
Human Reliability and Software
Development

Merete Aardalsbakke

Master of Science in Computer Science

Supervisor: Tor Stålhane, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Sammendrag

Begrepet “Human Reliability” har blitt viktig innen høyrisiko industrier. Interessen
har vokst ogs̊a innenfor programvareutvikling for å redusere menneskelige feil og deres
negative innvirkning p̊a programvareutvikling. Menneskelige feil koster IT industrien
store mengder tid og penger hvert år.

SHERPA er en “Human Reliability” metode laget for å passe flere industrier. Denne mas-
teroppgaven foresl̊ar at noen justering er nødvendig for å gjøre metoden mer passende
for programvareutvikling. For å evaluere SHERPA har det blitt utført to forskings-
faser, en fokusgruppe og et eksperiment. Fokusgruppen hadde to form̊al, først å utføre
en hierarkisk oppgaveanalyse, det første steget av SHERPA, og deretter diskutere vik-
tige aspekter ved en programmeringsmodell. Funnene fra fokusgruppen ble brukt for å
justere SHERPA videre før eksperimentet.

Form̊alet med eksperimentet var å teste SHERPA p̊a et sett med oppgaver, og å evaluere
justeringene gjort med SHERPA før eksperimentet. Funnene fra eksperimentet ble brukt
til å diskutere og evaluere SHERPA og justeringene. En ny versjon av SHERPA, tilpasset
programvareutvikling blir presentert i denne masteroppgaven.

Etter å ha utført to faser med forsking og datainnsamling, kan det bli konkludert,
basert p̊a resultatene fra dette studiet, at SHERPA er et nyttig verktøy for å utforske
menneskelige feil innenfor programvareutvikling.

i

Abstract

Human Reliability has been an important term within high-risk industries. The interest
has emerged within software development to reduce human errors and their negative
impact on software engineering. Human errors cost the software industry an enormous
amount of time and money every year.

SHERPA is a Human Reliability method made to suit several domains. However, the
project report suggests that a few changes are necessary to suit software development.
To evaluate SHERPA two phases of research was conducted, a focus group session and
an experiment. The focus group session was conducted prior to the experiment. The
focus group had two agendas, firstly to conduct a hierarchical task analysis, the first step
of SHERPA, and secondly to discuss important aspects of a programming behavioral
model. The findings from the focus group session were used to make adjustment to
SHERPA before the experiment.

The purpose of the experiment was to test SHERPA on a set of predefined tasks, and
to investigate the adjustments made to SHERPA prior to the experiment. The findings
from the experiment were discussed and used to evaluate SHERPA as well as the adjust-
ments. A new version of SHERPA, more suitable for software development, is presented
in this master thesis.

After conducting two phases of research and data collection, it can be concluded, based
on the results from this study, that SHERPA is a useful tool in exploring human errors
in software development.

iii

Preface & Acknowledgements

This study is a master thesis conducted in the last semester of masters degree program
in Computer Science at the Norwegian University of Technology and Science(NTNU).
The specialization of this thesis is Software. The research conducted in this thesis is for
the Department of Computer and Information Science.

I want to acknowledge the different persons that have taken part in this research. Firstly,
I would like to give a big thank to my supervisor Professor Tor St̊alhane for much
appreciated guidance and feedback during the semester of study, in the spring of 2014. I
would also like to give a special thank to Esben Aarseth, fellow student, for his valuable
help and sharing of experience. Lastly I would like to give a thank to the participants
who attended the focus group, for helping to conduct the Hierarchical Task Analysis and
provide useful information about their experience with errors in software development.

iv

Contents

Sammendrag i

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables xi

Abbreviations xiii

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Questions . 4
1.3 Thesis Scope . 5
1.4 Thesis Outline . 5

II Pre Study 7

2 Human Reliability 9
2.1 Human Reliability . 9
2.2 Human Reliability Analysis . 10

2.2.1 Performance Shaping Factors (PSF) 10
2.2.2 Human Error Probability (HEP) 10
2.2.3 Human Reliability Analysis . 10

2.2.3.1 Problem Definition . 11
2.2.3.2 Task Analysis . 11
2.2.3.3 Error Identification . 11
2.2.3.4 Error Representation . 11
2.2.3.5 Quantification and Integration 12
2.2.3.6 Human Error Management 12

v

Contents CONTENTS

3 Human Error 15
3.1 Human Error . 15
3.2 Slips and Mistakes . 15

3.2.1 Skill-based Error . 16
3.2.2 Rule-based Error . 17
3.2.3 Knowledge-based Error . 17

3.3 Swiss Cheese Model . 18
3.4 Disturbances on Human Performances . 19
3.5 Software Errors . 21

4 Background Information 23
4.1 Specialization Project . 23

4.1.1 HR-methods . 23
4.2 SPAR-H . 24

5 SHERPA 27
5.1 SHERPA . 27
5.2 Procedure . 28
5.3 Example . 31
5.4 Pros and Cons . 32
5.5 Validity . 33

III Research Methods and Research Design 35

6 Research Methods 37
6.1 Qualitative and Quantitative Research . 37

6.1.1 Qualitative Research . 37
6.1.2 Quantitative Research . 38

6.2 Focus Group . 38
6.2.1 Context Selection . 39
6.2.2 Planning of Focus Group . 39

6.3 Experiment . 40
6.3.1 Planning the Experiment . 41

6.3.1.1 Context Selection . 41
6.4 Questionnaire . 42

7 Validity of Research Methods 45
7.1 Conclusion Validity . 45
7.2 Internal Validity . 45
7.3 Construct Validity . 46
7.4 External Validity . 46

8 Research Design 47
8.1 Focus Group . 47
8.2 Experiment . 48

8.2.1 Selection of Subjects . 48
8.2.2 Location and Equipment . 49

Contents vii

8.2.3 Experiment Design . 49
8.2.3.1 Pre-Experiment Questionnaire 49
8.2.3.2 SHERPA Table . 49
8.2.3.3 Post-Experiment Questionnaire 50

IV Research Procedure and Results: Focus Group 51

9 Hierarchical Task Analysis 53

10 Results From Focus Group 57
10.1 Procedure . 57
10.2 Findings . 58

10.2.1 HTA . 59
10.2.2 Errors in Software Development 59
10.2.3 Error Modes . 60

V Research Procedure and Results: Experiment 63

11 Adjustments made in SHERPA 65
11.1 Error Mode . 65

11.1.1 Time . 65
11.1.2 Knowledge . 66
11.1.3 Technical Error . 66
11.1.4 Selection . 67

11.2 SHERPA Process . 67
11.3 Experiment . 68

12 Procedure 73

13 Results and Findings 77
13.1 Pre-Experiment Questionnaire . 77
13.2 Experiment . 79

13.2.1 Choose Programming Language . 81
13.2.2 Set up Development Environment 82
13.2.3 Choose Architectural Pattern . 83
13.2.4 Identify Problems/Uncertainties in Requirements 84
13.2.5 Define Goals from the Requirements 85
13.2.6 Develop Mockup/Prototype of Solution 86
13.2.7 Review Codes Behaviour . 87
13.2.8 Review Code: Evaluate Behaviour 88
13.2.9 Modification: Identify New Necessary Functionality 89
13.2.10 Modification: Draw Connection Between Old and New Functionality 90
13.2.11 Create New Functionality: Code the Changes 91

13.3 Post-Experiment Questionnaire . 92

Contents CONTENTS

VI Discussion and Conclusion 95

14 Discussion 97
14.1 Error Modes . 97

14.1.1 Time . 98
14.1.2 Knowledge . 98
14.1.3 Technical Error . 98
14.1.4 Information Retrieval and Information Communication 99
14.1.5 Checking . 99
14.1.6 Selection . 100

14.2 Discussion of the Results . 100
14.3 Research Questions . 103

15 SHERPA 107
15.1 Error Modes . 107
15.2 The SHERPA Procedure . 109
15.3 SHERPA in a Software Development Task 111

16 Validity 117

17 Conclusion 119

18 Further Work 121

A Experiment 127

B Responses from experiment 139
B.1 Pre-experiment questionnaire . 139
B.2 Post-experiment questionnaire . 141
B.3 Error Modes . 143
B.4 Choose programming language . 144
B.5 Set up development environment . 148
B.6 Choose architectural pattern . 150
B.7 Identify problems/uncertainties in requirements 152
B.8 Define goals from the requirements . 155
B.9 Develop mockup/ prototype of solution 157
B.10 Review codes behaviour: place breakpoints 160
B.11 Review codes behaviour: evaluate behavior 161
B.12 Modification: identify new necessary functionality 163
B.13 Modification: draw connection between old and new functionality 165
B.14 Create new functionality: code the changes 166

List of Figures

2.1 HRA process . 13

3.1 Classification of Human Error (Reason 1990) 16
3.2 The Continuum between Conscious and Automatic Behavior

(Reason 1990) . 18
3.3 Swiss Cheese Model (Reason) . 19
3.4 Human Performance Model . 20

5.1 HTA example . 31
5.2 SHERPA example . 32

7.1 Validity . 46

9.1 Procedure of breaking down the sub-goal hierarchy 54

10.1 Focus Group Session . 58

12.1 Experiment . 73
12.2 Participants conducting the experiment 74

13.1 Currently attended semester . 78
13.2 Nr of months with IT-related experience 78
13.3 Rating of programming experience . 79
13.4 Error Modes . 80
13.5 Categories of Error Modes . 80
13.6 Error Mode: Choose programming language 81
13.7 Error Mode: Set up development environment 82
13.8 Error mode: Choose architectural pattern 83
13.9 Error Mode: Identify problems/uncertainties in requirements 85
13.10Error Mode: Define goals from requirements 85
13.11Error Mode: Develop mockup/prototypeof solution 87
13.12Error mode: Review codes behaviour: place breakpoints 88
13.13Error Mode: Review code: evaluate behaviour 89
13.14Error Mode: Identify new necessary functionality 90
13.15Error Mode: Draw connection between old and new functionality 90
13.16Error Mode: Create new functionality: code the changes 92
13.17Results from Post-Experiment Questionnaire 93

15.1 HTA: Set up development environment . 112

ix

List of Tables

10.1 Timetable for Focus Group Session . 57

11.1 Error Mode . 71

12.1 Timetable for Experiment . 74

15.1 Final Error Mode . 109
15.2 SHERPA . 113

B.1 Data from Pre-experiment Questionnaire 140
B.2 Data from Post-experiment questionnaire, part 1 141
B.3 Data from Post-experiment questionnaire, part 2 142
B.4 Data from Error Modes . 143
B.5 Choose programming language . 144
B.6 Set up development environment . 148
B.7 Choose architectural pattern . 150
B.8 Identify problems/uncertainties in requirements 152
B.9 Define goals from the requirements . 155
B.10 Develop mockup/ prototype of solution 157
B.11 Review codes behaviour: place breakpoints 160
B.12 Review codes behaviour: evaluate behavior 161
B.13 Modification: identify new necessary functionality 163
B.14 Modification: draw connection between old and new functionality 165
B.15 Data: Create new functionality . 166

xi

Abbreviations

HRA Human Reliability Aanalysis
HR Human Reliability
PSF Performance Shaping Factors
HEP Human Error Probabilities
HEART Human Error Assessment and Reduction Technique
THERP Technique for Human Error Rate Prediction
CREAM Cognitive Reliability Error Analysis Method
SHERPA Systematic Human Error Reduction & Prediction Approach
SPAR-H Standarized Plant Analysis Risk-Human Reliability Analysis
SRK Skill- Rule- Knowledge- based approach
GEMS Generic Error Modelling System
HEI Human Error Identification
HTA Hierarchical Task Aanalysis

xiii

Part I

Introduction

1

Chapter 1

Introduction

This chapter will introduce the motivation for doing the research and the research ques-
tions formulated to drive the research in this study. The scope of the thesis and a thesis
outline is also presented.

1.1 Motivation

Errors are made in all industries, including software development. In software develop-
ment these errors are referred to as bugs, and most of these bugs arise from mistakes
and errors made by people in either a program’s source code or in its design. Bugs are
a consequence of the nature of human factors in the programming task.

These bugs cause a lot of trouble, and may in fact be extremely expensive. CEO of
Undo Software, Greg Law put in this way:
“To put this in perspective, since 2008 Eurozone bailout payments to Greece, Ireland,
Portugal and Spain have totaled $591bn. This is less than half the amount spent on
software debugging over that same five-year period.”

The statement of Greg Law [1] shows how incredibly expensive it is to correct errors
made by software engineers. As correcting these errors are expensive, time-consuming
and leads to bad software, we wish to find a way to help programmers avoid making
these errors. Schulmeyer presented the need for a model on programmer behavior in his
article about Net Negative Producing Programmers [2].

A lot of research has been made on human reliability, especially in hazardous industries
like nuclear power plants. Within software development there has been done little to no
significant research on this subject. The work done in human reliability concerns high
risks industries and was executed to prevent the accidents attributable to human error
[3].

3

Chapter 1 Introduction Chapter 1 Introduction

There exists numerous HRA models, and through TDT-4501 Specialization Project in
the fall of 2013 the Systematic Human Error And Prediction Approach, SHERPA, was
evaluated to be the model best suited for software development. The motivation for this
master thesis is to explore the model further, and to investigate if it may be suitable for
software development.

1.2 Research Questions

With the goal of exploring whether or not it is possible to use an HRA model to pre-
vent developers from committing human error in software development, five research
questions has been formulated.

1. RQ1. Is it possible to successfully apply HRA to software development?

This research question concerns whether or not it is possible to apply an HRA
model to software development. The question has been transferred from the spe-
cialization project conducted in the fall semester of 2013. In this thesis the overall
focus has been on one HRA model, and this question can only be answered based
on the result from this particular HRA model.

2. RQ2. What adjustments are needed for SHERPA to be better tailored to software
development?

SHERPA is developed for the process industriy, and is thereby dominated by at-
tributes that support this industry. To make sure that SHERPA can be useful in
software development, changes need to be made. This research questions concerns
what these adjustments are.

3. RQ3. Will a set of non trained students be able to conduct SHERPA on a set of
problems?

If the HRA-model is to be used in the field of software development it is im-
portant that it is easy to comprehend. This research question is asked to ensure
that the model is possible to use with limited training.

4. RQ4. Will the students reach similar solutions?

This research question concerns if this HRA method will give somewhat the same
problem areas within the software development process, when analyzed by different

Chapter 1 Introduction 5

analysts. This issue is important when considering the usefulness of the method.
The consistency of the model is an important issue to consider.

5. RQ5. Will these solutions be useful?

To ensure that SHERPA is useful, it is important to consider if the results it
gives are relevant relative to other research that has been conducted within the
field of software development.

1.3 Thesis Scope

This master thesis will focus on the use of the Human Reliability Analysis (HRA) method
SHERPA in the field of software development. The thesis aims to evaluate a HRA
model suited for software development, and the necessary adjustments needed to make
the model applicable to software engineering. The thesis will only evaluate the method
Systematic Human Error Reduction and Prediction Approach, SHERPA.

In this master thesis we are not able to test every part of SHERPA. There will be a focus
on the adjustments made, to evaluate the need and usefulness of them. Further, the
focus will be on if and how the method is useful within the field of software engineering.
The scope of this thesis concerns the usefulness of SHERPA, and not the quality of the
results given from the students. However, the results are needed to consider whether
SHERPA provides usefulness of SHERPA. But the focus is not on the quality of the
results.

1.4 Thesis Outline

The master thesis has been divided in into six parts: Part 1 Introduction, Part 2 Pre
Study, Part 3 Research Methods and Research Design, Part 4 Research Procedure and
Results: Focus Group, Part 5 Research Procedure and Results: Experiment and Part 6
Discussion and Conclusion.

Part 2 provides the report with basic understanding of the task, and detailed information
about SHERPA.

Chapter 2 Human Reliability

Chapter 3 Human Error

Chapter 4 Background Information

Chapter 1 Introduction Chapter 1 Introduction

Chapter 5 SHERPA

Part 3 Research Methods and Research Design provides infomation about how the re-
search of this study was designed.

Chapter 6 Research Methods

Chapter 7 Validity of Research Methods

Chapter 8 Research Design

Part 4 Research Prodecure and Results: Focus Group presents procedure and results from
the focus group session in addition to an introduction to what is conducted in the focus
group

Chapter 9 Herarchical Task Aanalysis

Chapter 10 Results From Focus Group

Part 5 Research Prodecure and Results: Experiment presents the adjustments made to
SHERPA, and detailed information about the procedure and the results found during the
experiment.

Chapter 11 Adjustments made in SHERPA

Chapter 12 Procedure

Chapter 13 Results and Findings

Part 6 Discussion and Conclusion provides a discussion on the results from the results,
and a detailed discussion regaring the research question asked in this thesis. A new
verison of SHERPA applied to software development, with anexample is provided. A
conclusion is provided as well as Further work

Chapter 14 Discussion

Chapter 15 SHERPA

Chapter 16 Validity

Chapter 17 Conclusion

Chapter 18 Further work

Part II

Pre Study

7

Chapter 2

Human Reliability

This chapter contains information on Human Reliability and a detailed description of
Human Reliability Analysis.

2.1 Human Reliability

Human reliability is a concept related to human factors and ergonomics on how hu-
mans perform in manufacturing, medicine and generally in all working areas. Swain
and Guttman [4] define human reliability as the probability that a person (1) correctly
performs an action required by the system in a required time and (2) that he does not
perform any extraneous activity that can degrade the system. There are other quali-
tative definitions, for instance in Hacker [5], related to the human ability to adapt to
changing conditions in disturbances.

There has been a lot of research on human reliability related to critical systems like
nuclear plants and air traffic management [1]. The researchers found that the majority
of accidents are related to either human error or bad management. For critical systems
like nuclear power plants these errors pose a tremendous risk which we can not afford.

Bell and Holroyd did a study on human reliability, and found that there exist 71 HR-
models [6]. The HRA model are classified as first, second and third generation. The first
generation tools were developed to help risk assessors predict and quantify the likelihood
of human error. A trend for these models is that they encourage the assessors to break
tasks down into smaller components to consider the impact of modifying time pressure,
equipment design and stress [6]. Second generation models are all models developed
after the 1990s. These models attempt to consider context and errors of commission in
human error prediction. New tools, based on first generation tools, are now emerging
and are referred to as third generation methods [6].

9

Chapter 2 Human Reliability Chapter 2 Human Reliability

2.2 Human Reliability Analysis

This section covers human reliability analysis, in addition to two sections that covers
background information needed to understand the analysis.

2.2.1 Performance Shaping Factors (PSF)

Human behavior are affected by several factors, such as adaptability, flexibility and task
environment [7]. These factors are what we call performance shaping factors, PSF. Ac-
cording to Mackieh and Cilingir [8], these factors can be divided into internal, external
and stressor performance shaping factors. The external factors include the entire work
environment [7], like written procedures and oral instructions. The internal factors rep-
resents a person’s individual characteristics [7], his skills, motivations, and expectations
that may influence performance. The stressors results from a work environment in which
the demands placed on the operator by the system do not conform to his capabilities
and limitations [7].

2.2.2 Human Error Probability (HEP)

Human Error Probabilities (HEPs) refers to the prediction of the likelihood or proba-
bility of human errors [9]. The definition of HEP is:

HEP= number of errors occured
number of opportunities for error

Kirwan stated in his article that HRA’s central tenet is to keep the HEP estimate process
as accurate or at least conservative as possible, rather than optimistic [9]. We want to
keep the estimates this way to avoid underestimating the risk, or to make wrong errors
highlighted for reduction. The validation of the HRA quantification techniques relies on
the collection of real human error probabilities, to compare the techniques to real world
data and thus make them empirically validated.

2.2.3 Human Reliability Analysis

Human reliability analysis is an analysis that helps us to better understand what are
causing errors and faults in systems. Essentially, HRA aims to quantify the likelihood
of human error for a given task [10]. HRA assist in identifying vulnerabilities within a
task, and may also provide guidance on how to improve reliability for the specific task.

In HRA there are several steps needed to perform a complete analysis. The steps
are presented in Figure 2.1 and the following sections will describe the general human
reliability process.

Chapter 2 Human Reliability 11

2.2.3.1 Problem Definition

The first step is problem definition, which is used to determine the scope of the analysis,
the type of analysis that will be conducted, the tasks that will be evaluated and what
human actions will be assessed. According to NASA‘s report on HRA [11] there are
mainly two factors that impact the determination of scope of the analysis: the systems
vulnerability to human error and the purpose of the analysis. If a system is highly
vulnerable to human error, a larger scope is needed to fully understand and mitigate
the human contribution to system risk. The purpose of the analysis is important when
we determine whether we need a qualitative or quantitative analysis.

2.2.3.2 Task Analysis

The second step is task analysis, which is a systematic method used to identify and
break down tasks into subtasks that describes the actions required by humans to achieve
the systems goal. A task analysis is conducted after a functional analysis. In this
analysis, functional flow diagrams are developed to accentuate the chronological sequence
of functions. A comprehensive task analysis identifies all human actions and serves as a
building block for understanding where human error can occur in the process.

2.2.3.3 Error Identification

Error identification is the third and most important step according to NASA [11]. By er-
ror identification, we mean human error identification where human actions are evaluated
to find which human errors and violations can occur. During this step it is important to
find the type of error, as well as what kind of performance factors that could contribute
to the specific error. See section 2.2.1.

2.2.3.4 Error Representation

The next step is error representation, also described as modeling. In this step data,
relationship, and interference is visualized. This is done to better understand situations
that cannot easily be described with words alone. The human errors are modeled and
represented in Master Logic Diagram, Event Sequence Diagram, Event Tree, Fault Tree
or a generic error model. There are also other error modeling techniques that can be
used. During this step it is important for the analyst to consider dependencies between
different types of human errors in order to get a better perspective.

Chapter 2 Human Reliability Chapter 2 Human Reliability

2.2.3.5 Quantification and Integration

Quantification and Integration into PRA (Probabilistic Risk Assessment) is the step
where probabilities are assigned to the errors, and it is in this step that we decide upon
which errors are the most significant errors to the overall system risk [11]. When the
most dominant errors are selected and probabilities and failure estimates are assigned,
the analysts may start to make decisions about the human-machine interface. The
specific steps in quantification are dependent on which human reliability method are
being used.

2.2.3.6 Human Error Management

Human Error Management is the last step of an HRA. The philosophy of human error
management is to assume that humans will always make mistakes. Even though we are
trained to a set of tasks, there will be mishaps due to human errors. In human error
management the idea is to develop a system that will minimize errors, but at the same
time tolerate those that are not crucial to the system and will not lead to any serious
failure or lead to mishap.

Chapter 2 Human Reliability 13

Figure 2.1: HRA process

Chapter 3

Human Error

This chapter contains detalied information on Human Error, and provides information
on human errors made during software development.

3.1 Human Error

Human error is defined as an action that is not intended or desired by the human,
or a failure on the part of the human to perform a prescribed action within specified
limits, accuracy, sequence, or time such that the action or inactions fails to produce the
expected result, and led to or has the potential to lead to an unwanted consequence [11].
Human errors are those errors that occur due to a human mistake. It basically means
that what was to be done, was either not done, done wrong or out of its scope.

3.2 Slips and Mistakes

Human errors can, according to J.Rasmussen, be broken down into slips and mistakes
[12]. The models made by Reason and Rasmussen are said to have questionable relevance
to software development, as they were developed to minimize mistakes in hazardous
sectors like nuclear, chemical and offshore. However, software development is a creative
process equally as the processes intended for the models. In addition, the terms of skill,
rule and knowledge based errors are suitable for mistakes made in software development
as well.

The terms skill, rule and knowledge based information processing refer to the degree of
conscious control exercised by the individual over his or her activities [12]. It provides
a useful framework for identifying the types of error that are likely to occur at different
situations. The skill, rule and knowledge based approach is a classification developed
by Reason and Rasmussen [12]. Rasmussen concluded that an individual would use a

15

Chapter 3 Human Error Chapter 3 Human Error

skill to deal with a problem-free task, use rule-based behavior for handling a routine
problem, and resort to first principles to deal with a novel problem [13].

James Reason has analyzed human errors and categorized them into mistakes and slips.
Mistakes are errors in choosing an objective or specifying a method of achieving this
objective whereas slips are errors in carrying out intended method for reaching an ob-
jective. Norman explains that the division occurs at the level of the intention: a person
establishes an intention to act. If the intention is not appropriate, this is a mistake. If
the action is not what was intended, it is a slip [14]. Figure 3.1 shows Reason’s distinc-
tion of human behavior. The project report will look at human errors and not consider
violations.

Figure 3.1: Classification of Human Error (Reason 1990)

3.2.1 Skill-based Error

Skill-based error refers to slips which is misapplied competence, as we see from Figure 3.1.
In this behavior the individual is able to function effectively by using pre-programmed
sequences of behavior, which do not require much conscious control [12] (see figure 3.2).
The situations of skill-based behavior requires highly practiced and essentially automatic
behavior with only minimal conscious controls [3]. An example of skill-based behavior
could be driving along a familiar route in a car.

Chapter 3 Human Error 17

3.2.2 Rule-based Error

In rule-based behavior, an error of intention can arise if an incorrect diagnostic rule is
used. Rule-based error occur when the situation deviate from normal, but can be dealt
with by the operator consciously applying rules which are either stored in memory or
are otherwise available in the situation. [3]. An example of rule-based mistake could be
that a developer used the syntax in java when writing code in C.

3.2.3 Knowledge-based Error

In the case of knowledge-based mistakes there are other important factors, as knowledge-
based error occurs when there are no predefined behavior. Most of these factors arise
from the considerable demands on information processing capabilities of the individual
that are necessary when a situation has to be evaluated from first principles [12]. Human
does not perform well in highly stressed and unfamiliar situations where they need to
act quickly without any known rules. There are described a wide range of failure modes
in these conditions:

Out of sight, out of mind- effect:
only the information, which is readily available, will be used to evaluate the situ-
ation.

I know I’m right-effect:
problem solvers become over-confident in the correctness of their knowledge.

Encystment:
when the individual or operating team focuses in one aspect of the problem, and
exclude all other considerations.

Vagabonding:
an overloaded worker gives his/her attention superficially to one problem after
another without solving any of them.

In Figure 3.2 the relationship between human errors and the consciousness is depicted.
We can see that little consciousness is necessary in skill-based behavior, but it increases
with each level of human behavior.

Chapter 3 Human Error Chapter 3 Human Error

Figure 3.2: The Continuum between Conscious and Automatic Behavior
(Reason 1990)

3.3 Swiss Cheese Model

James Reason has done research on human error and found that it can be viewed in two
ways: the person approach and the system approach [15]. The person approach focuses
mainly on people executing the error, while the system approach sees the error more as
a consequence than a cause.

Reason came up with the Swiss cheese model of system accidents. High technology
systems have many defensive layers: some are engineered, others rely on people, and
some depends on procedures and administrative control. Reason compared these layers
as slices of Swiss cheese, with holes representing faults, see Figure 3.3. The presence of
one hole in any of the slices of cheese does not need to cause a bad outcome. Usually it
will only result in a bad outcome if there are overlapping holes in all the layers.

Chapter 3 Human Error 19

Figure 3.3: Swiss Cheese Model (Reason)

3.4 Disturbances on Human Performances

Humans are affected by everything going on around them. We are easily distracted, are
generally unreliable and gets tired. Human behavior and performance has a vital part
in the second generation of HRA. SPAR-H (see section 4.2), is mainly based on human
behavior. Included in the model, there is a human behavior model (see Figure 3.4).
The behavioral sciences literature reveals eight summary operational factors listed in
the figure. These operational factors can be directly associated with a model of human
performance [16].

Chapter 3 Human Error Chapter 3 Human Error

Figure 3.4: Human Performance Model

Robert J. Latino [17] wrote an important article on how sleep/wake cycles affect human’s
performance. There are several factors about our sleeping pattern that may have an
effect, and one of these are how much sleep we get compared to how much we should
receive. If we do not get enough, this will be registered in our brain and will disturb
how we perform. Humans have a circadian rhythm which is the pattern of psychological
and behavioral processes timed to about 24 hours. The circadian rhythm describes our
sleep/wake cycles and influence human behavior in our workday cycles. It identifies
fatigue points during our wake state. As human are more prone to human error when
highly fatigue, we might be able to work around the critical points of fatigueness. When
being aware of people’s critical points we may be able to not assign critical tasks to people
on their fatigue cycle. There has also been done some research indicating that human
performance is lowest on the first day of work after workdays off. These disturbances
are considered important in the second-generation models, like CREAM and SPAR-H.

Another research paper focuses on how noise disturb humans in their performance in
their day to day work. Noise affects a wide area of human behaviors that have implica-
tions for health and well-being [18]. Over a long period of time, chronic noise exposure
may even elevate to psychological stress. The research paper explains how it will affect
the performance of a human being when exposed to high level of noise. Under noise,
humans process information faster in working memory, but at the cost of capacity. An
example is to memorize a list when exposed to noise. The subject will remember the
last things they memorized, even better than when not exposed to noise, but greater
errors occur farther back in the list [18].

This section has provided two examples of major disturbances on human performance.
Human performance is affected by more factors than what mentioned in this section.
However, it is important to keep in mind that humans are always affected by both

Chapter 3 Human Error 21

external and internal factors. Human behavior and performance will vary from person
to person, and from day to day. The methods that help preventing human errors need
to consider this in its design.

3.5 Software Errors

Humans are error prone, and will always make mistakes. Since humans make software
there will occur human errors in software development. In software development these
errors are referred to as bugs. A majority of bugs arise from misakes and errors made
by people in either a programs source code or in its design.

HRA has been used in high-risk industries, and one might think that software develop-
ment is a low risk industry. However, software errors are not just extremely expensive,
but as the world is digitized, software becomes a bigger part in all other industries as
well. There has also been software bugs with major consequences. A tech blog posted
an article about 10 historical software bugs with extreme consequences [19]. Among
them is a hole in the ozone layer that stayed undetected for a long lime due to software
error. In 1994 a helicopter crashed leading to 29 lives lost, and this was all due to a
system errors. Every year, software errors cause massive amounts of problems all over
the world. We know that a lot of these could be avoided with more careful testing.
Unfortunately, testing is the part of the software development process that are left out
if there are some time restraints, or budget overturns. This might lead to bad software
quality and a lot of expensive corrections after the release of a product.

Errors in software development can occur at any stage during the software development
process. It is convenient to split errors made by software developers into two broad
categories: development errors and debugging errors [20]. Development errors are made
when developers are engaged in the developement of software, e.g. design and coding
activities. Debugging errors occur when the developers try to fix a known error in the
software, and the error is not corrected properly or the correction leads to new errors.

One error in software development might lead to several faults in the program. As an
example, we can consider a scenario where the developer has misunderstood the syntax
of the programming language that are being used, which is classified as a development
error. Every time the programmer writes in this specific language, several faults are
injected into the system.

G. Gordon Schulmeyer wrote about what he called net negative producing programmers,
NNPPs [2]. He stated that in all teams there would always be at least one out of ten
of the team members that were NNPPs. The NNPPs are said to spoil more than they
produce, or in other words, that their spoilage exceeds their productions.

Chapter 3 Human Error Chapter 3 Human Error

Schulmeyer states that in a team of ten, we can expect as many as three people to have
a defect rate high enough to make them NNPPs. With a normal distribution of skills,
the probability that there are no NNPPs in a team of ten is virtually zero [2]. In a
high-defect project there might be half of the team that are NNPPs. It is important to
mention that there are not just NNPPs that makes mistakes in a project. All humans
will make some mistakes, as we are error prone. The study of NNPPs is relevant because
they consider a lot of human factors in software development.

Chapter 4

Background Information

In this section background information about previous work we have done on this project
is provided.

4.1 Specialization Project

This master thesis is a continuation of TDT 4501 Specialization Project conducted in
the previous semester in the fall of 2013. General information about human reliability
and human error is presented in the previous chapters. In this section the results from
the specialization project are presented.

4.1.1 HR-methods

One of the challenges of the project was to find HRA models to consider. There are
identified 71 different human reliability models [6], and there are probably more. The
models that were evaluated in this experiment were seven of the best-known HRA meth-
ods. These methods were THERP, CREAM, HEART, SHERPA, SPAR-H, SRK and
GEMS.

The HR-methods was evaluated based on a set of seven criteria’s. These criteria’s were:

CR1 How domain general is the model

CR2 How much training is necessary to use the method

CR3 How easy it is for a non HRA-expert to use the model

CR4 How much need for extra equipment, e.g. software, hardware

CR5 It should be possible to apply the method on different problems

23

Chapter 4 Background Information Chapter 4 Background Information

CR6 How documantable is the method

CR7 How consistent is the method

Each criterion was assigned a weight, and then each of the HRA method was rated
between one and five according to how well they met the criteria. Several of the methods
got high scores in the evaluation. However, there were two models that stood out
compared to the other models, SHERPA, with the highest score, and SPAR-H a few
points below. In the specialization project the focus continued on SHERPA as it got the
highest overall score.

SHERPA was originally developed for the process industry, see chapter 5 for more in-
formation about the HRA-method. As the process industry has different work approach
than software development, it is likely there are parts that are unnecessary, and other
parts in software development that will need support.

Few adjustments were made in the specialization project, but possible changes were
identified as further work. The only change that was made concerned notation in one
of the steps in SHERPA, and did not affect the method in a discernible way.

4.2 SPAR-H

SPAR-H scored three points below SHERPA in the evaluation of the HRA methods.
SPAR-H is a second-generation method, unlike SHERPA belonging to the first genera-
tion of HRA. In further work in the specialization project we suggested to investigate
SPAR-H further.

Standardized Plant Analysis Risk-Human Reliability Analysis [16] (SPAR-H), can be
used both as a screening method and as a detailed analysis method [11]. The method
has worksheets that allow analysts to provide complete descriptions of the tasks and
capture task data in a standard format. HEPs are provided for four combinations of
error type and system activity type, which are adjusted based on eight basic PFSs and
dependency. The SPAR-H method is straightforward, easy to apply, and is based on
a human information-processing model of human performance and results from human
performance studies available in the behavioral science literature.

SPAR-H is an interesting HRA method and is possibly as applicable to software de-
velopment as SHERPA. The method is well documented, and has been tested in a few
domains and proved successful [16]. As SPAR-H is a second-generation method, while
SHERPA is a first generation method it could be interesting to apply and tailor both
methods to see the different results and approaches.

After further considerations we decided to keep all attention on SHERPA. If two methods
were to be tested in the experiment, the number of participants in the experiment had

Chapter 4 Background Information 25

to be increased. SHERPA is a familiar method, as it was investigated in the previous
semester. SPAR-H is a method with a lot of information, and time had to be set aside to
learn the method thoroughly. Instead of using this time on learning SPAR-H, the time
is rather spent getting to know SHERPA better and do more thorough investigation on
adjustments needed.

Chapter 5

SHERPA

This chapter contains detailed information about SHERPA, the SHERPA procedure and
gives an example for better understanding of the analysis.

5.1 SHERPA

The Systematic Human Error Eeduction and Prediction Approach, SHERPA, was devel-
oped by Embrey as a human-error prediction technique [18]. The technique is based on
HTA as a description of normative, error-free behavior. The analysts use this description
as a basis to consider what can go wrong during task performance. Basically SHERPA
is a task and error taxonomy. The error taxonomy is continually under revision and
development, and is thus considered as a work in progress. SHERPA uses hierarchical
task analysis together with an error taxonomy to identify credible errors associated with
a sequence of human activity [18]. The method works by indicating which error modes
are credible for each task step in turn, based upon an analysis of work. Research com-
paring SHERPA with other human error identification methodologies suggests that it
performs better than most methods in a wide set of scenarios [18].

Most of the human error prediction techniques, including SHERPA, have two key prob-
lems. The first one relates to the lack of representation of the external environment
or objects [18]. Human error analysis technique has a tendency to treat the activity
of the device and the material with which the human interacts in only a passing man-
ner. Stanton claims that HRA often fails to take adequate account of the context in
which performance occurs [18]. The second key problem is that th methods put a lot
of responsibility on the judgment of the analyst. This will lead to different results from
different analysts. Interanalyst reliability occurs when different analysts make different
predictions regarding the same problem, while intraanalyst reliability is when the same
analyst make different judgments on different occasions. This uncertainty may weaken
the confidence in the predictions being made.

27

Chapter 5 SHERPA Chapter 5 SHERPA

SHERPA has been used in seversl industrial sectors. It was initially designed to assist
people in the process industry, like nuclear power, petrochemical processing, oil and gas
extraction and power distribution. In 1994, SHERPA was applied to the procedure of
filling a chlorine road tanker, and in 2000 it was applied to oil and gas industry. The
domain has broadened in recent years, and is now including ticket machines, vending
machines and in car radio cassette machines [18].

5.2 Procedure

SHERPA consists of eight steps. The explanations of each step is taken from [18].

Step 1: Hierarchical Task Analysis (HTA)

The process begins with the analysis of the work activities, using HTA. HTA is based
on the notion that task performance can be expressed in terms of hierarchy of goals,
operations, and plans [18]. Goals is what the person is seeking to achieve, operations
are the necessary activities executed to achieve the goals, and plans are the sequence in
which the operations are executed.

The analyst begins with an overall goal of the task, which is then broken down into sub
goals. Further, plans are introduced to indicate in which sequence the sub activities
are performed. The analysts decides when this certain level of analysis is sufficiently
comprehensive, and will move on to scrutinize the next level.

An example of a HTA is in Figure 5.1 in section 5.3.

Step 2: Task Classification

Each of the operations found during HTA is classified based on the error taxonomy into
one of the following behavior:

• Action: Action errors are classified into: process/operation, too long/too short, op-
eration/process mistimed, operation in wrong direction, operation too little/much,
misaligned, right operation on wrong object, wrong operation on right object, op-
eration omitted, operation incomplete and wrong operation on wrong object.

• Retrieval: Retrieval errors are classified into: information not obtained, wrong
information obtained and information retrieval incomplete.

• Checking: Errors in this category are classified into: check omitted, check incom-
plete, right check on wrong object, wrong check on right object, check mistimed
and wrong check on wrong object.

• Selection: Errors in this category are classified into: selection omitted and wrong
selection made.

Chapter 5 SHERPA 29

• Information communication: These errors are classified into: information not com-
municated, wrong information communicated and information communication in-
complete.

The explanations of the behaviors are from [21].

Step 3: Human Error Identification (HEI)

After each task is classified into a behavior in step 2, the analyst consider credible
error modes associated with that activity. A credible error is an error that is judged
by an expert, from the domain field the procedure is applied on, to be possible. For
each credible error, a description of the error mode is given and noted with associated
consequences.

Step 4: Consequence Analysis

The next step is a consequence analysis. The consequence of each behavior is considered,
as the consequence has implication for the criticality of the error.

Step 5: Recovery Analysis

If there is a later task step at which the error could be recovered, it is entered here. If
there is no recovery step, then this section can be skipped.

Step 6: Ordinal Probability Analysis

In this step the behavior is assigned an ordinal probability value, either low, medium or
high. The classification of the probabilities is as follows:
- Low (L): the error has never been known to occur.
- Medium (M): the error has occurred in previous occasions.
- High (H): the error occurs frequently

The assigned classification relies upon historical data and/or a subject matter expert.

Step 7: Criticality Analysis

If the consequence is deemed to be critical, then a note is made of this. Criticality is
assigned in a binary manner. If the error would lead to a serious incident, then it is
labeled as critical, denoted by the symbol: “!”. The serious incidents have to be defined
clearly before the analysis start.

Step 8: Remedy Analysis

The final step in the process is to propose error reduction strategies. These are presented
in the form of suggested changes to the work system which could have prevented the
error from occurring, or possibly reduced the consequences. This is done in the form
of a structured brainstorming exercise to propose ways of circumventing the error, or

Chapter 5 SHERPA Chapter 5 SHERPA

to reduce the effects of the error. The strategies are typically categorized under four
headings: Equipment, Training, Procedures and Organization.

As some of the remedies might be costly to implement, they need to be judged with
regard to the consequences, criticality, and probability of the error. There are four
criteria’s to consider when analyzing the remedy:

1. Incident prevention efficiency: to which degree the recommendation would prevent
the incident from occurring.

2. Cost effectiveness: the ratio of implementing the recommendations to the cost of
the incident * the expected incident frequency.

3. User acceptance: to which degree workers and organization are likely to accept
the implementation of the recommendation.

4. Practicability: technical and social feasibility of recommendation.

This evaluation then leads to a rating for each recommendation.

Chapter 5 SHERPA 31

5.3 Example

SHERPA has previoulsy been applied to the task of programming a VCR. The following
examples are from [18]. The first thing to be done is an HTA of the task. The example
of HTA for programming a VCR is seen in Figure 5.1

Figure 5.1: HTA example

After the HTA is conducted, the rest of the evaluation is performed. Each of the subtasks
are evaluated in a SHERPA table. Figure 5.2 show the evaluation of the VCR example.

Chapter 5 SHERPA Chapter 5 SHERPA

Figure 5.2: SHERPA example

5.4 Pros and Cons

As all the other HRA models there are both advantages and disadvantages of using
SHERPA.

Advantages:

• Structured and comprehensive procedure

• Taxonomy prompts analysts for potential errors

• Suitable for several domains

Chapter 5 SHERPA 33

• No need for an HRA-expert

• Error reduction strategies offered as part of the analysis

Disadvantages:

• Extra work is involved if HTA is not already available

• Some predicted errors and remedies are unlikely or lack credibility, thus posing a
false economy

• Different analysts may lead to different results

5.5 Validity

The biggest disadvantage of SHERPA is that it may become unreliable when used by
different analysts, due to e.g different experience, education and opinions. Despite this
disadvantage, SHERPA received the highest overall ranking of the human-error predic-
tion techniques by expert users [22]. Some validity checking has been done by Baber
and Stanton [23]. Predictive validity was tested by comparing the errors identified by
expert analysts with those observed during 300 transactions with a ticket machine in the
London Underground [23]. They found a validity statistic of 0.8 and a reliability statistic
of 0.9 [23]. Another study, made by Stanton and Stevenage, found a validity statistic
of 0.74 and reliability statistic of 0.65 in the application of SHERPA by 25 novice users
for prediction of errors on a vending machines [21]. Validity statistics concerns to which
extent a measure procedure is capabale of measuring what it is supposed to masure,
and reliability statistics is estimated based on the consistency of the experiment [24].
Stanton and Young applied SHERPA on eight novice users for prediction of error on a
radio-cassette machine, and reported a concurrent validity statistic of 0.2 and a reliabil-
ity statistic of 0.4 [25]. These results corresponds to the disadvantages from section 5.4,
and suggest that reliability and validity are highly dependent upon the expertise of the
analyst and the complexity of the device being analyzed [26].

Part III

Research Methods and Research
Design

35

Chapter 6

Research Methods

This chapter provides information about the different research methods used to collect
data in this study. Firstly, an overall research methodology will be described, and then
the detailed research design will be presented.

6.1 Qualitative and Quantitative Research

Qualitative research concerns studying objects in their natural environment and gath-
ering information by observing. Quantitative research, on the other hand, concerns
quantifying a relationship or to compare two or more groups [27], and are often con-
ducted in a controlled environment.

6.1.1 Qualitative Research

Qualitative research has a flexible design, and mostly consist of qualitative data. Qual-
itative data includes all non-numeric data [28]. These data are e.g. words, images,
sounds generated by case studies, action research and ethnography. There are no hard
or fast rules on how to analyze qualitative research, which makes is hard to perform. As
opposed to quantitative research which can draw upon well established mathematical
statistics, qualitative research is dependent of the skill of the researcher to see patterns
in the data. The advantage of qualitative research is that the analysis can be rich and
descriptive. There is also a possibility of several alternative explanations, as opposed
to where there are only one correct answer. A disadvantage of qualitative research is
that the volume of qualitative data may feel overwhelming, as this kind of research
provide large amounts of information. Another disadvantage is that the findings of the
researcher rely heavily on the researcher’s opinion and experience.

37

Chapter 6 Research Methods Chapter 6 Research Methods

6.1.2 Quantitative Research

Quantitative research is a type of fixed design, which primarily consist of quantitative
data. Quantitative data includes data, or evidence, based on numbers [28]. Quantitative
data are generated by experiments and surveys, but can also be generated by other
research strategies. The main idea of data analysis is to look for patterns in the data,
and draw conclusions based these patterns. The data can be presented in different
ways, as simple graphical representation like tables, graphs or charts, or on a next level
of complexity with statistical techniques that allow more patterns to be found. The
advantages of qualitative research are among other things that the analysis is based
on measured quantities, which means that statistical tests can be used and checked
by others, and give the same number. This advantage makes the research method
scientifically respected. Some people find the use of quantitative data to be the only
valid form of research. The disadvantages that needs to be considered are among others
the danger of a lot of sophisticated statistical tests shadowing the original purpose of
the research. It is important to keep in mind that the analysis can only be as good as
the data initially generated.

In this master thesis a combination of qualitative and quantitative research methods
will be used.

6.2 Focus Group

Focus groups are one of the many information-gathering methods available. It is a form
of group interview that capitalizes on communication between research participants in
order to generate data [29]. A group interview is a quick and convenient way to collect
data from several people simultaneously, but focus groups use the group interaction
as a part of the method. People are encourage to talk with each other, rather than
participating in the question and answer routine used in a group interview. The method
is particularly useful for exploring peopleÂťs knowledge and experiences and can be used
to examine not only what people think but how they think and why they think that
way [29].

According to Kitzinger [29], the idea behind focus groups is that group processes can
help people to explore and clarify their views in ways that would be hard to access in
regular interviews. Focus groups are especially appropriate when the interviewer has
open ended questions and seeks to encourage research participants to explore issues
that are important to them, in their own vocabulary, generating their own questions
and pursuing their own priorities. If the group dynamics work well, it might lead the
research in new and unexpected directions.

Chapter 6 Research Methods 39

Focus groups has many positive qualities, but as other forms of groups there are also
some disadvantages. Dynamic groups may silence the individual voices of dissent. The
presence of other research participants also compromises the confidentiality of the re-
search session [29].

6.2.1 Context Selection

Focus groups studies are used in several situations and in several manners. It can
consist of several groups, everything from a few to fifty, depending on the project and
the resources available. Focus groups can also be combined with other data collection
techniques.

Most focus group studies use a theoretical sampling mode, where participants are se-
lected to reflect a range of the total study population or to test particular hypotheses
[29]. Imaginative sampling is crucial. It is recommended to aim for homogeneity within
each group in order take advantage of people’s shared experiences. The groups can be
naturally occurring, an example may be people that work together, or may be drawn
together specifically for the research. Preexisting groups allows observation of fragments
of interactions that approximate naturally occurring data, which is data that could have
been collected by participant observation. Another advantage is that friends and col-
leagues can relate to each others comments to incidents in their shared daily lives. They
may challenge each other on contradictions between what they profess to believe and
how they actually behave.

6.2.2 Planning of Focus Group

It is important to consider the appropriateness of a group for different study populations
and to consider how to overcome potential difficulties. There is a safety in that there are
several people in the group for those who are wary of an interviewer or is anxious about
talking. The environment of the sessions should be relaxed. A comfortable setting,
refreshments and sitting in a circle will help to establish the right atmosphere. The
ideal group size is four to eight participants. The group is coordinated by a moderator
or facilitator, who is often assisted by a co-researcher. The sessions should last one to
two hours. If the session requires more time it can extend to an afternoon or a series of
meetings. Before the focus group starts it is important that the researcher explains to
the participants that the aim of focus groups is to encourage participants to talk to each
other rather than to address themselves to the researcher. Kitzinger recommends the
researcher to take a back seat at first, allowing for a type of structured eavesdropping.
Later in the session, the researcher can adopt a more interventionist style, leading the
group to further discussions. Disagreement within the group are likely to occur, and

Chapter 6 Research Methods Chapter 6 Research Methods

should be used to encourage participants to elucidate their point of view and to clarify
why they think as they do.

An important consideration in the data-collection process is the precise means by which
data are recorded. Tape-recording is recommended, since it will leave the moderatorÂťs
attention free to focus on the rest of the group. If a tape-recording is not possible, it is
vital to take solid notes. Kreuger [30] recommends the facilitator to take written notes
even when tape-recording is employed. This will protect against machine failure, and at
the same time provide a means whereby observation of the non-verbal interaction takes
place. Video has become a popular mean of recording, and could also be used during a
focus group. Video recording will also catch the non-verbal interaction, but it may also
have undesirable reactive effect.

The analysis of the focus group session is likely to follow the same process as for other
sources of qualitative data [29]. When analyzing the data collected there are some
issues to consider. One of these is that some of the participants in the group may
be more articulate or assertive than other’s, leading to some data being artificially
suppressed. Members of the group with less self-confidence or are less articulated may be
inhibited from expressing alternative viewpoints. The problem arises with the question
of silence: do silence indicate agreement of represent an unwillingness to dissent? Skillful
questioning by the moderator may assist in distinguishing these two possibilities [31].
If more than one focus group are conducted, then the combined result from each focus
group will increase the reliability of the data.

6.3 Experiment

Experiments are used when we want control over the situation and want to manipulate
behavior directly, precisely and systematically [27]. There are several advantages of ex-
periments, one of them is the control of subjects, objects and instrumentation which help
us to draw general conclusions. Another advantage is the ability to perform statistical
analysis using hypothesis testing methods and opportunities for replication. When con-
ducting a formal experience, we want to study the outcome when we vary some of the
input variables to a process. According to Wohlin there are two kinds of variables in an
experiment: independent variables and dependent variables [27]. Dependent variables
are those we call response variables, and are the variables we want to study to see the
effect of changes after the experiment is conducted. All variables in a process that are
manipulated and controlled are independent variables.

Wohlin states that experiments are appropriate to investigate several aspects. These
aspects includes:

• Confirm theories, to test existing theories

Chapter 6 Research Methods 41

• Confirm conventional wisdom, to test peoples conceptions

• Explore relationships, to test that a certain relationship holds

• Evaluate the accuracy of models,

• Validate measures, to ensure that a measure actually measures what it is supposed
to do.

The starting point of an experiment is insight, and the idea that an experiment is a
possible way to evaluate what we are interested in. The experiment process can be
divided into five main activities [27]. Scoping is the first activity, during this step the
experiment is scoped in terms of problem, objective and goals. The next step is planning,
where the design of the experiment is determined, the instrumentation is considered, and
threats to the experiment is evaluated. Next is the experiment operation. In this activity,
measurements are collected, before they are evaluated and analyzed in the analysis and
interpretation activity, which is the next step. The last step is presentation and package
where the results are presented.

6.3.1 Planning the Experiment

Planning refers to how the experiment is conducted. The experiments must be well
planned, and plans need to be followed in order to control the experiment. In the
planning phase the context of the experiment is determined in detail, which includes
personnel and environment. The hypotheses are stated, including null hypotheses and
alternative hypotheses. The planning of the experiment will be reflected in the result,
poor planning may lead to bad results. The planning phase may be divided in seven
steps [27]. First comes the context selection. In this step we select the environment in
which the exercise takes place. Next is the hypothesis formulation and then the variable
selection of independent and dependent variables take place. The selection of subjects
is decided as a next step before the experiment design type is chosen. Instrumentation
prepares for the practical implementation of the experiment. The final step is the validity
evaluation which aims at checking the validity of the experiment.

6.3.1.1 Context Selection

When performing the context selection, it is always best to execute the experiment in
large, real software projects with professionals. However, this is not always possible
when research are at an early stage. Conducting experiments involves risks, which may
make a project delayed or in some way make the project less successful.

An experiment can be characterized according to four dimensions [27]:

Chapter 6 Research Methods Chapter 6 Research Methods

• Off-line vs. on-line

• Student vs. professional

• Toy vs. real problems

• Specific vs. general

Off-line experiments are conducted in controlled environments, with full control over the
participants. In some cases the experiments may be unrealistic, as off-line experiments
are conducted with pen and paper. On-line experiments, on the other hand, uses real
computer tools on computer problems. This allows us to register data directly and will
lead to a simpler analysis. A disadvantage with on-line experiments are that there are
less control over the participants.

When using students in an experiment you are likely to get a large number of partici-
pants, which will give good statistical significance. However, students are not profession-
als yet, and may behave different than what professional would have done, which again
makes the results difficult to generalize. When using professionals the results are realis-
tic, and the result easy are to generalize. Unfortunately it is difficult to get a significant
number of professionals to participate, which will give low statistical significance.

When selecting problems for the experiment there is the choice of whether to choose toy
problems or real problems. Toy problems can be done in a short time, and the results
are easy to analyze. The problems often get too simple and there is a risk of them being
unrealistic. Real problems are realistic and will give a relevant result. It will generate
a lot of data, but at the same time the results may be difficult to analyze. The real
problems need long time to finish, compared to toy problems.

Specific experiments are easy to define, but the resukts are difficult to generalize. The
data collected in these kinds of experiment are easy to define and analyze. In general
experiments, the experiment is hard to define, but then also easy to generalize. In
general experiments it may be hard to define relevant data.

The choice of which of the dimensions are selected depends on several factors, such as
available resources (e.g. money, personnel, time), the need for generalization and the
consequences of making wrong decisions.

6.4 Questionnaire

A questionnaire is a research tool that uses questions to gather information from multiple
respondents [32]. It is a type of survey meant to allow a statistical analysis of the
responses. Oats [28] defines questionnaires as a pre-defined set of questions, assembled

Chapter 6 Research Methods 43

in a pre-determined order. Questionnaires are often associated with the survey research
strategy, but are also used in other research strategies.

The questions in a questionnaire can be open-ended where the respondents are able to
formulate his or her answer, or close-ended where a number of options are given for the
respondent to choose. There are advantages and disadvantages for both kinds of ques-
tions. The open-ended questions give more information, but take longer to process. The
close-ended questions are much easier to respond to. According to Ringdal, question-
naires has a high degree of standardization [33], especially in close ended questionnaires.
The purpose of a high degree of standardization is to eliminate accidental measurement
errors and give reliable data. Questionnaires consist almost entirely of close-ended ques-
tions. When constructing questionnaires it is important to use clear and precise words,
correct grammar and correct punctuation [32]. Questionnaires are one of the data col-
lection techniques used in surveys. The questionnaires can be provided in both paper
form and in an electronic form.

Chapter 7

Validity of Research Methods

When analysing qualitative and quantitative data from information gathered in this
thesis it is important to asses the validity of the data. Adequate validity refers to
that the results should be valid for the population of interest [27]. This means that
the results has validity for the population we would like to generalize the result of.
Wohlin presents four types of threats to validity, identified by Cook and Campbell [34].
The characteristics are conclusion, internal, external and construct validity. The best
research designs are those that can assure high levels of internal and external validity
[35]. Figure 7.1 shows the different types of validities’ relationship to eachother.

7.1 Conclusion Validity

Conclusion validity depends on the quality of the data. It is sometimes referred to as
statistical validity, as it is desirable to ensure a statistical relationship. The threats
that are associated with conclusion validity are issues that affect the ability to indentify
statistical relationships in an experiment. These issues include choice of statistical tests,
choice of sample size and so on.

7.2 Internal Validity

An experiment has good internal validity if the measurements obtained are indeed due
to manipulation of the independent variable, and not to other factors [34]. Threats
to internal validity concerns issues that may indicate a causal relationship, even though
there are none [27]. Threats to internal validity are among others differences between the
experiment and control group, history; events that are not noticed, interferes between
pre-test and post-tests observations, badly designed instrumentation and so on. All

45

Chapter 7 Validity of Research Methods Chapter 7 Validity of Research Methods

Figure 7.1: Validity

these factors, and more can make the experiment show results that are not due to what
was tested in the experiment, but due to other disturbing factors.

7.3 Construct Validity

Construct validity concerns the measurements of the experiment. The measurement
needs to be a good measurement for the situation in the experiment. Construct validity
concerns generalizing the result of the experiment to the theory or concept behind the
experiment. Threats to construct validity may be interaction between treatments in the
experiment, or between treatment and testing, fishing for expectations or makeing your
own expectation become too visible in the experiment.

7.4 External Validity

An experiment has good external validity if the results are not unique to a particular
set of circumstances, but are also generalizable in other occasions. Experiments seek
high external validity, and the best way to demonstrate generalizability is to repeat the
experiments many times in many different situations. External validity is affected by
the experiment design chosen, but also objects and subjects in the experiment. Threats
to validity are among others too few participants, non-representative participants and
non-representative test cases. The threats to external validity are reduced by making
the experimental environment as realistic as possible.

Chapter 8

Research Design

This chapter will describe in detail how the research is performed.

8.1 Focus Group

The focus group will in this study be performed in conjunction with the experiment
later in the project. It will cover the first part of SHERPA, which is the hierarchical
task analysis, HTA. As the experiment will consist of participants from third year of
a five-year degree, these participants may not have much experience through summer
interns and other IT related work. HTA is only the first step of the SHERPA analysis,
and needs to be conducted before the rest of the analysis. The focus group will consist
of fellow students from the fifth grade with more experience than the participants in the
experiment.

The group will be a naturally occurring group as the participants have studied together
for a long time and know each other well. They are all interested in programming and
has gained some experience through the years at the university in courses and projects
as well as summer internships.

The purpose of this focus group is to do an HTA on five basic programming tasks. These
tasks were presented in Schulmeyers article about NNPPs, which addresses the need for
a programming behavior model. The basic tasks are:

1. Composition

2. Comprehension

3. Debugging

4. Modification

47

Chapter 8 Research Design Chapter 8 Research Design

5. Learning

In the focus group the participants will discuss how they perform these tasks. In the
project specialization paper, written during the previous semester, we localized some
issues that needs to be considered. To tailor SHERPA to software development there
are parts that need to be adjusted or removed. In the original format of SHERPA there
are five behaviors that every operation are classified into. These are action, retrieval,
checking, selection and information communication. The error mode does not match
errors made in software development, this issue and other possible error modes are to
be discussed in the focus group.

The focus group will also discuss what errors and how they occur when they work.

8.2 Experiment

The experiment performed in this master thesis will be an off-line experiment as the
research is at an early stage with lot of uncertainties. With an off-line experiment we
are able to control the environment and the variables better. The test subjects will be
students, as students are cheaper and easier to “get” than professionals. There will be
little risk when using students, and at the same time we will not have problems with
getting a sizable group of students and schedule the experiment. The problems the
participants will solve, are problems discussed in the focus group with more experienced
students. The problems are realistic programming situations, but as the participants
may have their own programming procedure, and the fact that none of the problems are
complete, will to a certain degree make it a toy experiment.

8.2.1 Selection of Subjects

The test subjects for the experiment will be selected based on a convenience sampling.
The test subjects will be a group from 4th semester computer science students, and
a group from 6th semester or above from informatics at NTNU. The students will be
compensated with 200 NOK each towards their class excursion.

The experience of the students may not be substantial, but it is important to keep in
mind that they might have gained experienced in other places than the university and
gained more experience than what is expected. As the students are attending different
semesters, it will be interesting to see if there are differences in the results depending on
which semester they are attending. We believe that when we choose simple programming
tasks, the participants will be able to do the analysis without too much problems.

Chapter 8 Research Design 49

8.2.2 Location and Equipment

The experiment will take place in an auditorium at the university. The auditorium has
189 seats, which will make it possible to evenly distribute the participants throughout the
room to prevent them from influencing each other when performing the experiment. The
auditorium has a projector, which allows for a Powerpoint presentation to show certain
parts of the experiment that is useful to help the participants along. The experiment
demands little equipment, and will be conducted using pen and paper. The experiment
material will be placed before the participants arrive, which will guarantee a distributed
seating of the participants.

8.2.3 Experiment Design

The purpose of this experiment is to test the HRA method, SHERPA. In this experiment
the participants are analyzing a set of subtasks predefined from the focus group con-
ducted previously, see chapter 10. The participants attended an hour-long experiment.
During the experiment, data was collected through questionnaires and the SHERPA
table.

The experiment will be accompanied by two questionnaires, a pre-questionnaire and a
post questionnaire.

8.2.3.1 Pre-Experiment Questionnaire

The purpose of the pre-questionnaire is to get information regarding the experience of
the participants, and to gain general information about the participant. The result of
the experiment is to some degree dependent of the experience of the person participating
in the experiment. These data will be useful when analyzing the results.

8.2.3.2 SHERPA Table

The experiment starts after the pre-questionnaire is completed. The students starts by
reading a step-by-step guide on how to fill the SHERPA table, and how to perform the
analysis. The tasks that are to be analyzed are predefined and entered in the table.
There are a total of 11 tasks to be analyzed during the experiment. The students decide
for them selves whether the situation in the task is error prone or not.

Chapter 8 Research Design Chapter 8 Research Design

8.2.3.3 Post-Experiment Questionnaire

The post-questionnaire regards the participants’ perception of the method being tested.
The questionnaire concerns the issues of how easy it was to conduct, and also how useful
the participants found it to be.

Part IV

Research Procedure and Results:
Focus Group

51

Chapter 9

Hierarchical Task Analysis

This chapter is an introduction to the main task to be done in the focus group. It contains
detailed information about Hierarchical Task Analysis, and how it is conducted.

Hierarchical Task Analysis, HTA, is a core ergonomics approach with a pedigree of
over 30 years continuous use [36]. The first paper written about HTA, Task Analysis
(Department of Employment Training Information Paper No. 6), was published 1971
and was authored by Annett [37]. In this paper it was made clear that the methodology
is based upon a theory of human performance. The theory is based on goal-directed
behavior comprising a sub-goal hierarchy linked by plans. Originally, HTA had only
three governing principles. The first is that at the highest level we choose to consider
a task as consisting of an operation, and the operation is defined in terms of goals.
Secondly, the operations can be broken down into sub-operations, each defined by a
sub-goal. Third is the hierarchical relationship between operations and sub-operations
[37]. Ergonomists are still developing new ways of using HTA which has assured the
continued use of the approach for the foreseeable future [36]. According to Kirwan and
Ainsworth, HTA is considered the best known task analysis technique [38].

The number of guidelines for conducting HTA are surprisingly few [36]. The method-
ology is based on a few broad principles, rather than a rigidly prescribed technique.
According to Stanton there are 9 basic heuristics for conducting an HTA:

1. Define the purpose of the analysis

2. Define the boundaries of the system description

3. Try to access a variety of sources of information about the system to be analyzed

4. Describe the system goals and sub-goals

5. Try to keep the number of immediate sub-goals under any super-ordinate goal to
a small number

53

Chapter 9 Hierarchical Task Analysis Chapter 9 Hierarchical Task Analysis

Figure 9.1: Procedure of breaking down the sub-goal hierarchy

6. Link goals to sub-goals and describe the conditions under which sub-goals are
triggered

7. Stop redescribing the sub-goals when you jugde the analysis is fit for purpose

8. Try to verify the analysis with subject-matter experts

9. Be prepared to revise the analysis

Figure 9.1 presents a procedure of the steps above. The procedure only describes the
steps 4-8, but offers a useful heuristic for breaking the tasks down into a sub-goal hi-
erarchy. The notation of HTA may be presented in three ways, hierarchical diagrams,
hierarchical lists and in a tabular format. Each of the notations has their own advan-
tages and it is up to the analyst to choose between the three. The hierarchical diagrams
make it easy to trace the genealogy of sub-goals for small scale analyses, but with larger
scale analysis it can become cumbersome and unwieldy. [36] For these types of analysis
a hierarchical list approach might be more useful. The hierarchical diagram and the
hierarchical list presents the same information, but in different forms. The advantage of

Chapter 9 Hierarchical Task Analysis 55

the diagram is that it represents the group of sub-goals in a spatial manner, which gives
a quick and straightforward overview of the HTA. The list presents the information in a
more condensed format, which is useful in a large analysis. The tabular format provides
more details, it is not a complete analysis but it provides notes on how different incidents
were handled.

Chapter 10

Results From Focus Group

This chapter presents the procedure and the resulst and findings from the focus group
session. The focus group was conducted with seven participants in addition to the
facilitator, Friday 7th of March. It was located at the university, and lasted for 2 hours.

10.1 Procedure

This section describes how the focus group was conducted. A timetable for the session
with estimated use om time is shown in table 10.1.

Activity Estimated time use
Introduction 5 Minutes
Example of HTA and questions 10 Minutes
Debugging 15 Minutes
Composition: writing a program 15 Minutes
Comprehension: understaning a given problem 15 Minutes
Modification 15 Minutes
Learning 15 Minutes
Discussion of Software errors 25 Minutes
Total time 120

Table 10.1: Timetable for Focus Group Session

First, the purpose of the focus group was stated and explained. The participants would
ask for and get the information they wanted. We started with HTA and an explanation
of what it is. We discussed the matter further and studied some examples of HTA on
one of the tasks that was going to be conducted.

57

Chapter 10 Results From Focus Group Chapter 10 Results From Focus Group

Figure 10.1: Focus Group Session

We started with the task of debugging, and continued with the other tasks. The group
started by discussing some of the main tasks in how to solve the problem. As most of
them had never conducted an HTA before they found it a bit difficult to structure the
tasks in a hierarchical structure. The main problem was that they felt that it was hard
to draw an iterative process and keep it hierarchical at the same time. As developers
they are more familiar with drawing state charts than drawing hierarchical tasks. The
drawings ended up with being a merge of a state chart and hierarchical task analysis.
The idea of this task was to get several views and experience of how the tasks are
executed by the general developer. We collected a lot of interesting ideas, which will be
helpful for further work before the experiment.

10.2 Findings

In this section, the findings of the focus group is presented.

Chapter 10 Results From Focus Group 59

10.2.1 HTA

During the discussions of the HTA it became clear that all the participants felt that
there will be different ways of solving problems according to what kind of technology
they used. At the task of debugging they all commented that the type of framework
had a great impact on how they were to work, and that there are no universal way of
debugging. Developers probably have their own process and habits when it comes to
debugging. But there is a “main path” most of them follow. This statement points
out what has been mentioned earlier, that when analyzing a situation that may seem
similar to all, like debugging, it needs to be analyzed in the certain settings in order for
all details to be correct. Different companies need to conduct their own analyze to deal
with the problems in their own development team.

HTA is the first step of SHERPA, and the task of HTA is used to recognize all subtasks
in different situations so that the analyst is able to perform the analysis on all the
subtasks covering the entire situation. There are several ways of drawing HTAs, and
it is possible to draw these as a merge as was done in the focus group. The important
thing is to keep the subgoal and goals according to the rules of HTA. However, if there
are other ways to find subgoals than drawing the (for developers) unfamiliar HTA, this
may also be performed. If there are other ways that may give as much information as
HTA does about subgoals, this method could also be performed as step 1 in SHERPA.
This means that it is possible to use the form of analysis that is most suitable for the
person performing it. However, the analysis should meet all the needs of SHERPA and
should lead to the same tasks as HTA does.

10.2.2 Errors in Software Development

After the HTA was conducted, a discussion on error they usually commit, or has expe-
rienced from previous projects was discussed. Poor motivation was one of the identified
problem areas. When things first start to go bad it is hard to keep motivation at a pro-
ductive level. Motivation fails mostly because something else in the project or program
already has failed. The setup of the programming environment is a major contribution
to errors. The participants had all experienced problems occurring from this phase of
software development. The errors committed during this phase may be serious and cre-
ate severe problems throughout the project. An example some of the participants had
experienced was that developers had imported wrong version of libraries to the project.
This particular error may cause security issues and deprecated functionality.

There are differences in the severity of the errors that are committed during development.
The severity will affect the time needed for correction. Small bugs will be corrected with
little effort, while the big errors takes more time. Even though the amount of small
errors is bigger than the amount of more severe errors, the severe errors are more time

Chapter 10 Results From Focus Group Chapter 10 Results From Focus Group

consuming. As an example, the participants in the focus group had experienced that if
there were something missing from planning, which made it inadequate, it would lead
to the architecture being insufficient. These types of error are one of the most severe
errors and demand a lot of time and refactoring.

The group agreed that the process they use in the project they are working on is impor-
tant. Different processes serves different types of project, and choosing a wrong process
might lead to low efficiency during development.

We also discussed pair-programming and pair-debugging. The participants felt that
pair-programming might slow down the development somewhat, but may be useful when
problems occur that are hard to solve alone. However, they were excited about pair-
debugging. Pair-debugging helped them a lot and made both large and small debugging
problems easier to perform. It is a bit time consuming, but it will probably take shorter
time than when one developer is stuck with a problem alone.

We discussed how they solved problems that occurred in their daily programming work.
They had different ways to solve their problems; quite often they asked each other or
other developers for help to sort out their problem. The group also introduced a term
called “rubber ducking”. When you have a problem you are not able to solve, you put
a rubber duck in front of you on your desk and explains the problem thoroughly to the
duck. Hopefully, when you explain the problem you will understand it better and might
be able to solve it yourself. For the participants it was important to always try to solve
the problem themselves before they consult other developers. It is okay to ask other for
help, but it is not appreciated if the person asking has not tried to solve it themselves
first.

10.2.3 Error Modes

We discussed possible error modes in software development, and what needs to be cov-
ered in a behavioral model for developers. Some of the error modes in SHERPA might
need some changes at the same time as new ones are presented.

One of the modes that are covered by the error mode action in SHERPA is timing.
Timing is important in software development, as there are always time limits, and the
fact that a lot of projects often exceed their time limits. There are several timing
problems, some of them concerns the entire project, but there are also timing issues
where a part of the problem takes more time than what was accounted for. Both of
these should be covered by the error modes either together or as separate.

Software development is knowledge work. A lot of work done in plants can be character-
ized as different forms of actions, while most of the work done in software development
involves a lot of thinking. We either use the knowledge we already have, or acquire new

Chapter 10 Results From Focus Group 61

knowledge to solve tasks. One problem that may arise, and often does, is that the devel-
oper does not have sufficient knowledge of the specific domain he is currently working
in. Insufficient knowledge might lead to poor decisions in design and implementation.

Another issue that arises, especially in teamwork, is that developers work in different
ways and in different pace. If there are some part of a system that is dependent on other
parts, there may be delays and one of the developers may have to wait for others, which
causes valuable time to be wasted.

Selection of improper technology was identified as another error mode. This occurs in
several occasions like when choosing an improper framework or if a functional program-
ming language is used when an object oriented language would be more appropriate. In
the original version of SHERPA there is a category of error mode called selection, with
sub-error modes: selection omitted and wrong selection made.

As in other knowledge sectors, the continuation of information is also important in
software development. Developers obtain knowledge by asking developers with more
experience in a certain domain or acquire knowledge by searching for information. As
knowledge is an important part of programming, there should be an error mode that
also includes the handling of knowledge.

Part V

Research Procedure and Results:
Experiment

63

Chapter 11

Adjustments made in SHERPA

To make SHERPA applicable to software development there are some changes that
need to be made. In this chapter the adjustments are presented, with the reasons why
these changes were made. The changes are made on the basis of the results from the
specialization project and the focus group conducted before the experiment.

11.1 Error Mode

There are five basic error modes in SHERPA; Action, Information Retrieval, Checking,
Selection and Information Communication. Most of the error modes are also suitable
for software development. However, the error mode “Action” is not that relevant since
software development is considered knowledge work and not operational work. Hence
there are four error modes left for task classification.

Three new categories of error modes are suggested, as well as one error mode added to
one of the existing categories, and will be tested during the experiment.

11.1.1 Time

Timing was identified during the focus group as a needed category of error mode. Time
is important in software development, relative to scheduling of projects, how much time
is needed to perform a task and remain within time estimates. Another aspect of time
that was identified during the focus group was that developers work at different pace.
In some cases, like in teamwork, situations may arise where developers need to wait for
each other before they are able to move on. Four error modes in the category Time are
added, and these are:

65

Chapter 11 Adjustments made in SHERPA Chapter 11 Adjustments made in SHERPA

T1 Underestimated schedule:
this concerns the estimation of the entire project, e.g project is not able to meet
its deadline

T2 Underestimated workload:
this concerns time assigned to a task within the project, e.g not able to finish
mockup before presentation

T3 Overestimated workload:
this concerns estimation of a task, e.g it took less time to make the functionality
than accounted for

T4 Unbalanced workload:
this concerns those times when there is a delay in the project leading to one
developer need to wait before he/she can start to work on their part

11.1.2 Knowledge

Knowledge is an important part of software development. When developers solve a
problem, they use the knowledge they have, or acquire new knowledge. One problem
that often arise is that developers do not possess enough knowledge about the specific
domain they are currently working in. At the coding level, lack of knowledge in the
programming language could result in an unduly complex program [39]. Other situations
that may occur is that the developers overrate their own knowledge. Two error modes
in the knowledge category are added:

K1 Insufficient Knowledge:
concerns the occasions where the developers do not possess the necessary knowl-
edge to solve the problem at hand.

K2 Overrated knowledge/Arrogance:
concerns the situations where the developer assume that his/her way is the best
way to do it, while not investigating further.

11.1.3 Technical Error

In situations like setup of the development environment a lot of errors occur. The errors
that occur in these situations cannot yet be covered by SHERPA. Two error modes are
thus added to this category, namely:

E1 Wrong configuration:
concerns the configuration of software wrongfully, like adding an outdated library
to the project

Chapter 11 Adjustments made in SHERPA 67

E2 Version control:
concerns the problems that arises when different versions of the project is used by
developers, like when developers are debugging different versions of the system

11.1.4 Selection

The Selection category already consist of two error modes. During software develop-
ment a lot of choices are made, and some of these are directly related to a selection of
technology. To the category Selection, we add:

S3 Wrong technology selected:
concserns the situation of a selection of a technology, like when choosing an un-
suitable language for the application

11.2 SHERPA Process

SHERPA consist of eight steps. In this experiment the participants will not conduct
a complete SHERPA analysis. Certain simplifications needs to be made to make the
experiment feasible. In this section information about changes in each step is provided.

Step 1: HTA
The first step of SHERPA is, as stated in chapter 5, hierarchical task analysis. In this
experiment a simplified analysis will be tested. The subtasks that are normally identified
during this step of SHERPA are predefined and already added to the SHERPA table
prior to the experiment. These subtasks was identified during the focus group session,
see the results in section 11.3.

Step 2: Task classification
The second step of SHERPA is task classification. In this step the subtasks defined
during HTA is classified into one of error categories, also called behaviors. During the
pilot testing of the experiment, it was suggested to remove this part from the experiment.
The feedback given was that when the pilot testers had classified the subtasks into one
of the categories, they got confused and ended up writing the error modes description
from the error mode table into the error description in the SHERPA table, instead of
writing the error they identified in the specific task. The testers found it strange that
they were to classify the subtask to an error category before they had filled in the error in
the SHERPA table. Given this feedback, and the fact that this step does not contribute
anything to the SHERPA table, this step was removed during the experiment.

Step 3: Human Error Identification
This step was completed as normal without any adjustments. The only change is that
it worked as step 1 during this experiment.

Chapter 11 Adjustments made in SHERPA Chapter 11 Adjustments made in SHERPA

Step 4: Consequence Analysis
No changes are made to the consequence analysis.

Step 5: Recovery Analysis
In the original description of SHERPA there is a rule saying that it is not possible to
select a previous step as a recovery step to fix a mistake that has been made. This step
is considered as a particularly useful aspect of the SHERPA approach because of the
determination of whether errors can be recovered immediately, at a later stage in the
task, or not at all [3]. However, in software development the opearations are executed
in an iterative process, where several operations are repeated until they reach a final
state assumed to be correct. The subtasks analyzed during this experiment is not a
complete process, but only selected parts of the process. Because of this we are not able
to perform this step as it is intentionally described in SHERPA. In this experiment the
participants are asked to write a recovery to their problem, without any rules.

Step 6: Ordinal Probability Analysis
No changes are made to the probability analysis.

Step 7: Criticality Analysis
In the original form of SHERPA, the criticality of each task is noted with the symbol:!
indicating that the error identified is critical. In this experiment the criticality analysis
will be noted as in the probability analysis with low, medium or high. The classification
of consequences is as follows:

Low (L): little to no consequence

Medium (M) medium consequence

High (H) the consequence is severe

Step 8 Remedied Strategy
No changes are made to the remedied strategy analysis.

11.3 Experiment

In the original layout of SHERPA, the SHERPA table looked like in table 11.3.

Chapter 11 Adjustments made in SHERPA 69

Task
step

Error
Mode

Error De-
scription

Consequence Recovery P C Remedied
Strategy

2.
Iden-
tify
Prob-
lems

N/A N/A N/A N/A N/A N/A N/A

In this experiment, after doing prototype testing, error mode and error description
changes positioning in the table has, see table 11.3. With this change, the columns in
the SHERPA table follow the steps, provided in the guideline in the experiment, to the
letter. In Appendix A a full version of the experiment is provided.

Task
step

Error De-
scription

Error
Mode

Consequence Recovery P C Remedied
Strategy

2.
Iden-
tify
Prob-
lems

N/A N/A N/A N/A N/A N/A N/A

With these adjustments SHERPA was ready for the experiment. From the focus groups
drawings of the HTAs, and their opinions on what part of software development were
error prone, the following subtasks were analyzed during the experiment:

1. Choose programming language suited for your application

2. Set up development environment

3. Choose architectural pattern(e.g. MVC, observer)

4. Identify problems/uncertainties in requirements

5. Define goals from the requirements

6. Develop mockup/prototype of solution (to show to the customer)

7. Review codes behaviour: place breakpoints

8. Review codes behaviour: evaluate behaviour

9. Modification: identify new necessary functionality

Chapter 11 Adjustments made in SHERPA Chapter 11 Adjustments made in SHERPA

10. Modification: draw connection between old code and new functionality

11. Create new functionality: code the changes

The new collection of error modes to be used in the experiment is provided in Table 11.1

In Appendix A a full version of the experiment is provided.

Chapter 11 Adjustments made in SHERPA 71

Error Mode Error Description

Time

T1 Underestimated schedule

T2 Underestimated workload

T3 Overestimated workload

T4 Unbalanced workload

Knowledge

K1 Insufficient knowledge

K2 Overrated knowledge/arrogance

Technical Error

E1 Wrong configuration

E2 Version control

Information Retrieval

R1 Information not obtained

R2 Wrong information obtained

R3 Information retrieval incomplete

Checking

C1 Check omitted

C2 Check incomplete

C3 Right check on wrong object

C4 Wrong check on right object

C5 Check mistimed

C6 Wrong check on wrong object

Information Communication

I1 Information not communicated

I2 Wrong information communicated

I3 Information communication incomplete

Selection

S1 Selection omitted

S2 Wrong selection made

S3 Wrong technology selected

Table 11.1: Error Mode

Chapter 12

Procedure

The experiment was conducted on Thursday 27th of March at 14.00. In the days before
the experiment a total of four pilot tests was conducted. The purpose of the pilot tests
was to make sure the tasks to be performed in the experiment was understandable, and
that the amount of work was sufficient but not excessive. The pilot testers were fellow
students, with far more general experience than the test participants. However, the ex-
perience of the pilot testers was in different fields and it was useful to get their opinion

Figure 12.1: Experiment

73

Chapter 12 Procedure Chapter 12 Procedure

on how they perceived the experiment. More important, none of the pilot testers had
any experience with HRA, and knew little or nothing about SHERPA. Their feedback
was valuable in helping to improve the standard of the experiment. A short but detailed
step-by-step guide was provided in the experiment. During the pilot tests, several ap-
proaches to the experiment were used to test the step-by-step guide to SHERPA. One
approach was that the testers themselves read through the description, and only asked
questions after reading. The other approach was to give a short presentation before the
test participants started. The first approach made sure that the guide was solid, and
the second approach was a method that was approximately equal to the real experi-
ment, which provided a good time estimate. A timetable estimated and planned for the
experiment is provided in the table below.

Activity Estimated time use
Introduction 8 Minutes
Pre-Questionnaire 2 Minutes
Experiment 45 Minutes
Post-Questionnaire 5 Minutes
Total time 60

Table 12.1: Timetable for Experiment

Figure 12.2: Participants conducting the experiment

A total of 41 students participated in the experiment. The experiment material were
distributed evenly in the auditorium before the participants arrived. There was only
one facilitator present, which had all the acting roles needed in an experiment. The
session started with the facilitator presenting SHERPA. Each of the steps in SHERPA
was explained and demonstrated by an example, also provided in the experiment. The

Chapter 12 Procedure 75

facilitator answered questions from the participants. There were a few question asked
in this part of the experiment. The questions were mostly about how to fill in the form
provided in the experiment paper.

After all questions were answered, the participants started filling in the pre-questionnaire
about general information of their experience. After this they went straight on to the
SHERPA-table and started to analyze the tasks. There were only two questions asked
through the experiment. Both these questions regarded the task: Review Code: place
breakpoints. Both the participants were uncertain of what breakpoints are.

The experiment went on without any major issues arising, and the participants were
reminded to fill in the post-questionnaire towards the end of the time. The first partici-
pant was finished approximately twenty minutes before the time was up. A few followed,
but most of the participants delivered the experiments paper after approximately one
hour. The facilitator asked all participants to move on to fill in the post-questionnaire
when five minutes of the estimated time remained.

Chapter 13

Results and Findings

In this chapter the results and findings from the experiment are presented. All of the
participants filled in the post-experiment questionnaire, but two participants forgot to
fill in the pre-experiment questionnaire. In section 13.2, the focus of the results will be on
three of the columns from the SHERPA table, which is Error description, Consequence
and Remedied Strategy. The Recovery analysis will not be presented in these results
because of the simplifications done in chapter 11. There are uncertainties associated
with this sub-analysis, and in this experiment the three other sub-analysis are more
interesting.

As there were a lot of data collected through the experiment, the results will show
examples from the raw data that are most representative for the results. All data from
the experiment are provided in Appendix B.

13.1 Pre-Experiment Questionnaire

The primary focus of the pre-experiment questionnaire was to find general information
about the participants and info on previous experience.

The participants were asked which semester they were currently attending at the uni-
versity, see Figure 13.1. The majority (83 %) answered 4th semester. Two participants
forgot to fill in the pre-experiment questionnaire. However, we knew that there were
students from two different groups, and in one of the group there were seven participants
that we in advance knew attended 6th semester or above. All of these seven filled in
their form, thus the two unknown students currently attends 4th semester.

Further, we asked for IT-related experience. 56% of the participants answered that they
had no experience from the IT-industry, 19 % had some experience, from one to five
months, and a total of 25% answered that they had more than five months experience,
see Figure 13.2. It was interesting to see that the few who had more than five months

77

Chapter 13 Results and Findings Chapter 13 Results and Findings

Figure 13.1: Currently attended semester

experience really had a lot of experience, one noted down 72 months. There was one
participant who did not note his/her experience, in addition to the two who did not fill
in anything in this questionnaire.

Figure 13.2: Nr of months with IT-related experience

The last question in the pre-experiment questionnaire was for the participants to rate
their programming experience. They were asked to rate it on a scale between one and
five, where one is very little experience, and five is top of your class. The results are
presented in Figure 13.3. Most of the participants rated themselves in the middle at
the third, or fourth level. There was one participant who rated his- or her-self as top
of the class, and no one rate themselves as very little experience. Three students rated

Chapter 13 Results and Findings 79

themselves as two in programming experience. SHERPA is highly dependent on the
expertise of the analysts, and due to these participants low expertise, these responses
are disregarded further in this experiment.

Figure 13.3: Rating of programming experience

13.2 Experiment

The experiment consisted of 11 subtasks, as stated in chapter 11. Figure 13.4 shows
an overview of how many times each error mode was selected through all tasks in this
experiment. The error mode selected in a task is strongly dependent on the person per-
forming the analysis, which means that there are not one correct answer. However, some
error modes are more suited for some tasks and errors than others. Figure 13.5 shows
types of errors exposed in software development. Figure 13.4 shows that the error mode
K1 is definitely the most used error mode. The error description of K1 is Insufficient
knowledge. From this graph it seems as a lot of problems that occur during software
development is related to insufficient knowledge. K1, Insufficient knowledge, was one of
the error modes that was added to the list of error modes before the experiment.

The next most used error mode is E1, with the error description wrong configuration.
The high number of E1 corresponds to what the focus group identified as an error prone
part of development. Other popular error modes was T2 underestimated workload, S3
wrong technology selected, S2 wrong selection made and R2 wrong information obtained
was all used more 25 times.

In Figure 13.5 the error modes within each category were added. In this graph we see
how much the total category was used throughout the experiment. Knowledge stands
out, and was used twice as much as the next most used error mode Category. In the

Chapter 13 Results and Findings Chapter 13 Results and Findings

Figure 13.4: Error Modes

Figure 13.5: Categories of Error Modes

other categories the usage of the different error modes varies slightly. However, it is
interesting to see that the checking category, with the largest number of error modes,
was the least used category.

Chapter 13 Results and Findings 81

Figure 13.6: Error Mode: Choose programming language

13.2.1 Choose Programming Language

In the first subtask the participant were analyzing the subtask: choose programming
language. A total of 67 descriptions of errors were filled in during this task. The major-
ity of the error descriptions can be divided in two categories; due to lack of knowledge
or a wrong choice was made. A lot of the answers identified that a wrong choice was
made due to lack of knowledge. An example of an error description is “Wrong selec-
tion of programming language based on insufficient understanding of tasks”. This error
description has been matched to error mode S3, wrong technology selected. This error
description could, however, also be matched to error mode S2, wrong selection, made
and error mode K1, Insufficient knowledge.

It is interesting to see which type of error mode that is selected in errors concerning bad
choices. Figure 13.6 gives an overview of the error modes selected in this task. K1 is
definitely the most popular error mode. S3 is next, but it is used half as many times
as K1. Most of the consequences of the errors concerns time lost, and that problems
occur due to a bad choice. Time wasted because the development needs to start over,
and time used to train the developers in an unfamiliar language are examples when
time is identified as the consequence. When the consequence regarded a bad choice, the
responses were e.g. hard to develop the needed functionality due to the restriction of
the language.

In remedy strategy the participants were to find a strategy to avoid the errors they
found to happen again. A lot of participants identified more training and experience as
a strategy. This corresponds to the observation that a lot of the errors involved lack
of knowledge. The strategies also suggest that more time and investigation should be

Chapter 13 Results and Findings Chapter 13 Results and Findings

Figure 13.7: Error Mode: Set up development environment

provided in this part of software development, a few suggestions about the change of
process was also provided.

Most of the responses in this task make sense, and a lot of them concern the same type of
error and consequences. However, there are a few responses that seem a bit off relative
to the task. An example from the results is “The language works different on pc and
mac”.

13.2.2 Set up Development Environment

The responses in this task are more varying, and concerns a variety of problems that may
arise. There were 52 responses, from 36 participants. E1, wrong configuration, was the
error mode that selected to a majority of the error descriptions, see Figure 15.1. An error
description that recur is wrong configuration, and a lot of the other responses relates to
configuration problems. Some of the responses were more specific and detailed than just
referring to the configuration. “Loss of data/conflicts” and “version control not working
properly” are some examples. The errors also concern different aspects of errors that
may occur during development setup. “No knowledge about software”, “Unsupported
OS” and “Problems with identifying packages and so on” are other examples from the
results.

The consequences are, as the error description, quite varying. However, in a develop-
ment set up, like when choosing programming language, time wasted is a major concern.
The other consequences are related the to problems in error description. One example
from the results is: error description “configured differently in the production environ-
ment than test environment”, with the consequence “Code that works in development

Chapter 13 Results and Findings 83

Figure 13.8: Error mode: Choose architectural pattern

environment does not work in production environment”. A lot of the consequences are,
like the example, related to the error description.

The remedied strategy suggestions relates mostly to experience, training and knowledge.
There are also suggestions that relates to process and planning, like: guides on how to set
up environments, and documents containing information on previous problems. Other
suggests that the developers should use the time they need during the setup, and pay
attention while they do the configuration.

In this task there were also some results that differed from the rest, where it appears
as the participant had misinterpreted the task. One example from the results is “bad
atmosphere among developers”.

The fact that there are several issues related to this subtask corresponds to the conclusion
of the focus group. The participants in the focus group had all experienced problems
due to incorrect setup of development environment.

13.2.3 Choose Architectural Pattern

In this task there were 50 answers from 36 participants. Figure 13.8 show the selected
error modes in this task. K1, insufficient knowledge, is the most used error mode followed
by S2, wrong selection made. The selection of error modes in this task is similar to
the error modes selected in the “Choose programming language” task. A lot of the
error descriptions identifies that a wrong selection or an unsuited pattern were selected.
Another error that several participants identified was too little knowledge about the
pattern, or that a wrong choice was made due to lack of knowledge.

Chapter 13 Results and Findings Chapter 13 Results and Findings

The consequences identified concerns, among others time, bad application and poorly
written code. Time is a concern in several error descriptions, it can be related to wrong
choices, like “time spent on finding a more suitable pattern”, or to try to fix a bad
decision, like “Use time to write the pattern correctly”.

The remedied strategies suggested in this task include experience, training, planning
and knowledge. The strategies suggest that the developers should get time to gain
knowledge about the pattern that is used, preferably prior to the start of development.
“Seek knowledge about the pattern before starting” and “Better knowledge of different
patterns and a more thorough process of choosing pattern” are examples of remedies.
Another strategy was that the developers in the company should know a variety of
patterns, leading the company to possess broader experience within pattern knowledge.

Some of the responses seems a bit inappropriate in conjunction to the task. Examples
of error descriptions are “Wrong check on wrong object” and “Different patterns used
by different programmers”.

13.2.4 Identify Problems/Uncertainties in Requirements

In this task there were three main sets of error modes that were used most, Knowl-
edge, Information Retrieval and Communication Retrieval, see Figure 13.9 for more
details. There were 53 responses in this task by 39 participants. The errors identified
in this task concerns misunderstanding of requirements, misinterpretation of require-
ments, problems or requirements not identified and incomplete requirements. Typical
comments in error description are “Incorrect interpretation of requirements”, “require-
ments are unable/unreasonable to comply to” and “Requirement lists is incomplete,
client wishes to add additional requirements”.

The consequences identified that there is a risk that the end-product will not be complete,
or at all what the customer expected. If problems and uncertainties are not identified
early in the project it may lead to more serious problems later in the project. Another
consequence was time spent on recovering, and that the project may exceed its estimate.

The remedy strategies suggested include, among other suggestions better communication
with customer, a thorough understanding of the requirements and requirement analy-
sis. However, most of the remedies strategies concerns better communication between
developers and customers. “Maintain good communication with client. Ask questions if
unsure about requirements” and “Thorough dialogue with the customer about expecta-
tions and requirements” are some examples. Other suggestions concerns the quality of
the requirements, and that a thorough process of checking the requirements is necessary.

Most of the responses in this task are reasonable. However, there was one response that
distinguished themselves from the others. The error description of this response was
“Do wrong test” which is not a representing error description for this task.

Chapter 13 Results and Findings 85

Figure 13.9: Error Mode: Identify problems/uncertainties in requirements

Figure 13.10: Error Mode: Define goals from requirements

13.2.5 Define Goals from the Requirements

From Figure 13.10 we can see that Time, Knowledge, Information Retrieval and Infor-
mation Communication were the error modes most used. There were 53 responses from
37 participants. The error descriptions in this task include goals that are not identified,
time estimating, either too ambitious goals or goals that lack ambition. There are also
concerns regarding misunderstanding of requirements leading the goals to be ambiguous
and not specific enough. “Define wrong goals based on insufficient understanding of
product requirements”, “too short deadlines for each goal” and “goals are larger/more
complex than originally assumed” are examples from the results.

Chapter 13 Results and Findings Chapter 13 Results and Findings

The consequences regarding the errors that were found are in accordance with the error
descriptions. A lot the the responses are related to that the end-product will not be
complete, and that it does not meet customers need. “Missing functionality discovered
at a later stage of development”, “unsatisfied customer/bad results” and “Goals not
reached in time” are examples. Most of the responses are similar or addresses about the
same problems as these examples.

The remedied strategies concerns better communication between customer and develop-
ers, time management, and processes of identifying goals. One of the remedied strategies
suggests that the customer should be involved in every major step of the development,
another example is “Communicate well with client. Seek confirmation that you are on
the right path before implementing”. More experience with time management and “get
more experience with how long different tasks take” are example on strategies concern-
ing time. Another good example from the result is “More time spent on researching the
project, talking with the customer and gaining an overall good overview of the size of
the project”.

13.2.6 Develop Mockup/Prototype of Solution

Time and Information Communication were the most popular categories of error modes
in this task, see Figure 13.11. There were 53 responses by 40 participants. The responses
in the error description concerns that the prototype might be too good, leading the
customer to believe that the end-product is almost done, or that the prototype does not
meet the customers expectation and lack functionality. Another concern is related to
how realistic the prototype is relative to the end-product, example: “Mockup does not
provide a realistic image of what the app can do”. The next major concern is about
timing. Not being able to complete the prototype within time is a recurring concern.
Another error description worth noticing is “Prototype has functionality that is hard to
implement”.

A consequence identified is that the project will need more time to finish the product,
“will not complete in time or have to work extra” is an example from the result. Un-
satisfied customer is another consequence identified by the participants, which recurred
in the responses. Another consequence concerns the need for additional changes on the
prototype to make the customer satisfied.

Remedied strategies includes time management, better communication with customer
and planning. Better communication with the customer is identified in several responses.
Better communication is believed to give the customer more realistic expectations, one
example from the result is “More communication with customer”. More frequently con-
tact could lead to smaller adjustments in time estimation along the development, and
mistakes/misunderstandings would be fixed at an early stage. There were also strategies
to resolve the time issues, one example is “better planning, but more importantly plan

Chapter 13 Results and Findings 87

Figure 13.11: Error Mode: Develop mockup/prototypeof solution

for underestimated schedule and underestimated workload happening, no matter how
well the project is”.

13.2.7 Review Codes Behaviour

In Figure 13.12 we can see that K1, Insufficient knowledge was the most used error
mode in this task. The second most used error mode category is Checking, where C3
right check on wrong object was most frequently used. There were 38 responses by 30
participants. The most repeated error description was “Place breakpoints at wrong
places”. Some of these error descriptions are more detailed, like “place breakpoints at
places where the code runs as it should”. Other concerns are about the inability to
find the expected behavior or problem, too many or too few breakpoints or that the
developer does not understand the code to be reviewed.

The consequences of the errors concerns timing, code not properly tested and that the
problems that was identified need to be fixed. Examples from the results are “Time
spent reviewing code”, “Functionality is not properly tested” and “ Code does not run
as expected, harder to test as wanted”.

Remedied strategies include more training and experiment, documentation and more
and better focus on code review. The need for training and experience is identified by
several participants. These strategies include concrete statements like “More experi-
ence”, but also strategies like “Be aware of what parts of the code are to be/need to be
tested”. Better knowledge on placing breakpoints and better knowledge about the code
that is reviewed are strategies concerning lack of knowledge. One strategy was to use

Chapter 13 Results and Findings Chapter 13 Results and Findings

Figure 13.12: Error mode: Review codes behaviour: place breakpoints

indentation, while another strategy with error description concerning code not properly
tested says “Change attitudes toward code reviews”.

In this task there are several error descriptions that diverge from the task. Examples
from the results are “Programmer does not understand how code works. Look at unim-
portant breakpoints” and “Can’t use the tool”.

13.2.8 Review Code: Evaluate Behaviour

Figure 13.13 shows the error modes selected in this task. K1, insufficient knowledge
and the entire Checking category was used most. There were a total of 36 responses
by 28 participants. The error descriptions identified in this task are among others that
there were not enough extensive testing, the code does not behave as expected and tests
performed on the wrong elements. Examples from the results are “Check that the code
behave as thought, but not as required through the specifications”, “Not enough heavy
testing (number of users etc.)” and “Accept poor behavior”.

The consequences identified in this task are related to time fixing problems, undiscovered
errors leading to poor software, and the end-product’s inability to meet the requirements.
An example from the result concerning the quality of the code is “has untested and
potentially wrong functionality in the code”. Other consequences was the time used to
fix the software when it did not behave as expected, like “Time spent on finding and
fixing the error”. Another example related to failure in the evaluation was “Has untested
and potentially wrong functionality in the code”.

Remedied strategies suggested in this task are more training in code reviews, extensive
testing based on the project requirements, and the need for new routines when evaluating

Chapter 13 Results and Findings 89

Figure 13.13: Error Mode: Review code: evaluate behaviour

code. Some suggestions are about the programmer‘s ability to see when their knowledge
is not sufficient and ask for help, an example is “More knowledge about code review.
Ask other developers for help when needed. See your own limits”. Other suggestions
were “Peer reviewing of code” and “Better routines of code reviewing”.

13.2.9 Modification: Identify New Necessary Functionality

In this task K1, insufficient knowledge, was the error mode used most. The categories
Information Communication and Selection was also selected as error modes in a substan-
tial part of the responses, see Figure 13.14. There were 40 responses in this task made
by 29 participants. The error description in this task includes existing functionalities
added again, unnecessary functionality added and that necessary functionality is not
identified. Other errors are about the developers’ ability to code the new functionality,
like “Developers do not know how to implement new functionality”, or that the existing
code does not support the new functionality to be added.

Time is identified as a consequence of some of the errors. “Time wasted on creating
functionality” and “Time used on changing product” are some examples. Other concerns
about time is that time does not suffice for the changes that needs to be done. Other
consequences are about redundancy of functionality, and that the necessary functionality
is not added, either due to it not being identified or the developers lack experience.

Better communication within the development team and with the customer are suggested
remedied strategies. Another focus for several of the responses concerned requirements.
“A well structured design-phase where requirements are well-defined and approved by

Chapter 13 Results and Findings Chapter 13 Results and Findings

Figure 13.14: Error Mode: Identify new necessary functionality

Figure 13.15: Error Mode: Draw connection between old and new functionality

customer” and “Check requirements before deciding upon new functionality” are ex-
amples from the responses. Time Management accordance to the new functionality is
another suggestion, and to always maintain modifiability when writing code.

13.2.10 Modification: Draw Connection Between Old and New Func-
tionality

In Figure 13.15 we see that K1, insufficient knowledge, was the most used error mode,
followed by I1, information not communicated, and the information retrieval category.
In this task there were 30 responses made by 28 participants.

Chapter 13 Results and Findings 91

Recurring error descriptions in this task concerns trouble with combining the old code
with the new functionality. Other errors descriptions are about the quality of the old
code making it hard to add new functionalities. Examples from the responses are “Not
doing modification properly due to difficulties understanding the old code” and “poorly
documentation of code”. Another error description identified is that the old code is
misunderstood and the new functionality will thus not work as intended due to these
misunderstandings. “Old code is ignored”, “New functionality requires changes in old
code” and issues with time it takes to rewrite old code are other examples from the
results.

A majority of the consequences identified concerns the time used to solve the problems
at hand. “More time than expected is used” and “Not sure where to make changes, time
spent to figure it out” are examples about time. Incompabilities between old code and
new functionality is also a recurring consequence. One example from the responses is
“New functionality does not work as it should, or ruins old functionality”.

The remedied strategies in this task concerns documantation, modifiability and testing
of existing code. Examples from remedied strategies suggested are “have good overview
of code. Draw class diagrams” and “Make sure the new functionality will not cause any
problems”. Proper documentation when writing code and to keep the code modifiable
when coding is stressed in several responses. Another strategy is “test old code before
use. Review documentation”.

In this task there are responses that differ from what was expected as error descriptions.
Examples of these are “Old and new code have little in common” and “New code written
in wrong language”.

13.2.11 Create New Functionality: Code the Changes

In this task K1, insufficient knowledge, and T2, underestimated workload, was the error
modes used most and in that order, see Figure 13.16 . There were 32 responses made
by 30 partcipants.

The error descriptions in this task concern the developers’ abilities to code the changes.
Other concerns are about how new code affect the old code in an undesired manner.
“New code overwrites old code” and “Changes in code leads to new unforeseen faults”
are examples from the result where the new code affects the existing code in a bad way.
Other errors identified concerns the quality of the old code, an example from the result
is “Spaghetti code, many code changes needed for small functionality change”. How long
time it takes to make the changes are another error description that recurred through
this task.

There are mainly two consequences identified in this tasks, and these are time overuse
and that the program does not work as intended. The consequences about time overuse

Chapter 13 Results and Findings Chapter 13 Results and Findings

Figure 13.16: Error Mode: Create new functionality: code the changes

concerns to a large extent that the task takes longer time than accounted for, or the fact
that more work requires more time. Examples from the responses are “More work,which
takes more time”, “workplan needs to be revised” and “delays”. The quality of the
software after adding new functionality was the other major concern. “Old functionality
is destroyed, needs to be fixed” and “Non-functioning software” are other examples.

In remedied strategies better testing and more training are suggested. “Test more aspects
of the code than the ones directly connected to the change” and “Check compatibility
before writing code” are examples from the results. Better time management is also
suggested as a strategy to resolve the timing issues in projects. Another example from
the results are to “separate the functionality, use own/new variables” and “Comment/-
document code while reviewing old code”.

13.3 Post-Experiment Questionnaire

The primary focus of the post-experiment was to get the perception of SHERPA. All
of the respondents answered the questions in this questionnaire. There were one case
where the student had checked of Agree on all of the questions.

Figure 13.17 shows results from the post-experiment questionnaire. In this figure the
results are merged into three categories in stead of five which it is in its originally
form. In section B.4, the raw data is provided. In Figure 13.17 provided in this section
the categories agree and strongly agree is merged into agree, likewise are disagree and
strongly disagree merged into one column disagree.

Chapter 13 Results and Findings 93

Figure 13.17: Results from Post-Experiment Questionnaire

There are two questions where there are significant positive responses, as seen in Fig-
ure 13.17. These questions were “I found SHERPA useful in discovering possible human
errors in software development” where 10% answered disagree, 29% neutral and 61%
agree, and “The error modes in table 1 Error Modes was suitable for software develop-
ment” where 2% answered disagree 22% neutral and 76% agree. In one question there
were a majority of negative answers relative to positive and neutral, this was the ques-
tion “SHERPA made me aware of errors I would not consider otherwise”, where 41%
answered disagree, 29% neutral and 29% agree.

The category neutral has quite high response rate in the questionnaire. In two questions
there were a higher per centage of neutral, than agree and disagree. These questions
were “SHERPA found more errors than are likely to occur” and “I was able to easily
apply the error modes to the sub-goals”.

Part VI

Discussion and Conclusion

95

Chapter 14

Discussion

In this chapter a thorough discussion of the results and findings are presented. The
participants in this experiment had a wide range of experience. In chapter 13 we see
that over 50% of the participants had no IT working experience, other than courses
and projects attended at the university. SHERPA is highly dependent on the analysts
opinion and experience. Through the experiment there were different quality on the
responses provided. In some cases where the participants had little experience, the
responses seemed to have little to do with the task given. In the result chapter the
participants that scored two in programming experience was disregarded, due to that
SHERPA is as dependent on the analyst as it is. If we choose to use participants with low
programming expertise, this would be in contradiction to SHERPAs validity statements.

Even though there were some strange answers, there were several valuable responses
contributing to form an image of how SHERPA could be used to prevent errors in
software development. Altogether, there were acceptable responses in all tasks.

14.1 Error Modes

In this experiment three new categories of error modes was added to the list of error
modes used in SHERPA, in addition to one category that was removed. The three
new categories were Time, Knowledge and Technical Error, and the one removed was
Action. In chapter 13 we see Figure 13.4 presenting the use of error modes during this
experiment. The error mode K1, insufficient knowledge is definitely the most popular
error mode and was used 124 times. Next is E1 wrong configuration, followed by T2
underestimated workload. The three most used error modes are all new error modes
added in this experiment. These were necessary and contributes to tailor SHERPA
better to software development. In the result of the post-questionnaire 76% of the
respondent answered that they found the error modes in the experiment suitable for
software development.

97

Chapter 14 Discussion Chapter 14 Discussion

14.1.1 Time

When adding the category Time to the error modes it was expected that the error modes
in this category would be used a lot during the experiment. When looking on the results
they were used less than expected. The category has four error modes T1, underestimated
schedule, T2, underestimated workload, T3, Overestimated workload, and T4, unbalanced
workload. When looking at the overall figure of error modes used, in Figure 13.5, we see
that it was used less than some of the other error categories.

In Figure 13.4 in section 13.2 we see that T2, underestimated workload, was most used
out of the four erros modes within the category. T4 was only used one time through
the experiment. These numbers indicates that all of these error modes within the Time
category are unnecessary. T1 and T2 are very similar to each other, and perhaps only
one of these are necessary.

14.1.2 Knowledge

The category Knowledge was added to cover the need of knowledge work in software
development. As expected, the use of this category was widely popular during this ex-
periment. K1, insufficient knowledge, was used more than K2, overrated knowledge/ar-
rogance. The Knowledge category is a suitable choice in several tasks, as it is a huge
part of software development. This category can be linked to the Selection category, and
it was intriguing to see whether the participants would choose Knowledge or Selection
when an error occurred due to a wrong selection. This issue would arise especially in the
two tasks were there was a choice to be performed. From the results in subsection 13.2.1
we see that both K1 and S3 was selected as error modes. S3, wrong technology, and
S2, wrong selection made was used mostly when it was specified that there were a se-
lection, and K1 was used when the selection was bad, due to lack of knowledge in task
“Choose a programming language”. However, in the task “Choose architectural pattern”
there is a mix of when the different modes are used. Both error mode categories, ei-
ther Knowledge or Selection, are considered to be appropriate choices of error modes in
these tasks. Another question to consider is whether these two error modes within the
category Knowledge are sufficient and cover all aspects of knowledge work in software
development.

14.1.3 Technical Error

E1, wrong configuration, was used several times during the experiment, but when going
through the results it seems as this error mode was used in places it should not have
been. It seemed, that when respondents were not quite sure on what error mode was
most suited, they just picked E1. However, it was expected that this error mode should

Chapter 14 Discussion 99

have been used in the task “Set up development environment”, and as expected E1 was
used 27 times in this task, out of the 47 total times it was used in the entire experiment.
See section B.4 for more details.

E2 version control was used in a total of nine times during the entire experiment. It
was expected that this error mode would have been used primarily in two task, “Set
up development environment” and “Create new functionality: code the changes”. Even
though the error mode was not used a lot of times, the overall impression is that the
times it was actually used they were a necessary contribution to the error modes, where
no other error mode could have covered the needs.

14.1.4 Information Retrieval and Information Communication

The categories of Information Retrieval and Information Communication, is approx-
imately equally used throughout the experiment. While Information Retrieval con-
cerns issues like getting the applications requirement from the documents, Information
Communication concerns issues like communication between customer and development
team. In the results these two different categories are used interchangeable. As an exam-
ple, in error descriptions describing situations where I1, information not communicated,
would be the most suitable error mode, R1 information not obtained is selected. It
seems, as the respondents are not aware of the difference between these two error mode
categories. The reasons why there may be confusions are numerous. The students are
not trained in SHERPA, and only received a short introduction to the method. There
were not provided an explanation of the meanings of the error mode in the introduction
or in the experiment paper. Perhaps if the error modes were described thoroughly this
misconception could been prevented. Another reason for this confusion may be because
of the simplification done in section 11.2. The second step of SHERPA, where the sub-
tasks are classified into one of the categories, was removed in this experiment. If the
sub-tasks had to be classified within a category prior to the selection of error mode,
perhaps this confusion could be avoided.

14.1.5 Checking

The Checking category was the least used category. The error modes within checking
were used primarily in the two tasks about code review. Checking will in software
development be related to testing of the code, which is related to code review. There
has not been done any changes to the checking category in this experiment, as it was
presumed to be suitable to software as it is. Even though it was not used a lot in this
experiment, we believe it contributes to SHERPA and make it complete in accordance
to software development. However, all of the six different error modes is clearly not
necessary.

Chapter 14 Discussion Chapter 14 Discussion

14.1.6 Selection

Selection is provided in SHERPAs original form. However, one error mode was added
in this experiment, which is S3, wrong technology selected. S2, wrong selection made,
and S3, wrong technology selected, was equally used throughout the experiment. These
two error modes are similar, and it is important to consider whether both these are
necessary or not. These error modes are used interchangeably, but in the task of “Choose
programming language” there is a predominance of S3, while in “Choose architectural
pattern” S2 is predominated. It is important to consider if the parting of a selection
or a technology selection provides more information than the risk of confusion with two
almost equally error modes.

14.2 Discussion of the Results

In the responses from the experiment we see that in some cases the respondents have
copied the error description from the table Error Mode, provided in the experiment
paper, and inserted it into the SHERPA table. To give an example, in the task “Choose
programming language” they wrote “insufficient knowledge” in the error description
column and “K1” in the error mode column. These responses do not provide enough
information, and we would prefer what kind of error occurs rather than the description
of error mode. These responses will be disregarded in the analysis of this experiment.

There are several reasons why this confusion may happen. Both in the error mode table
and in the SHERPA table, the term “Error description” is used. Perhaps if the descrip-
tion column in the error mode table was called error mode description, this problem
could have been avoided.

Another reason for this problem might be the simplification we did in chapter 11. We
removed the second step of the original form of SHERPA, because there were confusions
where the same problem arose as discussed here. It is possible that this simplification
was not as effective as we hoped it to be, or created more confusion.

In the results there are cases where there seem to be little connection between the error
mode and the error description. All the error modes has a letter and a number that
indicates what category it belongs to, and what description that accompany the error
mode. It is conceivable that the participants have filled in wrong information because
of a mistake. In these cases the participants has noted C1, instead of S1, which would
have been a more credible error mode. In other cases the error mode selected seem as
a solution only because there were no other modes they felt were appropriate. These
observations seem credible in accordance with the responses the participants gave in the
post-examination questionnaire. Most of the participants, 51% stated that they were
neutral to the question about how easy it was to apply error modes to the sub-goals.

Chapter 14 Discussion 101

In this experiment there were a total of 23 different error modes. If there are too many
choices confusion may arise, as the saying Too many cooks spoil the broth. Some of the
error modes was used less than other, and are probably not that relevant to software
development.

In chapter 11, in the section about recovery, there were made changes to the analysis.
I decided to only ask for what was needed to recover from the error, and provided no
more information about this step in the analysis. In the responses there seemed to be
confusion about the difference between recovery and the remedied strategy. Respondents
could write the same in both columns, or in other cases only in one of them. Chapter
11 provides a discussion about software development being an iterative process. In
this experiment the participants was able to write a recovery suggestion that had no
relation to what would intentionally be the next step in the development process, which
is inconsistent with the original SHERPA analysis. Because of the confusion found in
the responses, this new approach might not be the best solution to the problem. I have
not placed great emphasis on recovery suggestions through this experiment, other than
notice how this new approach could work.

It is important to state that most of the participants during this experiment was students
with little to no experience with software development(except courses and project at the
university), see Figure 13.2, and that none of the participants had previous experiment
with HRA. The lack of experience for some of the participants may be the reason why a
lot of the respondents answered neutral to the questions asked in the post-examination
questionnaire. When people does not feel that they have enough knowledge on the
subject they tend to lean toward neutral responses.

The number of responses in each task is declining through the experiment. The partici-
pants was asked to fill in the table if they were able to identify a possible error, or leave
the task blank and move on to the next task if did not. One reason why there were fewer
responses in the latter part of the experiment may be that they did not have enough
time to analyze all the tasks. There is a distinction after the six first tasks, where there
are significantly more responses on the first six than the five following. Another reason
may be that the five last tasks can be considered to be harder than the previous ones.
Most likely it is a mix of both these reasons. Even though the number of responses
decreased, there were not any responses were the participant only answered the first six,
and let the remaining five blank. Usually, they answered two to three of the five last
tasks, but it varied from participant to participant which of these tasks they responded
to.

When looking at the responses and the results, there are three reasons for error that
occurred frequently throughout the experiment. Knowledge, Information Retrieval and
Information Communication are according to the responses in this experiment the most

Chapter 14 Discussion Chapter 14 Discussion

important contributors to errors in software development. When looking at the Fig-
ure 13.5 in chapter 13 we see the same, at least when considering the fact that informa-
tion retrieval and information communication was used interchangeable throughout the
experiment, as discussed previously in this chapter. Even though some of the responses
in the experiment seemed to be a bit off, and that some of the error modes did not
correlate with the error description, these results shows an overall image of what causes
errors during software development.

The consequences identified concerns the errors that were found. The consequences are
coherent with the errors. It is hard to specify certain consequences, but there were one
recurring consequence throughout the experiment, which was time. Time was also one
of the categories within the error mode, and before the experiment ot was expected that
this category would be used at a higher rate than it was. But the problem of time,
which is a common area of trouble in software development, was rather identified as a
consequence to other errors than the error itself. The observation of trouble that arise
will cost more time, is a good and likely observation.

Through the experience a lot of the remedied strategies suggested are about training,
experiment and better communication within the development team and with the cus-
tomer. These strategies correlates with the error modes that were most used through the
experiment, which indicates that SHERPA is consistent. Other recurring strategies were
about the need for new processes for the problem areas stated above, and the need for
more experience with time management. The remedied strategy part of the experiment
is considered to be the hardest part of the analysis. More training and experience are
easy strategies to suggest. Even though there is need for more experience and training,
it is possible that a lot of the participants wrote it because it was easy. Other wrote
more specific strategies that might be more helpful in a real world situation.

All the training these participants received about SHERPA before the experiment a ten
minutes lasting introduction. Training time within SHERPA is estimated to be approx-
imately three hours [40]. The participants received far from this amount of training,
and even though we made simplification, it is not that strange that there was some
confusion through the experiment. The participants did not get to analyze their own
work process as the HTA was conducted by the focus group with their programming
precedure. It is probable that the analysis would have been easier to conduct if the same
person performed the entire analysis.

In this experiment we decided to let all the participants conduct it on their own, to get as
much data as possible. In hindsight we see that a group-based experiment might possibly
have yielded better results, especially considering the experience of the participants.
Teamwork could have strengthened the creativity, and SHERPA is usually performed
with several participants. At the same time, it was important to get a high number
of responses. In addition, it was valuable to get everyone‘s own opinion in the post-
experiment questionnaire, without being influenced by others.

Chapter 14 Discussion 103

All things considered, the overall impression of the responses were good. Even though
there were some peculiar responses, there were good contributions in all of the tasks.

14.3 Research Questions

In this section the results to the reseach questions, provided in section 1.2, will be
discussed in detail,

1. RQ1: Is it possible to successfully apply HRA to software development?

This research question was transferred from the specialization project conducted
in the previous semester. It concerns if it is possible to apply HRA to software
development. In this master thesis, SHERPA was the only HRA model investigated
and the answer to this question.

In the post-experiment questionnaire the participants was to evaluate SHERPA,
one of the questions asked was whether SHERPA was useful when discovering
possible human errors in software development. 61% answered that it was, 29%
were neutral to the question, and 10% did not find SHERPA useful. These numbers
indicates that it is possible to apply SHERPA to software development. However,
there are much work needed before this question could be answered thoroughly.
If more research was done on SHERPA, I believe this approach could be a useful
tool in the IT industry. However, it is important to consider if the time spent on
analyzing is worth the effort. In this study only one HRA method was tested, and
even though I believe SHERPA is useful, there are several other HRA-models that
could be more useful.

2. RQ2: What adjustments are needed for SHERPA to be better tailored to software
development?

During this experiment we have tested a few adjustment to tailor SHERPA to
software development. The Action category was removed from the error modes,
because software development was not covered in any of the error modes described
within the category. As a result of the discussion and the new changes stated
above, three new categories of error modes are added to the collection. The fol-
lowing changes are made to the error modes in SHERPA:

Time category:
T1 Underestimated workload
T2 Overestimated workload

Knowledge category:
K1 Insufficient knowledge

Chapter 14 Discussion Chapter 14 Discussion

K2 Overrated knowledge/Arrogance

Technical error:
E1 Wrong configuration
E2 Version control

Checking category:
C1 Check incomplete
C2 Right check on wrong object
C3 Wrong check on right object

Selection category:
S1 Selection omitted
S2 Wrong selection made

One other small adjustment was added to SHERPA, namely the criticality step in
the SHERPA procedure. In the original form of SHERPA, the criticality of each
task is noted with the symbol:! indicating that the error identified is critical. In
this experiment the criticality analysis will be noted as in the probability analysis
with low, medium or high. The classification of consequences is as follows:

Low (L): little to no consequence

Medium (M) medium consequence

High (H) the consequence is severe

3. RQ3. Will a set of non trained students be able to conduct SHERPA on a set of
problems?

This research questions concerns whether untrained participants are able to per-
form the analysis without any further training in SHERPA. The participants in this
experiment received a short introduction to SHERPA lasting about ten minutes.
Usually, the training for SHERPA lasts approximately three hours. With these
prerequisites one would believe that the students could have difficulties through
the experiment. In the post-experiment questionnaire the participants answered
the question whether they found SHERPA easy to understand. 51% of the partic-
ipants answered that they did, and 15% did not, while the remaining was neutral
to the question. These numbers shows that most of the participants was able to
perform an analysis without too much problems.

Each task received different amounts of errors, and there were different numbers
of participants who answered each task. The participants had a wide variety of
experience, and it is likely that the ones with the most experience found the anal-
ysis easier to conduct than other participants with less experience. However, all

Chapter 14 Discussion 105

the questions received 30 or more responses. They reached satisfying conclusions
in the tasks, which guides us to the answers to this research questions: Yes, overall
the students gave reasonable responses in all tasks they were given.

4. RQ4. Will the student reach similar solutions?

This research question concerns how useful the method is. If the participant identi-
fied total different problem areas, this is a bad quality that comes wisth SHERPA.

There were various answers to the tasks in this experiment. However, there were
some errors and consequences that were recurring throughout the experiment.
Knowledge, information retrieval and information communication are identified
as contributors to errors in software development. A lot of the participants also
identified that inadequate time was a consequence to a lot of the errors. SHERPA is
considered to be dependent on the person conducting the analysis. This means that
there may be different results depending on the person doing the analysis. As this
is an area of concern it is reassuring that the participants actually reached nearly
the same conclusion. The remedied strategies, and the recoveries will obviously not
be equal as these are even more dependent on the analyst’s habits and experience.
As long as the errors and consequences are approximately the same the results of
the analysis is satisfactory

5. RQ5. Will these solutions be useful?

This research question concern whether the results found in this experiment is
useful or not. In this experiment, as stated in the previous research question, the
experiment identified three contributors to error in software development, namely
Knowledge, Information Communication and Information Retrieval.

Software development is the processing of knowledge in a very focused way, and
experience plays a major role in any knowledge related activity [39]. In 2009,
incomplete requirements and changing requirements and specifications where two
out of top six reasons for software project failures [41]. Effective communication
among the stakeholders of a software development project is crucial to its success
[42]. Frequent, recurring problems related to the lack of adequate communica-
tion among those involved in the development process has been documented as in
important reason to for failure in software projects [43].

All these statements above are previous research made within software develop-
ment. SHERPA found the same reasons for error during this experiment conducted
by students with limited experience relative to professionals in the IT business.

Chapter 15

SHERPA

After the discussion the new version of SHERPA tailored to software development is
ready.

15.1 Error Modes

In the post-examination questionnaire we asked whether the participants found the error
modes suitable for software developement, and 76 % answered that they did, and only
2% answered no. Even though the error modes was approved by the participants, the
previous discussion indicates that there are still changes to be made to improve the
method further.

Time
The category Time was used a sufficient amount altogether to keep it as a category in
SHERPA. However, the error mode T2, underestimated workload, was used more than
the other error mode in the category altogether. I would recommend to reduce the time
category to the following two error modes:

T1 Underestimated workload
T2 Overestimated workload

Knowledge
Knowledge was the most popular error mode category. Both these error modes should
be kept as a part of SHERPA tailored to software development.

Technical
The Technical Error modes are kept as they are considered to be useful, and was used
several times during the experiment. E2, version control, was not used a lot of time,
but it is not covered by the other error modes, and is considered useful. The category
change name to Technical.

107

Chapter 15 SHERPA Chapter 15 SHERPA

Checking
The checking category was used less than any other error mode category. However, the
checking category is important in the testing part of software development. Currently
there are six different error mode within this category, this is clearly unnecessary when
used in software development. After some consideration these three error modes are
suggested:

C1 check incomplete
C2 Right check on wrong object
C3 wrong check on right object

Selection
Two of the selection error modes, used in this experiment, are similar. Eventhough a
choice made was done about a technology, it is still a choice. After considerations I
would like to retract the added error mode, S3 wrong technology selected, leaving the
two in their original form:

S1 selection omitted
S2 wrong selection made

In table 15.1 the final collection of error modes is presented. In the previous draft there
were a total of 23 error modes, with these new changes there are now a total of 17 error
modes. Hopefully, this reduction will make the process of applying the error modes to
the sub-tasks easier.

Chapter 15 SHERPA 109

Error Mode Error Mode Description
Time

T1 Underestimated workload
T2 Overestimated workload

Knowledge
K1 Insufficient knowledge
K2 Overrated knowledge/arrogance

Technical
E1 Wrong configuration
E2 Version control

Information Retrieval
R1 Information not obtained
R2 Wrong information obtained
R3 Information retrieval incomplete

Checking
C1 Check incomplete
C2 Right check on wrong object
C3 Wrong check on right object

Information Communication
I1 Information not communicated
I2 Wrong information communicated
I3 Information communication incomplete

Selection
S1 Selection omitted
S2 Wrong selection made

Table 15.1: Final Error Mode

15.2 The SHERPA Procedure

The procedure of SHERPA is as it was in its original form. It still has the same steps
through the analysis. The simplifications done in the experiment are set back to its
original form. The recovery analysis was the biggest change in of the steps in the
experiment. This change caused confusion during the experiment, and are thereby

Step 1: Hierarchical Task Analysis (HTA)

The first step if SHERPA is HTA, to break down the goals into subgoals.

Step 2: Task Classification

Each of the operations found during HTA is classified based on the error taxonomy into
one of the following behavior:

Chapter 15 SHERPA Chapter 15 SHERPA

• Time

• Knowledge

• Technical

• Information Retrieval

• Checking

• Information communication

• Selection

Step 3: Human Error Identification (HEI)

After each task is classified into a behavior, the analyst consider credible error modes
associated with that activity. The error modes are provided in Table 15.1.

Step 4: Consequence Analysis

The next step is a consequence analysis. The consequence of each behavior is considered,
as the consequence has implication for the criticality of the error.

Step 5: Recovery Analysis

If there is a later task step at which the error could be recovered, it is entered here. If
there is no recovery step, this section can be skipped.

Step 6: Ordinal Probability Analysis

In this step the behavior is assigned an ordinal probability value. The classification of
the probabilities is as follows:

Low (L): the error has never been known to occur.

Medium (M): the error has occurred in previous occasions.

High (H): the error occurs frequently

The assigned classification relies upon historical data and/or a subject matter expert.

Step 7: Criticality Analysis The criticality of the error is assigned to the task. The
classifications of consequence is as follows:

Low (L): little to no consequence

Medium (M) medium consequence

High (H) the consequence is severe

Chapter 15 SHERPA 111

Step 8: Remedy Analysis

The final step in the process is to propose error reduction strategies. These are presented
in the form of suggested changes to the work system which could have prevented the
error from occurring, or possibly reduced the consequences. This is done in the form of
a structured brainstorming exercise to propose ways of circumventing the error, or to
reduce the effects of the error.

15.3 SHERPA in a Software Development Task

In this section an example of SHERPA analysing a subtask is provided. We are analysing
the task: set up development environment for a web project in Eclipse. This is a small,
but realistic task during software development. Firstly a HTA of the task is conducted,
before the analysis starts. The HTA is, in this case, analyzed and divided to a low level of
subtasks. In regular analyses, the subtasks would not be reduced to this level. The sub
tasks are entered and anayzed with SHERPA. The top level tasks, are never evaluated
and remains empty in the table. The tasks were no errors are identified remains empty
as well.

C
hapter

15
SH

ER
PA

C
hapter

15
SH

ER
PA

Figure 15.1: HTA: Set up development environment

C
hapter

15
SH

ER
PA

113

Table 15.2: SHERPA

Task step Error
Mode

Error Description Consequence Recovery P C Remedied Strategy

1 Initialize reposi-
tory
1.1 Initialize git
1.1.1 Create git
repository

C1

E1

Repository is shared
with uncleared peo-
ple

Wrong permissions
are applied

Uncleared people
gets access to source
code

People not cleared
are able to change
the source code

None

None

L

L

H

H

Always get another de-
veloper/ project man-
ager to look over this
step

1.1.2 Configure
repository

E1 Made repository
publicly available

Uncleared people get
access to repository

None L H Always get another de-
veloper/ project man-
ager to look over this
step

1.1.3 Configure
.gitignore

K1/
E1/
R1/
R2

K1

Files that should re-
main hidden are not
added to .gitignore

Wrong files are
added to .gitignore

Sensitive data is ex-
posed

Other developers will
not see the work
done in these files

None

None

H

L

H

M

Need of a new pro-
cedure, where sensitive
files are marked as such
prior to project

1.2 Clone repo to
local computer

C
hapter

15
SH

ER
PA

C
hapter

15
SH

ER
PA

2 Install libraries
2.1 Decide what
libraries to use

S2 Inappropriate li-
brary chosen

At a later stage
during development,
you recognize that
the library lack
functionality

2.3 L H Do better research on
what is necessary in
your project

2.2 Find latest
version

R1/
R2

Beta version is se-
lected, but should
have chosen a stable
release

Unstable functional-
ity

2.3 L M Stay focused while re-
searching

2.3 Check for re-
cently discovered
problems

R1/
R3/
K2

Information about
problems are ignored
or not obtained by
the developer

Problems later in the
development

None L M Procedure: always
check the web for prob-
lems, eventhough you
are specialist on the
subject

2.4 Download and
install

K1 Downloaded to
wrong folder

Need to be imported
to project

None L L

3 Create package
hierarchy
4 Create build
files

C
hapter

15
SH

ER
PA

115

4.1 Create com-
pile script

K1

K1

E1

Wrong class path

Wrong main file

Compiled with
wrong configuration

Not able to compile
source code or not
able to run source
code

Wrong parts of code
compiled

Source code is com-
piled with debug-
parameters

None M

L

M

L

L

M

Coursing in writing
compile script

4.2 Create run
script

K1
E1

Wrong main file Not able to run code
/ Wrong parts are
ran

None L L Coursing in writing run
script

5 Initial commit

Chapter 15 SHERPA Chapter 15 SHERPA

In Figure 15.1 the HTA of the task is depicted, and the analysis is provided in Table 15.3.
The analysis shows that there is only one subtask that is really critical in this task. This
task is 1.1.3 Configure .gitignore. The person conducting this analysis should thus focus
on this sub-task, and provide a new procedure on how to avoid making these mistakes
in the future.

Chapter 16

Validity

This experiment was performed with students with a wide variation of experience. A
small part of the paricipants were students who has attended six or eight semesters at
Informatics, and the remaining, larger part of the participants were students attending
the fourth semester at Computer Science, see Figure 13.1. The majority of the partici-
pants in this experiment had no IT-related work-experience. SHERPA is dependent on
domain expertise to get a thorough analysis of the different task. When a large part
of the participant has little to no IT-work experience, it is important to consider the
validity of the results. There were 41 participants in the study. Before the results can
be generalized, SHERPPA should be analyzed by several participants and preferably in
a more representative group.

The participants in this study were students with limited experience, both related to
courses taken at the university and real IT-work. These facts decrease the external
validity of the results, and have been accounted for when analysing the results. To
enhance the external validity, the results found were compared with previous research
in the field of software development. SHERPA did find similar problem areas within
software development and prevoius research.

Internal validity concerns whether the outcome is a causal relationship. To ensure in-
ternal validity of the experiement the participants in the experiment that scored two
or lower on programming expertise was disregarded from the experiment. In the focus
group session, were the HTA was conducetd, the participants were students attending
their tenth and last semester at the university. A more experienced group was used to
make sure that the task were reliable tasks within software development. To increase
internal validity, the questions in the questionnaires were formulated to not allow the
participants to cross of every box at one “side of opinion”, to satisfy either their own
opinions or what they thought was preferred by the facilitator. The participants in this
experiment did not get to conduct a full analysis of SHERPA. SHERPA is thereby not
tested in its entirety which decreases the construct validity to this experiment.

117

Chapter 16 Validity Chapter 16 Validity

Threats to construct validity refer to the extent to which the experiment setting actually
reflects the construct under study [27]. To ensure the quality of the results from the
experiment, the error modes selected in the task, and the textual responses from the
SHERPA table, were compared. The textual responses of error descriptions, should, to
som extent correlate with the error modes selected in the task. As an example, if most
of the error descriptions in a task concerned insufficient knowledge, the selected error
modes should essentially be from the Knowledge category.

Threats to conclusion validity concerns issues that affect the ability to draw correct
conclusion between the treatment and outcome of an experiment [27]. The result from
the experiment was inserted into tables by the author of this master thesis. The partic-
ipants filled in the forms by hand during the experiment, the results thereby had to be
interpreted by the author before insertion. The results are either in a textual form, or
in numbers. When evaluation and analyzing the textual responses it is important to be
aware of the threat of fishing, were the analyst is fishing for a specific result.

Triangulation is an attempt to map out, or explain more fully, the richness and com-
plexity of human behaviour by studying it from more than one standpoint [44]. In other
words, triangulation relies on using different methods to reach the same results. In this
study, data was gathered through focus group, experiment and previous research.

Chapter 17

Conclusion

The goal for this master thesis was to explore whether the human reliability method,
SHERPA, could be applied to software development. We conducted a focus group fol-
lowed by an experiment to evaluate the method. The main purpose of the focus group
was to conduct the first part of SHERPA, the hierarchical task analysis. The focus
group consisted of students attending their tenth semester at the University, with more
experience than the participants in the experiment. The HTA made during the focus
group was used in the experiment. The experiment was conducted with 41 participants,
with students from 8th, 6th but mostly 4th semester at the university.

RQ1 aims to find out whether HRA methods can be successfully applied to software de-
velopment. More than half the participants found SHERPA useful in discovering human
errors. However, for the time being, it is too soon to answer the question. SHERPA is
definitely off to a good start, but more research is needed to reach a conclusion.

Before the experiment a few adjustments was made to make SHERPA tailored to soft-
ware development. The majority of these changes concerned the error modes. These
adjustments were discussed and analyzed before a final version of SHERPA was pre-
sented in chapter 15. Section 15.1 provides a detailed description of the adjustments,
which answers RQ2.

It is important that training necessary, before developers able able to conduct an anal-
ysis, is limited, if SHERPA are to be used within software development. The students
in the experiment received a short introduction to SHERPA before they conducted the
analysis. They were still able to perform the analysis without any major problems,
which answers RQ3.

One of the disadvantages of SHERPA is that it is heavily dependent on the experience
of the analyst performing the analysis. Through the experiment there were mainly
three error mode categories, also referred to as behaviors, which recurred. These were
Knowledge, Information Retrieval and Information Communication. The consequences

119

Chapter 17 Conclusion Chapter 17 Conclusion

these errors caused were time used to recover. These results recurred through several
tasks in the experiment. All in all, the responses within each task were related to
each other and concerned the same issues. Hereby, the answer to RQ4 is: all things
considered, the students reached approximately the same conclusion in the experiment.

Another important issue to consider is if the results from the experiment will be useful,
which is addressed in RQ5. The results SHERPA provided in this experiment gave
useful information about the tasks provided. The overall responses, stated above, can
be related to research done in software development, where the same problem areas are
identified.

All things considered, SHERPA seems to be a useful tool to predict human error within
software development. The results from the experiment are credible relative to previous
research within software development. However, there is still remaining work to do with
the method.

Chapter 18

Further Work

During the focus group the participants found it hard to draw hierarchical task diagrams.
Software developers are more familiar with drawing state charts and class diagrams,
rather than HTA. Another issue that arose was that the focus group participants found
it hard to draw the tasks hierarchical, at the same time as iterative. HTA is used to
identify all subtasks in work procedures. If there exist any other methods that break
down the tasks equally as HTA, which is more familiar for software developers, this could
also be used as step 1 in SHERPA. However, it is important to state that HTA has a
very good reputation, and has been proved useful several times through history. The
potentially new method need to tested and compared with HTA, before any changes in
step 1 of SHERPA are made.

In this experiment the recovery step was disregarded from the analysis. In the special-
ization project it was suggested that this step could be adjusted to make SHERPA take
iterative processes into account. In this experiment the participants were free to suggest
a recovery, regardless whether the recovery was an upcoming task or not. This created
confusion about the difference of recovery and remedied strategies. In further work it
could be interesting to test if this confusion will occur if the participants got a thorough
introduction to SHERPA, or if there exist another way to support iterative processes
in SHERPA. If a new method of identifying sub-goals will support iterative processes,
then current version of the recovery analysis would work. However, at this point, both
of these aspects should be considered in further work on SHERPA.

In this master thesis, SHERPA was tested on students from the university with limited
experience. SHERPA should be tested in a real software company where they have
discovered some issues within the development team. During this experiment the par-
ticipant did not conduct SHERPA in its entirety. In further work of tailoring SHERPA
to software development, a complete analysis needs to be conducted and tested. More
excessive testing is also necessary.

121

Bibliography Chapter 18 Further Work

Previous, in other domains, SHERPA has been conducted with an HRA expert, and a
domain expert. A suggestion is to test SHERPA with both an HRA expert and one or
more software developers. The HRA expert could guide the developers if any problem
or questions occur. However, it is important to state that it is not necessary to have an
HRA expert present when conducting the analysis.

Bibliography

[1] Software bugs cost more than double eurozone
bailout. URL http://www.businessweekly.co.uk/hi-tech/
14898-software-bugs-cost-more-than-double-eurozone-bailout.

[2] GG Schulmeyer. The net negative producing programmer. American Programmer,
6, 1992.

[3] Barry Kirwan. Human error identification in human reliability assessment. part 1:
Overview of approaches. Applied ergonomics, 23(5):299–318, 1992.

[4] Alan D Swain and Henry E Guttmann. Handbook of human-reliability analysis
with emphasis on nuclear power plant applications. final report. Technical report,
Sandia National Labs., Albuquerque, NM (USA), 1983.

[5] Winfried Hacker. Allgemeine Arbeitspsychologie: Psychische Regulation von Ar-
beitstätigkeiten. H. Huber, 1998.

[6] Julie Bell and Justin Holroyd. Review of human reliability assessment methods.
Health & Safety Laboratory, 2009.

[7] Kyung S Park and Kwang T Jung. Considering performance shaping factors in
situation-specific human error probabilities. International Journal of Industrial
Ergonomics, 18(4):325–331, 1996.

[8] Adham Mackieh and Canan Cilingir. Effects of performance shaping factors on
human error. International journal of industrial ergonomics, 22(4):285–292, 1998.

[9] Barry Kirwan. The validation of three human reliability quantification tech-
niquesï£·ï£·ï£·therp, heart and jhedi: Part 1ï£·ï£·ï£·technique descriptions
and validation issues. Applied ergonomics, 27(6):359–373, 1996.

[10] Human reliability analysis. URL http://www.nopsema.gov.au/resources/
human-factors/human-reliability-analysis/.

[11] FT Chander, YH Chang, A Mosleh, JL Marble, RL Boring, and DI Gertman.
Human reliability analysis methods: Selection guidance for nasa. NASA Office of
Safety and Mission Assurance, Washington, DC, 2006.

123

http://www.businessweekly.co.uk/hi-tech/14898-software-bugs-cost-more-than-double-eurozone-bailout
http://www.businessweekly.co.uk/hi-tech/14898-software-bugs-cost-more-than-double-eurozone-bailout
http://www.nopsema.gov.au/resources/human-factors/human-reliability-analysis/
http://www.nopsema.gov.au/resources/human-factors/human-reliability-analysis/

Bibliography BIBLIOGRAPHY

[12] David Embrey. Understanding human behaviour and error. Human Reliability
Associates, 1:1–10, 2005.

[13] Mike Falla et al. Advances in safety critical systems: Results and achievements
from the dti/epsrc r&d programme in safety critical systems. Falla M.(ed), 1997.

[14] Human error slips and mistakes. URL http://www.interaction-design.org/
encyclopedia/human_error_slips_and_mistakes.html.

[15] James Reason. Human error: models and management. BMJ: British Medical
Journal, 320(7237):768, 2000.

[16] David I Gertman, Harold S Blackman, JL Marble, JC Byers, and CL Smith. The
SPAR-H human reliability analysis method. US Nuclear Regulatory Commission,
2005.

[17] The effects of distractions on human performance. URL http://www.hcpro.
com/QPS-211165-234/The-effects-of-distractions-on-human-performance.
html.

[18] Neville STANTON, Allan HEDGE, Hal W HENDRICK, Eduardo SALAS, and
Karel BROOKHUIS. Handbook of human factors and ergonomics methods. 2004.

[19] Historical software bugs with extreme conse-
quences. URL http://royal.pingdom.com/2009/03/19/
10-historical-software-bugs-with-extreme-consequences/.

[20] Martin A Stutzke and Carol S Smidts. A stochastic model of fault introduction
and removal during software development. Reliability, IEEE Transactions on, 50
(2):184–193, 2001.

[21] Neville A Stanton and Sarah V Stevenage. Learning to predict human error: issues
of acceptability, reliability and validity. Ergonomics, 41(11):1737–1756, 1998.

[22] Barry Kirwan. Human error identification in human reliability assessment. part 2:
Detailed comparison of techniques. Applied ergonomics, 23(6):371–381, 1992.

[23] Christopher Baber and Neville A Stanton. Human error identification techniques
applied to public technology: predictions compared with observed use. App lied
Ergonomics, 27(2):119–131, 1996.

[24] Statistics.com. URL http://www.statistics.com/.

[25] Neville A Stanton and Mark S Young. What price ergonomics? Nature, 399(6733):
197–198, 1999.

[26] Neville A Stanton and Christopher Baber. Error by design: methods for predicting
device usability. Design Studies, 23(4):363–384, 2002.

http://www.interaction-design.org/encyclopedia/human_error_slips_and_mistakes.html
http://www.interaction-design.org/encyclopedia/human_error_slips_and_mistakes.html
http://www.hcpro.com/QPS-211165-234/The-effects-of-distractions-on-human-performance.html
http://www.hcpro.com/QPS-211165-234/The-effects-of-distractions-on-human-performance.html
http://www.hcpro.com/QPS-211165-234/The-effects-of-distractions-on-human-performance.html
http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-consequences/
http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-consequences/
http://www.statistics.com/

Bibliography 125

[27] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer, 2012.

[28] Briony J Oates. Researching Information Systems and Computing. SAGE, 2006.

[29] Jenny Kitzinger. Qualitative research. introducing focus groups. BMJ: British
medical journal, 311(7000):299, 1995.

[30] Richard A Krueger. Focus groups: A practical guide for applied research. Sage,
2009.

[31] Jo-Ellen Asbury. Overview of focus group research. Qualitative health research, 5
(4):414–420, 1995.

[32] Differencebetween.net. URL http://www.differencebetween.net/
miscellaneous/difference-between-questionnaires-and-surveys/.

[33] Kristen Ringdal. Enhet og mangfold: samfunnsvitenskapelig forskning og kvantitativ
metode. Fagbokforlaget, 2001.

[34] Thomas D Cook, Donald Thomas Campbell, and Arles Day. Quasi-experimentation:
Design & analysis issues for field settings. Houghton Mifflin Boston, 1979.

[35] Anol Bhattacherjee. Social science research: principles, methods, and practices.
2012.

[36] Neville A Stanton. Hierarchical task analysis: Developments, applications, and
extensions. Applied ergonomics, 37(1):55–79, 2006.

[37] J Annett, KD Duncan, RB Stammers, and MJ Gray. Task analysis (department
of employment training information paper no. 6). London, UK: Her Majesty’s
Stationary Office (HMSO), 1971.

[38] B Kirwan and LK Ainsworth. A guide to task analysis, 1992. Tailor & Fransis.

[39] Pierre N Robillard. The role of knowledge in software development. Communica-
tions of the ACM, 42(1):87–92, 1999.

[40] Neville Stanton and Mark Young. Is utility in the mind of the beholder? a study
of ergonomics methods. Applied Ergonomics, 29(1):41–54, 1998.

[41] M Bishop. Standish group chaos report: Worst project failure rate in a decade,
2009.

[42] Michael E Atwood, Bart Burns, Dieter Gairing, Andreas Girgensohn, Alison Lee,
Thea Turner, Sabina Alteras-Webb, and Beatrix Zimmermann. Facilitating commu-
nication in software development. In Proceedings of the 1st conference on Designing
interactive systems: processes, practices, methods, & techniques, pages 65–73. ACM,
1995.

http://www.differencebetween.net/miscellaneous/difference-between-questionnaires-and-surveys/
http://www.differencebetween.net/miscellaneous/difference-between-questionnaires-and-surveys/

Appendices BIBLIOGRAPHY

[43] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design
process for large systems. Communications of the ACM, 31(11):1268–1287, 1988.

[44] Louis Cohen, Lawrence Manion, and Keith Morrison. Research methods in educa-
tion. Routledge, 2013.

Appendix A

Experiment

127

Human Reliability and Software development

Experiment 1

Analysing the use of SHERPA in software development

Merete Aardalsbakke

Supervisor: Tor Stålhane

Thursday, March 27, 2014

Pre-­experiment questionnaire

Which semester are you currently attending?

4th semester � 6th semester � 8th semester �

Number of months of IT working experience,

including summer jobs and other …………………………………………………

Rate your programming experience from 1 to 5, where 1 is very little experience and 5 is top of

your class:

1 � 2 � 3 � 4 � 5 �

In this experiment you shall analyse a set of subtasks through a method called SHERPA.

SHERPA consist of seven steps, where the first step is done prior to this experiment. The

purpose of SHERPA is in our case to predict possible human errors that can occur during

software development. Basic programming tasks, like debugging and modification, are broken

down into sub-­tasks. Each of these subtasks are further analysed through SHERPA. The result

of the analysis is documented in a table. In this experiment you shall fill in this table, table 2:

SHERPA table, based on the step by step guide provided below. In table 2 you will find an

example of a subtask

Step 1: Task analysis

In step 1 the sub-­tasks are identified. This was done before the experiment started, and the

subtasks are already entered in to the table. You shall fill in the remaining columns.

Step 2: Human-­Error Identification

In this step you are identifying possible human-­errors that can occur in the different subtasks.

For each task consider credible errors that may occur in the situation of the task, and write a

description of the error down in the column: Error description. Match the error to the different

error modes in table 2: Error Modes. Write it down in the column: Error Mode. If you believe that

there are no credible error modes, move on to the next subtask and start again.

Step 3: Consequence analysis

In this step you are to consider the consequence of the error you have identified in the previous

step. An example of a consequence might be time wasted. Note down the identified

consequence in the column Consequence.

Step 4: Recovery analysis

Write down how the task can be recovered in the column Recovery. A recovery is an action that

will fix the error committed. If you are not able to identify a recovery, enter None.

Step 5: Probability analysis

How probable is the possible error? The probability of the error is to be noted as low, medium or

high.

● Low: error will to almost never occur

● Medium: error has occurred in previous occasions

● High: error occurs frequently

The probability is noted in the column P.

Step 6: Criticality analysis

The criticality of the error are to be assessed. How critical is the error? The criticality is also

noted as low, medium or high. The criticality is noted in the column C.

● Low: little to no consequence

● Medium: medium consequence

● High: the consequence is severe

Step 7: Remedy analysis

The final step is to propose error reduction strategies. These are suggested changes to the work

process which could prevent or reduce the consequences.

Table 2: SHERPA table

Task Step Error Description Error

Mode

Consequence Recovery P C Remedied Strategy

2.1.2

Locate

problem in

code when

test failed

Could not locate

problem

Not able to solve

the problem R1

R1

K1

A lot of time

spent on

finding the

error

Problem not

solved, test not

green

None

Need help from another

developer

L

M

M

M

New process of writing unit testing, or

general code. Needs to be more tedious.

More training needed

Choose

programming

language

suited for

your

application

Task Step Error description Error

Mode

Consequence Recovery P C Remedied Strategy

Set up

development

environment

Choose

architectural

pattern

(e.g MVC,

observer..)

Identify

problems/

uncertainties

in

requirements

Task Step Error description Error

Mode

Consequence Recovery P C Remedied Strategy

Define goals

from the

requirements

Develop

mockup/

prototype of

solution (to

show to

customer)

Review

codes

behavior :

place

breakpoints

Task Step Error description Error

Mode

Consequence Recovery P C Remedied Strategy

Review

codes

behavior:

place

brakepoints

Review

codes

behavior:

evaluate

behavior

Modification:

identify new

necessary

functionality

Task step Error Description Error

Mode

Consequence Recovery P C Remedied Strategy

Modification:

draw

connection

between old

code and

new

functionality

Create new

functionality:

code the

changes

Post experiment questionnaire

Disagree Agree

strongly Disagree Neutral Agree strongly

1. I found SHERPA easy to understand � � � � �

2. I was able to easily apply the error � � � � �

 modes to the sub-­goals

3. SHERPA made me aware of errors � � � � �

 I would not consider otherwise?

4. The error modes in table 1 Error

 Modes was suitable for software � � � � �

 development

5. SHERPA found more errors than � � � � �

 are likely to occur

6. I found SHERPA useful in discovering

 possible human errors in software � � � � �

 development

Thank you for participating in this experiment!

Table 2: Error Modes

Error Mode Error Description

Time

T1 Underestimated schedule

T2 Underestimated workload

T3 Overestimated workload

T4 Unbalanced workload

Knowledge

K1 Insufficient knowledge

K2 Overrated knowledge/arrogance

Technical error

E1 Wrong configuration

E2 Version control

Information
Retrieval

R1 Information not obtained

R2 Wrong information obtained

R3 Information retrieval incomplete

Checking

C1 Check omitted

C2 Check incomplete

C3 Right check on wrong object

C4 Wrong check on right object

C5 Check mistimed

C6 Wrong check on wrong object

Information
Communication

I1 Information not communicated

I2 Wrong information communicated

I3 Information communication incomplete

Selection

S1 Selection omitted

S2 Wrong selection made

S3 Wrong technology selected

Appendix B

Responses from experiment

B.1 Pre-experiment questionnaire

139

Appendices Appendix B Responses from experiment

Wich semester are
you currently at-
tending?

4 semester 6 semester 8 semeter

Number of stu-
dents

34 4 3 39

Number of
months with IT
working experi-
ence

No experi-
ence

1-5
months

¿5 months

Number of stu-
dents

20 7 9

Rating of pro-
gramming expe-
rience from 1 to
5

1 2 3 4 5

Number of stu-
dents

0 4 22 12 1

Table B.1: Data from Pre-experiment Questionnaire

Appendices 141

B.2 Post-experiment questionnaire

Votes
Questions Disagree

Strongly
Disagree Neutral Agree Agree

Strongly
I found SHERPA
easy to understand?

6 14 14 7

I was able to eas-
ily apply the error
modes to the sub-
goals

2 8 21 9 1

SHERPA made me
aware of errors I
would not consider
otherwise

4 13 12 11 1

The error modes in
table 1 Error Modes
was suitable for soft-
ware development

1 9 25 6

SHERPA found
more errors than are
likely to occur

9 19 13

I found SHERPA
useful in discovering
possible human
errors in software
development

4 12 23 2

Table B.2: Data from Post-experiment questionnaire, part 1

Appendices Appendix B Responses from experiment

Questions Disagree Neutral Agree Disagree Neutral Agree
I found SHERPA
easy to understand?

6 14 21 15 % 34 % 51 %

I was able to eas-
ily apply the error
modes to the sub-
goals

10 21 10 24 % 51 % 24 %

SHERPA made me
aware of errors I
would not consider
otherwise

17 12 12 41 % 29 % 29 %

The error modes in
table 1 Error Modes
was suitable for soft-
ware development

1 9 31 2 % 22 % 76 %

SHERPA found
more errors than are
likely to occur

9 19 13 22 % 46 % 32 %

I found SHERPA
useful in discovering
possible human
errors in software
development

4 12 25 10 % 29 % 61%

Table B.3: Data from Post-experiment questionnaire, part 2

A
ppendices

143

B.3 Error Modes

Table B.4: Data from Error Modes

T1 T2 T3 T4 K1 K2 E1 E2 R1 R2 R3 C1 C2 C3 C4 C5 C6 I1 I2 I3 S1 S2 S3 Total
Choose program-
ming language
suited for your
application

1 29 6 5 2 2 1 1 1 4 6 13 71

Set up develop-
ment environ-
ment

2 8 27 2 1 2 2 2 7 53

Choose architec-
tural pattern (e.g
MVC, observer..)

25 1 1 1 1 1 1 3 1 2 14 3 54

Identify prob-
lems/ uncertain-
ties in require-
ments

1 3 2 10 6 5 6 6 2 1 1 3 4 5 55

Define goals from
the requirements

2 10 6 1 6 4 3 5 4 3 7 5 1 57

Develop mockup/
prototype of solu-
tion (to show to
customer)

4 11 1 3 3 3 1 4 1 1 5 8 4 1 50

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

Review codes be-
havior : place
breakpoints

11 1 2 4 3 1 1 4 6 1 4 1 1 2 2 44

Review codes be-
havior: evaluate
behavior

1 8 2 2 2 4 5 5 5 1 2 1 1 39

Modification:
identify new
necessary func-
tionality

2 2 1 7 1 3 1 2 2 1 3 1 4 2 2 3 37

Modification:
draw connec-
tion between old
code and new
functionality

1 7 2 2 3 1 3 2 4 1 1 2 29

Create new func-
tionality: code
the changes

2 6 10 1 2 3 1 1 1 2 29

Total 11 37 10 1 124 25 47 9 23 28 17 4 13 11 8 5 5 24 24 21 12 29 30 518

B.4 Choose programming language

Table B.5: Choose programming language

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Not all developers know

the language
K1 time spent on learning Train developers M L Change training requirements

A
ppendices

145

2 The language limits the
development

S3 Code not able to be com-
pleted

Change language L H Know reqs better before choosing language

3 choose language with lack
of functionality

S3 use time to change lan-
guage/work around

L M Maintain knowledge on what different language
can do, and what you need it to do

3 language works different
on pc and mac

E2 use time to rewrite because
it is written on mac/pc

M M Have the same version of the language

4 Lacking knowledge in suit-
able language

K1 New problems may occur
due to unsuitable language

Spend time on fixing un-
necessary problems

M M Gain knowledge in various programming lan-
guages

4 Wrong selection of pro-
gramming language based
on insufficient understand-
ing of task

S3 New problems may occur
due to unsuitable language

Spend time on fixing un-
necessary problems

H M Spend more time on understanding the task prior
to choosing programming language

5 Programming language in-
sufficient for application

K2 Time spent trying to make
work-arounds to complete
application

None L H Read into the language to confirm it is suitable
for the application

5 Language doesn’t work
with other parts of the
application

I3 time spent looking for a so-
lution

possible only if solution is
found

M M check documents for possible conflicts/shared li-
braries

6 wrong configuration E1 lot of time used to solve
the problem

change programming lan-
guage

L M Find a language that produces less mistakes

7 no previous experience
with the selected program-
ming language

K1 A lot of time spent on try-
ing to figure out and learn
new language

try and fail until you make
it. Ask someone for help.
Google it

M H More training needed

7 misunderstanding of
application functional-
ity(programming language
lacks critical functionality)

R2 A lot of time will be
spent on developing a non-
runnable app

must start over, and pos-
sibly reuse code in new
project

L H Further discussion with whomever provided the
requirement specification

8 Too little knowledge about
other programming lan-
guages that may be more
suitable

K1 The chosen language may
be or are about to be out-
dated, the support may be
poor

reimplement in a new lan-
guage

M M More people, with different experience should
contribute when planning

9 Wrong language selected S3 Long time used to code,
when it could be done
more easily on another lan-
guage

Seek help/tips from an
other developer

L M More knowledge about what is to be done before
language is selected

10 Developers not trained in
language

K1 Time spent learning the
language

Need help from trained
language

L M More training needed

10 Language is not fast or ex-
tensive enough for applica-
tion

K1 Slow or unnecessary com-
plicated code

switch programming lan-
guage

L H More knowledge about prog. languages, Process
of choosing language need to more extensive

11 choosing based on personal
preferences and not rel-
evancy. making wrong
choice

S3 Changing language half
way, huge time waste

None L H Spend the time needed to pick the right language
for the task

12 chosen language was not
suited for the application

S3 Depending on time since
the choice, it may lead to
severe consequences, such
as needing to rewrite the
entire program

Rewrite code, or make it
work

L H Use more time on selecting language, and under-
stand the applications requirement

13 Language not supporting
application requirements

S3 a lot of time used to find-
/create a ”fix” to make it
run

A workaround could be
available

L H Better knowledge on different programming lan-
guages. Better knowledge on what the applica-
tion requires

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

13 programmers does not
posses the knowledge of
the prog. language

K1 a lot of time used to learn
programmers the language

skilled programmers that
can quickly teach the un-
skilled

M M Use a language that is already supported by the
programmers. Teach language to programmers
before project start

14 Choose wrong language S3 too technical solution None L H analyze the applications technical requirement
carefully, familiarize oneself with the languages
possibilities and limitations

14 Lack of knowledge of the
selected language

K1 Poor code, poor applica-
tion, hard to maintain

need help from other de-
velopers, may need to
rewrite loads of code

M H Careful planning, make sure that everyone got
enough and correct training

15 Not able to find an appro-
priate language that sat-
isfies the needed require-
ments of the application

R1 the application require-
ments to functions needs
to be changed

None L H a more realistic approach to what is possible
when developing applications

15 No experience with the
language that satisfied all
needed reqs of the applica-
tion

K1 not able to fulfill these re-
quirements

get help from a more expe-
rienced developer

L M More experience and knowledge

16 The selected progr. lan-
guage is new for the devel-
opers

K1 Lot of time used to learn it get help from a more expe-
rienced developer, or read
about the language online

M M More training/ instructions needed

16 New upgrade of program-
ming language

E2 Spend time on learning
new functionality of the
prog. language

Read more, ask for help
from somebody who knows
it better

L L Pay attention to new versions, and their new
functionality

17 Not sufficient knowledge
about language/paradigm

K1 time spent on learning Coursing of developers M M Choose language/paradigm based on the teams
knowledge

17 Developers believe they
have more knowledge than
they have, leads develop-
ment in wrong direction

K2 hard to develop new func-
tionality

consider to discard code,
and start over again with
new and improved wisdom

L H Use time, let more people consider in the process
of selecting technology

18 language chosen is un-
suited

S3 time wasted on wrong lan-
guage

change language L H More training

19 Can’t choose a language K1 Use too much time on se-
lecting programming lan-
guage

Need help from different
developer

M M More training

20 chosen language was not
suited for the application

S3 Use unnecessary long time
and/or can’t finish in time

None L M More research

20 Do not make a choice S1 Code does not fit, which
causes a mess

None L H Improved process that ensures a good plan

21 Lack of knowledge about
the prog. languages func-
tionality

K1 lot of time spent on learn-
ing the language. the
probability of that an un-
suitable language is se-
lected is high

help from someone with
more experience

H M More experience

21 Unsuitable language is se-
lected

S3 cumbersome solutions,
slow system

change language, look for
workarounds with the se-
lected language

L H More experience

22 Lacking knowledge in suit-
able language

K1 Unnecessary time used to
development

Consult other developers M L Gain more experience

23 Choosing a language no
one knows

K1/T2 Time spent learning the
language

Read Docs L L More training

23 Choose unsuitable lan-
guage for the task

K1 Not being able to fulfill the
task

Change language M M Read the spec

A
ppendices

147

25 Get stuck on technicality K2 Some time spent reading
up on it

Need help from others L L More honestly about real vs. imagined knowledge

25 Do not know the language
well

K1 Lots of time spent reading
up on it

Help from others. Find
good examples

L M More careful selection of language to use and
hours to train on using it

25 wrong language selected S2 difficulty implementing accept incomplete or bad
solution

Attempt to rethink choice of language

26 Not ideal language chosen
because of lack of knowl-
edge

K1 More time used to imple-
ment

None M M Deeper knowledge about several different lan-
guages

27 No suitable languages
found

K1 development never starts keep looking L H Better research needed

27 Made a bad choice S3 Application not success-
fully developed

Choose another language
and start over

L H Better research needed

27 Disagreement in what lan-
guage to use

Argument delayed devel-
opments

Someone make the choice M M someone to make the choice

28 Little/no experience with
preferable language

K1 Time spent learning the
language

Need help from coworker L M Gain experience in different programming lan-
guages

30 chosen language was not
suited for the application

S2 Worse implementation
(takes longer time)

switch programming lan-
guage

L M More training, knowledge in the different lan-
guages

31 The prog. language does
not support necessary
functionality

E1 Extra time spent, app will
not get desired properties

Use another language or
sort it out in another way

M M Need more investigation and planning

32 Bad choice of language S2 Less effective than other
languages

Discard code, and rewrite
it in a more suitable lan-
guage

L M More experience with choosing language that fits
your task

32 Do not pick Python S2 Less effective than with
Python

Rewrite code to Python L H Always use Python

33 Wrong language selected S2 A lot of time spent trying
to make it work

Choose another language
and start over

L M Get more knowledge about the language before
development starts

34 No suitable languages
found

S1 application can not be de-
veloped

none L H change requirements

34 Unsuitable language se-
lected

S2 time used on facilitation
and things that don’t work

change language L H do research

35 Not familiar with suitable
language

K1 Do not possess enough
skills

Learn more languages L M Make sure developers know enough languages on
a general basis

35 selected language was un-
suited

K2 I1 Does not work/ hard change language L H Do more thorough work when selection language

36 not able to program in the
selected language at a suf-
ficient level

K1 slow progress need help from another de-
veloper

L M more training required

37 Wrong/ bad choice S2 Wasted time start development over L M Do a pre-study
37 ”Fanboyism” K2 Wasted time start development over L L Do a pre-study
38 Wrong choice R1 Time lost Need to change language L M Learn more about language
39 Lacking syntactic knowl-

edge
K1 Time wasted on learning

syntax
Study chosen language M M More training

39 Ineffective language for a
specific task

S3 More time used than nec-
essary

Restart project with differ-
ent language

L H Gain more experience in different programming
languages

40 Language doesn’t support
right functionality

E1 Change language, rewrite
code

Need help to make a right
decision

L H More experience needed

40 language is outdated E1 Change language, rewrite
code

Need help to make a right
decision

L H More experience

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

41 Lack of experience with
most suited language

K1 Not able to make the pro-
gram

Get help from another/ in-
ternet

M H Need to learn the language

B.5 Set up development environment

Table B.6: Set up development environment

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Environment not working

properly, configuration
E1 Takes a lot of time to cor-

rect it
None M H Use these experiences next time

2 Loss of data/conflict E2 Time for recovery None L M train employees in use
5 wrong version/ configura-

tion
E1 S2 S3 IDE does not run/ work recheck settings and/ or

guides on internet
L L Pay more attention when downloading or in-

stalling new software
5 IDE does not work with

chosen language
S3 Language non-compatible

with IDE
Chose different IDE or a
language that works with
chosen IDE

L M Pay more attention when downloading and read-
ing about

7 Development environment
different on different oper-
ating systems

S3 Trouble when merging
code

swap dev. environment M H select more familiar development environment/
have same OS

7 Lack of experience with
development environment

K1 Trouble when merging
code

train more M M select more familiar development environment

8 configured differently in
the production environ-
ment than test environ-
ment

E1 Code that works in dev,
does not work in produc-
tion

Code needs to be rewritten
and environment needs to
be set up correctly

M H Make sure all environments are the same before
starting development.

9 Bad support for the se-
lected language

S3 a lot of time used on find-
ing errors and so on

Change dev. environment
to one more appropriate
for the selected language

L M More knowledge about language before selecting
environment

10 Correct setup takes more
time than assumed

T2 More work None M L use proper roll-out of IDE so that each developer
does not have to set up IDE individually.

10 Problems with IDE setup E1 version control, system
etc. not working properly

Reinstall IDE etc. L L use proper roll-out of IDE so that each developer
does not have to set up IDE individually.

11 Not understanding the
setup process

K1 waste a lot of time Ask for help from another
development

M L Make sure everyone who don’t have experience
with the technology have the support they need

12 configured wrongly E1 Problems may occur Reconfigure M L Comes with experience and/or training
13 Programmers using differ-

ent IDEs
E1 extra time on smaller con-

figurations for each IDE
Adding minor fixes to dif-
ferent IDE

M L State preferred dev. environment before starting
project

13 Programmers not familiar
with the de. environment

K1 time used on teaching the
developers

help from those skilled in
the IDE

M L create guides for programmers to follow

14 wrong choice of IDE/com-
piler

S2 bruker mye tid change IDE/compiler M L more careful planning

14 development environment
is not configured correct in
all platforms

E1 loads of faults and prob-
lems when developers work
together

reconfigure with same ver-
sion for all developers

M M Agree upon versions, identify possible issues with
the different platforms

15 All necessary programs are
not supports on every OS

E1 Time used to solve prob-
lems

find alternative program/
change OS

L M Use environments that support most platforms

A
ppendices

149

16 Bad atmosphere between
the developers

The level of motiva-
tion and commitments
decreases

Superiors needs to find a
solution to the problems

L L

17 Not able to configure envi-
ronment

K1 time spent, need help from
other

get help from someone who
knows the IDE

M L Let the developers who are familiar with IDEs,
make a documentation containing problems that
has occurred previously.

17 wrong version of software
creates problems

E1 odd errors, things do not
work properly

reinstall correct version of
IDE

H L pay attention to the version number. Do not
make major updates, if not everybody does it

18 D.E unsuited S3 time wasted on setting up
D.E

Set ut new D.E L M Use generalized D.E

18 version control not work-
ing properly

E2 time wasted on making
version control work

none M M more training in version control

20 Code does not run prop-
erly

E1 New code can’t be written Correct the configuration M L More training

20 No one knows how to set
up the environment

K1 Code can’t be run or writ-
ten

Give training L L More training

21 problems with identifying
packages and so on

R1 takes time to configure take the time needed, ask
someone more experienced
for help, Google it

M L find a good user manual, make bulleted lists to
next time, a step by step guide

22 Does not get preferred de-
velopment environment.

K1 Less effective writing and
testing of code

Try to find alternative so-
lutions

M L Get a clear overview of what is needed, and find
something suitable.

22 Don’t use the IDE for what
it is worth

E1 Less effective writing and
testing of code

Change settings L L Get familiar with IDE

23 Unsupported OS E1 Not being able to setup Change OS M M
25 Cant build E1 Time spent help from others, or start

over
M L Find better instructions

25 No access to source code
management

E1 cant work while solving Grant access L L Better control over team members

25 cant submit changes E2 Team cant work Copy changes manually L M Better training
27 Make config errors in envi-

ronment
E1 Dev environment will not

work as intended
Fix config or set up dev en-
vironment again

M M Needs some training in setting up development
environments

30 Do not have the right
equipment/software

S3 Not able to solve the task
in a good way

Get hold of necessary
equipment, or do the most
of what you have

L M Always have newest software versions available,
in addition to equipment one might need

30 Errors on equipment or
software

E1 Can not be used Fix the error L H Always check that the software/equipment works
as it should beforehand

31 Wrong configuration E1 Extra time None M H Plan
31 Not able to fix the prob-

lems
K1 Problem is not resolved Need help M M More practice and training

32 Bad choice of development
software

S2 Less effective development Install and use better soft-
ware

M M More experience

32 Bad choice of version con-
trol system

S2 More problems than with
good version control

33 Bad configuration of D.E E1 Things does not work as it
should

Reconfigure D.E M M More training in the environment selected for this
project

34 incompabilities none time spent on configura-
tion, while things doesn’t
work

change to different soft-
ware

M M do research about familiar compatibilities

34 no knowledge about soft-
ware

K1 wrong configuration have someone redo it M L proper training, courses

35 wrong program E1 S3 doesn’t work try another program L L better knowledge about the programs

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

36 lack of communication
within the development
environment

I1 slows progress down management takes action L H scrum meetings, etc.

37 takes longer time T2 time wasted none M M pre-study
37 components doesn’t work E1 detailed development find compatible solution L L seek guidance from experienced developers
38 Wrong configuration E1 Not able to run code Change configuration L L Gain more knowledge
39 Compiler wrongly config-

ured
E1 Time used on finding solu-

tion/reconfigurement
Restart project, switch
software

M M Gain more knowledge about what is suitable/-
good software

40 Missing knowledge about
configurations

K1 E1 Program doesn’t run seek help for configuration L M Use more time in start-up phase

41 The D.E doesn’t work on
you OS

E1 Not able to start working Get new OS L M Make sure you have all the correct resources in
advance

B.6 Choose architectural pattern

Table B.7: Choose architectural pattern

I ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Inappropriate pattern cho-

sen
S2 Not working Extra work: details or

rewrite
L H Choose based on more experienc

3 Different patterns used by
different programmers

I1 Hard to get an overview
and change each others
code

Start over and use the
same patterns

M L Decide before coding, and let everyone know how
it works

4 Wrong selection made due
to not understanding the
task

S2 Writing the code will get
more difficult

Make new selection based
on new information

M M Spend time on analysing the architechture needed
prior to selection

5 Model is not updated upon
change of view or opposite

I1 nothing happens, changes
are not updated

implement methods that
check for changes and up-
date

L M Always include an update method that fores upon
changes

5 wrong architechtual pat-
tern chosen for assignment

K1 Does not work as intend-
ed/ at all

Ask another programmer
for help/ search for help

M M Keep to something you know, read more about
the certain architechtural pattern

6 wrong check on objects C4 C6 wrong arcitechture build a new architecture M H
6 wrong information about

relations in the code
R2 I1 time used to find new and

correc relations
find the correct relations
between objects

7 lack of experience with
pattern

K1 Mistakes may be done,
time spent on it

train for pattern M M Choose a more familiar pattern

8 Users lacks knowledge
about the architecture

K1 code is not written accord-
ing to architecture, lead-
ing to a destroyed struc-
ture. May lead to messy
code

Code needs to be rewritten
and more tedious

M M Give good training in the architecture that is to
be used

9 Misuse of selected pattern K1 hard for other develop-
ers to see and understand
what has been coded

None M M Seek knowledge about the pattern before starting

A
ppendices

151

10 Developers are not familiar
with pattern

K1 Slow development, incosis-
tent use of pattern or code
more prone to bugs

Need help for another de-
veloper or course in pat-
tern

L M More training needed with different patterns

10 Pattern not suited for ap-
plication

K1 code not working or un-
neseca

Rewrite code with better
suited pattern

L H Better knowledge of different patterns and a more
thorough process of choosing pattern

11 Picking an architectural
pattern thats incomplete
with the development
framework

S2 have to redo the architec-
tural design. time wasted

change development
framework

M L know the ins and outs of the pattern and frame-
works you are using

13 Choosing an uncommon
pattern

S2 A lot of time used on ex-
plaining how it works

help from programmers
skilled in the certain pat-
tern

M M Give explanation for the choice of pattern with a
guide on how to use it

14 wrong architechtual pat-
tern chosen

S2 time wasted change architecture L H developers in the firm should know different pat-
terns, make time for preporatory work

16 incorrect setup of pattern K1 Use time to write the pat-
tern correctly

Needs to learn how the
pattern works

L M More experience needed

16 Wrong selection of pattern K1 time spent on finding a
more suitable pattern

Discuss with other devel-
opers on what pattern to
use

L L More experience needed

17 Hard to implement pattern
in the technology

S3 Poor solutions to get the
solution required

change patter, technology,
or alt leas learn from your
mistakes

M H Do thourough research before staring

17 Pattern does not satifiy
demands

S2

18 A.P chosen not ideal for
project

K1 time wasted on wrong A.P. need to restructure code L M more training

18 Developers are not familiar
with A.P.

K1 time wasted on not follow-
ing A.P.

need to restructure code L M more training

20 Unsuitable choice of archi-
tecture

S2 Increased use of resources
and demotivating work

Early in development:
Choose different architec-
ture. Otherwise: None

M M Better planning

20 Does not pick any specific
architecture

S1 Messy code Choose an architecture
and refactor code

L M Better planning

21 Uncertainties about what
is the most suitable selec-
tion

K1 an unsuitbale A.P. is sele-
cected

None L H gain more experience with different architecture

21 Lack of experience in pat-
terns

K1 architecture is unsuiat-
able, copy pasting of
code/code doesnt work as
wanted

Try to fix it, make it right M M learn relevant architecure more thouroughly

22 Choose an inpractical pat-
tern

K1 Hard to develop as first
planned

Work around problems
and find solutions.

L M More experience

23 Unsuited pattern K1 Poorly designed software Change architecture M M Learn more about design patterns
25 Wrong choice S2 Slow progress Work longer L H change arch. pattern
25 Developers not familiar

with pattern
K1 time spent reading help from other, like

courses
M L more training up front

28 Architecture does not sup-
port expected tasks

S3 (A lot of) time used find-
ing preferred architecture

Help from developers that
have worked with similar
problems

L H Gain more insight in how different architectures
differ from one another

27 Choose pattern not suited
for chosen language

S2 App will be harder to de-
velop

Chagne apttern L M More research

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

30 Choose a pattern that are
not suitable for the appli-
cation

K1 Worse implementation,
and longer time spent
implementing

Switch pattern or make
the best out of what you
have

M M Better knowledge. More training in different pat-
terns

31 Faults in the architecture E1 Extra time spent Redo the architecture L M Plan and do it carefully
31 Use the pattern incorrect K1 Get load of error messages Read the error messages

and fix it
M H More experience

32 Bad choice of achitecture S2 Less effective development Rewrite code to follow bet-
ter architecture

M M More experience with which architecture that fits
which task.

32 Lack of knowledge in dif-
ferent architectures

K1 Bad architecture None M M Gain more experience and knowledge within dif-
ferent types of architectures

33 Wrong pattern selected S2 Messy code, lot ot uneces-
sary writing

Change pattern, to a more
suitable

L M Gain more knowledge about the different pat-
terns

33 PAttern does not work as
it should

K1 uneffective program L M Training

35 the architecture doesnt
match the functionality

S2 I2 need a lot of work to make
it work

change architecture L H better planning

36 chooses a subpar architec-
tural pattern

S3 slow down progress, cre-
ates a weaker result

choose again L M Have sufficient information regarding the differ-
ent architectural patterns

36 all developers are not ex-
perienced with this pat-
tern

K1 slows down progress Training by experienced
developers

L M Additional training

37 unsuited choice S2 wasted time re-visit decision L M proper planning
38 wrong choice R1 Time lost Need to be changed later

on
L L Get more knowledge

39 Architecture does not
cover requirements as
specified

K1 Don’t cover the require-
ment specification for this
project

Make a solution that cov-
ers it as good as possible

M M Gain more insight into the task

40 chosen architecture doesnt
meet all requirements

K1 change architecture,
rewrite code

Help with making a new
choice

L H Time spent on planning, check requirements
thourogh

41 Personel lack experience,
not able to make the choice

K1 might choose unsuited pat-
tern

Get external help M M Learn

B.7 Identify problems/uncertainties in requirements

Table B.8: Identify problems/uncertainties in requirements

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Not identifying all require-

ments
R1 Important work left out Implement requirements M M Make sure employees know their requirements

2 customer not certain of re-
quirements

R3

3 misunderstand the re-
quirement

R2 do unnecessary coding, do
not meet the requirement

clarify the misunderstand-
ing and fix the code. ask
the customer

M H Read thorough through reqs, and discuss them in
groups

3 overcomplicate require-
ments

K2 unnecessary coding go through the reqs again M M Do not overthink, Gain knowledge on language
to find the easiest way

A
ppendices

153

4 Unable to identify prob-
lems in requirements

R3 The code will not work as
intended

Extensive testing and
error-detection

H H Focus on requirements and scenarios to higher
probability to identify problems

5 requirements not under-
stood

I3 K2 something completely dif-
ferent is produced

ask problem giver if there
are uncertainties

L H make sure you know what they want before start-
ing to make it

5 requirements are unable/
unreasonable to comply to

K1 Product does not func-
tion/ requirements do not
give working product

remove/ reconfigure some
requirements

L H Know what can and will work

7 uncertainties not discov-
ered

R3 Problems arise later in the
project

Discuss thoroughly all as-
pects of the requirements

L M Discuss beforehand

7 uncertainties misunder-
stood

R1 mismatch in development
within team

Discuss thoroughly all as-
pects of the requirements

M M Discuss beforehand

7 uncertainties viewed as
problem by some of the
team

R2 some of the team spends a
lot of time trying to solve
the problem

Discuss thoroughly all as-
pects of the requirements

M M Discuss beforehand

8 The makers of the reqs are
non-technical and makes
unrealistic/ hard reqs

K1 Reqs must be removed or
development will exceed
the time estimated

reqs are removed H H Always have technical personnel on the teams
that makes the reqs

9 No problems found K1 Product has severe defi-
ciencies

None L H Constant control check ups of requirements.
Good communication with customer. Keep what
the customer want in focus

10 Problem/uncertainty not
recognized

R3 Problems are noticed in a
later stage of development

Fix problem L H More thorough check of requirements

11 Not seeing R1 L M
12 could not solve problem K1 can not continue without

fully understanding the re-
quirements or solving the
problem

Get help with a prob-
lem from another devel-
oper, or talk with the cus-
tomer about the require-
ments

M L Better line of communication with the customer.
Unsolvable problem: needs more training

13 not able to identify all re-
quirements

K1 project slows down when
req cannot be met

adding req to program H M

15 Flaws in requirements are
not identified

R1 Time used None L L Be more careful

16 Incorrect interpretation of
requirement

T2 Time spent on rereading
the requirements

Ask customer/or fellow
workers to clarify the
requirements

H M Better communication between customer and de-
velopers

16 contradictory require-
ments

I1 Time spent on interpreting
the requirements

Ask customer/or fellow
workers to clarify the
requirements

M M Better communication between customer and de-
velopers

17 Unrealistic requirements T1/T3 Not able to finish the solu-
tion

go through reqs with cus-
tomer, or get more time

M H time spent on requirements analysis

17 Not able to identity re-
quirement(which should
be identified)

K1 R1/R2 Not able to finish the solu-
tion, a lot of stress

go through reqs with cus-
tomer, or get more time

M H Choose development models which identifies
these problems, gain more competence

18 problem not identified un-
til implementation

none time spent communicating
with customer regarding
requirements

modify requirements H L none

18 mistake in requirements I2 time spent communicating
with customer regarding
requirements

modify requirements L L Better communication with customer

19 Can’t find problems or un-
certainties

C2 Becomes a problem later Need to fix the problem
later

L M Either more training, or better requirement spec-
ification from customer

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

20 Can’t find problems or un-
certainties

K1/I3 Delivered product that
does not work as expected

Implement missing func-
tionality

H M Use better time on analyzing requirements

20 Requirements are misin-
terpreted

I3 Delivered product that
does not work as expected

Implement missing func-
tionality

M M Better communication with customer. Allocate
more resources to achieve this, and include cus-
tomer during the project

21 customer has undefined re-
quirements

R3 Hard to no what solutions
to implement

ask customer for more de-
tails, show examples, make
a paper prototype

H L

21 Customer misunderstood R2 Code implemented in un-
wanted way, customer does
not approve

ask customer for more de-
tails, show examples, make
a paper prototype

H M

22 Interpret requirements
wrong

K2 Implement wrong require-
ments

Find the meaning of the
requirement and correct it

L M Ask customer/boss if there are any uncertainties.

23 Misinterpret requirements I1 Must reimplement features M M Read the specification carefully
25 fail to find big risk C2 potentially breakdown None L H Better risk analysis
25 risk wrongly assessed C4 time spent recovering Longer working day L M Better risk analysis
26 Wrong assumptions made

on unclear requirements
K2 End product does not com-

ply with requirements
Parts of the code has to be
rewritten

L M More people can read through requirements, in
order for every one to understand. Unclear re-
quirements can be discussed with customer/rest
of development team

28 Misunderstand the re-
quirements

K2 Extra work providing func-
tionality that fulfills re-
quirements

More work L M Thorough dialogue with the customer about ex-
pectations and requirements

27 Miss problem/uncertainty R2 Problem will be embedded
in app

Fix problem L M Have more people check the requirements

30 Misinterpret requirements I2 Result does not become as
wanted

Ask customer to explain M H Requirements should be more clear and precise
beforehand Better communication.

30 Don’t get enough informa-
tion about the task

I3 Result does not become as
wanted

L H Always get the information received confirmed
with customer, and improve communication

31 Not able to locate the
problem

K1 Not able to solve the prob-
lems

Need help from another
developer

M M Practice

31 Know what’s wrong, but it
takes a long time to fix the
error

T2 More time used than esti-
mated

None H H Careful planning

32 Uncertainties regarding
implementation details

R1 Some functionality won’t
get its development
started

Contact the customer and
ask for clarification

H L Make sure that the requirements are clear from
the beginning

33 Neglect problem Not able to develop the
program as it should have
been done

M H Read reqs more carefully, and several times

34 problem underestimated K2 underestimated timing get more man power M M spend time analyzing requirements
35 problems/uncertainties

identified
I2 not able to/ hard do sat-

isfy requirements
clarify requirements with
customer

M M ensure the quality of the requirements

36 Created solutions the pro-
gram didn’t need

T3 wastes time M M Communication with the company that ordered
the program

37 wrong assumptions I2 not the desired product none L M Good dialogue with customer
38 Identify errors too late K1 run into problems in im-

plementation
Change requirements M M Check requirements thoroughly

39 One of the requirements
are not good enough de-
scribed

R3 Requirement can be imple-
mented wrongly

Find new solution for the
requirement

Better communication with customer regarding
the requirement specification

A
ppendices

155

40 ambiguities are not identi-
fied

R2 Customer doesn’t get what
they want

Overtime on the develop-
ers

L H Better communication with customer

41 Not able to contact cus-
tomer/ or other people
writing requirements

I1 there’s are risk of the pro-
gram not supporting any
requirements

None L H Make sure to establish good connections with
customer

B.8 Define goals from the requirements

Table B.9: Define goals from the requirements

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Too ambiguous goals T3 Project not finished More time H M less ambitions and/or more time
2 not defining all goals K1 Project not finished More time H M make sure employees knows the reqs
3 Define too few goals T2 bad overview of remaining

work
define the goals in minor
goals

M M Keep a minimum amount of goals, and an
overview of time planned to use in each goal

3 Add unimportant goals T4/T1 The time used should
rather be used on impor-
tant goals

work after priority M L Prioritize the goals

4 Define wrong goals based
on insufficient understand-
ing of product require-
ments

R3 Not able to develop prod-
uct specified

start defining goals al over
later in the process

L H Spend time on understanding the requirements

5 Unable to reach goals T1 goals not reached get more help/make
smaller goals

M M Experience make time management easier

6 overestimated workload T3 extra work to complete the
reqs

only used estimated time
when performing the task

L M

7 Misunderstanding of re-
quirements

R3 Discussion, time spent Ask customer M L Have discussion of req. before development starts

7 Disagreement of high pri-
ority req

K2 time spent on discussion Ask customer M L have discussion of req. before development starts

9 Poorly defined reqs T2 Bad goals in accordance
with time estimation

Needs more developers to
finish on time

M M More experience with requirements, and more
and better communication with customer

10 Not all required goals de-
fined

R3 Missing functionality dis-
covered in a later stage of
development

Implement missing func-
tionality

L H Better process for defining goals from require-
ments

12 The goals does not match
the customers requirement

R2 Wrongly defined goals.
May lead to unwanted
program

redefine. If a lot of time
was spent before notic-
ing/being notified, then
redoing work as a possibil-
ity

L M-H Meet the customer before every major step in the
project

13 choosing wrong goal S2 product not the way cus-
tomer wants

talk to customer, create
new version

M H Keep good connection to customer through the
entire development process

14 goals are defined in wrong
order

K1

14 unattainable goals

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

15 Poorly defined reqs I3 Goals not defined clarification in require-
ments

L M identify flaws in requirements before defining
goals

16 Goals not specific enough R1 I3 The end-product may not
meet customer demands

Contact customer for more
specific goals

M M Better communication between customer and de-
veloper

16 Unrealistic goals (from
customer)

I2 Not able to deliver accord-
ing to customers need

Need to inform customer
about unrealistic goals,
and agree upon something
else

L M More experience (for customer) needed, and bet-
ter communication between developers and cus-
tomers

17 Misunderstanding of re-
quirements, leading to
wrong goals

K2 Unsatisfied customer/ bad
result

start over M H Use time. Use a reasonable development model

18 requirements misunder-
stood

I3 goals not fulfilling require-
ments

communication to clarify
reqs/goals

L M make requirements very clear

18 goals doesn’t solve prob-
lems in practice

K1 project not fulfilling re-
quirements

set new goals M M make requirements very clear

19 Too ambitious goals T2 Can not finish in time None M H Need more training
20 Requirements misinter-

preted
I3 Product does not work as

expected
Implement missing func-
tions

H M Better communication between customer and de-
veloper

20 No goals found I1 Remaining development
can not start

Talk to customer, identify
goals

L L None

21 Too ambitious goals/ lacks
details

details omitted during de-
velopment, bad overview
of progress

divide into smaller goals M L

21 too short deadlines for
each goal

T2 project more expensive
than estimated, lack of
effort on each task

None H M more experience in time management

21 too much time is estimated
on each goal

T3 project seems too expen-
sive, loosing tender

None H M more experience in time management

22 Set up fast schedule T2 Can’t deliver at the times
estimated, or work over-
time

Use more time than
planned

H L Get more experience with how long time different
tasks take

23 Define wrong goals T2 Time wasted Redefine goals M M
25 Requirements incomplete I3 Restructure code None H L More conversations with product owner
25 Requirement overlooked R2 Time spent implementing None L M More thorough examination of requirements
28 Wrong time estimate T2 Work plan need to be re-

vised
Extra work, if this is an
option

M H More time spent researching the project, talking
with the customer and gaining an overall good
overview of the size of the projects

30 Too ambitious goals T2 Goals are not reached (in
time)

Use more time than
planned

H H Be realistic when defining goals. Include margins

30 Goals with lack of ambi-
tion

T3 Could have reached a bet-
ter result

Define more ambitious
goals during the project

L M Be realistic when defining goals. Open up for
more work during the project

30 Goals too ambiguous K1 Hard to measure progress Adjust goals during the de-
velopment.

L L Define goals more accurately.

31 Underestimate workload T2 Not able to accomplish the
goals

None H H More planning

31 Over rated knowledge K2 Need more time, more er-
rors

Get help from someone
with more knowledge

M M More learning

32 Define wrong goals from
requirements

I2 The application gets the
wrong functionality

Define goals correctly. L H Gain more experience with defining goals

33 Reqs are misunderstood system is incorrect change the code L H talk to customer, communication

A
ppendices

157

33 Make too few goals T2 deficient program add more goals when you
become aware of the situa-
tion

L M Read reqs thoroughly

34 Goals not specific enough they don’t help, unable to
work towards them

remove goals M L Have a template for goals

35 Goals lack ambition K1 Requirements are not met Redefine goals M M More thorough work with quality assurance of
goals

36 Misunderstands the re-
quirements

I2 program becomes incom-
plete

communicate with com-
pany

L M good communication with the customer

37 unclear goals I3 redefine goals L L
37 missing goals I1
38 wrong goals R2/I2 Time lost Change goals L M Read requirements thoroughly
39 Don’t understand goals K1 Wrong implementation Clarify goals with cus-

tomer
M H Clarify the meaning of the requirements with cus-

tomer
40 Not able to define mile-

stones from requirements
K1 the development is not

goal oriented
get help from an experi-
enced developer

L M More training in getting clear goals

41 Choose unrealistic goal R2 Not able to finish all goals redefine goals during
project

M H more experience

B.9 Develop mockup/ prototype of solution

Table B.10: Develop mockup/ prototype of solution

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Insufficient functionality K1 Bad prototype- bad results More adjustments ASAP L M train employees/ hire better employees
2 Too advanced model T2 Unimplementable / un-

understandable
take it down a few notches.
redesign

M M Be more self-oriented

3 Unsatisfied customer I3 need to make new proto-
type

gain information about
what the customer dis-
likes, and fix it

M M Keep good communication with customer

4 Not able to develop a
prototype within the time
available

T2 Will need to finish the pro-
totype later than intended

None M M Try to overestimate the workload of individual
work packages slightly

5 Customer unable to under-
stand prototype

I1 customer is lost KISS- keep it simple
stupid

M M experience, make sure it is at customer level,
preschool/rocket-scientist

5 Prototype has faults C1 Prototype doesn’t work Test prototype before
showing customer

L M Remove features with major bugs to keep proto-
type functioning in the future

6 Information not communi-
cated

I1 the prototype is wrong M H Keep good communication with customer to
avoid misunderstanding

6 Information not communi-
cated

R1 use time to get info L M Keep good communication with customer to
avoid misunderstanding

7 Mockup does not provide a
realistic image of what the
app can do

I2 Time spent Mockup must be redone M M Discussion before mockup is developed. clarifica-
tion of which reqs are high priority and available
technology

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

7 Lack experience to per-
form functionality

K1 Time spent use time to train M L Google it

8 The GUI looks finished,
leading the customer to
think the project is almost
complete, while loads of
work on backend remains

I1 customer thinks develop-
ment is almost complete

H H Hard to explain the difference between front- and
back-end. If possible try to get in contact with a
person with experience from the customer

9 Messy and bad mockup
that not meets customers
expectations

I3 More resources due to a re-
build of mockup to meet
customers expectation

Well-defined goals H M More communication with customer. More fre-
quently contact could lead to smaller adjustments
at time, and mistakes/misunderstandings would
be fixed at an early stage

10 Mockup far from satisfac-
tory to customer

I2 customer not happy Extensive dialogue with
customer to fix or rede-
velop mockup to his needs

L H Better communication with customer before and
during development

11 mockup look too finished I2 customer less likely to crit-
icize something that looks
completed

None L M Make sure the mockups UI looks unfinished with-
out sacrifying usability

11 mockup doesn’t reflect re-
quirements

I2 you get feedback on how
the prototype differs, not
how to make it better

L H stick to the requirements

12 Customer not satisfied Must redo the mockup and
reconsider solution

None M M The customer may have unreasonable expecta-
tions. not much to be done

13 time consuming T2 time spent making proto-
type only worth it if cus-
tomer approves

none M M good connection to customer and skilled pro-
grammers

14 Prototype is not feasible K2 Wasted time and work Make new/ or change the
old one

L H

14 prototype does not cover
requirements

unsatisfied customer add missing functionality M M ensure the quality better

14 prototype is not intuitive
enough

15 Not able to develop a
prototype within the time
available

T2 prototype delayed need to work overtime, or
use more developers

L M Better estimation of workload

16 mockup does not meet cus-
tomers expectations

R2 Time spent on creating a
new prototype

Need to discuss with cus-
tomer what they expect,
what is a good prototype?

M M Better communication between customer and de-
velopers. Walk through the rq with the customer

16 Not able to develop a
prototype within the time
available

T2 not able to deliver what
the customer asked for/
get fired

Need to explain the situa-
tion, and ask for more time

M H Better communication between customer and de-
velopers. Better planning

17 The customer is misunder-
stood, or customer is bad
at explaining what they
want

I1 I2 Unsatisfied customer, need
to use more time

new evaluation process, re-
peat

M M

18 Customer not happy with
result

S2 time wasted rewrite project behavior L H Better communication with customer

18 prototype not ready in
time

T1/T2 project delayed, more ex-
pensive

plan more, plan for other
delays

H H better planning, but more importantly: plan for
T1/T2 happening, no matter how well planned
the project is

19 Lacks highly prioritized re-
quirements

I1 Develop new prototype Talk to customer M L Better specification from customer

19 Error in solution I2 Develop new prototype Talk to customer M L Better specification from customer

A
ppendices

159

20 Prototyping takes too
much time

T2 Project budget is overrun,
and too late delivery

Drop functionality L L Make the prototypes less comprehensive

20 Customer believes the
product is almost finished

I2 Customer not happy and
not able to understand.
Lack of trust between cus-
tomer and developers.

None M M Make sure the prototypes don’t look finished
when showed to a customer

21 Prototype has functional-
ity that is hard to imple-
ment

K2 The end product will differ
from prototype

None M M Make sure there is a plan on how to develop the
functionality before presenting the prototype to
the customer. Know you have the resources you
need

22 Use too much time T2 Give customer a prototype
late, use too much time on
a prototype.

Make the prototype sim-
pler, by putting less func-
tionality in to it.

M L Find a balance as for how much time one may
put into the prototype compared to further de-
velopment.

23 Make a prototype that
does not work

C2 Angry customer Fix it. M H Spend more time testing

25 Prototype wont run E1 Time spent None L L Better testing and planning
25 Not finished overtime T2 Need extra time None L M Better planning and estimation
26 Prototype is nicer than

necessary
T1 Too much time spent on a

task that gives little in re-
turn

None L M Make it clear as for what each iteration of the
prototype should test

27 Task too time consuming T2 Will not complete in time
or have to work extra

Have more people do the
task on work extra hours

M H New process of early app development

28 Customer does not ap-
prove of mockup/proto-
type

E1 Mockup/prototype need to
be revised

Ask customer what should
be changed

M L None. Customers needs are hard to estimate

31 Underestimate the time it
takes to create the mockup

T1 Not able to finish on time Work faster/ deliver an
unfinished product

H M Not spend unnecessary time on things, more
planning

31 Unsatisfied customer E1 Everything/ some things
need to be redone

Try to convince the cus-
tomer that this is the best
solution

H M Listen to the customer

32 Develop bad prototype K1 Customer not happy. Develop better prototype L M Gain more experience with creating better pro-
totypes

33 Make a poor prototype R2 Do not get good feedback
from customer

Make new mockup M M Let more people join the prototype development
process

34 mockup based on wrong
requirements

R2 it becomes useless redo it L H proper communication between customer and
team

35 prototype does not cover
requirements

R2 a lot of wasted work start over from an early
state of the project

M H Quality assurance of prototype along the project,
so that we are sure that the project is moving in
the right direction

36 its not what the customer
wanted

I2 prototype needs to be rea-
made

change the prototype M M Good communication with customer

37 faster than expected T3 down-time reschedule M L
38 too little time T1 Not completed get more time M M better time estimate
39 Requirement interpreted

wrongly
I3 Product contains wrong

functionality
Start all over M H Gain better understanding of requirements

40 prototype not ready in
time

T2 Customer will not see the
prototype

More work for all involved
parts

L M Estimate more time

41 Prototype does not reflect
a realistic image of the
end-product

I2 Customer not able to give
useful feedback

None L H Make sure the prototype reflect the goals

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

B.10 Review codes behaviour: place breakpoints

Table B.11: Review codes behaviour: place breakpoints

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Inappropriate placement

of breakpoints
K1 Test not working Place again M L Think more before placing

3 breakpoints placed badly C2 loose some of the code
while testing, or get faults
on right code

L L Check frequently and test several times

6 place breakpoints at places
were the code runs as it
should

S2 use to much time on de-
bugging, not finding the
real errors

M M

7 Breakpoints wrongly
placed

C3 compilation error undo placement, try again M L Indentation

8 Code badly documented,
hard to get what is going
on

I2 takes a lot of time Documentation of code,
and good names on vari-
ables and functionality.

H H Make it a business strategy to document, and
keep a standard for class-, function- and variable-
names

9 Not able to find expected
behavior

R1 A lot of time spent looking
for wanted behavior

Ask another developer for
help

M L Better knowledge on placement of breakpoints,
and better knowledge on the code that is re-
viewed

11 place breakpoints the
wrong location

K1 don’t see what you need to
see

ask for help L M Make sure anyone with little experience with bug
testing get the support they need

12 Did not find any problems K2 will lead to bad function-
ality

ask for help M M understand the application better/ more training

13 programmer does not un-
derstand how code works.
look at unimportant
breakpoints

K1 code not properly checked have someone with the
knowledge of the program
redo the review

M M make sure the one reviewing has the required
knowledge

15 Not able to place break-
points

E1 time used to locate the er-
ror

ask a more experienced de-
veloper/ internet

L L Better introduction to the program

16 Not able to locate errors,
place breakpoints wrongly

R1 time spent locating the er-
ror

Need help from another
developer

L L More experience needed

17 placed incorrect E1 K1 bad design/analyze pro-
cess

repeat, with more H L Learn from mistakes, get crew with experience

18 unable to understand be-
havior

K1 code review not finished Need help from another
developer

L M More training

20 Can’t use the tool K1 code review not finished More training or other
QA-method

L L More training in use of tool

20 Jumps past code and as-
sume that it works

C2 Parts of the code will not
be reviewed

Check remaining code L L Change attitude towards code reviews

22 Put breakpoints at the
wrong place

S1 Don’t check what you want
to

Switch breakpoint. H L More training

22 Forget to remove break-
points

S1 Code does not run as ex-
pected, harder to check as
wanted

Remove unnecessary
breakpoints.

H L More training

23 Place breakpoints at
wrong places

K1 Non optimal debugging Replace them L L Be careful.

25 checking wrong part C3/C6 Takes longer than neces-
sary

help from others L L More practice

A
ppendices

161

25 Fixed error, but created
another bug

C2 may holt development
later

Pair programming M L Code reviews

27 Unwanted/unexpected be-
havior found

Need to fix problem Fix problem H L Write better test/code

28 Breakpoint set too early C3 Functionality is not prop-
erly tested

A new set of eyes should
look on the code.

L M Good documentation and careful review of the
code

30 Breakpoints on wrong po-
sition

C5 Parts of code will not be
tested.

L H More experience, rather put too many than too
few

30 Too few breakpoints C5 Parts of code will not be
tested.

Insert more breakpoints M H More experience, rather put too many than too
few

30 Too many breakpoints C5 Debugging takes more
time

Remove unnecessary
breakpoints

L L More experience

31 Information is not commu-
nicated

R1 Needs to be fixed Fix it M L

31 Wrong info R2 Results are not as ex-
pected

Find the error and solve it H M Understand the task and the code properly

31 Info is not received R3 results are not as expected Find the error and solve it H M Understand the task and the code properly
31 Not able to solve the prob-

lem
K1 Extra time spent None L H More training

32 Do not review own code
properly.

C1 Miss out on errors that
could have been avoided

Review code and write
tests for all functionality

M M

33 Place breakpoint wrong S2 Poor progress in develop-
ment

change placement of
breakpoints

L M Understand the tasks scope better

35 Wrong breakpoints C5 Too much/ to little code is
tested

move breakpoints L L Be aware of what parts of the code are to be/
need to be tested

37 Developer does not know
how/why

K1 not done properly. ineffi-
cient code

help from another devel-
oper

M L More experience

40 breakpoints placed badly C3 Wrong code is checked Get help to do better
placements

M M More training in setting breakpoints

41 Does not understand old
code

R1 Not able to review rewrite code, use more
time interpreting old code

M M Make sure to write modifiable code

B.11 Review codes behaviour: evaluate behavior

Table B.12: Review codes behaviour: evaluate behavior

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Not able to identify prob-

lems
K1 Time used to find problem Ask more experienced pro-

grammers
L M Better training

3 Misunderstand the codes
functions

C2-C6 write new code which be-
haves the same. delete
code that works

discuss with the author of
the real code

M L test several times, in different ways

4 Not testing enough scenar-
ios

C2 Error might not be discov-
ered

None M H Do extensive testing based on product require-
ments

6 Wrong information ob-
tained

R2 Change the code L L None

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

7 cannot provide tests that
checks that the behavior is
correct

C2 Test fails write new test M L None

7 wrong check on right ob-
ject

C4 test fails find right check M L None

7 right check on wrong ob-
ject

C3/C4 Test fails find right object M L none

9 Wrong evaluation of be-
havior

C4 Strange behavior no one
understands, because the
impression is that the code
is flawless

Evaluate again L M More knowledge about code review. Ask other
developers for help when needed. See your own
limits

11 Insufficient understanding
of information received

K1 Not able to fix issues ask for help M M Make sure anyone with little experience with bug
testing get the support they need

13 Reviewer does not make
correct documentation for
code

R2 code not working accord-
ing to correct documenta-
tion

review the entire code with
correct documentation

L M Always keep correct and updated documentation
in an accessible place

16 Code does not behave as
expected

K1 Time spent to find out
what is going wrong

Help from another devel-
oper

M L More experience needed

17 Incorrect debug process R1 no new knowledge Change strategy M L New experience
18 behavior not as expected I3 project not fulfilling re-

quirements
modify code behavior L H Better communication

20 Check that the code be-
have as thought, but not as
required through the spec-
ification

K2 Code not working as it
should. Components don’t
fit

Rewrite code. Read
through requirements and
plan

M M Make requirements understandable and easy to
read. Change attitude.

22 Run wrong test C4/C3 Does not get to check the
wanted functionality

Modify / add test H L Gain more experience

22 Forget to test parts of the
functionality

Has untested and poten-
tially wrong functionality
in the code.

Add tests, try to cover as
much as possible

H M Gain more experience, and test product before
delivery.

21 Not enough heavy test-
ing(number of users etc.)

R2 program doesn’t work
when strain is high

Launch a beta version and
test it with many users

M H

21 The test works with test
data, but data that is not
tested can make the pro-
gram crash

C2 Program doesn’t work as
intended

Launch a beta version and
test it with many users

M M Problems may most likely be fixed quickly with
a patch

23 Accept poor behavior C2 Bad software Reevaluate M M Improve evaluation scheme
25 Code misunderstood K2 Takes longer to incorpo-

rate
help from others L L Better orientation and training

28 Program does not function
properly

E1 Extra time spent trying to
fix

Ask another developer H L Be thorough and consistent when writing
schemas and code.

30 Wrong behavior in code C2 Have to reimplement parts
of the code

Fix error H M Gain more programming experience

30 Evaluation wrongly con-
ducted

C3/C4/C6 Errors could be missed,
found errors could be
”wrong” (An error iden-
tified is not really an
error)

L H Better routines on code evaluation

31 Code does not behave as
expected

E1 Time spend on finding and
fixing the error

None M H Get the help you need in time, before the project
suffers

35 behavior not as expected R2 Faults in the code Fix the errors H K Code better
36 Bugs Program runs poorly Find what causes the bug H L

A
ppendices

163

36 Code doesn’t work prop-
erly

K1 Problem not solved Find logical flaws L M Properly trained staff

37 Bugs missed K1 Bugs Patching H M Peer reviewing of code
39 Implementation gives

wrong functionality
K1 Modify code Reserve more time to im-

plemented code.
M M Better code understanding

39 Unknown/unwanted be-
havior of code

K1 Time spent on searching
for bug

Find a developer who can
help you

H M Use longer time on writing understandable code

40 Wrong behavior is ex-
pected from the code

C3 code is marked wrong Investigate system tests
better

L M Read documentation

41 Misinterpret behavior R2 rewrite code that really
does work

None L M Make sure the test for behavior are good

B.12 Modification: identify new necessary functionality

Table B.13: Modification: identify new necessary functionality

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Wrong solutions to the

problems
S2 Wasted time Modify solutions M M Choose better

2 Not finding the solutions K1 wasted time Ask for help Get more experienced people to do this
3 Add unnecessary functions I3/K2 unnecessary time spent M M Discuss with others(customer or developers)
4 Unable to identify func-

tionality the customer will
need

I3 Product might not meet
customers expectations

Obtain information on
needed functionality from
customer

M M keep a close dialogue with the customer through-
out he development process

5 same task is repeated ev-
ery time

pointless to have check/
task

task is omitted or auto-
mated for simplification

M L Check for redundant tasks

6 Overestimated T3 project not complete at es-
timated time

None L M Implement the most necessary reqs first

6 wrong selection of func-
tionality

S2 add unnecessary function-
ality

M M Check reqs before deciding upon new functional-
ity

7 functionality already im-
plemented in another place
in the app

I1 functionality might be
added twice and unneces-
sary time spent

none, except deleting re-
dundant code

M L Better communication within development team

7 customer does not agree I3 functionality is dropped none M L None
7 functionality exceeds time

scope
T1 functionality must be

dropped
prop other tasks to do this
functionality

M L Plan better use of time. Take new functionality
into consideration

9 Functional deficiencies are
not discovered

R3 Leads to faults/deficien-
cies in the end-product.
Not satisfied customer

Communicate with cus-
tomer

L H A well structured design-phase were requirements
are well-defined and approved by customer

11 identifying a new function-
ality which is already sup-
ported

I1 K1 redundancy talk to the other develop-
ers when making code de-
cisions

L L Keep the code simple and well commented so its
easy to understand what is happening

12 the new functionality takes
too much time

T2 may not meet deadline extension of deadline M H Research the necessary functionality

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

13 Adding unnecessary func-
tionality

I3 time wasted on creating
functionality

16 Pattern selected does not
fit with new functionality

S3 Time spent on rewriting
the pattern

Help from another devel-
oper

L M More experience needed

16 Wrong interpretation of
functionality

I3

17 Misinterpreted customer I2 wrong requirements repeat M M
17 unfamiliar with the tech-

nology stack
K1 wrong reqs, strange re-

quirements
let somebody else take
over

L H Use time and work together

18 new functionality causes
bugs

none project buggy fix bugs H L none

18 No knowledge for new
functionality

K1 functionality not added need help from another de-
veloper

L H more training

19 Unnecessary functionality
added

S2 Time wasted None M L Need more training

20 Can’t find necessary func-
tionality

R1 Necessary functionality
not implemented.

Try again and implement
missing functionality.

L M

23 Not being able to identify S1 No new functionality None L L None
23 Identify too much S1 Lots of work Remove some require-

ments
M L Be more critical

25 Need not discovered I3 Missing functionality None L M More rigorous checking of needs
31 The entire program needs

changes
T1 Time spent doing all the

changes
None M H None

31 Do not know how to do
what needs to be done

K1 Not able to perform the
changes

Get help L M More training

33 Add unsuited functionality S3 Time spent on something
that is not going to work

drop the functionality M M Gain more knowledge about the technology used

33 Choose too many new
functionalities

T2 Too little time to finish skip certain functionalities M L Better time management

34 not able to implement due
to lack of experience

K1 cant be implemented, un-
happy customer

bring in more expertise M H do a good prestudy, so that it is easier to know
what expertise is needed in the project

35 existing code does not sup-
port new functionality

E1 not able to implement new
functionality

change existing code M M be aware of the functionality from the start of
project

36 Developers doesn’t know
how to implement new
functionality

K1 cant solve problem Help by another developer L M More training

37 difficult to implement E1 Extra work substantial refactoring M H have all the functionality planned in the begin-
ning

38 wrong feature identified R2 time lost Identify right features L H identify missing feature better
39 New requirement from cus-

tomer
R3 Time used on changing

product
Modify product M M Keep ”natural requirements” in the back of mind

during development.
40 doesn’t see the need for

new functionality
K1 System lacks functionality,

doesn’t meet the require-
ments

run more tests L H investigate requirements further

41 Identifies existing func-
tionality as deficient

R2 Write same functionality
twice

None L M Keep an overview of what is implemented

A
ppendices

165

B.13 Modification: draw connection between old and new functionality

Table B.14: Modification: draw connection between old and new functionality

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Wrong assumptions about

new functionality
S3 wasted time/errors change code L M Think better

4 Not doing modification
properly due to difficulties
understanding the old
code

R3 Modification will not work
properly

Will need to analyze the
old code when unexpected
problems occur

M M Spend time analyzing the old code, talk to other
developers if any

5 old code is ignored C1 functions don’t work, code
not needed

if code is needed the prob-
lem must be solved, else
code can be scrapped

M L Pay attention when coding

7 critical objects missing to
do the connection

R3 connection cannot be
drawn

Create critical objects H L have good overview of code. Draw class diagrams

8 Old code is badly struc-
tured

Lot of work needed to do
small changes

code needs to be rewritten,
or do it possible to make
a loose connection between
old and new code

M H Make good standards for the developers to follow

9 Hard to find connection
in the code/poorly connec-
tion

I1 Hard to see the changes
that are made

None L M Maintain a good version control of the code

11 Insufficient knowledge of
code

K1 Redundancy and poor op-
timization

get someone else to take
over

M M make sure every developer is aware of everything
happening

11 messy code R1 even more messy code
12 100 new bugs Application not working Debug H M Make sure the new functionality will not cause

any problems
16 Poorly documentation of

code
R1 Not sure were to make the

change, time spent to fig-
ure it out

Need to contact developers
of the old code

M M Keep a focus on documentation of code

17 Reach wrong consequences K1 K2
18 old incompatible with new K1 K2 code not working together modify old code H L more training
19 Can’t connect old code

and new functionality
R3

22 No good way to connect Ugly code
26 Old code misunderstood.

New functionality uses old
methods wrongfully

R2 New functionality does not
work as it should, or ruins
old functionality.

Old code should be re-
viewed and corrected if
necessary.

L M Test old code before use. Review documentation

27 No connection found R1 Developing new function-
ality will be difficult

None M M Write more easily changeable code

28 Old and new code uses dif-
ferent platforms (are in-
compatible)

E1 Time spent trying to make
the code compatible

Ask a developer with simi-
lar expertise

L M Check compabilities before writing code

30 Can’t connect old code
and new functionality

Can’t add new functional-
ity

31 Old code and new code are
not compatible

E2 Need changes, more time Change old code H M

A
ppendices

A
ppendix

B
R

esponses
from

experim
ent

32 Hard to read code you
have never seen before or
written a long time ago

K1 Waste of time Read and understand the
code again

H M Get better at documenting and commenting.

31 Communication doesn’t
work

I1,I2,I3 Need to spent time finding
the error

None M H Try to write simple code, that works with differ-
ent functionality

33 New code in written in
wrong language

S3 K1 Need to rewrite everything change language L H Do research before you begin

35 Not compatible E1 not able to support new
functionality

change the code M M Be aware of what is to be done to support the
new functionality

36 New functionality requires
changes in old code

E2 New functionality does not
work

update old code M L Teamwork

37 not familiar with old code K1 unable to perform task read documentation H M proper documentation
39 Underestimate workload

needed to translate old
code

T2 More time than expected
is used

Reserve more time for the
task

H M Gain more knowledge of old code and new func-
tionality

40 Not able to see the connec-
tion

K1 incoherent code get help from more experi-
enced developers

M H Investigate the connection further

41 Conclude wrongly K1 New functionality is not
implemented

get help from developers
who knows the old code,
and new functionality bet-
ter

L M Get to know old code and new functionality be-
fore you start

B.14 Create new functionality: code the changes

Table B.15: Data: Create new functionality

ID Error Description Error Mode Consequence Recovery P C Remedied Strategy
2 Not able to code all

changes
K1 Wasted time Ask for help L H Think better

3 New code overwrites old
code

old functionality is de-
stroyed, needs to be fixed

M L separate the functionality, use own/new variables

4 Not changing all necessary
parts of code

R3 New functionality will not
work as intended

solving problems due
to the insufficient code
changes

M M Test more aspects of the code than the ones di-
rectly connected to the change

5 application crashes K1 application crashes test as changes are imple-
mented to make sure it
works

M H Remember to test as small/ new code is added

6 wrong technology S3 Technology does not exist find new technology to
code the changes

L M

7 Merge conflict between
new code and project

E2 Merge conflict. Project
does one compile

Rewrite previous working
versions

H L pull and push often

9 Changes in code leads to
new unforeseen faults

K2 More work/ which takes
more time

Ask for help H M Experience

10 New functionality not
complete with old code

cannot implement func-
tionality without changing
old code

Rewrite old code M M Write code with low coupling

A
ppendices

167

11 Underestimated, time re-
quired

T2 wasted time scrap new feature H M Don’t be naive when estimating time

12 changes not fit for the cho-
sen language

E2 can not implement without
spending time on the prob-
lem

None L M Rethink the functionality

16 The old code is bad/ un-
suitable pattern is used

K1 Time spent on walking
through the old code

Help from other developers M M Better communication between developers. Rules
on when to use different patterns

18 old code affected, bugs ap-
pear

K1 code not working together modify old code H L more training

21 Code that ran flawless pre-
viously stops working

E2 Program does not work as
intended

23 Break old code C1 Non-functioning software Fix it M H Better tests
23 Fail to implement K1 Get help from others M M
26 Old code hard to under-

stand (Not intuitive)
R3 Modification takes long

time. Lots of testing on
old code wastes more time.

None M M Comment/document code while reviewing old
code.

27 Spaghetti code, needed
many code changes for
small functionality change

T2 Much time lost fixing bad
code

Need help from more de-
velopers

M M Better coding techniques and better documenta-
tion

28 Implementation takes
longer time than expected

T2 Work plan needs to be re-
vised

Ask a developer with simi-
lar expertise

M M Check compabilities before writing code

30 Not able to implement K1 Changes not implemented Ask a developer with simi-
lar expertise

M M More training

31 Uncertainties about how
to code the changes

33 Not able to code all
changes

K1 T2 Discard functionality, not
able to reach time estimate

L H Become a better programmer

34 spend too much time T1 delays drop non-vital functional-
ity

H M be more generous when making plans and
scheduling

35 Old code does not support
old functionality

E1 Hard to code new func-
tionality

Code M L Make modifiable code

36 Developer is not capable of
coding the changes

K1 Problem not solved needs help from another
developer

L L

37 takes long time T2 production delayed more developers assigned
to task

M M Better planning of time-management

38 flaws in code K1 Feature doesn’t work Fix it M L Learn to code better
38 Too little time T1 Feature omitted Get more time L H learn better time-estimation
39 Underestimate implemen-

tation
T2 More time used than

planned
Reserve more time, or get
more developers on your
team

M M Gain experience with similar implementations.

40 Wrong changes are imple-
mented

I2 Wrong functionality in
system

recode the changes L L Gain a better understanding of the functionality
for coding

41 New code is not imple-
mentable in the system

S3 not able to implement None L H Make sure to write all code modifiable

	Sammendrag
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Thesis Scope
	1.4 Thesis Outline

	II Pre Study
	2 Human Reliability
	2.1 Human Reliability
	2.2 Human Reliability Analysis
	2.2.1 Performance Shaping Factors (PSF)
	2.2.2 Human Error Probability (HEP)
	2.2.3 Human Reliability Analysis
	2.2.3.1 Problem Definition
	2.2.3.2 Task Analysis
	2.2.3.3 Error Identification
	2.2.3.4 Error Representation
	2.2.3.5 Quantification and Integration
	2.2.3.6 Human Error Management

	3 Human Error
	3.1 Human Error
	3.2 Slips and Mistakes
	3.2.1 Skill-based Error
	3.2.2 Rule-based Error
	3.2.3 Knowledge-based Error

	3.3 Swiss Cheese Model
	3.4 Disturbances on Human Performances
	3.5 Software Errors

	4 Background Information
	4.1 Specialization Project
	4.1.1 HR-methods

	4.2 SPAR-H

	5 SHERPA
	5.1 SHERPA
	5.2 Procedure
	5.3 Example
	5.4 Pros and Cons
	5.5 Validity

	III Research Methods and Research Design
	6 Research Methods
	6.1 Qualitative and Quantitative Research
	6.1.1 Qualitative Research
	6.1.2 Quantitative Research

	6.2 Focus Group
	6.2.1 Context Selection
	6.2.2 Planning of Focus Group

	6.3 Experiment
	6.3.1 Planning the Experiment
	6.3.1.1 Context Selection

	6.4 Questionnaire

	7 Validity of Research Methods
	7.1 Conclusion Validity
	7.2 Internal Validity
	7.3 Construct Validity
	7.4 External Validity

	8 Research Design
	8.1 Focus Group
	8.2 Experiment
	8.2.1 Selection of Subjects
	8.2.2 Location and Equipment
	8.2.3 Experiment Design
	8.2.3.1 Pre-Experiment Questionnaire
	8.2.3.2 SHERPA Table
	8.2.3.3 Post-Experiment Questionnaire

	IV Research Procedure and Results: Focus Group
	9 Hierarchical Task Analysis
	10 Results From Focus Group
	10.1 Procedure
	10.2 Findings
	10.2.1 HTA
	10.2.2 Errors in Software Development
	10.2.3 Error Modes

	V Research Procedure and Results: Experiment
	11 Adjustments made in SHERPA
	11.1 Error Mode
	11.1.1 Time
	11.1.2 Knowledge
	11.1.3 Technical Error
	11.1.4 Selection

	11.2 SHERPA Process
	11.3 Experiment

	12 Procedure
	13 Results and Findings
	13.1 Pre-Experiment Questionnaire
	13.2 Experiment
	13.2.1 Choose Programming Language
	13.2.2 Set up Development Environment
	13.2.3 Choose Architectural Pattern
	13.2.4 Identify Problems/Uncertainties in Requirements
	13.2.5 Define Goals from the Requirements
	13.2.6 Develop Mockup/Prototype of Solution
	13.2.7 Review Codes Behaviour
	13.2.8 Review Code: Evaluate Behaviour
	13.2.9 Modification: Identify New Necessary Functionality
	13.2.10 Modification: Draw Connection Between Old and New Functionality
	13.2.11 Create New Functionality: Code the Changes

	13.3 Post-Experiment Questionnaire

	VI Discussion and Conclusion
	14 Discussion
	14.1 Error Modes
	14.1.1 Time
	14.1.2 Knowledge
	14.1.3 Technical Error
	14.1.4 Information Retrieval and Information Communication
	14.1.5 Checking
	14.1.6 Selection

	14.2 Discussion of the Results
	14.3 Research Questions

	15 SHERPA
	15.1 Error Modes
	15.2 The SHERPA Procedure
	15.3 SHERPA in a Software Development Task

	16 Validity
	17 Conclusion
	18 Further Work
	A Experiment
	B Responses from experiment
	B.1 Pre-experiment questionnaire
	B.2 Post-experiment questionnaire
	B.3 Error Modes
	B.4 Choose programming language
	B.5 Set up development environment
	B.6 Choose architectural pattern
	B.7 Identify problems/uncertainties in requirements
	B.8 Define goals from the requirements
	B.9 Develop mockup/ prototype of solution
	B.10 Review codes behaviour: place breakpoints
	B.11 Review codes behaviour: evaluate behavior
	B.12 Modification: identify new necessary functionality
	B.13 Modification: draw connection between old and new functionality
	B.14 Create new functionality: code the changes

