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Abstract

The performance increase of state of the art processors has stagnated due
to power and thermal constraints. Heterogeneous computing has lately
attracted interest and may be the key for improving the performance
and energy-efficiency of computing systems under their tight physical
budgets. The Single-ISA Heterogeneous MAny-core Computer (SHMAC)
project is a research project that seeks to explore the challenges of
heterogeneous computing. Therefore, the SHMAC project requires a
diversity of processor cores of different size and performance, to explore
heterogeneous architectures.

Currently, there is only one processor core, Amber, available for SHMAC.
This thesis presents the development of Turbo Amber (TA), a high-
performance processor core for SHMAC. We present an overview of high-
performance processor architecture techniques and extend the existing
Amber core with a branch predictor, a return address stack, an instruction
queue and a fast multiplier. The front-end of TA is capable of fetching
and performing branch prediction on up to four instructions each clock
cycle and can be extended with an appropriate back-end for superscalar
execution.

Our results show that TA has a performance increase of 49% over the
original Amber core, with a moderate increase in FPGA resource utiliza-
tion: slice utilization from 4.7% to 7.9%, block RAM utilization from
1.0% to 3.3%, and no DSP slices used on a Xilinx Virtex-5 FPGA. TA
has also been integrated into the existing SHMAC-infrastructure and
verified by running applications on top of Linux and freeRTOS.



Sammendrag

Ytelsesøkning til avanserte prosessorer har stagnert på grunn av strøm
og termiske begrensninger. Heterogene datamaskiner har i det siste
vekket interesse og kan være nøkkelen til å oppnå bedre ytelse mens man
samtidig unngår overoppheting. SHMAC er et forskningsprosjekt som
utforsker utfordringene relatert til heterogene datamaskiner. SHMAC
krever prosessorkjerner i varierende størrelse og ytelse, men dessverre er
det per dags dato kun én prosessorkjerne, Amber, tilgjengelig for SHMAC
arkitekturen.

Denne oppgaven omhandler utvikling av TA, en høy-ytelses prosessork-
jerne for SHMAC. Vi gir en oversikt over høy-ytelse prosessoarkitektur-
teknikker og utvider den eksisterende Amber-kjernen med en branch
predictor, en Return Address Stack, en instruksjonskø og en rask multip-
likator. Turbo Ambers front-end er i stand til å hente og gjøre prediksjon
på inntil fire instruksjoner hver klokkesykel, og kan kobles til en passende
back-end for superskalar eksekvering.

Våre resultater viser at Turbo Amber har en ytelsesøkning på 49% over
den opprinnelige Amber-kjernen, med en moderat økning i slice-forbruk
fra 4,7 % til 5,6 %, blokk RAM forbruk fra 1,0 % til 3,3 %, og ingen
DSP-slices på en Xilinx Virtex - 5 FPGA. TA har også blitt integrert inn
i SHMAC-infrastrukturen og verifisert ved å kjøre applikasjoner på Linux
og freeRTOS.



Problem description

Current multi-core processors are constrained by energy. Consequently, it is not possi-
ble to improve performance further without increasing energy efficiency. A promising
option for making increasingly energy efficient CMPs is to include processors with
different capabilities. This improvement in energy efficiency can then be used to
increase performance or lower energy consumption.

Currently, it is unclear how system software should be developed for heterogeneous
multi-core processors. A main challenge is that little heterogeneous hardware exists.
It is possible to use simulators, but their performance overhead is a significant
limitation. An alternative strategy that offers to achieve the best of both worlds
is to leverage reconfigurable logic to instantiate various heterogeneous computer
architectures. These architectures are fast enough to be useful for investigating
systems software implementation strategies. At the same time, the reconfigurable
logic offers the flexibility to exploit a large part of the heterogeneous processor design
space.

The Single-ISA Heterogeneous MAny-core Computer (SHMAC) project aims to
develop an infrastructure for instantiating diverse heterogeneous architectures on
FPGAs. A prototype has already been developed, but currently the only processor
core available is a 5-stage in-order scalar pipeline. A variety of microarchitectural
optimizations, including speculative execution or techniques to exploit the Instruction
Level Parallelism (ILP) inherent to applications can be employed to further increase
the core performance and/or energy efficiency.

The task in this assignment is to design and implement a high-performance
processor tile for SHMAC. The first step is to survey the literature to
identify the architectural techniques necessary to improve on the perfor-
mance of the existing core. The proposed design has to be implemented
in a hardware description language, then integrated into and evaluated
using the SHMAC prototype. If time permits, the students should sug-
gest extensions to the initial design, implement them and investigate their
implications.
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Chapter1Introduction

Modern high-performance processors have emerged out of several decades of scientific
research and development. Transistor scaling facilitated a consistent exponential
single-threaded performance increase lasting from the 1970s until the early 2000s,
as depicted in Figure 1.1. Moore’s law [Moo06] and Dennard scaling [DGnY+74]
allowed transistors to decrease in size and at the same time consume less power.
Performance increased by shortening the critical path and increasing the clock
frequency. Engineers also introduced highly complex techniques, like superscalarity
and out-of-order execution, for exploiting Instruction-Level Parallelism (ILP). The
exponential increase in single-threaded performance eventually discontinued when
Dennard scaling came to an end: reducing voltage any further would cause high
static power dissipation. As a consequence, utilizing all of the available transistors,
or increasing the clock frequency would result in overheating.

Table 1.1 illustrates scaling after the end of Dennard scaling. The table is an excerpt
from The GreenDroid mobile application processor: An architecture for silicon’s
dark future [GHSV+11]. The classical scaling column shows how different transistor

Transistor property
Classical
scaling

Leakage-limited
scaling

∆Vt (threshold voltage) 1/S 1
∆VDD (supply voltage) 1/S 1
∆ quantity S2 S2

∆ frequency S S
∆ capacitance 1/S 1/S
∆ power (∆(QFCV 2

DD)) 1 S2

∆ utilization (1/power) 1 1/S2

Table 1.1: The consequences of the end of Dennard scaling. S is the transistor
feature size scaling factor. Table taken from the GreenDroid article [GHSV+11].

1



2 1. INTRODUCTION

Figure 1.1: Performance history chart over Intel processors, chart taken from
[Sut05].

properties were affected by scaling before the end of Dennard scaling. The decrease
in threshold and supply voltage compensated for the quadratic increase in transistor
count and kept the total power consumption constant. The leakage-limited scaling
column shows how scaling affected power consumption after the end of Dennard
scaling. Since the voltages no longer can be downscaled in line with transistor feature
size the power consumption increases quadratically.

1.1 The Dark Silicon Effect

To overcome the challenge of thermal overheating, the focus shifted from single-core
to multi-core architectures, utilizing the increased number of transistors for more
cores instead of more complex cores. This improved the overall processor throughput,
without increasing the frequency of a single core. It was critical to keep the clock
frequency constant since this also kept the dynamic power dissipation constant



1.2. THE SHMAC RESEARCH PROJECT 3

(Pdynamic ∝ capacitance × frequency × V oltage2) and the processors remained
within the power budget. At the same time Moore’s law continued and the transistor
count per chip grew. We have now reached a point where the transistor density is
too high to simultaneously utilize all the transistors without experiencing thermal
overheating that may damage the chip. As a consequence, only parts of the chip can
be active at once while others have to be powered off in order to stay within the
power budget. This is known as the dark silicon effect [EBSA+11].

1.2 The SHMAC Research Project

Today engineers and scientists are exploring the domain of heterogeneous multi-core
computers to increase the chip energy efficiency and overcome the dark silicon effect.
Heterogeneous systems contain a variety of specialized cores that could achieve higher
performance and consume less power when executing specific tasks than general-
purpose processor cores. Many argue for heterogeneous computers [BC11] [HM08]
[KTR+04] and heterogeneous cores can already be seen in the consumer market, for
example ARMs big.LITTLE core.

The EECS group at NTNU contributes to heterogeneous architecture development
through an ongoing research project named SHMAC [shm]. SHMAC is an infrastruc-
ture for heterogeneous computing systems which assists the study of both hardware
and software issues related to heterogeneous architectures. The hardware aspect of
SHMAC is to evaluate and compare different hardware architectures to gain insight
into which combination of components maximize energy efficiency. The software
aspect aims at investigating different programming models for heterogeneous archi-
tectures, and how software should be developed for them. SHMAC is instantiated
using Field-Programmable Gate Array (FPGA) technology. FPGAs have the benefit
of being reconfigurable and faster than software simulations.

The SHMAC architecture can be seen in Figure 1.2. It is a tile-based infrastructure
connected by a two dimensional mesh network. Each tile can communicate directly
with its four neighbors: north, south, east and west. There are no restrictions on the
content of a tile. For instance, a tile may contain a processor core, an accelerator, or
on-chip memory. The only requirement is that the tile implements the SHMAC’s
router interface. There are no dependencies between the tiles, which makes the
infrastructure modular.

In the first prototype of the SHMAC infrastructure, there was only one type of
processing tile available, named Amber [San], obviously limiting the heterogeneity
of the SHMAC project. Amber is a 5-stage in-order scalar processor core which
supports the ARMv2a instruction set. The core has been modified to support the
SHMAC tile interface. The Amber architecture is hard to extend with features to
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Figure 1.2: The SHMAC architecture

improve its performance without significant modifications. However, the SHMAC
project needs a processor tile which can be used as a basis for other tiles with
different specializations to research and carry out experiments with a higher degree of
heterogeneity. These requirements have motivated the design of a high-performance
and extendable processor for SHMAC.

Turbo Amber is a 32-bit high performance ARM processor which extends the original
Amber. It has a 5-stage pipeline which has been extended with a front-end capable
of fetching up to four instructions per cycle, a branch predictor, a Return Address
Stack (RAS), an instruction queue and a fast multiply unit. We have also merged
the work of Andersson and Amundsen [AA14] into TA, which upgraded the original
Amber to the ARMv4T instruction set.

1.3 Requirements

Requirements are important for systematically evaluating the success of the Turbo
Amber project. In this section we present the requirements interpreted from the
assignment text and elaborate on why they were included. Some requirements were
taken directly from the text, while others were not mentioned in the text but after
discussion with EECS researchers were deemed important.
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Fast TA should be faster than Amber.
Verified TA should be extensively verified to be functionally correct.
Integrated TA should be integrated into SHMAC as a separate tile.
Area efficient TA should be area-efficient.
Resource balanced TA should not excessively drain any one FPGA-resource.

Figure 1.3: The five requirements that TA must satisfy.

1.3.1 Fast

The assignment text specifies that TA should be a high-performance processor.
What high-performance means is context dependent. In the context of SHMAC
high-performance is relative to the other processors in SHMAC, at the moment only
Amber. We therefore rephrase the “high-performance” requirement to be the more
testable requirement “faster than Amber”. This requirement is important because if
the processors have negligible performance differences we will not be able to exploit
heterogeneity and the processor will be useless for heterogeneity research purposes.

1.3.2 Area Efficient

Blindly optimizing for performance with no regard to the area usage can lead to an
area-inefficient design. To prevent this we add the requirement that TA’s performance
increase should be proportional to the area increase. We use Pollack’s rule as a refer-
ence for proportionality between performance increase and area increase. Pollack’s
rule is a historical observation, akin to Moore’s law, that processor performance
increases by the square root of the area increase [Pol99]. This gives us the testable
requirement formulated in Equation 1.1. The degree to which one can increase
performance without excessively increasing area is a testament to the design’s quality.

TA_performance

A_performance
≥

√
TA_area

A_area
(1.1)

1.3.3 Resource Balanced

TA should not excessively drain any of the available FPGA-resources. Being resource
balanced is about not consuming all the specialized FPGA-resources, but instead
leaving room for other tiles in what is to be a Many-Core Computer. An FPGA is a
heterogeneous computing substrate and has a diverse set of resources available. The
three most important resources are generic (logic) slices, DSP slices, and block RAM.
The FPGA-resource usage should be balanced and none of the resource types should
be excessively drained by instantiating TA. If TA were to use excessive amounts of
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DSP slices or block RAM one may not be able to instantiate other specialized tiles
such as vector processors or on-chip RAM tiles. These specialized tiles may prove
to have a greater need of the specialized resources than TA does. And if TA were
to be instantiated many times in a SHMAC layout one might be limited by DSP
slices before all the generic slices were utilized. This would leave the FPGA in an
underutilized state.

1.3.4 Integrated

To make TA easy to use for research in instantiating diverse heterogeneous layouts it
should be integrated into SHMACs infrastructure as a separate tile. This requirement
calls for some engineering effort unrelated to the core design, but is necessary for TA
to be usable in SHMAC.

1.3.5 Verified

The final and most challenging requirement for a complex digital design project
is verification. Although not specified by the assignment text, it is implied, and
of utmost importance, that TA should work as expected without any major bugs.
Significant effort should be made to show functional correctness. Applying a few
test vectors in a testbench is insufficient if the goal is to run real-life programs and
operating systems. The success of this requirement is critical for TA’s reusability in
the SHMAC project.

1.4 Contributions

An overview of the work done and which requirement they relate to is listed in Ta-
ble 1.2.

The main contributions were made to satisfy the performance requirement. The
fetch efficiency was increased by introducing an instruction queue, a branch history
table, and a branch target address cache. The multiply performance was increased by
introducing a fast multiplier. To satisfy the SHMAC integration requirement a Turbo
Amber tile was created, allowing multiple heterogeneous cores to be instantiated.
To verify Turbo Amber’s correctness a regression test strategy was used during
development and large ARM binaries were run for final verification.

Since we kept in mind the resource usage while designing and analyzed the resource
usage reports, no additional optimization efforts were necessary to satisfy the area
efficiency or resource balance requirement.
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Requirement Section Contribution

Fast 3.3 An instruction queue to buffer instructions between
the fetch and decode stage.

Fast 3.4 A branch history table to predict branch directions.

Fast 3.5 A branch target address cache to predict branch
targets.

Fast 2.2.3 A return address stack to improve
function call performance.

Fast 3.7 A fast multiply unit.

Fast 4.4 Benchmarks have been ported to SHMAC and performance
has been measured on Amber and Turbo Amber.

Fast 4.3 Microbenchmarks have been designed, run, and analyzed to
verify that the performance improvements behave as intended.

Integrated 5.1.4 A Turbo Amber tile has been created.

Verified 4.2 79 ARM assembly programs have been run on TA.

Verified 4.2 Linux has been successfully booted
and used to run applications.

Verified 4.2 freeRTOS has been successfully booted and an
MPI application has successfully been run.

Verified N/A The Amber test framework has been improved
to support a much faster simulator.

Table 1.2: An overview of the contributions made with references to where they
are detailed and what requirement they satisfy.





Chapter2Background

In this chapter we give an overview of architectural techniques for processor design
with an extra emphasis on the techniques implemented in this thesis. Amber is
presented due to it being the basis from which TA was developed. And finally an
ARM Cortex-A8 is reviewed to show how a high-performance ARM processor can be
designed.

2.1 Fundamentals Of Processor Design

In this section we present the concepts necessary to be able to reason about per-
formance. We also present classic micro-architectural techniques used in high-
performance processors.

2.1.1 Defining Performance

To be able to discuss what a fast processor is, one must first understand what
fast means. In the simplest of terms, a processor is fast if it can run a given
program in a short amount of time. This execution time can be split into the
three factors instruction count, clock cycles per instruction and clock cycle time, as
seen in Equation 2.1. In practice the three factors are often interdependent, and
a technique that improves one factor may adversely affect another. And when a
processor architect designs a micro-architecture he must take into account all three to
achieve high performance.1 The following subsections define each factor and presents
them from a processor architect’s viewpoint.

time = instruction_count× clock_cycles_per_instruction× clock_cycle_time

(2.1)

1“He” should be read as “he or she” throughout the thesis.

9
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Instruction Count

For a given program the instruction count is primarily determined by the compiler,
but the architect can also have an impact if he can extend the Instruction Set
Architecture (ISA). Extensions such as floating point and Single Instruction Multiple
Data (SIMD) instructions can significantly reduce the number of instructions needed,
but require re-compilation and will therefore not improve binary blobs2.

CPI

The average number of Cycles per Instruction (CPI) is determined by the ISA and
the micro-architecture, with a Reduced Instruction Set Computer (RISC) typically
requiring fewer cycles per instruction than a Complex Instruction Set Computer
(CISC). This is due to the fact that each CISC instruction does more work than a
typical RISC instruction would. To give an example; doing arithmetic operations on
values in memory can be one instruction in CISC, while requiring a load-, a register-
operation-, and a store-instruction, in a RISC instruction set. This alone does not
imply an increase in CPI, they may be single-cycle machines, giving RISC and CISC
both 1 in CPI. But in practice high-performance CISC processors decode CISC
instructions into RISC-like instructions internally, this decoding implies that each
CISC instruction will require several cycles to compute the several RISC operations.
The architect can reduce the cycle count by increasing chip area and design complexity
with techniques such as superpipelining, superscalarity, branch prediction, trace
caches, register renaming, forwarding, high-associative caches, prefetching and many
others [SL13].

Clock Cycle Time

The clock cycle time is a property of the micro-architecture and the underlying
computing substrate or process technology. The design’s longest delay is known
as the critical path and determines the cycle time. Changing the technology node
will often be outside the scope of what the architect can affect, but reducing the
design’s longest delay is feasible. To reduce the clock cycle time and thereby improve
performance the architect can split the work into multiple pipeline stages or spread
the work more evenly between the existing stages.

2.1.2 Pipelining

Modern processor micro-architectures have a high degree of complexity as architects
have been given more and more transistors to work with. The following sections
present RISC architectures of increasing complexity and performance.

2From wikipedia: In the context of open source software, a binary blob is a closed source
binary-only driver without publicly available source code.
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Figure 2.1: The classic 5 stage RISC pipeline.

Figure 2.1 shows how the execution of an instruction can be divided into 5 pipeline
stages. The five stages are:

Fetch: An instruction is read from cache or memory.
Decode: An instruction is decoded and the register bank is read.
Execute: A register value or memory address is computed.
Memory: The data memory is read or written.
Write-back: The register bank is written.

Splitting the processor into five stages can reduce the clock cycle time by up to a
factor of five. But in practice pipelining a processor will not yield perfect frequency
speedup due to it being difficult to perfectly balance the pipeline, the added work
needed to be done to resolve new hazards, and the overhead from pipeline registers
[HP11]. As it has been presented up until now, pipelining seems like the simple act of
carefully adding registers at strategic positions in the processor. The true challenge
of pipelining comes from hazards.

Hazards

Hazards are systematically divided into control hazards, data hazards and structural
hazards. They occur because of very different conditions, but common to all is that
they occur because of dependencies between instructions and that to resolve them
extra communication between the stages than what is depicted in the simplified
Figure 2.1 is required.

Control hazards occur because of conditional branches. If a branch is conditional
then the instructions following it are dependent upon the if the branch is going to
be computed taken or not taken. Data hazards are common and can occur when
an instruction uses the result of a preceeding instruction before the result has been
commited to the register bank. Structural hazards occur when two instructions
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1 beq label
2 mov r1, r2
3 mov r3, r4

Figure 2.2: A short assembly snippet that contains a control hazard that needs to
be resolved.

attempt to use the same hardware resource, this can happen for example if the L1
data and instruction caches are unified and a load instruction attempts to read the
cache at the same time as an instruction is attempted read from the cache.

Consider the program shown in Figure 2.2. The beq label instruction is a conditional
branch that may or may not branch to the address aliased to label. After fetching
the branch instruction the fetch unit should fetch a new instruction, but the branch
instruction has not been computed yet so the next instruction address is unknown.
This dependency of the branch instruction result that could potentially disrupt
the flow of instructions through the pipeline is known as a hazard. To resolve the
hazard the architect can choose between speculatively fetching a new instruction,
even though it is not known with certainty what the next instruction is, or stop
fetching instructions until the branch has reached the execute stage and the next
instruction address is known. If instructions are speculatively fetched and decoded
then care must be taken to nullify or flush the instructions if the speculation was
incorrect. If the fetch stage stops fetching instructions it may pass along to decode
the equivalent of a NOP instruction, this NOP instruction is known as a bubble.
These two techniques, bubbling, and flushing are used to resolve other types of
hazards as well.

2.1.3 Beyond Pipelining

Simple 5-stage pipelines can give enough performance for the embedded domain, but
to achieve truly high performance more advanced techniques are necessary. In the
following sections we show how superpipelining can improve the clock cycle time,
and how superscalarity and out-of-order execution can improve the CPI.

Superpipelining

Superpipelining is a technique which increases the pipeline depth by dividing each
stage into smaller steps. This yields a reduced clock cycle time since the critical path
of the design is shortened. Figure 2.3 shows an example of superpipelining where
each stage is divided into three sub-stages. This could increase the frequency by up
to a factor of three.
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Figure 2.3: A timing diagram of a superpipelined design. Each stage is divided
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Figure 2.4: How superpipelining can even out the amount of work.

Superpipelining can also even out imbalances in the pipeline. Consider Figure 2.4.
The critical path of the execute stage in the upper pipeline is twice the length as the
critical paths in the other stages. By dividing the execute stage into two sub-stages,
the clock frequency can be doubled.

The architect must take care that the cycle time decrease is not cancelled out by
a CPI increase. Increasing the number of stages may hurt the CPI because there
will be more hazard possibilities that need to be resolved and because the already
existing hazards may require longer pipeline bubbles to resolve. As an example, the
branch misprediction penalty will increase with a deeper pipeline.

Superscalarity

While superpipelining improves the clock cycle time to increase performance, su-
perscalar pipelines improve CPI. Superscalar designs are able to reduce the CPI
below 1. A superscalar design duplicates hardware at each pipeline stage to allow
processing of multiple instructions in parallel. The width, or the way, of the pipeline
tells how many instructions each stage is able to process in parallel. For instance, a
pipeline of width 2, or a 2-way pipeline, is capable of processing two instructions per
cycle, as illustrated in Figure 2.5. Superscalar pipelines must handle dependencies
between the instructions issued in parallel. For example, two instructions that write
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Figure 2.5: A timing diagram of a 2-way superscalar pipeline.
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Figure 2.6: An example where OoO execution achieves better performance than
in-order execution

to the same register (i.e. WAW hazard) must be completed in the same order as
they appear in the instruction stream.

Superscalar pipelines impose a large increase in area due to the duplication. An
N -way pipeline needs N copies of each pipeline stage. Also, the result of any of the
N units in one pipeline stage may be piped to any of the N units in the next stage,
which makes the interconnect between the pipeline stages complicated.

Out-Of-Order Execution

Out-of-Order execution tries to increase the amount of instructions that can be
executed in parallel by executing instructions in a different order than they appear
in the instruction stream. This way, cycles spent on stalling can instead be used on
processing other trailing instructions that are independent of the instruction causing
the stall. Consider the example in Figure 2.6. In an in-order execution scheme,
the processor will stall until the result of instruction 1 is ready, since the second
instruction depends on its result. In an out-of-order processor, the third instruction
can be issued while the second instruction waits for its operands.

Figure 2.7 shows the stages of a typical Out-of-Order processor. The fetch and decode
stages are in charge of fetching and decoding the instructions. The rename stage
renames the destination registers of the instructions by assigning a logical name to



2.1. FUNDAMENTALS OF PROCESSOR DESIGN 15

Fetch Decode Rename Issue 

ALU 

FPU 

Load/Store 
queue 

Completion 

In-order Out-of-Order In-order

Figure 2.7: Typical architecture of an Out-of-Order processor.

each of them. The mapping between the logical name and the real register is stored
in a table. Register renaming eliminates false dependencies (i.e. WAR and WAW
hazards) between instructions and allows the processor to exploit a higher degree
of ILP. The issue stage queues the instructions until they are ready to be executed.
This stage is complex as there are many conditions that need to be fulfilled before an
instruction can execute. For example, the operands must be available, and there must
be a functional unit ready for a new instruction. The issue queue also decides when
and where the instruction is dispatched. The instructions may be dispatched out of
order. The execution stage contains various functional units which are specialized
for certain operations. For instance, there may be ALUs, multipliers, floating-point
units and memory load/store queues. The functional units may use various number
of cycles to execute an instruction. When the instructions finish execution, which
may happen out of order, they enter the completion stage. The completion stage is
a buffer where the result of an instruction is temporarily held until all its preceding
instructions are completed and their results written to the register bank. This way,
the instructions are written to the register bank in the same order as they appear in
the instruction stream.

The out-of-order scheme fetches instructions in-order, issues them out-of-order, and
writes them to the register bank in-order. Therefore, by just looking at the fetched
instruction stream and the register bank, one would get the impression of in-order
execution.
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Figure 2.8: A figure demonstrating that Dynamic prediction can be done in parallel
with cache read, while static prediction must be done sequentially after cache read.

2.2 Instruction Flow Techniques

A program and its inputs define a stream of instructions. In the eyes of the fetch
unit each instruction in the stream computes the next instruction address and causes
some side-effect to the internal registers or the external memory. The goal of the
fetch unit then is to produce this instruction stream for consumption by the decode
and execute units. The challenge faced by the fetch unit is that the next instruction
address is not known until the current instruction has computed it. The fetch unit is
forced to guess or predict the next instruction address, and recover if the speculatively
produced instruction stream does not match the program instruction stream.

2.2.1 Branch Prediction

To speculatively fetch instructions one needs to do branch prediction and target
prediction. Branch prediction is predicting whether the fetched instruction will result
in a taken branch, while target prediction is predicting where the branch will jump
to. Both are needed, and we begin with a discussion on branch prediction.
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Figure 2.9: State diagram of a 2-bit saturating up/down counter.

Static Branch Prediction

Static branch prediction is done purely based on what kind of branch it is, e.g.
whether it branches backwards or forwards, and does not take into account the
previous history of the branch. They are useful because they are simple and do not
require expensive memories. They can also be fairly accurate, it has been shown that
static prediction can achieve an accuracy of 70 % to 80 % over all SPEC benchmarks
[CGJ+97].

But static techniques have a disadvantage over dynamic techniques aside from
accuracy. As Figure 2.8 illustrates, dynamic prediction can be overlapped with
instruction cache read, while static prediction naturally has to come after cache
read. This is because dynamic prediction is done based on the instruction address,
while static prediction requires the instruction itself. The consequence is that even
if you are able to correctly predict a taken branch, you still get a one cycle branch
penalty. This one cycle branch penalty can be quite expensive in a non-superpipelined
processor. Despite this they are still useful as a fall through in case the dynamic
predictor does not remember the branch or as a part of a hybrid predictor.

The simplest static technique is simply predicting all branches taken or all branches
not taken. This technique is very simple, but it is not very accurate. More effective
techniques are possible when examining the opcode of the instruction. Backwards
Taken, Forward Not taken (BTFN) exploits the fact that backward branches are
taken around 90% of the time [USS97]. BTFN examines the opcode and the offset
and predicts that backward branches are taken, while forward branches are not taken.
This technique is able to achieve an accuracy of 65% [USS97].

Dynamic Branch Prediction

To achieve a fetch efficiency that can satisfy a superscalar processor one can do
dynamic branch prediction. Common to all dynamic predictors is that they exploit
some property of the past to predict the future. Branch prediction is a field in its
own right and a thorough survey can not be presented here. Instead we focus on the
simple implementations that were feasible to implement in this thesis’s time frame.
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Smith’s algorithm [Smi81] is a branch prediction scheme that is easy to to understand
and implement. In Smith’s algorithm a hardware table, known as the Branch History
Table (BHT), is maintained in a cache-like structure. Each element in the table
contains some tag bits to identify the branch, and a counter which represents the
recent history of the branch. The counter is implemented as an up/down saturating
counter, meaning it behaves as seen in Figure 2.93. When the counter is in the weakly
or strongly taken state the branch is predicted to be taken, and otherwise predicted
to be not taken. With a counter size of 1 bit Smith’s algorithm simply becomes a
table of whether a branch was most recently taken or not taken. With 2 bits the
accuracy is increased since it correctly handles the apparently common occurrence of
one-off changes in branch direction, e.g. TTNTTTNTNTTTNTTTTN.

In theory any Finite-State Machine (FSM), and any mapping from FSM state to
predict taken or not taken could be used. It just so happens to be that a saturating
counter works very well. For state machines of 2 bits an exhaustive search of the
optimal machine is possible, and it was done in 1992 at IBM using the SPEC
benchmarks [Nai92]. They found some unintuitive optimal state machines for some
benchmarks, but interestingly enough of the 220 possible machines a 2 bit saturating
counter was shown to be the optimal strategy for the GCC benchmark and not far
from optimal for most benchmarks.

2.2.2 Target Prediction

Predicting taken/not taken correctly is not enough, one also needs to predict the
branch target as seen in Figure 2.8. High-performance processors are required to
predict branch taken/not taken and what the branch target will be. Target prediction
is typically implemented by writing recently computed branch targets to a hardware
table indexed by the branch address. It should be noted that this hardware table
has two competing names, Branch Target Buffer (BTB) and Branch Target Address
Cache (BTAC), we will be using the name BTAC since cache better represents its
function than buffer.

A diagram of a simple BTAC implementation can be seen in Figure 2.10. Just like
an instruction cache it is indexed into by the program counter and it stores some tag
bits to verify a cache hit. It can be implemented either as a direct-mapped cache,
set-associative cache, or a fully-associative cache, the function remains the same.
When implemented, the table can be merged together with the table for branch
prediction or even the instruction cache. With merged tables the indexing hardware,
tag space, and tag comparison hardware can be reused.

3“Branch prediction 2bit saturating counter” by Afog is licensed under CC BY-SA 3.0
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Figure 2.10: A simple view of a Branch Target Address Cache, implemented as a
direct-mapped cache.

An interesting optimization can be done when choosing the tag bits. An instruction
or data cache typically chooses the least significant bits of an address for the index
and the remaining 20 bits or so as tag bits. But as opposed to an instruction or data
cache, the BTAC does not have to set the hit flag correctly every single time for the
program to be semantically correct. The BTAC can instead store a much smaller
subset of the tag bits and accept an occasional false positive. This technique is known
as Partial resolution, and it has been shown that a 99.9% accuracy is obtainable with
only 2 tag bits for a 512 entry BTAC [Fag97].

2.2.3 Return Address Stack

The BHT and Branch Target Address Cache (BTAC) are good at predicting regular
branches. However, there is a particular type of branch instruction, subroutine return
instructions, that they tend to mispredict very often. Subroutine return instructions
occur frequently in programs written in high-level languages. For example, more
than 15% of the branches in the SPEC95 benchmarks are caused by returns [HP11].

Consider the example in Figure 2.11. The BHT would correctly predict the printf()
functions as taken. When the first printf function returns, the BTAC notes the
address on line 6 as the predicted address for the return instruction in the printf
subroutine, and execution continues on line 6. When the return instruction of the
second printf subroutine call is fetched, the BTAC will predict the address on line
6 as the return address, which is wrong (the correct address is the next address
after the printf on line 6). The pipeline will be flushed and the BTAC will update
the predicted return address to line 7. This will again lead to a mispredict when
returning from the first printf subroutine during the next iteration of the loop.
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1 int main ()
2 {
3 for (int i = 0; i < 10; ++i)
4 {
5 printf ("i is: \%d\n", i );
6 printf ("i+1 is: \%d\n", i+1);
7 }
8 }

Figure 2.11: Example where the BTAC will achieve poor performance
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Figure 2.12: Structure of a RAS

Continuously updating the BTAC leads to mispredicts on every printf return, every
iteration of the loop. Clearly, there is a potential for improvement.

A RAS is a branch predictor that is designed specifically to predict subroutine return
instructions. The original scheme suggested by Kaeli and Emma [KE91] uses two
stacks, as depicted in Figure 2.12. The call target stack holds the target address of a
subroutine call instruction, i.e. the address of the first instruction of the subroutine
called. The return target stack stores the return address of the called subroutine. In
addition to regular stack operations, e.g. pushing and popping, the stacks can also
be searched for a particular value. The stacks are tightly coupled, so a match in one
of the stacks will make the other stack output the value at the same index as the
match occurred. In addition, the BTAC contains a bit for each index which indicates
that it is a entry for a return instruction. Normally, the value at an index in the
BTAC contains a branch target. When the special bit is set, the value represents the
address of the first instruction in the subroutine, which is the same as the call target
stack.
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Before we explain the scheme in detail, we will outline its main principles. When
a subroutine call is executed, the call target address and return target address are
pushed onto the stacks and the BTAC updated. When a subroutine return is executed,
the BTAC is searched through after a match. On a miss, the BTAC is written and
the special bit set. The value written, which originally is the branch target of the
return instruction, is replaced with the call target address of the subroutine (i.e.
address of the first instruction in the subroutine) which the return instruction belongs
to. If there is a match in the BTAC for a return instruction, the value in the BTAC
is used to look up an entry with the same value in the call target stack. If it exists,
the corresponding index in the return target stack is read and replaces the value on
the predicted address bus.

To see how it works we will do one iteration of the loop in Figure 2.11. When the call
to printf at address 5 is executed, it is written into the BTAC. At the same time
the call address is written to the call target stack, and the return address written
into the return target stack. Assuming the printf subroutine starts at address 100,
the values written are 100 and 6 respectively. When the printf return instruction
at address 150 is executed, the branch target address (6) is searched for in the return
target stack. On a match, the same entry is indexed in the call target stack and the
value, in this case 100, replaces the branch target address arriving from the processor.
The value gets written into the BTAC. The special bit in the BTAC is also set to
indicate that this is a special entry. At this point, the BTAC entry at index 150
contains the value 100. On the next call to printf at address 6, the same process is
repeated and the call target and return target stacks pushes the values 100 and 7.
When the printf return instruction is fetched, the BTAC looks up the entry at the
instruction address (150) and finds the special bit set. This makes the call target
stack search for an entry with the same value as the BTAC entry (100). The call
target stack reports a hit, and makes the return target stack replace the predicted
address with the value (7) at the same index as the call target stack matched, and
the core correctly continues to fetch instructions from address 7.

The RAS only require a few number of entries per stack (4 - 16). Kaeli and Emma
showed only a small increase in performance doubling the stack size from 5 to 10
[KE91]. The few number of entries makes the RAS cheap in terms of hardware. The
low cost combined with the high accuracy and speedup makes them very common in
high performance processor designs, e.g. Alpha 21264 [alp99] or ARM Cortex-A15
[cor11].

2.3 The Amber Project And Amber25

The Amber25 core is the base which TA is built upon. To help the reader better
understand the internals of TA, we give an introduction to the original Amber core.
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Figure 2.13: Amber25 pipeline overview

This way, the required modifications applied to Amber will become more evident
when we introduce the micro-architecture of TA.

The Amber project is a complete open source embedded system written in Verilog
by Conor Santifort [San]. The system contains an ARM processor core and vari-
ous peripherals like an interrupt controller and a timer, together with peripherals
for external communication like Ethernet and Universal Asynchronous Receiver/-
Transmitter (UART). All units are compatible with the wishbone interface which
is an open source interconnect architecture. The Amber processor core is a 32-bit
ARM RISC processor which supports the ARMv2a instruction set. It is an in-order
scalar processor, meaning that all instructions are executed in order and the peak
throughput is 1 Instructions Per Cycle (IPC). The core exists in a 3-stage and 5-stage
version, named Amber23 and Amber25. We will call attention to Amber25 since it is
the version that TA builds upon. The Amber project was chosen for the SHMAC
project because it was considered to be the most stable and mature open source
ARM processor core, having been verified by booting Linux and passing a test suite
of 59 assembly programs.

The five stages of Amber25 are fetch, decode, execute, memory and write-back.
Figure 2.13 visualizes the dataflow between the pipeline stages. There are separate
caches for instructions and data. The former is placed in the fetch stage and the latter
in the memory stage. The first stage fetches instructions from the memory through
the wishbone interface. The Wishbone interface is capable of transferring an entire
cache line (16 bytes, four words) of data per memory request. The decode stage takes
as input an instruction, decodes it, and generates control signals which are applied
to the execute stage in the next cycle. It also contains a state machine for handling
multi-cycle instructions. The Execute stage reads, computes a result, and writes the
result back to the register bank based on the control signals from the decode stage.
This is where Amber25 differs from classical 5-stage RISC pipeline designs. Amber25
writes the result of register operand instructions to the register bank in the execute
stage, whereas regular 5-stage pipelines writes them in the write-back stage. Register
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Figure 2.14: Cortex-A8 architectural overview. Adapted from the figure in [Sta13]
on page 618.

operand instructions can be executed in a single cycle in the common case. Load
instructions can also be executed without stalling if the data is in the cache and no
RAW hazards occur. Amber25 implements a cache write-through policy. That is, all
store instructions are immediately written to main memory.

2.4 ARM Cortex-A8

The ARM Cortex-A8 is an ARMv7-A processor designed by ARM Holdings, it can
be found in well-known products such as the iPad [ipa], iPhone 4 [iph], and Apple
TV [app]. Being ARMv7-A it is considerably more complex than Amber which
implements the old ARMv2a. We will be focusing on the general micro-architectural
techniques relevant for integer performance and be glossing over the details of the
less relevant features to ARMv2a such as double-precision floating point arithmetic,
SIMD instructions, Thumb instructions, and memory management. A review of the
Cortex-A8 will give insight into the challenges a superscalar ARM processor faces
and how the ARM engineers solved them.

2.4.1 Architectural Overview

Being targeted for the mobile platform, Cortex-A8 strives for energy efficiency
and stays away from power hungry out-of-order techniques. Instead it exploits
ILP through superpipelining and two-way superscalar execution. Figure 2.14 is an
overview of the architecture and shows that the Cortex-A8 is superpipelined with 13
cycles, and that it is two-way superscalar at every stage. The architecture can be
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divided into three logical parts; instruction fetch, instruction decode, and instruction
execute. These three parts will be discussed in the following sections.

2.4.2 Instruction Fetch Unit

The instruction fetch unit contains the instruction cache, TLB, and the branch
predictor, as seen in Figure 2.14.

Superpipelining with a 13-cycle pipeline allows very high frequency performance, but
mispredicted branches now incur a penalty of 13-cycles. To mitigate this, an advanced
branch predictor is used which ARM claims achieves an accuracy of >95% [a8o].
The branch predictor uses a global history buffer, a BTAC, and a RAS.

An instruction spends two cycles going through this unit. In the first cycle the
instruction is read from the instruction cache. As the instruction cache is read,
the address is also sent to the branch predictor which attempts to predict the next
instruction to be executed. In the second cycle the instruction is written to an
instruction queue which feeds the decode unit. The instruction fetch unit can read
a total of four instructions each cycle and queue a total of 12 instructions in the
instruction queue.

2.4.3 Instruction Decode Unit

The decode unit reads instructions in pairs from the First In, First Out (FIFO)-buffer
and issues them in pairs to the execute unit. Stallings describes the decode unit as a
5-stage two-way pipeline as depicted in Figure 2.15 [Sta13].
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In the first two stages the instruction type and register operands and destination
are decoded before being buffered in a new FIFO-queue at stage three. If a multiple
transfer type instruction is found it will be decoded into a series of micro-coded
transfer instructions by a state machine. The state machine is visualized in Figure 2.15
by a block that feeds back into itself.

It is in stage 4 that hazards are detected and instructions are issued. WAR hazards
do not exist since instructions are issued in-order and retire in-order, and WAW
hazards are trivially prevented by not dual-issuing instructions that write to the
same register, which leaves only RAW hazards. RAW hazards are detected by the
scoreboard in stage 4. The scoreboard issues zero, one, or two instructions from the
queue in stage three each cycle. Without the queue it would not be able to issue two
instructions after issuing one in the previous cycle.

When using a scoreboard the A8 predicts that a dependency will be met in time and
issues an instruction accordingly. But sometimes the prediction fails and the value
is not ready for forwarding in time. This can happen on L1 data cache misses. On
missing in the L1 cache, the entire execute unit pipeline is flushed. To prevent losing
the instructions that were flushed a replay queue is used, as seen in Figure 2.15. The
replay queue contains instructions that have been issued, but have not retired yet
(written to the register bank / cache). When the L1 cache miss has been resolved
the instructions are replayed from the replay queue.

2.4.4 Instruction Execute Unit

John and Rubi describe the execute unit as depicted in Figure 2.16 [JR07]. Central
to the design is that there are two logical execution pipelines named pipe 0 and
pipe 1, while there are in fact four physical pipelines with different capabilities. The
scheduler enforces a set of rules that must hold for the logical pipelines.

– A logical pipeline can have one or zero instructions issued to it each cycle.

– Pipe 1 cannot be issued an instruction unless pipe 0 is also issued an instruction.

– You cannot issue the instructions A, B to the logical pipelines 0, and 1 respec-
tively where B precedes A in the program flow.

The execution pipelines are deeply pipelined with the barrel shifter and the ALU
working in their own cycles, whereas Amber executes shifting and arithmetic in the
same cycle. There are two ALU pipelines, but only one of MUL and Load/store
pipelines, allowing the most common instructions to be executed two-way. The stages
are heavily bypassed and the scheduler will issue instructions if it knows that the
value can be calculated and forwarded in time.
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Figure 2.16: Cortex-A8 execute unit overview. Adapted from the figure in [JR07]
on page 94.



Chapter3Turbo Amber

In this chapter we introduce Turbo Amber. We begin by discussing which performance
improvements were considered and why we chose the implemented improvements.
Following the design decisions we give a high-level overview of the new fetch stage.
And finally we dive deeper into the details of each component in the high-performance
fetch stage. Upon reading this chapter an understanding of how the performance
has been improved should be obtained.

3.1 Design Decisions

At the beginning of our project we had to decide between extending Amber or
starting from scratch. The design possibilities considered can be seen in Figure 3.1.
If we had started from scratch, we could have chosen between implementing a scalar
superpipelined architecture, a superscalar architecture (like the Cortex-A8), or an

Superpipelined 
Superscalar 

Superpipelined 

Out-of-order 
Superscalar 

Superpipelined 

Fork 
Amber 

No 

Fast multiply 

High performance 
fetch

Yes 
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Figure 3.1: The design options considered
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Figure 3.2: A diagram of the fetch stage showing the relationship between the
instruction queue, the predictors and how the next PC is determined.

out-of-order architecture. The ideal solution would have been a superscalar out-of-
order architecture, but this would have taken too much time and effort to implement
and fully verify. Instead we chose to prioritize a well verified solution over a highly
complex solution. Through discussion with EECS researchers it was decided that
by focusing on the front-end, the final product would be reusable as well as provide
an increase in performance. The goal for the SHMAC project is to have a diverse
range of high performance cores, and common for high performance cores is that
they require a high performance front-end. Since the front-end can be relatively
independent from the back-end, future SHMAC projects can reuse our front-end in
other processor designs.

As a side note, the first performance improvement attacked was suggested by Håkon
Wikene [Wik13]. His benchmarking showed that the multiplier was hurting perfor-
mance. Even though it was not a part of the front-end, there was a small amount of
effort associated, and a big improvement in performance by replacing the multiplier.

3.2 Architectural Overview

TA’s fetch stage can be seen in Figure 3.2. We moved the Program Counter (PC)
from the register bank and into the fetch stage. This allows the fetch stage to
be decoupled from the rest of the pipeline, because it can update the PC without
coordinating with the rest of the pipeline. The decoupling allows the fetch stage to
do work when the other stages are stalling and vice versa. If a branch mispredict
occurs the execute stage will notify the fetch stage and pass along the correct PC
value. The fetch stage then updates its local PC and continues execution.

The fetch stage can be viewed as a state machine, where the PC is the state and
every cycle the next PC is predicted and updated. In parallel to this prediction,
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Figure 3.3: The differences between Amber and TA when viewed as a black box

instructions are read from the cache and written to the instruction queue. The
prediction information is also used to discard instructions that are predicted to be
not executed due to taken branches.

From Figure 3.3 we can see that TA passes the prediction made and the PC for
each instruction into the pipeline. The PC value is passed because some instructions
use it as an operand. This was not necessary before because the PC was placed in
the register bank inside the execute stage. The prediction data is passed because
all branch predictions must be compared to the actual branch outcome which are
computed in the execute stage. This comparison is used to detect and handle branch
mispredictions, and is also used to update the branch predictor. By sending the
prediction data with each instruction, the instruction fetch stage does not have to
remember the recent branch predictions made. This simplifies the design of the
instruction fetch stage.

The fetch stage mostly works on a cache block granularity: It receives cache blocks
from memory, it is capable of writing an entire cache block into the instruction queue,
and it is also capable of writing and reading a cache block into/from the cache. The
level of granularity makes the fetch stage superscalar by nature. It is capable of
providing up to four instructions (one cache block) per cycle.

3.3 Instruction Queue

The instruction queue is a temporary storage for instructions located between the
fetch and decode stage. This is where the instructions are held before they are issued.
It enables a producer-consumer pattern between the fetch and decode stage. The
fetch stage “produces” instructions by fetching them from memory, while the decode
stage “consumes” instructions by decoding and issuing them.
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Figure 3.4: Impact of instruction queue size on performance

Instructions are produced at an uneven rate because of cache behavior and consumed
at an uneven rate because of multi-cycle instructions. A cache hit can provide an
instruction on the next cycle, while a cache miss can make the access time increase
significantly. Some instructions also take several cycles to execute. Any of these
scenarios would make either the fetch unit stall because the back-end is overloaded,
or the back-end stall because of starvation. The instruction queue can increase
instruction throughput by providing a smooth stream of instructions to the back-end.
The fetch stage can avoid stalling when the back-end is busy, because the instructions
can be placed in the instruction queue. It also allows the fetch stage to prefetch
instructions which can reduce the amount of stalling required, or even remove it
completely, in the case of a cache miss. The instruction queue also simplifies the
fetch stage interface and makes it more modular. This makes it easier to integrate
different processor back-ends.

The instruction queue is a FIFO hardware structure implemented as a circular
buffer. It is capable of receiving up to four writes and providing two reads per clock
cycle. The number of instructions pushed will vary, for example the target of a
branch may point to the last instruction in a cache block. Hence, the three foremost
instructions should be discarded and only the last one written to the instruction
queue. The instruction queue must also handle a varying number of read instructions,
ranging from none, if the decode stage is busy decoding a multi-cycle instruction,
to two, supporting a 2-way superscalar back-end. The ideal number of entries in
the instruction queue depends on several factors, e.g. the particular benchmark,
type of back-end, or memory latency. To facilitate this, the number of entries in the
instruction queue are made configurable, and currently set to 8. The decision was
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RAS prediction target prediction taken prediction counter PC instruction
1 bit 2 bits 32 bits 32 bits

97 bits

head tail

push pop

30 bits

Figure 3.5: A figure demonstrating an instruction queue with room for 8 instructions
and showing what each FIFO entry contains. The figure shows that four entries can
be pushed simultaneously (one for each instruction in a cache block), and that two
entries can be popped simultaneously. It also shows that each instruction brings
with it a lot of metadata. In addition to the actual instruction one needs to pass
along it’s address and the prediction made about the instruction. This prediction
information is necessary to detect branch mispredictions.

made empirically by running the Dhrystone benchmark multiple times with varying
instruction queue size. The result can be seen in Figure 3.4. It shows that, in our
case, increasing the instruction queue size to 16 entries has no effect on performance,
and increasing it beyond 16 decreases performance. This is because the front-end
prefetches more aggressively, which creates more bus contention.

An entry in the instruction queue contains three types of information. The instruction
itself is stored in the lowest part of the entry, as visualized in Figure 3.5. The next
32 bits are occupied by the instruction address, or PC. An instruction entry also
contains prediction data which is used to check if a branch was correctly predicted.

3.4 Branch History Table

With an instruction queue we can prefetch several instructions before they are needed.
But if we always predict branches to be not taken, as Amber does, many of these
instructions will be mispredictions. This is why we have implemented a branch
prediction scheme that remembers the past history of branches. This section presents
the design that was implemented.

The branch predictor has an architecture as seen in Figure 3.6. The BHT predicts
the branch direction of each of the 4 instructions being read from the instruction
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cache. And it does so solely on the address of the instructions because waiting for
the cache to be read would take too long for a single-cycle fetch unit. It is essentially
a direct-mapped cache of 2-bit saturating counters that encode the branch prediction
state. The cache consists of 256 cache blocks containing 4 counters and tag bits,
allowing a total of 1024 different branches to be remembered at a time. It could
have been organized with any set-associativity and still functioned correctly but a
direct-mapped organization was chosen because in FPGAs large simple memories
are cheaper than smaller memories with complex logic and because a direct-mapped
cache is easier to implement [WBR11].

To understand the branch history table and branch target address cache, one must
first understand how an instruction address is partitioned. See Figure 3.7 for a
diagram showing the different fields. Since ARMv4T ISA requires that instructions
and data are word-aligned in memory we know that the byte offset has to be 00 for
all valid addresses. This saves us some space when identifying an instruction. Since
each cache block in Amber can contain 4 instructions the block offset consists of 2
bits that identify where in a cache block the instruction is located. The remaining
28 bits identify cache blocks.

3.5 Branch Target Address Cache

The BTAC is architecturally very similar to the BHT, they are both in essence
direct-mapped caches. Except that the BHT stores branch direction prediction
information, and the BTAC instead stores branch target addresses. They both make
four predictions each cycle, one for each instruction being read from a cache block.
But where the BHT has a reasonable default for when no prediction information can
be found (predict not taken), the BTAC has no reasonable default branch target and
must instead signal a failure to predict on BTAC miss.

The BTAC stores tags and prediction data in blocks of four just like the BHT, except
that the BHT needs only store 2 bits of prediction data per branch, while the BTAC
needs to store an entire 30 bit address. A naive solution would require that a BTAC
that predicts the same amount of branches as a BHT be more than twice as large.
To keep the block RAM usage down we use partial resolution as described in the
background material in Section 2.2.2. With this scheme we reduce the number of tag
bits stored from 20 bits to 2 bits, giving us a memory usage of 32 bits per branch
instead of 50 bits per branch. The downside is that occasionally we will get a false
positive where the 2 least significant bits of the tag will match but the branch target
in fact belongs to another address.
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Figure 3.6: A superscalar branch history table capable of making a prediction for
each of the four instructions read from the instruction cache and updating itself with
one new branch each cycle. Only one tag-comparison is depicted here, but there are
in fact 4 tag comparators, one for each tag in a block.
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Figure 3.7: An instruction address as seen by the BHT and BTAC.
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3.6 Return Address Stack

The RAS is a type of branch predictor that is specially made for predicting subroutine
returns. The implementation in subsection 2.2.3 used two searchable stacks together
with the BHT. TA uses a simpler RAS implementation.

A simplified overview of TA’s RAS is depicted in Figure 3.8. It consists of an
instruction stream monitor and a stack. The instruction stream monitor is simple and
the storage size is small, which makes it cheap in terms of hardware. If it encounters
a subroutine call instruction, it pushes the address of the subsequent instruction (i.e.
subroutine call instruction address + 4) onto the stack. If the instruction stream
monitor encounters a return from subroutine instruction, it predicts next PC to be
the address of the top stack element, and pops it off the stack.

The RAS handles nested function calls as well, thanks to the stack structure used as
storage. If a subroutine is called within a subroutine, the RAS pushes the return
address of the inner function call to the top of the stack, and pops it off when it
returns. This will make the return address of the outer function call the top stack
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element which will be popped correctly when the function returns. The RAS only
supports a finite number of nested function calls, bounded by the size of the stack.
Stack overflow may occur if the function call nesting is deeper than the number of
entries in the stack. If this happens, the oldest entry in the stack is truncated and the
new entry pushed onto the top of the stack. This will later result in a misprediction
when the instruction monitor encounters the return instruction, which belongs to
the subroutine, whose return address was truncated.

To see how the RAS of TA works we return to the example in Figure 2.11 The RAS
will push the address of line 6 onto the stack when it encounters the printf on line
5, and correctly continue execution on line 6 when it returns. This will happen for
the printf on line 6 as well. This shows how the RAS can improve performance
when a function is called from multiple places in a program.

In addition to improving the performance of function calls, the RAS also indirectly
improves the performance of the other branches. Since the RAS handles prediction
of all function calls and returns we can omit writing them to the BHT and BTAC
tables. This saves a lot of space that can be used to make predictions about a larger
window of branches.

The fact that TA’s RAS implementation is simplified does not come without con-
sequences. It may suffer from stack misalignment if the RAS mistakenly pushes or
pops an address from the stack. Then the subsequent predictions will be incorrect
and hence incur a performance penalty. This will not happen in the scheme described
in subsection 2.2.3 as the stack is searched rather than blindly popping the top stack
element. However, our experiments show that this happens rarely and does not
diminish the performance benefits from TA’s RAS for the tested cases.

3.7 Fast Multiply

Håkon Wikene benchmarked Amber and reported multiplication as one of the areas
where Amber had poor performance [Wik13]. Amber was using the space-efficient
Booth’s algorithm which only requires a 32-bit adder in resources, but requires a
total of 33 cycles. We implemented a fast multiplier because it requires minimal
changes to the existing pipeline and because of the large speedup possibility.

To create a fast multiplier we used the Xilinx CORE™Generator tool for generating
commonly used components such as multipliers and memories using FPGA-native
primitives. The generator could generate highly configurable multipliers with near-
arbitrary operand lengths and result lengths. The generator could configure the
number of cycles spent multiplying, allowing us to make the trade-off we needed
between clock-frequency and the number of cycles required. One could also configure
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whether to use LUTs or DSP slices to build the multiplier.

Multipliers with different pipeline lengths and clock frequencies were integrated into
SHMAC and synthesized and the multiplier that required the fewest cycles while not
hurting the clock cycle time was found to be a 2-cycle multiplier. Multipliers that
were built of LUTs and multipliers that were built of DSP slices were generated and
it was found, to our surprise, that the LUT-based 2-cylcle multiplier could uphold
timing requirements while the DSP-based multiplier could not. Originally we believed
that a DSP-based multiplier would always be faster than a LUT-based multiplier,
upon synthesizing a 2-cycle DSP multiplier we discovered that an entire 50 % of the
delay consisted of routing. This explains why a DSP based multiplier can be faster.
If many DSP slices are used the signals must be routed far across the chip to reach
each DSP, while a LUT-based multiplier can be contained to a concentrated group
of LUTs. The 2-cycle multiplier is approximately 16 times faster than the original
and uses 1156 LUTs.



Chapter4Evaluation

In this chapter we present the four different kinds of results we have gathered to
assure that the assignment requirements are satisfied:

– We measured the FPGA-resource usage to be able to evaluate if TA is area
efficient and resource balanced.

– We verified that the processor correctly implements the ISA.

– We verified that the processor performance was as expected under controlled
environments using micro-benchmarks.

– We attempt to measure the “true” performance of the system by running large
benchmarking programs.

4.1 Resource Usage

In this section we present the FPGA resource usage and compare Turbo Amber
to Amber. The FPGA resources measured are logic slices and Block RAM1. We
measured resources at the tile level since a tile is the unit that a programmer or
layout architect can choose between. When listing resource usage we present the
FPGA resource availability in the Xilinx Virtex-5 XC5VLX330-ff1760-1 FPGA, used
by SHMAC, to give context to how scarce the resource is.

Measuring an FPGA-design’s resource usage is not as straightforward as it is in
an Application-Specific Integrated Circuit (ASIC) design, where one could simply
measure the area required for a given process technology. An FPGA is a heterogeneous
computing substrate and has many different resources available in different quantities.
We chose to measure Block RAM, and total slices occupied. We believe this strikes a
balance between being overly detailed about each resource category and omitting

1DSP slices are omitted because neither TA nor Amber uses them.

37
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Resource Amber Turbo Amber Increase
DSPs 0 0 N/A
Block RAM 108 KB 342 KB 217 %
Logic slices 2412 4092 70 %

Table 4.1: Increased FPGA resources relative to Amber.

Resource Turbo Amber Virtex5 Utilization
Block RAM 342 KB 10,368 KB 3.3 %
Logic slices 4092 51840 7.9 %

Table 4.2: Turbo Amber’s FPGA resource utilization of a Virtex5

important resources. Note that we did not report LUT’s or registers directly as they
are contained within slices.

For reproducibility and transparency reasons we present the details of how the
designs were synthesized. The synthesis was done by creating a Xilinx ISE 14.7
project with amber_wrapper.v and turbo_amber_wrapper.v as top level modules.
Note that this excludes the router and network interface components. The entire
tile was not synthesized because the router and network interface was unchanged.
No synthesis flags were changed from their defaults, leaving the design goals to be
balanced between area usage and speed optimization, and the optimization effort
normal. For a detailed list of the flags used and fine-grained resource usage see
Appendix A.

Table 4.1 shows that Turbo Amber uses a lot more Block RAM than Amber does.
This was expected as the branch prediction mechanism is basically a large memory for
remembering branches. The slice count is the closest heuristic we had to area usage
and represents the overall registers + combinational logic increase. We considered
the increase of 70 % to be within acceptable limits.

To know if using 342 KB of RAM is excessive or not one must compare the resource
usage to how scarce the resource is. As we can see from the FPGA utilization in
Table 4.2 the Block RAM usage is far from excessive, and if we had scaled up the
number of Turbo Amber tiles in SHMAC we would run out of ordinary slices long
before we were limited by RAM. In conclusion, the resource usage is moderate and
the usage of heterogeneous resources is balanced.
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4.2 Verification

In this section we present the work done to prove that Turbo Amber conforms to
the ARMv4T instruction set. Since there is no publicly available test suite to prove
conformance, as there is with other protocol standards, we proved conformance by
running real-world applications. We also argue that the 79 assembly tests found in
the Amber Test framework give confidence to its correctness.

We would like to quote the ARM verification engineers Nitin Sharma and Bryan
Dickman from their article “Verifying the ARM Core” [SD01].

At ARM, we develop test cases as self-checking assembler sequences.
We then replay these code sequences on a simple simulation testbench
consisting of the ARM CPU, a simple memory model, and some simple
memory-mapped peripherals. [...] We believe that the coverage attained
by this deterministic approach is very high, but not complete. Thus
we need to apply other methodologies to fill the coverage holes. Often,
running real application code examples or booting an OS on the simulation
model will flush out cases missed by the above test generation approaches.
[...] [B]ooting a real RTOS such as Windows CE on the simulation model
is a great demonstration that the CPU core is actually working.

As a first line of defense against bugs we used the same assembly test simulation
setup as the ARM engineers describe. The Amber test framework had a test suite
of 79 assembly tests checking various instructions and hazard possibilities, ensuring
ARMv4t conformance. The test framework is structured just as the ARM engineers
describe it with a simulation testbench, some memory-mapped peripherals to support
printf, and a simple memory model. This verification tool is relatively lightweight,
with simulation of all assembly tests taking only a few minutes, thus it can be used
as a part of daily regression testing.

Table B.1 in the appendix gives a description of each assembly test in the Amber Test
framework. Most assembly tests and descriptions were inherited from the original
Amber project. The exceptions are the tests added by the Linux team used to show
ARMv4 conformance and a handful of assembly tests that produce bugs discovered
by us during verification. The table gives an idea of how extensive this testing was.

For further verification we used the work of the Linux team and Magnus Walstad
to run large applications on top of operating systems. This is the greatest proof of
correctness as it tests more instruction combinations and hazard possibilities than
one could possibly write hand-written assembly for. On the Linux side we successfully
booted Linux and ran a small set of benchmarks on top of Linux as reported in
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Program 
#include "amber_registers.h" 

.section .text 

.globl main 
main: 
@ --------------------- 
@ Enable the cache 
@ --------------------- 
mov r0, #0xffffffff 
mcr 15, 0, r0, cr3, cr0, 0 @ cacheable area 
mov r0, #1 
mcr 15, 0, r0, cr2, cr0, 0 @ cache enable 
nop 
nop 
mov r1, #1000 
b bottom 
b check 
add pc, pc, #-12 
add pc, pc, #-12 
add pc, pc, #-12 
add pc, pc, #-12 
add pc, pc, #-12 

Analytically 
derive expected 

behavior 

Desired 
processor 

model 

Derive actual 
behavior by 
simulation 

Processor 
architecture 

(HDL) 

Expected 
behavior 

Actual 
behavior 

Compare 

Write HDL 

Figure 4.1: Analyzing and verifying processor behavior with micro-benchmarks

section 4.4. We also used Magnus Walstad’s work on freeRTOS and OMPi to boot
an RTOS and ran a large binary [Wal14].

Running applications on these operating systems is as the ARM engineers put it “a
great demonstration that the CPU core is actually working.”.

4.3 Micro-Benchmarks

In this section we analyzed and verified the processor behavior through running a
suite of micro-benchmarks designed to utilize specific processor features. Verification
of the processor, not just in terms of correctness, but also in that its performance
is as expected, was an important task. The processor design can contain coding
errors or there could be scenarios that could lead to undesired behavior. Some types
of behavior can produce the correct result, but still use an unnecessary amount of
cycles which would hurt performance.

Figure 4.1 illustrates the process of how we analyzed and verified the processor
performance. Before we began implementation, we designed a processor model.
This model describes the desired behavior of the processor. It is this model that
is described in chapter 3. From this, we implemented the processor architecture in
a Hardware Description Language (HDL). Since the model is detailed enough to
analytically derive the expected behavior of short instruction streams on a cycle-to-
cycle level, we could use it for performance verification by deriving expected behavior
for a benchmark. Then we could simulate the processor architecture with the same
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Figure 4.2: Summary of the performance of micro-benchmarks

benchmark and analyze its behavior. The results from the analytical derivation
and the simulation could then be compared to ensure that the processor model and
architecture comply.

Analytically deriving the expected behavior from the processor model for large
programs could be hard and tedious, and is also prone to errors. For this reason we
chose to use micro-benchmarks. Our micro-benchmarks are small synthetic programs
made to utilize and isolate the performance of one specific feature of the processor.
They usually contain a relatively small amount of instructions, and their control flow
graphs are simple and easy to reason about.

To show that our processor behaved as expected we introduced several micro-
benchmarks and analytically derived their expected behavior and performance in
terms of IPC. We then ran the micro-benchmarks in simulation and showed that the
processor model complies with the processor architecture. We were simulating with
caches enabled and a 3 cycle memory latency. This process was repeated for the
original Amber25 core to show that the feature utilized had a positive impact on
performance.

A summary of the micro-benchmark results can be seen in Figure 4.2.
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1 mov r1, #100 // 100 iterations
2 top:
3 bl func1 // 1 (Call the function func1)
4 bl func1 // 2
5 bl func1 // 3
6 ...
7 bl func1 // 199
8 bl func1 // 200
9 subs r1, r1, #1
10 bne top // Loop 100 iterations
11 b testpass // End the microbenchmark
12
13 func1:
14 mov pc, lr // Function return

Figure 4.3: Return Address Stack micro-benchmark

4.3.1 Return Address Stack

The first micro-benchmark targets the RAS. The RAS is very good at predicting
subroutine calls and returns, and hence, a micro-benchmark which contains many
function calls can utilize the RAS to its utmost.

Figure 4.3 shows the RAS micro-benchmark. The bl (branch and link) instruction
calls the subroutine func1 which immediately returns. There is in total 200 bl in-
structions and each executes func1 consisting of 1 instruction. The micro-benchmark
loops 100 times to mitigate the impact of the compulsory cache miss penalty. This
makes up for a total of about (200 bl + 200 ret ) × 100 loops = 40 000 instructions
executed when running the benchmark.

The RAS is able to correctly predict all the subroutine calls and returns, and since
the predictions are done in the fetch stage the processor will immediately start
execution from the correct address. Hence, there is no flushing or stalling associated
with function calls or returns, and we should be able to achieve an IPC of 1. The
simulation completed in 40 910 cycles which gives an IPC of 40 000 instructions / 40
910 cycles = 0.98. The reason for not achieving an IPC of 1.0 is due to the cache
initialization time, the compulsory cache misses and the loop overhead.

We predicted that executing the same benchmark on Amber25 would not yield the
same performance due to the lack of RAS. Since Amber25 always predicts branch
not taken it would mispredict on every single bl and return instruction. Mispredicts
incur a 3 cycle penalty since they are first discovered in the execute stage. It would
therefore use 3 times the number of cycles as Turbo Amber used on the same amount
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1 mov r1, #100 // 100 iterations
2 top:
3 mla r2, r3, r3, r3 // 1
4 mla r2, r3, r3, r3 // 2
5 ...
6 mla r2, r3, r3, r3 // 200
7 subs r1, r1, #1
8 bne top
9 b testpass

Figure 4.4: Multiply micro-benchmark

of instructions and hence get an IPC of 0.33. When simulating the benchmark on
Amber25 it used 120 649 cycles, which indeed gave an IPC of 0.33. This shows that
the RAS performs as expected and that it can give a performance improvement on
function calls and returns.

4.3.2 Multiply

The multiply benchmark exploits the enhanced multiplier in Turbo Amber. The
enhanced Turbo Amber multiplier decreases the number of cycles used on a multiply
or multiply-accumulate instruction in Amber25, from 33 or 34 cycles respectively,
down to 2 cycles. The micro-benchmark is shown in Figure 4.4. It consists of 200
multiply-accumulate instructions executed 100 times. This yields a total of 20 000
instructions executed when running this benchmark.

Using 2 cycles on each of the 20 000 multiply-accumulate instruction should take 40
000 cycles and hence we should measure an IPC of 0.5. The simulator spent 40 504
cycles executing the multiply microbenchmark and achieves a throughput of 0.49
IPC.

Amber25’s multiply unit should use 34 cycles executing every multiply-accumulate
instruction, which will yield an IPC of 0.03. The simulator used 720 596 cycles which
indeed results in 0.03 IPC. This showed that the multiply unit performs as expected
and that Turbo Amber multiplies significantly faster than Amber.

4.3.3 Branch Prediction

The improved branch predictor in Turbo Amber makes it possible to execute branches
taken without any flushing or stalling. A micro-benchmark where the instructions
are mostly branches would reveal if the branch predictor correctly predicted the
branches.
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1 mov r1, #1000 // 1000 iterations
2 b bottom
3 b check
4 add pc, pc, #-12 // 1
5 add pc, pc, #-12 // 2
6 ...
7 add pc, pc, #-12 // 199
8 bottom :
9 add pc, pc, #-12 // 200
10 check:
11 subs r1, r1, #1
12 bne bottom
13 b testpass

Figure 4.5: Branch prediction micro-benchmark

In a program without any branches the PC will advance as execution progresses. The
branch prediction micro-benchmark does the exact opposite: it starts at the bottom
and branches backwards 200 times. This whole process is then repeated 1000 times.
Executing 200 instructions 1000 times gives a total of 200 000 executed instructions.

If we had implemented this correctly Turbo Amber’s branch predictor would pre-
dict a newly discovered branch as not taken, but would correct itself on the next
occurrence of the branch. Thereafter, it would correctly predict all the branches.
Since predictions are done in the fetch stage it will immediately start execution from
the predicted address, avoiding stalls caused by branching and Turbo Amber should
achieve an IPC of 1. When simulated we measured that it did indeed spend 204609
cycles and reached an IPC of 0.98.

The static branch predictor in Amber25 always predicts branch not taken, so we
believed it would mispredict the 200 000 branches and incur a 3 cycle branch
mispredict penalty for each of them. We expected this would result in an IPC of 0.33.
When simulated we measured that the simulation used 607252 cycles and yielded
an IPC of 0.33. This shows that our branch predictor correctly predicted branches
as designed and that when executing branches taken it was possible to achieve a
performance improvement over Amber.

4.3.4 Instruction Queue

The instruction queue micro-benchmark demonstrates the prefetching effect caused by
the instruction queue which reduces the performance penalty caused by compulsory
misses. It simply consists of 1 000 consecutive nop instructions which will cause
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Figure 4.6: The layouts used when benchmarking Turbo Amber and Amber. Note
that the APB tile and the External RAM tile are the only tiles that communicate
with external peripherals.

compulsory misses.

Turbo Amber fetches instructions as long as the instruction queue has room for more.
So it might seem like Turbo Amber should be able to achieve an IPC of 1 since it
could prefetch the next set of instructions while the rest of the pipeline executes
the instructions in the instruction queue. Unfortunately, the instruction cache has a
turn-around time of two cycles when written to, and the fetch stage does not initiate
a new memory transaction until the cache is ready. Spending two cycles waiting for
the instruction cache and three cycles to fetch data from the memory means that
it takes five cycles to fetch instructions from memory. If every instruction could be
executed in one cycle, and Turbo Amber is able to fetch four instructions at a time,
it would stall one cycle every five cycles. Hence, Turbo Amber achieves an IPC of
0.8. The simulator uses 1273 cycles executing the 1000 instructions and we get an
IPC of 0.79.

Amber25 will fetch the next cache line of instructions when the last instruction in
the current cache line is decoded. It must then stall two more cycles waiting for the
memory transaction to complete. So Amber25 executes instructions 4 out of 6 cycles.
This gives an IPC of 0.66. In simulation, the Amber25 core used 1543 cycles and
achieved an IPC of 0.65.

4.4 Benchmarks

In this section we evaluated the performance of Turbo Amber relative to Amber by
running benchmarks on SHMAC synthesized to FPGA.

We ran several benchmarks on Amber and Turbo Amber with the tile layout as seen
in Figure 4.6. In addition to Turbo Amber the layout contained an on-chip RAM
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Figure 4.7: Speedups measured of Turbo Amber over Rav with caches disabled.

tile, an APB tile for I/O, and a tile for communicating with off-chip RAM. It should
be noted that although we instantiated an on-chip RAM tile we did not store any
data or instructions in its memory mapped area, so it was not actually in use. When
benchmarking Amber we used the same layout, but replaced the Turbo Amber tile
with a regular Amber tile.

Two challenges arose when attempting to benchmark Turbo Amber. Firstly, there is
little to no benchmarking software that has been ported to SHMAC and that builds
without significant effort. Secondly, even if you were able to port a benchmark to
SHMAC you would probably have to run it with caches disabled. This is because
SHMAC becomes unstable for most software when caches are enabled. The exact
reason is unknown, but it is referred to as the “cache bug” and is a known bug
reported by all users of SHMAC.

4.4.1 Uncached Benchmarks

Running benchmarks with caches disabled may not paint a realistic picture of Turbo
Amber’s micro-architectural improvement, but running software with caches disabled
is the de facto standard for SHMAC. So showing the speedup results with disabled
caches shows what programmers of SHMAC can get from Turbo Amber until the
cache bug is fixed. The uncached speedup results have been gathered by the Linux
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Benchmark Amber Turbo Amber Speedup
Dhrystone [Cycles per run] 752 507 1.48
SHA1 [microseconds per iteration] 269 179 1.50

Table 4.3: The performance measured when running benchmarks with caches
enabled.

team of SHMAC [AA14]. They compared Turbo Amber to their processor Rav.
Rav is another fork of Amber, it is an ARMv4 processor that has the same 2-cycle
multiply unit as Turbo Amber. The speedup then comes only from the instruction
queue and the branch predictor. As can be seen in Figure 4.7, Turbo Amber has a
much larger speedup with caches disabled. This is due to the fact that the instruction
queue causes a caching effect to occur.

4.4.2 Cached Benchmarks

We have been able to run two benchmarks with caches enabled, SHA1 and Dhrystone.
SHA1 is a cryptographic hash function, whereas Dhrystone is a synthetic integer
benchmark from the 80’s. SHA1 could run on synthesized SHMAC, but Dhrystone
suffered from the cache bug. Luckily the Amber simulation framework had ported a
Dhrystone benchmark, enabling us to run Dhrystone in simulation, which does not
suffer from the cache bug as it does not simulate a full SHMAC system. Interestingly
their speedups over Amber are very similar, 48 % speedup on Dhrystone and 50 %
speedup on SHA1 as can be seen from Table 4.3. From these benchmarks our best
guess of the speedup of Turbo Amber over Amber is around 49 %.





Chapter5Conclusions And Further Work

In Chapter 1 we presented requirements that TA must satisfy. In this chapter we use
the results obtained in the previous chapters to argue that the requirements were
indeed satisfied. Also, we use our experience with Turbo Amber and the SHMAC
infrastructure to give suggestions for how the project can be further developed.

5.1 Requirements

In this section we show that TA is fast, area-efficient, resource balanced, SHMAC-
integrated and most importantly correct. Thus satisfying all requirements set in the
introduction chapter. We begin with a short summary and then give a more in-depth
evaluation.

Performance
TA’s performance improvement was measured to be 49 % over Amber.

Area efficient
TA’s logical slice increase is 70 % while TA’s performance increase is 49 %.

Resource balanced
TA’s most used resource are the logical slices and does not excessively drain
any specialized FPGA-resources.

Integrated
TA has been instantiated into the SHMAC project as it’s own tile and proved
to be able to run programs as a part of SHMAC.

Verified
TA has been able to boot Linux and freeRTOS and run applications on top of
them.

49
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5.1.1 Fast

TA is required to be significantly faster than Amber. The faster TA is, compared
to Amber, the more heterogeneous SHMAC will be. This requirement is therefore
important for the main research goal of SHMAC.

To satisfy this requirement we have made significant changes to Amber by introducing
instruction queueing between fetch and decode, a 4-way superscalar fetch stage, branch
prediction, and improved multiply performance. Each technique has been verified
to improve the performance as intended with micro-benchmarks and a 49 % overall
performance increase has been measured with the SHA and Dhrystone benchmarks.

We conclude that the performance requirement is satisfied given that we have
implemented improvements, shown that they behave as intended, and measured the
average performance improvement to be 49 %.

5.1.2 Area Efficient

In the introduction we argued that the performance increase must be seen in context
to the area increase. A reasonable test is if the performance increase is greater than
what Pollack’s rule would dictate. As can be seen from the equations below, we are
well within the limits of a reasonable area increase. Note that Pollack’s rule applies
to area, and that we use number of occupied slices as a metric for area. But this
metric does not take into account the increase in block RAM.

TA_performance

A_performance
≥

√
TA_area

A_area

1.49 ≥
√

4092
2412

1.49 ≥
√

1.70
1.49 ≥1.30

5.1.3 Resource Balanced

TA should not excessively drain any of the FPGA-resources. This is important
because if there is an imbalance in the usage of FPGA-resources the FPGA will
become underutilized. In section 4.1 Turbo Amber was shown to use no DSP slices,
3.3 % of the block RAM, and 7.9 % of the generic slices. This shows that if one
scales up the number of Turbo Amber cores it is the primary computing fabric that
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will limit us first. Neither DSP slices or block RAM are excessively drained when
instantiating a Turbo Amber core.

5.1.4 Integrated

TA should be integrated into SHMAC as a separate tile. It is important for SHMAC
contributors to make their work reusable and integrated into the existing SHMAC
infrastructure. To this end we created a tile that can be instantiated along side
the original Amber tile. Creating a new tile required changes to the source code
that reads layouts and does HDL code generation. In conclusion, Turbo Amber is
integrated into SHMAC’s infrastructure and is ready to be reused by other projects.

5.1.5 Verified

TA should be extensively verified to be functionally correct. A processor can be
revolutionary fast, but if it can’t run programs correctly it would be useless. A
significant engineering effort has been done to verify TA’s functional correctness. The
verification has been done with very similar techniques to what true ARM verification
engineer’s use. And the correctness is now evidenced by 79 self-checking assembly
sequences and running applications on the Linux and freeRTOS operating systems.
There is at the time of writing no known bugs in Turbo Amber.

5.2 Further Work

In this section we make suggestions for improving both TA and the SHMAC infras-
tructure.

5.2.1 Improve The SHMAC Simulator Framework
Documentation

During the SHMAC integration phase we encountered bugs in Turbo Amber that
would have been nearly impossible to fix without a simulator. We believe this will be
so for future students working on SHMAC as well. A simulator could also be used as
a tool for verifying the SHMAC platform more extensively. There exists a Modelsim
script that allows one to simulate the entirety of SHMAC, but it is undocumented.
Few know that it exists at all. The lack of documentation led to a great amount
of time being spent on setting up the correct environment for the simulator. We
believe the SHMAC community would benefit from documenting the simulator. For
example, it should be easy to acquire the necessary libraries and tools, setting the
correct environment variables etc.
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5.2.2 Improving TA’s Integer Performance

Turbo Amber has proven to be significantly faster than the original Amber. Still,
there is potential for increasing Turbo Amber’s performance. Although the fetch
stage is superscalar, the back-end is still scalar. Creating a superscalar back-end
would justify the performance of the fetch stage and definitely increase performance.

5.2.3 Improving TA’s Floating-Point Performance

Turbo Amber’s floating-point performance is poor due to the lack of a hardware
Floating-Point Unit (FPU). An effort has already been made in integrating an FPU
into the original Amber core [Knu14]. We believe the FPU could be reused in Turbo
Amber with ease, and would increase the floating-point performance of Turbo Amber
significantly.
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AppendixASynthesis Report

A.1 Turbo Amber Xilinx Mapping Report File

Release 14.7 Map P.20131013 (lin64)
Xilinx Mapping Report File for Design ’turbo_amber_wrapper’

Design Information
------------------
Command Line : map -filter
/home/boe/SHMAC/XilinxProjects/shmacAmber/shmacAmber/iseconfig/filter.filter
-intstyle ise -p xc5vlx330-ff1760-1 -w -logic_opt on -ol std -t 1 -global_opt
speed -equivalent_register_removal on -mt 2 -cm speed -detail -ir off
-ignore_keep_hierarchy -pr b -c 1 -lc off -power off -o
turbo_amber_wrapper_map.ncd turbo_amber_wrapper.ngd turbo_amber_wrapper.pcf
Target Device : xc5vlx330
Target Package : ff1760
Target Speed : -1
Mapper Version : virtex5 -- $Revision: 1.55 $
Mapped Date : Mon Jun 9 17:37:25 2014

Design Summary
--------------
Number of errors: 0
Number of warnings: 0
Slice Logic Utilization:

Number of Slice Registers: 4,092 out of 207,360 1%
Number used as Flip Flops: 4,086
Number used as Latch-thrus: 6

Number of Slice LUTs: 11,849 out of 207,360 5%
Number used as logic: 9,765 out of 207,360 4%

Number using O6 output only: 7,633
Number using O5 output only: 209
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Number using O5 and O6: 1,923
Number used as Memory: 2,072 out of 54,720 3%

Number used as Dual Port RAM: 252
Number using O5 and O6: 252

Number used as Single Port RAM: 1,820
Number using O6 output only: 1,820

Number used as exclusive route-thru: 12
Number of route-thrus: 243

Number using O6 output only: 219
Number using O5 output only: 22
Number using O5 and O6: 2

Slice Logic Distribution:
Number of occupied Slices: 3,248 out of 51,840 6%
Number of LUT Flip Flop pairs used: 12,329

Number with an unused Flip Flop: 8,237 out of 12,329 66%
Number with an unused LUT: 480 out of 12,329 3%
Number of fully used LUT-FF pairs: 3,612 out of 12,329 29%
Number of unique control sets: 123
Number of slice register sites lost

to control set restrictions: 146 out of 207,360 1%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.
The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.
OVERMAPPING of BRAM resources should be ignored if the design is
over-mapped for a non-BRAM resource or if placement fails.

IO Utilization:
Number of bonded IOBs: 317 out of 1,200 26%

IOB Flip Flops: 82

Specific Feature Utilization:
Number of BlockRAM/FIFO: 10 out of 288 3%

Number using BlockRAM only: 10
Total primitives used:

Number of 36k BlockRAM used: 9
Number of 18k BlockRAM used: 1

Total Memory used (KB): 342 out of 10,368 3%
Number of BUFG/BUFGCTRLs: 1 out of 32 3%

Number used as BUFGs: 1

Average Fanout of Non-Clock Nets: 5.20
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A.2 Amber Xilinx Mapping Report File

Release 14.7 Map P.20131013 (lin64)
Xilinx Mapping Report File for Design ’amber_wrapper’

Design Information
------------------
Command Line : map -filter
/home/boe/SHMAC/XilinxProjects/shmacAmber/shmacAmber/iseconfig/filter.filter
-intstyle ise -p xc5vlx330-ff1760-1 -w -logic_opt on -ol std -t 1 -global_opt
speed -equivalent_register_removal on -mt 2 -cm speed -detail -ir off
-ignore_keep_hierarchy -pr b -c 1 -lc off -power off -o amber_wrapper_map.ncd
amber_wrapper.ngd amber_wrapper.pcf
Target Device : xc5vlx330
Target Package : ff1760
Target Speed : -1
Mapper Version : virtex5 -- $Revision: 1.55 $
Mapped Date : Mon May 12 10:14:20 2014

Design Summary
--------------
Number of errors: 0
Number of warnings: 0
Slice Logic Utilization:

Number of Slice Registers: 3,551 out of 207,360 1%
Number used as Flip Flops: 3,548
Number used as Latch-thrus: 3

Number of Slice LUTs: 8,879 out of 207,360 4%
Number used as logic: 7,100 out of 207,360 3%

Number using O6 output only: 5,697
Number using O5 output only: 67
Number using O5 and O6: 1,336

Number used as Memory: 1,768 out of 54,720 3%
Number used as Dual Port RAM: 232

Number using O5 and O6: 232
Number used as Single Port RAM: 1,536

Number using O6 output only: 1,536
Number used as exclusive route-thru: 11

Number of route-thrus: 82
Number using O6 output only: 70
Number using O5 output only: 4
Number using O5 and O6: 8

Slice Logic Distribution:
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Number of occupied Slices: 2,412 out of 51,840 4%
Number of LUT Flip Flop pairs used: 9,147

Number with an unused Flip Flop: 5,596 out of 9,147 61%
Number with an unused LUT: 268 out of 9,147 2%
Number of fully used LUT-FF pairs: 3,283 out of 9,147 35%
Number of unique control sets: 149
Number of slice register sites lost

to control set restrictions: 220 out of 207,360 1%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.
The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.
OVERMAPPING of BRAM resources should be ignored if the design is
over-mapped for a non-BRAM resource or if placement fails.

IO Utilization:
Number of bonded IOBs: 317 out of 1,200 26%

IOB Flip Flops: 82

Specific Feature Utilization:
Number of BlockRAM/FIFO: 3 out of 288 1%

Number using BlockRAM only: 3
Total primitives used:

Number of 36k BlockRAM used: 3
Total Memory used (KB): 108 out of 10,368 1%

Number of BUFG/BUFGCTRLs: 2 out of 32 6%
Number used as BUFGs: 2

Average Fanout of Non-Clock Nets: 5.42
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Test name Test description
adc Tests the adc instruction. Adds 3 32-bit numbers using adc

and checks the result.
add Tests the add instruction. Runs through a set of additions

of positive and negative numbers, checking that the results
are correct. Also tests that the ’s’ flag on the instruction
correctly sets the condition flags.

barrel shift rs Tests the barrel shift operation with a mov instruction,
when the shift amount is a register value. Test that shift of
0 leaves Rm unchanged. Tests that a shift of > 32 sets Rm
and carry out to 0.

barrel shift Tests the barrel shift operation with a mov instruction when
the shift amount is an immediate value.Tests lsl, lsr and
ror.

bcc Tests branch on carry clear.
bic bug Test added to catch specific bug with the bic instruction.
bl Test Branch and Link instruction. Checks that the correct

return address is stored in the link register (r14).
bx Test that it is possible to perform a function call return

using the bx instruction.
cache1 Contains a long but simple code sequence. The entire

sequence can fit in the cache. This sequence is executes 4
times, so three times it will execute from the cache. Test
passes if sequence executes correctly.

Continued on next page
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Table B.1 – continued from previous page
Test name Test description

cache2 Tests simple interaction between cached data and uncached
instruction accesses.

cache3 Tests that the cache can write to and read back multiple
times from 2k words in sequence in memory - the size of
the cache.

cacheable area Tests the cacheable area co-processor function.
cache flush Tests the cache flush function. Does a flush in the middle

of a sequence of data reads. Checks that all the data reads
are correct.

cache swap bug Tests the interaction between a swap instruction and the
cache. Runs through a main loop multiple times with differ-
ent numbers of nop instructions before the swp instruction
to test a range of timing interactions between the cache
state machine and the swap instruction.

cache swap Fills up the cache and then does a swap access to data
in the cache. That data should be invalidated. Check by
reading it again.

change mode Tests teq, tst, cmp and cmn with the p flag set. Starts
in supervisor mode, changes to Interrupt mode then Fast
Interrupt mode, then supervisor mode again and finally
User mode.

ddr31 Word accesses to random addresses in DDR3 memory.
ddr32 Tests byte read and write accesses to DDR3 memory.
ddr33 Test back to back write-read accesses to DDR3 memory.
ethmac mem Tests wishbone access to the internal memory in the Ether-

net MAC module.
ethmac tx Tests ethernet MAC frame transmit and receive functions

and Ethmac DMA access to hiboot mem. Ethmac is put in
loopback mode and a packet is transmitted and received.

firq Executes 20 FIRQs at random times while executing a small
loop of code.

flow bug The core was illegally skipping an instruction after a se-
quence of 3 conditional not-execute instructions and 1 con-
ditional execute instruction.

Continued on next page
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Table B.1 – continued from previous page
Test name Test description

flow1 Tests instruction and data flow. Specifically tests that a
stm writing to cached memory also writes all data through
to main memory.

flow2 Tests that a stream of str instructions writing to cached
memory works correctly.

flow3 Tests ldm where the pc is loaded which causes a jump. At
the same time the mode is changed. This is repeated with
the cache enabled.

hiboot mem Tests wishbone read and write access to hi (non-cachable)
boot SRAM. inflate bug A load store sequence was found
to not execute correctly.

irq Tests running a simple algorithm to add a bunch of numbers
and check that the result is correct. This algorithm runs
80 times. During this, a whole bunch of IRQ interrupts are
triggered using the random timer.

ldrh Tests that the ldrh instruction correctly loads a 16 bit value
to the correct memory location. It is possible to perform a
single call to str and then fetch the entire word resulting
from two ldrh calls.

ldm stm onetwo Tests ldm and stm of single registers with cache enabled.
Tests ldm and stm of 2 registers with cache enabled.

ldm1 Tests the standard form of ldm.
ldm2 Tests ldm where the user mode registers are loaded whilst

in a privileged mode.
ldm3 Tests ldm where the status bits are also loaded.
ldm4 Tests the usage of ldm in User Mode where the status bits

are loaded. The s bit should be ignored in User Mode.
ldr Tests ldr and ldrb with all the different addressing modes.
ldr atr pc Tests lrd and str of r15.
ldrsh When loading a signed half word from memory using ldrsh,

the value is correctly sign extended and stored in the target
register.

mla Tests the mla (multiply and accumulate) instruction.
Continued on next page
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Table B.1 – continued from previous page
Test name Test description

movs bug Tests a movs followed by a sequence of ldr and str instruc-
tions with different condition fields.

mul Tests the mul (multiply) instruction.
sbc Tests the ’subtract with carry’ instruction by doing 3 64-bit

subtractions.
stm stream Generates as dense a stream of writes as possible to check

that the memory subsystem can cope with this worst case.
stm1 Tests the normal operation of the stm instruction.
stm2 Test jumps into user mode, loads some values into registers

r8 - r14, then jumps to FIRQ and saves the user mode
registers to memory.

strb Tests str and strb with different indexing modes.
sub Tests sub and subs.
swi Tests the software interrupt – swi.
swp lock bug Bug broke an instruction read immediately after a swp

instruction.
swp Tests swp and swpb.
uart reg Tests wishbone read and write access to the Amber UART

registers.
uart rxint Tests the UART receive interrupt function. Some text

is sent from the test uart to the uart and an interrupt
generated.

uart rx Tests the UART receive function.
uart tx Uses the tb uart in loopback mode to verify the transmitted

data.
undefined ins Tests Undefined Instruction Interrupt. Fires a few unsup-

ported floating point unit (FPU) instructions into the core.
These cause undefined instruction interrupts when executed.

ldrsb When loading a signed byte from memory using ldrsh, the
value is correctly sign extended and stored in the target
register.

Continued on next page
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Table B.1 – continued from previous page
Test name Test description

mla long The umlal instruction correctly multiplies the two source
registers, adds the sum of the two target registers and saves
the result correctly. When the result of the multiplication
is zero, but the value accumulated from the target registers
is not zero, the zero flag is not set. When the result of the
multiplication is zero, and the value accumulated from the
target registers is zero, the zero flag is set.

mul long The umull instruction correctly multiplies the two source
registers and saves the result correctly in the two source
registers. When the result is zero, the ZERO flag is set in
CPSR.

mla long hazard For each of the registers used as argument to the umlal
instruction, if it is loaded from memory in the instruc-
tion preceding the umlal instruction, the processor will be
stalled, and the correct value will be used.

mul long hazard The same as for mla long hazard only with the umull in-
struction.

mrs The mrs instruction correctly copies the value of the CPSR
to the target register.

msr flags only i msr with the flag only bit set only updates the flag bits
of the CPSR register, and that it is possible to use an
immediate value as operand.

msr flags only r The same as the above-mentioned test, but uses a register
as operand instead of an immediate value.

msr immediate msr with an immediate value as argument correctly updates
the entire CPSR register.

shift cpsr carry The barrel shift unit is able to use the carry bit from the
CPSR register.

smla long Doing signed multiplication with smlal works correctly. If
the result is negative, the NEGATIVE bit of the CPSR
is set, otherwise it is not set. The value from the target
registers is correctly added to the multiplication result, for
both positive and negative values.

Continued on next page
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Table B.1 – continued from previous page
Test name Test description

smul long Doing signed multiplication with smull works correctly. If
the result is negative, the NEGATIVE bit of the CPSR is
set, otherwise it is not set.

spsr It is possible to write to and read from the SPSR register
using the msr instruction.

spsr change mode The CPSR register is correctly backed up in the SPSR reg-
ister of the correct execution mode during context switches.
When returning to user mode, the CPSR value is correctly
restored.

spsr immediate msr with an immediate value as argument correctly updates
the entire SPSR register.

strh Storing a half word using strh works correctly. It is possible
to load a value written by two strh calls by using ldr.

system mode It is possible to change the execution mode from system
mode. The same registers are available from system mode
and user mode.

halfword load-use
conflict bug

Tests that a load-use hazard with halfword loads is handled
correctly.

irq lr bug Tests that the link register is handled correctly when an
interrupt occurs.

load-use hazard
mode check bug

When Amber25 does forwarding to resolve load-use haz-
ards it forgets to check if the processor mode of the load-
instruction and the use-instuction matches. This causes a
false positive in forwarding and the wrong value to be used.
This has been detected by this test and rectified in Turbo
Amber.

mla long hazard2 This test demonstrates a load-use forwarding bug in UM-
LAL. The load-use hazard detector in execute was broken.

mul simple A less comprehensive test of multiply than mul.
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