
Avalanche Simulations using Fracture
Mechanics on the GPU

Øivind Laupstad Boge

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Master Thesis

Avalanche Simulations using
Fracture Mechanics on the GPU

Author:
Øivind Boge

Supervisor:
Dr. Anne C. Elster

June 12, 2014

Problem Description

When simulating avalanches, avalanche flow, using fluid dynamics has been the
main focus area in the past years. However, predicting where avalanches will oc-
cur and how large the initial mass will be, is still an open topic of research.

This project will focus on using fracture mechanics in order to predict the ini-
tial mass of an avalanche, and the snow layer modelling developed in previous
work will be used to predict where in the terrain the avalanche will occur. Also
since these calculations are very computationally demanding, the simulations will
be parallelized for GPUs.

Assignment Given: 17. January 2014
Supervisor: Dr. Anne C. Elster

i

Abstract

Snow is an extremely complex material due to the structure of snow crystals and
how snow behaves when it is settled within snow layers. These factors makes it
hard to accurately simulate how snow layers are affected by external factors like
temperature, sun radiation, and several others. And the type of snow layers, and
the bonding strength between them are crucial when calculating the danger of
avalanches.

In this thesis we apply fracture mechanics in order to calculate where fractures
are propagating in the snow layers, and by these calculations, we can try to predict
where it is high danger of avalanches. This is accomplished by using the Finite
Element Method which is used to model deformation in the snow layers based on
the self weight of the snow, strain and stresses is then further derived which is
used to calculate the so called Energy Release Rate. The energy release rate
is then compared to the Critical Energy Release Rate to determine out any
fracture propagation.

The Graphical Processing Unit (GPU) is utilized to speed up the calculations
due to the vast amount of data which is required to accurately simulate fracture
propagation in the snow layers. And due to time limitations, optimizations has
been left out. However, it was found out that even though optimization was left
out, the GPU is performing about 5x faster than a parallelized CPU version.

In the simulations, data found by Christian Sigrist[21] has been used. Sigrist
performed fracture testing on different kind of snow specimen within a laboratory
and in the field, and he found crucial parameters for both homogeneous (stable)
and heterogeneous (unstable) snow, and our simulation shows that homogeneous
snow does not show any fracture propagation, and the heterogeneous snow shows
a lot of uncontrolled fractures.

The results in this thesis has been obtained by different kind of visualization
methods that have been implemented in this project, where we can in real-time
change the visualization method and also have the possibility of pausing/resuming
the simulation to obtain more detailed analysis. The types of parameters that is
possible to visualize is; snow density, normal stress, shear stress, a so called energy
ratio, and the lengths of the fractures.

ii

Acknowledgement

I would like to thank Dr. Anne C. Elster which has managed to assemble to HPC-
lab to the current state. This lab has given me a lot of resources, and this thesis
would not have reached it current state without the lab. And I would also like to
thank Anne for valuable feedback on my thesis.

iii

Contents

Problem Description i

Abstract ii

Acknowledgement iii

List of Figures vii

List of Tables x

List of Listings xi

List of Symbols xii

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 3
1.3 Outline . 3

2 Background 5
2.1 Fracture Mechanics . 5

2.1.1 Atomic View of Fracture . 7
2.1.2 Effect of Microflaws . 9
2.1.3 Energy Balance . 11
2.1.4 Global G and local SIF . 13

2.2 Snow . 13
2.2.1 Material Properties . 14
2.2.2 Avalanche . 16
2.2.3 Behaviour of Snow . 19

2.3 Finite Element Method . 21
2.3.1 Introduction . 21
2.3.2 General Overview . 22
2.3.3 The Stiffness Matrix . 23
2.3.4 Global Assembly . 24

2.4 Compute Unified Device Architecture 26
2.4.1 Development . 26
2.4.2 Memory . 27
2.4.3 Streaming Multiprocessor 28
2.4.4 GeForce and Tesla GPUs . 31

iv

3 Previous & Related Work 32
3.1 Previous Work . 32

3.1.1 Snow Simulator . 32
3.1.1.1 Initialization . 33
3.1.1.2 Main Loop . 34

3.1.2 Snow Layer Modelling . 36
3.1.3 Snow Layer Measurement 37

3.2 Related Work . 39
3.2.1 SNOWPACK . 39
3.2.2 Snow Modelling . 40

4 Implementation 42
4.1 FEM . 42

4.1.1 Mesh Generation . 44
4.1.2 Global Displacement . 45
4.1.3 Local Displacement . 47
4.1.4 Local Strain and Stress . 48
4.1.5 Fracture Propagation . 49

4.2 GPU Implementation . 51
4.2.1 CUDA Kernels . 52
4.2.2 Visualization . 54
4.2.3 Memory Requirement . 58

5 Result 61
5.1 Setup . 61

5.1.1 Compilation . 61
5.1.2 Hardware . 62

5.2 Tests . 64
5.2.1 Simulation Results . 64

5.2.1.1 Displacement Calculation 64
5.2.1.2 Stress Distribution 65
5.2.1.3 Fracture Propagation Distance for Homogeneous

Snow . 73
5.2.1.4 Fracture Propagation Distance for Heterogeneous

Snow . 73
5.2.1.5 Energy Release Rate for Homogeneous Snow 75
5.2.1.6 Energy Release Rate for Heterogeneous Snow . . . 80

5.2.2 Performance Results . 84
5.2.2.1 Kernel Launch Configuration Analysis 84
5.2.2.2 Kernel Analysis . 86
5.2.2.3 Double versus Single Precision 90
5.2.2.4 Frame Rate . 90
5.2.2.5 Max Register per Thread 92
5.2.2.6 CPU Version . 93
5.2.2.7 Fermi Vs Kepler 95

6 Discussion 96
6.1 Mesh Generation . 96
6.2 Global Displacement Calculation 99
6.3 Spring Constant . 100
6.4 Shear Stress Accuracy . 100

v

6.5 Calculation of Local Displacement 104
6.6 GPU Occupancy . 105
6.7 Error Checking & Correction Memory 106
6.8 Fermi Versus Kepler . 106
6.9 Finite Element Vibration . 109

7 Conclusion 111
7.1 Avalanche Prediction . 111
7.2 Performance . 112
7.3 Future Work . 113

7.3.1 Mesh Filling . 113
7.3.2 Improve Mesh Generation 114
7.3.3 Avalanche Flow Simulation 115

A Recreating Results 117
A.1 Setup . 117
A.2 User Guide . 119

B Finite Element Type 120

C Energy Release Rate Calculation 122

D Movie 124

E Detailed Simulation Results 125
E.1 Energy Ratio for Parabola Terrain 125
E.2 Energy Ratio for Steep Slope Terrain 130
E.3 Timing Penalty of Double Precision 136

F Poster 138

G First Approach 140

H Code 148
H.1 Mesh Generation . 148
H.2 Global Displacement . 149
H.3 Propagate Fracture . 150
H.4 Makefile . 152
H.5 Accuracy Test Program . 153
H.6 CPU Version . 154
H.7 Complete Code . 154

Bibliography 180

vi

List of Figures

1.1 Avalanche, by Scott Serfas . 2

2.1 Fracture modes . 6
2.2 Ductile vs brittle fracture . 6
2.3 Equilibrium spacing between two atoms 7
2.4 Potential Energy . 7
2.5 Bond Energy . 8
2.6 Elliptic flaw in a material . 9
2.7 Local coordinate system at crack-tip, where σ is normal stress and

τ is shear stress . 10
2.8 Micro-flaw in a material . 12
2.9 Morphology diagram for snow crystals, by Kenneth G. Libbrecht . 14
2.10 Snow crystal branching . 15
2.11 Avalanche . 17
2.12 Loose snow avalanche, with permission from Canadian avalanche

centre, photo by: Jim Bay . 17
2.13 Weak layer, main cause of slab avalanches 18
2.14 Weak layer triggering slab avalanches 18
2.15 Snowdrift, Photo taken by the author at Folgefonna, Norway, 2012 19
2.16 Trees covered in light snow, Photos taken by the author in Nelson,

British Columbia, Canada, 2013 . 20
2.17 FEM domain . 21
2.18 Finite element within domain . 22
2.19 Spring system consisting of 1 one-dimensional element 23
2.20 Spring system consisting of two spring elements 24
2.21 CUDA memory model, with permission from Nvidia 28
2.22 Streaming multiprocessor for the Fermi architecture 29
2.23 Streaming multiprocessor for the Kepler architecture 30

3.1 HPC-Lab snow simulator . 33
3.2 Snow simulator configuration screen 34
3.3 Snow simulator main loop . 35
3.4 Snow layers over the terrain . 36
3.5 Three point bending test, F1 = 2F2 = 2F3 37
3.6 Example load displacement graph 38
3.7 Cantilever beam test . 39
3.8 Impact of damage on elastic spring 41

4.1 Finite element cube . 43
4.2 FEM mesh generation . 44
4.3 Normal vector calculation . 45
4.4 FEM mesh generation . 45

vii

4.5 Global displacement numbering for bottom mesh layer 46
4.6 Global displacement for a finite element number i 47
4.7 Fracture decreasing local displacement 48
4.8 Strain calculation . 49
4.9 Idealization of energy unloading near fractures 50
4.10 Volume of strain energy release w.r.t XZ plane 51
4.11 Visualization methods . 54
4.12 HSV coloring . 55
4.13 Stress visualization . 56
4.14 Energy release rate visualization method 57
4.15 Density visualization method . 57
4.16 Fracture visualization method . 59

5.1 ω testing for displacement calculation 66
5.2 Stress distribution for flat terrain 67
5.3 Stress distribution for parabola terrain 68
5.4 Stress distribution for small slope terrain 69
5.5 Stress distribution for big slope terrain 70
5.6 Stress distribution for 2D wave terrain 71
5.7 Stress distribution for 1D wave terrain 72
5.8 Energy ratio for da testing . 74
5.9 Energy ratio for da testing . 75
5.10 Energy ratio for flat terrain, homogeneous snow 77
5.11 Energy ratio for parabola terrain, homogeneous snow 77
5.12 Energy ratio for small slope terrain, homogeneous snow 78
5.13 Energy ratio for big slope terrain, homogeneous snow 78
5.14 Energy ratio for 2D wave terrain, homogeneous snow 79
5.15 Energy ratio for 1D wave terrain, homogeneous snow 79
5.16 Energy ratio for flat terrain, heterogeneous snow 81
5.17 Energy ratio for parabola terrain, heterogeneous snow 81
5.18 Energy ratio for small slope terrain, heterogeneous snow 82
5.19 Energy ratio for big slope terrain, heterogeneous snow 82
5.20 Energy ratio for 2D wave terrain, heterogeneous snow 83
5.21 Energy ratio for 1D wave terrain, heterogeneous snow 83
5.22 Tesla C2070 Utilization, solve_global_displacement_kernel_step1 . 86
5.23 Tesla K40c Utilization, solve_global_displacement_step1 87
5.24 Tesla C2070 Utilization, propagate_fractures_step1 89
5.25 Tesla K40c Utilization, propagate_fractures_step1 89
5.26 Performance penalty of using double precision, GeForce GTX-480,

GeForce GTX-760, Tesla C2070 and Tesla K40c, separately 91
5.27 Execution time for different CPUs and GPUs 94
5.28 Sequential versus parallel CPU and GPU 94

6.1 Automatic mesh generation creates nodes underneath the terrain . . 97
6.2 Narrow valley mesh generation . 98
6.3 Mesh generation failure . 99
6.4 Energy ratio for different kind of snow using same spring constant . 101
6.5 Shear stress precision . 103
6.6 Fracture displacement decrease . 104
6.7 ECC impact on performance . 107

viii

7.1 Issue with mesh filling method 01 114
7.2 Mesh generation issue when using mesh deltas less than 1.0 115

A.1 Terrain section of simulation menu 119

B.1 Parallelepiped shear stress calculation 121
B.2 Cube shear stress calculation . 121

C.1 Fracture propagation along axis . 122

E.1 Energy ratio for parabola terrain, step 1 125
E.2 Energy ratio for parabola terrain, step 2 126
E.3 Energy ratio for parabola terrain, step 3 126
E.4 Energy ratio for parabola terrain, step 4 127
E.5 Energy ratio for parabola terrain, step 5 127
E.6 Energy ratio for parabola terrain, step 6 128
E.7 Energy ratio for parabola terrain, step 7 128
E.8 Energy ratio for parabola terrain, step 8 129
E.9 Energy ratio for parabola terrain, step 9 129
E.10 Energy ratio for parabola terrain, step 10 130
E.11 Energy ratio for parabola terrain, step 11 130
E.12 Energy ratio for steep slope terrain, step 1 131
E.13 Energy ratio for steep slope terrain, step 2 131
E.14 Energy ratio for steep slope terrain, step 3 132
E.15 Energy ratio for steep slope terrain, step 4 132
E.16 Energy ratio for steep slope terrain, step 5 133
E.17 Energy ratio for steep slope terrain, step 6 133
E.18 Energy ratio for steep slope terrain, step 7 134
E.19 Energy ratio for steep slope terrain, step 8 134
E.20 Energy ratio for steep slope terrain, step 9 135
E.21 Energy ratio for steep slope terrain, step 10 135
E.22 Energy ratio for steep slope terrain, step 11 136
E.23 Energy ratio for steep slope terrain, step 12 136

G.1 Representation of crack propagation along sides on a single element 142
G.2 Representation of crack propagation along bottom surface on a sin-

gle element . 142
G.3 Element nodes over terrain heightmap 143
G.4 Finite element vertex indexing . 143
G.5 Spherical coordinate system . 144
G.6 Forces acting on neighbouring elements 146

ix

List of Tables

2.1 CUDA memory types . 27

4.1 Total nodes for different terrain sizes 60

5.1 Snow simulator shared libraries dependencies 62
5.2 Workstation 1 specifications . 63
5.3 Workstation 2 specifications . 63
5.4 Young’s modulus and Gc for snow 76
5.5 kernel time varying threads per block, Tesla C2070 85
5.6 kernel time varying threads per block, Tesla K40c 85
5.7 Memory bandwidth, solve global displacement kernel 88
5.8 Memory bandwidth, propagate fracture kernel 90
5.9 Frames per second using workstation 1 91
5.10 Frames per second using workstation 2 92
5.11 Limiting the numbers of registers 93
5.12 Execution time for 100 iterations for different CPUs and GPUs . . . 94
5.13 Kernel average execution time . 95

6.1 Normal stress calculation . 102
6.2 Shear stress calculation . 102
6.3 ECC impact on the Tesla C2070 . 106
6.4 Hardware specification on Tesla K40c and C2070 108
6.5 Kernel average execution time, L1 cache disabled 109

E.1 Double versus single precision . 137

G.1 Forces acting on side planes . 145
G.2 Memory requirement for calculating Young’s modulus 147
G.3 Memory requirement for calculating crack area 147

x

Listings

2.1 CUDA kernel . 26
2.2 Calling a CUDA kernel . 27
4.1 Successive over-relaxation Method 46
4.2 Kernels launched per frame . 51
4.3 Cross construction . 58
6.1 Shear stress calculation . 102
H.1 Bottom snow layer mesh generation 148
H.2 Remaining snow layer mesh generation 148
H.3 Step 1 of global displacement calculation 149
H.4 Step 1 of propagate fracture calculation 150
H.5 Makefile used for compilation . 152
H.6 Floating point accuracy test program 153
H.7 Floating point accuracy test program 154
H.8 Complete code . 155

xi

List of Symbols

ε̇ The change in strain w.r.t. time

ε The strain (deformation) of a material

γp The energy required for plastic flow in a fracture processes

γs The surface energy of a material

G The energy release rate in a fracture process

Gc The energy release rate required to extend a fracture

Π The potential energy of a material caused by internal strain and external
forces

ρ The density of a material

σ The stress in a material

σf The stress needed for fracture propagation

||x|| The euclidean norm of x

a The fracture length

B The thickness of the material

E The Young’s modulus

K The stress intensity factor, abbreviated SIF

Ws The work required to create new surfaces within a material i.e. fractures

xT The transpose of vector x

xii

Chapter 1

Introduction

Avalanches are the rapid motion of snow running downhill, and the motion of
the avalanches are depening on the material properties of the snow within the
avalanche, and trying to figure out models that capture their behaviour is an area
of ongoing study. Models describing the flow of avalanches has achieved a lot of
success, by taking advantage of the resemblance of a fluid that avalanches has
while it is running down a slope[27]. In these models, researchers has used fluid
dynamics in order to accurately simulate avalanches running downhill. But these
models do not capture the cause and actual release of an avalanche, and the fluid
dynamic models are initiated by simply "dropping" a amount of snow onto the
terrain, and then simulating the avalanche as a fluid. These models for simulating
the flow of avalanches can however, be useful in e.g. games and movies where they
want avalanches to occur.

However, as a backcountry snowboarder myself, I think that modelling where
avalanches will be triggered, and how big they could be need to be focused on. As
far as i know, this is something that there does not exist any models for, which
describes the release of avalanches due to the stresses in the snow structure. And
since snow is an extremely heterogeneous material, accurately calculating the stress
in the snow layers can be difficult. Therefore, I will look into the branch of physics
which models fracture behaviour in materials called "fracture mechanics", and try
to implement a model which calculates the behaviour of fractures in the snow
layers, and hopefully by using this approach, we can calculate how the fractures
propagate in the snow, which results in how large an avalanche will be.

In the field of fracture mechanics, the equations used for calculating the prop-
agation of fractures within a material, is depending on some material constants.
And still to this date, there are a lot of unknown material constants when it comes
to snow. And since snow experiences a huge variety of behaviour and material
properties, due to all external factors that changes the snow[21], accurately deter-
mining the material constants for different kind of snow is a challenge.

Also, by implementing fracture mechanic simulation within the snow layers in
the HPC-Lab snow simulator, it could be used to visualize how different material
constants for snow effects avalanches. The HPC-Lab snow simulator is a simulator
which has been used for several different master thesis, and was first developed
by Saltik[20] and is a real-time simulator for simulating snow particles and its
interaction with a wind field, and when the particles collide with the terrain the
snow accumulates on the ground.

In Figure 1.1 on page 21, we can see an avalanche which has settled, and we can
1www.inspirefirst.com/2012/09/18/snowboarding-scott-serfas/

1

Figure 1.1: Avalanche, by Scott Serfas

clearly see where the fracture has propagated at the starting zone of the avalanche,
and would be the ideal result of this project.

1.1 Motivation
Fracture mechanics and FEM simulations are highly computationally demanding
fields, and to accurate capture the heterogeneous complexity of snow, a fine mesh
is needed for the simulation. And since the simulator is running a 3D simulation,
the computational demands are even higher. This is why we have taken advantage
of utilizing the powerful and parallel GPU, which has enabled us to handle even
larger problem sizes and still be able to use the simulator in real-time.

Snow can also be difficult to perform laboratory experiments with, due to
the fragile properties of snow, and Sigrist[21] experiences this while performing
his experiments, where several snow specimen was broken while transporting the
snow layers to the laboratory, and the transport process also limited the size of the
snow specimen that could be brought back to the laboratory. However, if we could
use the HPC-Lab snow simulator to determine how material properties of snow
impact the release of avalanches, then the simulator could be used as a research
platform. But this would require experimental data on avalanches, which are not
present to this date.

This project will also add more focus on the avalanches release problem, and
would give valuable initial conditions for any avalanche flow simulations. And a
complete simulation of both the release and flow of avalanches would give great
benefits to a lot of different areas like; ski resorts which has to perform a lot of snow
tests in order to predict the snow stability, and avoid any fatalities, and also when
building new residential areas around mountains, such that avalanche simulations
could predict if avalanches could occur under different weather conditions, and if
so, being able to simulate if the avalanche flow would reach any residents.

2

1.2 Contribution
In this project, I have extended the HPC-lab snow simulator with a more precise
avalanche detection model compared to previous work implemented in my special-
ization project[26]. Within the time scope of this project, I did not reach as far as
I wanted, due to the complex behaviour of snow and also caused by a lot of new
material I had to learn in order to complete the project. e.g. Fracture mechanics
and the Finite Element Method.

However, fracture mechanical calculations has been implemented, which is used
to calculate fracture propagation in the snow layers in order to determine where
and when avalanches would be triggered in an arbitrary terrain specified by a 2D
heightmap.

A lot of different visualization methods has also been implemented such that
we can visualize where avalanches are about to be triggered.

1.3 Outline
Chapter 2: covers the background material for this project, where Section 2.1
includes the basic of Fracture Mechanics and how to calculate how fractures
propagate within a material, Section 2.2 describes snow as a material all the way
from snow crystals to different kind of avalanches, Section 2.3 the basics of the
Finite Element Method (FEM) used is covered. Then lastly, Section 2.4 covers the
CUDA technology used for the implementation.

Chapter 3: covers previous work (Section 3.1) and related work (Section 3.2)
for this project, where Section 3.1.1 describes the HPC-lab snow simulator in
detail, Section 3.1.2 is used to shortly look at my specialization project[26] which
lead up to this thesis, and Section 3.1.3 looks at the PhD by Christian Sigrist,
titled Measurement of Fracture Mechanical Properties of Snow and Application to
Dry Snow Slab Avalanche Release[21], and it is from this work I have obtained
important material constants for snow.

Section 3.2.1 covers a project which is somewhat related to this project, but
can be very useful to take advantage of in the future, namly a project called
SNOWPACK[3], used for modelling snow layer properties and changes over time.
And Section 3.2.2 looks into another project that uses fracture mechanics in or-
der to predict avalanche in 2D, and another approach in 3D which uses damage
mechanics[22] .

Chapter 4: Covers the implementation for simulating fracture propagation in
the snow layers, and the equations used for calculating the displacement, strain,
stress, and the energy release rate is shown.

Chapter 5: Is used to show the results obtained from the simulations, where
the results are divided into Simulation Results where we look at the physical
aspect of the simulations performed, and in Performance Results where we look
into the performance on different GPUs, problem size, and CUDA kernel launch
configuration.

3

Chapter 6: Is used to discuss the results more in detail and also some minor
issues present in the simulator while using certain parameters.

Chapter 7: Includes a final conclusion of the project and further work on fully
integrating the implemented fracture propagation simulation with the rest of the
simulation in the HPC-lab snow simulator, and various ideas to achieve this.

4

Chapter 2

Background

In this chapter, we will go into detail in the necessary background material, where
we first in Section 2.1, will look into fracture mechanics, where we will start at
the atomic level and all the way up to structures. And we will also look into
the formulas of the Energy release rate which is the equation used to calculate
fracture propagation.

Next in Section 2.2, we will discuss snow. Starting at snowflakes to the pro-
cesses involved when the snow cover changes like temperature and many other
effects. We will also look into different kind of avalanches, and look at some of the
complex behaviour of snow.

In Section 2.3, we will look into the Finite Element Method (FEM). Where we
will look at a general overview of the method, and the steps involved, and how the
method is used with an simple elastic spring example, which is related to how our
FEM model is build.

Then in Section 2.4, we will look at the Compute Unified Device Architecture
(CUDA) developed by Nvidia, and is supported on their GPUs.

2.1 Fracture Mechanics
Fracture mechanics is the field of mechanics where propagation of fractures in
materials are studied. Alan Arnold Griffith (1921) was the first to formally describe
fractures in materials based on the global energy balance criterion. He started his
research due to the breaking of glass, where he measured that the stress needed
to fracture glass was 100 MPa. However, the theoretical stress needed to break
atomic bounds are approximately 10 000 MPa. He then made the assumption that
micro flaws in the material increased local stresses, and then found out that when
an artificial flaw of length a was created in the glass, then:

σf
√
a ≈ C (2.1)

The above equation was valid for extreme brittle materials like glass, and the
behaviour of materials which experiences ductile behaviour at the crack tip could
not be calculated with the equations formed by Griffith. The major contribution
in fracture mechanics, where later in 1957 when George Rankine Irwin defined
the stress located at the crack tip of the fracture. His equations includes the
extra energy needed for ductile behaviour, and could therefore be used for more
materials.

5

In fracture mechanics, there are three different types of fracture modes that
can occur with different kind off applied stresses (see Figure 2.11). The first mode,
is a so called Opening mode which occurs when the material is affected by a
tensile force perpendicular to the fracture plane. The second mode is called Sliding
mode, and occurs when shear forces are acting parallel to the fracture plane, but
perpendicular to the crack-tip. And the third mode is called Tearing mode and
this fracture also occurs when shear forces are acting parallel to the fracture plane
and to the crack-tip.

Figure 2.1: Fracture modes

In fracture mechanics, there are a lot of material properties which must be
discovered in order to use this field in practice. Different materials have a huge
variety in fracture properties, e.g. glass have a very brittle behaviour where there
are almost no deformation of the material before any fracture occurs. On the other
hand we have many metals which experiences ductile behaviour where the material
is deformed before any fracture process is started. In figure 2.22 you can see two
examples of brittle and ductile fractures, where the fractur process to the right has
experiences a brittle behaviour with no deformation of the metal, and the fracture
process to the left has experiences a ductile behaviour up to the point of fracture,
where we can see that the metal has become thinner towards the fracture plane.

Figure 2.2: Ductile vs brittle fracture

1Public domain license, reprinted fromWikipedia: http://en.wikipedia.org/wiki/File:Fracture_modes_v2.svg
2Reproduced with permission from NSW HSC Online http://hsc.csu.edu.au © NSW Depart-

ment of Education and Communities, and Charles Sturt University, 2014

6

Despite the substantial progress that has been made in the past decades, the
theory of fracture mechanics is by far not completed[21], and since the field depends
on a lot of different material constants and functions, there are still to this date
a lot of unknown variables. However, several laboratory experiments are being
performed in order to determine these variables, like Christian Sigrist [21] which
performed a lot of experiments on different kind of snow types, and have acquired
a lot of data in his PhD thesis.

2.1.1 Atomic View of Fracture

A fracture can be thought as the stress needed to break atomic bonds between
atoms in a material [23]. Two atoms will have an equilibrium spacing between
them of distance x0, then to fully separate the two atoms, a tensile force is required
to increase the distance between the two atoms, and this force must exceed the
cohesive force between the atoms. The energy needed to separate two atoms is
given by the following equation:

E =
∞∫
x0

Pdx

where x0 is the equilibrium spacing and P is the applied force

x o

Figure 2.3: Equilibrium spacing between two atoms

x
0

Bond
Energy

Repulsion

Attraction

Potential
Energy

Figure 2.4: Potential Energy

7

x
0

 Bond
Energy

Cohesive
 Force

Applied
 Force

Tension

Compressio
n

λ

Figure 2.5: Bond Energy

It is then possible to estimate the cohesive strength between two atoms as the
following:

P = Pc sin
(
π x
λ

)
where λ is defined in Figure 2.5

Further estimations gives that for small displacements the force requirement is
linear if we place the origin at x0, so:

P = Pc
(
π x
λ

)
We can then follow Hooke’s law, and find the bond stiffness constant:

k = Pc
(
π
λ

)
It can then be shown that the cohesive stress of a material can be calculated as
the following:

σc =
E λ

π x0

≈ E

π
(2.2)

E is Young’s modulus

We can also calculate the cohesive stress by using the surface energy of the material.
First we estimate the surface of the material by the following:

γs =
1

2

λ∫
0

σc sin
(π x
λ

)
dx = σc

λ

π
(2.3)

Then combining Equation 2.2 and 2.3 gives:

σc =

√
E γs
x0

(2.4)

8

2a

2b A

Figure 2.6: Elliptic flaw in a material

2.1.2 Effect of Microflaws

When fracture experiments was performed, they found out that the fracture strength
of brittle material was approximately 3-4 times lower than the theoretical cohesive
strength of the material σc = E/π. It was then assumed that this was due to flaws
in the material which increased the stress locally, making the global strength of
the material lower than it originally was.

The first evidence of these micro flaws within the material was performed by
Inglis in 1913 [7]. He analysed elliptic holes in a flat plate illustrated in Figure
2.6. He calculated the stress concentration at a point A, and assumed that the
stresses was not affected by any boundary conditions, i.e. the width of the plate
» 2a, and the height of the plate » 2b. He then found an expression for the stress
concentration at point A to be:

σA = σ

(
1 + 2

√
a

µ

)
(2.5)

Where µ = b2

a
is the radius of the elliptic curvature

However, a fracture does not have the form of a ellipse. But if we take the ellipse
and make a » b, then we will have an approximation to a sharp crack, and Equation
2.5 can be approximated to:

σA = 2σ

√
a

µ
(2.6)

But from a mathematically point of view, Equation 2.6 leads to the following
problem. When a is much larger than b, µ will tend to zero, and the stresses
at the crack tip will be infinitely large, and no material can withstand infinitely
stress. However, from a physical point of view, a fracture tip cannot have a radius

9

smaller than the equilibrium distance between two atoms. So the largest possible
stress concentration of an atomically sharp edge will be:

σA = 2σ

√
a

xo
(2.7)

Finally it is assumed that a fracture can propagate when the stress at the crack-
tip is equal to the cohesive strength between two atoms σA = σc, so combining
Equation 2.4 and 2.7 results in the following expression for the stress present at
fracture propagation.

σf =

√
Eγs
4a

(2.8)

Crack-tip Stresses: This is another method of analysis where a local coordinate
system is defined around the crack-tip, and we can then calculate the stress field
around the crack-tip in order to find out how the fracture will propagate in the
material. The local coordinate system is displayed in Figure 2.7, however, this
approach is only valid in a isotropic linear elastic material3.

Crack
x

y

r

θ

σ

σ

τ

τ

yy

xx

yx

xy

Figure 2.7: Local coordinate system at crack-tip, where σ is normal stress and τ
is shear stress

It can then be shown that the stress field around the crack-tip is any linear
elastic cracked body is given by[23]:

σij =

(
k√
r

)
fij (θ) +

∞∑
m=0

Amr
m
2 gij

(m) (θ) (2.9)

3Isotropic materials are characterized by properties which are independent of direction in
space

10

where:

• σij is a stress tensor

• r and θ is defined in Figure 2.7

• k is a constant

• fij is a dimensionless function of θ

It it also very common to substitute K = k
√

2π, where K is the stress intensity
factor (SIF). The stress intensity factor is a measurement of the fracture toughness,
and is divided into KI , KII , and KIII for the different loading modes of fractures,
given in Figure 2.1 on page 6. The SIF is therefore a material constant and will
have to be determined for all different modes for the desired material.

We can then use Equation 2.8 and 2.9 on page 10 for calculating fracture
propagation. When the stress field around the crack-tip is equal to the σf , the
fracture can grow a distance r in θ direction.

2.1.3 Energy Balance

In 1920, A. A. Griffith used the first law of thermodynamics to describe the for-
mation of fractures [4]. This law states that a system going from a nonequilibrium
state to equilibrium will always have a net decrease in energy. Griffith used this ap-
proach because previous estimation of fracture propagation described in Equation
2.8 is only a rough estimate of the failure stress, because the equation is only valid
for ideally brittle materials[23]. Griffith expressed the propagation of fractures in
the following way:

dE

dA
=
dΠ

dA
+
dWs

dA
= 0⇒ −dΠ

dA
=
dWs

dA
(2.10)

where E is total energy, Π is potential energy supplied by internal strain and external forces, and Ws is work
required to create new surfaces i.e. fractures, and A is the area of the fracture surface

He then used the analysis of Inglis [7] to show that:

Π = Π0 −
πσ2a2B

E
(2.11)

and
Ws = 4aBγs (2.12)

where Π0 is the potential energy of an uncracked plate, and B is the thickness of
the plate. If we then insert this into Equation 2.10 we get the following expression
for the stress present at failure:

σf =

√
2Eγs
πa

(2.13)

The approach used by Griffith is fairly consistent with the local stress criterion by
Inglis, and they do not differ more than 40% [23]. But they both require a sharp
fracture in a brittle material.

11

B

2a

x
z

y

σ

Figure 2.8: Micro-flaw in a material

Irwin’s modification: A modification of griffith equations was later performed
in 1948 due to the severe underestimation of fracturing of metals by G. R. Irwin[8],
because Equation 2.13 on page 11 is only valid for ideally brittle materials. Irwin
then formulated an equation which takes plastic flow into account, and is expressed
as following:

σf =

√
2Ewf
πa

=

√
2E (γs + γp)

πa
(2.14)

Where γp is the energy wasted on plastic flow, and γs is the surface energy, and
we can see that the equation is essentially equal to Equation 2.13.

The Energy Release Rate: The work performed by Griffith was mostly ig-
nored by other engineers because they required extreme brittle materials like glass,
and the equations ignore any plastic deformation at the crack-tip, which can even
appear in materials which seems brittle.

In 1956, Irwin proposed an ’Energy Release Rate’ [9], which is equivalent to
Griffiths approach but is more convenient to use when solving engineering prob-
lems. The energy release rate proposed is a measure of the energy available for an
increment of fractures, and is defined as the following:

G = −dΠ

dA
= −

d
(

Π0 − πσ2a2B
E

)
dA

=
πσ2a

E
(2.15)

for a wide plate in plane stress with a crack of length 2a (Figure 2.8)

It can also be shown that Equation 2.15 holds for both load controlled fractures,
and displacement controlled fractures[23]. And when G reaches a critical value Gc
the fracture can propagate a given distance. And Gc is defined by:

Gc =
dWs

dA
= 2wf (2.16)

12

Where wf can either be equal to the surface energy of a brittle material wf = γs,
or wf = γs + γp for materials experiencing plastic flow at the crack-tip.

2.1.4 Global G and local SIF

The global energy release rate G and the local crack-tip stress analysis, uses two
quite different approaches for solving fracture propagation. The global energy
release rate calculates the change in potential energy w.r.t. a change in fracture
area, and the potential energy is calculated by the stress in the structure, generated
by external forces and the size of the fracture. And the fracture will then propagate
when the energy release rate is equal to the critical energy release rate Gc, which
is the work required to generate new surfaces in the material.

Secondly we have the local approach which defines a coordinate system around
the crack-tip. This method calculates the stress field around the crack-tip to solve
the fracture propagation, and uses the stress intensity factor to characterize the
stresses at the crack-tip. And it can be shown that the local K constant and the
global G has a unique relationship defined as the following:

G =
K2

E
(2.17)

This mean that we can determine the critical energy release rate Gc from the critical
stress intensity factor K, and this factor has been determined by Sigrist[21] for
various types of snow, which we will discuss more in Section 3.1.3.

2.2 Snow
Snow is the natural phenomena occurring when small amounts of water is su-
percooled in the clouds and freezes into small hexagonal prisms, and as they fall
towards the earth they will continue to grow due to water vapor in the air[12].
As the prism falls towards the earth and continuously gets in contact with water
vapor, it will gradually grow into more and more complex structures, as the sur-
rounding water vapor condenses directly into ice on the surface on the prism. The
factors which contribute to the amount of the complex growth, and the form of
the snow crystals have been researched by Kenneth G. Libbrecht at Caltech[12],
and he concluded that the main factors that differs the geometry and growth of
snow crystals are mainly air temperature and humidity, and his findings are shown
in Figure 2.9 on page 14 4.

After a winter season of snowing, the result can be several snow layers with a
lot of different mechanical properties, due to weather conditions throughout the
winter season. A snow layer is formed after a given amount of snow has settled on
the ground with given properties due to the current weather condition. And when
it starts snowing again, a new snow layer will form with a different thickness due
to the amount of snow, and also different properties due to weather conditions.

There are also other factors which contribute to the properties of the snow
layers, like; radiation from the sun acting on the surface of the topmost snow
layer, wind transportation of the light snow crystals on the surface of the snow, and
sintering in the snow layers. All these factors also result in a very heterogeneous
snow structure, and as Christian Sigrist has measured [21], the fracture toughness

4www.snowcrystals.com

13

Figure 2.9: Morphology diagram for snow crystals, by Kenneth G. Libbrecht

in a heterogeneous snow structure is not that good, compared to a homogeneous
snow structure. Where a homogeneous snow structure is a single snow layer with
given machanical properties, and a heterogeneous snow structure is the interface
between snow layers. Which means that fractures can more easily propagate in
the interface between snow layers.

2.2.1 Material Properties

As mentioned before, snow is a very complex material and has a lot of factors
determining its properties. We will now look into some of the factors.

Temperature: Temperature has a great impact on snow, and when the tem-
perature in the snow increases it has two effects[21]. Firstly it has a long term
effect which causes the stability to increase due to the bonds between snow crystals
being able to grow more quickly, secondly it also has a short term effect causing
the snow layers to decrease in stiffness, which favors the propagation of fractures.

Sintering: The process called sintering, has a big impact on snow and how we
experience snow. Sintering is a thermal process where particles are bonded together
through mass transportation events[21]. A more practical example of this effect
is, when two cubes of snow are placed besides each other, they will automatically
within seconds begin to make bonds to each other without any external applied
force. And snow may be the only material which experiences this naturally, because
snow exists so closely to its melting point. But from a fracture point of view, this
sintering process creates the possibility for snow to ’heal’ fractures, as long as the
fracture surfaces are in contact with each other.

14

(a) Wind field at starting point

(b) Wind field with bump at one side of the hexagonal prism

Figure 2.10: Snow crystal branching

Complex structure: Individual snow crystals has an extremely complex struc-
ture, which was discussed some in Section 2.2, but now we will look more into how
the structure of snow crystals are formed. When snow crystals are formed, they
start out as hexagonal prisms and then gradually grow more and more complex as
the surrounding water vapor condenses into ice, and this process have a natural
way of adding more complexity to existing complexity. Consider the starting point
of an snow crystal displayed in Figure 2.10a, where the water vapor will flow in
parallel to the sides. Then after a while, some of the water vapor will condense into
ice and attach itself to one of the sides. Then after this process, the surrounding
water vapor will now travel along a different and longer path displayed in Figure
2.10b.

This results that the original time the water vapor used to travel over the area
without a bump will increase as the bump increases, and more and more water
vapor will condense into ice in this area, which results in complex branching in
this area.

Brittle and ductile: Snow will act like a brittle material or ductile material
depending on the strain rate. Which is the rate of change in strain (deformation)
in a material, and is calculated by the following:

ε =
L− L0

L0

Where L is the deformed length of the material, and L0 is the original lenght of the material, and ε in strain

15

ε̇ =
dε

dt
Where ε̇ is the strain rate

If we deform snow with ε̇ > 10−3s−1, snow will act like a brittle material. But
on the other side, if we use a lower strain rate of ε̇ < 10−5s−1, snow will act like
a ductile material[21]. However, the process of an avalanche has very high strain
rate[21], and therefore we should be able to consider snow as a brittle material.

Specific strength: The specific strength of snow is extremely low. The specific
strength is defined as the forces per unit area of failure, divided by the density of
the material:

S =
F
A

ρ
=
σf
ρ

Jamieson and Johnston (1990)[21] did some research on the specific strenght
of snow, and found values ranging between 2Nm/kg and 23Nm/kg. These are
extreme low values when compared to other materials like ice, which has a specific
strenght of 10000Nm/kg, or aluminium which has 30000Nm/kg.

Metamorphism: Metamorphism is highly complex when it comes to snow.
Parts of the snow will sublimate5 into water vapor, and start to rise upwards
in the snow layers and will condensate at a different location. This results that
snow are always changing, and snow grains will change as time passes. It is also
found that different snow grain types can have the same density [21], while it
has different mechanical properties, therefore the density alone is not sufficient to
describe the mechanical properties of snow.

2.2.2 Avalanche

Avalanches are the phenomena where large amount of snow starts to slide down a
mountain side, and can either be triggered naturally or by skiers. Figure 2.116 on
page 17 displays a avalanche running downhill with a powder cloud on top of it.
And as we will discuss, there are several different types of avalanches, but there
are no global classification, however some are commonly used.

Classification: The classification of avalanches are typically made into two dif-
ferent classes which are slab avalanche and loose snow avalanche. There are others
as well, however these two are the main classes which has their focus on the actual
release of the avalanche. There are for example another class of avalanche called
powder snow avalanche, which has the characteristics of a powder cloud running
on top of the avalanche as displayed in Figure 2.11, and another one called wet
snow avalanche, which has the characteristics of a fluid running down the slope,
and the snow is very heavy and contains a high concentration of water. However,
the two latter classifications does not consider the release itself, they focus on the
flow characteristics of the avalanche. And therefore we will only describe the slab
avalanches and loose snow avalanches in this thesis.

5Transition of a material from solid directly into gas
6Creative Commons Attribution-Share Alike 3.0 Unported, reprinted from Wikipedia

http://en.wikipedia.org/wiki/File:2007-02-15-CLB-Couloir2-1c.JPG

16

Figure 2.11: Avalanche

Loose snow avalanches: This class of avalanches are the type of avalanche
where relative small amount of snow starts to slide down the terrain. These types
of avalanches are most rapidly when terrain slopes is above 40 degree, persistent
sub-zero temperature, and low humidity[25] (see Figure 2.12). However, this class
of avalanches do not give a clear view of the fractures, and using fracture mechanics
to predict these avalanches are probably not the best approach. But loose snow
avalanches are not the most dangerous class of avalanches to backcountry skiers.
Experienced skiers have to deal with these avalanches all the time when skiing
in very steep slopes. And this class of avalanche is not that fatal compared to
slab avalanches, but there have been reports of loose snow avalanches which have
steered skiers off clips.

Figure 2.12: Loose snow avalanche, with permission from Canadian avalanche
centre, photo by: Jim Bay

17

(a) Weak layer triggering slab avalanches
(b) Weak layer photo, photo by: ASARC
(Applied Snow and Avalanche Research)
University of Calgary, Canada

Figure 2.13: Weak layer, main cause of slab avalanches

Slab avalanches: Slab avalanches are the most dangerous type of avalanches.
These types of avalanches form when several different kind of snow layers are
formed, as the result of a winter season with snow falls consisting of different
weather conditions. And in the interface between snow layers, there can exist
a weak layer, where fractures can more easily propagate. This theory of ’weak
layers’ is globally accepted, and was tested in[22], and states that fractures can
more easily propagate in these weak snow layers, resulting in huge amount of snow
masses that suddenly starts to slide downhill. But this theory is yet to be proven.
In Figure 2.13a is a schematically drawing of a weak layer with an overlying slab
layer, and in Figure 2.13b you can see an actual photo of an weak layer, and we can
see that these weak layer are extremely porous and probably extremely fragile. In
Figure 2.14 7 the size of a slab avalanches is shown, and in this figure we can also
clearly see the fracture which seperates the avalanche from the rest of the snow
which did not start to slide downhill.

Figure 2.14: Weak layer triggering slab avalanches

7Public domain image, reprinted from National Park Service - U.S Department of the interior
http://www.nature.nps.gov/geology/hazards/avalanche.htm

18

Figure 2.15: Snowdrift, Photo taken by the author at Folgefonna, Norway, 2012

2.2.3 Behaviour of Snow

In Section 2.2.1, we looked into snow as a material and which parameters that
contribute to the material properties. We will now look at some examples of the
behaviour of snow, and how complex it can be.

When looking over a large time span of an entire winter, or several winters,
snow can change into extreme dangerous structures that are extremely fragile. In
Figure 2.15 it is shown a terrain where the snow cover in the upper right corner has
formed a ’snowdrift’, and if the weight of a human is added on top of this structure,
it would most likely collapse, and possible initiate an avalanche dependent on the
surrounding terrain.

Snow also have a very good probability when it comes to sticking itself on the
surfaces on other materials, as displayed in Figure 2.16 on page 20, where we can
see that the trees are almost 100% covered in snow. When snow manages to stick
large amount of snow on other surfaces, it is difficult for the first layer to attach
itself. However, after the first layer has been attached, subsequent snow layers can
more easily stick to the existing snow. And if a large amount of snow is attached,
the mass of the snow will increase, and could eventually fail. And this could be
dangerous if the snow has attached itself outside a large cliff, and then suddenly a
huge amount of snow is dropped down the cliff.

19

(a)

(b)

Figure 2.16: Trees covered in light snow, Photos taken by the author in Nelson,
British Columbia, Canada, 2013

20

P(x, y)

Figure 2.17: FEM domain

2.3 Finite Element Method
The Finite Element Method (FEM) is a computational technique for obtaining ap-
proximate solutions of a boundary value problem, which is a mathematical problem
where one or more dependent variables must satisfy a known differential equation
everywhere in the specified domain of independent variables, and also satisfy the
conditions at the boundary [6].

When solving these problems, the values of the dependent variables are spec-
ified on the boundary also known as the boundary condition, and the complete
system can then be solved because all internal points in the domain must satisfy
a differential equation. These problems are also called field problems, where you
have a field variable which is the dependent variable governed by the differential
equation, and the boundary condition is then the specified field variables at the
boundary of the domain, and depending on the type of problem being analysed
the field variable could be physical displacement, temperature, heat flux, or fluid
velocity.

2.3.1 Introduction

As stated before, FEM tries to approximate the solution of a field variable across
a domain. Imagine that we want to find the solution of a 2D function φ(x, y)
at every point P (x, y) over the domain in Figure 2.17, and a known differential
equation is satisfied at every point.

The finite element method is then used to create a number of finite elements
across the entire domain as shown in Figure 2.18 on page 22. Each element is
then represented by a number of nodes, where the value of the field variable is
calculated. Nodes can either be exterior nodes, which are nodes located on the
boundary of the finite elements, and exterior nodes are therefore used to connect
several finite elements. Or nodes can be interior nodes which is located within a
finite element and cannot be used to connect other finite elements. The element
in Figure 2.18 has 3 exterior nodes.

After the field variable has been calculated for all nodal points (nodes), these
values are used to approximate the value at any point within each element. And
we can then use interpolation to find the approximation everywhere within each
finite element:

φ(x, y) = N1(x, y)φ1 +N2(x, y)φ2 +N3(x, y)φ3 (2.18)

21

3

1

2

Figure 2.18: Finite element within domain

Where φ1, φ2 and φ3 are the values of the field variable at the nodes, and N1,
N2 and N3 are the interpolation functions, and these interpolation functions are
predefined functions of the independent variables, and describes the variation of
the field variable across a single finite element.

The triangular element which we have looked at so far is also said to have
3 degrees of freedom, since it requires the calculation of 3 nodal points in order
to determine the field variable within the entire finite element as displayed in
Equation 2.18 on page 21. But this would only be the case if the field variable
was a scalar value, like temperature. If the domain where representing a thin solid
body subjected to plane stress, the field variable would be a 2D vector representing
displacement within the body, and therefore we would have 6 degrees of freedom.

However, it is not always the actual field variable that we are interesting in
when using the finite element method, e.g. if we want to calculate the strain and
stresses within a body we must first solve the displacement field variable, and then
solve for strain, which is the derivative of displacement w.r.t. time, and then solve
the stresses within the body by the strain-stress relationship defined by Young’s
modulus. These variables are also known as derived variables, however these are
not necessarily continuous within the domain of analysis, but the primary field
variable (in this case displacement) is always continuous within the domain.

2.3.2 General Overview

When using finite element method to solve various problem like heat transfer or
structure analysis, the general approach for implementing the method is always
the same, and in this section we will look at the general overview of the finite
element method.

Preprocessing: The first step of any FEM analysis is preprocessing, and this is
the step where we define the following:

• The geometric domain of the problem

• The type(s) of elements that are being used

• The material properties of the elements

• The geometric properties of the elements, like lengths, area, or volume

22

• The element connections, i.e. exterior nodes

• The physical constraints

• The loadings

Solution: During this phase, the primary field variable is solved across the do-
main. This is accomplished by defining the governing equations in matrix form
and solving for the unknown field variable. These values are then used by back
substitution to compute additional derived variables.

Postprocessing: This is the final step of the finite element method, and consist
of analysis and evaluation of the results.

2.3.3 The Stiffness Matrix

In Section 2.3.2, we looked briefly at the overview of the finite element method,
we will now go more into details of the preprocessing step of the method, where
we will look at the stiffness matrix.

If we apply the finite element method to a structural problem, where the main
goal is the model deformation of a structure caused by applied forces, then the
stiffness matrix is relative easy to understand. In this case, the stiffness matrix
represents the elements resistance to deformation such as axial deformation8, bend-
ing9, shear deformation10, and torsional effects11. But the stiffness matrix term is
also used when solving all kinds of problems with the finite element method, and
in other cases like heat transfer the representation of the stiffness matrix may not
be that clear. However, the general representation of the stiffness matrix is the
elements resistance to change when subjected to external influences.

u1

f1

u2

f2 x

1 2

Figure 2.19: Spring system consisting of 1 one-dimensional element

We will now look at a concrete example of the stiffness matrix [6]. In Figure
2.19 the finite element mesh of a 1D linear elastic spring is modelled. The entire
domain consists of only 1 finite element, where the finite element is represented by
two exterior nodes, and each node has an applied force f and a displacement u. A
linear elastic spring also have the property that when a deformation of length ∆u
is applied, the net force stored in the spring is given by the following equation:

f = k∆u (2.19)
8Deformation with applied force perpendicular to given axis
9Deformation with an external load applied perpendicularly to a longitudinal axis of the

element
10Deformation due to shear stresses
11Twisting of an object due to an applied torque

23

where k is the spring constant

The resulting net force in the spring when a given two nodal displacements u1 and
u2 is then:

f = k∆u = k (u2 − u1) (2.20)

Further we know that for equilibrium conditions f1 + f2 = 0→ f1 = −f2, and we
can then rewrite Equation 2.20 to the following set of equations:

f1 = −k (u2 − u1)

f2 = k (u2 − u1)

Which again can be expressed in matrix format:[
k −k
−k k

] [
u1

u2

]
=

[
f1

f2

]
(2.21)

the above K-Matrix will in this case be the stiffness matrix, and is used to calculate
the displacement with applied forces. The stiffness matrix in this case also is a
2× 2 matrix, this is because that each element (only one in this case) experiences
2 nodal displacements (degrees of freedom), and that they are dependent on each
other. We can also see that the matrix is symmetric, and this is a general results
of the finite element method. A finite element consisting of N degrees of freedom,
will have a N ×N symmetric stiffness matrix.

2.3.4 Global Assembly

In the previous Section 2.3.3, we defined the element stiffness matrix for a system
consisting of 1 element in equilibrium state, the same approach can also be used for
a system consisting of several elements. We will now consider the system displayed
in Figure 2.20, where we have an elastic spring consisting of 2 finite elements, and
3 nodes N1, N2 and N3, and the two elements are connected at node N2. These
nodes will have a global behaviour, which are the global displacement U1, U2, and
U3, and the global forces are F1, F2, and F3. The finite elements will also still
have their local forces and displacements f (i)

k and u(i)
k , where k is the index of the

property, and (i) is the element number. Note that uppercase is used for global
behaviour, and lowercase is used for local element behaviour. We can then do
the same approach as in Section 2.3.3 for each element, and describe the local

U1

F1

U2

x

1 2

U3

F3

3

F2k1
k2

Figure 2.20: Spring system consisting of two spring elements

24

displacement resulting in a local force:[
k1 −k1

−k1 k1

]{
u

(1)
1

u
(1)
2

}
=

{
f

(1)
1

f
(1)
2

}
(2.22a)

[
k2 −k2

−k2 k2

]{
u

(2)
1

u
(2)
2

}
=

{
f

(2)
1

f
(2)
2

}
(2.22b)

To start the global assembly, we must first relate the local displacements u(i)
k at

each element by the global displace Uj. The relation between these variables are
as follow:

u
(1)
1 = U1 u

(1)
2 = u

(2)
1 = U2 u

(2)
2 = U3

Which gives us the following expressions for each element:[
k1 −k1

−k1 k1

]{
U1

U2

}
=

{
f

(1)
1

f
(1)
2

}
(2.23a)

[
k2 −k2

−k2 k2

]{
U2

U3

}
=

{
f

(2)
1

f
(2)
2

}
(2.23b)

In Equation 2.23, we can clearly see that both of the finite element depend on
the exact same displacement U2, which is the node that connects the two element.
The next step in the global matrix assembly is then simply expanding the matrices
in Equation 2.23: k1 −k1 0

−k1 k1 0
0 0 0

U1

U2

0

 =

f

(1)
1

f
(1)
2

0

 (2.24a)

0 0 0
0 k2 −k2

0 −k2 k2

0
U2

U3

 =

0

f
(2)
1

f
(2)
2

 (2.24b)

Next, we add the two matrix systems together to form the systems of equations
for the entire structure. k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2

U1

U2

U3

 =

f

(1)
1

f
(1)
2 + f

(2)
1

f
(2)
2

 (2.25)

Then finally we need to express the matrix in Equation 2.25 by the global force
F1, F2, and F3, where we have the following relationship between the local force
f

(i)
k and Fi:

F1 = f
(1)
1 F2 = f

(1)
2 + f

(2)
1 F3 = f

(2)
2

Which gives us our final global system of equations: k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

U1

U2

U3

 =

F1

F2

F3

 (2.26)

The K matrix in Equation 2.26 is now the system stiffness matrix, which represents
the entire structure consisting of two finite elements connected at a single node.
Also note that this is a symmetric matrix, and is simply a superposition of the
element stiffness matrices.

25

2.4 Compute Unified Device Architecture
Compute Unified Device Architecture (CUDA) is a development toolkit developed
by Nvidia and was first released in 2007. This development toolkit includes a
Nvidia Cuda Compiler (NVCC), which is used for compiling a relative high-level
language called CUDA C/C++ into PTX code, which is a low-level parallel thread
execution virtual machine and instruction set architecture (ISA) supported by
Nvidia GPUs. The toolkit is also shipped with a profiling tool, and a set of highly
optimized libraries like:

• cuFFT

• cuBLAS

• cuSPARSE

• and several more

The CUDA toolkit has been released for several different versions, and is currently
at version 6.0 which was released April 2014, where the latest news is the Unified
Memory which makes it easier for a programmer to access the same memory from
both the CPU and GPU and does not require to explicitly manage memory transfer
between them. However, this feature is not used in this project, and therefore we
will not discuss that any further.

CUDA is used to perform General-Purpose computing on Graphics Process-
ing Units (GPGPU) and has been available since the GPUs became more pro-
grammable [15]. Before the GPUs became more programmable, you had different
hardware units located on the GPU which was a specialized unit to execute the
different parts of the GPU pipeline. However this was shown to be not that op-
timal since the pipeline could be given an uneven workload, therefore the GPU
hardware units became more general and programmable which removed this prob-
lem on the GPUs with an uneven workload. But this also caused a side-effect of
enabling GPGPU, and has become much easier nowadays.

2.4.1 Development

When developing in CUDA C/C++, you define a so called kernel (Listing 2.1),
which is essentially a function that should be executed on the GPU, and the syntax
is very similar to the usual C/C++ syntax. The main difference is that you have
the prefix "__global__", "__host__" or "__device__" before the function,
and this specifies whether the kernel should be available for both the CPU and
the GPU to execute, or if only the CPU/GPU should have access to the function.

Listing 2.1: CUDA kernel
1 /**
2 * CUDA kernel executed on the GPU
3 **/
4 __global__ void testFunction(int *array){
5 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
6 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
7 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
8 int i = id_y*Nx*Nz + id_z*Nx + id_x;
9 array[i] = i;

10 }

26

And when you call these kernels, you have to specify the number of threads
and number of blocks you want to execute the function on the GPU (block and
grid size), where the syntax is shown in Listing 2.2.

Listing 2.2: Calling a CUDA kernel
1 // Specifies a 1D layout of threads (Total of 10*1024 threads)
2 dim3 block1d (10);
3 dim3 grid1d (1024);
4
5 // Specifies a 2D layout of threads (Total of 10^2 * 32^2 threads)
6 dim3 block2d (10, 10);
7 dim3 grid2d (32, 32);
8
9 // Specifies a 3D layout of threads (Total of 10^3 * 8^3 threads)

10 dim3 block3d (10, 10, 10);
11 dim3 grid3d(8, 8, 8);
12
13 // Calls the kernel with a given number of threads
14 testFunction <<<block1d , grid1d >>>(pointer);
15 testFunction <<<block2d , grid2d >>>(pointer);
16 testFunction <<<block3d , grid3d >>>(pointer);

As you may have noticed, there are some new terms used like block and grid,
which is used when calling a CUDA kernel. This is how threads are structured
when executing a function on the GPU, and is either a 1, 2, or 3 dimensional
structure. These structures are then used to determine which threads that are
executed together, and also the threads that have access to the same memory.

Then when the CUDA kernel is executed, you can use the gridDim, blockDim,
blockIdx, and threadIdx to get the dimensions and the indices of of the current
block and thread in X, Y , and Z directions.

2.4.2 Memory

When developing in CUDA you have access to a lot of different memory locations
which impact the performance of your application. When developing for the CPU
you have one main memory, and to obtain good memory performance you only need
to think about the cache utilization, but there are not different kind of memory
locations that you have available. But this is quite different on the GPU, where
you have access to the following memory locations with different properties listed
in Table 2.112.

Table 2.1: CUDA memory types

Memory Location Cached Access Scope
Register On-chip No Read/write One thread

Local Off-chip Yes13 Read/write One thread
Shared On-chip N/A Read/write Threads within a block
Global Off-chip Yes Read/write All threads + host

Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read14 All threads + host

The memory model is also displayed in Figure 2.21 , where it is more easier to
visualize how the threads and blocks are divided, and the memory locations they

12Data from: http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/
215900921

13Cached in the Fermi architecture and newer
14CUDA 2.1 and previous

27

http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/215900921
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/215900921

Figure 2.21: CUDA memory model, with permission from Nvidia

have access to. Also some of these memory locations are automatically used like
registers and the local and global memory, however to take advantage of the fast
on-chip fast memory, you have to explicitly declare certain variables to be located
within the shared memory. It is also similar syntax when using the constant
memory. However using the texture memory requires slightly more programming.

And regarding the actual performance of the different memory types, then
the preferred memory types are the fast on-chip registers and shared memory.
However these are extremely limited, e.g. on the Fermi architecture you have a
total of 32768 registers per Streaming Multiprocessor (SM), which sounds like a
lot of registers, but if you execute one block per SM with 1024 threads per block
you end up with 32 registers per thread. And the size of the shared memory is
actually configurable, where you have a total of 64 KiB per SM which is used for
both the shared memory and a L1 cache.

2.4.3 Streaming Multiprocessor

The streaming multiprocessor (SM) is the basic building block of Nvidia GPUs
that determines the GPU’s performance. The SMs are changed from architecture
to architecture, and consists of a given number of cores, special function units,
load/store units and so on. A number of SMs are then added to the GPUs to
increase the total number of cores available for the GPU.

In Figure 2.22 on page 29 the SM for the Fermi architecture is shown, where
each SM has a number of 32 cores, a register file, 4 special function units, 16
load/store units, and some shared memory and caches. And within the SM you
also have the warp scheduler, which is used to execute warps. Warps are in the

28

Figure 2.22: Streaming multiprocessor for the Fermi architecture

Nvidia terminology used for a fixed size group of 32 threads that are executed
simultaneously, and Instructions are broadcasted to 32 CUDA cores within a SM
which are used to execute 32 thread.

Since threads are executed simultaneously within warps, and the instruction are
broadcasted to the group of threads, it is important to avoid any thread divergence
when programming kernels where you need to branch. This mean that if your
branching causes 16 threads within a warp to diverge from the other 16 threads,
until the point where they join the same execution path, 16 threads will execute
their instruction and the other 16 will perform a no-op i.e. become idle. Afterwards
the other group of threads will perform theirs operation while the first group is idle.
Then continue like this until the two groups has executed their set of instructions.

We will also look briefly at the SM in the Kepler architecture, which is called
SMX in this architecture. The SMX is shown in Figure 2.23 on page 30 which
has a total of 192 CUDA cores, 64 double precision units, 32 load/store units, 32
special function units, and twice as larger register file as in the Fermi architecture.
And the warps scheduling system is also a more complex, where you have twice as
many warp scheduler units.

Also since the streaming multiprocessor is the basic building block of the GPU,
this gives the Kepler architecture a huge increase in the total number of cores
available on GPUs. e.g the high end GTX-480 GPU with a number of 15 SMs
gives a total of 480 CUDA cores, and the high end GTX-580 GPU with a number
of 16 SMs gives a number of 512 CUDA cores. However when looking at the total
number of CUDA cores on the Kepler architecture this gives a total of 2880 CUDA
cores for the GTX-780 Ti, which has 15 SMXs.

29

Figure 2.23: Streaming multiprocessor for the Kepler architecture

30

2.4.4 GeForce and Tesla GPUs

The GPU industry are mainly driven by the demand of gaming, and it is only the
last couple of years that we are using GPUs for scientific applications. And this
transition has changed some of the demands of GPUs, and this is why you have
two different types of GPUs namely the GeForce GPUs applicable for gamers, and
the Tesla GPUs which is desirable when using GPUs for scientific applications.

The two types of GPUs are not that different, however there are a few notewor-
thy. Where the first most obvious difference is that there are no graphical output
on the Tesla GPUs, which means that you have absolutely no way to connect a
display to a Tesla GPU and use the device for rendering. The reason why this is
removed is probably because it is removed in order to make room for additional
hardware, which we will come back to. However, these kind of GPUs are used
for calculations only, and if you need visualization you will have to connect e.g
a GeForce GPU and transfer the memory between the two GPUs before you are
able to visualize anything. But many scientific applications does not require any
rendering, and utilizes the GPUs for computation only.

However, lacking the graphical output, Tesla GPUs will always have a consid-
erably larger amount of memory available. e.g. the newest Tesla K40c has a total
of 12 GiB of memory, and the GeForce GPUs usually has a maximum of 3-4 GiB.
This is most likely caused due to that scientific applications can often require a lot
of memory, and therefore it is very convenient to have a large amount of memory
available on the GPU, such that you do not need to transfer parts of your data
back and forth between the GPU device and the host main memory.

The Tesla GPUs also has additional hardware units used for double precision,
which is sometimes required for scientific applications. e.g. the GeForce GPUs
typically has a ratio of 1/24 between FP32 and FP64 units, and the Tesla GPUs
has a ratio of 1/2 - 1/3.

Lastly, the Tesla GPUs have support for Error Checking & Correction (ECC)
memory which is more discussed in Section 6.7.

31

Chapter 3

Previous & Related Work

In this Chapter, we will look at some previous and related work, where Section
3.1 is used to discuss the previous work, and Section 3.2 is used to look at some
related work.

The previous work for this thesis include; the HPC-lab snow simulator, where
we go into details for both the initialization and main loop of the snow simulator.
Further we will look briefly at my specialization project which lead up to this
master thesis, and lastly we will look into some work performed by Christian
Sigrist, which performed fracture testing on different types of snow specimen, and
it is from this work that I have obtained critical parameters for my simulations.

Regarding the related work we will first look at a Framework developed at
"WSL Institute for Snow and Avalanche Research SLF". This framework is used
for modelling snow layers, and they also attempt to predict avalanches (Avalanche
prediction is to my knowledge in an early stage. I looked into the API for the
framework and found some method for retrieving a snow layer stability index,
however how this is calculated is not know). We will also look into another project
which uses the FEMmethod and fracture mechanics in 2D for avalanche prediction,
however in 3D they uses another method called damage mechanics, where they
predict avalanches based on the strain rate in the snow layers.

3.1 Previous Work

3.1.1 Snow Simulator

Previous work in the HPC-Lab at NTNU has been to develop a snow simulator,
which simulates a given number of snow particles interacting with a wind field of
a configurable resolution (see Figure 3.1 on page 33). And the snow simulator has
been a focus area for several different master thesis and specialization projects,
ranging from:

• Improving the visualization [16]

• Porting to GPU, using CUDA technology [2]

• Terrain Rendering Techniques[1]

• Optimal road routes generation using the A* algorithm [13]

• Porting to OpenCl[24] and OpenACC[14]

32

Figure 3.1: HPC-Lab snow simulator

• Snow layer modeling concept [26]

However, the initial snow simulator was developed by Ingar Saltvik in 2006[20],
which could simulate 40 000 snow particles with 28 and 51 frames per second by
using 1 and 2 threads respectively. Then later in 2009, Robin Eidissen ported the
simulator over to CUDA[2] where he successfully simulated over 2 000 000 snow
particles in real-time on a Nvidia GTX 280 GPU.

3.1.1.1 Initialization

The snow simulator starts up with a configuration screen which is loaded with
default values. At this step the user can modify certain simulation parameters,
and there is also some informational fields like; terrain map information and size,
size of the window and fullscreen option, terrain shader type, wind field resolution
in X, Y, and Z direction, shadow option, the number of snow particles, and a
snow growth coefficient which determines how fast the snow cover grows. The
configuration screen is shown in Figure 3.2 on page 34.

After the configuration is done, the user presses the "Start" button which starts
the simulation based on the parameters specified in the configuration step. First
the terrain is initialized by reading the terrain data which is a two-dimensional
heightmap, and another 2D heightmap is also used for representing the snow cover
height over the terrain. However, in the implementation, the two heightmaps
representing the terrain height and snow height are added together into a single
2D array consisting of 4 float values, where the two first represents the X, Y
coordinate, and the two latter represents the terrain and snow height at the X, Y
coordinate. These heightmaps are then bound to a vertex buffer object such
that OpenGL can be used for visualizing. The buffers are also associated with
CUDA such that the GPU can update the snow cover data. Then all the terrain
shaders are compiled and textures are loaded, and the snow layer modeling data
is transferred to the GPU.

Afterwards the wind field is initialized, and in this step the pressure field used
for simulating the wind field is initialized and the obstacle field is created. The
obstacle field is a coarse version of the terrain data which the wind field uses,

33

Figure 3.2: Snow simulator configuration screen

and is periodically updated while the simulation progresses, due to the snow cover
increases in height. The wind velocity data is also bound to the GPU as a texture,
this is due to the interpolation in the wind field which depends on the spatial
neighbours, and therefore the texture memory is more suitable to use due to the
texture caching.

Then the last step of the initialization process is executed, and this is where
the snow particles are initialized. First all the snow particles are initialized with a
random location within the simulation domain, and they are also associated with a
random spiral value ∃ [0, 2π] and determines the spiral flow of the snowflakes, the
data is then bound to vertex buffer objects making the data available to OpenGL
for rendering, and the vertex buffer is also associated with CUDA system, making
it available for simulating the snow particles. Then lastly the shaders for the snow
particles are compiled.

3.1.1.2 Main Loop

The main loop is the part of the simulator where all the calculations are performed.
At this point, all the necessary data has been transferred to the GPU, and the
CPU only instructs the GPU to perform several different tasks. In Figure 3.3 on
page 35 is a short overview of the main loop of the snow simulator.

Firstly a minor operation is performed, which is calculating the number of
frames per second (FPS). The FPS is also displayed while the simulator is run-
ning in order to have control over the original real-time requirement of the snow
simulator.

After the FPS is calculated, the obstacle field is updated. However, since the
obstacle field is only changing with increasing snow height, the update operation
is only performed once every 1000 frame. Updating the obstacle field is performed
on the CPU, and the algorithm loops over the 3D wind field and compares the
obstacle field with the snow height data. The snow height data is transferred to

34

Update FPS

Update Obstacle Field

Simulate Wind

Move Snow Particles

Update Snow Layers

Render

Figure 3.3: Snow simulator main loop

the host at the beginning of the function, then after comparison, the new obstacle
field is transferred to the device.

After the obstacle field calculations are done, the simulation of the wind field
is executed. The calculation of the wind field is performed on the GPU, and when
the wind field is accessed the 3D texture memory is utilized due to the spatial
access pattern in the wind field.

Next the snow particles are updated, and is also executed on the GPU, and
uses the snow particles position in space, and the wind velocity field to calculate
the motion of the snow particles. This part of the snow simulator is by far the
most expensive kernel, and uses about 50% - 60% of the GPU time depending on
the number of particles that are being simulated. Each particles also have a spiral
value determining the amount of spin the particle should experience. If individual
snow particles are observed in the snow simulator, we can see that they follow a
circle path towards the terrain, and the radius of the circle is uniquely defined by
each particle. Collision detection between the snow particles and the terrain is also
performed at this stage, and since the terrain is represented by a 2D heightmap,
this collision detection is very simple. And when a snow particle collides with the
terrain, the particle is relocated to a random position in the top of the simulation
domain, and the snow buildup is increased at the collision point with a configurable
amount, and the snow buildup at the surrounding terrain neighbouring points are
also increased with a given amount.

After the snow particles has been moved, and the snow buildup across the
terrain has been incremented, the terrain snow layers are updated. At the previous
version of the snow simulator[26] this consisted of two steps. Firstly, the snow layer
model is updated, iff a new snow layer has been covered with snow, i.e. the snow
has increased with a predefined amount of snow. (The snow layer model had the
purpose of keeping track of the weather conditions present when each snow layer
is filled, and was storing the air humidity and temperature). After the snow layer
model is updated, some proof of concept calculations was performed in order to
predict where avalanches could occur. This prediction was implemented in a scan
line approach, due to huge mesh sizes, and visualization of the avalanche prediction

35

where implemented.
However, since the mesh generation process had to be changed in this project,

the function for filling the snow layer mesh is no longer valid and will have to be
reimplemented. This is discussed more in Section 7.3.1.

Then finally the render stage is started, where the render function for each part
of the simulator is called. i.e. the snow class is responsible for rendering the snow
particles based on the currently active shader, and similar for the terrain and wind
classes. But the wind class is only rendering if certain debug options are selected,
like rendering the wind velocity lines, or rendering the wind pressure field.

3.1.2 Snow Layer Modelling

In this project, we will continue the work of the previous ’HPC-lab Snow Simula-
tor Improvement Terrain Model Expansion & Avalanche Prediction’ [26], but only
parts will be used. The previous project consisted of two separate kernels, one
which updated the snow layer model while the snow increases over the terrain,
and another kernel which had the proof of concept calculations which predicted
where avalanche could occur. However, these calculations where not physically
correct, and in this project these calculations will be replaced by prediction based
on fracture mechanics, which will be more physically correct.

In Figure 3.4, the snow layer model is visualized, where you have a configurable
mesh size in 3D space. And in the figure you can see a set of red vertices and
black vertices, representing the snow layers that are filled with snow. And for each
vertex, properties are stored for representing the weather condition present when
the vertex was covered with snow.

But again, since the mesh generation process had to be changed in this project,
the algorithm for filling the mesh with weather condition data was no longer valid,
however the mesh structure itself are still present in the code, and we simply have
to rewrite the filling algorithm.

Figure 3.4: Snow layers over the terrain

36

F

F F

1

2 3

a

L

Figure 3.5: Three point bending test, F1 = 2F2 = 2F3

3.1.3 Snow Layer Measurement

When using fracture mechanics to calculate where fracture will propagate in the
snow layers, we will need to determine several different material constants for snow,
and these constants are also varying for different types of snow. But there are some
researchers around the world which carry out experiments on snow specimen, in
order to discover these material constants. One of these researchers is Christian
Sigrist from the Swiss federal institute of technology zurich, which performed dif-
ferent fracture experiments on different kind of snow specimen in his PhD thesis
’Measurement of Fracture Mechanical Properties of Snow and Application to Dry
Snow Slab Avalanche Release’ [21].

In his thesis, he performed the three point bending test (3PB) and the cantilever
beam test (CB). The 3PB test is shown in Figure 3.5, and is a method for measuring
the tensile strength of a homogeneous material. When the load F is applied, then
stress field within the specimen will form a mode I fracture, where the tensile force
within the material is perpendicular to the fracture plane. The applied force and
the displacement can then be recorded, in order to construct the force-displacement
diagram and the stress-strain diagram, which plays an important role in fracture
mechanics.

The force-displacement graph is a graph where the force is recorded while
the object generating the force F1 in Figure 3.5 is displaced a given amount. In
Figure 3.6 on page 38 is an example of a load-displacement graph, where we can
see that while the displacement increases, the force is increasing linearly up to a
point where the structure fails. The stress-strain graph is also similar, however
the Y-axis shows the stress σ = F/A, and the X-axis shows the strain ε = ∆L/L.
Putting things more into perspective, when Sigrist performed the 3PB tests on
snow specimen [21] the resulting graph is quite similar to the example in Figure
3.6, and the peak load of failure was equal to Ff = 29.4N , and the displacement
at this point was d = 1.2mm.

The cantilever beam test was also used in order to find mechanical properties
of heterogeneous snow, i.e. snow specimen consisting of multiple snow layers with
different grain types. Especially specimen with a weak snow layer was tested,
because it is strongly suggested that weak snow layers are an important factor

37

Force

Displacement

Figure 3.6: Example load displacement graph

when slab avalanches are released. The CB-test setup is shown in Figure 3.7 on
page 39, where snow specimen consisting of three layers was tested. In the test,
one layer L2 is resting on a table, where another layer L1 is only supported by the
shear forces in the snow and a additional force is applied to the layer by the mass
m, and between the two layers there is a weak layer with a cut of a given distance
a, and the whole structure is also tilted a degree θ towards the table. A saw was
then used to increase the distance a until failure.

Homogeneous snow tests: The tensile strength of the material was found by
performing the 3PB test, and the critical stress intensity factor was also found in
his experiments with mode I loading and found the following:

E ∃ [14, 60] MPa (3.1)

σf = 240

(
ρ

ρice

)2.44

kPa (3.2)

Where ρice = 917kg/m3

and
KIc = 4.2× 10−4ρ2.76Pa

√
m (3.3)

Heterogeneous snow tests:

E = 1.89ρ2.94Pa (3.4)

Gc = 0.044± 0.020J/m2 (3.5)

KII = 0.49± 0.36kPa
√
m (3.6)

Field tests:
Gc = 0.066± 0.014J/m2 (3.7)

Critical energy release rate in a weak snow layer

38

θ

a

L

m

1

L

L 2

Figure 3.7: Cantilever beam test

3.2 Related Work

3.2.1 SNOWPACK

The institute for snow and avalanche research SLF in switzerland, has developed
a model of the snow cover called SNOWPACK[3]. It models changes in the snow
layer based on meteorological input and was primarily developed to improve the
avalanche forecast warnings.

SNOWPACK is developed as a C library, and it solves the mass and energy
balance equations by using a Finite Element numerical scheme, and the following
individual processes are modelled in the snow layers:

• Heat Transfer

• Settling

• Phase change

• Water transport

• Metamorphism

It has also been written a lot of different reports of the SNOWPACK model, rang-
ing from the development phase of the model where the numerical model and
physical properties was the main focus [17, 11, 10], validation of the SNOWPACK
model w.r.t actual snow layers[18], to avalanche forecasting by using the SNOW-
PACK model [5].

39

Hence SNOWPACK is a very active project, and they obtain very accurate
modelling of snow cover. However, I do not know how the avalanche danger is
calculated in the framework. Also, as stated earlier, the avalanche prediction in
this library is in a quite early stage, and the home page1 to the library has the
following quote abote the avalanches prediction

’This is a first "shot" and it would be a miracle if we got it right at the very
beginning.’

However, this framework would be perfect to model the snow layer properties
and changes over time, which is an important factor when finding the critical
energy release rate Gc, but due to the time scope of this project the critical energy
release rate had to be hard coded into the simulator, and when simulating different
snow layers, the code has been changed and recompiled.

3.2.2 Snow Modelling

Martin Stoffel used the finite element method to model snow layers and avalanche
formation in both 2D and 3D in 2005[22]. The 2D finite element model uses
fracture mechanics in order to determine the fracture behaviour in these so called
weak-zones, which is described in Section 2.2.2, under Paragraph Slab avalanches:.

However he states that the 2D model is difficult to apply in practical situations,
because in his simulation, the initial conditions contains a weak-zone with a given
lenght a, and in practice, the formation of these weak-zone are not known. And
the 2D simulation only serves as a verification to the weak-zone model, which
states that a precondition for a slab avalanche to occur are these weak-zones with
a length between 6m < a < 10m.

In the 3D model, he changes approach where he uses Damage Mechanics, which
is suitable for making engineering predictions about the initiation and propagation
of fractures within materials, without resorting to a microscopic description that
would be too complex for practical engineering analysis. He also uses a so called
N-directional approach, and is an idea of describing strain by using the normal
strain in N evenly distributed directions, and can be modelled by simple spring
elements.

A simple example of how damage mechanics works is by Figure 3.8 on page 41,
where a damage function is introduced into Hooke’s law:

F = D(x)× k u

where the damage function D(x) return values in the range [0, 1], this results
that an undamaged spring has D(x) = 1, and thus the spring constant is equal
to the original constant k, and a damaged spring gives D(x) < 1, resulting in
D(x)× k < k, which gives the result in Figure 3.8.

When having an undamaged spring with an external force applied at the end
of the spring, it will result in a displacement u1 (Figure 3.8a), and when the spring
is damaged the end of the spring will be displaced by a greater value u2, when the
same force is applied (Figure 3.8b).

1https://models.slf.ch/docserver/snowpack/html/index.html

40

https://models.slf.ch/docserver/snowpack/html/index.html

u1

(a) Undamaged spring

u2

(b) Damaged spring

Figure 3.8: Impact of damage on elastic spring

This is then applied in his 3D avalanche model when calculating the strain
rate of the snow. And it is also experimentally tested that when the strain rate is
greater than approximately 10−4s−1 snow behaves brittle, this is then used when
calculating the damage function of the finite elements.

41

Chapter 4

Implementation

In this chapter, we will look at the implementation of this project, like the calcu-
lation of the displacement of the snow structure based on Hooke’s law, and further
how we derive normal and shear strain and stresses from the displacement.

We will also look into how we defined a relationship between the stresses and
fractures, and then further how these stresses are used to calculate the energy
release rate, which is necessary in order to calculate the propagation of fractures.

It should also be noted that the implementation discussed in this chapter was
not the original approach that we had in mind, but is the result after a first attempt
and is shown in Appendix G.

4.1 FEM
As described in Section 3.1.1.1, the snow simulator represents the terrain by a
two dimensional heightmap, where a unique height value is stored at each (x, y)
coordinate. When deciding the type of finite element being used for calculating the
displacement field variable in the simulator, the first thought was parallelepiped
across the entire domain. This would be the easiest mesh to generate, because the
terrain vertices could be duplicated and add an additional increment dy in the Y
direction, and then repeat the process a number of times. However, this kind of
element would probably not generate any shear forces when all nodes are applied
a force in Y direction only (see Appendix B for more description). And therefore
a slightly more complex mesh generation was selected which results in a number
of cubes across the entire domain with sides dx, dy, and dz, and this results that
cubes located in steep slopes will experience more shear stress than cubes located
in flat terrain.

However, the cube approach had another potential drawback, which is that
the 4 vertices representing each side will not necessarily be within the same plane,
and therefore the finite elements would not be a perfect cube. And how this
would impact the simulation was not known, but a solution to this problem that
was tested was to further subdivided each cube into 5 tetrahedrons. But after
this method was chosen it was discovered that the displacement calculations was
experiencing a vibration across the entire domain, and by testing the original
finite element cube it was discovered that the vibration was slightly minimized.
Therefore the cubes was selected as the finite element, and this is discussed more
in details in Section 6.9.

In Figure 4.1 on page 43, the selected finite elements is displayed, and to solve
the fracturing problem, we will first have to calculate the stress in the structure,

42

z

y

x

5

3

4

8
6

7

2

1

Figure 4.1: Finite element cube

which is calculated by the following steps;
First we need to calculate the displacement for each node in the structure, the

displacement is solved by considering each element as a elastic material, and the
displacement u can then be solved by the following equation when external load
is applied (elaborated in Section 4.1.2):

f = ku (4.1)

where f ∃ R3 is the external force, k ∃ R is the spring constant, and u ∃ R3 is the displacement

Next we need to calculate the strain, which is defined as the displacement between
particles divided by a reference length. The strain can be divided into normal and
shear strain, and for a isotropic material which obeys Hooke’s law, then normal
strain is defined as the following:

εx =
∂ux
∂x

(4.2a)

εy =
∂uy
∂y

(4.2b)

εz =
∂uz
∂z

(4.2c)

where ε is the strain, and u is the displacement

And the shear strain is defined as the following:

εxy =
∂uy
∂x

+
∂ux
∂y

(4.3a)

εyz =
∂uy
∂z

+
∂uz
∂y

(4.3b)

εxz =
∂ux
∂z

+
∂uz
∂x

(4.3c)

where εxx is the shear strain in the xx plane

Finally the normal and shear stress can be calculated by the definition of young’s
modulus:

σ = Eε (4.4)

43

(x1, y1) (x2, y2)

(x3, y3) (x4, y4)

dx

dz

Figure 4.2: FEM mesh generation

where E is young’s modulus, which is a material constant

To represent the snow layers as an elastic material may not be that accurate,
however since snow is an extremely complex material, accurately modelling the
snow layer mechanical properties would take a lot of time, and is therefore left out
from this project. The main goal will be to calculate the fracture propagation based
on the stresses in the structure, which again are depending on the displacement
in the snow layers, and the displacement calculation can be substituted at a later
stage to obtain more accurate results.

4.1.1 Mesh Generation

The size of the mesh determines the load on the GPU, therefore, the mesh gen-
eration process is implemented with a configurable dx, dy, and dz, such that the
mesh can be easily reconfigured if compute or memory should be a bottleneck with
the GPU used.

When generating the mesh, the first step is to generate all nodes located in
the bottom layer. This layer will be generated based on the terrain vertices, and
the mesh dx and dz. In Figure 4.2 the terrain heightmap is illustrated, where the
height value stored in each node (xi, yi) vary across the entire terrain. The dx and
dz is then used to either generate a finer or coarser mesh. And if dx = dz = 1, the
bottom mesh layer will have exactly as many vertices as the terrain.

After the first layer of nodes is generated, the remaining layers are calculated
based on the normal vector on the layer beneath the current, illustrated in Figure
4.3 on page 45. To calculate the normal vector at the terrain, we need 5 vertices
at the layer underneath, the normal vector at (x, z) in the terrain will then be
calculated as below:

~n = (v1 × v2) + (v2 × v3) + (v3 × v4) + (v4 × v1)

where v1, v2, v3 and v4 are illustrated in Figure 4.3

44

(x, z)

(x, z-1)

(x-1, z)

(x, z+1)

(x+1, z)v3

v4

v2

v1

Figure 4.3: Normal vector calculation

dx

dy

Figure 4.4: FEM mesh generation

The terrain normal vector is then normalized, then given the lenght dy which gives
us the final position for the above node. The resulting mesh for the entire structure
will then be as illustrated in Figure 4.4 on page 45.

4.1.2 Global Displacement

The calculation of the displacement of each node will be performed using a global
numbering scheme of the nodes. The numbering is displayed in Figure 4.5 for the
bottom mesh layer, and in Figure 4.6 on page 47 for a finite element number i,
where Mx is the total number of nodes in X direction, and Mz is the total number
of nodes in Z direction.

The relationship between the force and the displacement for each node will be;
the spring constant times, the sum of the displacement for the neighbouring nodes
in X,Y, and Z direction, minus the displacement of the current node:

Fj = k(i) (Ux + Uy + Uz − 3Uj) (4.5)

where Fj is the external force on node j, k(i) is the spring constant for a finite element number i, and Uj is the
displacement of node j

If we then define these equations for all nodes for a given finite element i, and

45

U0 U1 U2 UMx-1UMx-2

UMx UMx*2 -1

UMx*Mz -1

Figure 4.5: Global displacement numbering for bottom mesh layer

assemble these into a set of equations we will end up with the following system of
equations:

k(i)

−3 1 . . . 1 0 . . . 1 0 . . . 0 0
1 −3 . . . 0 1 . . . 0 1 . . . 0 0
...

...
...

...
...

1 0 . . . −3 1 . . . 0 0 . . . 1 0
0 1 . . . 1 −3 . . . 0 0 . . . 0 1
...

...
...

...
...

1 0 . . . 0 0 . . . −3 1 . . . 1 0
0 1 . . . 0 0 . . . 1 −3 . . . 0 1
...

...
...

...
...

0 0 . . . 1 0 . . . 1 0 . . . −3 1
0 0 . . . 0 1 . . . 0 1 . . . 1 −3

Ui
Ui+1
...

Ui+Mx

Ui+Mx+1
...

Ui+Mx∗Mz

Ui+Mx∗Mz+1
...

Ui+Mx∗Mz+Mx

Ui+Mx∗Mz+Mx+1

=

Fi
Fi+1
...

Fi+Mx

Fi+Mx+1
...

Fi+Mx∗Mz

Fi+Mx∗Mz+1
...

Fi+Mx∗Mz+Mx

Fi+Mx∗Mz+Mx+1

(4.6)

And we can see that the stiffness matrix is symmetric, which is a requirement of
the finite element method, and in addition the system of equation can be reduced
to a 8×8 matrix because each finite element has 8 nodes, and 8 degrees of freedom.
But since the matrix is consisting of vectors ∃ R3, the stiffness matrix are in reality
a 24× 24 matrix, with 24 degrees of freedom. The systems of equations is solved
by using the iterative method called ’Successive over-relaxation’, with an initial
guess of x = 0. The method it outlined in Listing 4.11.

Listing 4.1: Successive over-relaxation Method
1 Inputs: A, b, ω
2 Output: φ
3
4 Choose an initial guess φ to the solution
5
6 repeat until convergence
7 for i from 1 until n do
8 σ ← 0
9 for j from 1 until n do

10 if j 6= i then
11 σ ← σ + aijφj
12 end if
13 end (j-loop)

1Pseudocode obtained from http://en.wikipedia.org/wiki/Successive_
over-relaxation

46

http://en.wikipedia.org/wiki/Successive_over-relaxation
http://en.wikipedia.org/wiki/Successive_over-relaxation

i

i + 1

i + Mx

i + Mx+1

i + Mx*Mz

i + Mx*Mz + 1

i + Mx*Mz + Mx

i+Mx*Mz+Mx+1

Figure 4.6: Global displacement for a finite element number i

14 φi ← (1− ω)φi + ω
aii

(bi − σ)

15 end (i-loop)
16 check if convergence is reached
17 end (repeat)

And lastly we must add the constraint that the nodes located at the bottom
layer will not have any displacement, i.e. Ui = 0 ∀ i ∃ [0,Mx ∗Mz − 1] ⊂ N, to
eliminate any rigid body motion of the entire structure.

4.1.3 Local Displacement

A fracture is the physical response from a system in a non-equilibrium state to
achieve equilibrium. In our case, each element is experiencing a displacement of
each node, resulting in a stress field within the structure, and when local stress
concentrations are large enough, the stress can generate fractures which is the
response of the structure to achieve equilibrium, i.e. fractures is generated in
order to reduce the stress and displacement within the structure.

In order to define the fracture process as a process to obtain equilibrium, the
process must decrease the displacement field within the elements with an increment
in fracture length. This is accomplished by defining a relationship between a local
displacement, the global displacement, and the fracture length a illustrated in
Figure 4.7. The illustration shows that when a fracture occurs on a given plane
between the finite elements, then the local displacements for the elements which
are perpendicular to the fracture plane will be reduced by the following equation.

ui = f (a)Ug(i) (4.7)

where f (a) is a function where f (0) = 1 and lima→∞ f(a) = 0, u is the local displacement, U is the global
displacement, and g (i) is a mapping function from local to global indices.

47

x

y
z

ai

uk

uj Ui

Figure 4.7: Fracture decreasing local displacement

The local displacements are then used when calculating the stress field within
the structure, and this gives us that when a fracture propagates, the local displace-
ments will be reduced, which again reduces the stress field. The f(a) function used
in this project is the following:

f(a) =
1

1 + γa
(4.8)

where γ is a configurable stress release factor

4.1.4 Local Strain and Stress

The strain calculation will be performed for each edge between two nodes of the
finite elements as shown in Figure 4.8 on page 49, where both the normal and shear
strain will be calculated. To calculate the normal strain between two vertices v1

and v2 with a displacement u1 and u2 we will be using the following equation:

εn =
||u1 − u2|| (u1−u2)∗(v1−v2)

||u1−u2|| ||v1−v2||

||v1 − v2||
=

(u1 − u2) ∗ (v1 − v2)

||v1 − v2||2
(4.9)

where the numerator is the dot product between two vectors times the total displacement, and the denominator
is the length between vertices v1 and v2

Where Equation 4.9 gives us the strain in normal direction only, and any shear
deformation is left out.

The shear strain is also calculated, and is defined as the change in angle between
two lines. So when calculating the shear strain between two vertices v1 and v2

where they both have a displacement u1 and u2 the dot product formula between
two vectors will be used:

εs = acos

(
(v1 − v2) · ((v1 + u1)− (v2 + u2))

||(v1 − v2)|| ||(v1 + u1)− (v2 + u2)||

)
(4.10)

After the normal and shear strain is calculated we can then find the normal and
shear stress by the Elastic modulus which is defined as the following:

E =
σ

ε

48

ε3

ε12

ε5

ε6

ε4

ε8

ε7

ε11

ε10

ε2

ε9

ε1

Figure 4.8: Strain calculation

4.1.5 Fracture Propagation

The last next step for calculating the fracture process can now be performed when
the normal and shear stress is calculated. The method used is called Elemental
Crack Advance, and calculates the energy release rate based on a specified ’da’
which represents the fracture increment.

However, according to [23] they state that this da value needs to be low in order
to obtain accurate results, but they do not say anything about the magnitude of
this parameter. And multiple simulations was therefore performed in order to
obtain a value of da, and the results are shown in Section 5.2.1.3 and 5.2.1.4.

The fractures will be restricted to grow along the surfaces between the finite
elements, and each node will have a vector containing data on the fracture length
from that node, where each ai ∃ R6. This 6D vector can represent a fracture grow-
ing parallel with all axis, namly {±x,±y,±z}. By using these separate fracture
length in both positive and negative axis directions, we can support fractures
propagating independently in both directions.

If we look at Equation 2.15 on page 12, the energy release rate is defined for
a elliptic fracture in a plate. However, this equation is defined for a fracture that
propagates at the same rate on both sides of the element, i.e. the fracture length
a is equal for z = 0 and z = B (Figure 2.8 on page 12). But in this project the
fractures will be able to propagate freely along all 3 axis, and therefore we will have
formulate the energy release rate to better fit our elements, and David Roylance
has a paper on introduction to fracture mechanics, where he gives a thoroughly
description on the formula of calculating the energy release rate[19].

The energy release rate is calculated as the change in potential energy in the
structure w.r.t. the fracture area. But the potential energy part of Equation 2.15:

Π0 − πσ2a2B
E

is only valid for a fracture propagating in a plate with thickness B. The σ2

E
part

of the equation represents the strain energy per unit volume, and the rest of the
equation, πa2B represents an idealization of the volume where the strain energy is

49

a

βa

σ

Figure 4.9: Idealization of energy unloading near fractures

released when a fracture propagates, and is shown in Figure 4.9 where two adjacent
triangles with length a and height βa is unloaded. (β = π for Inglis solution).

To adapt these calculations for our finite elements, where fractures can prop-
agate individually we will have to calculate the volume of the tetrahedron repre-
sented by the length of the fracture vectors a1 and a2 shown in figure 4.10 on page
51, and the height of the tetrahedron will be β ||a1 + a2||. The total volume where
the strain energy is released is then calculated by the following equation:

V =
|| (βã) (a1 ∗ a2) ||

6

where ã = ||a1 + a2||

So when calculating the energy release rate for our finite elements, we need to
solve the following equation (see Appendix C for derivation):

G = −
σ2

E
(Vi − Ve)
Ae − Ai

(4.11)

Vi is the initial strain energy volume without a fracture extension, Ai is the initial area of the fracture, and Ve
and Ae is the end volume and area with a fracture propagation da of either a1 or a2

50

a2a1

z

y

x

β * ||a1+ a2||

Figure 4.10: Volume of strain energy release w.r.t XZ plane

4.2 GPU Implementation
In the previous Section 4.1, we have look at the types of finite elements used in the
calculations, how the mesh is generated, how we will calculate the global displace-
ment of the structure, the relation between the global and the local displacement
w.r.t. fracture length, calculation of the local stress, and finally how we need to
change the calculation of the energy release rate in order to better fit our finite
elements. In this section we will look into how this is implemented by using the
CUDA technology available on Nvidia GPUs.

The first process is creating the snow layer mesh (described in Section 4.1.1),
which is performed at the CPU in the initialization stage of the simulator. First
the bottom layer of nodes are created, by simply duplicating the terrain vertices,
but the mesh deltas are also taken into account, afterwards the rest of the snow
layers are created based on the on the layer beneath. Code listings are shown
in Appendix H.1 for initialization of the bottom layer, and the calculation of the
remaining layers.

Next is solving the global displacement of the snow layers caused by external
force acting on each mesh node (described in Section 4.1.2). This is solved by using
the Successive over-relaxation method, which is an iterative method for solving
a system of equations (Equation 4.6 on page 46). This part of the calculation
and the remaining part is performed on the GPU, and when solving the global
displacement problem, one iteration of the SOR method is performed every frame
of the simulator. The GPU kernels are launched with the number of threads equal
to the number of finite elements in the snow layers, and each thread will then have
to solve the displacement of 8 nodes in total.

After the global displacement kernels are executed, the kernels which calculate
the local strain, stress, and the energy release rate is executed and these kernsl
also have a total number of threads equal to the number of finite elements. For
each frame of the snow simulator, the kernels are launched as shown in Listing 4.2.

Listing 4.2: Kernels launched per frame
1 void CUDATerrainUpdate (){
2
3
4
5 // Init block and grid size for kernels

51

6 int x = 128;
7 int y = 1;
8 int z = 4;
9 dim3 grid(elements_x/x + 1, elements_y/y + 1, elements_z/z + 1);

10 dim3 block(x, y, z);
11
12 // Solving displacement
13 // vert = vertices
14 // U = global displacement
15 // F = global applied force
16 // mesh = snow layer properties
17 solve_global_displacement_step1 <<<grid , block >>>(vert , U, F, mesh);
18 solve_global_displacement_step2 <<<grid , block >>>(vert , U, F, mesh);
19 solve_global_displacement_step3 <<<grid , block >>>(vert , U, F, mesh);
20 solve_global_displacement_step4 <<<grid , block >>>(vert , U, F, mesh);
21 solve_global_displacement_step5 <<<grid , block >>>(vert , U, F, mesh);
22 solve_global_displacement_step6 <<<grid , block >>>(vert , U, F, mesh);
23 solve_global_displacement_step7 <<<grid , block >>>(vert , U, F, mesh);
24 solve_global_displacement_step8 <<<grid , block >>>(vert , U, F, mesh);
25
26 // Propagating fractures
27 // v = vertices
28 // U = global displacement
29 // frac = fracture lengths
30 // mesh = snow layer properties
31 // energy = color buffer used to visualize energy ratio (RGB)
32 // normal_stress = color buffer used to visualize normal stress (RGB)
33 // shear_stress = color buffer used to visualize shear stress (RGB)
34 // density = color buffer used to visualize density (RGB)
35 propagate_fractures_step1 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
36
37 propagate_fractures_step2 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
38
39 propagate_fractures_step3 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
40
41 propagate_fractures_step4 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
42
43 propagate_fractures_step5 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
44
45 propagate_fractures_step6 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
46
47 propagate_fractures_step7 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
48
49 propagate_fractures_step8 <<<grid , block >>>(v, U, frac , mesh , energy ,

normal_stress , shear_stress , density);
50
51
52
53 }

4.2.1 CUDA Kernels

In this project, there have been a total of 16 kernels implemented in order to
perform all the calculations necessary for calculating when and where fracture can
propagate, however many of these kernels are very similar. First we have the
kernels responsible for solving the global displacement of the snow layers based on
a global applied force (self weight), which is divided into 8 kernels, namly:

• solve_global_displacement_step1<<< grid, block >>>(vertices, U, F, mesh);

• solve_global_displacement_step2<<< grid, block >>>(vertices, U, F, mesh);

• solve_global_displacement_step3<<< grid, block >>>(vertices, U, F, mesh);

52

• solve_global_displacement_step4<<< grid, block >>>(vertices, U, F, mesh);

• solve_global_displacement_step5<<< grid, block >>>(vertices, U, F, mesh);

• solve_global_displacement_step6<<< grid, block >>>(vertices, U, F, mesh);

• solve_global_displacement_step7<<< grid, block >>>(vertices, U, F, mesh);

• solve_global_displacement_step8<<< grid, block >>>(vertices, U, F, mesh);

The above kernels are then launched for each finite element, and the step1 kernel
will calculate the displacement of node 1 for each element, and step2 will calculate
the displacement of node 2 for each element. And so on for the other kernels.

The reason why there are 8 different kernels for solving the global displacement
is due to race conditions. At the beginning of this project, this was implemented as
a single kernel which calculated the displacement for all 8 nodes at once, but since
all the finite elements are sharing a lot of nodes, this lead to a lot of vibration in the
structure. And when the calculation was separated into 8 kernels, the vibration
was reduced dramatically.

One of the kernel for calculating the global displacement is shown in Appendix
H.2 on page 149, and the only difference between these kernels are; the kernels
calculating the displacement for the bottom 4 nodes has a ’if(id_y > 0)’ check
on line 21, which prevents any displacement for the bottom layer of nodes, and
therefore removes any rigid body motion. And the other difference is indexing for
both the displacement and force array.

The remaining 8 kernels are also divided similar, where they all perform cal-
culation on their respective nodes on the finite elements, and these kernels are
relatively large in comparison to the previous discussed. Where each of these
kernels performs the following operations:

1. Find the Young’s modulus and the critical energy release rate for the current
finite element

2. Calculate the local displacement (Equation 4.7 and 4.8)

3. Read necessary vertices and displacement from memory, and calculate nor-
mal and shear stress (Equation 4.9 and 4.10)

4. Calculate the energy release rate (Equation 4.11)

5. If the energy release rate is larger than the critical energy release rate, extend
the fracture a distance da

Step 4 and 5 above are then performed a total of 6 times, due to the fact that
there are 3 fracture vectors that will exist in each node for a finite element, and
each of these fracture vectors will lie within two different planes, where each plane
could have different normal and shear stress.

One of the kernel for calculating the fracture propagation is shown in Appendix
H.3 on page 150, and the other 7 kernels are similar with array indexing separating
them.

53

Figure 4.11: Visualization methods

4.2.2 Visualization

In fracture mechanics, there are a lot of different fields variables which are impor-
tant to visualize in order to get an in depth visualization of simulation. Therefore
there have been implemented some visualization methods which can be changed in
real-time from the main menu (see Figure 4.11), such that we can better examine
the simulation.

All visualization methods (except ’Fracture length’) uses a HSV coloring model
to visualize the intensity of the field variable. Both the ’Value’ and ’Saturation’ of
the HSV model is set equal to 1, and the ’Hue’ is used to differentiate the intensity.
The hue value is set equal to 240° for field values equal to zero, which gives a blue
color, and when the field value increases, the hue value gets closer to zero, resulting
in a red color. In Figure 4.12 on page 55 the range of colors with S = 1 is shown,
and in addition we set V = 1 as stated, so the visualization will have the following
color range with increasing field value; blue, cyan, green, yellow, red.

54

Figure 4.12: HSV coloring

Normal and Shear Stress: Stress is the main cause of any fractures, and is
divided between normal and shear stress. Therefore the visualization of stress has
also been divided into normal and shear stress visualization. The reason why the
visualization has been divided, is that normal and shear stress will trigger fractures
in different part of where avalanches are initiated, and therefore it is important
to have the possibility of visualizing the different stress components. In Figure
4.13a and 4.13b on page 56 the normal and shear stress visualization is displayed
respectively, where the force applied in the scenario is only along the Y-axis.

Energy Ratio: ’Energy ratio’ is a term used in this thesis when reffering to the
ratio between the energy release rate and the critical energy release rate,
and is another visualization method that are implemented in this project. And
when this visualization method is activated, the exterior nodes of all the finite
elements are visulized with their respective global displacement, and each vertex
is given a HSV color of:

H = 240− 240
energy release rate

critical energy release rate
, S = V = 1

This results that each vertex will be red when there is a fracture process, and the
fracture is extended a given distance da, and this visualization method is also be
the best method to examine the snow structure to the point up to the fracture
process, as we can see the color intensity increasing up towards fracture process.
However, this method lacks visualization of the fracture lengths. In Figure 4.14
on page 57, the visualization method is shown and in this scenario, each nodes of
the finite elements are applied a force in Y direction, resulting in the snow layers
being compressed.

This visualization method method is also good for visualizing the stability of
the snow structure, even when there are fractures occurring, because even if the
fractures are extended a distance of da just once, it will most likely not occur any
avalanches. This is because da value used is extremely low, in the range of nano /
pico-meters.

Density: Density of the finite elements are also possible to visualize since the
density has an impact on the critical energy release rate in the snow layers, which
is stated in Equation 3.3 on page 38. The visualization method is displayed in
Figure 4.15 on page 57, where the applied force is only along the Y-axis, causing
an highest density at the top of the parabola.

55

(a) Normal stress visualization

(b) Shear stress visualization

Figure 4.13: Stress visualization

56

Figure 4.14: Energy release rate visualization method

Figure 4.15: Density visualization method

57

Fracture length: Lastly the visualization of the fracture length is also added,
since the other methods only provide a visualization of the finite element nodes,
with a given color to represent the selected property. This method is focused on
visualizing the lengths of each fractures present in each node of the finite element,
which are able to grow independently of each other.

In Figure 4.16 on page 59, the visualization method is shown, where we can see
a cross located in all the exterior nodes of the finite element. This cross represents
the fracture vector ∃ R6, and the cross is constructed the following way:

Listing 4.3: Cross construction
1 // Spatial center for exterior node
2 node = vertices[i] + displacement[i];
3
4 // X axis line
5 vertices[i*6*3 + 0] = node.x + fracture_length[i*6 + 0];
6 vertices[i*6*3 + 1] = node.y;
7 vertices[i*6*3 + 2] = node.z;
8 vertices[i*6*3 + 3] = node.x - fracture_length[i*6 + 1];
9 vertices[i*6*3 + 4] = node.y;

10 vertices[i*6*3 + 5] = node.z;
11
12 // Y axis line
13 vertices[i*6*3 + 6] = node.x;
14 vertices[i*6*3 + 7] = node.y + fracture_length[i*6 + 2];
15 vertices[i*6*3 + 8] = node.z;
16 vertices[i*6*3 + 9] = node.x;
17 vertices[i*6*3 + 10] = node.y - fracture_length[i*6 + 3];
18 vertices[i*6*3 + 11] = node.z;
19
20 // Z axis line
21 vertices[i*6*3 + 12] = node.x;
22 vertices[i*6*3 + 13] = node.y;
23 vertices[i*6*3 + 14] = node.z + fracture_length[i*6 + 4];
24 vertices[i*6*3 + 15] = node.x;
25 vertices[i*6*3 + 16] = node.y;
26 vertices[i*6*3 + 17] = node.z - fracture_length[i*6 + 5];

where vertices is the spatial location of each node, displacement is the node displacement, and fracture_length
is the fracture vector ∃ R6.

The code in Listing 4.3, will generate 6 vertices for each finite element node which
are used for drawing 3 lines representing the fracture lengths. However, the disad-
vantage with this visualization method is that since the vertices are not explicitly
stored, and only the length of the fractures are stored. These vertices has to be
calculated for each frame of the visualization, which is executed on the CPU. i.e.
when this method is activated the total performance of the simulator will drop.

4.2.3 Memory Requirement

In the beginning of this project, it was soon realised that the memory require-
ment for the simulation would be huge, and it increases rapidly with increasing
mesh size. Most of the data is required for the visualization part, however this
could been implemented differently to reduce the total memory requirement. e.g.
all the color buffers used for the different visualization methods have their own
dedicated buffer. Instead one buffer could be used, and populating this buffer ac-
cording to the activated visualization method. But in the current implementation,
all visualization methods have their own dedicated color buffer. But by using this
approach, we can pause the simulation and switch between the different visualiza-
tion methods without having the need of running one extra frame to update the
color buffer.

58

Figure 4.16: Fracture visualization method

However, the memory requirement in the implementation depends mainly on
the number of nodes used for the finite elements, and the total number of finite
elements. The total number of nodes are calculated by the following equation:

nodes =

(
(resolution− 1)

dx
+ 1

)
×
(

(resolution− 1)

dz
+ 1

)
×(num_snow_layers+ 1)

And the total number of finite elements are calculated by the following equation:

elements =

(
(resolution− 1)

dx

)
×
(

(resolution− 1)

dz

)
× (num_snow_layers)

Where the number of snow layers are calculated by the following equation:

num_snow_layers =

max_snow_height
dy

SCENE_Y
resolution

=
max_snow_height× resolution

dy × SCENE_Y

Resulting in the following memory requirement:

mem = 180nodes+ elements Bytes

This gives a total number nodes and memory requirement shown in Table 4.1
for a vararity of map sizes, and the other values in the equation for calculating the
total number of nodes set equal to the following:

• Mesh deltas = {1.0, 1.0, 1.0}

• Max snow height = 4.0

• SCENE_Y = 64

59

Table 4.1: Total nodes for different terrain sizes

Resolution Nodes Elements Memory (MiB)
100 70 000 58 806 12.07
150 225 000 199 809 38.81
200 520 000 475 212 89.71
300 1 710 000 1 609 218 295.08
500 8 000 000 7 719 031 1380.65

60

Chapter 5

Result

In this Chapter, we will perform various tests on the implemented simulator, where
we first in Section 5.1, will look at the workstation setup regarding the hardware
and software used. And we will also look briefly at the compilation step.

Next in Section 5.2, we will look at the test results, which is divided into
"Simulation Results" and "Performance Results". Where we in Section 5.2.1, will
look at the simulation results like; normal and shear stress distribution, displace-
ment calculation, and fracture propagation. And in Section 5.2.2, we will look at
the performance results which includes; CUDA kernel analysis where the optimal
configuration of threads and blocks are found, arithmetic and memory usage for
the two main type of kernels, and other parameters which has an impact on the
performance.

A CPU implementation has also been implemented in this project, where we
compare the CPU versus the GPU. But it should be noted that due to time
limitations, there has not been enough time to perform any code optimization.

It should also be noted that after all the testing was performed, it was discov-
ered that ECC memory was disabled on workstation 1, and enabled on workstation
2. And this has an impact on the performance on memory bound applications.
Therefore, all results obtained on workstation 1 is slightly better than they should
be. The actual impact is looked more into details in Section 6.7, and it was dis-
covered that the relativ impact decreases with the problem size.

5.1 Setup
In the following sections, we will look into the hardware of the workstations used for
testing the performance of the simulation, and we will also describe the compilation
and the necessary libraries that the simulator is depending on.

5.1.1 Compilation

For all workstations the same Makefile is used, and also the same libraries are
necessary. When compiling the c++ code, the optimization level 3 is used, and
the c++ standard used is ’-std=c++0x’.

For all the CUDA code, the -m64 flag is used to force the compiler to compile
64-bit code, and the flag –use_fast_math is also used in order to speed up any
complex math functions by reducing the accuracy. We also specify the -arch flag
on each workstation, depending on the actual hardware present. e.g workstation
1 uses -arch=sm_20, and workstation 2 uses -arch=sm_35.

61

Lastly, all object files are then linked together with the following libraries (full
makefile avaiable in Appendix H.4):

• -L/usr/local/cuda/lib64/

• -lcudart

• -lGL

• -lglfw

• -lGLEW

• -lGLU

• -lAntTweakBar
In Table 5.1, the full overview of all dependencies of the simulator is shown, and
was obtained by running the command "ldd snow" in linux.

Table 5.1: Snow simulator shared libraries dependencies

Library File
Virtual dynamic shared object linux-vdso.so.1
CUDA runtime library libcudart.so.5.5
OpenGL libGL.so.1
GLFW libglfw.so.2
GLEW libGLEW.so.1.6
AntTweakBar libAntTweakBar.so.1
The GNU Standard C++ Library libstdc++.so.6
C Math library libm.so.6
GCC low-level runtime library libgcc_s.so.1
Standard C library libc.so.6
POSIX Threads library libpthread.so.0
Dynamic linking library libdl.so.2
POSIX.1b Realtime Extensions library librt.so.1
Thread local storage support for the NVIDIA OpenGL
libraries

libnvidia tls.so.331.20

OpenGL core library containg the core accelerated 3D
functionality

libnvidia-glcore.so.331.20

Client interface to the X Window System libX11.so.6
Common X Extensions library libXext.so.6
X Resize and Rotate library libXrandr.so.2
Dynamic loading library ld-linux-x86-64.so.2
Iinterface to the X Window System protocol libxcb.so.1
RENDER extension library libXrender.so.1
X Authorization routines libXau.so.6
X Display Manager Control Protocol libXdmcp.so.6

5.1.2 Hardware

As stated, this project will be tested on a variety of different workstations, where
the hardware and software will vary. In this section, we will look at the hardware
and software present in these workstations. The specification of the workstations
can be found in Table 5.2 and 5.3 on page 63.

62

Table 5.2: Workstation 1 specifications

Workstation 1: Hardware
CPU i7-3770 @ 3.40 GHz
GPU Nvidia GTX-480 (1.50 GiB)

Nvidia Tesla C2070 (6.00 GiB)
Memory 16 GB DDR3 1600 MHz
Power Supply CORSAIR AX1200

Workstation 1: Software
Operating System Ubuntu 12.04 64 bit
Nvidia Driver 331.20
CUDA Toolkit 4.0
g++ 4.6.3

Table 5.3: Workstation 2 specifications

Workstation 2: Hardware
CPU i7-4771 @ 3.50 GHz
GPU Nvidia GTX-760 (4.00 GiB)

Nvidia Tesla K40c (11.25 GiB)
Memory 32 GB DDR3 1600 MHz
Power Supply CORSAIR AX850

Workstation 2: Software
Operating System Ubuntu 12.04 64 bit
Nvidia Driver 331.20
CUDA Toolkit 5.5
g++ 4.6.3

63

5.2 Tests
In the following sections, we will first look at the simulation results, which is mainly
consisting of a large set of simulation screenshots. Afterwards we will look at the
performance results by changing the hardware being used for the simulation, and
the problem size.

5.2.1 Simulation Results

In the following sections, we will look at the simulation results by changing different
parameters, and look at how the different parameters impacts the simulation. The
parameters we will vary are; the terrain, Young’s modulus, the critical energy
release rate, the fracture propagation distance da, and finally the relaxation factor
used by the iterative ’Successive over-relaxation’ method.

The applied force and the spring constant is determining how much displace-
ment the structure will obtain, and strain and stress is derived from the displace-
ment. However, in our cases we will examine the snow under self weight, and
therefore the global applied force is set as constant for all simulations.

The parameters which has the most impact on fracture propagation, are the
following:

• Density

• Critical energy release rate

• Fracture propagation distance da

• Stress (discussed above)

The density of the snow is calculated by the size of the finite elements, which
changes due to the displacement, and the actual weight of the finite element is
set as constants. The critical energy release rate is utmost important, since it is
the energy required to extend the fractures a given distance da, and this will vary
while simulating stable and unstable snow. And it was found that the fracture
propagation distance da have a big impact on the calculations.

5.2.1.1 Displacement Calculation

The first part of the simulation consists of calculating the displacement of vertices,
which further generates internal stress. The displacement calculation is based on
FEM, where Hooke’s law is the governing equation. And as stated earlier, these
equations are assembled into a large system of equations, which is solved by the
iterative method "Successive over-relaxation".

This method uses a relaxation factor ω, which is used to speed up the conver-
gence. And when this relaxation factor ω > 1, the method is called Successive
over-relaxation, and when this factor is 0 < ω < 1, the method is called Successive
under-relaxation. And usually a high relaxation factor is desirable to speed up the
convergence rate.

In the testing process, it was then discovered that the SOR-method is not
converging when ω > 1, and when ω is approximately equal to one, the calculations
are experiencing some instabilities, however these minor instabilities are scaled
grately when calculating the stress, causing large stress variation.

64

The results are shown in Figure 5.1 on page 66, and when using ω = 0.1 (Figure
5.1a), the displacement calculation is highly stable, resulting in a stable stress level.
However, when using ω = 1 (Figure 5.1b), we can observe minor vibration in the
vertices, and this results in a highly unstable stress calculation. We can also see
that the overall stress is higher when using ω = 1.

Finally we can see that when using ω = 1.1 (Figure 5.1c) the structure is
literally ripped apart, and this process continues until all the vertices has a absolute
value of their Y coordinate so large that the vertices are no longer visible. We can
also see that the overall stress level is even higher.

5.2.1.2 Stress Distribution

In this section, we will look into the stress calculations for a variety of different
terrains, to verify that shear and normal stress calculations seems correct. The
spring constant and Young’s modulus will remain constant over the following tests,
because they act as scalar values to increase the amount of stress in the structure,
and in our visualization, all values need to be normalized before the visualization.

We will compare the amount of stress, and which type of stress that we find in
the terrain, where we should expect increasing shear stress with increasing slope.
For the following tests we use the following parameters:

• Applied force ~F = {0 200 0}T

• Spring constant k = 10000ρ

• Finite element mass m = 20kg

• Young’s modulus E = 12MPa

• Stress release factor γ = 1000 (Equation 4.8)

• ω = 0.1

The stress intensity is normalized to stress/10000, and the results are shown in
Figures 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 (page 67 to 72). But it should be noted that
since we do not have any experimental data to compare our stress distribution
results with.

But the result seems physical accurate, where we can find normal stress for all
kinds of terrain. And the shear stress is only present where there are slopes, and
increases as the slope increases. And also that both types of stress has the largest
intensity towards the bottom of the snow layers.

65

(a) ω = 0.1

(b) ω = 1

(c) ω = 1.1

Figure 5.1: ω testing for displacement calculation

66

(a) Normal stess

(b) Shear stress

Figure 5.2: Stress distribution for flat terrain

67

(a) Normal stress

(b) Shear stress

Figure 5.3: Stress distribution for parabola terrain

68

(a) Normal stress

(b) Shear stress

Figure 5.4: Stress distribution for small slope terrain

69

(a) Normal stress

(b) Shear stress

Figure 5.5: Stress distribution for big slope terrain

70

(a) Normal stress

(b) Shear stress

Figure 5.6: Stress distribution for 2D wave terrain

71

(a) Normal stress

(b) Shear stress

Figure 5.7: Stress distribution for 1D wave terrain

72

5.2.1.3 Fracture Propagation Distance for Homogeneous Snow

While testing the simulator, it was found that the ’da’ parameter, which specifies
the length a fracture can propagate when the critical energy release rate is met,
has a huge impact on the simulation. And also according to [23], confirmes that
the simulation can experience inaccurate results when da is not small enough.
However, they do not specify the order of magnitude that this parameter has to
be, in order to obtain accurate results. Therefore we will have to test this. In the
following tests we use the following parameters:

• Young’s modulus E = 60MPa

• Critical energy release rate Gc =
(4.2×10−4ρ2.76)

2

E

• Applied force ~F = {0 200 0}T

• Finite element mass m = 20kg

• Spring constant k = 10000ρ

• Stress release factor γ = 1000

• ω = 0.1

The simulation parameters above specifies homogeneous snow (stable), and we
should therefore not expect any fractures to occur.

In Figure 5.8 on page 74, the results are shown for testing the simulation
impact of the ’da’ parameter. And as stated, in the simulation of homogeneous
snow, fractures should not occur, and for the results of da = 10−1, da = 10−2, and
da = 10−3 displayed in Figures 5.8a, 5.8b, and 5.8c, fractures occurred less than 5
seconds after simulation start.

But when using lower values of da = 10−4, da = 10−5, da = 10−8, and da =
10−11, the results are quite similar, and are shown in Figures 5.8d, 5.8e, 5.8f, and
5.8g, and there was not any single fracture occuring. But when using extreme
low values of da = 10−12, the coloring scheme fails, and starts visualizing purple
values, which is shown in Figure 5.8h.

5.2.1.4 Fracture Propagation Distance for Heterogeneous Snow

The ’da’ value was also tested for heterogeneous snow (unstable) with the following
parameters:

• Young’s modulus E = 1.89ρ2.94Pa

• Critical energy release rate Gc = 0.44J/M2

• Applied force ~F = {0 200 0}T

• Finite element mass m = 20kg

• Spring constant k = 10000ρ

• Stress release factor γ = 1000

• ω = 0.1

73

(a) da = 10−1 (b) da = 10−2

(c) da = 10−3 (d) da = 10−4

(e) da = 10−5 (f) da = 10−8

(g) da = 10−11 (h) da = 10−12

Figure 5.8: Energy ratio for da testing

74

(a) da = 10−5 (b) da = 10−11

Figure 5.9: Energy ratio for da testing

And it was then found that the values of da ≥ 10−5 (which worked for homogeneous
snow) generated fractures in all the snow layer, even the upper snow layer. But
lower values of da, resulted that fractures was only located in the bottom snow
layers, and seemed more correct.

In Figure 5.9a, the fracturing process is shown for using da = 10−5, where the
red values are indicating that the fractures are extending a distance da. And we
can also see that there are fractures occurring in the topmost snow layer, in the
bottom of the slope. And these fractures continued to grow toward the top of the
slope, covering the whole blue area.

But in Figure 5.9b, there was no fractures occurring in the topmost snow layer,
and we ca only see fractures in the bottom snow layers. And since we do not model
any movement of the finite elements after failure, I would say that the latter case
is a more physically correct modeling of the fracture process, and the process is
similar to a fracture propagating in weak snow layers.

5.2.1.5 Energy Release Rate for Homogeneous Snow

Next we will look at the energy release rate to the critical energy release
rate ratio for homogeneous snow. i.e. the energy release rate is normalized to the
critical energy release rate, and when this ratio is equal to 1, a fracture process
occurs. And we can therefore predict where a fracture will occur before they
propagate.

As stated in Section 3.1.3, Christian Sigrist has performed measurement of ho-
mogeneous and heterogeneous snow[21]. And his findings of the Young’s modulus
and the critical energy release rate is found in Table 5.4 on page 76, which will be
used for our simulations of homogeneous snow. Below are the parameters used for
the following results:

• Young’s modulus E = 60MPa

• Critical energy release rate Gc =
(4.2×10−4ρ2.76)

2

E

• Applied force ~F = {0 200 0}T

• Finit element mass m = 20kg

• Spring constant k = 10000ρ

75

• Fracture propagation distance da = 10−11.

• Stress release factor γ = 1000

• ω = 0.1

In Table 5.4, we can see that Sigrist found the Young’s modulus to exist in a
wide range for different types of homogeneous snow. But we will use a value of
60 MPa, in order to generate maximum stress in the snow layers for the highest
possibility for fracture propagation, and in the following tests we should not expect
any fracture to occur.

Table 5.4: Young’s modulus and Gc for snow

Heterogeneous snow Homogeneous snow

Gc 0.44± 0.020J/M2 (4.2×10−4ρ2.76)
2

E

Young’s Modulus 1.89ρ2.94Pa [14, 60]

The results are shown from page 77 to 79, where in Figure 5.10, 5.12, and 5.14
where the terrain is relatively flat, we can see that the energy ratio is near zero
across the entire snow structure. However, in Figure 5.11 and 5.13 I got some
unexpected results, which may should be expected.

In Figure 5.11, the energy ratio was increasing towards 1 in the steepest loca-
tions in the terrains, then a fracture process occurred. However, the snow was then
stabilized in the areas where a fracture had propagated. More detailed results are
shown in Appendix E.1, where series of screenshots are shown.

Similar results was also obtained when using a very steep slope in Figure 5.13,
and in this case, I observed a single fracture propagation in the middle of the slope,
which then was followed by a single fracture propagation upward the slope and
downward the slope. Then after this single fracture propagation, the snow was
then stabilized. Detailed simulation results are shown in Appendix E.2.

Also when simulating a more complex terrain consisting of two slopes in Figure
5.15, there occurred some fractures. But in this terrain, there was more than
one single fracture, and after approximately 1 minute of simulation time with an
average FPS of 26, the snow was stabilized.

76

Figure 5.10: Energy ratio for flat terrain, homogeneous snow

Figure 5.11: Energy ratio for parabola terrain, homogeneous snow

77

Figure 5.12: Energy ratio for small slope terrain, homogeneous snow

Figure 5.13: Energy ratio for big slope terrain, homogeneous snow

78

Figure 5.14: Energy ratio for 2D wave terrain, homogeneous snow

Figure 5.15: Energy ratio for 1D wave terrain, homogeneous snow

79

5.2.1.6 Energy Release Rate for Heterogeneous Snow

In these tests, we will simulate heterogeneous snow. And as specified in Table 5.4
on page 76, the simulation parameters will therefore be the following:

• Young’s modulus 1.89ρ2.94Pa

• Critical energy release rate 0.44J/M2

• Applied force ~F = {0 200 0}T

• Finite element mass m = 20kg

• Spring constant k = 10000ρ

• Fracture propagation distance da = 10−11.

• Stress release factor γ = 1000

• ω = 0.1

The results are shown from page 81 to 83, and first in Figure 5.16 where the results
from the flat terrain is shown, we do not observe any energy available for a fracture
process to occur.

But in Figure 5.17, where a parabola terrain was simulated, we could observe
the energy ratio increasing up towards a fracture propagation, then afterwards,
fractures was continuously propagating. The same result was also obtained for the
steep slope terrain in Figure 5.19 and 5.21. And in all cases, major parts of the
terrain was experiencing fractures.

Then lastly in Figure 5.18 and 5.20, where the terrain simulated was more flat,
we could also observe fractures propagating. But in both cases, it was only in
relative small parts of the terrain.

80

Figure 5.16: Energy ratio for flat terrain, heterogeneous snow

Figure 5.17: Energy ratio for parabola terrain, heterogeneous snow

81

Figure 5.18: Energy ratio for small slope terrain, heterogeneous snow

Figure 5.19: Energy ratio for big slope terrain, heterogeneous snow

82

Figure 5.20: Energy ratio for 2D wave terrain, heterogeneous snow

Figure 5.21: Energy ratio for 1D wave terrain, heterogeneous snow

83

5.2.2 Performance Results

In the following sections, we will look into different performance aspects of the
simulator. And I will also emphasize that although both workstation 1 and 2
has multiple GPUs, the calculations are only being performed on the Tesla GPU
present in both workstations. The GeForce GPU is only used as a rendering device,
and are not being heavily utilized.

However, there is an exception in Section 5.2.2.3, where we look into the per-
formance penalty of using double precision when calculating the stress, where we
separately tests all 4 GPUs in the two workstations. This is due to that Tesla
GPUs has a ratio of 1:2 between single and double floating points units, and the
GeForce GPUs only have a ratio of 1:24. And therefore a GeForce GPU should
have a higher penalty of using double precision when calculating the stresses in
the snow.

5.2.2.1 Kernel Launch Configuration Analysis

In this section, we will look into the performance of the different kernels in the
simulator by varying number of threads per block, where both the grid and blocks
are specified in three dimensions. In this project, there are a total of 16 kernels,
but 8 of them is used to calculated the displacement of the exterior nodes of each
finite element, and they differ only in array indexing. And the other 8, is used to
calculate the energy release rate for each exterior node of the finite elements, and
these also differ only in array indexing. Therefore I will groupe these kernels into
the following:

• solve_global_displacement

• propagate_fractures

And when properties about these kernels are discussed, e.g execution time, it will
always be the sum of the 8 kernels that are listed in this report.

First we will try different launch configuration when using the Tesla C2070.
The results are shown in Table 5.5 on page 85, when running the simulator for 100
frames. And from this we can see that the ideal launch configuration when using
the Tesla C2070 is {128, 1, 4}, which sums up to a total of 512 threads. And this is
also the maximum number of thread per block allowed on the Fermi architecture.

Next, the same tests was performed on the Tesla K40c which has a Kepler
architecture, and the results are shown in Table 5.6 on page 85. And for the
tests performed on the Kepler architecture, we could increase the total number
of threads per block to 1024 for the solve_global_displacement kernel. And the
best combination of thread per block was found to be {128, 1, 8}. However, the
propagate_fractures kernel could not utilize 1024 thread. This was caused by
the total number of registers per thread used in these kernels, which limits the
number of threads per block, because each block has a finite number of regis-
ters available. Therefore the maximum number of threads we could use for the
propagate_fractures kernel was 512, and the best combination was {128, 1, 4}.

Also note that both tables shows the average execution time for both kernels
for a single time step.

84

Table 5.5: kernel time varying threads per block, Tesla C2070

Config Thread per block solve global displace-
ment Avg time

propagate fractures
Avg time

{2, 2, 2} 8 6.814 ms 42.2360 ms
{3, 3, 3} 27 3.799 ms 17.5919 ms
{4, 4, 4} 64 2.957 ms 10.3488 ms
{5, 5, 5} 125 2.798 ms 11.6998 ms
{6, 6, 6} 216 2.597 ms 13.6946 ms
{7, 7, 7} 343 2.649 ms 17.2157 ms
{8, 8, 8} 512 2.523 ms 10.0027 ms
{16, 2, 16} 512 1.658 ms 8.7159 ms
{32, 1, 16} 512 1.459 ms 8.3857 ms
{64, 1, 8} 512 1.434 ms 8.3128 ms
{128, 1, 4} 512 1.427 ms 8.2756 ms
{256, 1, 2} 512 1.877 ms 10.9222 ms
{512, 1, 1} 512 3.155 ms 18.5747 ms

Table 5.6: kernel time varying threads per block, Tesla K40c

Config Thread per block solve global displace-
ment Avg time

propagate fractures
Avg time

{2, 2, 2} 8 5.99169 ms 19.4722 ms
{3, 3, 3} 27 4.33712 ms 10.8056 ms
{4, 4, 4} 64 3.51982 ms 8.6887 ms
{5, 5, 5} 125 2.35444 ms 8.7245 ms
{6, 6, 6} 216 1.76514 ms 10.9877 ms
{7, 7, 7} 343 1.38036 ms 15.0574 ms
{8, 8, 8} 512 0.96504 ms 8.75090 ms
{16, 2, 16} 512 —— 7.76228 ms
{32, 1, 16} 512 —— 7.68959 ms
{64, 1, 8} 512 —— 7.70778 ms
{128, 1, 4} 512 —— 7.58560 ms
{256, 1, 2} 512 —— 10.1087 ms
{9, 9, 9} 729 0.63258 ms failure
{10, 10, 10} 1000 0.36331 ms failure
{16, 4, 16} 1024 0.35049 ms failure
{32, 2, 16} 1024 0.26429 ms failure
{64, 1, 16} 1024 0.10897 ms failure
{128, 1, 8} 1024 0.10877 ms failure
{256, 1, 4} 1024 0.19915 ms failure

85

(a) Intruction utilization

(b) Instruction stall reasons

Figure 5.22: Tesla C2070 Utilization, solve_global_displacement_kernel_step1

5.2.2.2 Kernel Analysis

In this section, we will look into the GPU utilization of both kernels, and we will use
the Nvidia visual profiler to obtain our results. But since this tool only allows us to
collect data about one kernel simultaneously, we will only gather data for one of the
eight kernels for both solve_global_displacement and propagate_fractures, namly
solve_global_displacement_step1 and propagate_fractures_step1. The tests will
also be performed on the Fermi and Kepler architecture using the Tesla C2070 and
K40c.

solve_global_displacement_step1: Performance test of the different instruc-
tion utilization was first performed with the Tesla C2070, and as Figure 5.22a
shows, the utilization of different kind of instructions are not any performance
limiter in our simulation. Further in Figure 5.22b we can examine the instruction
stall reason, and as suspected, the data request is the major part of the instruction
stalls. This is due to vast amount of memory reads that each thread performs.

The same tests was also performed on the Tesla K40c, and in Figure 5.23a
on page 87 we can see the instruction utilization, and in Figure 5.23b on page 87
we can see the instruction stall reason. And for the Kepler architecture, we can
see that the Load/Store instructions are experiencing a higher utilization than in
the Fermi architecture, and the arithmetic instructions are about 33% than in the
Fermi. But again, for these test, the instruction utilization is not any performance
limiter. It is due to the amount of memory that each thread needs.

In Table 5.7 on page 88, the memory bandwidth for both test GPUs are shown.

86

(a) Intruction utilization

(b) Instruction stall reasons

Figure 5.23: Tesla K40c Utilization, solve_global_displacement_step1

The "Utilization" column uses a scale that goes from 0-10, where 0 indicates a
"Idle" state, 1 equals low utilization, 5 is medium, 8 is high, and 10 is the device
maximum. A discussion with Eirik Myklebost (which performed detailed hardware
analysis of Nvidia GPU architecture in his specialization project[15]), gave some
additional information about the memory utilization of Fermi versus Kepler.

The Fermi architecture automatically uses the fast on-chip L1 cache for all
memory operations, and therefore we obtain a relative high L1 cache utilization
on the Fermi architecture with a value of 6. But if we compare to the Kepler
architecture, we only obtain a utilization of 2. This is because in the Kepler
architecture, the GPU will only use the fast L1 cache for a thread’s local memory,
and if there are enough registers to avoid any local memory usage, the L1-cache
will not be used.

We can also see in Table 5.7, that the Kepler architecture has a total L1 cache
bandwidth usage of 301.11 GB/s. But if this is compared to the total L2 cache
bandwidth usage of 301.18 GB/s, which differs only in 0.07 GB/s, we can see that
all L1 reads are resulting in a cache-miss, and the GPU must search in the L2
cache where the data is located. i.e. The L1 cache is not used at all in the Kepler
architecture.

87

Table 5.7: Memory bandwidth, solve global displacement kernel

Tesla C2070 Tesla K40c
L1 / Shared Bandwidth Utilization Bandwidth Utilization
Local loads 0.00 GB/s 0.00 GB/s
Local stores 0.00 GB/s 0.00 GB/s
Shared loads 0.00 GB/s 0.00 GB/s
Shared stores 0.00 GB/s 0.00 GB/s
Global loads 473.72 GB/s 286.67 GB/s
Global stores 21.95 GB/s 14.44 GB/s
Total 495.67 GB/s 6 301.11 GB/s 2
L2 Cache
Reads 49.27 GB/s 286.74 GB/s
Stores 21.95 GB/s 14.44 GB/s
Total 71.23 GB/s 4 301.18 GB/s 6
Device Memory
Reads 26.27 GB/s 21.69 GB/s
Stores 14.28 GB/s 10.47 GB/s
Total 40.55 GB/s 4 32.16 GB/s 2

propagate_fractures_step1: Instruction utilization, instruction stalls, and
memory utilization tests was also performed on one of the eight kernels which cal-
culates the energy available for fracture propagation. And the tests was performed
with a GPU with Fermi and Kepler architecture.

First we can see the instruction utilization in Figure 5.24a on page 89 when
using the Tesla C2070 (Fermi), and since this kernels are far more complex in arith-
metics than the previous kernel discussed, we can see this reflect in the utilization
of the arithmetic hardware units. But none of the instruction units are utilized so
much that they become any performance limiter in this case either. And in Figure
5.24b on page 89 we can see the instruction stall reasons, where we can see that
the "data request" portion is relatively lower compared to the previous kernels,
and the "execution dependency" and "instruction fetch" are becoming larger.

Next up, we performed the same tests on the Tesla K40c (Kepler), and we can
see the same tendencies as the Fermi. The Load/Store unit is being less utilized,
and the arithmetic unit is about 2x larger (Figure 5.25a on page 89), however none
of them is becoming any performance limiter. And in Figure 5.25b on page 89, we
can see that the "data request" stall reason is becoming smaller than the previous
kernel, and the "execution dependency" and "instruction fetch" are increasing.

Next we will look into the memory utilization for both architectures, and the
results are shown in Table 5.8 on page 90, and compared to the previous kernel,
the overall memory usage is relative lower in all ’total’ fields. But in this case, we
can see that in the L1/Shared memory section, the Tesla C2070 are now using the
thread’s local memory. Which is caused by the complexity of the kernel, and the
threads are using more registers than available. And again, we can see that the
Kepler GPU does not use any of the L1 cache.

88

(a) Instruction utilization

(b) Instruction stall reasons

Figure 5.24: Tesla C2070 Utilization, propagate_fractures_step1

(a) Instruction utilization

(b) Instruction stall reasons

Figure 5.25: Tesla K40c Utilization, propagate_fractures_step1

89

Table 5.8: Memory bandwidth, propagate fracture kernel

Tesla C2070 Tesla K40c
L1 / Shared Bandwidth Utilization Bandwidth Utilization
Local loads 25.64 GB/s 0.00 GB/s
Local stores 21.21 GB/s 0.00 GB/s
Shared loads 0.00 GB/s 0.00 GB/s
Shared stores 0.00 GB/s 0.00 GB/s
Global loads 198.91 GB/s 195.41 GB/s
Global stores 17.49 GB/s 16.77 GB/s
Total 263.26 GB/s 3 212.18 GB/s 1
L2 Cache
Reads 38.04 GB/s 195.48 GB/s
Stores 30.51 GB/s 17.13 GB/s
Total 68.55 GB/s 4 212.61 GB/s 5
Device Memory
Reads 13.83 GB/s 9.46 GB/s
Stores 24.44 GB/s 7.26 GB/s
Total 38.27 GB/s 3 16.72 GB/s 1

5.2.2.3 Double versus Single Precision

In the testing process, it was found that double precision was needed, and double
precision will also require more GPU cycles compared to single precision. In this
section we will look into the impact of using double precision with a range of
different GeForce and Tesla GPUs. Since GeForce GPUs have a smaller amount
of double precision units than Tesla GPUs, we should expect that GeForce GPUs
suffers more from using double precision than Tesla GPUs.

The tests results are shown in Figure 5.26 on page 91 for a variety of different
Tesla and GeForce GPUs. 576 - 1 609 218 number of finite elements was used, and
the simulation was running for 1000 frames. Detailed timing results are shown in
Appendix E.3 on page 136.

From the results we can see that the ratio between single and double precision
is always higher when using a Tesla GPU compared to a GeForce GPU with the
same hardware architecture, which is expected. However the Tesla C2070 and the
GeForce GTX-760 are more or less experiencing the same performance decrease
due to double precision.

5.2.2.4 Frame Rate

The fracture simulation implemented in this project, requires a lot of calculations
due to the amount of finite elements, and the real-time requirement of the snow
simulator is no longer possible when using large mesh sizes.

In this section, we will first look at the achieved number of frames per second
(FPS) for different mesh sizes. When running the tests, the simulation was running
for 1000 frames. and rendering of the snow particles was turned off, and the terrain
shader type was set to Simple, in order to increase the frame rate. In Table 5.9
on page 91 the results are shown when running the simulation on Workstation 1,
and Table 5.10 on page 92 shows the frame rate for workstation 2, and due to the
memory limit on the GTX-480 GPU, the largest mesh sizes could be simulated,

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·106

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Finite elements

GTX-480
C2070

GTX-760
K40c

Figure 5.26: Performance penalty of using double precision, GeForce GTX-480,
GeForce GTX-760, Tesla C2070 and Tesla K40c, separately

where workstation 1 simulates up to 13 275 637 finite elements, and workstation
2 simulates up to 45 259 256 finite elements.

The number listed in the parentheses in both tables, are simulations that was
performed without optimal numbers of threads per block, namly the {4, 4, 4} com-
bination listed in Table 5.5 and 5.6 on page 85. And for small simulations, the
total time difference results only in a couple of seconds, but when the number
of finite elements are increased, this minor misconfiguration results in simulation
times with a time difference about 8 and a half minute.

Table 5.9: Frames per second using workstation 1

Elements {x, y, z} Total elements Average FPS Total time (seconds)
{99, 6, 99} 58 806 28.69 (26.7) 34.86 (37.4)
{199, 12, 199} 475 212 14.00 (11.7) 71.41 (85.4)
{299, 18, 299} 1 609 218 6.10 (4.6) 163.88 (215.2)
{399, 25, 399} 3 980 025 2.80 (2.1) 357.14 (485.8)
{499, 31, 499} 7 719 031 1.63 (1.1) 613.94 (884.4)
{599, 37, 599} 13 275 637 0.94 (0.7) 1068.9 (1358.8)

91

Table 5.10: Frames per second using workstation 2

Elements {x, y, z} Total elements Average FPS Total time (seconds)
{99, 6, 99} 58 806 39.58 (37.49) 25.27 (26.68)
{199, 12, 199} 475 212 16.49 (15.41) 60.63 (64.903)
{299, 18, 299} 1 609 218 6.25 (5.81) 160.09 (171.98)
{399, 25, 399} 3 980 025 2.80 (2.56) 356.94 (390.95)
{499, 31, 499} 7 719 031 1.69 (1.40) 591.89 (716.77)
{599, 37, 599} 13 275 637 0.97 (0.80) 1020.88 (1244.35)
{699, 43, 699} 21 009 843 0.60 (0.52) 1653.43 (1910.15)
{799, 50, 799} 31 920 050 0.39 (0.34) 2554.73 (2978.36)
{899, 56, 899} 45 259 256 0.28 (0.24) 3558.41 (4074.65)

5.2.2.5 Max Register per Thread

When running the simulation with the Nvidia visual profiler to examine the per-
formance results, it was discovered that the achieved GPU occupancy1 was very
low, around 30%. The reason why the achieved occupancy was that low is due to
the number of registers that each thread uses.

The GPU has a finite number of registers available for each block to use, and if
each thread within the block uses a lot of registers, the GPU is limited to execute
fewer blocks simultaneously per SM. e.g. a GPU can either execute one block
which uses all registers available, or the GPU can execute 5 blocks simultaneously
where each block uses 20% of the available registers.

In my case, on the Tesla C2070, the maximum number of registers available
for a block is 32758, and the solve_global_displacement kernels uses 46 registers
per thread, and within each block there are 512 threads, and the profiler states
that each block uses 24576 registers2. This will then limit the GPU to maximum
execute 1 block simultaneously per SM. But the maximum numbers of registers
available for each thread can be limited on compile time. And in Table 5.11 on
page 92 the results are displayed, and we can see that when limiting the number
of registers available for each thread, we can execute more blocks simultaneously
and therefore achieves a better occupancy. However, we can also see that a higher
occupancy does not results in better execution time for both kernels, and in our
case, it is more or less best to not limit the number of registers per thread.

It should also be noted that these numbers are only for the step1 kernel for
both ’solve global displacement’ and ’propagation fractures’, since the Nvidia visual
profiler limits the debugging to one kernel concurrently. And the simulation was
only running for 20 time steps, since the debugging adds a lot of overhead, and
makes debugging very time consuming. However, in my opinion, I think that the
general picture is well displayed in the results.

1Occupancy: Defined as the number of active warps divided by the maximum numbers of
active warps

2With 46 registers per thread and 512 thread per block, the total number of registers per
block should be 46× 512 = 23552. To obtain a total of 24576 each thread must use 48 registers,
but each thread uses probably 2 extra registers for thread identification

92

Table 5.11: Limiting the numbers of registers

Tesla C2070
Displacement Kernel Fracture Kernel

Max Registers Threads/Block Occupancy Time3 Occupancy Time
16 512 88.6% 694.73us 93.6% 3.4513ms
16 1024 61.0% 628.30us 64.0% 3.4513ms
32 512 61.4% 196.85us 62.7% 1.7029ms
32 1024 62.9% 226.59us 63.9% 1.7386ms
unlimited 512 31.7% 181.24us 32.3% 1.0292ms

Tesla K40c
16 1024 89.1% 520.47us 95.3% 2.7993ms
32 1024 87.4% 279.17us 92.1% 1.6623ms
64 1024 47.4% 265.93us 47.2% 956.91us
128 1024/5124 47.4% 266.02us 24.1% 955.98us
unlimited 1024/512 47.2% 265.42us 24.0% 970.80us

5.2.2.6 CPU Version

A CPU version was also implemented in this project, to compare the GPU and
the CPU, but the CPU version was only implemented to do the same calculations
as the CUDA kernels, and no visualization was performed. The CPU version was
also parallelized with OpenMP to fully utilize the power of the CPU. The GPU
calculation times was obtained by using the Nvidia nvprof tool for linux, where
you can find the average execution time for all kernels. The total execution time
was then found by summing the average execution time for all 16 kernels, and
multiplying by the number of time steps.

The results are shown in Table 5.12 and Figure 5.27 on page 94 for running
the simulation for 100 time steps. And again, when testing the Tesla C2070, the
rendering GPU in workstation 1 limited the number of finite elements that we
could simulate, however the performance of the C2070 and the K40c is almost
identical in this scale. And the reason why the K40c is not exceeding the C2070
in performance is due to that the L1 cache is not being used, and significantly
speedup should be expected if the fast on-chip shared memory is used.

Also a comparison with the CPU version running sequential was performed, and
the results are displayed in Figure 5.28 on page 94, where you have the sequential
version running on the i7-4771, and the best execution times obtained on the
GPU and parallel CPU is also added in the plot. And we can clearly see that
parallelization gives huge performance increase in both cases.

3Average execution time for a single time step
41024 threads was used for the displacement kernel, and 512 threads was used for the fracture

kernel

93

Table 5.12: Execution time for 100 iterations for different CPUs and GPUs

Finite elements i7-4771 i7-3770 i7-870 Tesla C2070 Tesla K40c
58 806 1.86 s 2.24 s 3.26 s 0.56 s 0.49 s
475 212 14.72 s 17.22 s 23.60 s 4.19 s 4.01 s
1 609 218 58.48 s 65.67 s 73.12 s 13.62 s 14.06 s
3 980 025 158.63 s 168.72 s 179.70 s 33.38 s 33.85 s
7 719 031 307.69 s 328.02 s 404.52 s 59.87 s 57.39 s
13 275 637 517.02 s 583.34 s 625.84 s 103.99 s 100.62 s
21 009 843 828.85 s 922.16 s 926.36 s —— 164.24 s
31 920 050 1278.03 s 1433.84 s 1377.32 —— 255.08 s

0 0.5 1 1.5 2 2.5 3 3.5

·107

0

200

400

600

800

1,000

1,200

1,400

Finite elements

Execution time

i7-870
i7-4771
i7-3770

Tesla C2070
Tesla K40c

Figure 5.27: Execution time for different CPUs and GPUs

0 0.5 1 1.5 2 2.5 3 3.5

·107

0

2,000

4,000

6,000

8,000

Finite elements

Execution time

Sequential
i7-4771

Tesla K40c

Figure 5.28: Sequential versus parallel CPU and GPU

94

Table 5.13: Kernel average execution time

Kepler Fermi
Num elements Displacement Fractures Displacement Fractures
58806 0.99 ms 3.83 ms 0.82170 ms 4.75442 ms
475 212 8.25 ms 31.62 ms 6.29974 ms 35.4745 ms
1609218 29.36 ms 110.04 ms 20.9916 ms 114.933 ms
3 980 025 70.01 ms 276.68 ms 51.0379 ms 282.605 ms
7 719 031 123.95 ms 449.96 ms 91.67900 ms 508.329 ms

5.2.2.7 Fermi Vs Kepler

In the previous Section 5.2.2.6, we compared the total execution time for different
CPUs and GPUs. And from the results in Table 5.12 on page 94 we can see that
the Tesla K40c is not fastest in all cases.

The test results displayed in Table 5.12 are the results after running the sim-
ulator for a 100 time steps. The reason why a 100 time steps was selected was
caused by the slow execution time on the CPU, and running 1000 time steps would
have taken several hours. But since the GPU results are somewhat inconsistent,
where the Fermi architecture has best execution time for some problem sizes, the
test was performed again with the GPUs only, but running for 1000 time steps.
The results are shown in Table 5.13, and the results is now more detailed than
in the previous section. In the previous section the results was obtained by sum-
ming the average execution time for all kernels, then multiplying by the number
of time steps. But since the two majority of kernels are very different, we have
separated the kernels in these results, and summed the average execution time for
the displacement kernels and fracture kernels respectively.

From the results in Table 5.13 we can now see a more consistent result, where
the Fermi GPU (C2070) have a better execution time than the Kepler GPU (K40c)
when running the displacement kernels, and the Kepler GPU is always faster than
the Fermi GPU when running the fracture kernels.

95

Chapter 6

Discussion

In this chapter, we will discuss various aspects of this project, which includes;
some issues with the mesh generation process, and the calculation of the global
displacement, and the fact that our spring constant is not known. We will also
look into some floating point accuracy issues that was discovered in the testing
process, which was shown to be an issue when calculating the shear stress in the
snow structure.

We will also discuss some performance aspects of the simulator, where we look
into the achieved GPU occupancy, and the impact of ECC memory, and lastly
look into reasons why some of the kernels are performing better on the Fermi
architecture compared to the Kepler architecture.

6.1 Mesh Generation
The mesh generation process is implemented such that the normal vector is calcu-
lated for each vertex in the terrain, resulting in a mesh with boxes lying parallel
with the slope (Figure 4.4 on page 45). But after this approach was implemented,
it was discovered that this method had a huge drawback. First of all, this method
requires that the terrain heightmap is continuous, and therefore the usual terrains
used in the snow simulator cannot be used. If the usual terrains are used, parts
of the mesh will be located below the actual terrain, which is shown in Figure 6.1
on page 97, and in Figure 6.1b, the exterior nodes are visualized for all the finite
elements, and approximately all the purple nodes are located below the actual
terrain.

Another drawback with the implemented mesh generation is that narrow valleys
cannot be generated (Figure 6.2 on page 98). In the figures, the visualization is
set to visualize the density, where each finite element has equal mass. And first
we can see in Figure 6.2a, the mesh is successfully generated. But in Figure 6.2b,
the nodes of the finite elements are merging into each other, and in Figure 6.2c
the valley is so narrow that the nodes are located below the terrain.

The reason why the mesh generation process fails when the terrain contain nar-
row valleys, is due to that the nodes located in above layers are created a distance
dy in the normal vector direction. And this distance can cause normal vector to
cross each other, and is displayed in Figure 6.3 on page 99, where the vertices in
the above layer will be created with coordinates (x1, y1, z1) and (x2, y2, z2).

96

(a) Terrain without mesh

(b) Terrain with mesh located underneath the actual terrain

Figure 6.1: Automatic mesh generation creates nodes underneath the terrain

97

(a) terrain heightmap function = 5cos(0.1x)

(b) terrain heightmap function = 5cos(0.15x)

(c) terrain heightmap function = 5cos(0.2x)

Figure 6.2: Narrow valley mesh generation

98

(x1, y1, z1) (x2, y2, z2)

Figure 6.3: Mesh generation failure

6.2 Global Displacement Calculation
The calculation of the global displacements is based on the finite element method,
which is used to assemble a system of equations, and is then solved by the iterative
method called ’Successive over-relaxation’. This method is used for solving system
of equations in the form of:

Ax = b

Where A is a n×n matrix, and x and b are vectors of size n. And the local system
of equations for a given finite element number i is shown in Equation 4.6 on page
46. And then further to solve the global system of equations, this local system
will have to be assembled into a new matrix which represents the total system
containing the equations for each finite element.

But the assemble of the global matrix was never explicitly performed, and in
the implementation, one thread is spawned per finite element, and the matrix
which is solved is the local stiffness matrix shown in Equation 4.6 on page 46.
And this is most likely the reason to the issue present in the simulation when the
global displacement.

The issue present when solving the global displacement, is that we cannot use a
high relaxation factor with the Successive over-relaxation method. The relaxation
factor is a parameter to the method that speeds up the convergence rate, and
when we use a relaxation factor slightly above 1, the snow structure is literally
torn apart (Figure 5.1c on page 66). And to obtain stable results we have to use
a relaxation factor around 0.1, which increases the number of iteration needed to
obtain the solution.

The Successive over-relaxation method is outlined in Listing 4.1 on page 46,
and the relaxation factor ω is shown on line 14. The relaxation factor is used in this
method to either focus the iteration in the direction of (bi−σ), which is the residual,
or focus the iteration on φi which is the current guess. Therefore assuming that
our iterative method is convergent, we should be able to use relaxation factors
above 1.0 in order to speed up the convergence, but this is not the case in our
simulation. In all tests performed in Chapter 5, we use a relaxation factor of 0.1,
and higher relaxation factor causes instabilities. But it should be noted that these
instabilities are only visible when calculating the stress in the snow. This is due to
that the Young’s modulus is tens of Mega pascal, and therefore when calculating
the stress caused by a given strain, by the the formula:

σ = E ε

99

The slightest instabilities in the displacement calculation (used to determine the
normal and shear strain), will have a huge impact on the calculation of the stress.
So when using a relaxation factor around 1.0 we can see that the stress level is
highly unstable, but the vertices spatial location is more or less unchanged.

6.3 Spring Constant
The displacement calculation in the simulation, is based on Hooke’s law, which is
used for calculating the energy stored in an elastic spring, when it is either com-
pressed or decompressed a given distance u. And the spring constant is essential
to this law, but unfortunately this is not known, and therefore we cannot know if
our results are anything near a realistic case.

But it may be that the spring constant used in the test are somewhat physical
correct, due to the following reasons:

• When simulating homogeneous snow with a Young’s modulus of 12 MPa,
which is the around the lowest value of Young’s modulus that was found
by Sigrist[21], we obtain a solution where our calculated Energy ratio is
approximately equal to zero across the entire domain (Figure 6.4a on page
101).

• And when simulating homogeneous snow with a Young’s modulus around the
highest possible value measured by Sigrist of 60 MPa, we obtain a relative
high level of Energy ratio in the middle of the slope and we can see that
fractures obtain enough energy to propagate a distance da = 10−11m once
(Figure 6.4b on page 101).

• Lastly, when we simulate heterogeneous snow we can see that we have con-
siderably higher Energy ratio across the entire slope, and we can also see
that the fractures are propagating continuously (Figure 6.4c on page 101).

And all above cases are simulated with the same spring constant k = 104ρ N/m.

6.4 Shear Stress Accuracy
In the testing process, it was found that the shear stress calculations was highly un-
stable when using single precision. A small sample program was then implemented
in order to test the normal and shear stress calculations between two vertices v1

and v2 with a displacement u1 and u2. The sample program calculations was tested
with single and double precision, and it was found that the normal stress calcula-
tion did not experience any gaps in the calculations when small displacement was
applied, and the difference between single and double precision is minor. How-
ever the shear stress calculation was experiencing huge gaps, and large difference
between single and double precision. (test program listed in Appendix H.5).

As we can see in Table 6.1 on page 102, the resulting stress does not vary
that much between single and double precision, and the stress is also calculated
accurately for very low displacements all the way down to 10−12. However, as we
can see in Table 6.2 on page 102, that the difference between single and double
precision when calculating the shear stress are much greater, and we can also
see that when using single precision, we do not obtain any shear stress for a
displacement of u1 = {0, 10−4, 0}T .

100

(a) Homogeneous snow, E = 12MPa

(b) Homogeneous snow, E = 60MPa

(c) Heterogeneous snow, E = 1.89ρ2.94Pa

Figure 6.4: Energy ratio for different kind of snow using same spring constant

101

Table 6.1: Normal stress calculation

u1 u2 Normal stress (float) Normal stress (double)
{0, 0, 0}T {0, 0, 0}T -nan -nan
{10−1, 0, 0}T {0, 0, 0}T 1200000.000000 1200000.017881
{10−2, 0, 0}T {0, 0, 0}T 120000.000000 119999.997318
{10−3, 0, 0}T {0, 0, 0}T 12000.000977 12000.000570
{10−4, 0, 0}T {0, 0, 0}T 1200.000000 1199.999970
{10−5, 0, 0}T {0, 0, 0}T 120.000000 119.999997
{10−10, 0, 0}T {0, 0, 0}T 0.001200 0.001200
{10−12, 0, 0}T {0, 0, 0}T 0.000012 0.000012

Table 6.2: Shear stress calculation

u1 u2 Shear stress (float) Shear stress (double)
{0, 0, 0}T {0, 0, 0}T 0.000000 0.000000
{0, 10−1, 0}T {0, 0, 0}T 1196030.125000 1196023.847598
{0, 10−2, 0}T {0, 0, 0}T 119938.906250 119995.997558
{0, 10−3, 0}T {0, 0, 0}T 11718.750000 11999.996571
{0, 10−4, 0}T {0, 0, 0}T 0.000000 1199.999970
{0, 10−5, 0}T {0, 0, 0}T 0.000000 120.000005
{0, 10−6, 0}T {0, 0, 0}T 0.000000 12.000533
{0, 10−7, 0}T {0, 0, 0}T 0.000000 1.186117
{0, 10−8, 0}T {0, 0, 0}T 0.000000 0.000000

Double precision was then applied to the simulation, and this gave good results
for the shear stress calculations. In Figure 6.5 on page 103, the shear stress is
visualized with single and double precision, and the simulation parameters are
equal in both Figure 6.5a and 6.5b.

In Figure 6.5a, both number3 and number in Listing 6.1 are defined as float3
and float, respectively. And in Figure 6.5b they are defined as double3 and double,
respectively.

Listing 6.1: Shear stress calculation
1 // Vars
2 float E;
3
4 // Global vertices
5 number3 v4 , v8;
6
7 // Local displacement
8 number3 u4 , u8;
9

10 // Vectors
11 number3 vec1 = v8 -v4;
12 number3 vec2 = (v8+u8)-(v4+u4);
13
14 // Shear strain
15 number s;
16 s = acos(dot(vec1 , vec2)/(length(vec1) * length(vec2)))*E;

102

(a) Single precision

(b) Double precision

Figure 6.5: Shear stress precision

103

(a) Sequence of elements in original shape

u1

(b) Elements being stretched, causing most displacement (u1) and stress in the middle

u2

(c) A fracture occurs which decreases the displacement u2 < u1, and therefore decreases
the stress

Figure 6.6: Fracture displacement decrease

6.5 Calculation of Local Displacement
As discussed in Section 4.1.3, we have introduced an equation governing the local
displacement for each element based on the length of the fracture. This idea came
to mind due to that fractures act as a way to minimize the stress level in the
material, and minimizing the stress is achieved by reducing the displacement.

The idea is shown in Figure 6.6, where we have a sequence of elements rep-
resenting some material, and in Figure 6.6a the structure is shown in its original
shape, then further in Figure 6.6b, the structure is being pulled outwards in both
directions. This external pulling force will then cause most stress and displace-
ment in the center of the structure (assuming a homogeneous material), and just
before any fracture process occurs the structure has obtained a displacement of u1

for the elements at the middle. Then suddenly a fracture process occurs shown in
Figure 6.6c, which acts as the process which minimizes the stress present in the
structure, by reducing the displacement around the fracture zone.

But in the implementation, a more simpler approach has been implemented
which mimics this behaviour, which is shown in Equation 4.7 and 4.8. Where
we simply have defined a relationship between the global displacement calculated
by the SOR-method, and the so called local displacement which is used when
calculating the stress present in the structure. And this equation reduces the local
displacement with an increment in the fracture length.

The implemented solution may not be that physical correct, and a more com-
plex approach could be implemented to achieve a more physical correct simulation.
But in this project, a the simpler approach was selected due to time limitations,
and also this serves as a good enough method to connect both the fracture simu-
lation and the displacement simulation in this very first implementation.

104

6.6 GPU Occupancy
In Section 5.2.2.5, we looked into the achieved occupancy by varying the maxi-
mum numbers of registers available for each thread. By decreasing the number
of registers that each thread can use, we allow more blocks to simultaneously be
executed per SM. This is due to that each SM has a finite number of registers
available, and these resources can either be used to execute 1 block, where each
thread within the block can use tens or hundred of registers, or we can limit the
number of registers such that the GPU can execute more blocks simultaneously,
because it has available registers.

When programming on the GPU, high occupancy is often desirable, because
having a high number of threads running simultaneously is known as the method
to hide the memory latency on the GPU, and therefore obtain better execution
time. But in our case, it was discovered that this was not the case.

This is probably due to that since we do not explicitly use shared memory, the
fast on-chip memory will only be used as a L1 cache for a thread’s local memory on
the Kepler architecture, but Fermi will use this L1 cache for all memory operations.
However the memory access pattern is not optimal. e.g when calculating the
displacement for node 1 (see Figure 4.1 on page 43 for node numbering) of the
finite elements, a memory request to i, i+ 1, i+Nx, and i+Nx ∗Nz is performed.
And since the total memory requirement for the displacement calculation does not
fit within the shared memory on the GPU, we are probably experiencing a lot of
cache misses when the on-chip memory is used as an L1 cache.

In the newest Kepler architecture, the on-chip fast memory can be configured
to use a maximum of 48 KiB as a L1 cache, and when the numbers of SMs that
a Nvidia GPUs has, is 15 for the most powerful GPUs today, this only sums up
to 15 ∗ 48 = 720KiB, which is enough to store (720 ∗ 1024)/(3 ∗ 4) = 61440 float3
values, which is barely enough to store the displacement vectors for the smallest
mesh sizes that we use, and in addition, when calculating the global displacement
we need the global force vector as well, which has the same size as the displacement
vector, and lastly, since the spring constant is depending on the density of the finite
element, we also need to read the vertices of the 8 nodes for each finite element.
Which triples the memory requirement. (propagate fractures kernels require even
more).

So the GPUs do not have enough on-chip memory such that we can fit all our
data within the L1 cache, and since we have a bad memory access pattern, we are
probably experiencing a lot of cache misses. And this is probably why we achieve
better execution time when we do not limit the number of registers available for
each thread to use. Because in this case, the threads do not have to rely on the
data being present in the L1 cache, because they will always have their data in
the registers.

Although this limits the GPU to only execute one block per SM, which means
that the first block will first read its required data, then perform its calculations,
and finally write back the results, and then the second block can perform exactly
the same operations. It shows that this is infact faster than allowing each SM to
execute multiple blocks simultaneously, where each thread is depending on their
data being present in the L1 cache.

105

Table 6.3: ECC impact on the Tesla C2070

Number of Elements ECC on ECC off
58 806 42.286482 s 34.617693 s
475 212 79.730415 s 71.097985 s
1 609 218 173.405227 s 163.464612 s
3 980 025 368.934885 s 357.009578 s
7 719 031 634.421283 s 613.505643 s
13 275 637 1068.561796 s 1046.984142 s

6.7 Error Checking & Correction Memory
After all the tests for Chapter 5 had been performed, it was notices that Error
Checking & Correction Memory (ECC Memory) was turned off at workstation 1.
And this was also informed by Eirik Myklebost[15], that it could have an impact
on applications that are memory bound.

ECC memory is a type of memory that can detect and correct single-bit errors
in the memory. So the word that is read from memory will always be the same
word that was written to that location, even if one or more bits has been flipped
to the wrong state. This type of memory is supported at systems where data
corruption cannot be tolerated, like scientific computing. Hence you can change
these settings at a Tesla GPU which is mostly used for scientific computing, but a
GeForce GPU which are mostly used for gaming do not have this type of memory.

After it was detected that ECC was turned of at workstation 1, it was necessary
to find out how big impact this has on the results, because the tests could not be
executed once more due to time limitations. And as stated, ECC was turned off at
workstation 1, but at workstation 2 it was turned on, and therefore the achieved
speedup on the Tesla K40c should be somewhat higher. The total execution time
results are shown in detail in Table 6.3 and Figure 6.7a on page 107, and in Figure
6.7b, we can see the ratio between the execution times by having ECC turned on
and off, is becoming smaller and smaller with increasing problem size.

However, since this is a scientific simulation we should always have ECC en-
abled to obtain accurate simulation results.

6.8 Fermi Versus Kepler
In section 5.2.2.7, we look at detailed performance results on the Fermi and Kepler
GPU, and found out that the powerful Tesla K40c did not perform best in all
kernels implemented in this project. But this is just shows a good example that
you cannot just use better hardware, and assume that the speed will increase when
you have a unoptimized code.

In Table 5.13 on page 95, we could see that the kernels calculating the displace-
ment was performing better on the Fermi architecture, and the kernels calculating
the fracture propagation was performing better on the Kepler architecture. And if
we look more detailed on the hardware specification on the two GPU used (Table
6.4 on page 108), this comes as a big surprise.

However, as state earlier in Section 5.2.2.2, the usage of the fast on-chip memory
has changed from the Fermi architecture to Kepler. The on-chip memory is located
on each SM with a size of 64 KiB, and is used as the shared memory available on
CUDA GPUs and as an L1 cache, and the programmer can decide on how these 64

106

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

0

200

400

600

800

1,000

Finite elements

ECC On
ECC Off

(a) Total execution time with and without ECC by varying problem size

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

1.05

1.1

1.15

1.2

Finite elements

(b) Ratio between total execution times in Figure 6.7a

Figure 6.7: ECC impact on performance

107

KiB should be divided between shared memory and L1 cache, with the following
options:

• 16 KiB shared, 48 KiB L1 cache

• 48 KiB shared, 16 KiB L1 cache

• 32 KiB shared, 32 KiB L1 cache (Kepler only)

But in this project, there have not been enough time to optimize the code, and
therefore shared memory usage is not implemented, and the fast on-chip memory
is only used as a L1 cache. And since Nvidia has changed how this cache is being
used, where in the Fermi architecture, everything that is read from memory is
being cached in this fast L1 cache. But in the Kepler architecture, only a thread’s
local memory is cached, and the local memory is only used iff a thread uses more
registers than available. And as we looked at in Section 5.2.2.5, when using the
Tesla K40c, the number of registers used for the displacement and fracture kernels
are around 50 and 100, respectively. And the Kepler architecture supports up to
255 registers per thread, so the threads are not using any local memory, i.e. that
the L1 cache is idle.

But the results shows that it is only the displacement kernels which performs
better on the Fermi architecture. And this is most likely due to that the displace-
ment kernels are only memory intensive, and the arithmetic is not so intensive,
compared to the kernels calculating the fracture propagation, which has a lot of
arithmetic and uses a lot of special arithmetic functions like sqrt and acos. And
the number of special function units have been increased a lot on the Kepler ar-
chitecture versus the Fermi architecture, 32 vs 4 per SM.

The CUDA compiler also has the option to disable any L1 cache usage (by
compiling with ’-Xptxas -dlcm=cg’), and by doing this we should see that the
Kepler is performing better than Fermi for all kernels. The results without L1
usage is shown in Table 6.5 on page 109, and if we compare this with Table 5.13
on page 95 where the average kernel execution time is listed with L1 cache, we
can infact see that the execution time is equal for the Kepler tests, because Kepler
does not use the L1 cache. But the kernel execution times for the Fermi GPU is
twice as large for the displacement kernel, and 32% - 39% larger for the fracture
kernels when the L1 cache is disabled.

Table 6.4: Hardware specification on Tesla K40c and C2070

Tesla K40c Tesla C2070
Architecture GK110B GF100
CUDA cores 2880 448
Peak double precision floating point performance 1.43 Tflops 515 Gflops
Peak single precision floating point performance 4.29 Tflops 1.03 Tflops
Memory bandwidth (ECC off) 288 GB/sec 144 GB/sec
Memory size (GDDR5) 12 GiB 6 GiB
GPU Clock 875 MHz 1.15 GHz

108

Table 6.5: Kernel average execution time, L1 cache disabled

Kepler Fermi
Num elements Displacement Fractures Displacement Fractures
58806 0.99 ms 3.83 ms 1.72 ms 6.37 ms
475 212 8.25 ms 31.62 ms 13.15 ms 46.90 ms
1609218 29.36 ms 110.44 ms 45.37 ms 157.95 ms
3 980 025 70.12 ms 267.73 ms 112.30 ms 395.12 ms
7 719 031 123.94 ms 449.92 ms 208.85 ms 702.28 ms

6.9 Finite Element Vibration
The simulation implemented in this project, is the result after several iterations
with a trial and error approach. The very first implementation was quite different,
and is shown more in detail in Appendix G. However, the initial FEM model
was also quite different from the implemented model, where the first model was
consisting of a set of tetrahedrons. And while this model was implemented, the
method of solving the global displacement by using the SOR-method was highly
unstable, and we could see the vertices bouncing in the snow layers.

While this issue was present in the simulation, various solutions was tried in
order to remove the instabilities. And one of the solutions was to divide the global
displacement calculation into several CUDA kernels, which was at the time a single
kernel that calculated the displacement for all node of each finite element. And
by dividing the code into several kernels that was executed sequentially on the
GPU, a lot of race conditions was removed, and most of the instabilities was also
removed.

But additional solutions was also tried in order to reduce the instabilities,
and the other method tried was to instead of using the tetrahedron as the finite
element, a set of cubes was also tried. And by changing the type of finite element,
the system of equations that was required to solve was changed from the system
shown in Equation 6.1 to the system shown in Equation 6.2. And if this gave
any additional reduction in the instabilities is not known. But at the time, after
visually inspecting the vibration present in the simulation, the vibration seemed
less. However, any metric for calculating the amount of instability was never
implemented, and if the vibration actually was reduced by changing the finite
element from the tetrahedron to a cube is not known, and after the testing of the
simulation was performed in Chapter 5, it was found that the relaxation factor
used by the SOR-method has a huge impact on the instabilities. But at the time,
it seemed that the cube was experiencing less vibration, and therefore this is the
kind of finite element that is used in the implemented simulation.

k(i)

−3 1 . . . 1 0 . . . 1 0 . . . 0 0
1 −12 . . . 3 1 . . . 3 1 . . . 0 3
...

...
...

...
...

1 3 . . . −12 1 . . . 3 0 . . . 1 3
0 1 . . . 1 −3 . . . 0 0 . . . 0 1
...

...
...

...
...

1 3 . . . 3 0 . . . −12 1 . . . 1 3
0 1 . . . 0 0 . . . 1 −3 . . . 0 1
...

...
...

...
...

0 0 . . . 1 0 . . . 1 0 . . . −3 1
0 3 . . . 3 1 . . . 3 1 . . . 1 12

Ui
Ui+1
...

Ui+Mx

Ui+Mx+1
...

Ui+Mx∗Mz

Ui+Mx∗Mz+1
...

Ui+Mx∗Mz+Mx

Ui+Mx∗Mz+Mx+1

=

Fi
4Fi+1

...
4Fi+Mx

Fi+Mx+1
...

4Fi+Mx∗Mz

Fi+Mx∗Mz+1
...

Fi+Mx∗Mz+Mx

4Fi+Mx∗Mz+Mx+1

(6.1)

109

k(i)

−3 1 . . . 1 0 . . . 1 0 . . . 0 0
1 −3 . . . 0 1 . . . 0 1 . . . 0 0
...

...
...

...
...

1 0 . . . −3 1 . . . 0 0 . . . 1 0
0 1 . . . 1 −3 . . . 0 0 . . . 0 1
...

...
...

...
...

1 0 . . . 0 0 . . . −3 1 . . . 1 0
0 1 . . . 0 0 . . . 1 −3 . . . 0 1
...

...
...

...
...

0 0 . . . 1 0 . . . 1 0 . . . −3 1
0 0 . . . 0 1 . . . 0 1 . . . 1 −3

Ui
Ui+1
...

Ui+Mx

Ui+Mx+1
...

Ui+Mx∗Mz

Ui+Mx∗Mz+1
...

Ui+Mx∗Mz+Mx

Ui+Mx∗Mz+Mx+1

=

Fi
Fi+1
...

Fi+Mx

Fi+Mx+1
...

Fi+Mx∗Mz

Fi+Mx∗Mz+1
...

Fi+Mx∗Mz+Mx

Fi+Mx∗Mz+Mx+1

(6.2)

110

Chapter 7

Conclusion

In this thesis, we have investigated in using fracture mechanics, in order to predict
avalanches. And during the time period of this thesis, it has been discovered that
avalanche prediction is still a relative new field of research and also a extremely
difficult field, due to the complex behaviour of snow. And from my knowledge
there are not a lot of papers published in this area, regarding either computer
simulations or experimental data, but there exists a few as we have look at in
Chapter 3.

In this thesis, a introduction to fracture mechanics and the finite element
method is given, and we also look into snow as a material and the properties giving
snow its complex behaviour, and we also look at different kind of avalanches and
the reason behind the fatal slab avalanches1. A FEM model has also been de-
veloped for simulating fracture propagation in the snow layers, where I also have
developed a lot of different visualization methods, giving valuable visual feedback
of avalanche prediction.

Even though this work may not be 100% physical accurate due to the unknown
spring constant used, and work remains in order to fully integrate the implemented
simulations into the snow simulator, I think that this work can be used in order
to generate higher interest in the field of avalanche prediction. Where the current
state of avalanche prediction has a lot of potential for improvement.

7.1 Avalanche Prediction
The initial goal for this thesis, was to simulate fracture propagation in the snow
layers, and based on this, obtain a volume of the snow layers that would be included
in an avalanche. But during this thesis, it was shown that the initial goal was
difficult to obtain. This was caused by several different factors:

• During this thesis, I had to obtain a lot of knowledge within fracture mechan-
ics, where I had no prior knowledge. And this field was learnt in great depth
in order to fully understand the field. Where I started to learn the basic of
fracture mechanics on the atomic level, and how the equations in fracture
mechanics are created. And without this knowledge, I would not been able
to adapt the equation of the Energy Release Rate to better fit the model
created in this thesis. And this was necessary, because the basic equations
in the field of fracture mechanics are equations suited for 2D problems, and

1The theory of weak layers seems promising, however it is yet to be proven

111

since our model is in 3D, we had to adapt the equation of how the energy
release rate was calculated (Section 4.1.5).

• Knowledge about the Finite Element Method was also necessary to obtain,
before the simulation could be implemented. And this was also a field where
I had no prior knowledge. Fortunately, a book about FEM was found[6],
where they had 1D examples of how the method could be used to model
deformation, and this was then extended to 3D.

• The SOR-method is also used in this project, but the method was slightly
known before the project was started. But only in theory, and I had never
had any hand-on experience with the method.

• It was also found out that there existed little work in the field of avalanche
prediction, and therefore I had few examples to follow, and the simulation
approach implemented has been created by myself, which was a time con-
suming process where various approaches was evaluated.

• Additionally similar work was found [22], where the behaviour of snow is very
accurately modelled, and it was then found how complex it is to accurately
simulate how snow behaves. And during this time, it was found that this
behaviour had to be simplified in order to achieve any kind of simulation.

The above factors has contributed to a lot of challenges in this project, and
the initial goal was too ambitious, and therefore, it was simply not enough time
to create an algorithm for calculating the initial volume of avalanches.

But even though that the calculation of the avalanche volume is not imple-
mented, I think that this work is very useful for predicting avalanches. Because
when slab avalanches are released, they are always dangerous and could be fatal,
and the question of how big they would be, may not be necessary to answer in
order to save human lives. We simply have to answer the question of where and
when they are triggered.

The above question of where and when avalanches are triggered, I think is
possible to answer with my model iff physical validation is made, and in addition
we need to acquire a lot of fracture data on different kind of snow types, e.g.
critical energy release rate. However, I think that this work gives a valuable start
for further work on this issue.

7.2 Performance
In this project, we have taken advantage of the powerful graphical processing unit
(GPU), which has shown to be 5x faster than the fastest CPU I had available
(Tesla K40c vs Intel i7-4771) for problem sizes above 4 × 106 number of finite
elements, and for the smallest problem sizes of 5.8× 104, the GPU was 3.8x times
faster.

It should also be noted that this is not a comparison against a sequential CPU
version. The CPU version was compiled with gcc with optimization level -O3,
and in addition parallelized with OpenMP. Which all made a huge performance
increase on the CPU version. However, the simulation should be expected to have
a potential for performance increase, when running the simulation on a GPU with
the Kepler architecture, when shared memory is used.

112

A short comparison with a sequential version was also made, where the GPU
had a speedup ranging from 25-30x, which shows how important it is to run parallel
code. It should also be noted that the CPU also got significant speedup when using
multi-threading with OpenMP.

7.3 Future Work
Over the course of this project, it has been shown that to completely predict
avalanches much work remain. And in the following sections we will discuss various
possibilities of extensions and improvements.

7.3.1 Mesh Filling

In the initialization stage of the simulator, a set of vertices are generated, repre-
senting the snow layers. In addition, a mesh_point structure is initialized, which
is equal to the number of finite elements. And the idea of this structure is to store
data representing the properties of the snow present in each finite element, and
then based on this data, obtain the Young’s modulus and critical energy release
rate.

This mesh filling algorithm was implemented in my specialization project[26],
where temperature and humidity present in the air when each snow layer was
filled was stored in this mesh_point structure. However, in this project, it was
discovered that the mesh generation had to be reimplemented, and therefore the
mesh filling algorithm was no longer valid. And this is therefore a part that needs
to be implemented, where we need to fill the mesh_point structure with snow
properties as the snow cover increases.

Currently, the mesh_point structure is being passed on as parameter to CUDA
kernels responsible to find the Young’s modulus and the critical energy release rate
for each of the finite elements. But in this project, this mesh_point structure is
ignored, and constant values are returned.

In my specialization project, the fill mesh algorithm was implemented such that
the 3D mesh_point structure was compared with the 2D height map, containing
the snow height across the terrain, in order to figure out which parts of the mesh
that had been covered with snow. And since the snow layers vertices was simply a
number of duplicates of the terrain vertices positioned above in Y-direction (Figure
3.4 on page 36), the comparison of the heightmap and the mesh_point structure
was strictly forward. Each mesh point with coordinate {X, Y, Z} had to perform a
lookup in the snow heightmap with coordinates {X,Z}. But with the implemented
mesh generation in this project, the comparison is no longer that easy.

As mentioned in Section 3.1.1.2, when snow particles collide with the terrain/s-
now the 2D heightmap containing snow height data across the terrain is incre-
mented with a predefined snow_growth_coefficient. And it is this heightmap that
are visualized when using the simple, complex, and perlin terrain shader types. So
to fully integrate the 3D snow layer mesh with the snow buildup, I envision two
different approaches, where both has different challenges.

Method 1: In this method, I envision a approach similar as in my specialization
project, where we simply compare the heightmap and the finite elements. This
will in my mind be the easiest approach, where we do not need to change any code
for the visualization or the movement and collision of the snow particles. But the

113

Figure 7.1: Issue with mesh filling method 01

downside of choosing this approach is that we limit the number of terrains that
we can simulate, and the terrain displayed in Figure 7.1 would generate an issue.

This is because that the 2D heightmap can only grow in Y-direction, and
therefore the finite elements located far to the left would never be filled.

Method 2: The other method that could be implemented in order to fill the finite
elements, could be by directly bypassing the 2D heightmap, and reimplementing
the collision detection of the snow particles. Each finite element could then have
an indicator of the percentage fill, and when the snow particles collide with a finite
element they would increase this fill percentage. However the negative effect of
this, would be that many of the terrain shaders would have to be reimplemented
as well, because they rely on the 2D heightmap representing the snow buildup.
And in addition, it would be relatively difficult to render a smooth terrain. This
is because the finite elements are relative large, and if we had only visualized each
finite element, the terrain would be quite rough and we could have seen the cubes.

But in the long term, I personally think that this would be the best approach
such that we could simulate all kinds of terrain, and in addition, we would no
longer have the limitation that we cannot have any snow buildup which results in
any snowdrifts as shown in Figure 2.15 on page 19.

7.3.2 Improve Mesh Generation

The mesh generation process has currently two weaknesses, one of them is discussed
in Section 6.1, where we look at the reason why we cannot create meshes in narrow
valleys, however I consider this only a minor issue which restrict us from simulating
these kinds of terrains. Another issues which I would personally rank with higher

114

Figure 7.2: Mesh generation issue when using mesh deltas less than 1.0

priority is an issue when changing the accuracy of the mesh by reducing/increasing
the mesh_dx, mesh_dy, and mesh_dz.

In my implementation, these variables is used such that if they are all equal to
1.0, the vertices for the bottom part of the finite elements, located in the lowest
part of the snow layers, will correspond exactly with the terrain vertices. And this
part works perfectly, however when using mesh deltas less than 1.0 there will be
some vertices that will uses a incorrect terrain height values as displayed in Figure
7.2 on page 115.

The reason to this behaviour is due to, when the terrain heightmap is accessed
in the mesh generation process, we have an X and Z floating number that are
incremented by a value dx and dz, and right before accessing the heightmap array
these are converted to integers. Resulting in that e.g. {1.0, 1.0}, {1.25, 1.0},
{1.50, 1.0}, {1.75, 1.0} will access the terrain heightmap in the same location,
resulting in the exact same height values.

This could then be fixed by using the plane formula which we could find by
using a set of three vertices in the terrain, then calculate what the height should
be for any point for that plane.

7.3.3 Avalanche Flow Simulation

Avalanche flow simulation has been implemented earlier by Øystein Eklund Krog[27],
which simulated avalanche flow by using Smoothed Particle Hydrodynamics (SPH).
Fortunately, his code was developed like a framework where he has separated the
SPH simulations and the visualization, and therefore we should be able to use this
framework in the snow simulator for avalanche flow simulation.

Avalanche flow simulations has the issue of the initial conditions, like where

115

in the terrain the avalanche is initiated and the volume of the avalanche. But if
the avalanche flow simulation is integrated with this project, we would not longer
have this issue. But it order fully integrate this project, with another project used
for avalanche flow simulation, this project will have to be able to predict the total
volume of an avalanche, then the particles used in SPH should be initialized within
this volume.

116

Appendix A

Recreating Results

In this project, it has not been any focus point to create a fully polished simulator,
where you have an user interface for changing which kind of terrain and snow type
that are being simulated. So changing there parameters requires uncommenting
code and recompiling the simulator. In the following sections we will look at which
parts of the simulator code files that you need to change in order to perform the
simulations yourself.

A.1 Setup
In Section 5.2.1 we listed different parameters that we used for all tests performed,
which we will now look into how you can modify these yourself.

Applied Force: This is a vector of size equal to the total number of nodes in
the simulation, and is initialized from line 124-132, in TerrainSystem.cu. Where
the first line within the for-loop declares the x-component of the force, and next
is the y-component, and lastly the z-component. But this is not changed in our
simulations, and are therefore not necessary to change.

1 CUDA_SAFE_CALL(cudaMalloc ((void **)&force , total_nodes *3* sizeof(float)));
2 float *global_force_data = (float *) malloc(total_nodes *3* sizeof(float));
3 for(int i = 0; i < total_nodes *3;){
4 global_force_data[i++] = 0.f;
5 global_force_data[i++] = 200.f;
6 global_force_data[i++] = 0.f;
7 }
8 CUDA_SAFE_CALL(cudaMemcpy(force , global_force_data , (total_nodes *3* sizeof(float)),

cudaMemcpyHostToDevice));

Spring constant: The spring constant is defined as a device CUDA kernel, and
is found from lines 190-192 in TerrainSystemKernels.cu. However, the same con-
stant is used for all simulation results, and are therefore not necessary to change.

1 /**
2 * Function for finding spring constant for a given finite element
3 **/
4 __device__ float spring_const(mesh_point *mesh_points , float3 *U, float3 *vertices

, int id){
5 return 10000.f*find_density(mesh_points , U, vertices , id);
6 }

117

Young’s modulus: Young’s modulus is also defined as a device CUDA kernel
and is found from line 173-176 in TerrainSystemKernels.cu.

1 /**
2 * Function for finding Young’s modulus for a given mesh element
3 **/
4 __device__ float find_youngs_modulus(mesh_point *mesh_points , float3 *U, float3 *

vertices , int id){
5 return 60.f * 1000000.f; // 60 MPa
6 }

Critical energy release rate: The Critical energy release rate is defined as a
device CUDA kernel and is found from line 181-185 in TerrainSystemKernels.cu.

1 /**
2 * Function for finding the critical energy release rate for a given finite element
3 **/
4 __device__ float find_critical_energy_release_rate(mesh_point *mesh_points , float3

*U, float3 *vertices , int id){
5 float k = 0.00042f * powf(find_density(mesh_points , U, vertices , id), 2.76f);
6 return (k*k)/find_youngs_modulus(mesh_points , U, vertices , id);
7 }

Stress release factor: The stress release factor is found as a constant float
defined at line 30 in TerrainSystemKernels.cu. But this is not required to change
because it is equal to 1000, as we have used in all results.

SOR factor: The relaxation factor is found in Config.cpp at line 97. But it is
set equal to 0.1, for our simulations, so there should not be necessary to modify
this either.

’da’ factor: The fracture propagation distance factor is found in Config.cpp at
line 96. But it is set equal to 0.00000000001f, for our simulations, so there should
not be necessary to modify this either.

Finite element mass: The mass of the finite elements are a local variable used
when calculating the density for a finite element, and is found on line 164 in
TerrainSystemKernels.cu, which is also constant for our simulations.

Changing terrain: To change the terrain used in the simulation is slightly more
complicated. The terrain heightmap is initialized from line 735-789 in Terrain.cpp,
and within these lines there are a lot of commented code, which should be uncom-
mented in order to create the desired terrain.

In this project, we have used the following functions to describe the terrain:

• y = 0

• y = ((x− 64)2 + (z − 64)2)/256

• y = −5cos(0.025x)

• y = −25cos(0.025x)

• y = cos(0.1x) + 0.01x ∗ cos(0.1z) + 2

• y = 5(cos(0.09x+ 1.5) + 0.045x)

118

Figure A.1: Terrain section of simulation menu

It is also important that the terrain size is equal to 128, when using the above
functions. This is because that the variablesX,Z ∃ [0, terrain_size]. The terrain
size is specified in the data/config.txt as the map_size 128 property.

A.2 User Guide
In this section we will look briefly into the startup, the controls of the simulator,
and how to change between the different visualization methods.

First the simulator is started by running the following command from the
terminal, after you have changed into the directory containing the source files and
make file:

./snow
or

./snow –default

When applying –default, the startup configuration menu step will be skipped, and
the simulation starts with the default parameters.

Next is camera movement, where you use {W,S,A,D} to move forward, back-
ward, left, and right, respectively. And to look around, you need to hold the right
mouse button and then move the mouse.

You can also use the space button to move directly upwards, and the LEFT-
CTRL to move directly downwards. And in addition you can hold the LEFT-
SHIFT to speed up any of the movement.

Lastly, as shown in Figure 4.11 on page 54, you have a screenshot of the simula-
tion menu where you have the option to change between the different visualization
methods, under the section "Terrain", where the default startup visualization
method is set to "Simple" (Figure A.1).

119

Appendix B

Finite Element Type

As stated in the start of Chapter 4, generating the mesh for a parallelepiped type
of element would be easiest. But I think that this kind of element would create
some issues with the implementation on shear stress. Where in Figure B.1 on page
121, the parallelepiped element is shown where the top vertices are being applied
a force along the global Y-axis. And this would result in a displacement UY , and
with my normal and shear stress calculations, the shear stress would be equal to
zero, and only normal stress would be generated.

However, with the case of using the cube as the finite element as shown in
Figure B.2 on page 121, our calculation would generate both a normal stress and
shear stress.

And since shear stress/strain is defined as the following ’the change in angle
between lines’, we can infact see that the first case with the parallelepiped element
should not generate any shear stress, and the latter case with the cube element
should generate shear stress.

120

UY

Figure B.1: Parallelepiped shear stress calculation

UY

UX

Figure B.2: Cube shear stress calculation

121

Appendix C

Energy Release Rate Calculation

In this project, the fractures are implemented such that they can propagate indi-
vidually from each node along each axis. Referring to Figure C.1, where a node
is located in the origin of the coordinate system, and there are 6 fracture vectors
representing the fracture lenght along X,Y, and Z axis in both positive and neg-
ativ direction. Further when calculating the fracture propagation, we restrict the
fractures to propagate between the finite elements i.e, in this case fractures can
grow along the following planes: XZ, YX, and YZ. Also since we have different
normal and shear stress at these three planes, we need to calculate the fracture
propagation for the following case:

1. a1 increase w.r.t XZ plane

2. a5 increase w.r.t XZ plane

3. a1 increase w.r.t YX plane

4. a3 increase w.r.t YX plane

5. a5 increase w.r.t YZ plane

6. a3 increase w.r.t YZ plane

This would be the 6 cases for the finite element that exists in Figure C.1 where X,Y,
and Z are positive. The neighbouring finite elements will then do the calculations

x

y

z

a1

a2

a3

a4

a5

a6

Figure C.1: Fracture propagation along axis

122

on the remaining fractures. We will then have to calculate the energy release rate
for all these cases, because e.g. fracture a1 may not propagate w.r.t YX plane,
due to the stesses present at this plane, but it could propagate w.r.t the XZ plane
due to the stresses in this plane. Below we will derive the equation for the energy
release rate for case number 1:

G = −dΠ
dA

= −
d
(

Π0−σ
2

E
V
)

dA

= −
(

Π0−σ
2

E
Ve

)
−
(

Π0−σ
2

E
Vi

)
Ae−Ai

= −
σ2

E
(Vi−Ve)
Ae−Ai

= −
(N3+S5+S1)

2

E

((
||(β||a1+a5||)∗(a1×a5)||

6

)
−
(
||(β||(a1+da)+a5||)∗((a1+da)×a5)||

6

))
(
||(a1+da)×a5||

2

)
−
(
||a1×a5||

2

)
where N3 is the normal stress along positive Y-axis, S5 is the shear stress along positive Z-axis, and S1 is the

shear stress along positive X-axis (stress calculation is described in Section 4.1.4)

123

Appendix D

Movie

A short movie presentation of the results shown in this thesis has also been made,
and can be viewed on the following web page:

https://www.youtube.com/watch?v=xM5i0g6g8JM

124

https://www.youtube.com/watch?v=xM5i0g6g8JM

Appendix E

Detailed Simulation Results

In this chapter, you will find detailed simulation results in a form of a series of
screenshots.

E.1 Energy Ratio for Parabola Terrain
In this section you can see the detailed simulation results from simulating homo-
geneous snow with a parabola terrain. And as we can see, the energy ratio builds
up towards a value equal to one at the bottom of both sides, i.e. a fracture is
propagating a distance da = 10−11. But after this single propagation, the snow
then stabilizes. The results are shown in Figure E.1 to E.11 (Page 125 - 130).

Figure E.1: Energy ratio for parabola terrain, step 1

125

Figure E.2: Energy ratio for parabola terrain, step 2

Figure E.3: Energy ratio for parabola terrain, step 3

126

Figure E.4: Energy ratio for parabola terrain, step 4

Figure E.5: Energy ratio for parabola terrain, step 5

127

Figure E.6: Energy ratio for parabola terrain, step 6

Figure E.7: Energy ratio for parabola terrain, step 7

128

Figure E.8: Energy ratio for parabola terrain, step 8

Figure E.9: Energy ratio for parabola terrain, step 9

129

Figure E.10: Energy ratio for parabola terrain, step 10

Figure E.11: Energy ratio for parabola terrain, step 11

E.2 Energy Ratio for Steep Slope Terrain
In this section you can see the detailed simulation results from simulating homo-
geneous snow with a steep slope terrain. The results are shown in Figure E.12 to
E.23 (Page 131 - 136). And as we can see, the energy ratio is building up towards
1 at the center of the slope. Then suddenly a fracture process occurs, which im-
mediately releases the stress, and the energy left in the structure is not enough to
extend the fracture any further.

130

Figure E.12: Energy ratio for steep slope terrain, step 1

Figure E.13: Energy ratio for steep slope terrain, step 2

131

Figure E.14: Energy ratio for steep slope terrain, step 3

Figure E.15: Energy ratio for steep slope terrain, step 4

132

Figure E.16: Energy ratio for steep slope terrain, step 5

Figure E.17: Energy ratio for steep slope terrain, step 6

133

Figure E.18: Energy ratio for steep slope terrain, step 7

Figure E.19: Energy ratio for steep slope terrain, step 8

134

Figure E.20: Energy ratio for steep slope terrain, step 9

Figure E.21: Energy ratio for steep slope terrain, step 10

135

Figure E.22: Energy ratio for steep slope terrain, step 11

Figure E.23: Energy ratio for steep slope terrain, step 12

E.3 Timing Penalty of Double Precision
When calculating the time penalty of using double precision, detailed simulation
timing was performned with different mesh sizes, where you can see the results in
detail in Table E.1 on page 137.

136

Table E.1: Double versus single precision

Elements Precision GTX-480 C2070 GTX 760 K40c
576 Single 22.35 s 28.30 s 26.12 s 19.84 s

Double 22.37 s 28.47 s 26.30 s 20.05 s
Ratio 0.999 0.994 0.993 0.990

7 203 Single 22.97 s 29.28 s 27.93 s 20.58 s
Double 23.49 s 29.67 s 28.59 s 20.82 s
Ratio 0.978 0.987 0.977 0.988

21 904 Single 24.28 s 30.79 s 30.54 s 22.40 s
Double 25.22 s 31.71 s 31.95 s 22.72 s
Ratio 0.963 0.971 0.956 0.986

58 806 Single 26.69 s 33.62 s 35.73 s 25.96 s
Double 29.31 s 36.04 s 39.51 s 26.68 s
Ratio 0.910 0.933 0.904 0.973

107 632 Single 29.59 s 37.53 s 42.14 s 30.18 s
Double 33.48 s 41.32 s 47.80 s 31.14 s
Ratio 0.884 0.908 0.882 0.969

199 809 Single 34.70 s 45.05 s 54.47 s 38.52 s
Double 43.92 s 53.66 s 67.42 s 41.35 s
Ratio 0.790 0.840 0.808 0.932

302 760 Single 41.37 s 52.97 s 68.31 s 47.69 s
Double 53.04 s 62.70 s 84.14 s 51.24 s
Ratio 0.780 0.845 0.812 0.931

475 212 Single 50.14 s 64.41 s 90.01 s 62.27 s
Double 63.82 s 77.23 s 111.01 s 64.93 s
Ratio 0.786 0.834 0.811 0.959

702 464 Single 62.44 s 80.67 s 120.24 s 82.20 s
Double 83.60 s 101.9 s 156.00 s 87.92 s
Ratio 0.747 0.791 0.771 0.935

930 015 Single 73.98 s 96.91 s 150.22 s 101.95 s
Double 100.23 s 125.10 s 192.96 s 107.14 s
Ratio 0.738 0.775 0.779 0.952

1 276 292 Single 96.37 s 127.69 s 196.61 s 132.46 s
Double 141.40 s 167.40 s 263.53 s 142.33 s
Ratio 0.682 0.763 0.746 0.931

1 609 218 Single 110.95 s 142.83 s 234.06 s 156.76 s
Double 174.96 s 193.22 s 313.49 s 172.01 s
Ratio 0.634 0.739 0.747 0.911

137

Appendix F

Poster

A poster has also been created for this project and is shown on page 139.

138

139

Appendix G

First Approach

The implementation of this project was not the original approach that I had in
mind. After I had learnt enough about fracture mechanics I was very eager to start
on the project and obtain some results. So I started quite early on with another
approach to solve the problem of this thesis, and also wrote a lot of this method
while I was implementing. I also had very little knowledge about the finite element
method when I wrote and implemented the first approach, and it was only after
much time had been spent on the implementation that I found out that I had to
take a step back, and obtain more knowledge on the finite element method before
I started the actual implementation.

Elemental Crack Advance
In this project the Elemental crack advance will be implemented in order to
calculate fracture propagation in the snow layers. The external load on each snow
layers will be the above snow masses, and the stresses in each snow layer will be
calculated from this load. The energy release rate G will then be calculated from
equation 2.15, which requires knowledge of the stress field and the crack area a. We
will also assume the existence of micro-cracks in the snow layers, which is a valid
assumptions due to the ice-matrix. However, how big these micro-cracks should
be needs to be figured out, and the size of these existing micro-cracks should also
depend on the snow-layer properties.

The method of choice for solving the fracture problem is based on the energy
release rate, which is based on calculating the derivative of the potential energy
of the structure w.r.t. the crack-area. However, this method requires a low dA to
be accurate. The calculations are done in the following manner, where the energy
release rate is calculated, and is then compared to the fracture toughness Gc. And
finally when the energy release rate is equal to the fracture toughness, the crack
can propagate a given distance da:

Π (a) = Π0 −
πσ2a2B

E
(G.1)

where Π is the potential energy of the structure, Π0 is the potential energy of an uncracked structure, σ is the
stress field, a is the crack lenght, B is the thickness of the structure (Figure 2.8), and E is young’s modulus.

G = −dΠ (a)

dA
= −Π(a+ ∆a)− Π(a)

dA
(G.2)

140

Then after the energy release rate is calculated, we can compare it with Gc.

Gc =
dWs

dA
=
d (4aB (γs + γp))

dA
=
d (4aBwf)

dA
= 2wf (G.3)

where wf = γs for ideally brittle materials, or wf = γs + γp for materials which experiences plastic flow at the
crack-tip.

FEM Implementation

To calculate the fracture process, we will have to calculate the derivative of the
energy release rate w.r.t. the change of the fracture area, and we will need to
solve Equation G.2 to calculate this. This equation relies on the stress field in
the structure, the size of the fractures, and Young’s modulus which is a material
constant. The calculation of the stress field is described in Section G, but we need
a representation of the actual fracture propagation. To represent the fractures, we
will restrict fractures to propagate along the interface between the finite elements.
How far the fractures have propagated will be represented by 8 float values for each
node. Where each float value will represent how far the fracture has propagated in
{+x,−x,+y,−y,+z,−z,+d,−d} directions, where ±d is the fracture propagation
along the diagonal for the bottom surface.

The reason why we have factures on the diagonal on the bottom surface is due
to the terrain heightmap, and how the finite elements are constructed. The terrain
heightmap is a two dimensional array with height values at each {x, z} coordinate,
the finite elements are then constructed by a number of nodes above each terrain
height with a specified dy. This gives us that the bottom and top surface plane
represented by the 4 bottom and top nodes respectively will not necessarily be
located in the same plane, however the 4 vertices on the remaining 4 sides will be
located in the same plane.

The finite element construction is displayed in Figure G.3, where the solid lines
represent the terrain and the dashed lines represent a element, and here we can
see clearly that the two triangles representing the bottom and top surface of each
element will not necessarily be located in the same plane, but the remaining sides
will be located in the same plane.

Triaxial Stress Calculation

Calculating the stress field in the entire structure in the most important calcula-
tion, and this stress field will be represented by two 3D vectors for each interface
between two finite elements. One vector representing the normal stress to the
neighbouring element, and one vector representing the shear stress to the neigh-
bouring element.

Figure G.6 shows the forces which will act on the neighbouring elements, when
the external force is gravity only. For calculating the normal and shear stress acting
on the plane separating the current element and the neighbouring elements, we will
need to decompose the gravity vector ~g into two vectors which are perpendicular
and parallel to the bottom surface. These vectors are represented as g2 and g1

respectively. We can then calculate the normal stress and the shear stress acting
on the bottom surface and all the 4 sides.

Firstly we need to calculate the normal vector on the bottom surface, but
since the bottom surface consist of two separate triangles we will repeat the below
calculations for both triangles. To calculate the stress acting on each surface, we

141

a
2

a
1(a + Δa)

1

B
1

B
2

Figure G.1: Representation of crack propagation along sides on a single element

n1

n2 n3

n4a1Δa

a2B2 B1

Figure G.2: Representation of crack propagation along bottom surface on a single
element

142

Figure G.3: Element nodes over terrain heightmap

n
1

n
3

n
2

n
4

n
6

n
7

n
5

n
8

x

y

z

Figure G.4: Finite element vertex indexing

will have to decompose the gravity vector as displayed in Figure G.6. To calculate
these decomposed vectors, we first have to calculate the normal vector for each
triangle on the bottom surface by the following:

~n1 = ~n14 × ~n12 (G.4)

~n2 = ~n32 × ~n34 (G.5)
where ~nxy denotes the vector from point x to point y, incices are displayed in Figure G.4

Then we need to calculate the angle of the terrain slope (remaining calculations
are performed for both normal vectors), and this is easily calculated by taking
advantage of a spherical coordinate system. In a spherical coordinate system, a
vector can be represented by a radius, an angle θ ∃ [0, π], and a angle φ ∃ [0, 2π]
as displayed in Figure G.51. Then to calculate the angle of the terrain, we can use

1Public domain, reprinted from http://en.wikipedia.org/wiki/File:3D_Spherical.svg

143

http://en.wikipedia.org/wiki/File:3D_Spherical.svg

Figure G.5: Spherical coordinate system

the following equation:

θ =
π

2
− acos

(
ny
||n||

)
(G.6)

where ||n|| denotes the euclidean norm

ϕ = atan

(
nz
nx

)
(G.7)

We can then use the following equations to find the spherical representation of
vector g1 and g2, then afterwards we can convert them to cartesian coordinates:

g2r = m× 9.81× cos (θ)

g2θ = π
2

+
(
π
2
− θ
)

= π − θ

g2ϕ = ϕ

g1r = m× 9.81× sin (θ)

g1θ = π
2

+
(
π
2
−
(
π
2
− θ
))

= π
2

+ θ

g1ϕ = ϕ

where gxy is the property y of the x’th decomposed vector of g, and y ∃ {r, θ, ϕ}, and m is the above snow
masses

We can then finally convert these values into cartesian coordinates by the following
equations:

g1 =

g1r × sin(g1θ)× cos(g1ϕ)
g1r × cos(g1θ)

g1r × sin(g1θ)× sin(g1ϕ)

g2 =

g2r × sin(g2θ)× cos(g2ϕ)
g2r × cos(g2θ)

g2r × sin(g2θ)× sin(g2ϕ)

144

Table G.1: Forces acting on side planes

Force XY-plane ZY-plane
Normal x-component z-component
Shear 1 z-component x-component
Shear 2 y-component y-component

We now have all the vectors we need to figure out normal and shear stress for the
bottom surface, and all 4 sides. For the bottom surface, g1 and g2 represent the
normal and shear stress, and for each side we have all the necessary data stored
in the g1 vector.

If we look at Figure G.5, and imagine that the calculated g1 vector which is
parallel to the slope is the vector from (r, θ, ϕ) to (0, 0, 0). Then we will have the
following components of the g1 vector representing the normal and shear forces
acting on these sides as shown in Table G.1, the other g1 vector calculated for
the opposite triangle will then be used for the other two sides of the element.
More accurate, if we look at Figure G.4, we will have a g11 vector representing the
forces acting on the surfaces represented by {n1, n2, n6, n5} and {n1, n4, n8, n5},
and another vector g12 representing the forces acting on the surfaces represented
by {n3, n2, n6, n7} and {n3, n4, n8, n7}. And g11 and g12 is the decomposed gravity
vector acting parallel to the bottom surface triangles {n1, n2, n4} and {n3, n2, n4}
respectively.

The next step in calculating the stress acting on each surface is the area of them,
this is easily performed by using 2D vectors and calculating the determinants for
each side of the element, and by using half of the length of the cross-product
vector for the bottom surface triangles. The resulting surface area equations are
therefore:

A ({n1, n2, n6, n5}) = |det
([
n5y − n1y n5z − n1z

n2y − n1y n2z − n1z

])
|

A ({n1, n4, n8, n5}) = |det
([
n5y − n1y n5x − n1x

n4y − n1y n4x − n1x

])
|

A ({n3, n2, n6, n7}) = |det
([
n7y − n3y n7x − n3x

n4y − n3y n4x − n3x

])
|

A ({n3, n4, n8, n7}) = |det
([
n7y − n3y n7z − n3z

n4y − n3y n4z − n3z

])
|

A ({n1, n2, n4}) = 1
2
length (~n12 × ~n14)

A ({n3, n4, n2}) = 1
2
length (~n32 × ~n34)

where det denotes the determinant of a vector in R2, and length denotes the euclidean norm in R3.

Energy Release Rate Calculation

For calculating how the fracture propagates in the structures, the energy release
rate G must be calculated (Equation G.2). In Section G we looked at how we

145

θ

g
g2

1g

Figure G.6: Forces acting on neighbouring elements

will represent the fractures. We will now look at how we will calculate the energy
release rate by a change ∆a in fracture length:

G =
dΠ

dA

=
d
(

Π0 − πσ2a2B
E

)
dA

=

(
Π0 − πσ2||a1+∆a||2·||B2||

E

)
−
(

Π0 − πσ2||a1||2·||B1||
E

)
1
2
||B1 ×B2||

=
πσ2

E
((||a1||2 · ||B1||)− (||a1 + ∆a||2 · ||B2||))

1
2
||B1 ×B2||

Where a is the fracture vector, B1 and B2 is displayed in Figure G.1

Then after the energy release rate is equal to Gc the fracture can be extended
a distance ∆a. These calculations will then be performed for each node in the
direction along the surface of the element. In order words, node n1 will not try to
extend the fracture in −x direction, because this is outside of the element. But
this node can extend a fracture in the following directions {+x,+z,+y} (Figure
G.4).

Memory Requirement
In this section we will look at the necessary data that we need to store in order to
calculate the energy release rate, which will be compared to the fracture toughness
Gc.

146

terrainx terrainz max_snow {dx, dy, dz} Size (MiB)
128 128 4 {0.5, 0.05, 0.5} 80
128 128 4 {0.5, 0.01, 0.5} 400
768 768 4 {0.5, 0.05, 0.5} 2880

Table G.2: Memory requirement for calculating Young’s modulus

terrainx terrainz max_snow {dx, dy, dz} Size (MiB)
128 128 4 {0.5, 0.05, 0.5} 20
128 128 4 {0.5, 0.01, 0.5} 100
768 768 4 {0.5, 0.05, 0.5} 720

Table G.3: Memory requirement for calculating crack area

At the start of this project, it quickly became clear that the memory require-
ments for storing various data would be huge. And the terrain size has been greatly
reduced when compared to earlier avalanche prediction projects [26].

Stresses will be represented by two 3D vectors on each plane of the elements,
which sums up to a total of:

terrainx × terrainz ×max_snow_height× 2× 3× 4

dx× dy × dz
(G.8)

Snow layer displacement should be modelled, and is relatively simple to cal-
culate when the Young’s modulus is known. Then to calculate the snow layer
displacements would need to store the vertices of all snow layers, and update the
Y-coordinate when the snow layers are compressed. In this thesis we will assume
that the snow layers are only compressed, and that the original top surface area
do not change. The memory requirement for storing all snow layer vertices would
then be:

terrainx × terrainz ×max_snow_height (3× 4 + 4)

dx× dy × dz
(G.9)

Where {x,y,z} coordinates are stored, and an additional debugging variable

Which gives memory requirement displayed in Table G.2 for various configurations.
The reason why snow layer displacement should be modelled is because of this is
most likely happening in reality in some degree, and this would also minimize the
crack-lenght required to neighbouring snow-layers.

Crack area is also necessary to calculate the fracture toughness of a material,
and this will be estimated by a single float value per mesh point. And will therefore
have the following memory requirements:

terrainx × terrainz ×max_snow_height× 4

dx× dy × dz
(G.10)

Which gives us the memory requirements displayed in Table G.3 for various con-
figuration.

147

Appendix H

Code

In this chapter we will list detailed code for different parts of the simulation.

H.1 Mesh Generation

Listing H.1: Bottom snow layer mesh generation
1 int count = 0;
2 int nx = (int)((resolution -1)/mesh_dx)+1;
3 int nz = (int)((resolution -1)/mesh_dz)+1;
4
5 float x,z;
6 z = 0.f;
7 for(int i = 0; i < nz; i++){
8 x = 0.f;
9 for(int j = 0; j < nx; j++){

10 data[count].x = (SCENE_X*x/resolution);
11 data[count].y = (float)vertices [(int)(((int)(z))*resolution +((int)(x)))].y

;
12 data[count].z = (SCENE_Z*z/resolution);
13 data[count].w = 0.f;
14
15 count ++;
16
17 assert(count <= num_nodes);
18 x += mesh_dx;
19 }
20 z += mesh_dz;
21 }

Listing H.2: Remaining snow layer mesh generation
1 // Creating snow layers , based on normal vectors from layer below
2 glm::vec3 v1 , v2 , v3 , v4 , n;
3 for(int y = 1; y < max_snow_layers; y++){
4 for(int z = 0; z < nz; z++){
5 for(int x = 0; x < nx; x++){
6 // Creating v1 vector
7 if(z > 0){
8 v1.x = data[count - nx*nz - nx].x - data[count - nx*nz].x;
9 v1.y = data[count - nx*nz - nx].y - data[count - nx*nz].y;

10 v1.z = data[count - nx*nz - nx].z - data[count - nx*nz].z;
11 }
12
13 // Creating v2 vector
14 if(x > 0){
15 v2.x = data[count - nx*nz - 1].x - data[count - nx*nz].x;
16 v2.y = data[count - nx*nz - 1].y - data[count - nx*nz].y;
17 v2.z = data[count - nx*nz - 1].z - data[count - nx*nz].z;
18 }
19
20 // Creating v3 vector
21 if(z < nz -1){
22 v3.x = data[count - nx*nz + nx].x - data[count - nx*nz].x;

148

23 v3.y = data[count - nx*nz + nx].y - data[count - nx*nz].y;
24 v3.z = data[count - nx*nz + nx].z - data[count - nx*nz].z;
25 }
26
27 // Creating v4 vector
28 if(x < nx -1){
29 v4.x = data[count - nx*nz + 1].x - data[count - nx*nz].x;
30 v4.y = data[count - nx*nz + 1].y - data[count - nx*nz].y;
31 v4.z = data[count - nx*nz + 1].z - data[count - nx*nz].z;
32 }
33
34 // Bondary check
35 if(x == 0){
36 v2 = -v4;
37 }else if(x == nx -1){
38 v4 = -v2;
39 }
40
41 if(z == 0){
42 v1 = -v3;
43 }else if(z == nz -1){
44 v3 = -v1;
45 }
46
47 // Calculating normal vector
48 v1 = glm:: normalize(v1);
49 v2 = glm:: normalize(v2);
50 v3 = glm:: normalize(v3);
51 v4 = glm:: normalize(v4);
52 n = glm:: cross(v1, v2) + glm::cross(v2, v3) + glm:: cross(v3, v4) + glm

::cross(v4 , v1);
53 n = mesh_dy*glm:: normalize(n);
54 data[count].x = data[count - nx*nz].x + n.x;
55 data[count].y = data[count - nx*nz].y + n.y;
56 data[count].z = data[count - nx*nz].z + n.z;
57 data[count].w = 0.f;
58 count ++;
59
60 assert(count <= num_nodes);
61 }
62 }
63 }

H.2 Global Displacement
One of the kernels calculating the global displacement, the other kernels are sim-
milar but the indexing is different.

Listing H.3: Step 1 of global displacement calculation
1 /**
2 * Solving displacement based on SOR , Node 1 of finite element
3 **/
4 __global__ void solve_global_displacement_step1(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
5 // Varialbles
6 float3 sigma;
7 float k;
8
9 // ID

10 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
11 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
12 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
13 int i = id_y*Nx*Nz + id_z*Nx + id_x;
14
15 // Threads outside domain
16 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
17 return;
18 }
19
20 // Spring constant
21 k = spring_const(mesh , U, vertices , i);

149

22
23 // NO DISPLACEMENT FOR BOTTOM LAYER
24 if(id_y > 0){
25 // U[i]
26 sigma = U[i+1] + U[i+Nx] + U[i+Nx*Nz];
27 sigma = k*sigma;
28 U[i] = (1.f-relaxation)*U[i] + (relaxation /(-3.f*k))*(F[i] - sigma);
29 }
30 }

H.3 Propagate Fracture

Listing H.4: Step 1 of propagate fracture calculation
1 /**
2 * Propagating fractures in node 1 corner
3 **/
4 __global__ void propagate_fractures_step1(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

5 // ID
6 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
7 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
8 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
9 int i = id_y*Nx*Nz + id_z*Nx + id_x;

10 float dA , dE , E;
11 float a1 , a2;
12 float beta = 3.1415f;
13
14 // Threads outside domain
15 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
16 return;
17 }
18
19 // Young’s modulus
20 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
21 E = find_youngs_modulus(mesh , U, vertices , i);
22
23 // Local displacement
24 real3 u1 , u2 , u3 , u5;
25 u1.x = U[i].x / (1.f+fracture_stress_release*fractures[i*6+0]);
26 u1.y = U[i].y / (1.f+fracture_stress_release*fractures[i*6+2]);
27 u1.z = U[i].z / (1.f+fracture_stress_release*fractures[i*6+4]);
28 u2.x = U[i+1].x / (1.f+fracture_stress_release*fractures [(i+1) *6+1]);
29 u2.y = U[i+1].y / (1.f+fracture_stress_release*fractures [(i+1) *6+2]);
30 u2.z = U[i+1].z / (1.f+fracture_stress_release*fractures [(i+1) *6+4]);
31 u3.x = U[i+Nx].x / (1.f+fracture_stress_release*fractures [(i+Nx)*6+0]);
32 u3.y = U[i+Nx].y / (1.f+fracture_stress_release*fractures [(i+Nx)*6+2]);
33 u3.z = U[i+Nx].z / (1.f+fracture_stress_release*fractures [(i+Nx)*6+5]);
34 u5.x = U[i+Nx*Nz].x / (1.f+fracture_stress_release*fractures [(i+Nx*Nz)*6+0]);
35 u5.y = U[i+Nx*Nz].y / (1.f+fracture_stress_release*fractures [(i+Nx*Nz)*6+3]);
36 u5.z = U[i+Nx*Nz].z / (1.f+fracture_stress_release*fractures [(i+Nx*Nz)*6+4]);
37
38 // Global vertices
39 real3 v1 , v2 , v3 , v5;
40 v1.x = vertices[i].x;
41 v1.y = vertices[i].y;
42 v1.z = vertices[i].z;
43 v2.x = vertices[i+1].x;
44 v2.y = vertices[i+1].y;
45 v2.z = vertices[i+1].z;
46 v3.x = vertices[i+Nx].x;
47 v3.y = vertices[i+Nx].y;
48 v3.z = vertices[i+Nx].z;
49 v5.x = vertices[i+Nx*Nz].x;
50 v5.y = vertices[i+Nx*Nz].y;
51 v5.z = vertices[i+Nx*Nz].z;
52
53 // Normal strain
54 real n1, n4, n5, theta;
55 theta = dot(u2-u1, v2-v1)/(length(u2 -u1) * length(v2-v1));
56 n1 = (length(u2 -u1)*theta)/length(v2 -v1)*E;

150

57 theta = dot(u3-u1, v3-v1)/(length(u3 -u1) * length(v3-v1));
58 n4 = (length(u3 -u1)*theta)/length(v3 -v1)*E;
59 theta = dot(u5-u1, v5-v1)/(length(u5 -u1) * length(v5-v1));
60 n5 = (length(u5 -u1)*theta)/length(v5 -v1)*E;
61
62 // Shear strain
63 real s1, s4, s5;
64 s1 = acos(dot(v2 -v1 , (v2+u2)-(v1+u1))/(length(v2-v1) * length ((v2+u2)-(v1+u1)

)))*E;
65 s4 = acos(dot(v3 -v1 , (v3+u3)-(v1+u1))/(length(v3-v1) * length ((v3+u3)-(v1+u1)

)))*E;
66 s5 = acos(dot(v5 -v1 , (v5+u5)-(v1+u1))/(length(v5-v1) * length ((v5+u5)-(v1+u1)

)))*E;
67
68 // XZ plane , a1 fracture = node 1 -> node 2
69 a1 = fractures[i*6+0]; // +X
70 a2 = fractures[i*6+4]; // +Z
71 dE = ((n5*n5+s4*s4+s1*s1)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

72 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
73 if(-(dE/dA) >= gc){
74 fractures[i*6+0] += delta_fracture;
75 a1 += delta_fracture;
76 u1.x = U[i].x / (1.f+fracture_stress_release*a1);
77 }
78
79 // XZ plane , a2 fracture = node 1 -> node 3
80 dE = ((n5*n5+s4*s4+s1*s1)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

81 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
82 if(-(dE/dA) >= gc){
83 fractures[i*6+4] += delta_fracture;
84 a2 += delta_fracture;
85 u1.z = U[i].z / (1.f+fracture_stress_release*a2);
86 }
87
88 // YZ plane , a1 fracture = node 1 -> node 5
89 a1 = fractures[i*6+2]; // +y
90 dE = ((n1*n1+s4*s4+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

91 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
92 if(-(dE/dA) >= gc){
93 fractures[i*6+2] += delta_fracture;
94 a1 += delta_fracture;
95 u1.y = U[i].y / (1.f+fracture_stress_release*a1);
96 }
97
98 // YZ plane , a2 fracture = node 1 -> node 3
99 dE = ((n1*n1+s4*s4+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

100 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
101 if(-(dE/dA) >= gc){
102 fractures[i*6+4] += delta_fracture;
103 a2 += delta_fracture;
104 u1.z = U[i].z / (1.f+fracture_stress_release*a2);
105 }
106
107 // YX plane , a1 fracture = node 1 -> node 5
108 a2 = fractures[i*6+0]; // +X
109 dE = ((n4*n4+s1*s1+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

110 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
111 if(-(dE/dA) >= gc){
112 fractures[i*6+2] += delta_fracture;
113 a1 += delta_fracture;
114 u1.y = U[i].y / (1.f+fracture_stress_release*a1);
115 }
116
117 // YX plane , a2 fracture = node 1 -> node 2
118 dE = ((n4*n4+s1*s1+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+

151

delta_fracture)));
119 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
120 if(-(dE/dA) >= gc){
121 fractures[i*6+0] += delta_fracture;
122 a2 += delta_fracture;
123 u1.x = U[i].x / (1.f+fracture_stress_release*a2);
124 }
125
126 // Visualization
127 float temp = (-1.f)*(dE/dA) / gc;
128 if(! isnan(temp)){
129 energy[i] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
130 }
131
132 if(! isnan(abs(n1+n4+n5))){
133 normal_stress[i] = calculate_color(abs(n1+n4+n5), max_normal_stress);
134 }
135
136 if(! isnan(abs(s1+s4+s5))){
137 shear_stress[i] = calculate_color(abs(s1+s4+s5), max_shear_stress);
138 }
139
140 density[i] = calculate_color(find_density(mesh , U, vertices , i), max_density);
141 }

H.4 Makefile

Listing H.5: Makefile used for compilation
1 # This file is created by students of the HPC -Lab at the Norwegian University of

Science and Technology (NTNU)
2 # and is part of the HPC -Lab Snow Simulator application distributed under the GPL

license.
3 # Copyright (c) 2006 -2013 High Performance Lab at the Norwegian University of

Science and Technology (NTNU)
4 # Department of Computer and Information Science (IDI). All rights reserved.
5 # See the file README.md for more information.
6
7 CXX=g++
8 NVCC=/usr/local/cuda/bin/nvcc -m64 -arch=sm_20 --use_fast_math
9 #NVCC=/usr/local/cuda/bin/nvcc -m64 -arch=sm_35

10
11 INCLUDES=-I/usr/local/cuda/include
12 COMMONFLAGS=$(INCLUDES)
13 NVCCFLAGS=$(COMMONFLAGS)
14 CXXFLAGS=$(COMMONFLAGS) -c -Wall -O3 -std=c++0x
15
16 LIB_CUDA=-L/usr/local/cuda/lib64/ -lcudart
17 LDFLAGS=-lGL -lglfw -lGLEW -lGLU -lAntTweakBar
18
19 CSRC=soil/image_DXT.c soil/image_helper.c soil/SOIL.c soil/stb_image_aug.c
20 CPPSRC=$(shell ls *.cpp) $(shell ls image /*.cpp)
21 CUSRC=ParticleSystem.cu CudaHelpers.cu
22 OBJECTS=$(CPPSRC :.cpp=.o) $(CUSRC:.cu=.o) $(CSRC:.c=.o)
23 EXECUTABLE=snow
24
25 # Compiling ---
26
27 .SUFFIXES: .c .cpp .cu .o
28 .PHONY: all run clean
29
30 all: $(EXECUTABLE)
31
32 run: $(EXECUTABLE)
33 ./snow
34
35 clean:
36 rm -f *.o snow
37
38 %c.o: %.cpp
39 $(CXX) $(CXXFLAGS) -c $< -o $@
40

152

41 %.o: %.cu
42 $(NVCC) $(NVCCFLAGS) -c $< -o $@
43
44 KERNELS_WIND = WindSystemKernels.cu
45 SYSTEMS_WIND = WindSystem.cu
46 KERNELS_SNOW = SnowSystemKernels.cu
47 SYSTEMS_SNOW = SnowSystem.cu
48 KERNELS_TERR = TerrainSystemKernels.cu
49 SYSTEMS_TERR = TerrainSystem.cu
50
51 KERNELS = $(KERNELS_WIND) $(KERNELS_SNOW) $(KERNELS_TERR)
52 SYSTEMS = $(SYSTEMS_WIND) $(SYSTEMS_SNOW) $(SYSTEMS_TERR)
53
54 # Always recompile the particlesystem if subfiles are edited
55 ParticleSystem.o: ParticleSystem.cu $(KERNELS) $(SYSTEMS)
56 $(NVCC) $(NVCCFLAGS) -c $< -o $@
57
58 # Linking ---
59
60 $(EXECUTABLE): $(OBJECTS)
61 $(CXX) $(OBJECTS) $(LIB_CUDA) $(LDFLAGS) -o $@

H.5 Accuracy Test Program

Listing H.6: Floating point accuracy test program
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4
5 typedef double number;
6
7 int main(int argc , char **args){
8 // V1
9 number x1 = 1.f;

10 number y1 = 0.f;
11 number z1 = 0.f;
12
13 // V2
14 number x2 = 2.f;
15 number y2 = 0.f;
16 number z2 = 0.f;
17
18 // U1
19 number u1x = 0.f;
20 number u1y = 0.00000001f;
21 number u1z = 0.f;
22
23 // U2
24 number u2x = 0.f;
25 number u2y = 0.f;
26 number u2z = 0.f;
27
28 // Orginal vec
29 number vec1x = x2 - x1;
30 number vec1y = y2 - y1;
31 number vec1z = z2 - z1;
32
33 // Vec with displacement
34 number vec2x = (x2+u2x) - (x1+u1x);
35 number vec2y = (y2+u2y) - (y1+u1y);
36 number vec2z = (z2+u2z) - (z1+u1z);
37
38 // Total displacement
39 number vec3x = u1x -u2x;
40 number vec3y = u1y -u2y;
41 number vec3z = u1z -u2z;
42
43 // Shear
44 number E = 12.f * 1000000.f;
45 number nom = vec1x*vec2x + vec1y*vec2y + vec1z*vec2z;

153

46 number dom = sqrt(vec1x*vec1x + vec1y*vec1y + vec1z*vec1z) * sqrt(vec2x*vec2x
+ vec2y*vec2y + vec2z*vec2z);

47 number strain = acos(nom/dom);
48 printf("shear␣strain:␣%f␣/␣%f␣=␣%f\n", nom , dom , strain);
49 printf("shear␣stress:␣%f\n\n", strain*E);
50
51 // Normal
52 number theta = ((vec3x*vec1x) + (vec3y*vec1y) + (vec3z*vec1z))/(sqrt(vec3x*

vec3x + vec3y*vec3y + vec3z*vec3z) * sqrt((vec1x*vec1x) + (vec1y*vec1y) +
(vec1z*vec1z)));

53 nom = sqrt(vec3x*vec3x + vec3y*vec3y + vec3z*vec3z)*theta;
54 dom = sqrt(vec1x*vec1x + vec1y*vec1y + vec1z*vec1z);
55 strain = nom/dom;
56 printf("Normal␣strain:␣%f␣/␣%f␣=␣%f\n", nom , dom , strain);
57 printf("Normal␣stress:␣%f\n", strain*E);
58
59 return EXIT_SUCCESS;
60 }

H.6 CPU Version
Compiled with g++ -o main -O3 main.c -lm -lGL -fopenmp

Listing H.7: Floating point accuracy test program
1 // Time
2 timeval t0 , t1;
3 gettimeofday (&t0, NULL);
4
5 int i,j,k;
6 count = 0;
7 while(count < time_steps){
8 // Increase timestep
9 count ++;

10
11 // Solve displacement
12 #pragma omp parallel for
13 for(i=0; i<Nx; i++){
14 for(j=0; j<Ny; j++){
15 for(k=0; k<Nz; k++){
16 // Solving displacement
17 solve_global_displacement_step1(i, j, k, vertices , U, F);
18 solve_global_displacement_step2(i, j, k, vertices , U, F);
19 solve_global_displacement_step3(i, j, k, vertices , U, F);
20 solve_global_displacement_step4(i, j, k, vertices , U, F);
21 solve_global_displacement_step5(i, j, k, vertices , U, F);
22 solve_global_displacement_step6(i, j, k, vertices , U, F);
23 solve_global_displacement_step7(i, j, k, vertices , U, F);
24 solve_global_displacement_step8(i, j, k, vertices , U, F);
25
26 propagate_fractures_step1(i, j, k, vertices , U, fractures);
27 propagate_fractures_step2(i, j, k, vertices , U, fractures);
28 propagate_fractures_step3(i, j, k, vertices , U, fractures);
29 propagate_fractures_step4(i, j, k, vertices , U, fractures);
30 propagate_fractures_step5(i, j, k, vertices , U, fractures);
31 propagate_fractures_step6(i, j, k, vertices , U, fractures);
32 propagate_fractures_step7(i, j, k, vertices , U, fractures);
33 propagate_fractures_step8(i, j, k, vertices , U, fractures);
34 }
35 }
36 }
37 }
38
39 gettimeofday (&t1, NULL);
40 long int micro = ((t1.tv_sec t0.tv_sec)*1000000L+t1.tv_usec)-t0.tv_usec;
41 printf("time␣%f␣sec\n", micro /1000000.f);
42 return EXIT_SUCCESS;

H.7 Complete Code

154

Listing H.8: Complete code
1 // This file is created by students of the HPC -Lab at the Norwegian University of

Science and Technology (NTNU)
2 // and is part of the HPC -Lab Snow Simulator application distributed under the GPL

license.
3 // Copyright (c) 2006 -2013 High Performance Lab at the Norwegian University of

Science and Technology (NTNU)
4 // Department of Computer and Information Science (IDI). All rights reserved.
5 // See the file README.md for more information.
6
7 // Used to switch between float and double for stress calculation
8 typedef double real;
9 typedef double3 real3;

10
11 __constant__ float cuda_max_snow_height;
12 __constant__ float cuda_mesh_dx;
13 __constant__ float cuda_mesh_dy;
14 __constant__ float cuda_mesh_dz;
15 __constant__ float delta_fracture;
16
17 // Nodes dimension
18 __constant__ int Nx;
19 __constant__ int Ny;
20 __constant__ int Nz;
21
22 // Number of elements
23 __constant__ int Ex;
24 __constant__ int Ey;
25 __constant__ int Ez;
26
27 // SOR
28 __constant__ float relaxation;
29
30 const float fracture_stress_release = 1000.f;
31 const float max_normal_stress = 10000.f;
32 const float max_shear_stress = 10000.f;
33 const float max_density = 1000.f;
34
35 /**
36 * Inline functions
37 * found at http :// bullet.googlecode.com/svn/trunk/Extras/CUDA/cutil_math.h
38 * Contains:
39 * - cross: vector cross product
40 * - length: length of a vector
41 * - dot: dot product between two vectors
42 * - operator +: vector3 addition operation
43 * - operator /: vector3 division operation
44 * - operator -: vector3 subtraction operation
45 * - operator *: vector3 multiplication operation
46 **/
47 inline __host__ __device__ float3 cross(float3 a, float3 b)
48 {
49 return make_float3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);
50 }
51 inline __host__ __device__ float dot(float3 a, float3 b)
52 {
53 return a.x * b.x + a.y * b.y + a.z * b.z;
54 }
55 inline __host__ __device__ float length(float3 v)
56 {
57 return sqrtf(dot(v, v));
58 }
59 inline __host__ __device__ double dot(double3 a, double3 b)
60 {
61 return a.x * b.x + a.y * b.y + a.z * b.z;
62 }
63 inline __host__ __device__ double length(double3 v)
64 {
65 return sqrt(dot(v, v));
66 }
67 inline __host__ __device__ float3 operator +(float3 a, float3 b)
68 {
69 return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
70 }
71 inline __host__ __device__ float3 operator /(float3 a, float3 b)
72 {

155

73 return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
74 }
75 inline __host__ __device__ float3 operator -(float3 a, float3 b)
76 {
77 return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
78 }
79 inline __host__ __device__ float3 operator *(float3 a, float3 b)
80 {
81 return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
82 }
83 inline __host__ __device__ float3 operator *(float3 a, float b)
84 {
85 return make_float3(a.x * b, a.y * b, a.z * b);
86 }
87 inline __host__ __device__ float3 operator *(float a, float3 b)
88 {
89 return make_float3(a * b.x, a * b.y, a * b.z);
90 }
91 inline __host__ __device__ double3 operator +(double3 a, double3 b)
92 {
93 return make_double3(a.x + b.x, a.y + b.y, a.z + b.z);
94 }
95 inline __host__ __device__ double3 operator -(double3 a, double3 b)
96 {
97 return make_double3(a.x - b.x, a.y - b.y, a.z - b.z);
98 }
99

100 /**
101 * Calculates the RGB color from a HSV color
102 * H = 240 - values
103 * S = 1
104 * V = 1
105 * http :// www.cs.rit.edu/~ncs/color/t_convert.html
106 **/
107 __device__ float3 calculate_color(float value , float max){
108 int i;
109 float f, p, q, t;
110 float s = 1.f;
111 float v = 1.f;
112 float h = 240.f - 240.f*(value/max);
113
114 if(value > max){value = max;}
115
116 h /= 60; // sector 0 to 5
117 i = floor(h);
118 f = h - i; // factorial part of h
119 p = v * (1 - s);
120 q = v * (1 - s*f);
121 t = v * (1 - s*(1 - f));
122 switch(i) {
123 case 0:
124 return make_float3(v, t, p);
125 case 1:
126 return make_float3(q, v, p);
127 case 2:
128 return make_float3(p, v, t);
129 case 3:
130 return make_float3(p, q, v);
131 case 4:
132 return make_float3(t, p, v);
133 default: // case 5:
134 return make_float3(v, p, q);
135 }
136 }
137
138 /**
139 * Function for finding the density of a finite element
140 **/
141 __device__ float find_density(mesh_point *mesh_points , float3 *U, float3 *vertices

, int i){
142 // Calculating volume
143 float3 v1 = vertices[i] + U[i];
144 float3 v2 = vertices[i+1] + U[i+1];
145 float3 v3 = vertices[i+Nx] + U[i+Nx];
146 float3 v4 = vertices[i+Nx+1] + U[i+Nx+1];
147 float3 v5 = vertices[i+Nx*Nz] + U[i+Nx*Nz];

156

148 float3 v6 = vertices[i+Nx*Nz+1] + U[i+Nx*Nz+1];
149 float3 v7 = vertices[i+Nx*Nz+Nx] + U[i+Nx*Nz+Nx];
150 float3 v8 = vertices[i+Nx*Nz+Nx+1] + U[i+Nx*Nz+Nx+1];
151 float t1 = (dot(v1-v5, cross(v2 -v5, v3 -v5)))/6.f;
152 float t2 = (dot(v2-v8, cross(v3 -v8, v4 -v8)))/6.f;
153 float t3 = (dot(v2-v8, cross(v5 -v8, v6 -v8)))/6.f;
154 float t4 = (dot(v3-v8, cross(v5 -v8, v7 -v8)))/6.f;
155 float t5 = (dot(v2-v8, cross(v3 -v8, v5 -v8)))/6.f;
156 float volume = t1 + t2 + t3 + t4 + t5;
157
158 // Element temperature and humidity
159 // mesh_point point = mesh_points[id];
160 // unsigned char temp_temperature = point.type & 0xf8;
161 // unsigned char temp_humidity = point.type & 0x07;
162 //int temperature = -(temp_temperature >> 3); // Is now in range [-1, -31]
163 //float humidity = ((temp_humidity * 1.f) / 7.f) * 0.3f; // Is now in range

[0.042 , 0.3]
164 float mass = 20.f; // Using constant mass i.e. homogeneous snow
165
166 // Density = mass/volume
167 return mass/volume;
168 }
169
170 /**
171 * Function for finding Young’s modulus for a given mesh element (Will need

research for being 100% correct)
172 **/
173 __device__ float find_youngs_modulus(mesh_point *mesh_points , float3 *U, float3 *

vertices , int id){
174 return 60.f * 1000000.f; // 60 MPa
175 // return 1.89 * powf(find_density(mesh_points , U, vertices , id), 2.94f);
176 }
177
178 /**
179 * Function for finding the critical energy release rate for a given finite element
180 **/
181 __device__ float find_critical_energy_release_rate(mesh_point *mesh_points , float3

*U, float3 *vertices , int id){
182 float k = 0.00042f * powf(find_density(mesh_points , U, vertices , id), 2.76f);
183 return (k*k)/find_youngs_modulus(mesh_points , U, vertices , id);
184 // return 0.044;
185 }
186
187 /**
188 * Function for finding spring constant for a given finite element (Will need

research for being 100% correct)
189 **/
190 __device__ float spring_const(mesh_point *mesh_points , float3 *U, float3 *vertices

, int id){
191 return 10000.f*find_density(mesh_points , U, vertices , id);
192 }
193
194 /**
195 * Fills the snow grid data with current air temperature and humidity , IF covered

by snow
196 *
197 * Params:
198 * - grid: Height data of the snow and terrain
199 * - mesh_points: The 3D mesh points
200 * - air_temperature: Current air temperature
201 * - air_humidity: Current air humidity
202 *
203 * air_humidity range = [0, 0.3]
204 * air_temperature range = [-1, -31]
205 */
206 __global__ void fill_mesh(float4 *grid , mesh_point *mesh_points , float

air_temperature , float air_humidity , int *max_filled_snow_layer) {
207 //Init
208 int gtx = (blockIdx.x * blockDim.x) + threadIdx.x;
209 int gty = (blockIdx.y * blockDim.y) + threadIdx.y;
210 int bx = gtx * cuda_mesh_dx;
211 int by = gty * cuda_mesh_dz;
212
213 float snow_height = grid[(by * terrain_dim) + bx].w;
214 int upper_mesh_id = (int)((snow_height / cuda_mesh_dy));
215 upper_mesh_id = upper_mesh_id - 1;

157

216
217 //Snow has reached at least 1 grid point
218 if(upper_mesh_id >= 0 && snow_height >= cuda_mesh_dy && upper_mesh_id <

cuda_max_snow_height / cuda_mesh_dy){
219 // Domain size
220 int sizeX = (int)(terrain_dim / cuda_mesh_dx);
221 int sizeY = (int)(terrain_dim / cuda_mesh_dz);
222 int snow_mesh_id = (upper_mesh_id * sizeY * sizeX) + (gty * sizeX) + gtx;
223
224 // Setting max_snow_layer
225 if(upper_mesh_id > *max_filled_snow_layer){
226 *max_filled_snow_layer = upper_mesh_id;
227 }
228
229 if(mesh_points[snow_mesh_id].type == 0){
230 // Setting mesh data
231 unsigned char temperature = (unsigned char)((-1.f) * air_temperature);
232 unsigned char humidity = (unsigned char)((air_humidity / 0.3f) * 7.f);
233
234 temperature = temperature << 3;
235 mesh_points[snow_mesh_id].type = temperature | humidity;
236 }
237 }
238 }
239
240 /**
241 * Solving displacement based on SOR , Node 1 of finite element
242 **/
243 __global__ void solve_global_displacement_step1(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
244 // Varialbles
245 float3 sigma;
246 float k;
247
248 // ID
249 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
250 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
251 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
252 int i = id_y*Nx*Nz + id_z*Nx + id_x;
253
254 // Threads outside domain
255 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
256 return;
257 }
258
259 // Spring constant
260 k = spring_const(mesh , U, vertices , i);
261
262 // NO DISPLACEMENT FOR BOTTOM LAYER
263 if(id_y > 0){
264 // U[i]
265 sigma = U[i+1] + U[i+Nx] + U[i+Nx*Nz];
266 sigma = k*sigma;
267 U[i] = (1.f-relaxation)*U[i] + (relaxation /(-3.f*k))*(F[i] - sigma);
268 }
269 }
270
271 /**
272 * Solving displacement based on SOR , Node 2 of finite element
273 **/
274 __global__ void solve_global_displacement_step2(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
275 // Varialbles
276 float3 sigma;
277 float k;
278
279 // ID
280 id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
281 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
282 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
283 int i = id_y*Nx*Nz + id_z*Nx + id_x;
284
285 // Threads outside domain
286 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
287 return;
288 }

158

289
290 // Spring constant
291 k = spring_const(mesh , U, vertices , i);
292
293 if(id_y > 0){
294 // U[i+1]
295 sigma = U[i] + U[i+Nx+1] + U[i+Nx*Nz+1];
296 sigma = k*sigma;
297 U[i+1] = (1.f-relaxation)*U[i+1] + (relaxation /(-3.f*k))*(F[i+1] - sigma);
298 }
299 }
300
301 /**
302 * Solving displacement based on SOR , Node 3 of finite element
303 **/
304 __global__ void solve_global_displacement_step3(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
305 // Varialbles
306 float3 sigma;
307 float k;
308
309 // ID
310 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
311 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
312 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
313 int i = id_y*Nx*Nz + id_z*Nx + id_x;
314
315 // Threads outside domain
316 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
317 return;
318 }
319
320 // Spring constant
321 k = spring_const(mesh , U, vertices , i);
322
323 if(id_y > 0){
324 // U[i+Nx]
325 sigma = U[i] + U[i+Nx+1] + U[i+Nx*Nz+Nx];
326 sigma = k*sigma;
327 U[i+Nx] = (1.f-relaxation)*U[i+Nx] + (relaxation /(-3.f*k))*(F[i+Nx] -

sigma);
328 }
329 }
330
331 /**
332 * Solving displacement based on SOR , Node 4 of finite element
333 **/
334 __global__ void solve_global_displacement_step4(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
335 // Varialbles
336 float3 sigma;
337 float k;
338
339 // ID
340 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
341 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
342 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
343 int i = id_y*Nx*Nz + id_z*Nx + id_x;
344
345 // Threads outside domain
346 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
347 return;
348 }
349
350 // Spring constant
351 k = spring_const(mesh , U, vertices , i);
352
353 if(id_y > 0){
354 // U[i+Nx+1]
355 sigma = U[i+1] + U[i+Nx] + U[i+Nx*Nz+Nx+1];
356 sigma = k*sigma;
357 U[i+Nx+1] = (1.f-relaxation)*U[i+Nx+1] + (relaxation /(-3.f*k))*(F[i+Nx+1]

- sigma);
358 }
359 }
360

159

361 /**
362 * Solving displacement based on SOR , Node 5 of finite element
363 **/
364 __global__ void solve_global_displacement_step5(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
365 // Varialbles
366 float3 sigma;
367 float k;
368
369 // ID
370 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
371 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
372 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
373 int i = id_y*Nx*Nz + id_z*Nx + id_x;
374
375 // Threads outside domain
376 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
377 return;
378 }
379
380 // Spring constant
381 k = spring_const(mesh , U, vertices , i);
382
383 // U[i+Nx*Nz]
384 sigma = U[i] + U[i+Nx*Nz+1] + U[i+Nx*Nz+Nx];
385 sigma = k*sigma;
386 U[i+Nx*Nz] = (1.f-relaxation)*U[i+Nx*Nz] + (relaxation /(-3.f*k))*(F[i+Nx*Nz] -

sigma);
387 }
388
389 /**
390 * Solving displacement based on SOR , Node 6 of finite element
391 **/
392 __global__ void solve_global_displacement_step6(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
393 // Varialbles
394 float3 sigma;
395 float k;
396
397 // ID
398 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
399 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
400 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
401 int i = id_y*Nx*Nz + id_z*Nx + id_x;
402
403 // Threads outside domain
404 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
405 return;
406 }
407
408 // Spring constant
409 k = spring_const(mesh , U, vertices , i);
410
411 // U[i+Nx*Nz+1]
412 sigma = U[i+1] + U[i+Nx*Nz] + U[i+Nx*Nz+Nx+1];
413 sigma = k*sigma;
414 U[i+Nx*Nz+1] = (1.f-relaxation)*U[i+Nx*Nz+1] + (relaxation /(-3.f*k))*(F[i+Nx*

Nz+1] - sigma);
415 }
416
417 /**
418 * Solving displacement based on SOR , Node 7 of finite element
419 **/
420 __global__ void solve_global_displacement_step7(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
421 // Varialbles
422 float3 sigma;
423 float k;
424
425 // ID
426 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
427 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
428 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
429 int i = id_y*Nx*Nz + id_z*Nx + id_x;
430
431 // Threads outside domain

160

432 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
433 return;
434 }
435
436 // Spring constant
437 k = spring_const(mesh , U, vertices , i);
438
439 // U[i+Nx*Nz+Nx]
440 sigma = U[i+Nx] + U[i+Nx*Nz] + U[i+Nx*Nz+Nx+1];
441 sigma = k*sigma;
442 U[i+Nx*Nz+Nx] = (1.f-relaxation)*U[i+Nx*Nz+Nx] + (relaxation /(-3.f*k))*(F[i+Nx

*Nz+Nx] - sigma);
443 }
444
445 /**
446 * Solving displacement based on SOR , Node 8 of finite element
447 **/
448 __global__ void solve_global_displacement_step8(float3 *vertices , float3 *U,

float3 *F, mesh_point *mesh){
449 // Varialbles
450 float3 sigma;
451 float k;
452
453 // ID
454 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
455 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
456 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
457 int i = id_y*Nx*Nz + id_z*Nx + id_x;
458
459 // Threads outside domain
460 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
461 return;
462 }
463
464 // Spring constant
465 k = spring_const(mesh , U, vertices , i);
466
467 // U[i+Nx*Nz+Nx+1]
468 sigma = U[i+Nx+1] + U[i+Nx*Nz+1] + U[i+Nx*Nz+Nx];
469 sigma = k*sigma;
470 U[i+Nx*Nz+Nx+1] = (1.f-relaxation)*U[i+Nx*Nz+Nx+1] + (relaxation /(-3.f*k))*(F[

i+Nx*Nz+Nx+1] - sigma);
471 }
472
473 /**
474 * Propagating fractures in node 1 corner
475 **/
476 __global__ void propagate_fractures_step1(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

477 // ID
478 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
479 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
480 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
481 int i = id_y*Nx*Nz + id_z*Nx + id_x;
482 float dA , dE , E;
483 float a1 , a2;
484 float beta = 3.1415f;
485
486 // Threads outside domain
487 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
488 return;
489 }
490
491 // Young’s modulus
492 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
493 E = find_youngs_modulus(mesh , U, vertices , i);
494
495 // Local displacement
496 real3 u1 , u2 , u3 , u5;
497 u1.x = U[i].x / (1.f+fracture_stress_release *(fractures[i*6+2]+ fractures[i

*6+4]));
498 u1.y = U[i].y / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i

*6+4]));
499 u1.z = U[i].z / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i

*6+2]));

161

500 u2.x = U[i+1].x / (1.f+fracture_stress_release *(fractures [(i+1) *6+2]+ fractures
[(i+1) *6+4]));

501 u2.y = U[i+1].y / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures
[(i+1) *6+4]));

502 u2.z = U[i+1].z / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures
[(i+1) *6+2]));

503 u3.x = U[i+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+2]+
fractures [(i+Nx)*6+5]));

504 u3.y = U[i+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+
fractures [(i+Nx)*6+5]));

505 u3.z = U[i+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+
fractures [(i+Nx)*6+2]));

506 u5.x = U[i+Nx*Nz].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+3]+
fractures [(i+Nx*Nz)*6+4]));

507 u5.y = U[i+Nx*Nz].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+
fractures [(i+Nx*Nz)*6+4]));

508 u5.z = U[i+Nx*Nz].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+
fractures [(i+Nx*Nz)*6+3]));

509
510 // Global vertices
511 real3 v1 , v2 , v3 , v5;
512 v1.x = vertices[i].x;
513 v1.y = vertices[i].y;
514 v1.z = vertices[i].z;
515 v2.x = vertices[i+1].x;
516 v2.y = vertices[i+1].y;
517 v2.z = vertices[i+1].z;
518 v3.x = vertices[i+Nx].x;
519 v3.y = vertices[i+Nx].y;
520 v3.z = vertices[i+Nx].z;
521 v5.x = vertices[i+Nx*Nz].x;
522 v5.y = vertices[i+Nx*Nz].y;
523 v5.z = vertices[i+Nx*Nz].z;
524
525 // Normal strain
526 real n1, n4, n5, theta;
527 theta = dot(u2-u1, v2-v1)/(length(u2 -u1) * length(v2-v1));
528 n1 = (length(u2 -u1)*theta)/length(v2 -v1)*E;
529 theta = dot(u3-u1, v3-v1)/(length(u3 -u1) * length(v3-v1));
530 n4 = (length(u3 -u1)*theta)/length(v3 -v1)*E;
531 theta = dot(u5-u1, v5-v1)/(length(u5 -u1) * length(v5-v1));
532 n5 = (length(u5 -u1)*theta)/length(v5 -v1)*E;
533
534 // Shear strain
535 real s1, s4, s5;
536 s1 = acos(dot(v2 -v1 , (v2+u2)-(v1+u1))/(length(v2-v1) * length ((v2+u2)-(v1+u1)

)))*E;
537 s4 = acos(dot(v3 -v1 , (v3+u3)-(v1+u1))/(length(v3-v1) * length ((v3+u3)-(v1+u1)

)))*E;
538 s5 = acos(dot(v5 -v1 , (v5+u5)-(v1+u1))/(length(v5-v1) * length ((v5+u5)-(v1+u1)

)))*E;
539
540 // XZ plane , a1 fracture = node 1 -> node 2
541 a1 = fractures[i*6+0]; // +X
542 a2 = fractures[i*6+4]; // +Z
543 dE = ((n5*n5+s4*s4+s1*s1)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

544 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
545 if(-(dE/dA) >= gc){
546 fractures[i*6+0] += delta_fracture;
547 a1 += delta_fracture;
548 u1.x = U[i].x / (1.f+fracture_stress_release*a1);
549 }
550
551 // XZ plane , a2 fracture = node 1 -> node 3
552 dE = ((n5*n5+s4*s4+s1*s1)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

553 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
554 if(-(dE/dA) >= gc){
555 fractures[i*6+4] += delta_fracture;
556 a2 += delta_fracture;
557 u1.z = U[i].z / (1.f+fracture_stress_release*a2);
558 }
559

162

560 // YZ plane , a1 fracture = node 1 -> node 5
561 a1 = fractures[i*6+2]; // +y
562 dE = ((n1*n1+s4*s4+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

563 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
564 if(-(dE/dA) >= gc){
565 fractures[i*6+2] += delta_fracture;
566 a1 += delta_fracture;
567 u1.y = U[i].y / (1.f+fracture_stress_release*a1);
568 }
569
570 // YZ plane , a2 fracture = node 1 -> node 3
571 dE = ((n1*n1+s4*s4+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

572 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
573 if(-(dE/dA) >= gc){
574 fractures[i*6+4] += delta_fracture;
575 a2 += delta_fracture;
576 u1.z = U[i].z / (1.f+fracture_stress_release*a2);
577 }
578
579 // YX plane , a1 fracture = node 1 -> node 5
580 a2 = fractures[i*6+0]; // +X
581 dE = ((n4*n4+s1*s1+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

582 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
583 if(-(dE/dA) >= gc){
584 fractures[i*6+2] += delta_fracture;
585 a1 += delta_fracture;
586 u1.y = U[i].y / (1.f+fracture_stress_release*a1);
587 }
588
589 // YX plane , a2 fracture = node 1 -> node 2
590 dE = ((n4*n4+s1*s1+s5*s5)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

591 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
592 if(-(dE/dA) >= gc){
593 fractures[i*6+0] += delta_fracture;
594 a2 += delta_fracture;
595 u1.x = U[i].x / (1.f+fracture_stress_release*a2);
596 }
597
598 // Visualization
599 float temp = (-1.f)*(dE/dA) / gc;
600 if(! isnan(temp)){
601 energy[i] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
602 }
603
604 if(! isnan(abs(n1+n4+n5))){
605 normal_stress[i] = calculate_color(abs(n1+n4+n5), max_normal_stress);
606 }
607
608 if(! isnan(abs(s1+s4+s5))){
609 shear_stress[i] = calculate_color(abs(s1+s4+s5), max_shear_stress);
610 }
611
612 density[i] = calculate_color(find_density(mesh , U, vertices , i), max_density);
613 }
614
615 /**
616 * Propagating fractures in node 2 corner
617 **/
618 __global__ void propagate_fractures_step2(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

619 // ID
620 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
621 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
622 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
623 int i = id_y*Nx*Nz + id_z*Nx + id_x;
624 float dA , dE , E;
625 float a1 , a2;

163

626 float beta = 3.1415f;
627
628 // Threads outside domain
629 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
630 return;
631 }
632
633 // Young’s modulus
634 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
635 E = find_youngs_modulus(mesh , U, vertices , i);
636
637 // Local displacement
638 real3 u1 , u2 , u4 , u6;
639 u1.x = U[i].x / (1.f+fracture_stress_release *(fractures[i*6+2]+ fractures[i

*6+4]));
640 u1.y = U[i].y / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i

*6+4]));
641 u1.z = U[i].z / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i

*6+2]));
642 u2.x = U[i+1].x / (1.f+fracture_stress_release *(fractures [(i+1) *6+2]+ fractures

[(i+1) *6+4]));
643 u2.y = U[i+1].y / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures

[(i+1) *6+4]));
644 u2.z = U[i+1].z / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures

[(i+1) *6+2]));
645 u4.x = U[i+Nx+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+2]+

fractures [(i+Nx+1) *6+5]));
646 u4.y = U[i+Nx+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+5]));
647 u4.z = U[i+Nx+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+2]));
648 u6.x = U[i+Nx*Nz+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+3]+ fractures [(i+Nx*Nz+1) *6+4]));
649 u6.y = U[i+Nx*Nz+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+1]+ fractures [(i+Nx*Nz+1) *6+4]));
650 u6.z = U[i+Nx*Nz+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+1]+ fractures [(i+Nx*Nz+1) *6+3]));
651
652 // Global vertices
653 real3 v1 , v2 , v4 , v6;
654 v1.x = vertices[i].x;
655 v1.y = vertices[i].y;
656 v1.z = vertices[i].z;
657 v2.x = vertices[i+1].x;
658 v2.y = vertices[i+1].y;
659 v2.z = vertices[i+1].z;
660 v4.x = vertices[i+Nx+1].x;
661 v4.y = vertices[i+Nx+1].y;
662 v4.z = vertices[i+Nx+1].z;
663 v6.x = vertices[i+Nx*Nx+1].x;
664 v6.y = vertices[i+Nx*Nx+1].y;
665 v6.z = vertices[i+Nx*Nx+1].z;
666
667 // Normal strain
668 real n1, n2, n6, theta;
669 theta = dot(u2-u1, v2-v1)/(length(u2 -u1) * length(v2-v1));
670 n1 = (length(u2 -u1)*theta)/length(v2 -v1)*E;
671 theta = dot(u4-u2, v4-v2)/(length(u4 -u2) * length(v4-v2));
672 n2 = (length(u4 -u2)*theta)/length(v4 -v2)*E;
673 theta = dot(u6-u2, v6-v2)/(length(u6 -u2) * length(v6-v2));
674 n6 = (length(u6 -u2)*theta)/length(v6 -v2)*E;
675
676 // Shear strain
677 real s1, s2, s6;
678 s1 = acos(dot(v2 -v1 , (v2+u2)-(v1+u1))/(length(v2 -v1) * length ((v2+u2)-(v1+u1)

)))*E;
679 s2 = acos(dot(v4 -v2 , (v4+u4)-(v2+u2))/(length(v4 -v2) * length ((v4+u4)-(v2+u2)

)))*E;
680 s6 = acos(dot(v6 -v2 , (v6+u6)-(v2+u2))/(length(v6 -v2) * length ((v6+u6)-(v2+u2)

)))*E;
681
682 // XZ plane , a1 fracture = node 2 -> node 1
683 a1 = fractures [(i+1) *6+1]; // -X
684 a2 = fractures [(i+1) *6+4]; // +Z
685 dE = ((n6*n6+s1*s1+s2*s2)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)

164

*a2));
686 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
687 if(-(dE/dA) >= gc){
688 fractures [(i+1) *6+1] += delta_fracture;
689 a1 += delta_fracture;
690 u2.x = U[i+1].x / (1.f+fracture_stress_release*a1);
691 }
692
693 // XZ plane , a2 fracture = node 2 -> node 4
694 dE = ((n6*n6+s1*s1+s2*s2)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

695 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
696 if(-(dE/dA) >= gc){
697 fractures [(i+1) *6+4] += delta_fracture;
698 a2 += delta_fracture;
699 u2.z = U[i+1].z / (1.f+fracture_stress_release*a2);
700 }
701
702 // YZ plane , a1 fracture = node 2 -> node 6
703 a1 = fractures [(i+1) *6+2]; // +Y
704 dE = ((n1*n1+s6*s6+s2*s2)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

705 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
706 if(-(dE/dA) >= gc){
707 fractures [(i+1) *6+2] += delta_fracture;
708 a1 += delta_fracture;
709 u2.y = U[i+1].y / (1.f+fracture_stress_release*a1);
710 }
711
712 // YZ plane , a2 fracture = node 2 -> node 4
713 dE = ((n1*n1+s6*s6+s2*s2)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

714 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
715 if(-(dE/dA) >= gc){
716 fractures [(i+1) *6+4] += delta_fracture;
717 a2 += delta_fracture;
718 u2.z = U[i+1].z / (1.f+fracture_stress_release*a2);
719 }
720
721 // YX plane , a1 fracture = node 2 -> node 6
722 a2 = fractures [(i+1) *6+1]; // -X
723 dE = ((n2*n2+s6*s6+s1*s1)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

724 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
725 if(-(dE/dA) >= gc){
726 fractures [(i+1) *6+2] += delta_fracture;
727 a2 += delta_fracture;
728 u2.y = U[i+1].y / (1.f+fracture_stress_release*a2);
729 }
730
731 // YX plane a2 fracture = node 2 -> node 1
732 dE = ((n2*n2+s6*s6+s1*s1)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

733 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
734 if(-(dE/dA) >= gc){
735 fractures [(i+1) *6+1] += delta_fracture;
736 a2 += delta_fracture;
737 u2.x = U[i+1].x / (1.f+fracture_stress_release*a2);
738 }
739
740 // Visualization
741 float temp = (-1.f)*(dE/dA) / gc;
742 if(! isnan(temp)){
743 energy[i+1] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
744 }
745
746 if(! isnan(abs(n1+n2+n6))){
747 normal_stress[i+1] = calculate_color(abs(n1+n2+n6), max_normal_stress);
748 }
749
750 if(! isnan(abs(s1+s2+s6))){

165

751 shear_stress[i+1] = calculate_color(abs(s1+s2+s6), max_shear_stress);
752 }
753
754 density[i+1] = calculate_color(find_density(mesh , U, vertices , i), max_density

);
755 }
756
757 /**
758 * Propagating fractures in node 3 corner
759 **/
760 __global__ void propagate_fractures_step3(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

761 // ID
762 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
763 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
764 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
765 int i = id_y*Nx*Nz + id_z*Nx + id_x;
766 float dA , dE , E;
767 float a1 , a2;
768 float beta = 3.1415f;
769
770 // Threads outside domain
771 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
772 return;
773 }
774
775 // Young’s modulus
776 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
777 E = find_youngs_modulus(mesh , U, vertices , i);
778
779 // Local displacement
780 real3 u1 , u3 , u4 , u7;
781 u1.x = U[i].x / (1.f+fracture_stress_release *(fractures[i*6+2]+ fractures[i

*6+4]));
782 u1.y = U[i].y / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i

*6+4]));
783 u1.z = U[i].z / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i

*6+2]));
784 u3.x = U[i+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+2]+

fractures [(i+Nx)*6+5]));
785 u3.y = U[i+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+

fractures [(i+Nx)*6+5]));
786 u3.z = U[i+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+

fractures [(i+Nx)*6+2]));
787 u4.x = U[i+Nx+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+2]+

fractures [(i+Nx+1) *6+5]));
788 u4.y = U[i+Nx+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+5]));
789 u4.z = U[i+Nx+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+2]));
790 u7.x = U[i+Nx*Nz+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)

*6+3]+ fractures [(i+Nx*Nz+Nx)*6+5]));
791 u7.y = U[i+Nx*Nz+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)

*6+0]+ fractures [(i+Nx*Nz+Nx)*6+5]));
792 u7.z = U[i+Nx*Nz+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)

*6+0]+ fractures [(i+Nx*Nz+Nx)*6+3]));
793
794 // Global vertices
795 real3 v1 , v3 , v4 , v7;
796 v1.x = vertices[i].x;
797 v1.y = vertices[i].y;
798 v1.z = vertices[i].z;
799 v3.x = vertices[i+Nx].x;
800 v3.y = vertices[i+Nx].y;
801 v3.z = vertices[i+Nx].z;
802 v4.x = vertices[i+Nx+1].x;
803 v4.y = vertices[i+Nx+1].y;
804 v4.z = vertices[i+Nx+1].z;
805 v7.x = vertices[i+Nx*Nz+Nx].x;
806 v7.y = vertices[i+Nx*Nz+Nx].y;
807 v7.z = vertices[i+Nx*Nz+Nx].z;
808
809 // Normal strain
810 real n3, n4, n8, theta;
811 theta = dot(u4-u3, v4-v3)/(length(u4-u3) * length(v4-v3));

166

812 n3 = (length(u4 -u3)*theta)/length(v4 -v3)*E;
813 theta = dot(u3-u1, v3-v1)/(length(u3 -u1) * length(v3-v1));
814 n4 = (length(u3 -u1)*theta)/length(v3 -v1)*E;
815 theta = dot(u7-u3, v7-v3)/(length(u7 -u3) * length(v7-v3));
816 n8 = (length(u7 -u3)*theta)/length(v7 -v3)*E;
817
818 // Shear strain
819 real s3, s4, s8;
820 s3 = acos(dot(v4 -v3 , (v4+u4)-(v3+u3))/(length(v4-v3) * length ((v4+u4)-(v3+u3)

)))*E;
821 s4 = acos(dot(v3 -v1 , (v3+u3)-(v1+u1))/(length(v3-v1) * length ((v3+u3)-(v1+u1)

)))*E;
822 s8 = acos(dot(v7 -v3 , (v7+u7)-(v3+u3))/(length(v7-v3) * length ((v7+u7)-(v3+u3)

)))*E;
823
824 // XZ plane , a1 fracture = node 3 -> node 1
825 a1 = fractures [(i+Nx)*6+5]; // -Z
826 a2 = fractures [(i+Nx)*6+0]; // +X
827 dE = ((n8*n8+s3*s3+s4*s4)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

828 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
829 if(-(dE/dA) >= gc){
830 fractures [(i+Nx)*6+5] += delta_fracture;
831 a1 += delta_fracture;
832 u3.z = U[i+Nx].z / (1.f+fracture_stress_release*a1);
833 }
834
835 // XZ plane , a2 fracture = node 3 -> node 4
836 dE = ((n8*n8+s3*s3+s4*s4)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

837 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
838 if(-(dE/dA) >= gc){
839 fractures [(i+Nx)*6+0] += delta_fracture;
840 a2 += delta_fracture;
841 u3.x = U[i+Nx].x / (1.f+fracture_stress_release*a2);
842 }
843
844 // YZ plane , a1 fracture = node 3 -> node 1
845 a2 = fractures [(i+Nx)*6+2]; // +Y
846 dE = ((n3*n3+s4*s4+s8*s8)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

847 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
848 if(-(dE/dA) >= gc){
849 fractures [(i+Nx)*6+5] += delta_fracture;
850 a1 += delta_fracture;
851 u3.z = U[i+Nx].z / (1.f+fracture_stress_release*a1);
852 }
853
854 // YZ plane , a2 fracture = node 3 -> node 7
855 dE = ((n3*n3+s4*s4+s8*s8)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

856 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
857 if(-(dE/dA) >= gc){
858 fractures [(i+Nx)*6+2] += delta_fracture;
859 a2 += delta_fracture;
860 u3.y = U[i+Nx].y / (1.f+fracture_stress_release*a2);
861 }
862
863 // YX plane , a1 fracture = node 3 -> node 4
864 a1 = fractures [(i+Nx)*6+0]; // +X
865 dE = ((n4*n4+s3*s3+s8*s8)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

866 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
867 if(-(dE/dA) >= gc){
868 fractures [(i+Nx)*6+0] += delta_fracture;
869 a1 += delta_fracture;
870 u3.x = U[i+Nx].x / (1.f+fracture_stress_release*a1);
871 }
872
873 // YX plane , a2 fracture = node 3 -> node 7

167

874 dE = ((n4*n4+s3*s3+s8*s8)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*
sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

875 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
876 if(-(dE/dA) >= gc){
877 fractures [(i+Nx)*6+2] += delta_fracture;
878 a2 += delta_fracture;
879 u3.y = U[i+Nx].y / (1.f+fracture_stress_release*a2);
880 }
881
882 // Visualization
883 float temp = (-1.f)*(dE/dA) / gc;
884 if(! isnan(temp)){
885 energy[i+Nx] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
886 }
887
888 if(! isnan(abs(n3+n4+n8))){
889 normal_stress[i+Nx] = calculate_color(abs(n3+n4+n8), max_normal_stress);
890 }
891
892 if(! isnan(abs(s3+s4+s8))){
893 shear_stress[i+Nx] = calculate_color(abs(s3+s4+s8), max_shear_stress);
894 }
895
896 density[i+Nx] = calculate_color(find_density(mesh , U, vertices , i),

max_density);
897 }
898
899 /**
900 * Propagating fractures in node 4 corner
901 **/
902 __global__ void propagate_fractures_step4(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

903 // ID
904 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
905 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
906 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
907 int i = id_y*Nx*Nz + id_z*Nx + id_x;
908 float dA , dE , E;
909 float a1 , a2;
910 float beta = 3.1415f;
911
912 // Threads outside domain
913 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
914 return;
915 }
916
917 // Young’s modulus
918 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
919 E = find_youngs_modulus(mesh , U, vertices , i);
920
921 // Local displacement
922 real3 u2 , u3 , u4 , u8;
923 u2.x = U[i+1].x / (1.f+fracture_stress_release *(fractures [(i+1) *6+2]+ fractures

[(i+1) *6+4]));
924 u2.y = U[i+1].y / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures

[(i+1) *6+4]));
925 u2.z = U[i+1].z / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures

[(i+1) *6+2]));
926 u3.x = U[i+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+2]+

fractures [(i+Nx)*6+5]));
927 u3.y = U[i+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+

fractures [(i+Nx)*6+5]));
928 u3.z = U[i+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+

fractures [(i+Nx)*6+2]));
929 u4.x = U[i+Nx+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+2]+

fractures [(i+Nx+1) *6+5]));
930 u4.y = U[i+Nx+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+5]));
931 u4.z = U[i+Nx+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+2]));
932 u8.x = U[i+Nx*Nz+Nx+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx

+1) *6+3]+ fractures [(i+Nx*Nz+Nx+1) *6+5]));
933 u8.y = U[i+Nx*Nz+Nx+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx

+1) *6+1]+ fractures [(i+Nx*Nz+Nx+1) *6+5]));

168

934 u8.z = U[i+Nx*Nz+Nx+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx
+1) *6+1]+ fractures [(i+Nx*Nz+Nx+1) *6+3]));

935
936 // Global vertices
937 real3 v2 , v3 , v4 , v8;
938 v2.x = vertices[i+1].x;
939 v2.y = vertices[i+1].y;
940 v2.z = vertices[i+1].z;
941 v3.x = vertices[i+Nx].x;
942 v3.y = vertices[i+Nx].y;
943 v3.z = vertices[i+Nx].z;
944 v4.x = vertices[i+Nx+1].x;
945 v4.y = vertices[i+Nx+1].y;
946 v4.z = vertices[i+Nx+1].z;
947 v8.x = vertices[i+Nx*Nz+Nx+1].x;
948 v8.y = vertices[i+Nx*Nz+Nx+1].y;
949 v8.z = vertices[i+Nx*Nz+Nx+1].z;
950
951 // Normal strain
952 real n2, n3, n7, theta;
953 theta = dot(u4-u2, v4-v2)/(length(u4 -u2) * length(v4-v2));
954 n2 = (length(u4 -u2)*theta)/length(v4 -v2)*E;
955 theta = dot(u4-u3, v4-v3)/(length(u4 -u3) * length(v4-v3));
956 n3 = (length(u4 -u3)*theta)/length(v4 -v3)*E;
957 theta = dot(u8-u4, v8-v4)/(length(u8 -u4) * length(v8-v4));
958 n7 = (length(u8 -u4)*theta)/length(v8 -v4)*E;
959
960 // Shear strain
961 real s2, s3, s7;
962 s2 = acos(dot(v4 -v2 , (v4+u4)-(v2+u2))/(length(v4-v2) * length ((v4+u4)-(v2+u2)

)))*E;
963 s3 = acos(dot(v4 -v3 , (v4+u4)-(v3+u3))/(length(v4-v3) * length ((v4+u4)-(v3+u3)

)))*E;
964 s7 = acos(dot(v8 -v4 , (v8+u8)-(v4+u4))/(length(v8-v4) * length ((v8+u8)-(v4+u4)

)))*E;
965
966 // XZ plane , a1 fracture = node 4 -> node 3
967 a1 = fractures [(i+Nx+1) *6+1]; // -X
968 a2 = fractures [(i+Nx+1) *6+5]; // -Z
969 dE = ((n7*n7+s2*s2+s3*s3)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

970 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
971 if(-(dE/dA) >= gc){
972 fractures [(i+Nx+1) *6+1] += delta_fracture;
973 a1 += delta_fracture;
974 u4.x = U[i+Nx+1].x / (1.f+fracture_stress_release*a1);
975 }
976
977 // XZ plane a2 fracture = node 4 -> node 2
978 dE = ((n7*n7+s2*s2+s3*s3)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

979 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
980 if(-(dE/dA) >= gc){
981 fractures [(i+Nx+1) *6+5] += delta_fracture;
982 a2 += delta_fracture;
983 u4.z = U[i+Nx+1].z / (1.f+fracture_stress_release*a2);
984 }
985
986 // YZ plane , a1 fracture = node 4 -> node 8
987 a1 = fractures [(i+Nx+1) *6+2]; // +Y
988 dE = ((n3*n3+s2*s2+s7*s7)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

989 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
990 if(-(dE/dA) >= gc){
991 fractures [(i+Nx+1) *6+2] += delta_fracture;
992 a1 += delta_fracture;
993 u4.y = U[i+Nx+1].y / (1.f+fracture_stress_release*a1);
994 }
995
996 // YZ plane a2 fracture = node 4 -> node 3
997 dE = ((n3*n3+s2*s2+s7*s7)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

169

998 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
999 if(-(dE/dA) >= gc){

1000 fractures [(i+Nx+1) *6+5] += delta_fracture;
1001 a2 += delta_fracture;
1002 u4.z = U[i+Nx+1].z / (1.f+fracture_stress_release*a2);
1003 }
1004
1005 // YX plane a1 fracture = node 4 -> node 8
1006 a2 = fractures [(i+Nx+1) *6+1]; // -X
1007 dE = ((n2*n2+s3*s3+s7*s7)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

1008 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1009 if(-(dE/dA) >= gc){
1010 fractures [(i+Nx+1) *6+2] += delta_fracture;
1011 a1 += delta_fracture;
1012 u4.y = U[i+Nx+1].y / (1.f+fracture_stress_release*a1);
1013 }
1014
1015 // YX plane a2 fracture = node 4 -> node 3
1016 dE = ((n3*n3+s2*s2+s7*s7)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1017 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1018 if(-(dE/dA) >= gc){
1019 fractures [(i+Nx+1) *6+1] += delta_fracture;
1020 a2 += delta_fracture;
1021 u4.x = U[i+Nx+1].x / (1.f+fracture_stress_release*a2);
1022 }
1023
1024 // Visualization
1025 float temp = (-1.f)*(dE/dA) / gc;
1026 if(! isnan(temp)){
1027 energy[i+Nx+1] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
1028 }
1029
1030 if(! isnan(abs(n2+n3+n7))){
1031 normal_stress[i+Nx+1] = calculate_color(abs(n2+n3+n7), max_normal_stress);
1032 }
1033
1034 if(! isnan(abs(s2+s3+s7))){
1035 shear_stress[i+Nx+1] = calculate_color(abs(s2+s3+s7), max_shear_stress);
1036 }
1037
1038 density[i+Nx+1] = calculate_color(find_density(mesh , U, vertices , i),

max_density);
1039 }
1040
1041 /**
1042 * Propagating fractures in node 5 corner
1043 **/
1044 __global__ void propagate_fractures_step5(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

1045 // ID
1046 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
1047 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
1048 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
1049 int i = id_y*Nx*Nz + id_z*Nx + id_x;
1050 float dA , dE , E;
1051 float a1 , a2;
1052 float beta = 3.1415f;
1053
1054 // Threads outside domain
1055 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
1056 return;
1057 }
1058
1059 // Young’s modulus
1060 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
1061 E = find_youngs_modulus(mesh , U, vertices , i);
1062
1063 // Local displacement
1064 real3 u1 , u5 , u6 , u7;
1065 u1.x = U[i].x / (1.f+fracture_stress_release *(fractures[i*6+2]+ fractures[i

*6+4]));

170

1066 u1.y = U[i].y / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i
*6+4]));

1067 u1.z = U[i].z / (1.f+fracture_stress_release *(fractures[i*6+0]+ fractures[i
*6+2]));

1068 u5.x = U[i+Nx*Nz].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+3]+
fractures [(i+Nx*Nz)*6+4]));

1069 u5.y = U[i+Nx*Nz].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+
fractures [(i+Nx*Nz)*6+4]));

1070 u5.z = U[i+Nx*Nz].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+
fractures [(i+Nx*Nz)*6+3]));

1071 u6.x = U[i+Nx*Nz+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)
*6+3]+ fractures [(i+Nx*Nz+1) *6+4]));

1072 u6.y = U[i+Nx*Nz+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)
*6+1]+ fractures [(i+Nx*Nz+1) *6+4]));

1073 u6.z = U[i+Nx*Nz+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)
*6+1]+ fractures [(i+Nx*Nz+1) *6+3]));

1074 u7.x = U[i+Nx*Nz+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)
*6+3]+ fractures [(i+Nx*Nz+Nx)*6+5]));

1075 u7.y = U[i+Nx*Nz+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)
*6+0]+ fractures [(i+Nx*Nz+Nx)*6+5]));

1076 u7.z = U[i+Nx*Nz+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)
*6+0]+ fractures [(i+Nx*Nz+Nx)*6+3]));

1077
1078 // Global vertices
1079 real3 v1 , v5 , v6 , v7;
1080 v1.x = vertices[i].x;
1081 v1.y = vertices[i].y;
1082 v1.z = vertices[i].z;
1083 v5.x = vertices[i+Nx*Nz].x;
1084 v5.y = vertices[i+Nx*Nz].y;
1085 v5.z = vertices[i+Nx*Nz].z;
1086 v6.x = vertices[i+Nx*Nx+1].x;
1087 v6.y = vertices[i+Nx*Nx+1].y;
1088 v6.z = vertices[i+Nx*Nx+1].z;
1089 v7.x = vertices[i+Nx*Nz+Nx].x;
1090 v7.y = vertices[i+Nx*Nz+Nx].y;
1091 v7.z = vertices[i+Nx*Nz+Nx].z;
1092
1093 // Normal strain
1094 real n5, n9, n12 , theta;
1095 theta = dot(u5-u1, v5-v1)/(length(u5 -u1) * length(v5-v1));
1096 n5 = (length(u5 -u1)*theta)/length(v5 -v1)*E;
1097 theta = dot(u6-u5, v6-v5)/(length(u6 -u5) * length(v6-v5));
1098 n9 = (length(u6 -u5)*theta)/length(v6 -v5)*E;
1099 theta = dot(u7-u5, v7-v5)/(length(u7 -u5) * length(v7-v5));
1100 n12 = (length(u7 -u5)*theta)/length(v7-v5)*E;
1101
1102 // Shear strain
1103 real s5, s9, s12;
1104 s5 = acos(dot(v5 -v1 , (v5+u5)-(v1+u1))/(length(v5-v1) * length ((v5+u5)-(v1+u1)

)))*E;
1105 s9 = acos(dot(v6 -v5 , (v6+u6)-(v5+u5))/(length(v6-v5) * length ((v6+u6)-(v5+u5)

)))*E;
1106 s12 = acos(dot(v7-v5 , (v7+u7)-(v5+u5))/(length(v7-v5) * length ((v7+u7) -(v5+u5)

)))*E;
1107
1108 // XZ plane , a1 fracture = node 5 -> node 6
1109 a1 = fractures [(i+Nx*Nz)*6+0]; // +X
1110 a2 = fractures [(i+Nx*Nz)*6+4]; // +Z
1111 dE = ((n5*n5+s9*s9+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

1112 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1113 if(-(dE/dA) >= gc){
1114 fractures [(i+Nx*Nz)*6+0] += delta_fracture;
1115 a1 += delta_fracture;
1116 u5.x = U[i+Nx*Nz].x / (1.f+fracture_stress_release*a1);
1117 }
1118
1119 // XZ plane , a2 fracture = node 5 -> node 7
1120 dE = ((n5*n5+s9*s9+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1121 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1122 if(-(dE/dA) >= gc){
1123 fractures [(i+Nx*Nz)*6+4] += delta_fracture;

171

1124 a2 += delta_fracture;
1125 u5.z = U[i+Nx*Nz].z / (1.f+fracture_stress_release*a2);
1126 }
1127
1128 //YZ plane , a1 fracture = node 5 -> node 1
1129 a1 = fractures [(i+Nx*Nz)*6+3]; // -Y
1130 dE = ((n9*n9+s5*s5+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

1131 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1132 if(-(dE/dA) >= gc){
1133 fractures [(i+Nx*Nz)*6+3] += delta_fracture;
1134 a1 += delta_fracture;
1135 u5.y = U[i+Nx*Nz].y / (1.f+fracture_stress_release*a1);
1136 }
1137
1138 // YZ plane , a2 fracture = node 5 -> node 7
1139 dE = ((n9*n9+s5*s5+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1140 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1141 if(-(dE/dA) >= gc){
1142 fractures [(i+Nx*Nz)*6+4] += delta_fracture;
1143 a2 += delta_fracture;
1144 u5.z = U[i+Nx*Nz].z / (1.f+fracture_stress_release*a2);
1145 }
1146
1147 // YX plane , a1 fracture = node 5 -> node 1
1148 a2 = fractures [(i+Nx*Nz)*6+0];
1149 dE = ((n12*n12+s5*s5+s9*s9)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

1150 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1151 if(-(dE/dA) >= gc){
1152 fractures [(i+Nx*Nz)*6+3] += delta_fracture;
1153 a1 += delta_fracture;
1154 u5.y = U[i+Nx*Nz].y / (1.f+fracture_stress_release*a1);
1155 }
1156
1157 // YX plane , a2 fracture = node 5 -> node 6
1158 dE = ((n12*n12+s5*s5+s9*s9)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1159 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1160 if(-(dE/dA) >= gc){
1161 fractures [(i+Nx*Nz)*6+0] += delta_fracture;
1162 a2 += delta_fracture;
1163 u5.x = U[i+Nx*Nz].x / (1.f+fracture_stress_release*a2);
1164 }
1165
1166 // Visualization
1167 float temp = (-1.f)*(dE/dA) / gc;
1168 if(! isnan(temp)){
1169 energy[i+Nx*Nz] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
1170 }
1171
1172 if(! isnan(abs(n5+n9+n12))){
1173 normal_stress[i+Nx*Nz] = calculate_color(abs(n5+n9+n12), max_normal_stress

);
1174 }
1175
1176 if(! isnan(abs(s5+s9+s12))){
1177 shear_stress[i+Nx*Nz] = calculate_color(abs(s5+s9+s12), max_shear_stress);
1178 }
1179
1180 density[i+Nx*Nz] = calculate_color(find_density(mesh , U, vertices , i),

max_density);
1181 }
1182
1183 /**
1184 * Propagating fractures in node 6 corner
1185 **/
1186 __global__ void propagate_fractures_step6(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

1187 // ID

172

1188 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
1189 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
1190 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
1191 int i = id_y*Nx*Nz + id_z*Nx + id_x;
1192 float dA , dE , E;
1193 float a1 , a2;
1194 float beta = 3.1415f;
1195
1196 // Threads outside domain
1197 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
1198 return;
1199 }
1200
1201 // Young’s modulus
1202 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
1203 E = find_youngs_modulus(mesh , U, vertices , i);
1204
1205 // Local displacement
1206 real3 u2 , u5 , u6 , u8;
1207 u2.x = U[i+1].x / (1.f+fracture_stress_release *(fractures [(i+1) *6+2]+ fractures

[(i+1) *6+4]));
1208 u2.y = U[i+1].y / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures

[(i+1) *6+4]));
1209 u2.z = U[i+1].z / (1.f+fracture_stress_release *(fractures [(i+1) *6+1]+ fractures

[(i+1) *6+2]));
1210 u5.x = U[i+Nx*Nz].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+3]+

fractures [(i+Nx*Nz)*6+4]));
1211 u5.y = U[i+Nx*Nz].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+

fractures [(i+Nx*Nz)*6+4]));
1212 u5.z = U[i+Nx*Nz].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+

fractures [(i+Nx*Nz)*6+3]));
1213 u6.x = U[i+Nx*Nz+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+1]+ fractures [(i+Nx*Nz+1) *6+4]));
1214 u6.y = U[i+Nx*Nz+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+1]+ fractures [(i+Nx*Nz+1) *6+4]));
1215 u6.z = U[i+Nx*Nz+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+1]+ fractures [(i+Nx*Nz+1) *6+3]));
1216 u8.x = U[i+Nx*Nz+Nx+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx

+1) *6+3]+ fractures [(i+Nx*Nz+Nx+1) *6+5]));
1217 u8.y = U[i+Nx*Nz+Nx+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx

+1) *6+1]+ fractures [(i+Nx*Nz+Nx+1) *6+5]));
1218 u8.z = U[i+Nx*Nz+Nx+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx

+1) *6+1]+ fractures [(i+Nx*Nz+Nx+1) *6+3]));
1219
1220 // Global vertices
1221 real3 v2 , v5 , v6 , v8;
1222 v2.x = vertices[i+1].x;
1223 v2.y = vertices[i+1].y;
1224 v2.z = vertices[i+1].z;
1225 v5.x = vertices[i+Nx*Nz].x;
1226 v5.y = vertices[i+Nx*Nz].y;
1227 v5.z = vertices[i+Nx*Nz].z;
1228 v6.x = vertices[i+Nx*Nx+1].x;
1229 v6.y = vertices[i+Nx*Nx+1].y;
1230 v6.z = vertices[i+Nx*Nx+1].z;
1231 v8.x = vertices[i+Nx*Nz+Nx+1].x;
1232 v8.y = vertices[i+Nx*Nz+Nx+1].y;
1233 v8.z = vertices[i+Nx*Nz+Nx+1].z;
1234
1235 // Normal strain
1236 real n6, n9, n10 , theta;
1237 theta = dot(u6-u2, v6-v2)/(length(u6 -u2) * length(v6-v2));
1238 n6 = (length(u6 -u2)*theta)/length(v6 -v2)*E;
1239 theta = dot(u6-u5, v6-v5)/(length(u6 -u5) * length(v6-v5));
1240 n9 = (length(u6 -u5)*theta)/length(v6 -v5)*E;
1241 theta = dot(u8-u6, v8-v6)/(length(u8 -u6) * length(v8-v6));
1242 n10 = (length(u8 -u6)*theta)/length(v8-v6)*E;
1243
1244 // Shear strain
1245 real s6, s9, s10;
1246 s6 = acos(dot(v6 -v2 , (v6+u6)-(v2+u2))/(length(v6-v2) * length ((v6+u6)-(v2+u2)

)))*E;
1247 s9 = acos(dot(v6 -v5 , (v6+u6)-(v5+u5))/(length(v6-v5) * length ((v6+u6)-(v5+u5)

)))*E;
1248 s10 = acos(dot(v8-v6 , (v8+u8)-(v6+u6))/(length(v8-v6) * length ((v8+u8) -(v6+u6)

)))*E;

173

1249
1250 // XZ plane , a1 fracture = node 6 -> node 5
1251 a1 = fractures [(i+Nx*Nz+1) *6+1]; // -X
1252 a2 = fractures [(i+Nx*Nz+1) *6+4]; // +Z
1253 dE = ((n6*n6+s9*s9+s10*s10)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

1254 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1255 if(-(dE/dA) >= gc){
1256 fractures [(i+Nx*Nz+1) *6+1] += delta_fracture;
1257 a1 += delta_fracture;
1258 u6.x = U[i+Nx*Nz+1].x / (1.f+fracture_stress_release*a1);
1259 }
1260
1261 // XZ plane , a2 fracture = node 6 -> node 8
1262 dE = ((n6*n6+s9*s9+s10*s10)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1263 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1264 if(-(dE/dA) >= gc){
1265 fractures [(i+Nx*Nz+1) *6+4] += delta_fracture;
1266 a2 += delta_fracture;
1267 u6.z = U[i+Nx*Nz+1].z / (1.f+fracture_stress_release*a2);
1268 }
1269
1270 // YZ plane , a1 fracture = node 6 -> node 2
1271 a1 = fractures [(i+Nx*Nz+1) *6+3]; // -Y
1272 dE = ((n9*n9+s6*s6+s10*s10)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

1273 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1274 if(-(dE/dA) >= gc){
1275 fractures [(i+Nx*Nz+1) *6+3] += delta_fracture;
1276 a1 += delta_fracture;
1277 u6.y = U[i+Nx*Nz+1].y / (1.f+fracture_stress_release*a1);
1278 }
1279
1280 // YZ plane , a2 fracture = node 6 -> node 8
1281 dE = ((n9*n9+s6*n6+s10*s10)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1282 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1283 if(-(dE/dA) >= gc){
1284 fractures [(i+Nx*Nz+1) *6+4] += delta_fracture;
1285 a2 += delta_fracture;
1286 u6.z = U[i+Nx*Nz+1].z / (1.f+fracture_stress_release*a2);
1287 }
1288
1289 // YX plane , a1 fracture = node 6 -> node 2
1290 a2 = fractures [(i+Nx*Nz+1) *6+1]; // -X
1291 dE = ((n10*n10+s6*s6+s9*s9)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+delta_fracture)
*a2));

1292 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1293 if(-(dE/dA) >= gc){
1294 fractures [(i+Nx*Nz+1) *6+3] += delta_fracture;
1295 a1 += delta_fracture;
1296 u6.y = U[i+Nx*Nz+1].y / (1.f+fracture_stress_release*a1);
1297 }
1298
1299 // YX plane , a2 fracture = node 6 -> node 5
1300 dE = ((n10*n10+s6*s6+s9*s9)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((beta*

sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1301 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1302 if(-(dE/dA) >= gc){
1303 fractures [(i+Nx*Nz+1) *6+1] += delta_fracture;
1304 a2 += delta_fracture;
1305 u6.x = U[i+Nx*Nz+1].x / (1.f+fracture_stress_release*a2);
1306 }
1307
1308 // Visualization
1309 float temp = (-1.f)*(dE/dA) / gc;
1310 if(! isnan(temp)){
1311 energy[i+Nx*Nz+1] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
1312 }

174

1313
1314 if(! isnan(abs(n6+n9+n10))){
1315 normal_stress[i+Nx*Nz+1] = calculate_color(abs(n6+n9+n10),

max_normal_stress);
1316 }
1317
1318 if(! isnan(abs(s6+s9+s10))){
1319 shear_stress[i+Nx*Nz+1] = calculate_color(abs(s6+s9+s10), max_shear_stress

);
1320 }
1321
1322 density[i+Nx*Nz+1] = calculate_color(find_density(mesh , U, vertices , i),

max_density);
1323 }
1324
1325 /**
1326 * Propagating fractures in node 7 corner
1327 **/
1328 __global__ void propagate_fractures_step7(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

1329 // ID
1330 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
1331 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
1332 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
1333 int i = id_y*Nx*Nz + id_z*Nx + id_x;
1334 float dA , dE , E;
1335 float a1 , a2;
1336 float beta = 3.1415f;
1337
1338 // Threads outside domain
1339 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
1340 return;
1341 }
1342
1343 // Young’s modulus
1344 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
1345 E = find_youngs_modulus(mesh , U, vertices , i);
1346
1347 // Local displacement
1348 real3 u3 , u5 , u7 , u8;
1349 u3.x = U[i+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+2]+

fractures [(i+Nx)*6+5]));
1350 u3.y = U[i+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+

fractures [(i+Nx)*6+5]));
1351 u3.z = U[i+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx)*6+0]+

fractures [(i+Nx)*6+2]));
1352 u5.x = U[i+Nx*Nz].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+3]+

fractures [(i+Nx*Nz)*6+4]));
1353 u5.y = U[i+Nx*Nz].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+

fractures [(i+Nx*Nz)*6+4]));
1354 u5.z = U[i+Nx*Nz].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz)*6+0]+

fractures [(i+Nx*Nz)*6+3]));
1355 u7.x = U[i+Nx*Nz+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)

*6+3]+ fractures [(i+Nx*Nz+Nx)*6+5]));
1356 u7.y = U[i+Nx*Nz+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)

*6+0]+ fractures [(i+Nx*Nz+Nx)*6+5]));
1357 u7.z = U[i+Nx*Nz+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)

*6+0]+ fractures [(i+Nx*Nz+Nx)*6+3]));
1358 u8.x = U[i+Nx*Nz+Nx+1].x / (1.f+fracture_stress_release*fractures [(i+Nx*Nz+Nx

+1) *6+1]);
1359 u8.y = U[i+Nx*Nz+Nx+1].y / (1.f+fracture_stress_release*fractures [(i+Nx*Nz+Nx

+1) *6+3]);
1360 u8.z = U[i+Nx*Nz+Nx+1].z / (1.f+fracture_stress_release*fractures [(i+Nx*Nz+Nx

+1) *6+5]);
1361
1362 // Global vertices
1363 real3 v3 , v5 , v7 , v8;
1364 v3.x = vertices[i+Nx].x;
1365 v3.y = vertices[i+Nx].y;
1366 v3.z = vertices[i+Nx].z;
1367 v5.x = vertices[i+Nx*Nz].x;
1368 v5.y = vertices[i+Nx*Nz].y;
1369 v5.z = vertices[i+Nx*Nz].z;
1370 v7.x = vertices[i+Nx*Nz+Nx].x;
1371 v7.y = vertices[i+Nx*Nz+Nx].y;

175

1372 v7.z = vertices[i+Nx*Nz+Nx].z;
1373 v8.x = vertices[i+Nx*Nz+Nx+1].x;
1374 v8.y = vertices[i+Nx*Nz+Nx+1].y;
1375 v8.z = vertices[i+Nx*Nz+Nx+1].z;
1376
1377 // Normal strain
1378 real n8, n11 , n12 , theta;
1379 theta = dot(u7-u3, v7-v3)/(length(u7 -u3) * length(v7-v3));
1380 n8 = (length(u7 -u3)*theta)/length(v7 -v3)*E;
1381 theta = dot(u8-u7, v8-v7)/(length(u8 -u7) * length(v8-v7));
1382 n11 = (length(u8 -u7)*theta)/length(v8-v7)*E;
1383 theta = dot(u7-u5, v7-v5)/(length(u7 -u5) * length(v7-v5));
1384 n12 = (length(u7 -u5)*theta)/length(v7-v5)*E;
1385
1386 // Shear strain
1387 real s8, s11 , s12;
1388 s8 = acos(dot(v7 -v3 , (v7+u7)-(v3+u3))/(length(v7-v3) * length ((v7+u7)-(v3+u3)

)))*E;
1389 s11 = acos(dot(v8-v7 , (v8+u8)-(v7+u7))/(length(v8-v7) * length ((v8+u8) -(v7+u7)

)))*E;
1390 s12 = acos(dot(v7-v5 , (v7+u7)-(v5+u5))/(length(v7-v5) * length ((v7+u7) -(v5+u5)

)))*E;
1391
1392 // XZ plane , a1 fracture = node 7 -> node 8
1393 a1 = fractures [(i+Nx*Nz+Nx)*6+0]; // +X
1394 a2 = fractures [(i+Nx*Nz+Nx)*6+5]; // -Z
1395 dE = ((n8*n8+s11*s11+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+
delta_fracture)*a2));

1396 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1397 if(-(dE/dA) >= gc){
1398 fractures [(i+Nx*Nz+Nx)*6+0] += delta_fracture;
1399 a1 += delta_fracture;
1400 u7.x = U[i+Nx*Nz+Nx].x / (1.f+fracture_stress_release*a1);
1401 }
1402
1403 // XZ plane , a2 fracture = node 7 -> node 5
1404 dE = ((n8*n8+s11*s11+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1405 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1406 if(-(dE/dA) >= gc){
1407 fractures [(i+Nx*Nz+Nx)*6+5] += delta_fracture;
1408 a2 += delta_fracture;
1409 u7.z = U[i+Nx*Nz+Nx].z / (1.f+fracture_stress_release*a2);
1410 }
1411
1412 // YZ plane , a1 fracture = node 7 -> node 3
1413 a1 = fractures [(i+Nx*Nz+Nx)*6+3]; // -Y
1414 dE = ((n11*n11+s8*s8+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+
delta_fracture)*a2));

1415 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1416 if(-(dE/dA) >= gc){
1417 fractures [(i+Nx*Nz+Nx)*6+3] += delta_fracture;
1418 a1 += delta_fracture;
1419 u7.y = U[i+Nx*Nz+Nx].y / (1.f+fracture_stress_release*a1);
1420 }
1421
1422 // YZ plane , a2 fracture = node 7 -> node 5
1423 dE = ((n11*n11+s8*s8+s12*s12)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1424 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1425 if(-(dE/dA) >= gc){
1426 fractures [(i+Nx*Nz+Nx)*6+5] += delta_fracture;
1427 a2 += delta_fracture;
1428 u7.z = U[i+Nx*Nz+Nx].z / (1.f+fracture_stress_release*a2);
1429 }
1430
1431 // YX plane , a1 fracture = node 7 -> node 3
1432 a2 = fractures [(i+Nx*Nz+Nx)*6+0]; // +X
1433 dE = ((n12*n12+s8*s8+s11*s11)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+
delta_fracture)*a2));

1434 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;

176

1435 if(-(dE/dA) >= gc){
1436 fractures [(i+Nx*Nz+Nx)*6+3] += delta_fracture;
1437 a1 += delta_fracture;
1438 u7.y = U[i+Nx*Nz+Nx].y / (1.f+fracture_stress_release*a1);
1439 }
1440
1441 // YX plane , a2 fracture = node 7 -> node 8
1442 dE = ((n12*n12+s8*s8+s11*s11)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1443 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1444 if(-(dE/dA) >= gc){
1445 fractures [(i+Nx*Nz+Nx)*6+0] += delta_fracture;
1446 a2 += delta_fracture;
1447 u7.x = U[i+Nx*Nz+Nx].x / (1.f+fracture_stress_release*a2);
1448 }
1449
1450 // Visualization
1451 float temp = (-1.f)*(dE/dA) / gc;
1452 if(! isnan(temp)){
1453 energy[i+Nx*Nz+Nx] = calculate_color (((-1.f)*(dE/dA) / gc), 1.f);
1454 }
1455
1456 if(! isnan(abs(n8+n11+n12))){
1457 normal_stress[i+Nx*Nz+Nx] = calculate_color(abs(n8+n11+n12),

max_normal_stress);
1458 }
1459
1460 if(! isnan(abs(s8+s11+s12))){
1461 shear_stress[i+Nx*Nz+Nx] = calculate_color(abs(s8+s11+s12),

max_shear_stress);
1462 }
1463
1464 density[i+Nx*Nz+Nx] = calculate_color(find_density(mesh , U, vertices , i),

max_density);
1465 }
1466
1467 /**
1468 * Propagating fractures in node 8 corner
1469 **/
1470 __global__ void propagate_fractures_step8(float3 *vertices , float3 *U, float *

fractures , mesh_point *mesh , float3 *energy , float3 *normal_stress , float3 *
shear_stress , float3 *density){

1471 // ID
1472 int id_x = (blockIdx.x * blockDim.x) + threadIdx.x;
1473 int id_y = (blockIdx.y * blockDim.y) + threadIdx.y;
1474 int id_z = (blockIdx.z * blockDim.z) + threadIdx.z;
1475 int i = id_y*Nx*Nz + id_z*Nx + id_x;
1476 float dA , dE , E;
1477 float a1 , a2;
1478 float beta = 3.1415f;
1479
1480 // Threads outside domain
1481 if(id_x >= Ex || id_y >= Ey || id_z >= Ez){
1482 return;
1483 }
1484
1485 // Young’s modulus
1486 float gc = find_critical_energy_release_rate(mesh , U, vertices , i);
1487 E = find_youngs_modulus(mesh , U, vertices , i);
1488
1489 // Local displacement
1490 real3 u4 , u6 , u7 , u8;
1491 u4.x = U[i+Nx+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+2]+

fractures [(i+Nx+1) *6+5]));
1492 u4.y = U[i+Nx+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+5]));
1493 u4.z = U[i+Nx+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx+1) *6+1]+

fractures [(i+Nx+1) *6+2]));
1494 u6.x = U[i+Nx*Nz+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+3]+ fractures [(i+Nx*Nz+1) *6+4]));
1495 u6.y = U[i+Nx*Nz+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+1]+ fractures [(i+Nx*Nz+1) *6+4]));
1496 u6.z = U[i+Nx*Nz+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+1)

*6+1]+ fractures [(i+Nx*Nz+1) *6+3]));

177

1497 u7.x = U[i+Nx*Nz+Nx].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)
*6+3]+ fractures [(i+Nx*Nz+Nx)*6+5]));

1498 u7.y = U[i+Nx*Nz+Nx].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)
*6+0]+ fractures [(i+Nx*Nz+Nx)*6+5]));

1499 u7.z = U[i+Nx*Nz+Nx].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx)
*6+0]+ fractures [(i+Nx*Nz+Nx)*6+3]));

1500 u8.x = U[i+Nx*Nz+Nx+1].x / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx
+1) *6+3]+ fractures [(i+Nx*Nz+Nx+1) *6+5]));

1501 u8.y = U[i+Nx*Nz+Nx+1].y / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx
+1) *6+1]+ fractures [(i+Nx*Nz+Nx+1) *6+5]));

1502 u8.z = U[i+Nx*Nz+Nx+1].z / (1.f+fracture_stress_release *(fractures [(i+Nx*Nz+Nx
+1) *6+1]+ fractures [(i+Nx*Nz+Nx+1) *6+3]));

1503
1504 // Global vertices
1505 real3 v4 , v6 , v7 , v8;
1506 v4.x = vertices[i+Nx+1].x;
1507 v4.y = vertices[i+Nx+1].y;
1508 v4.z = vertices[i+Nx+1].z;
1509 v6.x = vertices[i+Nx*Nx+1].x;
1510 v6.y = vertices[i+Nx*Nx+1].y;
1511 v6.z = vertices[i+Nx*Nx+1].z;
1512 v7.x = vertices[i+Nx*Nz+Nx].x;
1513 v7.y = vertices[i+Nx*Nz+Nx].y;
1514 v7.z = vertices[i+Nx*Nz+Nx].z;
1515 v8.x = vertices[i+Nx*Nz+Nx+1].x;
1516 v8.y = vertices[i+Nx*Nz+Nx+1].y;
1517 v8.z = vertices[i+Nx*Nz+Nx+1].z;
1518
1519 // Normal strain
1520 real n7, n10 , n11 , theta;
1521 theta = dot(u8-u4, v8-v4)/(length(u8 -u4) * length(v8-v4));
1522 n7 = (length ((u8 -u4))*theta)/length(v8-v4)*E;
1523 theta = dot(u8-u6, v8-v6)/(length(u8 -u6) * length(v8-v6));
1524 n10 = (length ((u8-u6))*theta)/length(v8-v6)*E;
1525 theta = dot(u8-u7, v8-v7)/(length(u8 -u7) * length(v8-v7));
1526 n11 = (length ((u8-u7))*theta)/length(v8-v7)*E;
1527
1528 // Shear strain
1529 real s7, s10 , s11;
1530 s7 = acos(dot(v8 -v4 , (v8+u8)-(v4+u4))/(length(v8-v4) * length ((v8+u8)-(v4+u4)

)))*E;
1531 s10 = acos(dot(v8-v6 , (v8+u8)-(v6+u6))/(length(v8-v6) * length ((v8+u8) -(v6+u6)

)))*E;
1532 s11 = acos(dot(v8-v7 , (v8+u8)-(v7+u7))/(length(v8-v7) * length ((v8+u8) -(v7+u7)

)))*E;
1533
1534 // XZ plane , a1 fracture = node 8 -> node 7
1535 a1 = fractures [(i+Nx*Nz+Nx+1) *6+1]; // -X
1536 a2 = fractures [(i+Nx*Nz+Nx+1) *6+5]; // -Z
1537 dE = ((n7*n7+s10*s10+s11*s11)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+
delta_fracture)*a2));

1538 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1539 if(-(dE/dA) >= gc){
1540 fractures [(i+Nx*Nz+Nx+1) *6+1] += delta_fracture;
1541 a1 += delta_fracture;
1542 u8.x = U[i+Nx*Nz+Nx+1].x / (1.f+fracture_stress_release*a1);
1543 }
1544
1545 // XZ plane , a2 fracture = node 8 -> node 6
1546 dE = ((n7*n7+s10*s10+s11*s11)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1547 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1548 if(-(dE/dA) >= gc){
1549 fractures [(i+Nx*Nz+Nx+1) *6+5] += delta_fracture;
1550 a2 += delta_fracture;
1551 u8.z = U[i+Nx*Nz+Nx+1].z / (1.f+fracture_stress_release*a2);
1552 }
1553
1554 // YZ plane , a1 fracture = node 8 -> node 4
1555 a1 = fractures [(i+Nx*Nz+Nx+1) *6+3]; // -Y
1556 dE = ((n11*n11+s7*s7+s10*s10)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+
delta_fracture)*a2));

1557 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;

178

1558 if(-(dE/dA) >= gc){
1559 fractures [(i+Nx*Nz+Nx+1) *6+3] += delta_fracture;
1560 a1 += delta_fracture;
1561 u8.y = U[i+Nx*Nz+Nx+1].y / (1.f+fracture_stress_release*a1);
1562 }
1563
1564 // YZ plane , a2 fracture = node 8 -> node 6
1565 dE = ((n11*n11+s7*s7+s10*s10)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1566 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1567 if(-(dE/dA) >= gc){
1568 fractures [(i+Nx*Nz+Nx+1) *6+5] += delta_fracture;
1569 a2 += delta_fracture;
1570 u8.z = U[i+Nx*Nz+Nx+1].z / (1.f+fracture_stress_release*a2);
1571 }
1572
1573 // YX plane , a1 fracture = node 8 -> node 4
1574 a2 = fractures [(i+Nx*Nz+Nx+1) *6+1]; // -X
1575 dE = ((n10*n10+s7*s7+s11*s11)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt((a1+delta_fracture)*(a1+delta_fracture) + a2*a2))*(a1+
delta_fracture)*a2));

1576 dA = (((a1+delta_fracture)*a2) - (a1*a2))/2.f;
1577 if(-(dE/dA) >= gc){
1578 fractures [(i+Nx*Nz+Nx+1) *6+3] += delta_fracture;
1579 a1 += delta_fracture;
1580 u8.y = U[i+Nx*Nz+Nx+1].y / (1.f+fracture_stress_release*a1);
1581 }
1582
1583 // YX plane , a2 fracture = node 8 -> node 7
1584 dE = ((n10*n10+s7*s7+s11*s11)/E) * (((beta*sqrt(a1*a1 + a2*a2))*a1*a2) - ((

beta*sqrt(a1*a1 + (a2+delta_fracture)*(a2+delta_fracture)))*a1*(a2+
delta_fracture)));

1585 dA = ((a1*(a2+delta_fracture)) - (a1*a2))/2.f;
1586 if(-(dE/dA) >= gc){
1587 fractures [(i+Nx*Nz+Nx+1) *6+1] += delta_fracture;
1588 a2 += delta_fracture;
1589 u8.x = U[i+Nx*Nz+Nx+1].x / (1.f+fracture_stress_release*a2);
1590 }
1591
1592 // Visualization
1593 float temp = (-1.f)*(dE/dA) / gc;
1594 if(! isnan(temp)){
1595 energy[i+Nx*Nz+Nx+1] = calculate_color(temp , 1.f);
1596 }
1597
1598 if(! isnan(abs(n7+n10+n11))){
1599 normal_stress[i+Nx*Nz+Nx+1] = calculate_color(abs(n7+n10+n11),

max_normal_stress);
1600 }
1601
1602 if(! isnan(abs(s7+s10+s11))){
1603 shear_stress[i+Nx*Nz+Nx+1] = calculate_color(abs(s7+s10+s11),

max_shear_stress);
1604 }
1605
1606 density[i+Nx*Nz+Nx+1] = calculate_color(find_density(mesh , U, vertices , i),

max_density);
1607 }

179

Bibliography

[1] Kjetil Babington. Terrain rendering techniques for the hpc-lab snow simulator.
Master’s thesis, Norwegian University of Science and Technology, 2012.

[2] Robin Eidissen. Utilizing gpus for real-time visualization of snow. Master’s
thesis, Norwegian University of Science and Technology, 2009.

[3] WSL Institute for Snow and Avalanche Research SLF. http://www.slf.ch/
ueber/organisation/schnee_permafrost/projekte/snowpack/index_EN.

[4] A. A. Griffith. The phenomena of rupture and flow in solids. Technical report,
Philosophical Transactions, 1920.

[5] Hiroyuki Hirashima, Kouichi Nishimura, Satoru Yamaguchi, Atsushi Sato,
and Michael Lehning. Avalanche forecasting in a heavy snowfall area using
the snowpack model. Technical report, Cold Regions Science and Technology,
2008.

[6] David V. Hutton. Fundamentals of Finite Element Analysis. The McGraw-
Hill Companies, 2004.

[7] C. E. Inglis. Stresses in a plate due to the presence of cracks and sharp corners.
Technical report, Transactions of the Institute of Naval Architects, 1913.

[8] G. R. Irwin. Fracturing of metals. Technical report, American Society for
Metals, 1948.

[9] G. R. Irwin. Onset of fast crack propagation in high strength steel and alu-
minum alloys. Technical report, NAVAL RESEARCH LABORATORY, 1956.

[10] Michael Lehning, Perry Bartelt, Bob Brown, and Charles Fierz. A physical
snowpack model for the swiss avalanche warning: Part iii: meteorological
forcing, thin layer formation and evaluation. Technical report, Cold Regions
Science and Technology, 2002.

[11] Michael Lehning, Perry Bartelt, Bob Brown, Charles Fierz, and Pramod
Satyawali. A physical snowpack model for the swiss avalanche warning: Part
ii. snow microstructure. Technical report, Cold Regions Science and Technol-
ogy, 2002.

[12] Kenneth G. Libbrecht. www.snowcrystals.com.

[13] Hallgeir Lien. Procedural generation of roads for use in the snow simulator.
Master’s thesis, Norwegian University of Science and Technology, 2011.

[14] Magnus Alvestad Mikalsen. Openacc-based snow simulation. Master’s thesis,
Norwegian University of Science and Technology, 2013.

180

http://www.slf.ch/ueber/organisation/schnee_permafrost/projekte/snowpack/index_EN
http://www.slf.ch/ueber/organisation/schnee_permafrost/projekte/snowpack/index_EN
www.snowcrystals.com

[15] Eirik Myklebost. The evolution and current state of cuda gpgpu. Technical
report, NTNU, December 2013.

[16] Andreas Nordahl. Enhancing the hpc-lab snow simulator with more realistic
terrains and other interactive features. Master’s thesis, Norwegian University
of Science and Technology, 2013.

[17] Michael Lehning Perry Bartelt. A physical snowpack model for the swiss
avalanche warning: Part i: numerical model. Technical report, Cold Regions
Science and Technology, 2002.

[18] Sirpa Rasmus, Tiia Grönholm, Michaeal Lehning, Kai Rasmus, and Markku
Kulmala. Validation of the snowpack model in five different zones in finland.
Technical report, Boreal Environment Research, 2007.

[19] David Roylance. Introduction to fracture mechanics. Technical report, Mas-
sachusetts Institute of Technology, 2001.

[20] Ingar Saltvik. Parallel methods for real-timevisualization of snow. Master’s
thesis, Norwegian University of Science and Technology, 2006.

[21] Christian Sigrist. Measurement of Fracture Mechanical Properties of Snow
and Application to Dry Snow Slab Avalanche Release. PhD thesis, SWISS
FEDERAL INSTITUTE OF TECHNOLOGY ZURICH, 2006.

[22] Martin Stoffel. Numerical modelling of snow using finite elements. Technical
report, 2005.

[23] Ph.D. T.L. Anderson. Fracture Mechanics: Fundamentals and Applications.
Taylor & Francis Group, LLC, 6000 Broken Sound Parkway NW, Suite 300,
2005.

[24] Frederik Magnus Johansen Vestre. Enhancing and porting the hpc-lab snow
simulator to opencl on mobile platforms. Master’s thesis, Norwegian Univer-
sity of Science and Technology, 2012.

[25] Wikipedia. http://en.wikipedia.org/wiki/Loose_snow_avalanche.

[26] Øivind L. Boge. Snow layer modeling and avalanche prediction for the hpc-lab
snow simulator. Technical report, NTNU, December 2013.

[27] Øystein Eklund Krog. Gpu-based real-time snow avalanche simulations. Mas-
ter’s thesis, Norwegian University of Science and Technology, 2010.

181

http://en.wikipedia.org/wiki/Loose_snow_avalanche

	Problem Description
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Listings
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	2 Background
	2.1 Fracture Mechanics
	2.1.1 Atomic View of Fracture
	2.1.2 Effect of Microflaws
	2.1.3 Energy Balance
	2.1.4 Global G and local SIF

	2.2 Snow
	2.2.1 Material Properties
	2.2.2 Avalanche
	2.2.3 Behaviour of Snow

	2.3 Finite Element Method
	2.3.1 Introduction
	2.3.2 General Overview
	2.3.3 The Stiffness Matrix
	2.3.4 Global Assembly

	2.4 Compute Unified Device Architecture
	2.4.1 Development
	2.4.2 Memory
	2.4.3 Streaming Multiprocessor
	2.4.4 GeForce and Tesla GPUs

	3 Previous & Related Work
	3.1 Previous Work
	3.1.1 Snow Simulator
	3.1.1.1 Initialization
	3.1.1.2 Main Loop

	3.1.2 Snow Layer Modelling
	3.1.3 Snow Layer Measurement

	3.2 Related Work
	3.2.1 SNOWPACK
	3.2.2 Snow Modelling

	4 Implementation
	4.1 FEM
	4.1.1 Mesh Generation
	4.1.2 Global Displacement
	4.1.3 Local Displacement
	4.1.4 Local Strain and Stress
	4.1.5 Fracture Propagation

	4.2 GPU Implementation
	4.2.1 CUDA Kernels
	4.2.2 Visualization
	4.2.3 Memory Requirement

	5 Result
	5.1 Setup
	5.1.1 Compilation
	5.1.2 Hardware

	5.2 Tests
	5.2.1 Simulation Results
	5.2.1.1 Displacement Calculation
	5.2.1.2 Stress Distribution
	5.2.1.3 Fracture Propagation Distance for Homogeneous Snow
	5.2.1.4 Fracture Propagation Distance for Heterogeneous Snow
	5.2.1.5 Energy Release Rate for Homogeneous Snow
	5.2.1.6 Energy Release Rate for Heterogeneous Snow

	5.2.2 Performance Results
	5.2.2.1 Kernel Launch Configuration Analysis
	5.2.2.2 Kernel Analysis
	5.2.2.3 Double versus Single Precision
	5.2.2.4 Frame Rate
	5.2.2.5 Max Register per Thread
	5.2.2.6 CPU Version
	5.2.2.7 Fermi Vs Kepler

	6 Discussion
	6.1 Mesh Generation
	6.2 Global Displacement Calculation
	6.3 Spring Constant
	6.4 Shear Stress Accuracy
	6.5 Calculation of Local Displacement
	6.6 GPU Occupancy
	6.7 Error Checking & Correction Memory
	6.8 Fermi Versus Kepler
	6.9 Finite Element Vibration

	7 Conclusion
	7.1 Avalanche Prediction
	7.2 Performance
	7.3 Future Work
	7.3.1 Mesh Filling
	7.3.2 Improve Mesh Generation
	7.3.3 Avalanche Flow Simulation

	A Recreating Results
	A.1 Setup
	A.2 User Guide

	B Finite Element Type
	C Energy Release Rate Calculation
	D Movie
	E Detailed Simulation Results
	E.1 Energy Ratio for Parabola Terrain
	E.2 Energy Ratio for Steep Slope Terrain
	E.3 Timing Penalty of Double Precision

	F Poster
	G First Approach
	H Code
	H.1 Mesh Generation
	H.2 Global Displacement
	H.3 Propagate Fracture
	H.4 Makefile
	H.5 Accuracy Test Program
	H.6 CPU Version
	H.7 Complete Code

	Bibliography

