuilder(

artworkEndpointBuilder).build();

try {

artworks = artworkEndpoint.listArtWork().execute().

getItems();

Log.d(TAG, "getting artwork");

return artworks;

} catch (Exception exception) {

exception.printStackTrace();

Log.e(TAG, "IOException on doInBackground",

exception);

}

return null;

}

}

class ArrayAdapterItem extends ArrayAdapter<ListItem> {

Context mContext;

int layoutResourceId;

ArrayList<ListItem> data;

public ArrayAdapterItem(Context mContext, int layoutResourceId,

ArrayList<ListItem> data) {

super(mContext, layoutResourceId, data);

this.layoutResourceId = layoutResourceId;

this.mContext = mContext;

this.data = data;

}

@Override

public View getView(int position, View convertView, ViewGroup

parent) {

if (convertView == null) {

LayoutInflater inflater = ((Activity) mContext)

.getLayoutInflater();

convertView = inflater.inflate(layoutResourceId,

parent, false);

}

B.1. ANDROID CLIENT 73

CheckBox lChk = ((CheckBox) convertView.findViewById(R.id.

checkBoxItem));

ListItem listItem = data.get(position);

final TextView textViewItem = (TextView) convertView

.findViewById(R.id.textViewItem);

textViewItem.setText(listItem.getName());

textViewItem.setTag(listItem.getId());

lChk.setOnCheckedChangeListener(new OnCheckedChangeListener

() {

@Override

public void onCheckedChanged(CompoundButton

buttonView, boolean isChecked) {

if (isChecked) {

artworksToAdd.add(Long.parseLong(

textViewItem.getTag().toString())

);

} else {

artworksToAdd.remove(Long.parseLong(

textViewItem.getTag().toString())

);

}

}

});

return convertView;

}

}

class onItemClickListenerListViewItem implements OnItemClickListener {

@Override

public void onItemClick(AdapterView<?> parent, View view, int

position,

long id) {

Context context = view.getContext();

TextView textViewItem = ((TextView) view

.findViewById(R.id.textViewItem));

CheckBox checkBoxItem = ((CheckBox) view

.findViewById(R.id.checkBoxItem));

String listItemText = textViewItem.getText().toString();

Long listItemId = Long.parseLong(textViewItem.getTag().

toString());

boolean checkBoxStatus = checkBoxItem.isChecked();

if (checkBoxStatus) {

Toast.makeText(context,

74 APPENDIX B. PRODUCED SOURCE CODE

"Item: " + listItemText + ", Item ID:

" + listItemId,

Toast.LENGTH_SHORT).show();

}

}

}

class ListItem {

String name;

Long id;

public ListItem(String name, Long id) {

this.name = name;

this.id = id;

}

public String getName() {

return name;

}

public Long getId() {

return id;

}

}

private class AddNewRouteTask extends AsyncTask<Context, Void, Long> {

ArrayList<Long> listOfArtworks;

protected Long doInBackground(Context... contexts) {

Artworkrouteendpoint.Builder artworkRouteEndpointBuilder =

new Artworkrouteendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

});

Artworkrouteendpoint artworkRouteEndpoint =

CloudEndpointUtils

.updateBuilder(artworkRouteEndpointBuilder).

build();

try {

ArtworkRoute artworkRoute = new ArtworkRoute();

artworkRoute.setName(etName.getText().toString());

artworkRoute.setDescription(etDescription.getText().

toString());

artworkRoute.setBackground(etBackground.getText().

toString());

artworkRoute.setArtworks(artworksToAdd);

B.1. ANDROID CLIENT 75

ArtworkRoute result = artworkRouteEndpoint.

insertArtworkRoute(

artworkRoute).execute();

} catch (IOException IOE) {

IOE.printStackTrace();

Log.e(TAG, "IO exception on doInBackground", IOE);

}

return (long) 0;

}

}

}

package com.example.pubart;

import java.util.Map;

public class ArtworkEntity {

private String name, shortDescription, longDescription, year, artist,

category;

private Double latitude, longitude;

private Map<String, Integer> ratings;

private Integer averageRating;

private Long id;

public ArtworkEntity(Long id, String name, String shortDescription,

String longDescription, String year, String artist, String category,

Double latitude, Double longitude, Integer averageRating) {

this.id = id;

this.name = name;

this.shortDescription = shortDescription;

this.longDescription = longDescription;

this.year = year;

this.artist = artist;

this.category = category;

this.latitude = latitude;

this.longitude = longitude;

this.averageRating = averageRating;

}

public Long getId() {

return id;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

76 APPENDIX B. PRODUCED SOURCE CODE

public String getShortDescription() {

return shortDescription;

}

public void setShortDescription(String shortDescription) {

this.shortDescription = shortDescription;

}

public String getLongDescription() {

return longDescription;

}

public void setLongDescription(String longDescription) {

this.longDescription = longDescription;

}

public String getYear() {

return year;

}

public void setYear(String year) {

this.year = year;

}

public String getArtist() {

return artist;

}

public void setArtist(String artist) {

this.artist = artist;

}

public String getCategory() {

return category;

}

public void setCategory(String category) {

this.category = category;

}

public Double getLatitude() {

return latitude;

}

public void setLatitude(Double latitude) {

this.latitude = latitude;

}

public Double getLongitude() {

return longitude;

}

public void setLongitude(Double longitude) {

this.longitude = longitude;

}

public void setRatings(Map<String, Integer> ratings) {

B.1. ANDROID CLIENT 77

this.ratings = ratings;

}

public Map<String, Integer> getRatings() {

return ratings;

}

}

package com.example.pubart;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import android.os.AsyncTask;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.ImageView;

import android.widget.RatingBar;

import android.widget.TextView;

import android.widget.Toast;

import com.example.pubart.artworkendpoint.Artworkendpoint;

import com.example.pubart.artworkendpoint.model.ArtWork;

import com.example.pubart.artworkendpoint.model.IntegerCollection;

import com.example.pubart.helpers.MyBaseActivity;

import com.example.pubart.useraccountendpoint.Useraccountendpoint;

import com.example.pubart.useraccountendpoint.model.UserAccount;

import com.google.api.client.extensions.android.http.AndroidHttp;

import com.google.api.client.http.HttpRequest;

import com.google.api.client.http.HttpRequestInitializer;

import com.google.api.client.json.jackson.JacksonFactory;

public class ArtworkInformationActivity extends MyBaseActivity implements

RatingBar.OnRatingBarChangeListener {

private static final String TAG = "ArtworkInformationActivity";

Long artworkId;

String accountName;

ArtWork artwork;

TextView tvName, tvCategory, tvArtist, tvYearOfCreation,

tvShortDescription, tvHistory, tvNameLabel, tvArtistLabel,

tvYearLabel, tvCategoryLabel;

ImageView ivArtworkPhoto;

RatingBar rbAverageRating, rbUserRating;

Button bAddFavorite;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_artwork_information);

findViewsById();

78 APPENDIX B. PRODUCED SOURCE CODE

Bundle extras = getIntent().getExtras();

if (extras != null) {

artworkId = extras.getLong("ARTWORK_ID");

accountName = extras.getString("ACCOUNT_ID");

}

new getArtworksTask().execute();

rbUserRating.setOnRatingBarChangeListener(this);

}

public void addFavoriteButton(View view) {

new addFavoriteTask().execute();

}

@Override

public void onRatingChanged(RatingBar ratingBar, float rating,

boolean fromUser) {

Integer intRating = Math.round(rating);

new insertRatingTask().execute(intRating);

}

private void findViewsById() {

tvName = (TextView) findViewById(R.id.tvShowArtWorkName);

tvArtist = (TextView) findViewById(R.id.tvShowArtistName);

tvCategory = (TextView) findViewById(R.id.tvShowCategory);

tvYearOfCreation = (TextView) findViewById(R.id.

tvShowYearOfCreation);

tvShortDescription = (TextView) findViewById(R.id.

tvShowShortDescription);

tvHistory = (TextView) findViewById(R.id.tvShowHistory);

ivArtworkPhoto = (ImageView) findViewById(R.id.ivArtworkPhoto);

ivArtworkPhoto.setImageResource(R.drawable.artwork);

rbAverageRating = (RatingBar) findViewById(R.id.rbAverageRating);

rbUserRating = (RatingBar) findViewById(R.id.rbUserRating);

bAddFavorite = (Button) findViewById(R.id.bAddToFavorites);

tvNameLabel = (TextView) findViewById(R.id.tvNameLabel);

tvArtistLabel = (TextView) findViewById(R.id.tvArtistLabel);

tvCategoryLabel = (TextView) findViewById(R.id.tvCategoryLabel);

tvYearLabel = (TextView) findViewById(R.id.tvYearLabel);

}

private class getArtworksTask extends AsyncTask<Void, Void, ArtWork> {

@Override

protected ArtWork doInBackground(Void... params) {

Artworkendpoint.Builder artworkEndpointBuilder = new

Artworkendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

B.1. ANDROID CLIENT 79

}

});

Artworkendpoint artworkEndpoint = CloudEndpointUtils.

updateBuilder(

artworkEndpointBuilder).build();

try {

artwork = artworkEndpoint.getArtWork(artworkId).

execute();

return artwork;

} catch (IOException e) {

Log.e(TAG, "IO exception on doInBackground", e);

e.printStackTrace();

}

return null;

}

@Override

protected void onPostExecute(ArtWork artwork) {

Log.d(TAG, "artwork is " + artworkId);

if (artwork == null) {

Toast.makeText(getApplicationContext(),

"Could not get artwork", Toast.

LENGTH_SHORT).show();

} else {

tvName.setText(artwork.getName());

tvArtist.setText(artwork.getArtist());

tvCategory.setText(artwork.getCategory());

tvYearOfCreation.setText(artwork.getYear());

tvShortDescription.setText(artwork.

getTextualDescription());

tvHistory.setText(artwork.getTextualBackground());

rbAverageRating.setNumStars(artwork.getAverageRating

());

// new getUserRatingTask().execute();

}

}

}

private class insertRatingTask extends AsyncTask<Integer, Void, Void> {

@Override

protected Void doInBackground(Integer... params) {

Artworkendpoint.Builder artworkEndpointBuilder = new

Artworkendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

80 APPENDIX B. PRODUCED SOURCE CODE

}

});

Artworkendpoint artworkEndpoint = CloudEndpointUtils.

updateBuilder(

artworkEndpointBuilder).build();

try {

artworkEndpoint.insertUserRating(params[0],

accountName,

artwork).execute();

} catch (IOException e) {

Log.e(TAG, "IO exception on doInBackground", e);

e.printStackTrace();

}

return null;

}

}

private class addFavoriteTask extends AsyncTask<Void, Void, Void> {

@Override

protected Void doInBackground(Void... params) {

Useraccountendpoint.Builder userAccountEndpointBuilder =

new Useraccountendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

});

Useraccountendpoint userAccountEndpoint =

CloudEndpointUtils

.updateBuilder(userAccountEndpointBuilder).

build();

try {

userAccountEndpoint.addFavorite(accountName,

artworkId).execute();

} catch (Exception e) {

e.printStackTrace();

}

return null;

}

}

}

package com.example.pubart;

B.1. ANDROID CLIENT 81

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import android.annotation.SuppressLint;

import android.annotation.TargetApi;

import android.content.Context;

import android.os.AsyncTask;

import android.os.Build;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.Toast;

import com.example.pubart.artworkendpoint.Artworkendpoint;

import com.example.pubart.helpers.MyBaseActivity;

import com.example.pubart.useraccountendpoint.Useraccountendpoint;

import com.google.api.client.extensions.android.http.AndroidHttp;

import com.google.api.client.http.HttpRequest;

import com.google.api.client.http.HttpRequestInitializer;

import com.google.api.client.json.jackson2.JacksonFactory;

@SuppressLint("NewApi")

public class FavoritesAcitivity extends MyBaseActivity {

private ArrayList<String> values;

private List<Long> ids;

private String accountName;

ListView lv;

@SuppressLint("NewApi")

@Override

protected void onCreate(Bundle savedInstanceState) {

setContentView(R.layout.acitivity_favorites);

super.onCreate(savedInstanceState);

Bundle extras = getIntent().getExtras();

if (extras != null) {

accountName = extras.getString("ACCOUNT_ID");

}

lv = (ListView) findViewById(R.id.listview);

values = new ArrayList<String>();

ids = new ArrayList<Long>();

new getFavoritesTask().execute();

}

private void populateFavoritesList(boolean result) {

if (result) {

final ArrayList<String> list = new ArrayList<String>();

82 APPENDIX B. PRODUCED SOURCE CODE

for (int i = 0; i < values.size(); i++) {

list.add(values.get(i));

}

final StableArrayAdapter stableArrayAdapter = new

StableArrayAdapter(

this, android.R.layout.

simple_expandable_list_item_1, list);

lv.setAdapter(stableArrayAdapter);

lv.setOnItemClickListener(new AdapterView.

OnItemClickListener() {

@TargetApi(Build.VERSION_CODES.HONEYCOMB_MR1)

@SuppressLint("NewApi")

@Override

public void onItemClick(AdapterView<?> parent, final

View view,

int position, long id) {

final String item = (String) parent

.getItemAtPosition(position);

view.animate().setDuration(2000).alpha(0)

.withEndAction(new Runnable()

{

@Override

public void run() {

list.remove(item

);

stableArrayAdapter

.

notifyDataSetChanged

();

view.setAlpha(1)

;

}

});

}

});

} else {

Toast.makeText(getApplicationContext(), "Could not get

favorites",

Toast.LENGTH_LONG).show();

}

}

private class StableArrayAdapter extends ArrayAdapter<String> {

HashMap<String, Integer> mIdMap = new HashMap<String, Integer>();

public StableArrayAdapter(Context context, int textViewResourceId,

List<String> objects) {

super(context, textViewResourceId, objects);

B.1. ANDROID CLIENT 83

for (int i = 0; i < objects.size(); i++) {

mIdMap.put(objects.get(i), i);

}

}

@Override

public long getItemId(int position) {

String item = getItem(position);

return mIdMap.get(item);

}

@Override

public boolean hasStableIds() {

return true;

}

}

private class getFavoriteNamesTask extends

AsyncTask<List<Long>, String, List<String>> {

@Override

protected ArrayList<String> doInBackground(List<Long>... params) {

List<String> strings = new ArrayList<String>();

Artworkendpoint.Builder artworkEndpointBuilder = new

Artworkendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

});

Artworkendpoint artworkEndpoint = CloudEndpointUtils.

updateBuilder(

artworkEndpointBuilder).build();

try {

for (Long id : ids) {

strings = artworkEndpoint.getArtWorkName(id).

execute()

.getItems();

values.addAll(strings);

}

return values;

} catch (Exception e) {

}

return null;

}

84 APPENDIX B. PRODUCED SOURCE CODE

@Override

protected void onPostExecute(List<String> result) {

if (!values.isEmpty() && values != null)

populateFavoritesList(true);

}

}

private class getFavoritesTask extends AsyncTask<Void, Void, Void> {

@Override

protected Void doInBackground(Void... params) {

Useraccountendpoint.Builder userAccountEndpointBuilder =

new Useraccountendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest)

throws IOException {

}

});

Useraccountendpoint useraccountendpoint =

CloudEndpointUtils

.updateBuilder(userAccountEndpointBuilder).

build();

try {

ids = useraccountendpoint.getFavorites(accountName).

execute()

.getItems();

} catch (Exception e) {

e.printStackTrace();

}

return null;

}

@SuppressWarnings("unchecked")

@Override

protected void onPostExecute(Void result) {

if (!ids.isEmpty() && ids != null)

new getFavoriteNamesTask().execute(ids);

}

}

}

package com.example.pubart;

import java.util.ArrayList;

import java.util.List;

B.1. ANDROID CLIENT 85

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.AsyncTask;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.Toast;

import com.example.pubart.artworkrouteendpoint.Artworkrouteendpoint;

import com.example.pubart.artworkrouteendpoint.model.ArtworkRoute;

import com.example.pubart.helpers.MyBaseActivity;

import com.google.api.client.extensions.android.http.AndroidHttp;

import com.google.api.client.http.HttpRequest;

import com.google.api.client.http.HttpRequestInitializer;

import com.google.api.client.json.jackson.JacksonFactory;

public class ListRoutesActivity extends MyBaseActivity {

ArrayList<RouteListItem> listOfRoutes;

ListView listViewItems;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_list_routes);

listOfRoutes = new ArrayList<ListRoutesActivity.RouteListItem>();

listViewItems = new ListView(this);

listViewItems = (ListView) findViewById(R.id.lvRouteOverview);

new getArtworkRoutesTask().execute();

}

class RouteListArrayAdapter extends ArrayAdapter<RouteListItem> {

Context mContext;

int layoutResourceId;

ArrayList<RouteListItem> data = new ArrayList<ListRoutesActivity.

RouteListItem>();

public RouteListArrayAdapter(Context mContext, int

layoutResourceId,

ArrayList<RouteListItem> data) {

super(mContext, layoutResourceId, data);

this.mContext = mContext;

this.layoutResourceId = layoutResourceId;

this.data = data;

}

@Override

86 APPENDIX B. PRODUCED SOURCE CODE

public View getView(int position, View convertView, ViewGroup

parent) {

if (convertView == null) {

LayoutInflater inflater = LayoutInflater.from(

mContext);

convertView = inflater.inflate(layoutResourceId,

parent, false);

}

RouteListItem routeListItem = data.get(position);

TextView tvName = (TextView) convertView

.findViewById(R.id.tvRouteName);

TextView tvDescription = (TextView) convertView

.findViewById(R.id.tvRouteDescription);

tvName.setText(routeListItem.routeName);

tvName.setTag(routeListItem.routeId);

tvDescription.setText(routeListItem.routeDescription);

return convertView;

}

}

class onItemClickListenerRouteListItem implements OnItemClickListener {

@Override

public void onItemClick(AdapterView<?> parent, View view, int

position,

long id) {

Context context = view.getContext();

TextView tvName = (TextView) view.findViewById(R.id.

tvRouteName);

TextView tvDescription = (TextView) view

.findViewById(R.id.tvRouteDescription);

String tvNameText = tvName.getText().toString();

String tvDescriptionText = tvDescription.getText().toString

();

Long routeId = Long.parseLong(tvName.getTag().toString());

Intent startRouteMapIntent = new Intent(

getApplicationContext(),

RouteMapActivity.class);

startRouteMapIntent.putExtra("ROUTE_ID", routeId);

startActivity(startRouteMapIntent);

}

}

class RouteListItem {

public String routeName;

public String routeDescription;

public Long routeId;

B.1. ANDROID CLIENT 87

public RouteListItem(String name, String description, Long id) {

this.routeName = name;

this.routeDescription = description;

this.routeId = id;

}

}

private class getArtworkRoutesTask extends

AsyncTask<Void, Void, List<ArtworkRoute>> {

List<ArtworkRoute> listOfRoutesFromServer = new ArrayList<

ArtworkRoute>();

@Override

protected List<ArtworkRoute> doInBackground(Void... params) {

Artworkrouteendpoint.Builder artworkrouteEndpointBuilder =

new Artworkrouteendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

// TODO Auto-generated method

stub

}

});

Artworkrouteendpoint artworkrouteEndpoint =

CloudEndpointUtils

.updateBuilder(artworkrouteEndpointBuilder).

build();

try {

listOfRoutesFromServer = artworkrouteEndpoint

.listArtworkRoute().execute().

getItems();

return listOfRoutesFromServer;

} catch (Exception e) {

e.printStackTrace();

}

return null;

}

@Override

protected void onPostExecute(List<ArtworkRoute> result) {

for (ArtworkRoute route : result) {

RouteListItem item = new RouteListItem(route.getName

(),

route.getDescription(), route.getId()

);

listOfRoutes.add(item);

}

88 APPENDIX B. PRODUCED SOURCE CODE

RouteListArrayAdapter adapter = new RouteListArrayAdapter(

getApplicationContext(), R.layout.

listview_artworkroutes,

listOfRoutes);

listViewItems.setAdapter(adapter);

listViewItems

.setOnItemClickListener(new

onItemClickListenerRouteListItem());

}

}

}

package com.example.pubart;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import android.accounts.AccountManager;

import android.content.Intent;

import android.content.SharedPreferences;

import android.os.AsyncTask;

import android.os.Bundle;

import android.util.Log;

import android.widget.Toast;

import com.example.pubart.artworkendpoint.Artworkendpoint;

import com.example.pubart.artworkendpoint.model.ArtWork;

import com.example.pubart.artworkendpoint.model.ArtWorkCollection;

import com.example.pubart.helpers.GeoLocationHelper;

import com.example.pubart.helpers.MyBaseActivity;

import com.example.pubart.useraccountendpoint.Useraccountendpoint;

import com.example.pubart.useraccountendpoint.model.UserAccount;

import com.google.android.gms.common.AccountPicker;

import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.GoogleMap.OnInfoWindowClickListener;

import com.google.android.gms.maps.MapFragment;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.MarkerOptions;

import com.google.api.client.extensions.android.http.AndroidHttp;

import com.google.api.client.http.HttpRequest;

import com.google.api.client.http.HttpRequestInitializer;

import com.google.api.client.json.jackson.JacksonFactory;

public class MapActivity extends MyBaseActivity {

private static final String TAG = "MapActivity";

public static final String PREFS_NAME = "PubArtPreferences";

private static final int REQUEST_ACCOUNT_PICKER = 2;

private GoogleMap map;

private GeoLocationHelper geoLocationHelper = new GeoLocationHelper();

private ArrayList<ArtworkEntity> downloadedArtworks;

B.1. ANDROID CLIENT 89

private Map<String, Long> markers;

private SharedPreferences preferences;

private String accountName;

private Integer insertUserResultCode;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Set contentview to XML file

setContentView(R.layout.activity_map);

preferences = getSharedPreferences(PREFS_NAME, 0);

if (preferences.getString("ACCOUNT_ID", "None").equals("None")) {

chooseAccount();

} else {

accountName = preferences.getString("ACCOUNT_ID", "No

account");

}

if (downloadedArtworks == null || downloadedArtworks.isEmpty()) {

downloadedArtworks = new ArrayList<ArtworkEntity>();

}

if (markers == null || markers.isEmpty()) {

markers = new HashMap<String, Long>();

}

geoLocationHelper.startRetrievingLocation(this);

// Create map

map = ((MapFragment) getFragmentManager().findFragmentById(R.id.

map))

.getMap();

map.setOnInfoWindowClickListener(new OnInfoWindowClickListener() {

@Override

public void onInfoWindowClick(Marker marker) {

Intent startArtworkInformationIntent = new Intent(

getApplicationContext(),

ArtworkInformationActivity.class);

startArtworkInformationIntent.putExtra("ARTWORK_ID",

markers.get(marker.getId()));

startArtworkInformationIntent.putExtra("ACCOUNT_ID",

accountName);

startActivity(startArtworkInformationIntent);

}

});

new getArtworksTask().execute();

}

public String getAccountName() {

if (!accountName.isEmpty() || accountName != null) {

return accountName;

90 APPENDIX B. PRODUCED SOURCE CODE

} else {

return "No account provided";

}

}

public void chooseAccount() {

Intent intent = AccountPicker.newChooseAccountIntent(null, null,

new String[] { "com.google" }, true, null, null,

null, null);

startActivityForResult(intent, REQUEST_ACCOUNT_PICKER);

}

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent

data) {

if (requestCode == REQUEST_ACCOUNT_PICKER && resultCode ==

RESULT_OK) {

accountName = data.getExtras().getString(

AccountManager.KEY_ACCOUNT_NAME);

if (accountName != null) {

new insertUserTask().execute(accountName);

SharedPreferences.Editor editor = preferences.edit()

;

editor.putString("ACCOUNT_ID", accountName);

editor.commit();

}

}

}

private class getArtworksTask extends AsyncTask<Void, Void, List<ArtWork

>> {

@Override

protected void onPreExecute() {

Toast.makeText(getApplicationContext(), "Retrieving

artworks",

Toast.LENGTH_LONG).show();

}

@Override

protected void onPostExecute(List<ArtWork> artworks) {

if (artworks == null || artworks.isEmpty()) {

Toast.makeText(getApplicationContext(),

"Failed to load artworks", Toast.

LENGTH_SHORT).show();

} else {

for (ArtWork artworkInList : artworks) {

ArtworkEntity downloadedArtwork = new

ArtworkEntity(

artworkInList.getId(),

artworkInList.getName(),

artworkInList.

getTextualDescription(),

artworkInList.

getTextualBackground(),

B.1. ANDROID CLIENT 91

artworkInList.getYear(),

artworkInList.getArtist(),

artworkInList.getCategory(),

artworkInList.getLatitude(),

artworkInList.getLongitude(),

artworkInList.getAverageRating

());

downloadedArtworks.add(downloadedArtwork);

Marker marker = map.addMarker(new

MarkerOptions()

.position(

new LatLng(

downloadedArtwork

.

getLatitude

(),

downloadedArtwork

.

getLongitude

()

)

)

.title(downloadedArtwork.

getName())

.snippet(downloadedArtwork.

getShortDescription()));

markers.put(marker.getId(), artworkInList.

getId());

}

}

}

@Override

protected List<ArtWork> doInBackground(Void... parms) {

List<ArtWork> artworks = new ArrayList<ArtWork>();

Artworkendpoint.Builder artworkEndpointBuilder = new

Artworkendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

});

Artworkendpoint artworkEndpoint = CloudEndpointUtils.

updateBuilder(

artworkEndpointBuilder).build();

try {

92 APPENDIX B. PRODUCED SOURCE CODE

artworks = artworkEndpoint.listArtWork().execute().

getItems();

Log.d(TAG, "getting artwork");

return artworks;

} catch (Exception exception) {

exception.printStackTrace();

Log.e(TAG, "IOException on doInBackground",

exception);

}

return null;

}

}

private class insertUserTask extends AsyncTask<String, Void, Void> {

protected void onPostExecute() {

if (insertUserResultCode == 1) {

Toast.makeText(getApplicationContext(),

"Username saved successfully", Toast.

LENGTH_LONG)

.show();

} else if (insertUserResultCode == 0) {

Toast.makeText(getApplicationContext(), "Username

not saved",

Toast.LENGTH_LONG).show();

} else {

Toast.makeText(getApplicationContext(),

"Something went wrong, username not

saved",

Toast.LENGTH_LONG).show();

}

}

@Override

protected void onPreExecute() {

Toast.makeText(getApplicationContext(),

"Account not found, creating new", Toast.

LENGTH_LONG)

.show();

}

@Override

protected Void doInBackground(String... params) {

Useraccountendpoint.Builder userEndpointBuilder = new

Useraccountendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

B.1. ANDROID CLIENT 93

});

Useraccountendpoint userEndPoint = CloudEndpointUtils

.updateBuilder(userEndpointBuilder).build();

try {

UserAccount userAccount = new UserAccount();

userAccount.setEmail(accountName);

UserAccount result = userEndPoint

.insertUserAccount(userAccount).

execute();

insertUserResultCode = 1;

} catch (Exception E) {

insertUserResultCode = 0;

Log.e(TAG, "IO exception on doInBackground", E);

}

return null;

}

}

}

package com.example.pubart;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import com.example.pubart.artworkendpoint.Artworkendpoint;

import com.example.pubart.artworkendpoint.model.ArtWork;

import com.example.pubart.artworkrouteendpoint.Artworkrouteendpoint;

import com.example.pubart.artworkrouteendpoint.model.ArtworkRoute;

import com.example.pubart.helpers.GeoLocationHelper;

import com.example.pubart.helpers.MyBaseActivity;

import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.MapFragment;

import com.google.android.gms.maps.GoogleMap.OnInfoWindowClickListener;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.MarkerOptions;

import com.google.android.gms.maps.model.PolylineOptions;

import com.google.api.client.extensions.android.http.AndroidHttp;

import com.google.api.client.http.HttpRequest;

import com.google.api.client.http.HttpRequestInitializer;

import com.google.api.client.json.jackson.JacksonFactory;

import android.os.AsyncTask;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.content.SharedPreferences;

import android.view.Menu;

public class RouteMapActivity extends MyBaseActivity {

private GoogleMap map;

private GeoLocationHelper geoLocationHelper = new GeoLocationHelper();

private Map<String, Long> markers;

private String accountName;

94 APPENDIX B. PRODUCED SOURCE CODE

private SharedPreferences preferences;

private Long routeId;

ArtworkRoute artworkRoute;

PolylineOptions lineOptions;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_route_map);

preferences = getSharedPreferences(PREFS_NAME, 0);

if (preferences.getString("ACCOUNT_ID", "None").equals("None")) {

} else {

accountName = preferences.getString("ACCOUNT_ID", "No

account");

}

if (markers == null || markers.isEmpty()) {

markers = new HashMap<String, Long>();

}

Bundle extras = getIntent().getExtras();

if (extras != null) {

routeId = extras.getLong("ROUTE_ID");

}

lineOptions = new PolylineOptions();

geoLocationHelper.startRetrievingLocation(this);

// Create map

map = ((MapFragment) getFragmentManager().findFragmentById(R.id.

map))

.getMap();

map.setOnInfoWindowClickListener(new OnInfoWindowClickListener() {

@Override

public void onInfoWindowClick(Marker marker) {

Intent startArtworkInformationIntent = new Intent(

getApplicationContext(),

ArtworkInformationActivity.class);

startArtworkInformationIntent.putExtra("ARTWORK_ID",

markers.get(marker.getId()));

startArtworkInformationIntent.putExtra("ACCOUNT_ID",

accountName);

startActivity(startArtworkInformationIntent);

}

});

new getRouteTask().execute(routeId);

}

private class getRouteTask extends AsyncTask<Long, Void, ArtworkRoute> {

B.1. ANDROID CLIENT 95

@Override

protected ArtworkRoute doInBackground(Long... params) {

Artworkrouteendpoint.Builder artworkRouteEndpointBuilder =

new Artworkrouteendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

public void initialize(HttpRequest

httpRequest) {

}

});

Artworkrouteendpoint artworkRouteEndpoint =

CloudEndpointUtils

.updateBuilder(artworkRouteEndpointBuilder).

build();

try {

artworkRoute = artworkRouteEndpoint.getArtworkRoute(

params[0])

.execute();

} catch (IOException ioe) {

ioe.printStackTrace();

}

return artworkRoute;

}

@Override

protected void onPostExecute(ArtworkRoute result) {

for (Long artworkID : artworkRoute.getArtworks()) {

new getArtworkTask().execute(artworkID);

}

}

}

private class getArtworkTask extends AsyncTask<Long, Void, ArtWork> {

ArtWork thisArtwork;

@Override

protected ArtWork doInBackground(Long... params) {

Artworkendpoint.Builder artworkEndpointBuilder = new

Artworkendpoint.Builder(

AndroidHttp.newCompatibleTransport(), new

JacksonFactory(),

new HttpRequestInitializer() {

@Override

96 APPENDIX B. PRODUCED SOURCE CODE

public void initialize(HttpRequest

httpRequest) {

}

});

Artworkendpoint artworkEndpoint = CloudEndpointUtils.

updateBuilder(

artworkEndpointBuilder).build();

try {

thisArtwork = artworkEndpoint.getArtWork(params[0]).

execute();

} catch (IOException ioe) {

ioe.printStackTrace();

}

return thisArtwork;

}

@Override

protected void onPostExecute(ArtWork result) {

Marker marker = map.addMarker(new MarkerOptions()

.position(

new LatLng(result.getLatitude

(), result

.getLongitude())

).title(

result.

getName())

.snippet(result.getTextualDescription()));

markers.put(marker.getId(), result.getId());

lineOptions.add(new LatLng(result.getLatitude(), result.

getLongitude()));

if(lineOptions.getPoints().size() > 1) {

map.addPolyline(lineOptions);

}

}

}

}

B.2 App Engine

B.2.1 Datastore

package com.example.pubart;

import java.util.ArrayList;

import java.util.List;

import com.googlecode.objectify.annotation.Embed;

import com.googlecode.objectify.annotation.Entity;

B.2. APP ENGINE 97

import com.googlecode.objectify.annotation.Id;

import com.googlecode.objectify.annotation.Index;

@Entity

public class ArtWork {

@Id

private Long id;

@Index

private String name;

private String artist;

private String year;

private String category;

private String textualDescription;

private String textualBackground;

private Double latitude;

private Double longitude;

private Integer averageRating;

@Embed

public static class Rating {

@Index

private String userEmail;

private Integer userRating;

public void setUserEmail(String userEmail) {

this.userEmail = userEmail;

}

public String getUserEmail() {

return userEmail;

}

public void setRating(Integer rating) {

this.userRating = rating;

}

public Integer getRating() {

return userRating;

}

}

@Index

private List<Rating> ratings = new ArrayList<Rating>();

public ArtWork() {

}

public Long getId() {

return id;

}

public void setId(Long id) {

this.id = id;

}

98 APPENDIX B. PRODUCED SOURCE CODE

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public String getArtist() {

return artist;

}

public void setArtist(String artist) {

this.artist = artist;

}

public String getYear() {

return year;

}

public void setYear(String year) {

this.year = year;

}

public String getCategory() {

return category;

}

public void setCategory(String category) {

this.category = category;

}

public String getTextualDescription() {

return textualDescription;

}

public void setTextualDescription(String textualDescription) {

this.textualDescription = textualDescription;

}

public String getTextualBackground() {

return textualBackground;

}

public void setTextualBackground(String textualBackground) {

this.textualBackground = textualBackground;

}

public Double getLatitude() {

return latitude;

}

public void setLatitude(Double latitude) {

this.latitude = latitude;

}

B.2. APP ENGINE 99

public Double getLongitude() {

return longitude;

}

public void setLongitude(Double longitude) {

this.longitude = longitude;

}

public Integer getAverageRating() {

return averageRating;

}

public void setAverageRating(Integer averageRating) {

this.averageRating = averageRating;

}

public List<Rating> getRatings() {

return ratings;

}

public void setRatings(List<Rating> ratings) {

this.ratings = ratings;

}

public void addRating(Rating rating) {

ratings.add(rating);

int sum = 0;

for(Rating ratingEntry : ratings) {

sum += ratingEntry.getRating();

}

averageRating = sum / ratings.size();

}

public void editRating(String userName, Integer rating) {

for (Rating oldRating : ratings) {

if (oldRating.userEmail.equals(userName)) {

oldRating.userRating = rating;

break;

}

}

}

}

package com.example.pubart;

import java.util.ArrayList;

import java.util.List;

import com.googlecode.objectify.annotation.Embed;

import com.googlecode.objectify.annotation.Entity;

import com.googlecode.objectify.annotation.Id;

import com.googlecode.objectify.annotation.Index;

@Entity

public class ArtworkRoute {

100 APPENDIX B. PRODUCED SOURCE CODE

@Id

private Long id;

private String name;

private List<Long> artworks = new ArrayList<Long>();

private String description;

@Index

private Integer averageRating;

private String background;

@Embed

public static class Rating {

private String userEmail;

private Integer userRating;

public Rating() {

}

public Rating(String userEmail, Integer userRating) {

this.userEmail = userEmail;

this.userRating = userRating;

}

public void setUserEmail(String userEmail) {

this.userEmail = userEmail;

}

public String getUserEmail() {

return userEmail;

}

public void setRating(Integer rating) {

this.userRating = rating;

}

public Integer getRating() {

return userRating;

}

}

private List<Rating> ratings = new ArrayList<Rating>();

public ArtworkRoute() {}

public Long getId() {

return id;

}

public void setId(Long id) {

this.id = id;

}

public String getName() {

return name;

}

B.2. APP ENGINE 101

public void setName(String name) {

this.name = name;

}

public List<Long> getArtworks() {

return artworks;

}

public void setArtworks(List<Long> artworks) {

this.artworks = artworks;

}

public String getDescription() {

return description;

}

public void setDescription(String description) {

this.description = description;

}

public Integer getAverageRating() {

return averageRating;

}

public void setAverageRating(Integer averageRating) {

this.averageRating = averageRating;

}

public List<Rating> getRatings() {

return ratings;

}

public void setRatings(List<Rating> ratings) {

this.ratings = ratings;

}

public void setBackground(String background) {

this.background = background;

}

public String getBackground() {

return background;

}

}

package com.example.pubart;

import java.util.ArrayList;

import java.util.List;

import com.googlecode.objectify.annotation.Entity;

import com.googlecode.objectify.annotation.Id;

import com.googlecode.objectify.annotation.Index;

102 APPENDIX B. PRODUCED SOURCE CODE

@Entity

public class UserAccount {

@Id

private String email;

private List<Long> favorites = new ArrayList<Long>();

public UserAccount() {}

public UserAccount(String email) {

this.email = email;

}

public String getEmail() {

return email;

}

public void setEmail(String email) {

this.email = email;

}

public List<Long> getFavorites() {

return favorites;

}

public void setFavorites(List<Long> favorites) {

this.favorites = favorites;

}

public void addFavorite(Long id) {

favorites.add(id);

}

}

B.2.2 Endpoints

package com.example.pubart;

import static com.googlecode.objectify.ObjectifyService.ofy;

import java.util.ArrayList;

import java.util.List;

import javax.inject.Named;

import com.example.pubart.ArtWork.Rating;

import com.google.api.server.spi.config.Api;

import com.google.api.server.spi.config.ApiMethod;

import com.google.api.server.spi.config.ApiNamespace;

B.2. APP ENGINE 103

@Api(name = "artworkendpoint", namespace = @ApiNamespace(ownerDomain = "example.

com", ownerName = "example.com", packagePath = "pubart"))

public class ArtWorkEndpoint {

/**

* This method lists all the entities inserted in datastore. It uses HTTP

* GET method and paging support.

*

* @return A List of artworks containing the list of all entities

*

*/

@ApiMethod(name = "listArtWork", httpMethod = "GET")

public List<ArtWork> listArtWork() {

List<ArtWork> listOfArtWorks = ofy().load().type(ArtWork.class).

list();

return listOfArtWorks;

}

@ApiMethod(name = "getTopTenArtworks", path="get_top_ten_artworks",

httpMethod = "GET")

public List<ArtWork> getTopTenArtworks() {

List<ArtWork> topTenArtworks = ofy().load().type(ArtWork.class).

order("averageRating").list();

return topTenArtworks;

}

/**

* This method gets the entity having primary key id. It uses HTTP GET

* method.

*

* @param id

* the primary key of the java bean.

* @return The entity with primary key id.

*/

@ApiMethod(name = "getArtWork")

public ArtWork getArtWork(@Named("id") Long id) {

ArtWork artwork = ofy().load().type(ArtWork.class).id(id).get();

return artwork;

}

/**

* This inserts a new entity into App Engine datastore. If the entity

* already exists in the datastore, an exception is thrown. It uses HTTP

* POST method.

*

* @param artwork

* the entity to be inserted.

* @return The inserted entity.

*/

@ApiMethod(name = "insertArtWork")

public ArtWork insertArtWork(ArtWork artwork) {

ofy().save().entity(artwork).now();

return artwork;

}

104 APPENDIX B. PRODUCED SOURCE CODE

/**

* This method is used for updating an existing entity. If the entity does

* not exist in the datastore, an exception is thrown. It uses HTTP PUT

* method.

*

* @param artwork

* the entity to be updated.

* @return The updated entity.

*/

@ApiMethod(name = "updateArtWork")

public ArtWork updateArtWork(ArtWork artwork) {

ArtWork artworkToUpdate = new ArtWork();

artworkToUpdate.setId(artwork.getId());

artworkToUpdate.setName(artwork.getName());

artworkToUpdate.setArtist(artwork.getArtist());

artworkToUpdate.setYear(artwork.getYear());

artworkToUpdate.setCategory(artwork.getCategory());

artworkToUpdate.setTextualDescription(artwork.

getTextualDescription());

artworkToUpdate.setTextualBackground(artwork.getTextualBackground

());

artworkToUpdate.setLatitude(artwork.getLatitude());

artworkToUpdate.setLongitude(artwork.getLongitude());

artworkToUpdate.setAverageRating(artwork.getAverageRating());

artworkToUpdate.setRatings(artwork.getRatings());

ofy().save().entity(artworkToUpdate).now();

return artworkToUpdate;

}

/**

* This method is used to add a rating to an artwork entity.

*

* @param artwork

* the entity to be updated

* @return the updated artwork

*/

@ApiMethod(name = "insertUserRating", httpMethod = "PUT", path = "

insertRating")

public ArtWork insertUserRating(ArtWork artwork,

@Named("userName") String userName, @Named("rating")

Integer rating) {

boolean exists = ((ofy().load().type(ArtWork.class)

.filter("ratings.userEmail =", userName).count()) >

0);

if (exists) {

artwork.editRating(userName, rating);

} else {

Rating ratingToAdd = new Rating();

ratingToAdd.setUserEmail(userName);

ratingToAdd.setRating(rating);

artwork.addRating(ratingToAdd);

}

ofy().save().entity(artwork).now();

return artwork;

}

B.2. APP ENGINE 105

/**

* This method is used to get a rating for a user for an artwork

*

* @param artwork

* the entity to get rating for

* @param userName

* the user to get rating for

* @return the rating, or -1 if username or rating not found.

*/

@ApiMethod(name = "getUserRatingForArtwork", httpMethod = "POST", path =

"getUserRatingForArtwork")

public List<Integer> getUserRatingForArtwork(@Named("id") Long id,

@Named("userName") String userName) {

List<Integer> returnList = new ArrayList<>();

ArtWork artwork = ofy().load().type(ArtWork.class).id(id).get();

ArrayList<Rating> ratings = new ArrayList<>();

ratings.addAll(artwork.getRatings());

for (Rating rating : ratings) {

if (rating.getUserEmail().equals(userName)) {

returnList.add(rating.getRating());

}

}

if (returnList.isEmpty()) {

returnList.add(3);

}

return returnList;

}

/**

* This method removes the entity with primary key id. It uses HTTP DELETE

* method.

*

* @param id

* the primary key of the entity to be deleted.

*/

@ApiMethod(name = "removeArtWork")

public void removeArtWork(@Named("id") Long id) {

ofy().delete().type(ArtWork.class).id(id).now();

}

/**

* This method gets the name of the artwork with the primary key id It

uses

* HTTP GET

*

* @param id

* the primary key of the entity

* @return name the name of the artwork

*/

@ApiMethod(name = "getArtWorkName", httpMethod = "GET", path = "

getArtWorkName")

public List<String> getArtWorkName(@Named("id") Long id) {

String name = ofy().load().type(ArtWork.class).id(id).get()

106 APPENDIX B. PRODUCED SOURCE CODE

.getName();

List<String> listOfNames = new ArrayList<>();

listOfNames.add(name);

return listOfNames;

}

}

package com.example.pubart;

import static com.googlecode.objectify.ObjectifyService.ofy;

import com.google.api.server.spi.config.Api;

import com.google.api.server.spi.config.ApiMethod;

import com.google.api.server.spi.config.ApiNamespace;

import java.util.List;

import javax.inject.Named;

@Api(name = "artworkrouteendpoint", namespace = @ApiNamespace(ownerDomain = "

example.com", ownerName = "example.com", packagePath = "pubart"))

public class ArtworkRouteEndpoint {

/**

* This method lists all the entities inserted in datastore.

* It uses HTTP GET method and paging support.

*

* @return A CollectionResponse class containing the list of all entities

* persisted and a cursor to the next page.

*/

@ApiMethod(name = "listArtworkRoute", path="listArtworkRoute", httpMethod

= "GET")

public List<ArtworkRoute> listArtworkRoute() {

List<ArtworkRoute> listOfArtworkRoutes = ofy().load().type(

ArtworkRoute.class).list();

return listOfArtworkRoutes;

}

/**

* This method gets the top 10 rated routes in the datastore

* It uses HTTP GET method

*

* @return A CollectionResponse class containing the list of the top10

rated routes

*/

@ApiMethod(name = "listTop10Routes", httpMethod = "GET")

public List<ArtworkRoute> listTop10Routes() {

List<ArtworkRoute> listOfTop10Routes = ofy().load().type(

ArtworkRoute.class).list();

return listOfTop10Routes;

}

B.2. APP ENGINE 107

/**

* This method gets the entity having primary key id. It uses HTTP GET

method.

*

* @param id the primary key of the java bean.

* @return The entity with primary key id.

*/

@ApiMethod(name = "getArtworkRoute", httpMethod = "GET")

public ArtworkRoute getArtworkRoute(@Named("id") Long id) {

ArtworkRoute artworkRoute = ofy().load().type(ArtworkRoute.class).

id(id).get();

return artworkRoute;

}

/**

* This inserts a new entity into App Engine datastore. If the entity

already

* exists in the datastore, an exception is thrown.

* It uses HTTP POST method.

*

* @param artworkroute the entity to be inserted.

* @return The inserted entity.

*/

@ApiMethod(name = "insertArtworkRoute")

public ArtworkRoute insertArtworkRoute(ArtworkRoute artworkroute) {

ofy().save().entity(artworkroute).now();

return artworkroute;

}

/**

* This method is used for updating an existing entity. If the entity does

not

* exist in the datastore, an exception is thrown.

* It uses HTTP PUT method.

*

* @param artworkroute the entity to be updated.

* @return The updated entity.

*/

@ApiMethod(name = "updateArtworkRoute")

public ArtworkRoute updateArtworkRoute(ArtworkRoute artworkroute) {

ArtworkRoute artworkRouteToUpdate = new ArtworkRoute();

artworkRouteToUpdate.setId(artworkroute.getId());

artworkRouteToUpdate.setName(artworkroute.getName());

artworkRouteToUpdate.setDescription(artworkroute.getDescription())

;

artworkRouteToUpdate.setBackground(artworkroute.getBackground());

artworkRouteToUpdate.setArtworks(artworkroute.getArtworks());

artworkRouteToUpdate.setAverageRating(artworkroute.

getAverageRating());

ofy().save().entity(artworkRouteToUpdate).now();

return artworkRouteToUpdate;

}

/**

* This method removes the entity with primary key id.

* It uses HTTP DELETE method.

*

108 APPENDIX B. PRODUCED SOURCE CODE

* @param id the primary key of the entity to be deleted.

*/

@ApiMethod(name = "removeArtworkRoute")

public void removeArtworkRoute(@Named("id") Long id) {

ofy().delete().type(ArtworkRoute.class).id(id).now();

}

/**

* This method gets the top10 rated artworkroutes

* It uses HTTP GET method

*/

@ApiMethod(name = "getTopTenRatedRoutes", path="get_top_ten_rated_routes"

, httpMethod = "GET")

public List<ArtworkRoute> topRatedRoutes() {

List<ArtworkRoute> topRatedRoutes = ofy().load().type(ArtworkRoute

.class).order("-averageRating").list();

return topRatedRoutes;

}

}

package com.example.pubart;

import static com.googlecode.objectify.ObjectifyService.ofy;

import java.util.ArrayList;

import java.util.List;

import javax.inject.Named;

import com.google.api.server.spi.config.Api;

import com.google.api.server.spi.config.ApiMethod;

import com.google.api.server.spi.config.ApiNamespace;

import com.googlecode.objectify.Key;

@Api(name = "useraccountendpoint", namespace = @ApiNamespace(ownerDomain = "

example.com", ownerName = "example.com", packagePath = "pubart"))

public class UserAccountEndpoint {

/**

* This method lists all the entities inserted in datastore.

* It uses HTTP GET method and paging support.

*

* @return A CollectionResponse class containing the list of all entities

* persisted and a cursor to the next page.

*/

@ApiMethod(name = "listUserAccount", httpMethod = "GET")

public List<UserAccount> listUserAccounts() {

List<UserAccount> listOfUserAccounts = ofy().load().type(

UserAccount.class).list();

return listOfUserAccounts;

}

/**

B.2. APP ENGINE 109

* This method gets the entity having primary key id. It uses HTTP GET

method.

*

* @param id the primary key of the java bean.

* @return The entity with primary key id.

*/

@ApiMethod(name = "getUserAccount")

public UserAccount getUserAccount(@Named("id") String id) {

UserAccount userAccount = ofy().load().type(UserAccount.class).id(

id).get();

return userAccount;

}

/**

* This inserts a new entity into App Engine datastore. If the entity

already

* exists in the datastore, an exception is thrown.

* It uses HTTP POST method.

*

* @param useraccount the entity to be inserted.

* @return The inserted entity.

*/

@ApiMethod(name = "insertUserAccount")

public UserAccount insertUserAccount(UserAccount useraccount) {

Key<UserAccount> result = ofy().save().entity(useraccount).now();

return useraccount;

}

/**

* This method is used for updating an existing entity. If the entity does

not

* exist in the datastore, an exception is thrown.

* It uses HTTP PUT method.

*

* @param useraccount the entity to be updated.

* @return The updated entity.

*/

@ApiMethod(name = "updateUserAccount")

public UserAccount updateUserAccount(UserAccount useraccount) {

UserAccount userAccountToUpdate = new UserAccount();

userAccountToUpdate.setEmail(useraccount.getEmail());

userAccountToUpdate.setFavorites(useraccount.getFavorites());

Key<UserAccount> result = ofy().save().entity(userAccountToUpdate)

.now();

return userAccountToUpdate;

}

/**

* This method removes the entity with primary key id.

* It uses HTTP DELETE method.

*

* @param id the primary key of the entity to be deleted.

*/

@ApiMethod(name = "removeUserAccount")

public void removeUserAccount(@Named("id") String id) {

ofy().delete().type(UserAccount.class).id(id).now();

}

110 APPENDIX B. PRODUCED SOURCE CODE

/**

* This method adds an artwork id to the list of favorites

* It uses HTTP PUT

*

* @param id the id of the artwork to be added

* @param useraccount the entity to add the artwork id to

*/

@ApiMethod(name = "addFavorite", httpMethod = "PUT", path = "addFavorite"

)

public void addFavorite(@Named("id") Long id, @Named("accountName")

String accountName) {

UserAccount userAccount = ofy().load().type(UserAccount.class).id(

accountName).get();

userAccount.addFavorite(id);

ofy().save().entity(userAccount).now();

}

@ApiMethod(name = "getFavorites", httpMethod = "GET", path = "

getFavorites")

public List<Long> getFavorites(@Named("id") String id) {

UserAccount userAccount = ofy().load().type(UserAccount.class).id(

id).get();

List<Long> ids = userAccount.getFavorites();

return ids;

}

}

	Summary
	Oppsummering
	Abstract
	Introduction
	Purpose
	Motivation
	Research Questions
	Project goals
	Development methodology

	Application concept
	Application's goal
	Functionality
	Add, get and edit information
	Routes
	Assisting users in finding artworks

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Availability

	Research
	Literature review
	Crowdsourcing
	Attracting and motivating users
	Learning and mobile devices

	Related applications
	ArtAround
	FourSquare
	Waze
	Wikipedia

	Previously implemented features
	Data storage
	Network
	Android application

	Implementation details
	Architecture description
	Datastore
	Data transfer
	Android client

	Tools and libraries
	Client

	Back-end
	Google App Engine
	Google App Engine Datastore
	Google Cloud Endpoints
	Objectify

	Further work
	Application
	Usability features
	Routes
	Efficiency
	Offline storage and syncing
	Photos and albums
	Other media
	Search
	Further recommendation system

	Navigation
	Gamification
	Web interface
	Administration tools
	Social Media

	Results and discussion
	Results
	Research questions
	Project goals

	Discussion
	Limitations
	Development methodology

	Conclusion
	Bibliography
	Installation Guide
	Produced Source Code
	Android Client
	App Engine
	Datastore
	Endpoints

