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Abstract
Brain computer interfaces (BCIs) enable interaction with computers through elec-
trical brain signals recorded from the scalp through an electroencephalogram (EEG).
These BCIs are characterized by expensive equipment and long setup times, which
limits their commercial use. In this thesis, a BCI was implemented that uses
the low-cost EEG acquisition device Emotiv EPOC and visual evoked potentials
(VEPs), which are potentials in the EEG elicited by visual stimulus. A structured
literature review was conducted to find which techniques are used in state of the art
VEP-based BCIs. The four most promising techniques found through the literature
review were implemented and tested using Emotiv EPOC. Three of these methods
use steady state visual evoked potentials (SSVEPs), which are VEPs elicited by a
periodic stimulus. Two of these methods use canonical correlation analysis (CCA)
and one method uses power spectral density analysis as feature extraction tech-
niques to detect frequency information in the recorded EEG. The last of the four
methods uses code-modulated visual evoked potentials (c-VEPs), which are VEPs
elicited by stimulus following a pseudorandom pattern. Experiments showed that
a c-VEP implementation is not possible using Emotiv EPOC, due to a synchro-
nization issue between the stimulus and the recorded EEG data. All three SSVEP
techniques reached satisfactory results. One of the methods using CCA reached
an average information transfer rate (ITR) of 32.92 bits/min, which is the highest
reported ITR for any VEP-based BCI using Emotiv EPOC in an online setting.
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Sammendrag
“Brain computer interfaces” (BCI-er) virkeliggjør interaksjon med datamaskiner
gjennom opptak av elektriske hjernesignaler fra hodebunnen ved bruk av et elek-
troencefalogram (EEG). Disse BCI-ene har begrensede kommersielle bruksområder
på grunn av dyrt utstyr og lang konfigureringstid. I denne avhandlingen ble et BCI
implementert som tar i bruk lavkost EEG-opptaksenheten Emotiv EPOC og “vi-
sual evoked potentials” (VEP-er), som er en respons som forekommer i EEG og
er framkalt av visuell stimuli. Et strukturert litteratursøk ble gjennomført for
å finne teknikkene som er brukt i de beste VEP-baserte BCI-ene. De fire mest
lovende teknikkene som ble funnet ved hjelp av litteratursøket ble implementert
og testet ved bruk av Emotiv EPOC. Tre av disse metodene bruker “steady state
visual evoked potentials” (SSVEP-er), som er VEP-er fremkalt av periodisk stim-
uli. To av disse metodene brukte “canonical correlation analysis” (CCA), mens en
metode bruker “power spectral density analysis” for å hente ut relevant frekvensin-
formasjon fra de innspilte EEG-dataene. Den siste av de fire metodene bruker
“code-modulated visual evoked potentials” (c-VEP-er), som er VEP-er fremkalt
av stimuli som følger et kvasitilfeldig mønster. Eksperimenter viste at en c-VEP-
implementasjon ikke er mulig ved bruk av Emotiv EPOC på grunn av et synkro-
niseringsproblem mellom den visuelle stimulien og de innspilte EEG-dataene. Alle
de tre SSVEP-teknikkene oppnådde tilfredsstillende resultater. En av metodene
som bruker CCA oppnådde en gjennomsnittlig “information transfer rate” (ITR)
på 32.92 bit/min, hvilket er den høyeste rapporterte ITR-en for et VEP-basert BCI
som bruker Emotiv EPOC i et miljø som er “online”.
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Chapter 1

Introduction

This chapter introduces the work done in the thesis. Section 1.1 gives relevant
background information as well as the motivation for the research. Section 1.2
presents the goal of this thesis and the research questions defined to reach the
proposed goal. In Section 1.3, the research methods applied are described, and in
Section 1.4, contributions of the work is presented. Finally, Section 1.5 gives an
overview of the thesis structure.

1.1 Background and Motivation
Brain activity produces electrical signals. With hardware, these signals can be read
from the surface of the scalp using electroencephalogram (EEG). Systems that use
these electrical signals to infer intent are called brain-computer interfaces (BCIs).
BCIs provide options for communication for people who suffer from severe neuro-
muscular conditions such as amyotrophic lateral sclerosis (ALS), brain stem stroke,
cerebral palsy and spinal cord injury. These people are often unable to communi-
cate using normal muscles such as speech or movement.

There are several paradigms within BCIs. Many paradigms use visual evoked po-
tentials (VEPs) to infer the intent of the user using the system. VEPs are electrical
signals that occur in the occipital and parietal lobes of the brain when a person is
presented visual stimulus. Many VEP techniques require little to no user training,
while maintaining a high performance in terms of speed and accuracy. This is what
makes VEP-based BCIs popular.

One of the problems facing current BCIs is the cost of the equipment used. Medical
grade EEG acquisition devices can have a price-tag in the tens of thousands of US
dollars. These devices are cumbersome to use. They require a full head-covering
cap with a high number of wires attached to them. It is often necessary to use a
gel between the scalp and the sensors contained in the cap to record the EEG. The
long setup time and steep costs of medical grade equipment makes these devices

1



2 CHAPTER 1. INTRODUCTION

unsuitable for commercial use.

Emotiv EPOC is a low-cost EEG acquisition device created for commercial use.
It is a wireless headset with sensors attached to it, and requires minimal setup
time. While Emotiv EPOC provides lower quality of the EEG than its medical
grade counterparts, it does so at the fraction of a cost. VEP-based BCIs using
medical grade equipment have performed well, and knowledge of how a low-cost
headset performs in the same domain is valuable. Getting a BCI system to work
with affordable hardware can be useful for those who suffer from neuromuscular
conditions and cannot afford more expensive options. Few VEP-based BCIs have
been used with Emotiv EPOC. The most used VEP paradigm, steady state visu-
ally evoked potentials (SSVEPs), has been applied with the headset [29], but not
the more recently developed code-modulated VEP (c-VEP) method. It has not yet
been demonstrated if the c-VEP paradigm is applicable to a less expensive EEG
acquisition device.

Building a VEP-based BCI system is a challenging task and requires knowledge
from several disciplines. A team building a VEP-based BCI can have experts
within the fields of mathematics, statistics, signal processing, electronics, neuro-
science, artificial intelligence and general computer science. In addition, the team
has to know a great deal about techniques, schemes, terms and expressions within
the field of VEPs and BCIs. The authors of this thesis are computer science stu-
dents, with no previous knowledge about VEPs or BCIs. A considerably amount
of reading had to be done in order to obtain the skills needed to approach the goal
of this thesis.

1.2 Goals and Research Questions
In this section, the goal of the thesis is specified. In order to achieve the proposed
goal, two research questions are defined. These questions are answered throughout
this thesis. The goal of the thesis is as follows:

Goal To compare VEP-based BCI methods while using the low-cost EEG acqui-
sition device Emotiv EPOC.

In this thesis, the words methods and technique are used for referring to detailed
VEP implementations. The implementations can share characteristics and be an
implementation of the same VEP paradigm, for instance SSVEP. The difference
between the methods can be parameter settings, preprocessing of data, and the
feature extraction and classification techniques used. The goal is referring to meth-
ods, thereby stating that the goal is to compare detailed VEP implementations.
The second part of the goal states that the Emotiv EPOC headset is used. This
is important, since part of the motivation for this thesis is to find methods that
work well with a low-cost EEG acquisition device. The methods are compared to
one another based on the information transfer rate (ITR), which is a performance
metric used for BCIs that is calculated from the accuracy and detection time of
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the method.

The following research questions drives the research towards the goal:

Research question 1 Which techniques can be used to classify the VEPs present
in the EEG data?

To be able to compare techniques, it is essential to gather information about the
existing VEP techniques in the field of BCI.

Research question 2 How is a system to compare VEP-based BCI methods im-
plemented and configured?

Whereas research question 1 aims to gather theoretical information about VEP
techniques, research question 2 addresses the problem of practically implementing
a VEP based system. A VEP-based BCI typically consists of two parts; one part
that presents stimuli to the user, and one part that processes the EEG response
from the user and outputs a predicted command. Both of these parts need to be
studied. The stimulus program can be configured in many ways, and a goal is to
find the best way to configure this program.

1.3 Research Method
The research methods applied in this thesis are theoretical and design/experimen-
tal. Before any methods could be implemented, a structured literature review
(SLR) was performed. The purpose of the SLR is to find information about what
has been done within the field, what are the different methods used for VEP-based
BCIs, and how a stimulus system is implemented.

The design/experimental phase implements a complete VEP-based BCI, including
multiple VEP techniques and a visual stimulator. The different VEP techniques
are then tested on multiple test subjects to assess which techniques work best on
Emotiv EPOC.

1.4 Contributions
This thesis gives a comprehensive introduction to the field of VEPs. Through
conducting an SLR, the state of the art VEP solutions are found and described in
detail. The most promising methods are selected for implementation and testing
in a complete VEP system using the low-cost Emotiv EPOC headset as an EEG
acquisition device. The implementation reveals synchronization issues using the
high performance VEP method, c-VEP, in combination with Emotiv EPOC. Tests
show how the different VEP techniques compare. One of the methods reached an
average ITR of 32.92 bits/min, which is the highest ITR reported to date in a
VEP-based BCI using Emotiv EPOC in an online setting. The results also show
that half of the test subjects performed significantly better with red colored visual
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stimuli. This contradicts the findings by Cao et al. [5] which state that white color
should elicit the strongest VEP response.

1.5 Outline
In this thesis, a system based on different VEP techniques is implemented. The
techniques are implemented from both VEP paradigms, SSVEP and c-VEP, and
are tested and compared with the use of Emotiv EPOC. The creation of the SSVEP
system sheds more light on the performance of Emotiv EPOC, while implementing
methods based on c-VEP brings new information to the field.

The structure of the thesis follows the twofold research method described in Sec-
tion 1.3. Chapter 2 introduces the reader to background knowledge necessary to
understand the later chapters. The chapter describes the analysis of EEG signals,
the 10-20 system, the concept of BCIs, and the Emotiv EPOC headset used in this
thesis. The end of Chapter 2 describes the structured literature review protocol
used to perform an SLR. Chapter 3 presents the work found through the SLR, with
explanation of central theories and techniques. Chapter 4 concerns the practical
part of the thesis, with a description of the implemented VEP-system along with
the justification for the choices made. In Chapter 5, the experiments and the re-
sults obtained are described. Finally, Chapter 6 gives an evaluation of the results
and the thesis as a whole.



Chapter 2

Background Theory

This chapter gives an introduction to important background information that is
necessary to understand the contents of Chapter 3. Section 2.1 gives an intro-
duction to EEG, describing how it is used, how to interpret the signals and an
explanation of the system used to specify electrode positions on the scalp. Section
2.2 gives an overview of what a BCI is, the two major paradigms, and how to
evaluate BCIs. Next, Section 2.3 gives an overview of Emotiv EPOC, the EEG
acquisition device used in this thesis, and how it compares to other medical grade
EEG devices. Finally, Section 2.4 describes the SLR protocol and the research
areas where the SLR was applied.

2.1 Electroencephalogram (EEG)
The electroencephalogram (EEG) is a record of oscillating brain electric poten-
tials, recorded from electrodes attached to the human scalp [33]. The EEG shows
how this electric activity changes over time, which can potentially give information
about the state of the brain. Figure 2.1(a) shows an example of 10 seconds of EEG
data.

EEG is traditionally used for medical purposes. The EEG can show patterns in
electric activity that can be used to diagnose a number of conditions that affect
the brain. One example is epilepsy, which is a condition that causes repeated brain
seizures. EEG can help diagnose and manage this condition. EEG can also help in
analyzing people with sleep disorders. In general, it can be used to identify areas
of the brain that are not working properly. EEG is also applicable in other areas,
such as analyzing head injuries, brain tumors, or measuring the brain function of
individuals in a coma.

A disadvantage with EEG as a medical analysis tool is the limited spatial reso-
lution. The rise of diagnostic methods such as computer tomography (CT) and
magnetic resonance imaging (MRI) have made EEG less useful for analyzing brain

5
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Figure 2.1: (a) shows an EEG recording with a duration of 10 seconds. (b) is the
PSD calculated from the EEG data in (a).

disorders. The CT and MRI provide high-resolution images that give more precise
information about the state of the brain. Although these methods give precise
information about the brain at a given time, they do not have the temporal reso-
lution to be able to track brain functions at a high rate. EEG, on the other hand,
has a high temporal resolution. EEG acquisition devices can have sampling rates
up to 5 kHz1. This means that EEG can be recorded with millisecond precision,
which is not possible with CT or MRI. EEG, when recorded from the surface of
the scalp, also has the advantage of rarely causing any side effects for the patient.

2.1.1 Interpreting EEG signals
An EEG measurement of the brain shows how the electric activity changes over
time. How this signal is interpreted and manipulated depends on the purpose of
the EEG recording. EEG can for instance be a valuable tool when analyzing the
stages of sleep. In this case, it is interesting to see what frequencies are represented
in the signal and how a given frequency band, ex. 0-4 Hz (the delta-band), be-
haves. The term frequency band is used to refer to a given frequency range in the
signal. Examples of other bands are alpha (8-13 Hz), beta (12-30 Hz) and theta
(4-7 Hz). Note that the words “band”, “wave” and “rhythm” are used interchange-
ably throughout the EEG and BCI literature.

1http://www.brainproducts.com/productdetails.php?id=5&tab=1

http://www.brainproducts.com/productdetails.php?id=5&tab=1
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One way to get frequency information from the EEG signal is to apply the Fourier
Transform to transform the signal from the time-domain into the frequency do-
main. The Fourier transform converts a time-domain signal of infinite duration
into a continuous spectrum composed of an infinite number of sinusoids [12]. It
can represent any piecewise continuous function and minimizes the least-square
error between the function and its representation. There are several common con-
ventions for defining the Fourier transform. One of them is:

F (s) =
∫ ∞
−∞

f(x)e−2πisx dx (2.1)

When x represents time (with the SI unit of seconds), the transform variable s rep-
resents frequency (in hertz). i is the imaginary unit, which satisfies the equation
i2 = −1.

The EEG signal does not contain a continuous mathematical function, which is
what the general Fourier transform requires; an EEG acquisition device outputs
discrete sampling points. To be able to transform the discrete samples into the
frequency domain, the discrete Fourier transform (DFT) has to be used. The DFT
of N uniformly sampled data points xj (where j = 0, ..., N − 1) is defined by

Xk =
N−1∑
j=0

xje−2πijk/N , k ∈ Z (2.2)

Usually, the DFT is computed by an algorithm known as the fast Fourier transform
(FFT). The running time for the FFT algorithm is O(N logN), making it much
faster than the O(N2) running time of a naive DFT implementation. Various FFT
algorithms exist, and one of the more popular algorithms is the Cooley–Tukey
algorithm.

Analyzing EEG in the frequency domain

The frequency information is often analyzed in a frequency spectrum. In this spec-
trum, it can been seen how prominent a given frequency or frequency band is in the
signal. Doing frequency analysis assumes that the signal is unchanged over short
periods of time. In EEG analysis, the length of this interval, called window, varies
with the task performed by the user, but is typically some seconds. In this interval,
it is assumed that the user has the same state of mind giving the same type of EEG
signals. The frequency spectrum can be plotted with the y-axis being the spectral
density and the x-axis showing the frequencies. The usual unit of spectral density
is u2/Hz, where u represents the unit of the data in the time-domain. This is
known as the power spectral density (PSD). EEG is normally given in µV . The
PSD of an EEG signal would then be given in µV 2/Hz, as shown in Figure 2.1(b).

The frequency spectrum is two dimensional, showing the spectral density of each
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Figure 2.2: A spectrogram of EEG data for a duration of 5.5 seconds. Red color
represent large magnitude, yellow represent medium magnitude, whereas blue color
represent small magnitude. The spectrogram shows that most of the activity is
below 40 Hz for the whole period.

frequency. It is possible to add time as another dimension, resulting in a plot called
spectrogram (Figure 2.2). The plot is usually a 2D map with time on one axis and
frequency on the other. The third dimension shows the power of a particular fre-
quency at a given moment in time. In Figure 2.2, the power is represented by the
different colors.

The literature will sometimes refer to the term band power. The band power to
a specific frequency band is the total spectral density within the band. In other
words, the band power will be a single number which says to what extent the fre-
quencies in the band are represented in the signal. In the sleep analysis scenario,
it would be beneficial to know the band power of the delta band.

Analyzing the EEG signal in the frequency domain assumes that interesting parts
in the signal comes from repeated peaks in the time domain signal. In some appli-
cations, however, the interesting information does not lie in periodically repeated
events, but events happening at a given time. For these applications the analysis
of the EEG happens in the time domain.
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2.1.2 The international 10-20 system
The 10-20 system, or the International 10-20 system, is an international standard
that specifies electrode placements on the scalp. This system makes it easier to
specify which positions on the scalp is used for a specific EEG experiment. The
current electrode locations are shown in Figure 2.3. The 10-20 system increases
the likelihood that an experiment can be reproduced.

Electrode locations consist of one or two letters followed by a number. The first
letter identifies the lobe of the brain. The letters F, T, C, P, O stand for frontal,
temporal, central, parietal, and occipital lobe, respectively (see Figure 2.4 for place-
ment of these lobes). There is no central lobe. The “C” is only for ease of identifi-
cation of the center positioned electrodes. In addition, the letter codes A, Pg and
Fp identify the earlobes, nasopharyngeal and frontal polar positions respectively.
There are also the letters AF, which is between Fp and F, and FC, which is between
F and C.

The number specifies where on a given brain lobe the electrode is positioned.
The positions on the right hemisphere of the brain are suffixed with even num-
bers (2,4,6,8) and the left hemisphere positions with odd numbers (1,3,5,7).

Guidelines [36] for the 10-20 system was released by the American Clinical Neuro-
physiology Society in 2006, and that standard is the one used in this thesis.

2.2 Brain-Computer Interfaces (BCI)
A brain-computer interface (BCI) is a system that creates an interface between
brain activity and a computational device. EEG is the brain signal that is most
widely used together with a BCI. An essential reason for this is the fact that the
cortical synaptic actions generate electrical signals that change in the 10 to 100
millisecond range [33]. EEG and magnetoencephalography (MEG) are the only
widely available technologies with sufficient temporal resolution to follow these
fast dynamic changes. MEG systems, however, are bulky and expensive compared
to hardware available for EEG [41].

A BCI is a continuous feedback loop; the user’s intent is translated from EEG
signals into a command that is sent to a device. The device provides feedback to
the user of when a command is performed, and the user is free to focus on a new
intent. The feedback loop is demonstrated in Figure 2.5.

Signal acquisition of EEG is performed by placing electrodes on the scalp. This
signal is then digitized for use in a computational unit to perform signal processing.
A main component of signal processing is to extract the relevant features from the
signal that the classifier needs. EEG signals typically contain large amounts of
noise, with the two main sources of noise being 1) imperfect recording methods
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Figure 2.3: Electrode positions in the 10-20 system for EEG. By Marius ’t Hart -
http://www.beteredingen.nl. Used under CC BY: http://creativecommons.
org/licenses/by-sa/3.0/nl/deed.en_GB.
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Figure 2.4: Lobes of the brain. The image is released under the public domain,
adapted from http://en.wikipedia.org/wiki/File:Lobes_of_the_brain_NL.
svg.
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Figure 2.5: Overview of a BCI system.
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and equipment, and 2) the body potential changing over time. It is common to
filter the signal in an attempt to increase the signal-to-noise ratio (SNR). The SNR
is defined as

SNR = Psignal
Pnoise

(2.3)

where P denotes power. Feature extraction is then performed on the filtered signal.
Examples of popular feature extraction methods are measuring the band power,
calculating the power spectral density (PSD) or looking at time-frequency features
[31].

When the signal has been filtered and the relevant features extracted, the data
is ready to be classified. The purpose of classification is to determine the intent of
the user of the system. If an intent is detected, a command is sent to the device
connected to the system that performs the desired action. The device completes
the feedback loop when it performs the action, giving the user feedback. Ma-
chine learning methods are the most prevalent classification methods within BCI
research, with linear classifiers such as linear discriminant analysis (LDA) and sup-
port vector machines (SVMs) being the most popular algorithms [31].

Current day BCI research reflects two major paradigms: evoked potentials (EPs)
and oscillatory features [32]. EPs are distinct waveforms that are phase-locked to
an event, such as a visual stimuli. The other paradigm, oscillatory features, mostly
revolves around spectral analysis such as looking at the power of different bands
to determine intent or the affective state of the user.

2.2.1 Evoked potentials
The two most popular techniques that use EPs are (1) VEPs, and (2) P300, which
is a component of an event-related potential (ERP).

An ERP is the measured brain response that is the direct result of a specific
sensory, cognitive or motor event. ERPs can be classified according to the latency
at which their components occur after stimulus presentation. ERPs with short la-
tency typically occur at < 100ms after stimulus. These components are generated
during the sensory stimulus processing stages in the brain, and they are named
exogenous components because they are a direct response to an outside stimulus
source. ERPs with long latency occur at > 100ms after stimulus, and represents
the cortical processing stages. They are called endogenous components since they
are less determined by the physical features of the stimulus. P300 is the component
of the ERP elicited in the process of decision making, and as such is an endogenous
component. It is called P300 because when recorded with EEG, it evokes a posi-
tive peak over the parietal lobe with a latency of around 300 ms after a decision
has been made, as seen in Figure 2.6. This signal is present in every human and
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Figure 2.6: Example of a P300 signal. Adapted from McFarland and Wolpaw [32].

therefore requires little to no initial user training, making it a popular technique
for BCIs.

Visual evoked potentials (VEPs)

VEPs are caused by sensory stimulation, and reflect the visual information pro-
cessing mechanisms in the brain. This type of evoked potential can be seen in EEG
recordings measured over the visual cortex, which is located in the occipital lobe in
the back of the brain (see Figure 2.4). The visual cortex is the part of the cerebral
cortex responsible for processing visual information. The purpose of a VEP-based
BCI system is to determine what target the user of the system is visually fixated
on by analyzing the concurrently recorded EEG. The targets themselves are each
coded with a unique stimulus sequence (a flashing sequence), and by fixating on
a target the user evokes a unique VEP pattern corresponding to the stimulus se-
quence of the target. This unique VEP pattern is then analyzed to determine which
of the targets was fixated upon. These flashing sequences are most commonly pre-
sented on a monitor or by an external light source, such as an light-emitting diode
(LED) [56]. Figure 2.7 shows a system diagram of a VEP-based BCI. This is a
modified version of the system depicted in Figure 2.5, adding a device to present
the visual stimuli.

VEP-based BCIs can be organized into three categories, based on the stimulus
sequence approach: time modulated (time-modulated VEP (t-VEP)), frequency
modulated (f-VEP or SSVEP), and pseudorandom code-modulated VEP (c-VEP)
[1]. The idea behind t-VEP is for the flash sequences to be mutually independent
of one another, for example by enforcing the flash sequences to be strictly non-
overlapping in time. The stimuli is flashed briefly, and evoke a flash VEP (FVEP)
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Figure 2.7: Example of a VEP-based BCI using a computer monitor. The user
is presented with six targets, each following a different flickering sequence. The
system finds which target the user gazed upon.

in the user. FVEPs have short latency and are considered a P2 (or P200) signal,
evoking a positive peak with a latency of 200 ms after a flash [25]. In a t-VEP BCI,
timing information is required for accurate classification. Accurate classification
also requires averaging over many epochs (time periods), to enhance the FVEP
from the fixation target and suppressing the FVEP from non-fixation target. Due
to the requirement that flash sequences shall be mutually independent, t-VEP BCIs
usually have low stimulus rates (< 4 Hz), resulting in low throughput compared to
the other approaches [1].

In SSVEP-based BCIs, the targets flicker at different frequencies. Fixating on
one of these targets creates a periodic sequence of evoked potentials with the same
frequency as the target. It creates a response in both the fundamental frequency
and its harmonics. The harmonics of a fundamental frequency, f , are the integer
multiples of f . f is considered the first harmonic, 2f is the second harmonic, and
so on. Spectral analysis is the most common classification technique for SSVEP-
based BCIs [1]. SSVEP is also similar to P300 in that both methods require no
user training.

c-VEP-based BCIs use pseudorandom stimulus sequences. A single pseudoran-
dom stimulus sequence is shifted in time to create different stimulus sequences for
multiple targets. Due to this shifting of the stimulus sequence, timing information
is required to perform classification. Generally, a template matching method is
used for classification [1]. This template T is obtained by performing a training
session where the user is instructed to fixate on a target k in the system. The
user has to fixate on the target for N stimulation cycles. The template is then
obtained by averaging over the N cycles. To obtain the template Ti for a target
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ki, the template T is shifted in the time-domain according to the time-lag of the
stimulus sequence between k and ki. Classification can then be performed on a
set of EEG data by calculating the correlation coefficients between the EEG data
and all the target templates. The target with the highest correlation coefficient is
selected by the classifier. A more thorough handling of c-VEP systems is given in
Section 3.1.2.

2.2.2 Sensorimotor rhythms (SMRs)
A system based on sensorimotor rhytms (SMRs) is an example of a system that
uses oscillatory features. The two main types of oscillations used for BCIs are the
mu rhythm that oscillates in the range of 7-13 Hz, and the beta rhythm that oscil-
lates in the range of 13-30 Hz [34]. The mu rhythm operates in the same frequency
range as the alpha band (see Section 2.1), but measured over a different area of
the brain. Both the mu and beta rhythm originate in the sensorimotor cortex of
the brain, hence the name SMR. The sensorimotor cortex is an area of the cor-
tex combining sensory and motor functions. Changes in these rhythms can be a
result of sensory stimulation, motor behaviour, or mental imagery, and will result
in either an amplitude suppression, event-related desynchronization (ERD), or an
amplitude enhancement, event-related synchronization (ERS), in the EEG signal
from this region of the brain.

Preparation or execution of a motor act results in a short-lasting ERD of the
mu and beta rhythms [34], which is the idea used behind SMR BCIs. These ERDs
can be read from the corresponding EEG signal and are used to infer intent from
the user. Since an ERD can be triggered from an imagined motor act, SMRs are
a popular field of study within the medical field for people with motor movement
disabilities.

2.2.3 Evaluating BCI methods
Before comparing different BCI methods to one another, it is beneficial to take a
look at how BCI methods are evaluated. The information transfer rate (ITR) is
the most commonly applied metric to assess the overall performance of BCIs [53].
The method used for calculating ITR in BCIs was defined by Wolpaw et al. [49] as

B = log2N + P log2 P + (1− P ) log2

(
1− P
N − 1

)
(2.4)

where B is the ITR in bit rate (bit/symbol), N is the number of possible choices for
symbols (targets), and P is the classifier accuracy. The bits/min, Bt, is calculated
by

Bt = B · 60
T

(2.5)

where T is the detection speed in seconds/symbol.

A current problem with ITR is that different papers report ITR differently, or
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even incorrectly. Some articles calculate the ITR based on offline analysis, which is
considered to have little bearing on its online performance in a field setting. Yuan
et al. [53] conducted a study on ITR in BCIs. The conclusions are summarized
below.

There are four preconditions to using equation 2.4:

1. BCI systems are memory-less and stable discrete transmission channels.

2. All the output commands are equally likely to be selected.

3. The classification accuracy is the same for all target symbols.

4. The classification error is equally distributed among all the remaining sym-
bols.

Most BCIs meet these preconditions in practice.

BCIs can be categorized by whether they are synchronous or asynchronous. In
synchronous BCIs, the system provides the user with information about when to
perform an action. These systems fulfill the preconditions listed above, and can
use equation 2.4 for ITR estimation.

Asynchronous BCIs allow users to choose when they wish to control the BCI.
This particular mechanic allows the user to remain in an idle state; any message
sent during an idle period is a false positive, and should be avoided. This con-
straint can lead to the probability of choosing an idle state being different from
the probability of selecting specific commands. Thus, asynchronous systems do not
fulfill precondition (2), and can not use Equation 2.4.

Yuan et al. [53] have seven suggestions to standardize ITR calculations:

1. When reporting the ITR, N , P and T in Equation 2.4 and Equation 2.5
should be explicitly identified.

2. To ensure an accurate estimation of classifier accuracy, enough test trials are
needed. Hence, when the ITR is reported, the number of test trials should
also be reported.

3. Authors should include an ITR estimation that does not include error cor-
rection or other methods to increase effective throughput. If a system does
employ error correction, authors should adequately describe the methods and
results and, if desired, include a modified ITR as well.

4. To ensure that each input symbol is equally likely to be selected, BCIs should
ideally be tested with randomly generated symbols from all N symbols.

5. When reporting ITRs, authors should explain all of the factors in the ITR
calculation, such as whether t1 is included in the calculations. t1 is the time
it takes the user to shift attention to a new target.
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6. N should remain constant throughout the whole test.

7. Results should be presented from each subject tested, including individual
ITRs and statistical results. If any data were rejected from further analysis,
the amount of data and the reason(s) for rejection should be described. If
results are presented from subject(s) who were exceptional, this fact should
be noted.

In addition to the problem of articles reporting ITR differently as addressed by
Yuan et al. [53] above, there are two other main criticisms against ITR as an eval-
uation method. The first criticism is that the ITR increases with the number of
targets. If the detection speed (T in Equation 2.5) of a system remains unchanged
regardless of the number of targets, then the highest bit rate will be obtained by
choosing the value of N in Equation 2.4 for which B is the greatest. An example
is given by Wolpaw et al. [49]: for a user with 90% accuracy when N = 2, 60%
accuracy when N = 4 and 30% accuracy when N = 16, results in bit rates of 0.53,
0.40 and 0.38 respectively, and N = 2 would be the best choice. However, if the
accuracies were 90%, 70% and 50%, the bit rates would be 0.53, 0.64 and 1.05,
respectively. In the latter case, N = 16 would be the best choice.

The other criticism is regarding how ITR handles error rates. In many BCIs,
when an incorrect selection is made it requires two additional selections to correct
it: one selection for the “undo” command and one selection to perform the orig-
inally intended command. These new selections are also prone to the same error
rate as the originally intended command. Townsend et al. [40] suggest a method
called practical bit rate (PBR) that takes these extra selections into account. Given
the error rate E = (1 − P ), where P is the classifier accuracy, and the number of
commands the user has to input, S, the expected number of selections required to
correctly input all commands is defined by:

S + 2(SE) + 2(2(SE)E) + 2(2(2(SE)E)E) + ... = S

∞∑
i=0

(2E)i = S

1− 2E (2.6)

when E < 0.5. When E ≥ 0.5, the user would make errors at a faster rate than
they would be able to correct them. (1−2E) can also be written as (2P −1). With
this in mind, the formula for PBR in bits/min is as follows:

PBR =
{
Bt · (2P − 1) P > 0.5

0 P ≤ 0.5 (2.7)

where Bt is ITR given in bits/min as described in Equation 2.5. Speier et al.
[37] suggest an alternative formula that uses log2N in place of ITR (Bt). Since
both PBR and ITR include penalties for incorrect selections, the metric double
counts errors, resulting in an overly conservative bit rate estimate. The alternative
calculation is:

PBR =
{ 60·log2 N(2P−1)

T P > 0.5
0 P ≤ 0.5 (2.8)
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Figure 2.8: Sensor locations for Emotiv EPOC in the 10-20 international system.
The green channels are the ones that provide EEG data. The red channels are
reference (P3) and ground (P4).

where N is the number of possible selections and T is the average detection speed.
The result is also given in bits/min.

While PBR can be a more correct performance metric, ITR is the most commonly
applied metric, and the one that is used in this thesis. The VEP system in this
thesis does not have any “undo” functionality, so PBR is less relevant.

2.3 Emotiv EPOC
Emotiv EPOC2, shown in Figure 2.10, is a wireless, low-cost, multi-channel com-
mercial EEG neuroheadset that records EEG data, and is the headset used in this
thesis. Its features are shown in Table 2.1. The 16 sensor locations, including
reference and ground sensors, are displayed in Figure 2.8. A reference sensor is a
sensor whose EEG value is subtracted from all other sensors’ EEG values. The

2http://emotiv.com/store/sdk/209/

http://emotiv.com/store/sdk/209/
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Figure 2.9: Screenshot from TestBench, software that is bundled with the Emotiv
EPOC SDK.

O1 and O2 sensor placements, and to a lesser extent P7 and P8, cover the visual
cortex, and can be used to record VEPs. These are the sensors that will be used
in this thesis. On each of the Emotiv EPOC’s sensors, felt pads are attached. To
ensure good sensor contact, the felt pads have to be moistened by a saline solution
prior to its use.

The Emotiv EPOC software development kit (SDK) comes with software, Test-
Bench, that allows the user to check the contact quality of the sensors. Figure
2.9 shows a screenshot of TestBench. The contact quality ranges from black (no
contact), to red (poor contact), yellow (good contact) and green (great contact).
It also shows a graph of the EEG data in real-time.

2.3.1 Comparison to medical grade equipment
Stytsenko et al. [39] performed an evaluation of Emotiv EPOC, and compared it
to a g.tec3 device, which is a medical-grade EEG device. They concluded that the
data provided by both systems are alike in general, but the signal has a better SNR
in the medical system.

3http://www.gtec.at/

http://www.gtec.at/
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Figure 2.10: The Emotiv EPOC neuroheadset

Features Emotiv EEG neuroheadset
Number of channels 14 (plus CMS/DRL references, P3/P4 locations)
Channel names (Interna-
tional 10-20 locations)

AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8, AF4

Sampling method Sequential sampling. Single ADC
Sampling rate 128 samples per second (Hz) (2048 Hz internal)
Resolution 14 bits 1 LSB = 0.51 µV (16 bit ADC, 2 bits

instrumental noise floor discarded)
Bandwidth 0.2 - 45 Hz, digital notch filters at 50 Hz and 60

Hz
Filtering Built in digital 5th order Sinc filter
Dynamic range (input re-
ferred)

8400 µV (pp)

Coupling mode AC coupled
Connectivity Proprietary wireless, 2.4 GHz band
Power LiPoly
Battery life (typical) 12 hours
Impedance Measurement Real-time contact quality using patented system

Table 2.1: Emotiv EPOC features, taken from http://emotiv.com/upload/
manual/sdk/EPOCSpecifications.pdf

http://emotiv.com/upload/manual/sdk/EPOCSpecifications.pdf
http://emotiv.com/upload/manual/sdk/EPOCSpecifications.pdf
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Duvinage et al. [16] tested Emotiv EPOC and compared it to a product from
Advanced Neuro Technology (ANT)4, which is also a medical-grade EEG acquisi-
tion device. They reach the same conclusion as Stytsenko et al.; the SNR is worse
for Emotiv EPOC than the medical-grade device. Furthermore, Duvinage et al.
finds that Emotiv EPOC performs significantly worse, and it should not be used in
health-related applications. However, for non-critical applications such as games,
Emotiv EPOC should suit the customer’s needs. While not performing as well as
the medical device, it reaches satisfying results for an at least 40 times less expen-
sive solution.

Emotiv EPOC also has more limited technical specifications compared to the more
expensive solutions. As can be seen from 2.1, the headset has a sampling rate of
128 Hz and only has 14 channels. In comparison, medical equipment can have
sampling rates of up to 5 kHz and 256 EEG channels5.

2.4 Structured literature review protocol
A structured literature review is an effective method to gather information about a
research area. The main advantage of conducting a structured literature review is
the ability to systematically and objectively identify the existing solutions before
the researcher(s) start working within a research field. A complete overview of the
field will show where additional research is required, and where the focus should
be to further strengthen the field. The review is documented in a formal manner,
so that other researchers can reproduce or verify the review and understand what
the given research is based upon. It can also help others who are looking for the
same information, and avoids the necessity to duplicate the work. Furthermore,
a structured literature review helps the researcher(s) in avoiding bias in the work
and identify gaps of knowledge the researcher(s) might have.

When creating a VEP system there are two important areas that need to be ad-
dressed. The first is the large research area concerned with the algorithms and
techniques used for processing EEG signals, recognizing VEP responses, and iden-
tifying the user’s intent. The second area is the visual stimulus system used for
provoking VEPs in the user. Providing the user with correct stimuli is crucial to
making the system work. For this thesis, Emotiv EPOC is used, and investigating
what has been done with the headset for VEP-based BCIs is a third area that
needs to be addressed. These three areas formed the basis for the performed SLR.
More formally they can be described as:

Pr1 Implementing techniques for VEP-based BCIs.

Pr2 Implementing a VEP-based BCI with Emotiv EPOC.

Pr3 Implementing a stimulus system for VEP-based BCIs.
4http://www.ant-neuro.com/
5http://www.brainproducts.com/productdetails.php?id=5&tab=1

http://www.ant-neuro.com/
http://www.brainproducts.com/productdetails.php?id=5&tab=1
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The SLR in this thesis was carried out by the following steps

1. Defining problems and research questions.

2. Searching for relevant articles.

3. Filtering search results.

4. Collecting data and analyzing the findings.

A detailed description of these steps along with their results can be found in Ap-
pendix A. Among the articles found through the SLR, a set of articles were con-
sidered highly relevant. These articles form the basis for Chapter 3, where related
work is presented along with an explanation of central theories and techniques
within the field.



Chapter 3

Related work

In this chapter central theories and techniques from the articles found through
the SLR (see Section 2.4) are presented. The first three sections present mate-
rial regarding the three problem areas Pr1, Pr2, and Pr3 respectively. Section
3.4, contains a discussion of the material presented with a conclusion of the VEP
techniques that are chosen to be implemented and tested in this thesis.

3.1 Pr1: Implementing techniques for VEP-based
BCIs

As described in Section 2.2.1, there are three types of VEP categories; t-VEP,
SSVEP and c-VEP. SSVEP is a VEP-based BCI in which the targets flicker with
predetermined frequencies, whereas in c-VEP, the flickers follow predetermined
patterns or sequences. VEP methods belonging to both of these paradigms were
described in the articles found through the SLR. However, no articles were found
that implemented a t-VEP system. This section is divided in two; one subsection
presenting SSVEP techniques and the other presenting c-VEP techniques.

3.1.1 SSVEP methods

This section presents SSVEP techniques that were found through the SLR. The
section will go through the following topics: PSD, canonical correlation analysis
(CCA), adaptive time-window length, amplitude-modulated visual stimulation and
minimum energy combination (MEC). PSD, CCA and MEC are methods used to
detect SSVEP responses in the EEG, whereas the sections about adaptive time-
window length and amplitude-modulated visual stimulation describe ways of mak-
ing SSVEP systems.

23
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Figure 3.1: The PSD of the recorded EEG data of a user gazing at a target with
a 14 Hz flicker frequency.

Power spectral density analysis (PSDA)

Until recent years, power spectral density analysis (PSDA) was the most widely
used frequency detection method for SSVEP [28]. The PSD of a signal is a rep-
resentation of the power of the frequencies in the given signal. Since SSVEPs are
periodic responses in the EEG signal corresponding to which visual stimulus the
user is gazing at, power spectral density analysis (PSDA) is a straight forward
method to detect the frequency; if a user is gazing at an object that flickers at 14
Hz, the maximum amplitude in the PSD for an ideal, noise-free signal would be
located at 14 Hz as well. The PSD can be estimated using the FFT. MathWorks,
the company behind MATLAB, show how the PSD can be estimated using FFT1.
The FFT of a signal returns both the amplitude and phase for the frequencies. The
magnitude is given as a real number while the phase of the frequency is represented
by a complex number. An FFT also returns the frequency information for both
positive and negative frequencies. For the most part, EEG research is only inter-
ested in the real-valued part of the positive frequencies given by an FFT. Figure
3.1 shows the PSD of a user gazing at a 14 Hz flicker.

An FFT algorithm inherently assumes that the data given to it is infinitely re-
peated. Thus, if there is a height difference between the beginning and the end
of the data, the FFT algorithm sees a step function once per cycle. This edge
contributes to wideband noise in the frequency spectrum. Because of this, it is

1http://www.mathworks.se/help/signal/ug/psd-estimate-using-fft.html

http://www.mathworks.se/help/signal/ug/psd-estimate-using-fft.html
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Figure 3.2: Four different windowing functions.

common to multiply the EEG signal with a windowing function of equal length
before applying the FFT. A windowing function is a function that is zero-valued
outside of some chosen interval. Figure 3.2 shows examples of four different win-
dowing functions. A tapered windowing function is a windowing function that
tapers from one in the middle to zero at both edges, and by multiplying the EEG
signal by a tapered windowing function, the step function is no longer present.
Figure 3.3 shows an example of a Hanning window applied to EEG data.

Before applying the FFT, it can also be beneficial to perform zero-padding on
the EEG signal. Zero-padding means adding zeroes to the end of the signal. There
are two reasons for performing zero-padding:

1. To set the signal length to a power of 2. FFT implementations are more
efficient when calculating the FFT of a signal that has a length that is a
power of 2.

2. To obtain a higher FFT resolution in the output.
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Figure 3.3: The effect of multiplying EEG data with a windowing function. The
green line shows the maximum amplitude the data can have after applying the
Hanning window.
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The FFT resolution is the spacing between the frequencies in the output, and is
given by the equation

∆Rfft = fs
Nfft

(3.1)

where fs is the sampling rate of the signal in seconds, and Nfft is the number
of points in the signal with zero-padding. However, zero-padding will not provide
more frequency information. Every signal has a frequency resolution which is the
minimum spacing between two frequencies that can be resolved. The frequency
resolution is determined solely by the acquisition time, and is given by the equation

∆Rf = 1
T

= fs
N

(3.2)

where T is the time in seconds, fs is the sampling rate of the signal in seconds,
and N is the number of points in the signal without zero-padding [22]. To increase
the frequency resolution, a longer signal is required. As an example, consider a
signal where two frequencies of interest are spaced at 0.1 Hz. To be able to resolve
both frequencies a frequency resolution of 0.1 Hz is required, and given that the
frequency resolution is 1

T it would require 10 seconds of data. Finally, the frequen-
cies returned by the FFT are multiples of the FFT resolution; if the frequency of
interest is not a multiple of the FFT resolution, the amplitude of that frequency is
split between the two closest frequencies.

There were two articles that passed all the criteria in the SLR that use PSDA.
Vilic et al. [42] created a spelling system that uses dictionary support. The user
of the system can choose whether to input a single letter, or auto complete a word
from a dictionary based on the letters that have been typed. The experiments were
carried out with an EEG acquisition device from g.tec2 called g.USBamp with a
sampling rate of 512 Hz. The signal was filtered by an analog bandpass from 5Hz
to 30Hz, and data was collected from an electrode placed at the Oz location in
the 10-20 international system, see Section 2.1.2. The visual stimuli, eight targets,
were presented on a liquid crystal display (LCD) monitor with a refresh rate of
120 Hz. Classification is performed every two seconds on the EEG data, and two
sets of data are examined during each iteration. The first set, SData, contains the
two most recent seconds of data. The second set, CData, contains the three most
recent sets of SData.

Autocorrelation is applied on SData to reduce the noise. Autocorrelation is the
cross-correlation of a signal with itself. It provides a measure of similarity between
a signal and itself at different lags. Imagine a finite signal with n samples. The
correlation between the signal and the signal at lag(0) is calculated. Then the
correlation between the signal and the signal at lag(1) is calculated, where lag(1)
means the signal is shifted 1 sample to the right. This process is repeated until
lag(n − 1), for a total of n correlations. The correlation is naturally highest at
lag(0). Autocorrelation can be used to find repeating patterns in a time-domain

2http://www.gtec.at/

http://www.gtec.at/
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Figure 3.4: A noisy 10 Hz sine wave and its autocorrelation.

signal obscured by noise. Intuitively, if a signal is periodic with a frequency of
10 Hz, then when the signal is shifted with a lag that is a multiple of 1/10th of
a second, the correlation should be higher than when it is shifted by a different
lag. Figure 3.4 shows an example of how autocorrelation works for such a 10 Hz
periodic signal. The top graph shows a 10 Hz sine wave with added noise over one
second, while the bottom graph shows the cyclic autocorrelation of the sine wave.
The graph shows how the autocorrelation of a periodic signal is itself a periodic
signal. It also shows how the autocorrelation is highest when the time-lag is a
multiple of 1/10th of a second, 0.1, 0.2, 0.3, and so on.

After autocorrelation is applied to the signal, Vilic et al. performed a FFT on
the data, with zero-padding to achieve an FFT resolution of 0.1 Hz. The flickering
targets on the monitor are considered classes, and each class has its own frequency.
The score for each class, Cx, is calculated as the sum of power amplitudes, |Y |,
within ±0.1 Hz of the fundamental frequency, H1, and the second harmonic, H2:

Cx =
H1+0.1∑
H1−0.1

|Y |+
H2+0.1∑
H2−0.1

|Y | (3.3)
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All values of Cx are normalized with respect to one another with the dominating
class having the value of 1. Selection happens if at least one of three conditions
are met:

• The second greatest value in SData < 0.35.

• The second greatest value in CData < 0.45.

• The same class, Cx, is dominating in four consecutive iterations.

These thresholds were decided empirically. To test the system, users had to write
four different sentences, and wrong input had to be corrected. The average ITR
was 21.94 bits/min, and the average characters per minute (CPM) was 4.91, with
the best case being 8.74.

SSVEP can be classified in three ranges: low (< 12 Hz), medium (12-30 Hz)
and high (> 30 Hz). While higher frequencies evoke weaker SSVEPs, the SNR
is similar for all three ranges, due to higher frequencies experiencing a decrease
in spontaneous EEG (noise) [15]. Higher frequencies also cause less visual fatigue
for users compared to lower frequencies, since the flickering effect is less visible.
Diez et al. [15] made an SSVEP system using higher frequencies: 37, 38, 39 and
40 Hz. The experiments were carried out with flickering LEDs mounted on the
four sides of a computer monitor, controlled by a field-programmable gate array
(FPGA). A Grass MP15 amplifier system3 was used for signal acquisition of the
O1, O2 and Oz electrode placements with a sampling rate of 256Hz. Before online
experiments were carried out, baseline data for each test user was collected; the
users stared at a blank screen for 60 seconds. During the online experiment, the
users were tasked with steering a ball through a maze on the computer monitor,
with the four LEDs corresponding to the directions up, right, down and left. The
signal processing is performed on a window with a length of two seconds (512 data
points). A butterworth bandpass filter of order 6 is performed on the data with
a cutoff of 32 Hz and 45 Hz. An estimation of the PSD is calculated by using an
FFT on the two second window. The data is zero-padded to 1024 points, giving an
FFT resolution of 0.25 Hz. The normalized power at each stimulation frequency is
then calculated as the mean value of the power on each channel:

P (fi) =
M∑
ch=1

∑
∆f Ŝch(fi ±∆f)∑

∆f B̂Lch(fi ±∆f)

/
M (3.4)

where P (fi) is the normalized power estimation for frequency fi (i = 37, 38, 39 or
40 Hz). ch is the channel (O1, O2 or Oz) and

∑
∆f Ŝch(fi ±∆f) is the sum of the

band power for channel ch within ±∆f = ±0.25 Hz of target frequency fi. B̂L is
the PSD calculated from the baseline EEG recorded prior to the experiment. M is
the number of channels, three in this case. The two second window updates itself
with new data every 0.25 s, and P (fi) is calculated for every update. A classification

3https://www.grasstechnologies.com/

https://www.grasstechnologies.com/
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Figure 3.5: A plot of the accuracy using CCA and PSDA in an SSVEP-based BCI
as a function of the SNR. Lin et al. [28] simulated noisy EEG signals by adding
Gaussian white noise to sinusoidal waveforms. The plot shows how CCA handles
decrease in SNR significantly better than PSDA. Adapted from Lin et al. [28].

is accepted if the maximum P (fi) is the same for a determined period of time H. H
was adjusted on a user to user basis, between 1.5 s to 2.25 s. This system achieved
ITRs ranging from 9.4 bits/min to 45 bits/min.

Canonical Correlation Analysis (CCA)

In the set of articles found through the SLR, many articles use a method called
CCA in SSVEP-based BCIs. CCA can be used as an approach to analyze the
frequency information in an EEG signal, and to find which frequency, among a
set of frequencies, is the most prominent in the signal. CCA was first introduced
for multi-channel SSVEP detection in 2006 by Lin et al. [28]. Lin et al. describe
CCA as an array signal processing method that uses channel covariance informa-
tion to extract frequency features in EEG. They performed a comparison between
CCA and PSDA, and experienced the following: when the SNR decreased, the
recognition accuracy of the PSDA approach decreased rapidly, whereas the CCA
implementation retained a high accuracy. This is shown in Figure 3.5. They also
experienced that the accuracy increased with the number of channels used for the
CCA. The resistance to lower SNRs, and the ability to utilize information from
many channels, are the main reasons why CCA is a popular technique in the BCI
field.

Mathematically, CCA is a multivariate statistical method used when there are
two sets of data which may have some underlying correlation [29]. The two sets of
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data are put in multidimensional random variables X and Y . Consider the linear
combination

X ′ = XTWx, Y
′ = Y TWy (3.5)

X ′ and Y ′ are then projections onto Wx and Wy, and are called canonical variants.
CCA finds the weight vectors Wx and Wy which maximize the correlation between
X ′ and Y ′. According to Bin et al. [3], this is done by solving the following problem:

max
Wx,Wy

ρ(X ′, Y ′) = E[X ′TY ′]√
E[X ′TX ′]E[Y ′TY ′]

= E[WT
x X

′Y ′TWy]√
E[WT

x X
′X ′TWy]E[WT

x Y
′Y ′TWy]

(3.6)

Solving this problem give the weight vectors Wx and Wy, but also several correla-
tion coefficients. In the SSVEP-domain, it is common to use the largest correlation
coefficient as a measure of correlation, as first suggested by Lin et al. [28].

When using CCA for frequency recognition in an SSVEP-based BCI, X is the
multichannel EEG signal and Y is a reference signal. For each stimulus frequency,
fi, a reference signal Yfi

is created. CCA will use Yfi
, compare it to X and output

a ρi which indicate the correlation between the two sets of variables (Figure 3.6).
The stimulus frequency, fs, which the user was visually fixated on, can be predicted
by

fs ≈ fc, C = arg max
i

ρi (3.7)

where C is the predicted target (command).

As stated above, the reference signal Yfi
is a matrix created from a stimulus fre-

quency fi. The stimulus frequency, fi, can be decomposed into the Fourier series
of its harmonics [28]. The reference signal Yfi

becomes the following

Yfi
=



sin(2πfit)
cos(2πfit)
sin(4πfit)
cos(4πfit)

...
sin(2πNhfit)
cos(2πNhfit)


, t = 1

S
,

2
S
, . . . ,

T

S
(3.8)

where Nh is the number of harmonics used, T is the number of sampling points
and S is the sampling rate of the EEG acquisition device. 1

S is the length of each
time step.

There were two articles found through the SLR that used CCA as their method
to extract frequency information. Bin et al. [3] builds on the work of Lin et al.
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Figure 3.6: The usage of CCA for frequency recognition in an SSVEP system.
x1, x2, . . . x8 are signals from 8 EEG channels, whereas y1, y2, . . . y6 are sine and
cosine terms created from the harmonics of the stimulus frequency. CCA finds the
weight vectors Wx and Wy which maximize the correlation between X ′ and Y ′. ρ
is the correlation between X ′ and Y ′. Adapted from Lin et al. [28].

[28] and created a multichannel SSVEP system for online use. Bin et al. start by
performing a general offline experiment to investigate the influence of the three
important SSVEP parameters: channel location, window length, and the number
of harmonics. For channel selection, Bin et al. used the method described in an
article by the same authors [4]. This article describes how to apply CCA to create
a topographic map of the scalp which can be used to guide the channel selection.
CCA is run with the EEG data in X and with the correct stimulus frequency and
its harmonics in Y . The correlation coefficients are not used. Instead, the weights
Wx can be used to tell how important each of the channels are to get a resulting
signal that correlates best with Y ′. A channel that highly contributes to the corre-
lation receives a corresponding weight, Wi, with high absolute value. Bin et al. [4]
show how these channel weights can be mapped onto a figure of the scalp showing
the channels according to the 10-20 system. The figure illustrates to what degree
the different electrodes are contributing to the SSVEP signal.

Bin et al. reported strong activation of visual cortical areas in the occipital lobe
with large positive and negative values. They conclude that the channels that lie
in the areas near the occipital and parietal lobes (Figure 2.4), should be selected
for EEG recordings in an SSVEP-based BCI. The sensors selected for the online
system were O1, O2, Oz, PO7, PO8, POz, P3, P4 and Pz. Next, the number of
harmonics and different time window lengths were tested on the offline data. The
results showed that the number of harmonics had no significant influence on the
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performance of the system. However, the accuracy of the system increased with
the time window length. In the following online SSVEP system, only the first har-
monic was used and the time window length was set to 2 seconds.

The online system used a 60 Hz LCD monitor as a stimulus device presenting
six targets with frequencies 15 Hz, 12 Hz, 10 Hz, 8.6 Hz 7.5 Hz and 6.7 Hz re-
spectively. The EEG signals were recorded using a BioSemi ActiveTwo system4

with a sampling rate of 256 Hz. Each test subject was asked to input a string with
30 characters. The user had 0.3 seconds to shift his gaze between the 2 seconds
recording interval. The system would output a predicted character every 2.3 sec-
onds. The average of the correct count from 30 BCI commands was 28.6 giving an
accuracy of 95.3%. The reported average ITR was 58 bits/min.

Cao et al. [6] also used CCA as their method to extract frequency information in
their SSVEP-based BCI speller. On a 60 Hz monitor, the speller system enabled
the user to choose among 42 characters (26 letters, 10 digits and 6 common used
symbols). The characters were spread among three different pages with 16 targets
in each page. Two of the 16 targets were used for turning the page. The frequencies
of the 16 targets started from 8 Hz to 15.5 Hz with an interval of 0.5 Hz. The EEG
signals were acquired with a g.USBamp amplifier from g.tec5 with a sampling rate
of 256 Hz. Six electrodes placed on POZ, P3, P4, OZ, O1, and O2 were used as
input channels. The signals were filtered by a 0.5 Hz to 60 Hz band-pass filter.

The system operates with a gazing interval of 2 seconds, meaning that the user
has to look at a target for 2 seconds for the system to predict an outcome. The
following second is used for the user to shift his/her gaze to the next target. The
window size is set to 1 second, and the correlation coefficients are calculated every
0.2 seconds. Throughout the gazing interval, the CCA algorithm runs 5 times pro-
ducing 5 correlation coefficients and commands. At least 2 out of the 5 predicted
commands, C, have to be the same. If this is not the case, no command is output
from the system, and new EEG data has to be collected. If at least 2 commands
are the same, the mean is calculated of the corresponding coefficients. If the mean
is larger than the threshold 0.2, C is output as the prediction of the target. This
system achieved an average accuracy of 98.78± 1.62% and an average ITR of 61.64
± 3.61 bits/min. The average spelling speed was 5.12 ± 0.22 seconds per character.

As opposed to the system described by Bin et al. [3], the system by Cao et al.
had the possibility to not output any control command. The introduction of a
threshold makes it possible to require the data to be of a given quality, before a
command is given from the system. Cao et al. explains that a false positive of a
system happens when the system accidentally performs an action that the subject
did not intend. Having a significant false positive rate is undesirable in many prac-
tical BCI applications. Compared with false positives, it is better for the system

4http://www.biosemi.com/
5http://www.gtec.at/

http://www.biosemi.com/
http://www.gtec.at/
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to not output any control command when the user is gazing at targets, which is
known as a false negative. A high threshold will reduce the false positive rate and
lead to an increase in stability, but lower the sensibility of the system. Setting a
threshold will be a tradeoff between sensitivity and stability. Cao et al. [6] reported
an average false positive rate of 1.23% and a false negative rate of 3.06% in their
system.

SSVEP with Adaptive Time-Window Length

In an SSVEP system, a crucial parameter is the length of the EEG segment that
should be used to classify the stimulus frequency. The length of this interval will
always be a tradeoff; a long interval gives higher accuracy, but increases response
time, while a short interval results in a fast response time, but lower accuracy. Set-
ting the correct length for this window can be difficult, especially when the system
is to be used by multiple users. da Cruz et al. [14] proposed a speller system
which could adapt the length of the time window simultaneously as the system was
in use. The system allowed the user to input 48 characters as well as “Del” (delete)
and “Undo”. The four page system had 16 targets in each page, where 3 of the
16 buttons were reserved for turning page. The 16 targets, displayed on a 120 Hz
monitor, were flickering with frequencies ranging from 8 Hz to 15.5 Hz, spaced out
at intervals of 0.5 Hz. The “Del” button was selected by the user when correcting
a misspelling as a result of a user error. The “Undo” button was selected by the
user to tell the system that the last command was wrong, even though the user was
gazing at the correct target. This gave feedback to the system about the online
performance in real time. If many of the output commands are wrong, it could be
an indication that the current window length is too short. The adaptive system
can then increase the time-window length for the current user in real-time. For the
contrary case, if the user does not send “Undo” commands for a longer period of
time, the system will decrease the time-window length to lower the response time.
In this way, the time-window length is adapted according to the online performance
of the user.

In the proposed speller system, CCA was used as feature extraction in a simi-
lar manner to the approach described by Cao et al. [6]. The EEG signals were
collected with a g.USBamp amplifier from g.tec6 with a sampling rate of 256 Hz
and filtered by a bandpass filter from 0.5-60 Hz. Six electrodes were used and
placed at the POZ, PO3, PO4, OZ, O1, and O2 locations. The subjects were asked
to input the same sequence of letters using both the fixed time-window length and
the adaptive time-window length mechanism. The performance, averaged over all
the subjects on both systems, are shown in Table 3.1. The adaptive time-window
length mechanism gave lower detection time, and the improvement of ITR was
6.50% compared to the fixed time-window length system.

6http://www.gtec.at/

http://www.gtec.at/
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Time-Window
Length Type

Accuracy (%) Detection Time (s) ITR (bits/min)

Fixed 100.00 4.09±0.24 58.36±3.28
Adaptive 99.00±1.15 3.85±0.13 62.09±2.31

Table 3.1: Average performance of adaptive time-window length mechanism vs
fixed time-window length mechanism

Amplitude-modulated visual stimulation system

Chang et al. [10] investigated how amplitude-modulated (AM) stimulus could
provoke SSVEP responses in a BCI system. The motivation behind creating an
amplitude-modulated (AM)-SSVEP-system, is to combine the advantages of using
high and low frequencies in an SSVEP-system. Chang et al. state that SSVEPs in
the low-frequency band have a larger amplitude response than those in the medium-
and high-frequency ranges, and that SSVEPs at 15 Hz have the largest amplitude.
However, eliciting low frequency SSVEPs can be annoying and can cause epileptic
seizures. High-frequency SSVEP systems are more comfortable for the user, caus-
ing low eye fatigue, but have significantly lower accuracy and ITR compared to
low-frequency SSVEP-systems.

Amplitude modulation techniques are used in electronic communication, especially
for radio carrier waves. The same principles are used when creating an AM stimulus
for use in SSVEP. Chang et al. suggest that the brightness of the visual stimulus
should vary as a double-sideband suppressed carrier (DSB)-AM sine wave, S(t),
which can be described by:

S(t) = c(t)m(t) = −1
2 [cos(2π(fc + fm)t)− cos(2π(fc − fmt)] (3.9)

As Equation 3.9 shows, S(t) is generated from c(t) and m(t). Chang et al. refer
to c(t) as the carrier and m(t) as the modulation signal. Both of these can be
described by a sine wave:

c(t) = sin(2πfct),m(t) = sin(2πfmt) (3.10)

fc is known as the carrier frequency and fm the modulation frequency.

Chang et al. state that when the brightness of the stimulus varies as a DSB-AM
sine wave and the stimulus is flickering with the carrier frequency, fc, the maximum
and minimum brightness of the stimulus will change sinusoidally at the modulation
frequency fm. By having the carrier frequency in the high-frequency band and the
modulating frequency in the low-frequency band, the stimulus presents both high
and low frequency information to the user.

To produce the stimuli, Chang et al. used two LED arrays (SMD 5050-3, Korea)
with a diffusion film. The intensity variation of the six LEDs followed a similar
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Average accuracy (%) Average ITR (bits/min)
AM-SSVEP 91.2 30.4
High-frequency-SSVEP 88.1 29.0
Low-frequency-SSVEP 86.7 29.1

Table 3.2: The performance of three types of stimuli for the Online 1 experiment.

Average accuracy (%) Average ITR (bits/min)
AM-SSVEP 97.02 39.41
High-frequency-SSVEP 94.95 38.17
Low-frequency-SSVEP 97.65 43.51

Table 3.3: The performance of three types of stimuli for the Online 2 experiment.

curve as the ideal AM stimulus described by S(t). They used an ATmega128 from
Atmel to digitize the S(t) signal, and then an LTC1657CN digital-to-analog con-
verter from Texas Instrument to convert the stimulus back into an analog signal
to operate the LEDs. Various frequencies higher than 40 Hz were used as carrier
frequencies. Low frequencies near the alpha-band were used as modulation fre-
quencies. The EEG data was acquired with a g.USBamp amplifier from g.tec with
a sampling rate of 512 Hz. The 15 electrodes that were used were located at these
positions: O1, Oz, O2, PO3, POz, PO4, P1, Pz, P2, P3, P4, P5, P6, PO7, and
PO8. During the measurement, a high-pass filter at 2 Hz, a low-pass filter at 100
Hz, and a notch filter at 60 Hz were applied to every channel.

CCA was used to extract frequency features from the produced EEG signals. An
AM stimulus can be thought of as the sum of two sine waves of frequency (fc+fm)
and (fc − fm). Harmonics of the frequencies (fc + fm) and (fc − fm) were used in
generation of the reference signal, Y , for use in CCA.

In the online system, a window length of 4 seconds was used, shifting every 0.5
seconds to give a new segment of data. CCA was ran every 0.5 seconds, and if
four consecutive predictions from the CCA were the same, a prediction was output
from the system. Two types of online experiments were performed under different
light conditions and different sequences of commands. Three types of stimuli were
given: AM-, high-frequency- and low-frequency stimuli. The results for the Online
1 and Online 2 experiments are shown in Table 3.2 and Table 3.3 respectively. In
the Online 1 experiment, AM-SSVEP performs the best with the highest ITR. In
the Online 2 experiment, AM-SSVEP has higher ITR than high-frequency SSVEP,
but lower ITR compared to low-frequency SSVEP.

A user evaluation was performed after the online experiments. The results from this
evaluation showed that the users considered the low-frequency stimuli to give much
higher eye fatigue and sense of flickering than high-frequency and AM-stimuli. Fur-
thermore, the users regarded AM and high-frequency stimuli to be more suitable
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for everyday use compared to low-frequency stimuli.

Minimum energy combination (MEC)

Volosyak [43] presented a method for detecting SSVEPs that uses MEC. First,
consider an SSVEP response for a specific EEG channel (electrode) i: the voltage
between the ith channel and the reference electrode at time t can be described as

yi(t) =
Nh∑
k=1

(ai,k sin 2πkft+ bi,k cos 2πkft) + Ei,t, (3.11)

where Nh is the number of considered harmonics, f is the flicker frequency in Hz
and Ei,t is the part of the signal that cannot be attributed to the SSVEP response,
i.e., noise. A time segment Ts with Nt samples for the ith signal can then be
represented as a vector

yi = Xgi + Ei, (3.12)
where yi = [yi(1), ..., yi(Nt)]T contains the EEG signal over the time segment. X
is the SSVEP information matrix that contains the sine and cosine components of
the different harmonics used. gi contains the corresponding amplitudes ai,k and
bi,k. For Ny electrodes, equation 3.12 becomes

Y = XG+ E, (3.13)

where Y = [y1, ..., yNy
] contains the EEG signal for all channels (electrodes) over

a time segment. Before applying MEC, remember that Ny different channels can
be combined into one signal by using a spatial filter,

s =
Ny∑
i=1

wiyi = Y w, (3.14)

where w is a set of weights [w1, ..., wNy ], one for each channel. The purpose of
weighting the different channels is to enhance the SNR. By applying different
weights to the channels, several signals can be created from the same set of samples.
For Ns signals, equation 3.14 can be generalized as

S = YW, (3.15)

where S = [s1, ..., sNs
] with the corresponding weight matrix W = [w1, ..., wNs

].
The first step of the MEC method is to remove the SSVEP activity from the
recorded signal by using orthogonal projection:

Ỹ = Y −X(XTX)−1XTY. (3.16)

Ỹ contains mostly noise, artifacts and background brain activity. The second
step of the MEC method is to find the weights, ŵ, for which Ỹ is minimized by
optimizing the equation

min
ŵ
||Ỹ ŵ||2 = min

ŵ
ŵT Ỹ T Ỹ ŵ. (3.17)
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This will minimize the noise component of the signal in equation 3.14. Volosyak has
in previous work shown that the lower bound of the right-hand side of the equation
is given by the minimal eigenvalue λ1 of the matrix Ỹ T Ỹ [17]. The corresponding
eigenvector v1 gives the weight vector for one signal and is the solution to the
equation. Choosing more than one signal is based on the eigenvalues in ascending
order with their respective eigenvectors, giving the weight matrix

W =
[
v1√
λ1
...

vNs√
λNs

]
. (3.18)

Equation 3.19 shows how to find the total number of channels used, Ns.∑Ns

i=1 λi∑Ny

j=1 λj
> 0.1. (3.19)

Selecting enough channels that satisfies equation 3.19 will discard up to 90% of the
noise in the signal [17].

After the signals have been filtered by the MEC method, Volosyak estimates the
power of a frequency and its Nh harmonics by

P̂ = 1
NsNh

Ns∑
l=1

Nh∑
k=1
||XT

k sl||2. (3.20)

In the experiments conducted in the article, Nh = 2. For Nf frequencies the power
estimations are normalized into probabilities where

pi = P̂i∑j=Nf

j=1 P̂j
with

i=Nf∑
i=1

pi = 1, (3.21)

where P̂i is the power estimation of the ith frequency. A Softmax function is used
to enhance the distance between the probabilities, defined by the function

p′i = eαpi∑j=Nf

j=1 eαpj

with
i=Nf∑
i=1

p′i = 1. (3.22)

Volosyak [43] set α = 0.25 based on empirical data when Nf = 9. The author
further claims that higher α values reduces the time needed for command classi-
fication, but values higher than 0.3 produces many false positives and should be
avoided.

In the online experiments, a speller was used to evaluate the performance with
frequencies 6.67Hz, 7.5Hz, 8.57Hz, 10.0Hz and 12.0Hz used as target frequencies.
These targets were presented on an LCD monitor with a 120 Hz refresh rate. Fur-
thermore, four additional frequencies were considered to improve the robustness of
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the classification. These frequencies were the means of two neighboring target fre-
quencies: 7.08Hz, 8.03Hz, 9.29Hz and 11.0Hz. Classifier output O was accepted for
frequency i if (1) ith frequency has the highest probability p′i, (2) p′i exceeds a pre-
defined threshold βi and (3) the detected frequency is one of the target frequencies.
These three criteria can be summarized as

O =

 argmaxi(p′i)
p′i ≥ βi
i ≤ 5

. (3.23)

βi varies between 0.5 and 0.3 because visual stimulation with lower frequencies elicit
a higher SSVEP than higher frequencies. The thresholds were decided empirically
by analyzing offline data collected prior to this study. For the online experiment,
EEG data was collected with the use of a g.USBamp from g.tec with a sampling
rate of 128 Hz. The signals were filtered with an analog bandpass filter between
2 and 30 Hz and a 50 Hz notch filter. Pz, PO3, PO4, O1, Oz, O2, O9 and O10
were used for sensor locations in the 10-20 international system. The number of
signals used by the MEC method is recalculated every 13 samples, or 101.5625 ms.
13 samples is considered one block. Classification is performed every 8, 20 and 40
blocks of EEG data, alternatively every 812.5 ms, 2031.25 ms and 4062.5 ms. If no
classifier output is accepted after 8 blocks, the next calculations will be performed
after 20 blocks, and then 40 blocks. The system achieved a mean ITR of 61.7
bits/min with a mean accuracy of 96.79%.

The MEC method has previously been used by Cecotti [7] in a speller system
that achieved a mean ITR of 37.62 bits/min with an accuracy of 92.25%. It was
also used by Volosyak et al. [45], where a BCI speller system was tested on
random subjects in real world conditions from volunteers at the international re-
habilitation fair, RehaCare2008. They achieved a mean ITR of 22.6 bits/min and
a mean accuracy of 92%.

3.1.2 c-VEP methods
This section gives an overview of the c-VEP methods discovered through the SLR.
There were only two articles found that used c-VEP, most likely due to the fact
that SSVEP methods are more popular, requiring no initial user training and hav-
ing low implementation complexity. c-VEP, on the other hand, requires the user to
look at a specific target in a training phase, requires the user gaze to be synchro-
nized with the system and has higher implementation complexity. Advantages of a
c-VEP system is high ITR and the possibility to place a larger number of targets
within a given area without decreasing the performance of the system.

Bin et al. [2] describe how a simple c-VEP system can be built. A binary sequence
can be used to represent a stimulus, where ’1’ and ’0’ represent ’light’ and ’dark’
respectively. Instead of having smaller repeated patterns of 0s and 1s, as is the case
when representing a stimulus flickering with a frequency, the stimuli in a c-VEP-
based BCI follow pseudorandom sequences. Bin et al. [2] modulate each target by a
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T1

T2

T3

T4

Figure 3.7: A 63-bit binary m-sequence. T1 is the original sequence, T2 is T1
circular shifted by two bits (frames), T3 is T2 circular shifted by two bits, and T4
is T3 circular shifted by two bits.

63-bit binary m-sequence. An m-sequence is a widely used pseudorandom sequence
and its use is justified by Bin et al. [1]. The same 63-bit binary m-sequence was used
for all targets, but the sequence was shifted two frames (bits), creating a two-frame
time lag between two consecutive targets. An example is shown in Figure 3.7. Bin
et al. [2] chose one target, T20, as the reference target. The reference template was
obtained by averaging EEG data from the Oz channel in multiple stimulus cycles.
In a stimulus cycle a stimulus will flicker according to its binary sequence, and
repeat the same flickering in the next stimulus cycles. The length of a stimulus
cycle will in general be the size of the bit string divided by the frequency of the
monitor used. In the current article, a 60 Hz CRT monitor was used resulting in
the length of the stimulus cycle to be 63 / 60 Hz = 1.05 s. This is also the length
of the each template. The time lag between two consecutive targets is calculated
as τ = 2 / 60 Hz = 0.033 s. Having the EEG data considered as the reference
template, the templates for other targets were generated by circularly shifting the
data by 0.033 seconds for each target.

Target identification was done by matching the incoming EEG data with each
of the created templates. The best match gave the predicted target. Bin et al.
described the target identification process in five steps:

1. In the training stage, the user is required to fixate on the reference target, Tr.
EEG data within N stimulus cycles are collected as xn(t), n = 1, 2, . . . , N .

2. A reference template Mr(t) is obtained by averaging over N cycles:

Mr(t) = 1
N

N∑
n=1

xn(t) (3.24)

3. The templates of all targets are obtained by shifting the reference template:

Mk(t) = Mr(t− (τk − τr)), k = 0, 1, 2 . . . , 31 (3.25)

where τk−τr indicates the time lag between target k and the reference target
Tr.
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4. For a segment of EEG data x(t), the correlation coefficient pk between x(t)
and the template Mk(t) is calculated as

pk = 〈Mk(t), x(t)〉√
〈Mk(t),Mk(t)〉〈x(t), x(t)〉

(3.26)

where 〈x,y〉 indicates the product of x and y.

5. The fixation target is identified by selecting the target that maximizes the
correlation coefficient.

In this process the user gaze needed to be synchronized with the system. The user
needed to look at a target from the start of the stimulus cycle and to the end. In
the next stimulus cycle, the target identification was performed and the feedback
was presented to the user. In this cycle the user could change his or her gaze to
another target, and the data in this cycle was discarded. In the next cycle data
was recorded, as the user was assumed to be gazing at a target.

To improve the c-VEP system, Bin et al. introduced the usage of multiple channels.
CCA was used to generate spatial filter weights to be used for online data process-
ing. In the training phase, the user gazed on the reference target, and multichannel
EEG data within k stimulus cycles were collected and concatenated to a matrix X
with dimensions n× (k ∗m). n was the number of channels and m the number of
samples during a cycle. The average of the multichannel data from the k cycles
was put in a matrix R. For use in CCA a matrix S, with the same dimension as
X, was created by replicating R k times:

S = [R R · · ·R] (3.27)

The CCA method described by was set up with X and S. The formula 3.6 from
Section 3.1.1 was applied to find the weights Wx for use as a spatial filter. The
channels used by Bin et al. was O1, Oz, O2, P3, Pz, P4, PO7, POz, and PO8.

In the training stage, the users were gazing at the reference target for 200 stimulus
cycles. The data was used to calculate the spatial filter weights and the reference
template. Two systems were tested, one using 16 targets and the other 32 tar-
gets. When testing the two systems, each user was asked to input a sequence of 64
characters. Each selection required two stimulus cycles giving a response time of
2.1 seconds. The EEG signals were collected using a Synamps2 EEG system from
NeuroScan Inc. Table 3.4 summarizes the results obtained when testing the two
c-VEP systems.

Online adaptation of a c-VEP Brain-Computer Interface

Spüler et al. [38] created a c-VEP speller that adapts during use. The article
considers two main approaches to online adaptation: unsupervised learning, and
the use of error-related potentials (ErrPs). ErrPs are ERPs that can be detected
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Training accuracy (%) Online accuracy (%) ITR (bits/min)
16 target
system

0.97±0.02 0.92±0.03 96±6.3

32 target
system

0.93±0.04 0.85±0.05 108±12.0

Table 3.4: The performance of the two c-VEP BCIs. The presented results are the
average from multiple users.

shortly after the user recognizes an error. When the system detects an ErrP, it
knows that the letter/command that was output was wrong. Spüler et al. found
that the ErrP for their BCI system has two main components: a small negative
peak at around 310 ms after an error occurred and a larger, positive peak at 420
ms. These components were most prominent when using sensor locations Fz and
Cz.

The c-VEP BCI system uses three steps to calibrate itself: first, training data
is collected. The user gazes at one predetermined target, Tr, k times for k trials.
Since c-VEP BCI targets use the same flicker sequence shifted in the time-domain,
only one target is required for the training data. The second step generates a spa-
tial filter based on the training data by using CCA. Spüler et al. differs from Bin
et al. [2] in that the spatial filter is generated by finding a single channel Cb where
the c-VEP is most prominent. This is done by using leave-one-out cross validation:
for each trial, generate a template by averaging over the remaining k−1 trials, and
the template with the highest correlation with the tested trial is selected. The ac-
curacy for a single channel is calculated as the percentage of the correctly selected
templates. This action is performed for all channels, and the channel with the high-
est accuracy is selected as Cb. CCA is then used to find the linear transformation
Wx, Wy that maximizes the correlation between X ′ and Y ′, as shown in equation
3.6. In this case, X is the concatenated EEG data of all k trials, and Y is the
desired waveform of the average c-VEP. Y is generated by computing the average
of all k trials for channel Cb into a vector R and repeating the resulting vector
R until X and Y have the same amount of samples in the time-domain. CCA is
applied on X and Y , and the weights Wx are used as a spatial filter. The channels
in the raw EEG data are multiplied byWx, resulting in spatially filtered EEG data.

The third and final step in the calibration is to use a one class support vector
machine (OCSVM) to generate the template for Tr, the original target the user
was instructed to gaze at for k trials. The OCSVM is trained with the spatially
filtered EEG data, and results in a hyper-sphere with minimal radius that encloses
a given percentage of the data. The center of the hyper-sphere is used as the tem-
plate Mr, representing the evoked response from the target Tr. Spüler et al. state
that the use of a OCSVM is similar to using a method for averaging that rejects
outliers, except it is more robust. From one template, Mr, the other templates for
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other targets can be generated by shifting the template:

Mx(t) = Mr(t− τs(x− r)) x = 0, 1, ...,m (3.28)

where τs is the time lag between two consecutive targets, m is the total number of
targets and 0 ≤ r ≤ m is the target the template was created from. When classi-
fying new data, the euclidean distance is calculated between the spatially filtered
EEG data and all the templates. The template with the lowest euclidean distance
is selected as the classifier output. Spüler et al. used LIBSVM7 when implementing
OCSVM, with a linear kernel and parameter v = 0.5.

To calibrate the classifier before using the system, a co-adaptive calibration ap-
proach was used: the system starts with a randomly generated template as a clas-
sifier, and the classifier is adapted under supervision to calibrate the BCI. After
each user trial, the classifier is updated before the next trial. The correct target is
known to the classifier.

After the initial calibrations to the classifier, the correct target is unknown when
the user can freely decide what to type. Spüler et al. implemented an unsupervised
online classifier adaptation. For a new trial Dx, the classifier outputs a label Lx.
Lx is assumed to be correct, and the pair (Dx, Lx) is added to the training data.
The classifier is retrained after each new trial in parallel to the system operations.
Retraining the classifier involves finding the channel with the most prominent c-
VEP, creating a spatial filter with CCA, training the OCSVM on all training data,
and generating new templates for all targets. A problem with the unsupervised
adaptation method, however, is that misclassifications are assumed to be correct.
ErrPs can be used to detect when a misclassification occurs. If no ErrP is detected
after a classification, the EEG data can be used for retraining. If an ErrP is de-
tected, however, the EEG data is discarded since the true class label is unknown
and the estimated label is suspected of being wrong. To detect ErrPs, EEG data
from Fz, Cz, Cpz, Pz and POz were used for classification with LIBSVM using an
RBF-Kernel with default parameters C = 1, γ = 0.0091.

For the online experiments, a monitor with a 60 Hz refresh rate was used. A
matrix of 4 · 8 = 32 targets was presented on the monitor. For the target flickers,
a 63-bit binary m-sequence was used, where additional targets were shifted by 2
bits. The length of one stimulation sequence is then 63/60 = 1.05s. The resulting
time lag is τs = 2/60 = 0.033s for two consecutive targets. EEG data was recorded
with an EEG amplifier from g.tec, g.USBamp, collecting data at a sampling rate of
600 Hz. 30 electrodes were positioned on the scalp, focused mainly in the area on
and around the visual cortex. The EEG signal was analogously bandpass filtered
between 0.5-60 Hz, with a 50 Hz notch filter applied. The users of the system first
had to go through co-adaptive calibration, for a total of 64 trials. For the unsu-
pervised adaptation session as well as the ErrP-based adaptation, users were given
words to type in beforehand. The results of both of these methods are summarized

7http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Method Accuracy ITR (bpm)
Unsupervised adaptation 92.53% 135.62
ErrP-based adaptation 96.18% 143.95

Table 3.5: Results of the online experiments performed with unsupervised and
ErrP-based adaptation.

in Table 3.5. Spüler et al. explain the difference in the ITR between the two meth-
ods as inconclusive, since the results were gathered during different sessions. They
performed additional offline tests with both methods on the same data, simulating
an online test. In these findings, they found that the average accuracy for unsu-
pervised and ErrP-based adaptation was 96.05% and 96.18% respectively. Further
testing was done with the method proposed by Bin et al. [2], which achieved an
accuracy of 88.48%. With the OCSVM approach used instead of the correlation
approach suggested by Bin et al., an accuracy of 91.99% was achieved. Finally,
OCSVM combined with the method for selecting the channel Cb with the most
prominent c-VEP for use in the spatial filter as described above achieved an accu-
racy of 95%. Spüler et al. also found that the most prominent channels for c-VEP
were P4 and PO3.

3.2 Pr2: Implementing a VEP-based BCI with
Emotiv EPOC

Only one article that implements a VEP-based BCI with Emotiv EPOC passed
through the SLR. Liu et al. [29] tested Emotiv EPOC due to the impracticality
of medical grade EEG acquisition devices. High costs combined with a lengthy
preparation time for use make medical equipment unfeasible for commercial use.
Liu et al. conducted two different experiments: one offline experiment where they
compared the Emotiv EPOC with medical grade hardware from g.tec, and one on-
line experiment with Emotiv EPOC. For the offline experiment, an LCD monitor
with 60 Hz refresh rate was used. Electrode placements O1, O2, P8 and P7 with
a sampling rate of 128 Hz were used for both the Emotiv EPOC and g.tec hard-
ware. CCA was used for classification of the offline data. The average accuracy
went down by 11.8% with Emotiv EPOC compared to g.tec. The average ITR
decreased by 7.6 bits/min, or 21.3%. The authors also point out that the subject
who had the lowest accuracy and ITR of all subjects, had poor performance on
frequencies in the range 8-13Hz. When analyzing the frequency spectrum, they
found that the subject had a naturally strong response occurring in the alpha band
(7.5-12.5Hz). They conclude that subjects with strong alpha waves can have worse
performance when frequencies in the alpha band overlap with flickering frequencies
in the SSVEP system.

For the online experiment, Emotiv EPOC was connected to MATLAB through
software called BCI2000, which is a general-purpose system for BCI research cre-
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Subject Accuracy (%) ITR Average detection
duration (s)

S1 100±0 22.57±0 4.78±2.62
S2 94.44±7.84 20.44±0.61 5.56±1.86
S3 100±0 23.98±0 5.27±2.42
S4 88.89±6.54 16.88±0.88 5.38±1.68

Mean 95.83±3.59 20.97±0.37 5.25±2.14

Table 3.6: Results of online tests with Emotiv EPOC

ated by Schalk Lab8. Every second, BCI2000 sends 128 samples to MATLAB for
processing in form of a matrix. The samples are split into four, with a window
length of 3 seconds updating every 0.25 seconds. CCA is performed on the win-
dow, and classification occurs if four predicted commands, C, in a row are the same.
This means the minimum time before a classification can occur is four seconds. The
results of the online experiment are shown in Table 3.6. The article also concludes
that using existing software to connect Emotiv EPOC to MATLAB, in this case
BCI2000, is troublesome and inconvenient, and it might be better to instead build
a stable and flexible connection between Emotiv EPOC and MATLAB.

3.3 Pr3: Implementing a stimulus system for VEP-
based BCIs

Visual stimulators in VEP-based BCIs are typically presented to users on a com-
puter monitor or through LEDs. On a computer monitor, commands are repre-
sented by flickering targets with its own unique stimulus sequence. These targets
are commonly presented as square boxes that alternate between two colors to create
the flicker. An example of how a phone dialing paradigm could look on a computer
monitor is shown in Figure 3.8. In an SSVEP BCI, each target flickers with a
unique frequency and a flicker consists of an on/off cycle; a 10 Hz flicker consists
of 10 on/off cycles per second. When representing these targets on a computer
monitor, the range of available frequencies is limited by the computer monitor re-
fresh rate. As an example, consider a monitor with a 60 Hz refresh rate, meaning
it can draw a new frame 60 times per second. A 10 Hz flicker cycle would consist
of six frames total, alternating every three frames between on and off. This can be
calculated by

A = R

f ∗ 2 (3.29)

where A is the alternating rate in frames, R is the monitor refresh rate and f is
the frequency. A 10 Hz flicker on a 60 Hz monitor is illustrated in Figure 3.9.
Now consider an 11 Hz flicker cycle. Representing an 11 Hz flicker cycle on a 60 Hz
computer monitor is mathematically unfeasible since it would require the computer

8http://www.schalklab.org/research/bci2000

http://www.schalklab.org/research/bci2000
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Figure 3.8: Example of how a phone dialing stimulator can look on a computer
monitor. Del deletes the previous entry, and Dial dials the number entered so far.

111 111 111 111 111 111 111 111 111 111000 000000000000000000000000000

Figure 3.9: A 10 Hz flicker for a monitor with a 60 Hz refresh rate, shown as a bit
string, a signal, and as frames. Dark frames means the stimulus is on, while light
frames means the stimulus is off.
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111 111 110 110 100 000 000 001 001 011000 100100110110111011011001001

Figure 3.10: An 11 Hz flicker created by Equation (3.30) for a monitor with a 60
Hz refresh rate. It is shown as a bit string, a signal, and as frames. Dark frames
means the stimulus is on, while light frames means the stimulus is off.

monitor to alternate between on and off every 2.73 frames according to Equation
(3.29). This limits the possible frequencies on a 60 Hz monitor to 1 Hz, 2 Hz, 3 Hz,
4 Hz, 5 Hz, 6 Hz, 6.67 Hz, 7.5 Hz, 8.57 Hz, 10 Hz, 12 Hz, 15 Hz, 20 Hz and 30 Hz.
The lower frequencies (< 5 Hz) are not practical to use in an SSVEP paradigm due
to noise and high response time. Some combinations of frequencies should also be
avoided in an SSVEP-based BCI since the fundamental frequency can elicit even
stronger responses in the second and even third harmonic. For example, since 15
Hz is the second harmonic of 7.5 Hz it would be inadvisable to use both of these
frequencies for flickers in an SSVEP system. Wang et al. [46] claim that visual
stimulator design is currently the limiting factor for applications in SSVEP BCIs,
and experimented with how to represent more frequencies on a computer monitor.
The idea was to approximate frequencies by using a varying number of frames in
each cycle, to represent frequencies that otherwise could not be represented. For an
11 Hz flicker, the cycles would vary between five and six frames, corresponding to
12 Hz and 10 Hz respectively. A flicker at frequency f at frame i can be calculated
by:

flicker(f, i) = square(2π · f · i

RefreshRate
) (3.30)

where square(2πft) generates a square wave with frequency f and i is the frame
index. For an 11 Hz flicker on a 60 Hz monitor, the resulting flickering sequence
can be described by [3 3 3 2 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2]. Each number
corresponds to the number of frames, where pairs of two comprises one flicker cycle.
The first cycle would be three on three off, while the next cycle would be three
on two off, and so on. Figure 3.10 shows how the stimulus would look. To verify
the method, Wang et al. performed offline analysis on EEG data collected from a
user who gazed at an 11 Hz flicker on a 60 Hz monitor. Through PSDA they were
able to verify that the flicker elicited a VEP at 11 Hz and 22 Hz in the frequency
spectrum. The setup was then tested in an online setting as well, where users were
asked to enter their phone numbers by gazing at targets on the monitor. EEG data
was collected at a sampling rate of 256 Hz, and CCA was used for classification.
The window length was set to 1.5 seconds, and updated itself every 0.2 seconds. A
classification was accepted if the highest correlation coefficients were the same for
three periods in a row. The experiment achieved an average ITR of 75.4 bits/min,
with an average accuracy of 97.2 %.
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White Gray Red Green Blue

Accuracy (%) 96.25±
4.52

92.92±
7.88

88.75±
10.37

87.50±
11.12

85.00±
13.77

ITR (bits/min) 36.61±
3.88

34.20±
6.10

31.26±
7.31

30.44±
7.59

29.03±
8.92

Table 3.7: Results of different colors used for stimulation in SSVEP.

Cao et al. [5] conducted an experiment on how colors affect the performance
of an SSVEP system. The theoretical background for the experiment has basis in
how the human eye perceives color and light. The human eye contains two types of
photoreceptors, namely rods and cones. The rods are extremely sensitive to light,
but cannot differentiate between colors. Cones are less sensitive to light, and split
into three different types: those that perceive red, those that perceive green and
those that perceive blue. Experiments were ran for five different colors: white (255,
255, 255), gray (128, 128, 128), red (255, 0, 0), green (0, 255, 0) and blue (0, 0,
255). The numbers in the parentheses correspond to the RGB values for that color.
CCA was used as the classification method. The article found that the correlation
coefficients were higher for white and gray colors, followed by red, green and finally
blue. These findings were supported in the subsequent online experiment. The ITR
and accuracy of the different colors are shown in Table 3.7. Cao et al. conclude
that white and gray outperform the other colors because they can simultaneously
elicit all three cone types (red, green and blue), whereas the other colors only elicit
one type of cone. This results in a more intense SSVEP.

da Cruz et al. [13] experimented with patterned visual stimuli and its effect
in an SSVEP system. The goal was to see if patterned stimuli could enhance
the SNR and ITR. For each flickering object on a computer monitor, a blue cross
was placed in a random position on top of it, up to a maximum of 12 crosses per
flickering object. In the online experiment, the patterns were cleared when a com-
mand was detected or when the limit of 12 crosses was reached. The positions of
the crosses were randomly generated every 0.5 sseconds, meaning 12 crosses were
generated in six seconds. The x and y position of the cross was given by

[x, y] = [r · cos θ, r · sin θ] (3.31)

where r and θ were randomly generated every 0.5 seconds for each flickering object.
During the offline experiments, an average increase of 43.6% was seen in the SNR
from using patterned visual stimuli. CCA was used as a classification method in
the online experiment, where users were asked to type different words in an SSVEP
speller. The users stated that the patterned visual stimuli was more comfortable to
look at than non-patterned stimuli. In addition, an average ITR of 53.6 bits/min
was achieved with patterned stimuli compared to 45.9 bits/min with non-patterned
stimuli.
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3.4 Discussion
The articles presented above are heavily favored towards SSVEP-based BCIs, for
reasons explained in Section 3.1.2. There were no t-VEP articles found through the
SLR. As discussed in Section 2.2.1, t-VEP-based BCIs have inherent limitations
that restrict the effective throughput of the method, which could explain the lack
of research for this approach in modern times. In this section, the key points from
the related work that was presented in this chapter are discussed. The section
concludes with a justification for the VEP techniques that are used in this thesis.
Note that research question 4 (RQ4) (see Section A.1) of the SLR is answered
throughout this section.

3.4.1 VEP techniques
PSDA was for a long time the most common technique for analyzing SSVEPs. One
of the main advantages of this method is that it is simple to implement, and it is
useful for seeing if there is an evoked response as a result of a periodic stimulus.
PSDA provides a good basis of comparison for other methods. One of the disad-
vantages of PSDA is the low ITR when compared to other, more recent methods.

One of the most used new methods is CCA, which has been applied in multi-
ple ways in the BCI field. As PSDA, CCA can be used for extraction of frequency
information. CCA is, however, more resistant to noise, allows the use of multiple
channels and has better ITR. In addition, the CCA-weights can be used both for
channel selection and as a spatial filter. Channel selection and spatial filtering
can be used as a preprocessing step for other techniques, as shown by the c-VEP
systems. Another method that also outperformed PSDA, is MEC. MEC attempts
to increase the SNR in a signal by reducing the noise component. Systems using
MEC perform similarly to the ones using CCA, but has a higher implementation
complexity.

Chang et al. [10] presented a different type of BCI system which made use of
two frequencies, one low and one high, to produce stimuli. The goal was to have
a system causing less fatigue, but still have about the same performance as a low
frequency SSVEP. The obtained ITR was not significantly better than a regular
high-frequency SSVEP, and the proposed AM-SSVEP system has a high imple-
mentation complexity.

Of all the VEP techniques mentioned in this chapter, c-VEP had the best reported
ITR. Spüler et al. [38] obtained the highest reported ITR in a non-invasive BCI. A
c-VEP system has higher implementation complexity than an SSVEP system and
requires a training phase for using the system, but the gain of implementing such
a system is high. One of the reasons for the high ITR is the ability to use more
targets than in an SSVEP system.

da Cruz et al. [14] showed how the window length could be adjusted in real-time
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while the SSVEP system is running. The window length was adjusted according
to the performance of the current user. The article illustrates the importance of
having a suitable window size, and the benefit of having an individual window size
for each user. For a c-VEP system, it would be difficult to have unique window
lengths as the window size follows the length of the bit string used.

3.4.2 Visual stimulator and Emotiv EPOC
The visual stimulator is tasked with providing accurate stimuli to create a strong
VEP in the user. Wang et al. [46] showed that it is possible to represent frequencies
on an LCD monitor that are not divisible by the monitor’s refresh rate, allowing
for more potential target frequencies in an SSVEP system. Cao et al. [5] concluded
that using white color for stimulation produces a more intense SSVEP due to elic-
iting a response from all three color cones in the human eye (red, green and blue).

Emotiv EPOC performs significantly worse than a medical grade EEG acquisi-
tion device. However, Liu et al. [29] showed that it can be used together with
CCA to classify SSVEPs. Liu et al. concluded that it is cumbersome and restric-
tive to connect Emotiv EPOC to MATLAB with current existing software, e.g.
BCI2000. They also found that users with strong alpha waves can cause problems
in an SSVEP-based BCI when the target frequencies are in the same range as the
alpha band (8-12.5 Hz).

3.4.3 Choice of VEP techniques
In this thesis, four VEP methods are implemented and compared to one another
based on the SLR conducted.

The first of these methods is the PSDA method presented by Vilic et al. [42].
One of the reasons for choosing a PSDA method is because SSVEPs can be an-
alyzed by PSDA to confirm that Emotiv EPOC produces a periodic VEP given
periodic stimulus. The second reason is that PSDA can be used as a baseline
for comparison for the other methods, since it was the most used SSVEP method
prior to the introduction CCA. The reason for choosing the method presented by
Vilic et al. [42] over the one presented by Diez et al. [15] is because Diez et al.’s
method uses high frequencies (37-40 Hz). The LCD monitor used in this thesis has
a refresh rate of 60 Hz, so the maximum frequency that can be represented is 30 Hz.

The second method is the CCA approach described by Cao et al. [6]. This is
a more recent implementation of CCA that had a higher ITR than the one pre-
sented by Bin et al. [3]. Emotiv EPOC has a lower SNR compared to medical grade
equipment, and CCA has been shown to be a robust technique with a high tolerance
for noise (see Section 3.1.1). In addition, Liu et al. [29] has already demonstrated
that an SSVEP can be identified by a CCA method when using Emotiv EPOC.
The CCA method described by Liu et al. [29] will also be implemented and tested.
This method is slightly different then the one presented by Cao et al., and it will
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Identifier Original author Feature extraction VEP paradigm
M1 Liu et al. [29] CCA SSVEP
M2 Cao et al. [6] CCA SSVEP
M3 Vilic et al. [42] PSDA SSVEP
M4 Bin et al. [2] Template matching c-VEP

Table 3.8: The VEP methods chosen for implementation and testing.

be interesting to see how these two compare.

The fourth and final VEP method will be the c-VEP method by Bin et al. [2].
This algorithm gives lower performance than the one presented by Spüler et al.,
but is simpler to implement. It is expected that the simpler algorithm will tell
whether or not c-VEP is suitable for use with Emotiv EPOC. The SLR did not
give any indications that c-VEP has been used with Emotiv EPOC before. If this
technique shows that a c-VEP response can be obtained, then the more advanced
method by Spüler et al. will also be implemented.

Table 3.8 gives an overview of the methods chosen for implementation and testing.
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Chapter 4

System Implementation

This chapter details the implementation of the visual stimulator used to produce
stimuli for the users, and how to connect to Emotiv EPOC (Section 4.1). In Section
4.2, the practical difficulties with using Emotiv EPOC are discussed. The chapter
concludes with a thorough explanation of how the different methods selected in
Section 3.4.3 were implemented.

4.1 Python System
Python was the programming language that was used for creating a VEP-based
BCI system. Python was chosen for several reasons:

Speed of development
Python is a dynamically typed interpreted scripting language. It offers func-
tionality for object-oriented programming and structured programming, and
to a lesser extent functional- and aspect-oriented programming. Since it is
an interpreted scripting language, it is easy to develop and test code rapidly.

Open source libraries
Python offers a range of useful open source libraries. The two most important
libraries for scientific purposes are NumPy1 and SciPy2. These libraries offer
efficient n-dimensional arrays, as well as an extensive selection of optimized
and useful calculations, such as FFT and linear algebra functions.

One concern with using Python as a programming language was the issue of speed.
If the calculations performed to process and classify EEG data are too demanding
on the system, it can result in the loss of frames for the visual stimulator, which can
result in poor VEPs. Figure 4.1 shows the class diagram for the completed system.
The rest of the section will explain in detail the different parts of the system.

1http://www.numpy.org/
2http://www.scipy.org/
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pyemotiv

EEGReader

epoc : pyemotiv

run()
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subscribers : list
reader : EEGReader
relevantStimuli : boolean

subscribe(sub : Subscriber)
receive_eeg_data(data : list)

Control

VisualStimulator

control : Control
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control : Control
queue : Queue.queue

update_queue(data : list)
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Figure 4.1: The complete class diagram of the implemented Python system. The
stippled line between ClassifierClient and ClassifierServer denotes a network con-
nection.

4.1.1 Connecting to Emotiv EPOC

The SDK that comes with Emotiv EPOC provides two dynamic-link libraries
(DLLs) that can be used to communicate with the headset. These libraries al-
low access to the raw EEG data from the headset, but some pre-processing is
performed prior to this. For each EEG sample, the value of the reference channel
is subtracted from each channel, and digital notch filters are applied at 50 and
60 Hz (see Table 2.1). To use the DLLs, an open source Python library called
pyemotiv3 was used. Pyemotiv connects to the headset and sets the data buffer to
contain the last five seconds of data. When pyemotiv requests data from the head-
set, the headset returns the samples that accumulated since the last time pyemotiv
requested data. By empirical testing, it was confirmed that Emotiv EPOC will not
return any data samples until it has accumulated a minimum of four samples. A
sample in this context contains the multichannel EEG data for one timestamp.

The Python system is mostly object oriented, with some functionality offered by
modules. The data acquisition is performed by a class called EEGReader. EE-
GReader uses the pyemotiv library to continuously request raw EEG data from
Emotiv EPOC. When new data is received, EEGReader sends the data to a con-
troller class called Control. When other objects want access to the EEG data, they
have to subscribe to Control. Control keeps a list of subscribers, and when new data
is received from EEGReader, Control will send the data to all subscribers. Since
all classes run in separate threads, each subscriber must use the built-in Python

3https://github.com/thearn/pyemotiv

https://github.com/thearn/pyemotiv
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Figure 4.2: (a) shows a 30 Hz stimulus sequence, (b) shows an 11 Hz stimulus
sequence.

Queue class. The Queue class implements a First in, First Out (FIFO), thread-safe
producer/consumer queue which Control updates with new data. Figure 4.1 shows
how this works.

4.1.2 Visual stimulator
An open source Python library called PsychoPy4 was used for the presentation
of visual stimuli on a computer monitor. PsychoPy allows the presentation of
stimuli and collection of data for a wide range of neuroscience, psychology and
psychophysics experiments, and uses OpenGL to draw the visual stimuli. A Win-
dow object, which is an OpenGL context, has a function called flip. This function
swaps the front and back buffers. The front buffer is the buffer that is currently
displayed on the monitor, while the back buffer is the buffer that is being drawn
to. Calls to Window.flip() are synchronized to the monitor refresh rate, and the
function call will block until the swapping of buffers has occurred. This ensures
accurate timing information for individual frames as long as frames are not being
dropped. When a frame is dropped, it means that the program is making consecu-
tive calls to Window.flip() slower than the monitor refresh rate. PsychoPy provides
the exact functionality for what is needed to produce accurate VEP stimuli. VEP
stimuli is represented as a bit sequence of variable length, where each bit repre-
sents whether the target should be on (1) or off (0) for that particular frame. As
an example, consider a target that flickers at 30 Hz. Figure 4.2(a) shows how a 30
Hz flicker on a monitor with a 60 Hz refresh rate is represented as a bit sequence.
As discussed in Section 3.3, Wang et al. [46] presented a technique for displaying
frequencies that are not divisible by the monitor refresh rate, by using Equation
3.30. The equation was implemented with SciPy’s square function. Figure 4.2(b)
shows how an 11 Hz target flicker can be represented on a computer monitor by
using this method.

4http://www.psychopy.org/

http://www.psychopy.org/
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Figure 4.3: The visual stimulator with six white targets.

The visual stimulator consists of six targets (boxes) that each have their own in-
dividual flicker sequence. The boxes are spaced out with three boxes on the top
row and three boxes on the bottom row, as shown in Figure 4.3. The boxes are
spaced far from each other to avoid interference from the targets that the user is
not gazing at.

Since several of the VEP techniques that were chosen in Section 3.4 require the
classifiers to know when the visual stimulator is showing relevant stimuli, it is ben-
eficial to have both the visual stimulator and the classifiers running in the same
process. An OpenGL context (the visual stimulator) has to run in a process’ main
thread, so all other functionality, like subscribers, has to run in separate threads.
Since the classifiers are only interested in the EEG data from when the visual stim-
ulator is showing the stimuli, the visual stimulator informs the Control object of
when it is showing relevant stimuli. The Control object in turn will only send data
to its subscribers if the signal for relevant stimuli has been received.

4.1.3 Online analysis
After running initial experiments, it was found that performing CCA on EEG data
in real-time required a large amount of central processing unit (CPU) power. This
caused several frames to get dropped from the visual stimulator, due to a combina-
tion of intensive computations and Python being a slow language. When frames get
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dropped, the stimuli have smaller chances of eliciting the desired VEPs in the user.
Instead of performing all computations on one computer, a simple client/server
pair was set up. The server receives EEG data over a TCP connection, and the
packet header specifies what computations should be performed on the data. The
result is then returned to the client. Since both the client and server are on the
same network, the latency is less than 1 ms and the overhead related to making
the EEG data serializable is considered insignificant in terms of performance.

4.2 Practical Considerations
The EEG values from the sensors of Emotiv EPOC have a direct current (DC)
offset. The DC offset is the mean value of the waveform for each channel. According
to gmac, a representative from Emotiv, there are two contributions to the DC
offset5:

1. The first of these is a constant offset caused by Emotiv EPOC sending the
EEG data as an unsigned integer. This offset puts the mid-range point of the
data at 4096 units.

2. The second contributor comes from the body potential. The body potential
drifts around based on what a person is doing. Emotiv EPOC attempts to
stay centered on the body’s average potential, but there is a latency for how
quickly it can react. This manifests itself as a slow DC drift in the signal.

Since the DC offset drifts based on body potential, an infinite impulse response
(IIR) filter is applied to the EEG data from Emotiv EPOC, similar to a running
average. The purpose of the filter is to identify and remove the background noise
such as the DC offset. The implementation is based off another forum post by
gmac6. The first samples received are set as the current background noise. Pseu-
docode for the IIR filter is shown in Algorithm 1. IIR_TC is the memory of the
IIR filter, and is set to 800 samples, or 6.25 seconds. Effectively it is the same as
using a 0.16 Hz high-pass filter.

Another consideration with Emotiv EPOC is that the headset is not adjustable
to accommodate different head shapes. Since the reference channel is subtracted
from all other channels as discussed in Section 4.1.1, good sensor connectivity for
the reference channel is important to achieve accurate sensor readings for all chan-
nels. When the reference sensor has poor connectivity, it is extremely sensitive
to external noise. As a demonstration, Emotiv EPOC was used by both authors
of this thesis, and it only had a good fit for one. EEG data was recorded while a
person was walking behind them as a source of external noise. Figure 4.4 shows the
results of the short experiment. Subject 1 had a good fit for the reference sensor,
while Subject 2 did not. The graph clearly demonstrates the importance of a good
fit for the reference sensor for accurate sensor readings. One option to ensure good

5http://emotiv.com/ideas/forum/messages/forum15/topic1338/message11928/
#message11928

6http://www.emotiv.com/forum/messages/forum15/topic984/message6466/#message6466

http://emotiv.com/ideas/forum/messages/forum15/topic1338/message11928/#message11928
http://emotiv.com/ideas/forum/messages/forum15/topic1338/message11928/#message11928
http://www.emotiv.com/forum/messages/forum15/topic984/message6466/#message6466
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Algorithm 1 IIR filter
IIR_TC ← 800
while samples from headset do
for all channels do
if first sample then
background← sample

else
background← background·(IIR_TC−1)+sample

IIR_TC
end if
sample← sample− background

end for
end while
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Figure 4.4: Example of how a bad fit for Emotiv EPOC causes external noise in
the EEG signal. Subject 1 has a good fit while Subject 2 does not. The external
noise was created by having a person walking behind the test subjects.
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connectivity for the reference sensor is to adjust the headset by pulling it forward
until the reference sensor has a good fit. By doing so, the remaining four sensors
that cover the O1, O2, P7 and P8 positions are also pulled forward, causing poor
coverage of the visual cortex. VEPs are mainly read from the sensors over the
visual cortex, and adjusting the headset so the sensors are pulled away from the
visual cortex will result in poor performance.

4.3 Implemented Algorithms
In Section 3.4.3, four methods were selected to be implemented and tested, all
shown in Table 3.8. This section gives an overview over how the different methods
were implemented, and how the methods were adapted to the hardware used in this
thesis. In Section 2.2.3, ITR was introduced as a performance metric to evaluate
BCI methods. Since the number of targets is one of the variables that determines
the ITR, all methods use six targets to ensure that a fair comparison between them
can be made.

4.3.1 M1 using CCA
Liu et al. [29] implemented a method that uses CCA for classification with Emotiv
EPOC. An LCD monitor with a 60 Hz refresh rate was used for the experiments,
with electrode placements O1, O2, P7 and P8, shown in Figure 4.5. The method
uses a moving window length of three seconds, and it calculates a correlation co-
efficient every 0.25 seconds. If four coefficients in a row belong to the same target
frequency, that target is selected. BCI2000 is used to send the EEG data (in blocks
of 128 samples) from the headset to MATLAB, where the coefficients are calculated.
That means the minimum time before a target can be classified is four seconds.
Liu et al. found the connection between the Emotiv headset and MATLAB to be
a troublesome and inconvenient solution.

Implementation

MATLAB has a function canoncorr7 that implements CCA. The implementation
is viewable through MATLAB as well as online8. The function takes as input two
sets of data, X and Y , and returns five variables. It returns the weights for X
and Y that maximize the correlation, the canonical correlation coefficient, as well
as the weighted data for X and Y (the data sets multiplied by the weights). The
function was translated from MATLAB into Python by using equivalent functions
in NumPy and SciPy to do the calculations. Out of the five returned variables,
only the correlation coefficient is needed to perform classification. The correctness
of the implementation was verified by comparing the output to the output from
MATLAB and ensuring that it was the same.

7http://www.mathworks.se/help/stats/canoncorr.html
8http://affect.media.mit.edu/projectpages/affective_cognitive_decision_making/DM%

20Experiment/stats/canoncorr.m

http://www.mathworks.se/help/stats/canoncorr.html
http://affect.media.mit.edu/projectpages/affective_cognitive_decision_making/DM%20Experiment/stats/canoncorr.m
http://affect.media.mit.edu/projectpages/affective_cognitive_decision_making/DM%20Experiment/stats/canoncorr.m
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Figure 4.5: The EEG channels used for the M1 method are shown here in green.
Adapted from Marius ’t Hart - http://www.beteredingen.nl. Used under CC
BY: http://creativecommons.org/licenses/by-sa/3.0/nl/deed.en_GB.

http://www.beteredingen.nl
http://creativecommons.org/licenses/by-sa/3.0/nl/deed.en_GB
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Figure 4.6: The EEG channels used for the original M2 method compared to the
ones used by Emotiv EPOC. The shared channels are green, the ones only used
by Emotiv EPOC are yellow, while the ones only used by the original method are
red. Adapted from Marius ’t Hart - http://www.beteredingen.nl. Used under
CC BY: http://creativecommons.org/licenses/by-sa/3.0/nl/deed.en_GB.

The method is implemented in almost the exact same way as the original im-
plementation. Since the data is available immediately in the Python program,
that means the minimum time for classification to occur is 3.75 seconds when the
window length is 3 seconds.

4.3.2 M2 using CCA
Cao et al. [6] presented an SSVEP method that uses CCA to identify the target
frequency the user is gazing at. They tested it on a spelling system that used an
LCD monitor with a 60 Hz refresh rate. 16 targets were presented on the monitor
at a time and used frequencies from 8-15.5 Hz at intervals of 0.5 Hz. EEG samples
were acquired with a 256 Hz sampling rate, and six EEG channels were used: POz,
P3, P4, Oz, O1 and O2. The difference between the used channels between this
method and Emotiv EPOC are shown in Figure 4.6. The signals were filtered with
a bandpass filter from 0.5-60 Hz.

http://www.beteredingen.nl
http://creativecommons.org/licenses/by-sa/3.0/nl/deed.en_GB
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The method uses a moving window length of 1 second, and operates with a gaz-
ing interval length of 2 seconds. The method then calculates the CCA coefficients
every 0.2 seconds for all targets after the first second at 1.2, 1.4, 1.6, 1.8 and 2.0
seconds, and the maximum coefficient out of all targets is saved for a total of five
coefficients in two seconds. If two of the five coefficients or more are for the same
target frequency, the average value of the coefficients is calculated. If the average
value is larger than 0.2, that target frequency is selected.

Implementation

A difference between the implementation by Cao et al. [6] and the one used for
this thesis, is that instead of calculating five correlation coefficients at 1.2, 1.4, 1.6,
1.8 and 2.0 seconds, they are calculated at 1.0, 1.25, 1.5, 1.75 and 2.0 seconds.
The reason for this is the sampling rate of 128 Hz by Emotiv EPOC, which is
not divisible by five but is divisible by four. It should also be noted that all the
experiments conducted in this thesis use only six targets, whereas Cao et al. [6]’s
method uses 16 targets. A result of this is that each target frequency has an
increased chance of being the highest correlation coefficient when there is a lack of
frequency information in the EEG data. Therefore, if a target frequency has the
highest correlation coefficient more than twice out of the five, only the two highest
coefficient values are used to calculate the average. This is done to avoid the
randomly selected correlation coefficients from interfering with the average when
there is little to no frequency information in the signal. The same threshold of 0.2
in the original method is used.

4.3.3 M3 using PSDA
Vilic et al. [42] presented a thresholding method that uses PSDA to recognize what
target the user is gazing at. The method was described in detail in Section 3.1.1.
They used an EEG acquisition device with a sampling rate of 512 Hz, an LCD
monitor with a 120 Hz refresh rate, and used Oz as the sensor location. The
method operates on two sets of data, named SData and CData. SData is the
data collected over the previous 2 seconds, while CData contains the last three
sets of SData (6 seconds of data). Before FFT is performed on the data sets, an
analog bandpass filter is applied between 5-30 Hz, and autocorrelation is applied
to the data to increase the SNR. The data is then zero-padded to achieve an FFT
resolution of 0.1 Hz. By using Equation 3.1, the data has to be zero-padded to
a total of 5120 samples. The reason for zero-padding is that the targets use the
frequencies 6 Hz, 6.5 Hz, 7Hz, 7.5 Hz, 8.2 Hz, 9.3 Hz, 10 Hz, and 11 Hz, nine
targets in total. As explained in Section 3.1.1, the frequencies of interest have to
be a multiple of the FFT resolution. After the FFT has been applied, the score for
each class, Cx, is calculated as the sum of power amplitudes, |Y |, within ±0.1 Hz
of the fundamental frequency, H1, and the second harmonic, H2:

Cx =
H1+0.1∑
H1−0.1

|Y |+
H2+0.1∑
H2−0.1

|Y |, x = 1, ..., n. (4.1)
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The different Cx classes are then normalized with regards to one another, with the
dominating class having the value of 1. If at least one of the following three criteria
are met, the dominating class is chosen:

• The second greatest value in SData < 0.35.

• The second greatest value in CData < 0.45.

• The same class, Cx, is dominating in four consecutive iterations.

Implementation

Some changes had to be made when implementing this method with Emotiv EPOC.
Emotiv EPOC only offers a 128 Hz sampling rate compared to the 512 Hz used
in this method, and an LCD monitor with a refresh rate of 60 Hz is used for all
experiments conducted in this thesis. Emotiv EPOC does not offer a sensor at the
Oz location. The latter problem was solved by using two other sensor placements:
O1 and O2. The PSD was calculated for the EEG data from both O1 and O2,
and the average of the two was used. Figure 4.7 shows the O1 and O2 placements
relative to Oz.

The implemented PSD algorithm uses NumPy’s FFT implementation9. NumPy’s
FFT approximates the DFT, and defines the DFT as

Ak =
n−1∑
m=0

amexp
{
−2πimk

n

}
k = 0, ..., n− 1. (4.2)

am is represented by the complex exponential am = exp{2πifm∆t} where ∆t is
the sampling interval. The FFT function takes as input an array of length Nfft,
and returns an array that has the same number of elements and contains complex
numbers. The first element of the array contains the mean of the signal. The next
elements up to Nfft/2+1 contain all the positive frequency terms, which holds the
relevant information for a time-domain signal such as EEG. These frequencies are
spaced out by the FFT resolution, as described by Equation 3.1 in Section 3.1.1:
fs/Nfft ,where fs is the sampling rate. Each element in the FFT array is of the
complex form Aj = a + ib. To get the PSD from the FFT, the absolute value of
the first Nfft/2 + 1 elements in the FFT array are calculated and squared:

PSDj = abs(Aj)2 = a2 + b2, j = 1, ..., Nfft/2 + 1, (4.3)

where j refers to the j-th element of the FFT array, and abs() is the absolute value
of a complex number, defined as abs(a+ ib) =

√
a2 + b2.

SData contains two seconds of data, so the frequency resolution ∆Rf is 1/2 = 0.5
Hz. Vilic et al. zero-padded the EEG signal to achieve an FFT resolution of 0.1
Hz, due to the targets using frequencies that were a multiple of 0.1 Hz. However,

9http://docs.scipy.org/doc/numpy/reference/routines.fft.html

http://docs.scipy.org/doc/numpy/reference/routines.fft.html
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Figure 4.7: The EEG channel used for the original M3 method compared to the
ones used by Emotiv EPOC. The ones used by Emotiv EPOC are yellow, while
the one used by the original method is red. Adapted from Marius ’t Hart - http:
//www.beteredingen.nl. Used under CC BY: http://creativecommons.org/
licenses/by-sa/3.0/nl/deed.en_GB.

http://www.beteredingen.nl
http://www.beteredingen.nl
http://creativecommons.org/licenses/by-sa/3.0/nl/deed.en_GB
http://creativecommons.org/licenses/by-sa/3.0/nl/deed.en_GB
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for the implementation in this thesis, the choice was made to only use whole or
half frequencies, e.g. 12.0 Hz and 12.5 Hz, so zero-padding is not needed. Before
calculating the PSD, a digital bandpass filter between 5-45 Hz is applied. Since
the method uses the fundamental frequency and its second harmonic, the bandpass
filter allows the use of frequencies from 5-22.5 Hz for the flickering targets.

Vilic et al. performed autocorrelation on the data prior to taking the FFT to ob-
tain the PSD. Calculating the sample-by-sample correlation of a signal with itself
to obtain the autocorrelation, as described in Section 3.1.1, can be computationally
expensive for large sets of data. Instead, the autocorrelation can be computed with
an FFT-based approach. By taking the FFT of the EEG data, multiplying each
element in the FFT array by its complex conjugate and then taking the inverse
FFT, results in the cyclic autocorrelation of the data.

The complex conjugate of a complex number c = a + ib is c̄ = a − ib. Mul-
tiplying these two numbers gives c · c̄ = a2 + b2. Looking at Equation 4.3 for
calculating the PSD, multiplication with the complex conjugate yields the same
result as the PSD calculation. This is known as the Wiener-Khinchin theorem,
and it states that the PSD of a signal is the Fourier transform of the corresponding
autocorrelation function [54]. In other words, calculating the PSD directly yields
the same result as running autocorrelation on the data and then applying the FFT.

The implemented method in this thesis takes the EEG data and applies a Hanning
window to it, for the reasons described in Section 3.1.1. A Hanning window was
chosen because it is what Emotiv uses10. Then the FFT of the signal is used to cal-
culate the PSD as described by Equation 4.3. After the PSD has been computed,
each target (class) Cx is calculated as the sum of the fundamental frequency, H1,
and second harmonic H2 of the target frequency in the PSD:

Cx = |H1|+ |H2|, (4.4)

The implemented method uses the same three selection criteria as the original
method by Vilic et al.

4.3.4 M4 using c-VEP
Bin et al. [2] presented a single channel c-VEP method. This method was described
in detail in Section 3.1.2. The method uses a training period where the user focuses
on a reference target for N trials. The average over the N trials, R, is calculated
from the EEG data and is used as the template for the reference target. The
reference target uses a binary m-sequence of length 63 for its stimuli on a 60 Hz LCD
monitor. The original m-sequence is shifted by two bits for each additional target
to create a different stimulus pattern. The time delay between two consecutive
targets is τ = k/60, where k is the number of bits the m-sequence is shifted by. For
k = 2, τ = 0.033s. R is then the template for the reference target. The reference

10http://www.emotiv.com/ideas/forum/forum4/topic3829/

http://www.emotiv.com/ideas/forum/forum4/topic3829/
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template, R, is shifted in time according to τ to create templates for the other
targets. Classification is performed for a new trial by calculating the correlation
coefficient between the trial and the templates for all targets. The template that
has the highest correlation coefficient with the trial is selected as the fixation target.
Bin et al. used Oz as the single channel.

Implementation

Since Emotiv EPOC does not have the Oz sensor location that was used in the orig-
inal method, O1 was used in this implementation. A binary m-sequence was gen-
erated using a code snippet written by GitHub user mubeta06 11. The m-sequence
of length 63 is shown as bit sequence T1 in Figure 3.7. The correlation coefficients
between a new trial and the templates are calculated using NumPy’s corrcoef 12

method.

Testing the M4 implementation on one of the authors gave poor performance. This
author had good sensor connectivity with Emotiv EPOC, and obtained satisfying
results with the three other methods, M1, M2 and M3. Results from testing M4
showed no better prediction than predicting a random target, with the m-sequence
having lengths of 63 bits (1.05 seconds) and 127 bits (2.12 seconds). A shift size of
8 bits when the m-sequence had length 63, and 15 bits when of length 127, were
used for the different targets. The reference template, generated by the process
described above, has to be shifted by n samples, depending on τ . The number of
samples, T , that the reference template has to be shifted by can be calculated by

T = τ · fs (4.5)

where fs is the sampling rate of the EEG acquisition device. For Emotiv EPOC, it
is 128 Hz. 8 bits results in a template shift of 17.07 samples, while 15 bits results
in a template shift of exactly 32 samples. Minimizing the shifting error results in
more accurate templates.

A debugging process found nothing wrong with the implementation to explain the
poor performance of the method. The next step was to determine if the recorded
EEG data contained a consistent c-VEP response. Data was recorded from one of
the authors while looking at a reference target for 150 trials, with an m-sequence
of length 127. The average of the trials was computed as the template, and the
pairwise correlation between each trial and the template was calculated. The aver-
age correlation for the trials and the template was 0.027. The correlation between
each trial and the template is shown in Figure 4.8. The stimulus was the same for
all trials and should have resulted in a good correlation. This was not the case for
the implemented method. There are two likely causes for it: (1) too much noise in
the signal, (2) lack of accurate timing information for the EEG data.

11https://github.com/mubeta06/python/blob/master/signal_processing/sp/mls.py
12http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html

https://github.com/mubeta06/python/blob/master/signal_processing/sp/mls.py
http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
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Figure 4.8: The correlations between each trial and the average of all trials. The
reference target was gazed upon for 150 trials.

The synchronization problem

The most likely problem was identified as a synchronization problem, where the ac-
quisition of samples from the headset was not synchronized with the frames drawn
on the monitor. In the following, the synchronization problem is described, and
the attempted method to handle the problem is presented.

Emotiv EPOC acquires samples every 1/128 s, but as described in Section 4.1.1,
the data is not put in the headset buffer for reading until four samples are recorded.
Using Emotiv EPOC in a c-VEP system results in some challenges. When the first
stimulus frame is drawn on the monitor for a new trial, a time delay will occur
before the group of four samples is available in the data buffer. This delay, ts,
varies between between 0 seconds and 4/128 seconds. The varying delay results
in different c-VEP trials having different starting points for their first samples. A
variation of up to four samples is equal to 1/32 seconds, and represents a shift of
almost two frames (or bits), 2/60s = 1/30 seconds. This is a significant variation,
as Bin et al. [2] shifted their stimulation sequence by two bits. Having this kind
of variation error will break a c-VEP system. Another problem with the buffering,
is that some of the four samples might be recorded from before the first frame
in a stimulus sequence is displayed, which means a trial can contain invalid data.
Invalid data contained in a trial causes problems when shifting the data to obtain
templates for other targets.

A procedure was implemented to ensure that only relevant samples were included
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in the recorded EEG data:

1. The time tf was recorded immediately after the first stimulus frame for a
new stimulus cycle was set. In Section 4.1.2, it was described how the vi-
sual.Window.flip() function returns control to the program when the front
and back buffers have been swapped and the frame has been drawn.

2. Four samples were fetched from the headset. The time that the samples
became available, tr, was recorded.

3. td = tr − tf was calculated. td would have the range 0 < td < 4/128.

4. An estimate was calculated of how many samples that should have been
recorded in time td: x = b td

(1/128)c.

5. The x last samples from the group of four samples were extracted. The rest
of the samples were assumed to be recorded before the frame was drawn and
were discarded.

The above procedure was used after the first frame so that the c-VEP cycle uses
the correct EEG data. For the rest of the cycle, all samples gathered from the
headset were recorded. The number of samples in a cycle recording was calculated
by d(bitStringSize / 60) * 128e.

Even though the synchronization procedure looked promising, running another
c-VEP test with 50 trials still resulted in poor performance. The average corre-
lation between the trials and the generated template was 0.197, and is shown in
Figure 4.9. A possible problem with the procedure is that the current time was ac-
quired through the Python method time.time() which could be inaccurate, causing
td to be inaccurate. However, a more likely explanation of the poor c-VEP data,
is the unknown time that the Emotiv EPOC uses to preprocess recorded data and
write them to the headset buffer. As Table 2.1 shows, the Emotiv headset uses a
digital 5th order Sinc filter and digital notch filters at 50 Hz and 60 Hz. The time
to perform these operations and any other unknown operations on the data, can
significantly delay the data arriving in the buffer. Without knowing the duration
of this processing it would be difficult, or even impossible, to find which samples
were recorded during the stimulus sequence.

As seen, the implemented c-VEP method from Bin et al. [2] had synchroniza-
tion challenges using Emotiv EPOC, resulting in poor c-VEP recordings. It was
therefore decided not to implement the more advanced c-VEP method by Spüler
et al. [38], as this method would have the same basic problem of working with
inadequate c-VEP data. The c-VEP methods were also removed from the list of
techniques that would be tested by the test subjects.
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Figure 4.9: The correlations between each trial and the average of all trials, after
the synchronization procedure was applied. The reference target was gazed upon
for 50 trials.
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Chapter 5

Experiments and Results

This chapter describes the experiments conducted and their results. Section 5.1
presents the experimental plan, including the tests that were performed and the
number of test subjects. Section 5.2 describes the experimental setup, such as the
visual stimulator configuration. Finally, Section 5.3 presents the results obtained
from the experiments, and describes how the ITR was calculated.

5.1 Experimental Plan
In Section 3.4.3, four methods were selected to be implemented and tested. These
methods were:

• M1 by Liu et al. [29]

• M2 by Cao et al. [6]

• M3 by Vilic et al. [42]

• M4 by Bin et al. [2]

The c-VEP method by Bin et al. was not tested due to the difficulties described in
Section 4.3.4. The test plan is shown in full in Table 5.1.

The first two tests were performed to determine what color the stimuli should
be for the remaining six tests. During preliminary tests conducted to verify the
implementation of the different methods, it was found that one of the authors re-
sponded notably better when the stimuli was presented in red color as opposed to
white or gray color. This disagrees with the findings by Cao et al. [5] in Section
3.3. This discrepancy was the reason behind including a color test. The method by
Liu et al. [29] was used to determine which color was best for the test subject. The
choice behind using this technique was that Liu et al. [29] achieved good results
when using Emotiv EPOC.

71
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Test ID Method Window length Thresholds Color Feature extraction
1 M1 3 seconds - White CCA
2 M1 3 seconds - Red CCA
3 M1 2 seconds - - CCA
4 M2 3 second 0.2 - CCA
5 M2 2 seconds 0.2 - CCA
6 M2 1 seconds 0.2 - CCA
7 M3 - 0.35, 0.45 - PSDA
8 M3 - 0.5, 0.6 - PSDA

Table 5.1: The test plan using the three implemented SSVEP methods.

The original authors selected certain parameters for use in their methods. These
parameters were found empirically through trial and error based on the hardware
used and the software implementation. The combination of hardware and software
differs from the hardware and software used in this thesis, so it was probable that
different parameters for the experiments ran in this thesis could give better results
than the original parameters. Liu et al. [29] used a window length of three seconds.
While it could be expected that using the same window length would yield simi-
lar results since the method used Emotiv EPOC, a different window length could
achieve better results due to differences in the software implementation. That is
why a test with a two second window was included for this method. Cao et al. [6]
used a medical grade EEG acquisition device and a window length of one second
with a threshold of 0.2. Emotiv EPOC has been shown to have a significantly worse
SNR than medical grade equipment (see Section 2.3), so a window length longer
than one second could yield better results. This is why tests with both a two and
three second window were included. The threshold of 0.2 remained fixed for all
tests. Vilic et al. [42] used a window length of two seconds, with thresholds 0.35
and 0.45 for SData and CData respectively, with a medical grade EEG acquisition
device. More relaxed thresholds were tested in addition to the original thresholds
to see if they would give better results for noisier EEG data. These thresholds were
0.5 for SData and 0.6 for CData. The window length of two seconds for SData
and six seconds for CData remained unchanged.

Eight test subjects were asked to test the different methods. These subjects were
aged from 22 to 27, six male and two female. This is summarized in Table 5.2. All
subjects had normal or corrected-to-normal vision. The experimental process can
be split into three steps:

1. Introduction and setup
During the introduction, the test subject had time to get familiar with the
system and how it works. It can be difficult to adjust Emotiv EPOC to
achieve the best signal quality for VEPs. The M1 method by Liu et al. [29]
was used with a three second window over six trials to adjust the sensor lo-
cations. The sensor placements that gave the highest correlation coefficients,
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Subject Age Gender
S1 27 M
S2 25 M
S3 22 F
S4 26 M
S5 27 M
S6 25 F
S7 26 M
S8 25 M

Table 5.2: List over the test subjects.

with the assumption that a higher correlation means better signal quality,
were chosen.

2. Color testing
After good signal quality was achieved, the test subject performed tests 1
and 2 in Table 5.1 to determine which color elicited the strongest SSVEPs.
The best color was determined by the highest ITR. This color was then used
for the remaining tests (3-8).

3. Method testing
Tests 3-8 in Table 5.1 were performed.

5.2 Experimental Setup
The experiments were conducted on a 24" LCD monitor with a 60 Hz refresh rate
and a resolution of 1920x1200. The test subject was situated in a comfortable chair
60 cm in front of the monitor. The SSVEP was elicited by six targets (boxes), each
flickering at a different frequency. These frequencies were 12 Hz, 12.5 Hz, 13 Hz,
13.5 Hz, 14 Hz and 14.5 Hz for all tests. These frequencies were selected based on
the conclusion by Liu et al. [29] that subjects with strong alpha waves can have
worse performance when target frequencies overlap with the alpha band (frequen-
cies between 7.5-12.5 Hz). Each of the 8 tests described in Table 5.1 were performed
for 42 trials. Each trial started with the targets flickering for some time and then
a break period with no targets flickering. During the break period the subject
received no stimuli, and no EEG was recorded. During the break period an arrow
would appear on top of the next reference target, so that the subjects would know
where to gaze in the next trial. The arrow would appear green if the classification
of the previous trial was correct, and yellow otherwise. A counter was placed in
the middle of the screen to show the test subject how many trials were left in the
current test. This is shown in Figure 5.1. With 42 trials, each target was selected
as the reference target seven times. The order of the boxes was randomized for
each test. Users were allowed to take five minute breaks between tests if they felt
tired.
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Figure 5.1: The visual stimulator for tests conducted, here shown with red targets.
The yellow arrow shows what target the user should gaze at next.

Subject Age Gender
S1 27 M
S3 22 F
S6 25 F
S8 25 M

Table 5.3: List over the test subjects.

Out of the eight subjects, four subjects were unable to get a good fit for the headset.
As discussed in Section 4.2, a poor fit for the headset results in either extreme sen-
sitivity to external noise or poor sensor coverage of the visual cortex. Test subjects
S1, S3, S6 and S8 performed all the tests, while S2, S4, S5 and S7 were not able to
get satisfactory signals due to the headset not fitting properly. Since these subjects
would not provide any meaningful data, they were excluded from further analysis.
Table 5.3 shows the updated list of test subjects. All experiments were conducted in
a quiet room, so that the test subjects were not distracted by activity around them.

The experimental setup fulfills suggestions 2, 4, 6 and 7 for standardized ITR
calculations by Yuan et al. [53], presented in Section 2.2.3.
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5.3 Experimental Results
The results of the tests are presented here using ITR instead of PBR since PBR
is not yet widely used when reporting BCI results. There are three more criteria
(1,3 and 5) that have to be met to fulfill the seven criteria for standardized ITR
calculations, according to Yuan et al. [53]. Standardizing the performance mea-
surement will allow others to understand how the results were calculated, and they
can then better compare their own work to the work presented in this thesis. The
three remaining criteria are:

• When reporting the ITR, N , P and T in Equation 2.4 and Equation 2.5
should be explicitly identified.

N is the number of targets, which is set to six for all tests. P is the accuracy of
the classification algorithm, and T is the detection time in seconds. The detection
time is the time it takes for the method to identify what the user is looking at. For
the tests involving method M2, T is a constant. For M1 and M3, T varies.

• When reporting the ITR, authors should explain all of the factors in the ITR
calculation, such as whether t1 is included in the calculations. t1 is the time
it takes the user to shift attention to a new target.

t1 in this case is the one second break between each trial where the user can shift his
or her gaze to the new reference target. t1 is not included in the ITR calculations
for any test .

• Authors should include an ITR estimation that does not include error cor-
rection or other methods to increase effective throughput. If a system does
employ error correction, authors should adequately describe the methods and
results and, if desired, include a modified ITR as well.

Error correction is not employed for any of the performed tests.

5.3.1 Test results
Table 5.4 shows the average for the four test subjects for each test performed.
The average ITR is calculated from the ITR of each test subject, not from the
average accuracy and average detection time. Test 1 and 2 use the same method
with the same parameters, with only the color of the targets being changed. The
remaining tests from 3 through 8 use the color for which the test subject had the
best performance with from the first two tests. To get an accurate estimation of
the performance of the method used in the first two tests, the final row of the
table shows the results when the best result from tests 1 and 2 was selected for
each subject, denoted as the Test ID “max(1,2)”. Figure 5.2 presents Table 5.4 in
graphically. Table 5.5 presents the complete results of all tests performed on all
four subjects. Each sub-table presents the results for one method.



76 CHAPTER 5. EXPERIMENTS AND RESULTS

Test ID Method Accuracy (%) Detection time (sec) ITR (bits/min)
1 M1 79.76 ± 15.57 4.16 ± 0.16 22.16 ± 10.84
2 M1 82.14 ± 15.93 4.10 ± 0.16 24.31 ± 11.55
3 M1 86.91 ± 8.67 3.33 ± 0.19 32.36 ± 8.94
4 M2 89.88 ± 2.60 4.00 ± 0.00 28.24 ± 2.09
5 M2 85.12 ± 4.58 3.00 ± 0.00 32.92 ± 4.72
6 M2 55.96 ± 7.24 2.00 ± 0.00 17.64 ± 5.80
7 M3 92.26 ± 6.60 7.15 ± 2.01 18.55 ± 5.41
8 M3 89.29 ± 6.41 5.14 ± 0.98 23.78 ± 7.15

max(1,2) M1 92.86 ± 7.14 4.02 ± 0.14 31.72 ± 7.19

Table 5.4: The average results of all tests performed.
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Figure 5.2: The average results of the tests. The numbers in the legend correspond to the test ID of
Table 5.4, and the parenthesis shows the method that was used. The figure shows the ITR, accuracy
and detection time for each method.
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Test ID 1 S1 S3 S6 S8 Average
Accuracy (%) 66.67 95.24 95.24 61.91 79.76 ± 15.57
Detection time (sec) 4.35 4.02 3.98 4.30 4.16 ± 0.16
ITR (bits/min) 12.33 32.78 33.17 10.34 22.16 ± 10.84

Test ID 2 S1 S3 S6 S8 Average
Accuracy (%) 100.00 57.14 90.48 80.95 82.14 ± 15.93
Detection time (sec) 3.83 4.21 4.14 4.23 4.10 ± 0.16
ITR (bits/min) 40.46 8.62 27.70 20.45 24.31 ± 11.55

Test ID 3 S1 S3 S6 S8 Average
Accuracy (%) 97.62 73.81 90.48 85.71 86.91 ± 8.67
Detection time (sec) 3.27 3.66 3.20 3.19 3.33 ± 0.19
ITR (bits/min) 43.49 18.83 35.79 31.31 32.36 ± 8.94

Test ID 4 S1 S3 S6 S8 Average
Accuracy (%) 92.86 90.48 85.71 90.48 89.88 ± 2.60
Detection time (sec) 4.00 4.0 4.00 4.00 4.00 ± 0.00
ITR (bits/min) 30.72 28.65 24.92 28.65 28.24 ± 2.09

Test ID 5 S1 S3 S6 S8 Average
Accuracy (%) 83.33 80.95 83.33 92.86 85.12 ± 4.58
Detection time (sec) 3.00 3.00 3.00 3.00 3.00 ± 0.00
ITR (bits/min) 30.96 28.81 30.96 40.96 32.92 ± 4.72

Test ID 6 S1 S3 S6 S8 Average
Accuracy (%) 47.62 64.29 50.00 61.91 55.96 ± 7.24
Detection time (sec) 2.00 2.00 2.00 2.00 2.00 ± 0.00
ITR (bits/min) 11.11 24.46 12.72 22.25 17.64 ± 5.80

Test ID 7 S1 S3 S6 S8 Average
Accuracy (%) 100.00 97.62 85.71 85.71 92.26 ± 6.60
Detection time (sec) 6.05 9.86 4.57 8.10 7.15 ± 2.01
ITR (bits/min) 25.65 14.41 21.81 12.32 18.55 ± 5.41

Test ID 8 S1 S3 S6 S8 Average
Accuracy (%) 100.0 83.33 88.10 85.71 89.29 ± 6.41
Detection time (sec) 5.57 6.24 3.57 5.19 5.14 ± 0.98
ITR (bits/min) 27.84 14.89 33.17 19.21 23.78 ± 7.15

Table 5.5: Results of the tests in Table 5.1
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Chapter 6

Evaluation and Discussion

This chapter evaluates the results of the experiments described in Chapter 5 and
discusses the work done in this thesis. Section 6.1 evaluates the work done in this
thesis in relation to the research questions defined in Chapter 1, and evaluates the
test results. Section 6.2 discusses the merits and the limitations of the work, as
well as challenges faced throughout the project. Section 6.3 summarizes the main
contributions to the field and their significance. Finally, Section 6.4 suggests what
may be done to extend the work performed in this thesis.

6.1 Evaluation
Section 1.2 states that the goal for this thesis is “to compare VEP-based BCI
methods while using the low-cost EEG acquisition device Emotiv EPOC”. In this
context, two relevant research questions were asked. To answer both research ques-
tions, an SLR was conducted. The SLR protocol is described in Appendix A, and
the results found are described in detail in Chapter 3. A subset of these methods
were selected (Section 3.4.3), implemented (Section 4.3) and tested (Chapter 5) to
achieve the goal of the thesis.

Research question 1 Which techniques can be used to classify the VEPs present
in the EEG data?

Through the SLR, current techniques used for VEP-based BCIs were identified.
The identified SSVEP techniques were PSDA [42, 15], CCA [6, 29] and MEC [43].
In addition, methods that modify traditional SSVEP-based BCIs by use of adap-
tive time-window length [14] and amplitude-modulated visual stimulation [10] were
found. Two c-VEP techniques were identified. One method uses OCSVM for clas-
sification [38], and the other uses template matching for classification [2]. Four
methods were implemented. Three of these methods are SSVEP methods, and one
is a c-VEP method. These are shown, along with their identifier, in Table 6.1

Research question 2 How is a system to compare VEP-based BCI methods im-
plemented and configured?

79
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Identifier Original author Feature extraction VEP paradigm
M1 Liu et al. [29] CCA SSVEP
M2 Cao et al. [6] CCA SSVEP
M3 Vilic et al. [42] PSDA SSVEP
M4 Bin et al. [2] Template matching c-VEP

Table 6.1: The VEP methods that were chosen for implementation and testing.

A system used in a VEP-based BCI consists of two parts: the visual stimulator and
the EEG acquisition module. The visual stimulator in this thesis was limited to
using an LCD monitor with a 60 Hz refresh rate. One of the issues when display-
ing stimulus that flickers at a given frequency is that the monitor refresh rate has
to be divisible by the frequency. Through the SLR, an approach was found that
produces a stimulus equivalent to any frequency [46]. The SLR also revealed that
some people have high activity in the alpha band (7.5-12.5 Hz) causing frequencies
in this range to have a superficially high magnitude in the PSD [29]. Furthermore,
a 30 Hz stimulus is the highest frequency that a monitor with a 60 Hz refresh rate
can display. As a result of these findings, the visual stimulator was configured to
display stimuli from 12-14.5 Hz.

The second part of the system is concerned with retrieving the EEG data. Due to
limitations of Emotiv EPOC, a c-VEP implementation with the M4 method was
not possible. This was the result of a synchronization issue between the stimulus
and the recorded EEG data.

6.1.1 Comparison of SSVEP techniques for Emotiv EPOC
Table 5.4 shows the average results for all the techniques used, with different pa-
rameters. It is seen from the results that the M2 method proposed by Cao et al.
[6], has a lower accuracy than M1 and M3. The highest average accuracy for M2,
89.88%, was achieved when the window length was set to three seconds, with a
total gaze length of four seconds. After four seconds, the technique is forced to
output either a prediction or unclassified if the result does not exceed a predefined
threshold. M1, the method proposed by Liu et al. [29], achieved an average accu-
racy of 92.86% when using a three second window, while M3, the method proposed
by Vilic et al. [42], achieved an average accuracy of 92.26% when using thresholds
0.35 for SData and 0.45 for CData. Both of these two methods continue to collect
EEG data until certain conditions are met for classification. This explains why
these methods have a higher accuracy than M2.

The highest average ITR observed, 32.92 bits/min, came from the M2 method,
using a two second window and a total gaze time of three seconds. Both M1 vari-
ants were close. With a window length of three seconds, the M1 method achieved
an ITR of 31.72 bits/min. With a two second window, the ITR was 32.36 bits/min.
While the accuracy was higher for both M1 variants, M2 had constant detection
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time set to three seconds, which was lower than what both M1 variants achieved.
This shows that a higher ITR can be achieved even with a lower accuracy if the
detection time is lower as well.

The highest individual ITR observed was 43.49 bits/min. This result was achieved
by subject S1 using the M1 method with a window length of two seconds.

M3 had the lowest average ITR of all the methods. With the original thresh-
olds of 0.35 for SData and 0.45 for CData, it achieved an accuracy of 92.26%,
detection time of 7.15 seconds and an ITR of 18.55 bits/min. With more relaxed
thresholds of 0.5 for SData and 0.6 for CData, the method had an accuracy of
89.29%, detection time of 5.14 seconds and an ITR of 23.78 bits/min. The low
ITR can be attributed to the long detection times. It is interesting to see how
the change in thresholds resulted in an ITR increase of 5.23 bits/min, 2.01 second
decrease in detection times and a decrease of only 3 percentage points in accuracy.
This suggests that the original thresholds were too rigorous for a headset as noisy
as Emotiv EPOC. M3 was the only method that used PSDA, the two other meth-
ods used CCA. The findings presented here reaffirms that CCA outperforms PSDA
also for Emotiv EPOC in terms of ITRs. The test results show that an increase
in window length results in a higher accuracy for all the implemented methods.
Emotiv EPOC has been proven to be capable of detecting SSVEPs, with a high
enough SNR to reach accuracies of over 90%.

6.1.2 Comparison to the original methods
When comparing BCI methods by using ITR, knowing how the ITR was calculated
is crucial. The articles that presented the three methods implemented in this the-
sis did not follow the standards outlined in Section 2.2.3, and assumptions would
have to be made in order to deduce exactly how the ITR was calculated. In addi-
tion, the number of targets is one of the variables used in calculating the ITR. The
visual stimulator implemented here uses six targets, and only M1 uses the same
number of targets out of the three methods in the original articles. Under these
circumstances, a direct comparison of the reported ITRs from the articles and the
ITRs achieved in this thesis yields little information. No studies were found that
addressed the issue of how the number of targets in an SSVEP system affects the
accuracy or detection time of a classification method. It is possible that with a
larger number of targets, the area for each target is smaller, and there is more
interference from the non-reference targets, which can elicit less prominent VEPs.
Accuracy and detection times are however reported in all three articles, and is the
basis for comparison for the rest of this section. Table 6.2 shows how the different
methods compare when using the original parameters.

The implementation of the M1 method is the one that most closely resembles
the method presented in the original article [29]. Both implementations use six
targets and collect EEG data with the Emotiv EPOC headset. Different target
frequencies were used. The original paper used frequencies 6.67 Hz, 7.5 Hz, 8.57
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Method Average accuracy (%) Average DT (sec) Window length Thresholds
M1 Liu et al. [29] 95.83 ± 3.59 5.25 ± 2.14 3 seconds N/A
M1 (implemented) 92.86 ± 7.14 4.02 ± 0.14 3 seconds N/A
M2 Cao et al. [6] 98.78 ± 1.62 2.00 ± 0.00 1 second 0.2
M2 (implemented) 55.96 ± 7.24 2.00 ± 0.00 1 second 0.2
M3 Vilic et al. [42] 90.81 ± 4.11 6.62 ± 1.03 2 seconds 0.35, 0.45
M3 (implemented) 92.26 ± 6.60 7.15 ± 2.01 2 seconds 0.35, 0.45

Table 6.2: A performance comparison of the implemented methods and the original
methods from the articles. DT stands for detection time.

Hz, 10 Hz, 12 Hz and 15 Hz, while 12 Hz, 12.5 Hz, 13 Hz, 13.5 Hz, 14 Hz and 14.5
Hz were used in the experiments presented in Chapter 5. In the original paper, the
method uses a three second window. It achieved an average accuracy of 95.83 %,
with an average detection time of 5.25 seconds. The M1 implementation in this
thesis achieved an average accuracy of 92.86 % and an average detection time of
4.02 seconds, when using the same window length.

It is interesting that the average detection time of all subjects for the method
implemented in this thesis was lower than the lowest individual average detection
time reported by Liu et al. [29]. Some possible reasons for this may include vari-
ance of susceptibility to SSVEP stimuli for the test subjects, or a visual stimulator
implementation that provides more accurate stimuli. It is also possible that the
authors of the paper neglected to mention an important implementation detail, or
that the authors of this thesis misunderstood the information provided in the paper.

Table 6.2 also shows that the M2 method only achieved an average accuracy of
55.96% using a window length of one second. The original method, using the same
window length, had an average accuracy of 98.78%. The main difference between
the original implementation and the one tested in this thesis is the headset used.
Emotiv EPOC has a lower sampling rate, a lower SNR and has fewer sensors cov-
ering the occipital lobe and the visual cortex than the one used by Cao et al. [6],
and can account for the difference. The accuracy increases as the window length
increases, and with a three second window, M2 achieved an average accuracy of
89.88%.

The implementation of the M3 method achieved similar results to the original
method presented by Vilic et al. [42]. Vilic et al. obtained an average accuracy
of 90.81% and average detection time of 6.62 seconds. The implementation of M3
had an accuracy of 92.26% and detection time of 7.15 seconds. Vilic et al. used
only a single sensor placement, Oz, while the implemented technique used the av-
erage of O1 and O2. Since Oz is positioned in the middle of the visual cortex, it
gives better VEPs than O1 and O2. In the original paper [42], a medical grade
EEG headset was used. That Emotiv EPOC achieved similar results is surprising.
When changing the thresholds to 0.5 for SData and 0.6 for CData, the accuracy
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was 89.29%, 1.52 percentage points lower than the original. The detection time
was 5.14 seconds, which is 1.48 seconds faster than the original.

6.2 Discussion
The work of Liu et al. [29] showed how Emotiv EPOC compared to a more ex-
pensive medical grade headset. While comparing the two EEG acquisition devices,
Liu et al. did not explore the performance of Emotiv EPOC in greater detail by
testing different methods. The work of this thesis has extended Liu et al.’s work
by further comparing VEP-based methods on the same low-cost hardware. The
results show that Emotiv EPOC achieves satisfactory results with the implemented
SSVEP techniques. Hopefully, this thesis and further research on low-cost EEG
acquisition devices can contribute to an increase in the attractiveness of VEP sys-
tems for commercial use.

An important finding in this thesis was the difficulties using c-VEP with Emo-
tiv EPOC. The implementation revealed synchronization issues between the visual
stimulator and Emotiv EPOC. Using the DLLs from Emotiv, it is not possible to
know which samples were recorded right after the first frame in a c-VEP cycle. As
long as this synchronization issue remains, it is not possible to use c-VEP with
Emotiv EPOC.

The implementation and testing of the VEP system also revealed interesting in-
formation about the color of the flickering boxes. Cao et al. [5] concluded that
white and gray color on the stimuli results in a more intense SSVEP. The results
from this thesis showed that two of the four test subjects performed significantly
better with red stimulus compared to white stimulus and thereby contradicts the
findings by Cao et al. [5]. These results are based on a limited sample size, and a
larger sample size is required to make a conclusion on the subject. This is one of
the limitations of the work performed in this thesis. Another limitation is how
the tests are performed. As described in Section 5.2, each test subject completed
42 trials for each method. This gave a good indication of the performance of the
method, but for more precise statistics, more trials are needed. Only half of the
test subjects were able to use Emotiv EPOC, making calibration and testing a time
consuming process. For this thesis, the authors considered the number of trials to
be satisfactory.

In the SLR, ITR was included as a required search term for papers describing
VEP techniques. This was done to ensure that the resulting articles used ITR
as a metric for ease of comparison. However, this search term also resulted in
a more narrow search, and articles describing important VEP techniques in the
field may have been missed. The SLR resulted in a chapter describing many VEP
techniques. Only a subset of these were selected for implementation and testing.
Testing the unimplemented methods may give valuable information about the per-
formance of Emotiv EPOC, but that was outside of the scope of this thesis due to
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time constraints.

6.2.1 Challenges
As touched upon in the introduction of this thesis, building a complete VEP sys-
tem requires knowledge from several disciplines, including mathematics, statistics,
signal processing, neuroscience and artificial intelligence. For the authors of this
thesis it has been challenging to build a VEP-based BCI from the ground up be-
ing only computer science students. Many tasks required a deep understanding of
Fourier analysis, canonical correlation and signal processing (e.g autocorrelation),
and it has been time consuming to read up on areas like these. In addition to the
technical knowledge, it has been necessary to learn about the vast field of VEPs
and BCIs. In this process, the SLR has been helpful in getting an overview of the
field and finding state of the art techniques within these areas.

It has not only been challenging to obtain the required knowledge, but build-
ing a well functioning VEP-based BCI from the ground up involves a considerable
amount of programming. It has been a time consuming process to build the archi-
tecture of this system with many concurrent threads, a visual stimulator program
and calculations on a server. The implementation challenges have been many, one
of them being how to process data from Emotiv EPOC. As described in Section
4.2, the EEG values from the sensors of Emotiv EPOC have a DC offset causing
the mid-range point of the data to be at 4096 units. The authors think that this
information should have been available through the manual that comes with the
headset. Instead, a search through the Emotiv forums were necessary, where one
of the representatives from Emotiv presented these facts.

6.3 Contributions
This thesis has given a comprehensive introduction to the field of VEP. For new-
comers to the field, the background theory can be helpful. The presentation of the
related work gives a systematic and objective overview over existing VEP solutions,
and can be useful for researchers wanting an update on the field. Furthermore, de-
tails of how a VEP-based BCI can be built have been presented, and can be useful
for everyone wanting to build such a system from the ground up. In most of the
articles pertaining to VEPs, important details of the implementation have been
left out. In this thesis, essential parts of the implementation have been thoroughly
explained.

The results show how the different VEP methods compare using the low-cost EEG
acquisition device, Emotiv EPOC. This can give an indication of which methods
should be focused upon for further research and development, when using a head-
set of this kind. Method M2, when using a window length of three seconds and a
threshold of 0.2, reached an average ITR of 32.92 bits/min. This is the highest ITR
reported to date in a VEP-based BCI using Emotiv EPOC in an online setting. In
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addition, it has been found that c-VEP methods have issues with EEG recordings
using the standard DLLs that come with Emotiv EPOC.

6.4 Future Work
This section details what can be done to further the work presented in this thesis.
The main issues and concerns are addressed, with suggestions for how they can be
solved.

6.4.1 Emokit
There were two main issues encountered during the implementation and testing
of the different VEP techniques. The first of these is the requirement from Emo-
tiv EPOC for good sensor connectivity for the reference sensor. This requirement
made half the test subjects unable to use Emotiv EPOC for VEP-based methods.
The second issue is the lack of accurate timing information when implementing
c-VEP. Both of these issues have roots in the DLLs that come with the SDK for
Emotiv EPOC. Among other things, these DLLs give developers access to the EEG
data. The EEG data is preprocessed, by applying Notch filters and subtracting the
reference sensor from all other sensors, before the data is available to the devel-
oper. The data is also given in blocks of minimum four samples. These issues are
explained in more detail in Section 4.3.4 and Section 4.2.

There is an open source Python module called Emokit1. It is a project where
Emotiv EPOC has been reverse engineered so that the DLLs are no longer needed,
and gives developers access to the raw, unfiltered EEG data. Using Emokit would
solve both the aforementioned problems. First, the developer would be able to
choose if and which sensor to use as the reference sensor. This would allow more
persons to use VEP-based BCIs with Emotiv EPOC by using a reference sensor
that already has a good fit. It could also lead to greater performance of the methods
implemented in this thesis. The c-VEP method presented by Bin et al. [2] selected
the optimal reference sensor for each subject as the sensor that, when subtracted
from the EEG data, maximized training accuracy. This method could be used for
improving classification accuracy for the SSVEP methods that were implemented
in this thesis. The second issue regarding accurate timing information would also
be solved. Since Emokit does not perform any preprocessing on the data, and sends
the EEG data when it is available instead of in blocks of four, the developer would
know with more certainty when the sample was recorded.

6.4.2 Further testing
It is clear that the results presented here do not support the findings by Cao et al.
[5] that white is the best color for visual stimulation. The results suggest that the
best color depends on the individual. As mentioned in Section 6.2, these results

1https://github.com/openyou/emokit

https://github.com/openyou/emokit
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are based on a small sample size. The research could be furthered by performing
more extensive color testing on a larger sample size to reach a conclusion on the
subject.

More extensive testing should also be done for finding the optimal thresholds and
window lengths for Emotiv EPOC with the different methods. Parameters can be
tweaked to optimize accuracy and ITRs, as well as reducing detection times. More
data from a larger quantity of test subjects is needed to accomplish this task.
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Appendix A

Structured literature review

This chapter gives a detailed description of how the SLR was conducted. Section
A.1 states the three problems Pr1, Pr2 and Pr3 that the SLR is built upon, and
defines the research questions that were asked to solve the problems. The search
process is described in Section A.2, including the sources used in the SLR, the
search words used and what the exclusion criteria are. Next, Section A.3 shows
the study selection process that was applied on the search results to obtain a set
of relevant articles. Section A.4 concludes the chapter with a description of how
data collection and data analysis was performed on the set of articles.

A.1 Problems and Research Questions
The goal of this structured literature review (SLR) is to find information regarding
the three problems presented in Section 2.4. These problems are

Pr1 Implementing techniques for VEP-based BCIs

Pr2 Implementing a VEP-based BCI with Emotiv EPOC

Pr3 Implementing a stimulus system for VEP-based BCIs

For each of these problems, the review aims to find what the existing solutions
are, how they compare to each other, what the strength of the evidence for each
solution is and what implications these solutions have. This can be rewritten into
four research questions for each of the problems and are summarized in Table A.1.

A.2 Search Process
The search process consisted of searching through a selection of digital libraries
and journals. The sources searched through are shown in table A.2.

For each of the three problems described above, a set of search keywords were
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Pr1 Implementing techniques for VEP-based BCIs
RQ1 What are the existing techniques for VEP-based BCIs?
RQ2 How do the different solutions, found by addressing RQ1, compare to each

other with respect to ITR?
RQ3 What is the strength of evidence in support of the different techniques?
RQ4 What implications will these findings have when implementing a VEP-

based BCI technique?

Pr2 Implementing a VEP-based BCI with Emotiv EPOC
RQ1 What are the existing solutions for VEP-based BCIs implemented on Emo-

tiv EPOC?
RQ2 How do the different solutions, found by addressing RQ1, compare to each

other with respect to ITR?
RQ3 What is the strength of evidence in support of the different solutions?
RQ4 What implications will these findings have when implementing a VEP-

based BCI with Emotiv EPOC?

Pr3 Implementing a stimulus system for VEP-based BCIs
RQ1 What are the existing stimulus system solutions for VEP-based BCIs?
RQ2 How do the different solutions, found by addressing RQ1, compare to each

other with respect to ITR?
RQ3 What is the strength of evidence in support of the different solutions?
RQ4 What implications will these findings have when implementing a VEP-

based BCI stimulus system?

Table A.1: Pr1, Pr2, Pr3 with four research questions.

Digital library URL
IEEE Xplore http://ieeexplore.ieee.org
SpringerLink http://www.springerlink.com
ISI Web of Knowledge http://www.isiknowledge.com
ScienceDirect http://www.sciencedirect.com
Journal of Neural Engineering http://iopscience.iop.org/

Table A.2: List of sources used for the structured literature review.

http://ieeexplore.ieee.org
http://www.springerlink.com
http://www.isiknowledge.com
http://www.sciencedirect.com
http://iopscience.iop.org/
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Group 1 Group 2

Group 3
Target studies

Figure A.1: Relevant studies. Adapted from Kofod-Petersen [24].

produced. Each keyword can have synonyms or words that provide a similar se-
mantic meaning, and all of these terms are grouped together. The problems with
their associated search keywords are shown in table A.3. The primary goal is to find
the literature that is the intersection of the groups, see Figure A.1. A complete
search involves searching for all permutations of keywords. Pr1 has 27 permu-
tations, while Pr2 and Pr3 have 18 permutations, bringing the total number of
permutations to 63 for all three problems. The sources in table A.2 provide an ad-
vanced search option, and allows the use of Boolean keywords (AND (∧), OR (∨))
when searching. When possible, the search was performed on the abstract, title
and keywords of the article instead of a full text search. For Pr1, all permutations
can be captured in the search string:

([G1,T1] ∨ [G1,T2] ∨ [G1,T3]) ∧ ([G2,T1] ∨ [G2,T2] ∨ [G2,T3]) ∧ ([G3,T1] ∨
[G3,T2] ∨ [G3,T3])

As table A.3 shows, all problems share two keywords, with the third keyword being
unique to each distinct problem. To simplify the search process, the third column
for each problem was combined into the search keywords shown in table A.4.

The combined search terms of table A.4 result in the following search string:

(BCI OR "brain computer interface" OR "brain computer interfaces") AND
(VEP OR "visual evoked potential" OR "visual evoked potentials") AND
((ITR OR "information transfer rate" OR "information transfer rates") OR

(emotiv OR epoc) OR ("visual stimulus" OR "visual stimulator"))

A prerequisite for using this search string is that the articles for each problem
have the same inclusion and quality criteria. This prerequisite is fulfilled, and the
criteria are discussed in detail in section A.3. The search string was used for all
the sources shown in table A.2, and a total of 434 results were obtained. Before
an article was passed on to the study selection process, it was necessary to exclude
some of the articles. An article was excluded if it fulfilled at least one of three
criteria:

• It was a duplicate from the same search engine
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Pr1 Implementing techniques for VEP-based BCIs
Group 1 Group 2 Group 3

Term 1 visual evoked
potential

brain computer
interface

information transfer rate

Term 2 visual evoked
potentials

brain computer
interfaces

information transfer rates

Term 3 VEP BCI ITR

Pr2 Implementing a VEP-based BCI with Emotiv EPOC
Group 1 Group 2 Group 3

Term 1 visual evoked potential brain computer interface emotiv
Term 2 visual evoked potentials brain computer interfaces epoc
Term 3 VEP BCI

Pr3 Implementing a stimulus system for VEP-based BCIs
Group 1 Group 2 Group 3

Term 1 visual evoked
potential

brain computer
interface

visual stimulus

Term 2 visual evoked
potentials

brain computer
interfaces

visual stimulator

Term 3 VEP BCI

Table A.3: Problems and their associated search terms

Group 1 Group 2 Group 3
Term 1 visual evoked

potential
brain computer
interface

information transfer rate

Term 2 visual evoked
potentials

brain computer
interfaces

information transfer rates

Term 3 VEP BCI ITR
Term 4 emotiv
Term 5 epoc
Term 6 visual stimulus
Term 7 visual stimulator

Table A.4: Combined search terms from table A.3
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Digital library Total PIC SIC QC
IEEE Xplore 81 45 15 9
SpringerLink 180 32 6 1
ISI Web of Knowledge 109 23 12 7
ScienceDirect 14 5 2 1
Journal of Neural Engineering 50 8 0 0
Combined 434 113 35 18

Table A.5: The amount of papers meeting the three categories of criteria.

• The same study was published in different sources

• It was published before January 1st, 2009

The reason for discarding articles published before January 1st, 2009 is because
of the nature of the research domain. The fields of VEPs and BCIs are changing
rapidly and articles before this date are considered outdated.

A.3 Study Selection Process
After searching through the sources as described in Section A.2, a three stage
filtering process was applied. The goal of the filtering process was to narrow down
the results to a set of papers that were relevant to the problems and research
questions described in Section A.1. The three stages were:

1. Abstract inclusion criteria screening

2. Full-text inclusion criteria screening

3. Full-text quality screening

In each stage several inclusion criteria and quality screening criteria were applied.
The criteria are outlined in Table A.6, and a bigger overview of the whole study
selection process is shown in Figure A.2. The set containing IC1 and IC2 is referred
to as the primary inclusion criteria (PIC), and the set containing IC3, IC4 and
IC5 is referred to as the secondary inclusion criteria (SIC). The set containing the
quality criteria is referred to as quality criteria (QC). Table A.5 shows the statistics
about the amount of papers meeting the three categories of criteria from each of
the sources.

A.3.1 Criteria rationale
The PIC (IC1 and IC2) ensure that the articles found are relevant, and that the
system or technique was implemented and tested. The SIC (IC3 and IC4) are
meant to ensure that the articles present results that can be compared to other
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Full-text inclusion 
criteria screening

Articles 
satisfying SIC

Searching through digital 
libraries and journals

Exclusion 
criteria screening

Abstract inclusion 
criteria screening

Articles 
satisfying PIC

Set of papers meeting 
PIC, SIC and QC

Full-text quality 
screening

Articles 
satisfying QC

Figure A.2: The study selection process.

Criterion identifier Criterion

IC1 The study’s main concern is either Pr1, Pr2 or Pr3
IC2 The study presents empirical results

IC3 Presents results based on an online experiment
IC4 ITR is used as the performance metric for the results of

the study

QC1 Is there a clear statement of the aim of the research?
QC2 Is the study put into context of other studies and research?
QC3 Is the study technique or algorithm thoroughly explained

and reproducible?
QC4 Is the experimental procedure thoroughly explained and

reproducible?
QC5 Does the test evidence support the findings presented?

Table A.6: The inclusion criteria and quality screening criteria applied in the study
selection process.
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methods by using the preferred performance metric for BCI systems (ITR), and
that the experiments are performed in a relevant setting (online). Both of these
topics are discussed in detail in Section 2.2.

The QC are used to evaluate the strength of the evidence presented in the ar-
ticles. QC1 and QC2 are related to good research practice; only when both of
these criteria are met can readers understand the assumptions that the research is
based on, and what the research contributes to the field. QC3 and QC4 assesses
to what degree the techniques and experimental setups are reproducible. It should
be possible for readers of the article to reproduce the work presented in order to
confirm the validity of the results. These criteria are particularly important for
this thesis. QC5 assesses that all aspects of the results are analyzed, and that the
conclusion of the article is backed by the findings presented.

A.3.2 Abstract screening
In this screening stage, the studies from the search process were filtered based on
the title, abstract and keywords. The papers were accepted in this stage if the
abstract indicated that the PIC were met (from Table A.6):

IC1 The study’s main concern is either Pr1, Pr2 or Pr3

IC2 The study presents empirical results

The title and the abstract did not necessarily give sufficient information to conclude
whether or not IC1 and IC2 were met. The policy used in such cases was to pass
the paper on to the next filtering stage. The result of the abstract screening was
that 321 studies were rejected, leaving 113 articles which met the PIC and were
passed on to the full-text screening.

A.3.3 Full-Text Inclusion Criteria Screening
The abstract and title give limited information about an article. In this stage, the
whole text was considered to determine if an article from the previous stage met
the SIC (from Table A.6):

IC3 Presents results based on an online experiment

IC4 ITR is used as the performance metric for the results of the study

The papers that did not meet the SIC were discarded. The screening of the full
text could also shed some light on whether or not the PIC were actually satisfied;
the articles that did not fulfill the PIC were also discarded. After performing the
full-text screening, the 113 articles were reduced to a set of 35 articles.

A.3.4 Full-Text Quality Assessment
The goal of the final step was to evaluate the strength of the evidence presented by
the articles. This step thus evaluates RQ3 (listed in Table A.1). The articles that
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passed this stage have strong evidence in support of their solutions and techniques.
The articles were evaluated with respect to these criteria (from Table A.6):

QC1 Is there a clear statement of the aim of the research?

QC2 Is the study put into context of other studies and research?

QC3 Is the study technique or algorithm thoroughly explained and reproducible?

QC4 Is the experimental procedure thoroughly explained and reproducible?

QC5 Does the test evidence support the findings presented?

Each of the criteria were answered with yes (1 point), partially (0.5 points) or no
(0 points). A threshold of 4.5 out of 5 points were set to pass this final stage. Table
A.7 shows all the 35 articles, their individual score, and whether or not they passed
the quality assessment stage. In total there were 18 articles that passed this stage.
These articles are further analyzed in Chapter 3.
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Table A.7: Quality assessment

Article ID Authors Title Score Pass
A1 Lopez-Gordo

et al.
A high performance SSVEP-BCI without gazing 3.5

A2 Cao et al. A high rate online SSVEP based brain-computer interface
speller

4.5 X

A3 Cecotti A Self-Paced and Calibration-Less SSVEP-Based
Brain–Computer Interface Speller

5 X

A4 Lee et al. An SSVEP-Based BCI Using High Duty-Cycle Visual Flicker 4
A5 Wang et al. Developing stimulus presentation on mobile devices for a truly

portable SSVEP-based BCI
4

A6 Vilic et al. DTU BCI speller– An SSVEP-based spelling system with dic-
tionary support

4.5 X

A7 Volosyak et al. Evaluation of the Bremen SSVEP based BCI in real world con-
ditions

4.5 X

A8 Cao et al. Flashing color on the performance of SSVEP-based brain-
computer interfaces

4.5 X

A9 Hwang et al. Implementation of a mental spelling system based on steady-
state visual evoked potential (SSVEP)

3

A10 Liu et al. Implementation of SSVEP Based BCI with Emotiv EPOC 5 X
A11 Chang et al. Independence of Amplitude-Frequency and Phase Calibrations

in an SSVEP-Based BCI Using Stepping Delay Flickering Se-
quences

4

A12 Han et al. Modified pattern-reversal visual checkerboard stimuli with
dual alternating frequencies for multi-class ssvep-based brain-
computer interfaces

4

Continued on next page
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Table A.7 – continued from previous page
Article ID Authors Title Score Pass
A13 da Cruz et al. Patterned visual stimuli for enhancement of SSVEP-based BCI

performance
5 X

A14 Chang et al. Real-Time Control of an SSVEP-Actuated Remote-Controlled
Car

4.5 X

A15 Wang et al. Visual stimulus design for high-rate SSVEP BCI 4.5 X
A16 Zhang and Deng An Automatic SSVEP Component Selection Measure for High-

Performance Brain-Computer Interface
4

A17 da Cruz et al. An SSVEP-Based BCI with Adaptive Time-Window Length 5 X
A18 Volosyak et al. Impact of Frequency Selection on LCD Screens for SSVEP

Based Brain-Computer Interfaces
4

A19 Garcia-Molina
and Zhu

Phase Detection of Visual Evoked Potentials Applied to Brain
Computer Interfacing

4

A20 Yan et al. Right-and-left visual field stimulation A frequency and space
mixed coding method for SSVEP based brain-computer inter-
face

3.5

A21 Segers et al. Steady State Visual Evoked Potential (SSVEP) - Based Brain
Spelling System with Synchronous and Asynchronous Typing
Modes

4

A22 Wang et al. A cell-phone-based brain-computer interface for communica-
tion in daily life

4

A23 Bin et al. A high-speed BCI based on code modulation VEP 4.5 X
A24 Hwang et al. A new dual-frequency stimulation method to increase the

number of visual stimuli for multi-class SSVEP-based brain-
computer interface (BCI)

3.5

A25 Bin et al. An online multi-channel SSVEP-based brain-computer inter-
face using a canonical correlation analysis method

5 X

Continued on next page
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Table A.7 – continued from previous page
Article ID Authors Title Score Pass
A26 Lee et al. An SSVEP-Actuated Brain Computer Interface Using Phase-

Tagged Flickering Sequences– A Cursor System
4

A27 Diez et al. Asynchronous BCI control using high-frequency SSVEP 5 X
A28 Chen et al. Brain–computer interface based on intermodulation frequency 4
A29 Wu et al. Frequency recognition in an SSVEP-based brain computer in-

terface using empirical mode decomposition and refined gener-
alized zero-crossing

4.5 X

A30 Volosyak SSVEP-based Bremen-BCI interface-boosting information
transfer rates

5 X

A31 Zhu et al. Online BCI Implementation of High-Frequency Phase Modu-
lated Visual Stimuli

4

A32 Spüler et al. Online Adaptation of a c-VEP Brain-Computer Interface(BCI)
Based on Error-Related Potentials and Unsupervised Learning

5 X

A33 Yeh et al. Improvement of classification accuracy in a phase-tagged
steady-state visual evoked potential-based brain computer in-
terface using multiclass support vector machine

4.5 X

A34 İşcan and Dokur A novel steady-state visually evoked potential-based
brain–computer interface design– Character Plotter

4

A35 Chang et al. An amplitude-modulated visual stimulation for reducing eye
fatigue in SSVEP-based brain–computer interfaces

5 X
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A.4 Data Collection and Analysis
The study collection process resulted in 18 articles. A more detailed analysis was
performed to collect information from the set of articles. The goal of this analysis
was to gather information concerning RQ1 and RQ2 for the three problems Pr1,
Pr2 and Pr3 (from Table A.1). These findings are presented in Chapter 3 along
with a discussion regarding RQ4. RQ3 was handled in the full-text quality assess-
ment (Section A.7).

The articles were read in detail and labeled with two types of labels. The first
label marks which of the three problems, Pr1, Pr2, Pr3, the article addresses. The
second label is the VEP paradigm the system implemented. The literature obtained
either presented a SSVEP or a c-VEP system. Table A.8 lists each article identifier
and what labels this article was given. In addition, the performance metric (ITR)
of the systems are written in the last column.
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Article ID Problem System ITR
A32 Pr1 c-VEP 144.00
A23 Pr1 c-VEP 108.00
A30 Pr1 SSVEP 61.70
A2 Pr1 SSVEP 61.64
A17 Pr1 SSVEP 58.36
A25 Pr1 SSVEP 58.00
A33 Pr1 SSVEP 50.91
A14 Pr1 SSVEP 49.79
A35 Pr1 SSVEP 39.41
A3 Pr1 SSVEP 37.62
A29 Pr1 SSVEP 36.99
A7 Pr1 SSVEP 22.60
A6 Pr1 SSVEP 21.94
A27 Pr1 SSVEP 9.40-45.00
A10 Pr2 SSVEP 20.97
A15 Pr3 SSVEP 75.40
A13 Pr3 SSVEP 45.90
A8 Pr3 SSVEP 36.61

Table A.8: The articles listed with their labels and ITR. The table is sorted first
on problem type, then by ITR.
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Appendix B

Code

B.1 Canonical Correlation Analysis (CCA) Python
Implementation

This section shows the Python implementation of MATLAB’s canoncorr imple-
mentation to compute the canonical correlation between two sets of data, X and
Y.
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import numpy as np
from scipy.linalg import qr

def cca(X,Y):
n,p1=X.shape if (len(X.shape) > 1) else (X.shape[0],1)
p2=Y.shape[1] if (len(Y.shape) > 1) else 1

X=X-np.tile(np.mean(X,0),(n,1))
Y=Y-np.tile(np.mean(Y,0),(n,1))

Q1,T11,perm1 = qr(X,pivoting=True,mode=’economic’)
if len(T11.shape) > 1:

val = np.spacing(np.absolute(T11[0][0]))*max(n,p1)
else:

val = np.spacing(np.absolute(T11[0]))*max(n,p1)
rankX = sum(np.absolute(np.diag(T11).copy()) > val)

Q2,T22,perm2 = qr(Y,pivoting=True,mode=’economic’)
if len(T22.shape) > 1:

val = np.spacing(np.absolute(T22[0][0]))*max(n,p2)
else:

val = np.spacing(np.absolute(T22[0]))*max(n,p2)
rankY = sum(np.absolute(np.diag(T22).copy()) > val)

d = min(rankX,rankY)
L,D,Mh = np.linalg.svd(np.dot(Q1.T,Q2),full_matrices=False)
D = np.diagflat(D)
r = np.minimum(np.maximum(np.diag(D[:,:3]).T, 0), 1)
M = Mh.T
A = np.linalg.lstsq(T11,L[:,:d])[0]* np.sqrt(n-1)
B = np.linalg.lstsq(T22,M[:,:d])[0]* np.sqrt(n-1)

A[perm1,:] = np.vstack((A,np.zeros((p1-rankX,d))))
B[perm2,:] = np.vstack((B,np.zeros((p2-rankY,d))))

U = np.dot(X,A)
V = np.dot(Y,B)
return A,B,r,U,V
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Abbreviations

AM amplitude-modulated.

BCI brain-computer interface.

CCA canonical correlation analysis.

CPM characters per minute.

CPU central processing unit.

c-VEP code-modulated VEP.

DC direct current.

DFT discrete Fourier transform.

DLL dynamic-link library.

DSB double-sideband suppressed carrier.

EEG electroencephalogram.

EP evoked potential.

ERD event-related desynchronization.

ERP event-related potential.

ErrP error-related potential.

FFT fast Fourier transform.

FIFO First in, First Out.

FPGA field-programmable gate array.

FVEP flash VEP.

IIR infinite impulse response.
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112 Acronyms

ITR information transfer rate.

LCD liquid crystal display.

LDA linear discriminant analysis.

LED light-emitting diode.

MEC minimum energy combination.

MEG magnetoencephalography.

OCSVM one class support vector machine.

PBR practical bit rate.

PIC primary inclusion criteria.

PSD power spectral density.

PSDA power spectral density analysis.

QC quality criteria.

SDK software development kit.

SIC secondary inclusion criteria.

SLR structured literature review.

SMR sensorimotor rhythm.

SNR signal-to-noise ratio.

SSVEP steady state visually evoked potential.

SVM support vector machine.

t-VEP time-modulated VEP.

VEP visual evoked potential.
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