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SHMAC is an FPGA-based multicore prototype developed in a research project
within the Energy Efficient Computing Systems (EECS) strategic research area.
SHMAC is planned to be an evaluation platform for research on heterogeneous
multicore systems. The goal of the SHMAC project is to propose software and
hardware solutions for future power-limited, heterogeneous systems. The main goal
of this master thesis project is to implement debugging support for SHMAC. The first
part is to implement general support for GDB by developing a GDB stub for SHMAC
and necessary host driver support. The second part is to facilitate kernel debugging
of Barrelfish on SHMAC. If time permits, the student should also implement and
document

– debugging support for multiple SHMAC cores.

– debugging support for user space programs on Barrelfish.

– debugging support for Linux kernel on SHMAC.

– more advanced debugger support of multiple cores with some form of visualisa-
tion of core usage and communication.

Supervisor: Lasse Natvig and Asbjørn Djupdal.





Abstract

Processors have historically attained performance improvements primarily
by increasing frequency and the number of transistors. As the transistor
density increases, keeping the power density constant gets harder. As
a result, future processors will not be able to power all transistors si-
multaneously without exceeding the power budget. This phenomenon
is coined Dark Silicon, referring to the part of the silicon that must be
left unpowered. The issue with dark silicon can be mitigated by building
heterogeneous computing systems. Such systems consist of several spe-
cialised components, each highly efficient in performing a specific task
and workload.

The SHMAC project was initiated by NTNU to investigate the challenges
in designing heterogeneous computing systems. The output of the project
is a heterogenous processor called SHMAC, which has an architecture
consisting of a grid of computing tiles. One of the available computing
tile is an ARMv3 compliant CPU core. The current software for SHMAC
is primarily using this tile as the target CPU.

This thesis presents the first functional debugger for SHMAC. The de-
bugger is based on the GNU Debugger (GDB), a popular open-source
debugger maintained by the Free Software Foundation. Future software
development on SHMAC will greatly benefit from having a proper tool
for debugging. Another contribution is the integration of the debugger
with Barrelfish, the first functional operating system for SHMAC. The
integration facilitates kernel debugging and debugging of user programs
running on Barrelfish.





Sammendrag

Prosessorer har historisk sett oppnådd forbedringer i ytelse ved å øke
frekvensen og antall transistorer. Etter hvert som transistor-tettheten øker
blir det vanskeligere å holde energiforbruket per areal konstant. Resultatet
er at fremtidens prosessorer ikke vil kunne bruke alle transistorer samtidig
uten å overskride tillatt effektnivå. Denne trenden blir kalt for Dark
Silicon, som refererer til den del av silisiumet som må være avskrudd.
Problemene med dark silicon kan delvis løses ved utvikling heterogene
datamaskiner. Slike maskiner består av flere spesialiserte komponenter,
der hver komponent er effektiv i å løse en spesifik oppgave av en gitt
størrelse.

SHMAC-prosjektet ble startet av NTNU for å undersøke utfordringene
rundt utvikling av heterogene datamaskiner. En heterogen prosessor kalt
SHMAC er et resultat av dette prosjektet. Denne prosessoren har en arki-
tektur som består av et gitter av beregningsenheter. En av de tilgjengelige
beregningsenhetene er en ARMv3-kompatibel CPU-kjerne. Nåværende
programvare for SHMAC er primært laget for denne beregningsenheten.

Denne hovedoppgaven presenterer den første fungerende debuggeren for
SHMAC. Debuggeren er basert på GNU Debugger (GDB), en velkjent
debugger fra Free Software Foundation. Fremtidig programvareutvikling
for SHMAC vil ha stor nytte av å ha et skikkelig verktøy for feilsøking.
Et annet bidrag er integrasjon av debuggeren mot Barrelfish, det første
funksjonelle operativsystemet for SHMAC. Denne integrasjonen forenk-
ler feilsøking av operativsystemkjernen og programmer som kjører på
Barrelfish.
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Chapter1Introduction

1.1 Trends in Computer Architecture

The processor has seen an impressive increase in performance since its conception.
Most of the performance gains has been achieved by increasing the Instruction
Level Parallelism (ILP). Increasing the ILP benefits the single core performance, but
requires the use of more transistors. The result is that the number of transistors
per processor has increased by an exponential rate. This trend is known as Moore’s
Law, named after the Intel co-founder who described the trend in a paper from 1965
[M+65].

The performance increase through ILP and frequency scaling stagnated in the early
2000s. The power consumption and the core temperature reached the limit of what
cooling systems could handle. The single core designs had become so complex that
any increase in ILP would require a substantial increase of transistor usage and
power consumption [BC11]. Higher performance had to be gained through other
means. The multicore design was the answer to this issue. Multicore processors were
designed by placing multiple homogenous processor cores on a single chip.

Processor designs have also relied on Dennard scaling, a law related to Moore’s Law.
Dennard scaling states that power density stays constant as transistors gets smaller
[DGR+74]. As the transistor dimension shrinks, it becomes harder to keep reducing
the power consumption per transistor, leading to the failure of Dennard scaling. The
result is that an exponential increase in number of transistors leads to an exponential
increase in total power consumption. Thus only parts of a processor can be powered
on at a given time to ensure that the chip does not overheat. This phenomenon is
called Dark Silicon [EBSA+11].

A potential strategy for mitigating this problem is heterogeneous computing [Tay12].
Instead of making homogenous multicore processors, future multicore processor
may consist of several specialized components, each highly efficient in performing a
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2 1. INTRODUCTION

specific task and workload. In theory, such processors may have only the most efficient
component enabled at a time, yielding higher performance and power efficiency than
traditional, general-purpose processors.

1.2 The SHMAC Project

The SHMAC project is a research project initiated by the Energy Efficient Computing
Systems (EECS) group at NTNU [EECb]. EECS is a joint research initiative by
the Department of Electronics and Telecommunications and the Department of
Computer and Information Science [EECa]. The primary focus is to investigate
the challenges in designing heterogeneous computing systems. A subproject of this
research initiative is the Single-ISA Heterogeneous MAny-Core System (SHMAC).
It is a generic architecture for implementing single-ISA heterogeneous multicore
systems. The architecture consists of a grid of computing tiles, each implementing a
specific routing interface. The most prominent tile available is an ARMv3 compliant
CPU core. The current software for SHMAC is primarily using this tile as the target
CPU.

1.3 Barrelfish for SHMAC

Barrelfish is an experimental operating system designed for future multi- and many-
core systems [Zü, BBD+09]. It is developed by ETH Zürich with collaboration from
Microsoft. The motivation behind Barrelfish is the current trend in hardware design
where the number of cores and hardware diversity increases. The architecture of
Barrelfish is designed after the multikernel model which treats the machine as a
network of independent cores. The machine is modelled a distributed system; there
is no intercore sharing and the cores communicate solely through message passing.
Benchmarks on manycore systems have demonstrated that Barrelfish scales better
than conventional operating systems such as Linux and Windows.

An initial port of Barrelfish to SHMAC was developed as a result of a student project
in fall 2013 [BS13]. The port proved to run stable on SHMAC, although only utilizing
a single core. Barrelfish became the first stable operating system for SHMAC. The
development of the port continued in spring 2014 with the target goal of adding
multicore support [Bjo14].

1.4 Debugging on SHMAC

The report from the Barrelfish porting project stated that the lack of a debugger was
a serious limitation with the SHMAC platform. Diagnosing errors was a challenging
task that was time consuming and hard to carry out. Debugging was performed by
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examining the output from inserted print statements and the content of memory
dumps taken during execution. These two techniques are far from ideal. Inserting
print statements may accidentally alter the semantics of the program and requires
recompilation whenever a new print statement is inserted. Examining memory dumps
is a complicated task that requires detailed knowledge about how a program is laid
out in memory.

A proper debugger will simplify software development on SHMAC. Locating bugs
will be easier and less time consuming, enabling software developers to focus on
implementing functionality rather than spending time on fixing bugs.

Terje Schjelderup investigated the debugging capabilities of SHMAC in a report from
fall 2013 [Sch13]. The report states why having a debugger for SHMAC is important,
and it also briefly describe how to add GDB support to SHMAC without having to
perform any larger modifications to the SHMAC hardware.

1.5 Assignment Interpretation

The following tasks were extracted from the assignment text:

Mandatory:

T1 Add support for debugging with the GNU Debugger (GDB) on SHMAC. This
step includes the development of a GDB remote stub and any host drivers
required to enable GDB debugging.

T2 Facilitate debugging of the Barrelfish kernel using the software developed in T1.

Optional:

T3 Extend the debugger implementation in T1 and T2 to enable debugging of
multiple SHMAC CPU cores simultaneously.

T4 Extend the debugger implementation in T2 to facilitate debugging of user pro-
grams in Barrelfish.

T5 Extend the debugger implementation in T1 to enable debugging of the Linux
kernel.

T6 Implement a software providing visualisation of core usage and communication.

Most effort will likely be spent on T1. The other tasks are dependent on the output
of this task. T2 is the dependent on the success of T1, and cannot be started until
the software in T1 has reached a stable state. T3 is defined as a separate task from T1
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as it is believed to be technically challenging and time consuming. It is the highest
prioritized task among the optional tasks since debugging multicore programs are
an essential feature on SHMAC. T4 provides an extension of the software in T2.
This task is believed to be a relatively simple once kernel debugging of Barrelfish
is finished. T5 is related to a master thesis working on porting Linux to SHMAC
[AA14]. This task will be initiated if they are in great need of a debugger and if time
permits. T6 is not directly related to the other tasks, although it provides SHMAC
with monitoring capabilities which can be useful when debugging.

1.6 Contributions

This thesis provides the SHMAC project with a fully functional debugger. The main
contribution is support for the GNU Debugger (GDB), an open-source debugger
developed and maintained by the Free Software Foundation. This thesis describes
the implementation of a GDB remote stub, a small software component, which linked
to a SHMAC program, enables debugging using GDB.

This thesis does also provide GDB support for the Barrelfish operating system. The
GDB integration enables debugging of the OS kernel and system processes.

1.7 Thesis Organization

Chapter 1: Introduction presents the motivation and goals of the Master Thesis.

Chapter 2: Background presents an overview of common debugging concepts,
the SHMAC platform, GNU Debugger (GDB) and the Barrelfish operating
system.

Chapter 3: GDB for Bare-Metal Programs describes the implementation of
the GDB debugger for SHMAC.

Chapter 4: GDB for Barrelfish describes how the debugger was integrated into
Barrelfish.

Chapter 5: Testing the debugger describes how the debugger was tested and
verified.

Chapter 6: Evaluation evaluates the debugger. Limitations with the current
implementation are presented.

Chapter 7: Future work suggests the direction for any future work.

Chapter 8: Conclusion contains the concluding remarks for this project.



Chapter2Background

2.1 Debugging

Debugging is the process of discovering and eliminating defects in a computer program.
Software defects and anomalies are more commonly known as bugs. Debugging is an
essential part of software development, as it is hard to write fault-free code on a first
attempt, and finding the bugs can be challenging. Static analysis and code reviews
will identify some bugs, while other bugs are not discovered until testing or running
the program live. Some debugging techniques involves inspecting the state of the
system after the program has finished.

2.1.1 Debugger

A debugger is a tool used to facilitate debugging of a program. A debugger provides
operations for examining and modifying the program state. In addition, the debugger
may control the program execution. The program might be stopped at location, and
then later resumed. The program being debugged is usually compiled with a special
debug flag. The flag tells the compiler to include debug symbols. Debug symbols
provides the debugger with details about the source code. This enables the debugger
to determine the location of variables in memory, and to map each instruction to
lines in the source code.

Some debuggers provide a graphical interface. An example is Winpdb [Aid], which
is a debugger for the Python programming language. A screenshot of Winpdb is
depicted in Figure 2.1. The upper right corner of the window presents the source
code of the program being debugged. The line 4637 is highlighted as it indicates the
current position in the program (which is currently paused). At the upper left corner
is a list containing symbols, variables and functions, local to the source file. Each
symbol is presented with its current value. The call stack is shown in the bottom
left corner.

5
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Other debuggers, like GDB [Fre], are controlled through a command line interface.
Figure 2.2 shows GDB debugging SHMAC, using the software components produced
as part of this master thesis. The debugger is controlled by typing in commands.

Figure 2.1: Screenshot of Winpdb, a debugger for the Python programming
language. Source: Wikimedia [Wik].

2.1.2 Black Box Debugging

It’s difficult to debug programs where its inner working is unknown or not available
for inspection. A technique called black box debugging is employed in those cases
[WT03]. Black box debugging collects useful information from sources external to
the program. Many bugs can be diagnosed by observing the data that flows between
the program and its dependencies. Relevant sources are for instance network traffic,
system calls and file operations.

2.1.3 Remote Debugging

Remote debugging is debugging a program where the debugger runs on a different
system than the program. The system running the debugger is called the host, while
the system running the program is called the target. The host will usually connect
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Figure 2.2: Screenshot of GDB while debugging a program on SHMAC.

to the target over a network, for instance over a serial line or using an IP connection.
Remote debugging is used when debugging a system which cannot run the debugger
itself, typically because the system has limited processing capabilities.

2.1.4 Debugging Techniques without Debugger

Print Debugging

Print debugging is a primitive form of debugging. Print statements are used to output
the program’s state at different locations during the program execution. One strategy
is to print all relevant local and global variables at specific locations, to verify that
their values are correct. The print statements are usually removed once the debug
session is finished. This strategy is easy to understand, but requires modifications
to the source code. Modifying the source code is undesired, as the process might
introduce new bugs. The print output can be stored in a log file if standard output
is not available.
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Analyse Core Dumps

A memory dump, sometimes called core dump, consists of the recorded state of
the system at a specific time. A core dump of a program will usually contain the
snapshot of the main memory and the values of the CPU registers. This information
represents the state of the system at specific time. If the core dump was created at
the time of a crash, it can be used to determine the cause.

2.1.5 Debugging Techniques using Debugger

Breakpoints

Breakpoints are used to stop the program execution at specific locations. The
location can be a line in the source code or a memory location. The debugger is
given control over the system when the program hits a breakpoint. The program’s
state may then be easily inspected as the program is paused. Breakpoints are
usually managed by the debugger; the debugger insert and remove breakpoints
during a debugging session. More advanced breakpoints exist in form of conditional
breakpoints. Conditional breakpoints will only halt the program if certain conditions
are met. The condition is usually specified as a boolean expression which includes
program variables. Breakpoints are either implemented in software or in hardware.

Hardware Breakpoint
Some architectures provide support for hardware breakpoints. The breakpoint
location is written to a special register file when it is inserted into the program.
The processor will generate a trap when it tries to execute the instruction where
the breakpoint is located. A processor will usually have a limited capacity for
storing hardware breakpoints. So it is not uncommon for a debugger to use
both hardware and software breakpoints simultaneously. The Intel x86 ISA
has for instance only capacity for 4 hardware breakpoints [Int86].

Software Breakpoint
Software breakpoints are implemented using instructions that traps the proces-
sor when executed. The original instruction is substituted for a trap instruction
when a breakpoint is inserted. Many architectures have a special trap instruc-
tion dedicated for breakpoints. The int3 instruction in Intel x86 will explicitly
call the breakpoint exception handler [Int86]. The ARMv5 ISA introduced
the BKPT breakpoint instructions, which triggers a prefetch abort on execution
[ARM01]. Some architectures, for instance earlier ARM versions, do not pro-
vide a dedicated breakpoint instruction. The common solution is to either use a
software interrupt instruction (SWI) or an undefined instruction for breakpoints.
Both instructions are good candidates as they will generate a trap which will
be handled by a dedicated exception handler.
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Single Stepping

It is sometimes useful to execute only a single instruction or line of code while
debugging. Variables can be examined after each step to verify that the previous
operation was correctly executed. In addition, single stepping can be used to
determine the actual program flow during execution. Implementations of single
stepping in both software and hardware exists. One way of achieving single stepping
is by inserting a breakpoint at the next instruction to be executed. Like with
breakpoints, Intel x86 does also provide hardware support for single stepping. Setting
the TP (trap flag) bit in the system register will force the CPU to generate an
exception after executing a single instruction [Int86].

Watchpoints

A watchpoint halts the program when the values of an expression or variable changes.
Watchpoint are sometimes called data breakpoint. The Intel x86 architecture provides
hardware support; the CPU can be programmed to trap when the data at a memory
location is modified [Int86].

2.2 GNU Debugger

GDB, shorthand for GNU Debugger, is an open-source debugger [RSea14]. It was
originally developed by Richard Stallman, now managed by Free Software Foundation.
GDB supports a large variety of architectures like x86, ARM and PowerPC. Language
support is provided for C, C++, D, Go, Objective-C, Fortran, Java, OpenCL C,
Pascal, Modula-2, Ada and several assembly dialects. GDB is still under active
development, with multiple releases every year. The latest version as of March 2014,
is GDB 7.7, which was released in February 6th, 2014.

2.2.1 Debugging Target

A target is a term used to describe the program being debugged. The typical use
case is to run GDB side-by-side with the target, for instance running the debugger
and the program on the same machine as depicted in Figure 2.3. The debugging
session is initiated by attaching GDB to an existing process, or by specifying an
executable file which GDB will launch and attach to. GDB also supports debugging
of recorded sessions, for instance core dumps.

2.2.2 Remote Target

GDB can debug programs running on a remote machine. This is typically the case
when debugging on a platform that does not have the necessary operating system
support for running GDB directly.
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GDB Target

Operating 
System

Machine

Figure 2.3: Debugging a local program.

A host machine runs GDB, launched with the path of the program file as argument.
The host connects to the remote target using either a serial port or a TCP connection.
The remote target is either GDBServer instance or a remote stub. The host and the
remote target communicates using a text based protocol named GDB Remote Serial
Protocol. This protocol will be described in more detail in subsection 2.2.3.

GDBServer

GDBServer is a debug server running on the remote machine. It appears as a server
program which other GDB instances may connect to. The GDB instances debugs the
program running on the remote machine through GDBServer. Figure 2.4 illustrates
a remote target in combination with GDBServer. GDBServer requires the same
operating system facilities as standard GDB program. Its main advantage over GDB
is its size. The codebase of GDBServer is smaller, which makes it simpler to add
new architecture support. A small program size is also beneficial when running the
debugger on a memory-constrained system.

GDB

Operating 
System

Host machine

GDB
Server

Target

Operating 
System

Target machine

TCP/IP

Figure 2.4: Debugging a remote program using GDBServer.

GDB Remote Stub

Another way of debugging a remote program is using a remote stub. The remote
stub is a small software component that is linked with the program. It uses the same
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remote protocol as GDBServer. A remote stub does not require an operating system
as opposed to GDBServer. It is commonly used when debugging embedded systems
or when debugging the operating system itself. KGDB, the Linux kernel debugger, is
an example of a remote stub. Figure 2.5 illustrates a remote target being debugged
over a serial line using a remote stub.

GDB

Operating 
System

Host machine Target machine
Serial 
line

GDB stub

Target

Figure 2.5: Debugging a remote program using a GDB stub.

2.2.3 GDB Remote Serial Protocol

The GDB host communicates with a remote target using the GDB Remote Serial
Protocol. Data is transferred between host and target as packets. A packet has the
following structure:

1 $packet−data#checksum

A packet starts with a $ character and ends with a # character followed by a two-letter
checksum. The packet data is usually in ASCII text to support transmissions over
mediums that only support 7-bit characters. The receiver of a packet verifies the
checksum and sends an acknowledgement with result. An acknowledgement is sent
as a single character, not as a packet. The character + is replied if the checksum
matches the packet data, - if not. A negative acknowledgement will usually result in
a retransmission of the original packet. The Remote Serial Protocol is a request-reply
protocol. The host sends packets in form of commands, which are replied by the
remote with a response. Note that protocol commands are different from the GDB
CLI1 commands. A CLI command will usually result in several protocol command
packets.

Packets

The GDB Remote Serial Protocol defines several commands with associated responses.
The type of a command is determined by the first letters in the packet data. These

1Command Line Interface
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letters represents the name of packet. The packet may contain any number of
parameters. The parameters are usually separated from each other using either a
semi-colon (;), comma (,) or colon (:). An example of a command with response
from remote is shown below:

1 host : $m5cc ,4#c8
2 remote : +$0030a0e1#ea
3 host : +

The host sends the read memory packet, m, requesting 4 bytes from address 0x5cc.
The remote first acknowledges the packet with a +, then sends the response to the
host. The response contains the 4 bytes requested, each encoded as a two-letter
hexadecimal number. The bytes 0x00, 0x30, 0xA0 and 0xE1 are returned to the host.

The stub is required to return an empty response for commands which it does not
support. The older packets have single letter names, while newer packets typically
have longer names. All multiletter names are prefixed with one of the letters q, Q or
v.

Packet starting with a lower-case q are categorized as general query packets. An
example is qC, which queries the target for the identifier of the current thread. A
prefixed upper-case Q is used for general set packets; packets which modifies the
remote’s state. The prefix v is used for all other multiletter packets which do not fit
any of the aforementioned categories.

The target sends the host a stop reply packet when the program halts. The stop
reply packet informs the host of the reason for the halt, e.g. if the program hit a
breakpoint or was killed. The stop reason is encoded as a Unix signal; SIGTRAP is
for instance reported when program traps on a breakpoint.

Obligatory Packets

A remote stub is only required to support a small subset of the available commands.
These packet are shown in Table 2.1. Most of the debugging management will in
that case be taken care of by the GDB instance running on the host. The host will
for instance have to insert and remove breakpoints using the memory access packet if
the stub does not support any of the breakpoint packets. Since the stub can support
an arbitrary set of packets in addition to the minimum required, the host has to
probe the stub for supported packets. Two techniques are used; the host can send
the packet to stub and see if an empty response is replied, or query the stub for
supported commands using the qSupported packet.
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Table 2.1: Obligatory packets for a GDB stub. Source: [RSea14, Appendix E].

Packet format Description Reply
g Read general registers. XX...

Each byte of register data
is described by two hex dig-
its. The bytes with the reg-
ister are transmitted in tar-
get byte order.

G XX... Write general registers. Data
is in the same format as for g
packet.

OK

m addr,length Read length bytes of memory
starting at address addr.

XX...
Memory contents; each
byte is transmitted as
a two-digit hexadecimal
number.

M addr,length:XX... Write length bytes of memory
starting at address addr. XX...
is the data; each byte is trans-
mitted as a two-digit hexadeci-
mal number.

OK

s [addr] Single step. addr is the address
at which to resume. If addr is
omitted, resume at current ad-
dress.

Stop reply packet when tar-
gets halts.

c [addr] Continue. addr is address to
resume. If addr is omitted, re-
sume at current address.

Stop reply packet when tar-
gets halts.

Interrupt Mechanism

GDB has a mechanism for interrupting a program while its running. This mechanism
is triggered if the user press Ctrl+C in the GDB command prompt. The interrupt
signal is transferred to the remote as the byte 0x03. The byte does only represent an
interrupt if it is not part of packet data. When the remote receives the byte, it stops
the program execution and transfers the control over to the debugger. The remote
will then send a stop reply packet to notify GDB that the program has stopped.

Multithreading Support

GDB supports debugging of multithreaded programs. Several of the packets accepts a
thread identifier to specify the thread of operation. A thread identifier is represented
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as a positive number. An example is the vCont packet, where the host can specify
to single step a single thread while halting the others:

1 host : $vCont ; s : 1 ; c#c1

The argument s:1 tells the stub to single step thread #1. The next argument c tells
the stub to continue execution for the other threads.

There are two modes of controlling execution of the debugger in a multithreaded
environment. The default mode is the all-stop mode. A more advanced alternative
called non-stop mode was added in 2009 [GDB09]. The major difference between the
modes is that in all-stop mode, all threads halt whenever one thread is halted. It is
not possible to inspect a single thread while the others are running simultaneously.
This limitation is removed in non-stop mode, at a cost of a substantially higher
complexity, both in semantics and implementation.

Multiprocess Mode

Multiprocess mode enables GDB to attach and detach several processes during
one session. This differs from normal behaviour which only supports debugging a
single process during a session. The remote protocol supports packets for attaching,
detaching and querying processes when in multiprocess mode.

2.2.4 GDB for ARM

Most modern ARM microcontrollers provides a dedicated debug port named TAP
(Test Access Port), which is part of the JTAG standard [JC09]. This interface talks
directly to hardware, eliminating any need for debugging software running on the
target. A debugger setup using GDB and JTAG is depicted in Figure 2.6. As a
dedicated hardware port is common for most architectures today, there are only a
few official remote stubs available. The GDB source code comes with stubs for only
6 architectures; none of which support ARM.

2.3 The SHMAC Platform

The SHMAC platform is a generic architecture for implementing single-ISA heteroge-
neous multicore systems. It is a tile-based architecture, meaning that the system
consists of a set of tiles, connected to a two-dimensional grid interconnect. Each
tiles implements a communication interface, supporting communication with up to
4 neighbors. As the grid is implemented as a mesh network, tiles are required to
forward all packets to their destinations. The SHMAC architecture is depicted in
Figure 2.7.
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Figure 2.6: Debugging with GDB over the JTAG interface.

The current prototype is synthesized on FPGA development systems. The tile setup
on SHMAC can be configured when synthesizing. All configurations consist of at
least one processor tile, an APB tile and a memory tile.

The following tiles are available:

APB tile
This tile provides communication channels to the FPGA host controller. It
implements the ARM AMBA Advanced Peripheral Bus (APB) protocol.

Processor tile
The processor tile consists of a single ARMv3 CPU core.

Main memory tile
The main memory tile provides access to off-chip RAM. The amount of RAM
available depends on the development system.

Scratchpad tile
The scratchpad tile provides access to block RAM available on the FPGA chip.

2.3.1 Test platforms

There are currently two SHMAC test platforms available. The first test platform is
based on a RealView PB11MPCore development system, depicted in Figure 2.8. It
features an ARM11-based host controller and 32MB SRAM. The test platform is
synthesized with a SHMAC processor consisting of 3 CPU tiles, 1 APB tile, 1 main
memory tile and 1 scratchpad tiles.

The second test platform is based on the Versatile Express development system. This
system features a larger FPGA chip, making it possible to synthesize SHMAC chips
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Figure 2.7: Overview of the SHMAC architecture. Source: [EECb].

with several more tiles than the older RealView system. The Versatile system provides
4GB of DDR RAM and features an ARM Cortex A9 quad core host controller. It is
synthesized with a SHMAC processor consisting of 8 CPU tiles, 1 APB tile, 1 main
memory tile and 1 scratchpad tile.

Both test platforms run a Linux based operating system on their host controllers.
The host controller acts as a gateway between the FPGA and the world outside.
Communication with the system is available through ethernet connection and RS-232
serial port. Terminal access is possible by connecting to a SSH server installed on
the host controller.

SHMAC Communication

The Linux installation communicates with SHMAC using a TTY device driver and
set of utility programs. There are a total of 16 TTY devices available, which enable
serial communication with the SHMAC. The TTY devices uses the APB tile as its
underlying channel.

The utilities are listed in Table 2.2.
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Figure 2.8: SHMAC synthesized on RealView development system.

Table 2.2: SHMAC utility programs

Name Description
shmac_reset Resets the SHMAC processor

shmac_program Writes data to the SHMAC’s memory
shmac_dump Dumps a SHMAC memory region to file

2.3.2 Processor Tile

The processor tile is based on the open-source Amber 25 CPU core [Ope13], which is
an 32-bit RISC processor implementing the ARMv2a instruction set. The Amber
project is hosted at OpenCores, an open-source hardware community [Ope]. It
features a 5-stage pipeline together with separate data and instruction cache.

Amundsen and Andersson [AA14] enhanced the CPU tile to support a newer ARM
ISA version during their master thesis. Their goal were to port the Linux 3.12
kernel to SHMAC. As ARMv2a support was removed in Linux 2.6 version, migrating
the CPU core to a newer ARM ISA became a necessity. Their work had positive
implications for the debugger project, as the ARMv3 ISA was a crucial requirement
for some of the debugger functionality. The benefits of ARMv3 will be outlined in
subsection 6.3.1.

2.3.3 ARMv3 ISA

The ARMv3 ISA is a 32-bit RISC instruction set. All instructions are 4 bytes long.
Only the load and store instructions can access main memory. Every instruction
is prefixed with a 4 bit condition code. An instruction is only executed if the
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condition code agrees with the condition code flags in the program status register.
This functionality enables conditional execution without using branching, which is
beneficial as branching is an expensive operation. An overview of the instruction set
is presented in Figure 2.9.

Figure 2.9: Overview of the ARMv3 instruction set. Source: [ARM94].

Modes

The ARMv3 ISA support six modes of operation. The processor may change mode
because of several reasons. A mode change takes place when an exception arise,
either triggered by an instruction or by an external interrupt. The processor may
also be forced into a specific mode by modifying the program status register using
the msr instruction.

A mode is either privileged or non-privileged. Code running in non-privileged mode
is not allowed to execute certain instructions. Some instructions have different
semantics in non-privileged mode.

The operating modes are described below:

User mode (usr)
The normal program execution state. It is the only non-privileged mode.
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FIQ mode (fiq)
Entered on fast interrupt. Designed to support a data transfer or channel
process.

IRQ mode (irq)
Entered on normal interrupt. Typically used for general purpose interrupt
handling.

Supervisor mode (svc)
Mode typically used by the operating system code.

Abort mode (abt)
Entered on prefetch and data abort.

Undefined mode (und)
Entered when an undefined instruction is executed.
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Figure 2.10: Layout of register file.

Registers

ARMv3 has 37 registers, of which 31 are general 32-bit registers and 6 are status
registers. Only 16 of the general registers are visible at any time, which 16 depends
on the current operating mode. The CPSR (Current Program Status Register) register
is visible in all modes. All privileged modes has its own SPSR (Saved Program Status
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Registers) register, used to store the old value of CPSR on mode change. A register
that is only visible in a single mode is a banked register. Figure 2.10 presents the
register layout for each mode. Note that cells with gray background represents banked
registers.

Some of the general registers have a special purpose. The register R15 is the program
counter (PC). The banked register R14, also called LR, is the link register. It receives
the old value of PC when executing a branch-and-link register or when an exception
handler is invoked. Another special register is R13 (SP), a banked register which
stores the stack pointer for each mode.

The layout of the program status registers is presented in Figure 2.11. The condition
code flags consists of the N, Z, C and V bits. The bits M0-M4 are the mode bits, which
determines the current operating mode. The I and F bits disables IRQ and FIQ
respectively when set high.

Figure 2.11: Format of Program Status Registers. Source: [ARM94].

Exceptions

Certain registers are backed up automatically on exception. The old PC and CPSR
values are copied into the LR and SPSR respectively. PC is set to a location in the
interrupt vector defined by the type of exception. The mode bits in CPSR are set
to the new mode. Interrupts are disabled when entering the exception handler to
prevent unmanageable nesting of exceptions.

The interrupt vector is located at address 0 in memory. It contains 8 entries, one
for each type of exception. The layout of the interrupt vector is shown in Table 2.3.
An entry is stored as a branch-and-link instruction, where the branch offset is the
location of the respective interrupt handler.

The CPU starts executing at address 0 on reset, effectively invoking the reset handler.
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Table 2.3: The interrupt vector

Address Exception Mode on entry
0x00000000 Reset Supervisor (svc)
0x00000004 Undefined instruction Undefined (und)
0x00000008 Software interrupt Supervisor (svc)
0x0000000C Abort (prefetch) Abort (abt)
0x00000010 Abort (data) Abort (abt)
0x00000014 Reserved -
0x00000018 IRQ IRQ (irq)
0x0000001C FIQ FIQ (fiq)

2.4 Barrelfish

Barrelfish is an experimental operating system developed by ETH Zürich, with
collaboration from Microsoft Research [Zü, BBD+09]. Its architecture is designed
for future multicore and manycore systems. The motivation behind Barrelfish is the
increasing diversity in computer hardware and the growing number of cores. Todays
operating systems are designed for the common case, homogenous architectures,
while cores in newer systems are getting increasingly diverse. A single system can
consist of multiple cores with different performance characteristics, power profiles
and ISA. As the number of cores increase, cache coherency becomes more expensive,
making shared memory less viable for intercore communication. Barrelfish does not
rely on shared memory, and uses solely message passing for communication between
cores. It is design to run on multicore system where cores are heterogeneous on ISAs
level, for instance systems consisting of both ARM and x86 processors. Most of
todays operating systems are designed after the shared-memory single-kernel model,
where the operating system expects that all cores exposes the same ISA.

Barrelfish is ported to several different architectures. The official distribution supports
the most common architectures such as Intel x86 and ARM. Several unofficial ports
to more experimental architectures have also been developed. One example is the
port to the Intel Single-Chip Cloud Computer [PSMR11], which is an experimental
processor consisting of 48 x86 cores [HK10].

2.4.1 The Multikernel Model

Barrelfish’s architecture is designed after the multikernel model, which is depicted in
Figure 2.12. The multikernel model structures the operating systems as a distributed
system of cores.
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The multikernel is guided by three design principles:

1. Make all intercore communication explicit.

2. Make OS structure hardware-neutral.

3. View state as replicated instead of shared.

Each OS node communicates only through message passing. There is no shared state,
each node has its own state replica. Replica consistency is maintained by exchanging
messages. The hardware specific parts are separated out from the hardware-neutral
codebase, which makes it easier to add support for new architectures.

Figure 2.12: The multikernel model. Source: [BBD+09].

2.4.2 Barrelfish Architecture

The Barrelfish implementation of the multikernel model is depicted in Figure 2.13.

Each CPU core has a CPU driver running in privileged mode. The CPU driver
is responsible managing hardware resources and timeslicing processes, similar to a
microkernel. It shares no state with other cores which simplifies its design.

A distinguished user process called monitor runs on top of each CPU driver. The
monitors coordinate systemwide state and updates the data structures inside each
local CPU driver, e.g. the memory allocation table, which has to be kept consistent
across cores. All intercore coordination is performed by the monitor processes.
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Figure 2.13: The Barrelfish architecture. Source: [BBD+09].

Process Structure

A process in Barrelfish is represented by a set of dispatcher objects, one object for
each core which the process might execute on. Barrelfish does not use kernel threads;
the dispatcher objects are the only schedulable units in Barrelfish. Each CPU driver
is responsible for scheduling the dispatchers local to the core. Barrelfish provides
multithreading capabilities similar to POSIX threads. The thread schedulers on each
dispatcher co-operates to create and schedule threads. Threads can be migrated
between the dispatchers, hence making it possible to move a thread from one core to
another.

2.4.3 The SHMAC Port

Bjørnseth and Seime [BS13] developed a preliminary port of Barrelfish for SHMAC
as part of a university project in fall 2014. It represented the first stable operating
system for SHMAC. The port is described as preliminary, as it did only utilize a
single core. The development of a multicore port based on the previous work was
started in early spring 2014.

2.5 Related work

Terje Schjelderup investigated the current debugging capabilities of SHMAC in a
report from fall 2013 [Sch13]. Based on the investigation, he described how debugging
support could be added to the platform. Implementing a GDB stub was recommended
as the best strategy for adding GDB support. The report further gives a rough
outline on how the stub could be implemented. The fact that SHMAC did only
provide a single TTY channel for communication was emphasized as a limitation of
the platform. As a result, the work on implementing multiple channels was initiated
by Schjelderup.
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Minheng Tan implements a minimal GDB stub for Linux running on Intel x86 [Tan02].
Although the stub is for a desktop computer, the paper outlines the advantages and
challenges with developing a stub for embedded devices.

Zheng and Lange implemented GDB debugging support for user program on an
operating system called Kitten [ZL]. Kitten is a lightweight OS targeting supercom-
puters consisting of a large number of nodes. Their solution consists of a GDB stub
running as a kernel module in Kitten. The paper describes the challenges related
to debugging in a multithreaded environment, which is particularly relevant for
implementing a debugger for SHMAC. Barrelfish is similar to Kitten as both are
targeting manycore system. Consequently, their paper served as an inspiration for
the Barrelfish debugger.

Sidwell et al. describes in a paper how they extended GDB with a new debugging
mode [SPA+08]. The new debugging mode, called non-stop mode, provides GDB
with an alternative way of debugging multithreaded programs. GDB was already able
to debug multithreaded programs using the existing all-stop mode, but this mode
had some limitations. The paper outlines why the new mode is more suitable for
debugging under certain conditions. Further, the paper describes the implementation
challenges related to asynchronous event handling, single stepping and breakpoints.
Hence, the paper provided useful knowledge which was helpful when adding multicore
support to the stub.
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Implementing a GDB remote stub was the recommended strategy for adding GDB
support to the SHMAC platform, as outlined by Schjelderup in his report [Sch13].
The other alternative, porting the GDBServer application to SHMAC, was less
practical as it is designed to run on top of an operating system. Having debugger
support independent of any operating system is a big advantage, which enables
debugging of any software running on SHMAC.

Integration with GDB gives a lot of functionality for free. The GDB host program
will take care of several tasks such as symbol management and user interaction. As
a result, implementing a GDB stub requires a relatively small effort compared to
implementing a debugger from scratch. GDB itself requires no modifications as it
already supports the ARMv3 architecture.

3.1 Specification

The GDB stub should provide the core debugger functionality, such as breakpoints
and register inspection. The main focus is to ensure that the core functionality is
stable and working as intended. Auxiliary debugger functionality, such as tracepoints
1, will only be implemented if time permits and is therefore not listed as a requirement.

Support breakpoints
The debugger should support inserting and removing breakpoints during a
debug session. It should also be possible to insert static breakpoints in the
program prior to compilation.

1A definition of tracepoint, taken from MSDN [MSD]: A tracepoint is a breakpoint with a
custom action associated with it. When a tracepoint is hit, the debugger performs the specified
tracepoint action instead of, or in addition to, breaking program execution. One common use for
tracepoints is printing a message when your program reaches a certain point.

25
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Support GDB interrupts
The debugger should support the interrupt mechanism described in section 2.2.3.
Although not a requirement in the remote protocol specification, it is a highly
convenient functionality. The feature enables the user to halt the program at
any time so its current state can be inspected.

Debug code running in any mode
The debugger should be able to debug code running in any privileged mode in
addition to user mode. Most system calls in an operating system are executed in
supervisor mode. Exception handlers are executed in several different privileged
modes. Being able to debug both the system calls and exception handlers are
important for the usability of the debugger.

Debug programs running on multiple cores
SHMAC is designed for manycore computing. Only being able to debug a single
core would obviously be a major limitation. This functionality is therefore
highly prioritized, though it is a technical challenge to implement it correctly.

No dependencies on operating systems or external libraries
The debugger should not require the presence of an operating system or any
external libraries. Not even the C standard library (libc) may be used, as it
requires that the system provides implementation of certain system calls. The
debugger cannot rely on the target program providing the system calls. Neither
can the debugger provide its own implementation, as it would interfere with
any system calls implemented by the target program. As a result, the debugger
implementation may only be written in pure C (no use of standard library)
and ARM assembly.

Simple to integrate into SHMAC programs
Integrating the debugger should only require a small amount of modification
to the original program. The modifications should be easy to perform and take
minimal effort. It should also be easy to disable the debugger once integrated.

Adequate performance
The debugger should provide reasonable response time for common operations.
Long response time worsen the debugging experience, and may result in GDB
timing out in some situations. Performance is more of a secondary objective.
Any performance optimization should only be applied if it provides a significant
improvement. Simple operations such a single stepping should not take more
than 3 seconds. We do not require a hard limit for all operations, as some
GDB commands are complex in nature and will not be able to complete in
3 seconds. Large memory transfer operations are for instance limited by the
bandwidth of the TTY channel, and may take several seconds to complete.
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3.2 Existing Work

A GDB stub for the SPARC architecture is part of the GDB codebase. The GDB
documentation [RSea14, chapter 20.5] recommends this stub as a starting point for
new stub implementations, as its codebase is claimed to be the best organized among
the official stubs. This stub did only implement the minimal command set listed in
Table 2.1. More advanced protocol functionality such as packet compression was
missing. The stub was primarily consisting of target specific code. Its codebase was
therefore used more as inspiration than a basis for the SHMAC stub. The part of
the code encoding and decoding the protocol packets were of most interest. Having
that code available speeded up the initial development.

3.3 Development Process

The development of the stub was an iterative process. The first prototype did only
support the minimal set of commands required, and could only debug a program
running on a single core. The command set was then extended to support important
functionality such as breakpoints. Once the stub was stable enough and supported
the most useful commands, the process of making a Barrelfish version was initiated.
Once the initial Barrelfish version was finished, the work on enabling multicore
debugging started. The GDB stub had to be modified so that multiple cores could
be debugged simultaneously. The multicore support was later backported to the
Barrelfish debugger.

3.4 Debugger Setup

Figure 3.1 presents an overview of the complete debugger setup for SHMAC. The
GDB stub is linked into the target program. It communicates with the host controller
through the TTY interface. The Linux installation on the host controller runs a
program called ser2net [Sou]. ser2net is a serial port to network proxy which
maps each TTY device to a TCP/IP socket. Connected to the ser2net is a GDB
instance running on a host machine. The host machine can be any PC which has
GDB with ARM support installed. All communication between GDB and the stub
is forwarded by the ser2net process. The host controller could technically run GDB
itself, eliminating the need for a host machine and ser2net. The reason for not
doing so is because of its poor CPU performance. The GDB program is a resource
heavy program that runs notably slower on a low-performance ARM processor.
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Figure 3.1: Overview of the debugging setup for SHMAC.

3.5 Implementation

3.5.1 Stub Overview

Figure 3.3 presents an overview of the GDB stub together with the target program.
It shows that the interrupt vector has an important role in the interaction between
the program and the stub. The blue boxes represent important software routines
in the stub and program, and the arrows explain how they are connected together.
Figure 3.2 demonstrates how the interrupt vector would look like for a program
without the GDB stub. Note that both figures do not show how all entries in the
interrupt vector are configured. Some entries, like the software interrupt entry,
are ignored. Those entries are not part of the debugger integration and will, if
configured, point to handler routines in the target program.

The interrupt vector is configured such that undefined instruction exceptions
and IRQ interrupts are handled by the GDB stub. The GDB exception handler
handles the undefined instruction exceptions and the GDB IRQ handler handles the
IRQ interrupts. Both GDB stub handlers are connected to the respective handlers
in the target program. Any undefined instruction exception or IRQ interrupt not
relevant for the debugger is forwarded to the program’s respective handlers.

The reset handler is responsible for initializing the C runtime environment. The
most important task is to configure the program’s stack pointers. A separate stack
is created for each operating mode. The last task is to invoke the program’s main
function. The initializing procedure receives an extra responsibility when using
the debugger; it has to initialize the GDB stub. The GDB stub provides a single
initialization function that is invoked either at the top of the main function or in the
reset handler itself.
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Figure 3.2: Interrupt vector configuration without GDB stub
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Figure 3.3: Interrupt vector configuration with GDB stub

3.5.2 Debugger Initialization

The debugger initialization is performed in two steps. The first step is to initialize
the data structures managed by the stub. This is achieved by calling the function
gdb_init as described in subsection 3.5.1. It is important to call the function as
early as possible, as it is not possible to debug the program prior to initializing the
stub. gdb_init has the following signature:

1 typede f s t r u c t {
2 i n t tty_channel [NUM_CORES] ;
3 void (∗ ki l l_program_handler ) ( void ) ;
4 } gdb_config_t ;
5

6 void gdb_init ( gdb_config_t ∗ c on f i g ) ;

It takes a configuration struct as its only argument. This struct has two fields:

– One array declaring which TTY channels the debugger should use. This
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configuration is core specific; index 0 represents CPU 0, index 1 represents
CPU 1 and so forth. Setting a value to -1 will disable debugging for that core.

– A function pointer to a kill function. This function is invoked when the
debugger kills the target program.

An example of a configuration is shown below. Core #0 uses channel 1 as debug
channel and core #1 uses channel 2 as debug channel. Core #2 has debugging
disabled as its TTY channel value is -1.

1 gdb_config_t gdb_config ;
2 gdb_config . tty_channel [ 0 ] = 1 ;
3 gdb_config . tty_channel [ 1 ] = 2 ;
4 gdb_config . tty_channel [ 2 ] = −1;
5 gdb_config . ki l l_program_handler = &die ;
6 gdb_init(&gdb_config ) ;

The second step is to insert a static breakpoint in the program somewhere after
the call to gdb_init. The static breakpoint is required as gdb_init does not halt
the program. It is up to the user to decide where to put the breakpoint. This will
usually be the statement right after the call to gdb_init, so that the program halts
as early as possible. The GDB host will only be able to connect to the stub after the
program has been halted.

3.5.3 Exception Handler

The GDB exception handler handles all program exceptions relevant for the debugger.
It is invoked when any of the following events occur:

– The program hits a breakpoint.

– The program has executed a single instruction during single stepping.

– The GDB stub has received a GDB interrupt signal.

The details on how those events are detected and handled will be described later in
this chapter.

The implementation of the exception handler can be separated into two parts: a
undefined instruction handler which is written in assembly, and a C function called
gdb_exception_handler. The assembly routine is responsible for operations that
cannot be performed in C code, such as storing register values to memory. The list
below describes the sequence of operations performed by the assembly handler:
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1. All non-banked registers (R0-R12, PC and CPSR) are stored to memory.

2. The previous operating mode is determined by reading SPSR. The CPU is then
forced to the previous operating mode.

3. The banked registers (SP, LR and SPSR) of the previous mode are stored to
memory.

4. The CPU is switched back to und mode.

5. gdb_exception_handler is called. A pointer to memory region containing the
register values is passed as argument.

6. All non-banked registers are restored.

7. The CPU is forced to the previous mode.

8. The banked registers are restored.

9. The CPU is switched back to und mode.

10. The program’s undefined instruction handler is invoked if the return value from
gdb_exception_handler is 1.

The register values stored to memory represents the register content at the time the
program halts. A pointer to the register storage is passed to the C handler. The stub
may read or modify the register content as part of its operation. Note that the C
handler returns a boolean value, which determines if the exception should be passed
to the program’s handler.

The gdb_exception_handler is more complex than the assembly handler. Algorithm
3.1 presents a greatly simplified version of gdb_exception_handler to outline its
most important tasks.

Interrupts are automatically disabled by the processor when an exception occur. The
C handler re-enables interrupts, so data from the GDB host can be received. This
involves modifying the interrupt mask for the interrupt controllers on the CPU core.
Host interrupts for the debug channel is enabled, while all other types of interrupts
are disabled. The interrupt mask is restored when gdb_exception_handler returns.

Once interrupts are enabled, a single stop reply packet is transmitted to the host
to notify that the program has halted. The function will then enter the message
handling loop. Each iteration of the loop starts by waiting for a packet from the
host. Once received, the packet is decoded, a specific operation is performed and a
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response is returned. Some of the packets, like the continue command, will make the
gdb_exception_handler exit the loop and return.

The instruction cache is flushed right before leaving the exception handler. The
reason is that the stub might have altered the instructions of the program, and the
instruction cache will in those cases contain stale data.

Algorithm 3.1 Simplified version of gdb_exception_handler.
1: function gdb_exception_handler(register values)
2: backup_interrupt_mask()
3: enable_host_interrupts()
4: send_stop_reply_packet()
5: while true do
6: packet← read_packet()
7: switch packet_type(packet) do
8: case ′p′ . Read-all-registers packet
9: ...
10: case ′m′ . Read-memory packet
11: ...
12: case ′c′ . Continue packet
13: ...
14: return prepare_return() . Continue execution of program
15: ...
16: end while
17: end function
18: function prepare_return()
19: disable_interrupts()
20: restore_interrupt_mask()
21: flush_instruction_cache()
22: return should_forward_exception()
23: end function

3.5.4 Host Communication

The stub utilizes the TTY interface for communication with the GDB host. SHMAC
provides 16 TTY channels. Which channels to use as debug channels is determined
by the configuration struct described in subsection 3.5.2. The stub will handle all
host interrupts coming from the debug channels. All characters received are inserted
into a ring buffer. This data structure provides a read function to remove characters
from the ring. The read function is used by the read_packet function shown in
Algorithm 3.1. The ring buffer has a fixed size. If the buffer is full when a character
is received, the oldest character is dropped.
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3.5.5 Breakpoints

As the CPU core does not provide hardware breakpoints, breakpoint support had
to be implemented entirely in software. The remote protocol defines two packets
for this purpose. The packet Z0 is used to insert a software breakpoint and the
packet z0 is used to remove a software breakpoint. GDB assumes that the software
breakpoints are implemented by replacing the instruction at a given location with a
trap instruction. Support for handling both packets was added to the stub.

In addition to supporting the GDB breakpoint packets, support for static breakpoints
was also implemented. Static breakpoints uses a trap instruction to halt the program,
just like standard breakpoints. A static breakpoint is inserted by placing a C pre-
processor macro in the source code of the program. As it is compiled with the
program, it is static and may therefore not be removed at runtime.

Selecting a Trap Instruction

A series of suitable trap instructions had to be selected for use as breakpoints. The
ARMv3 provided major 2 alternatives; the software interrupt instruction (swi) or
an undefined instruction. The latter was selected as the best candidate for several
reasons:

– Software interrupts will trap the processor to svc mode, while a undefined
instruction will trap to und mode. When the CPU enters an exception handler,
it will copy the old value of PC into LR. If the previous mode is the same
as the mode used by the exception handler, the old value of LR will be lost.
Same problem also applies for the SPSR register. The implication is that a swi
instruction cannot be safely executed in svc mode, neither may an undefined
instruction be safely executed in und mode. As most of the operating system
code is executed in svc mode, using swi as breakpoint instruction is a non-viable
choice.

– Software interrupts are used in operating systems when invoking a system call.
If a swi instruction was used for breakpoints, the debugger would need to
have a dedicated mechanism for distinguishing breakpoints from system calls.
Undefined instructions may also be managed by an operating system, but will
typically have a less important role.

A series of mcr (coprocessor register transfer) instructions were selected as breakpoint
instructions. A mcr instruction will generate an undefined instruction exception if
it refers to a non-existing coprocessor. This property is the reason why the mcr
instruction was chosen. Specific instructions are used for specific purposes. For
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example, static breakpoints and standard breakpoints do not use the same mcr
instruction.

Breakpoint Insertion

This section describes the steps performed by the GDB stub when it receives a Z0
packet. The packet has one argument; a memory address where the breakpoint
should be inserted.

1. The existing instruction at the memory location is inspected. The breakpoint
insertion procedure returns immediately if the instruction is a breakpoint
instruction. This situation may occur if a breakpoint is already inserted at the
location.

2. The memory address and the existing instruction at that location is stored to
a data structure. This information is needed when removing the breakpoint
later on.

3. Lastly, the breakpoint instruction is written to the memory location.

Breakpoint Removal

This section describes the steps performed by the GDB stub when it receives a z0
packet. The packet has one argument, a memory address of an already inserted
breakpoint.

1. The existing instruction at the memory location is inspected. The breakpoint
removal procedure returns immediately if the instruction is not a breakpoint.

2. The stub checks if there is an entry in the breakpoint data structure referring
to the given memory location. If so, the original instruction is retrieved.

3. The original instruction is written back to the program. The breakpoint
information is then removed from the data structure.

Handling a Breakpoint Exception

The list below describes what happens when the program hits a breakpoint:

1. The GDB exception handler is invoked.

2. The instruction pointed by the PC register is inspected to confirm that the
program halted because of a breakpoint.
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3. A stop reply packet is sent to the host to notify that the program has halted.

Continuing the program is not straightforward. The original instruction at the
breakpoint location has to be executed, but to do so, the breakpoint has to be
removed. After executing the instruction, the breakpoint has to be reinserted.

The breakpoint is removed as described in section 3.5.5. The original instruction is
then single stepped. Further, the breakpoint is reinserted using the steps described
in section 3.5.5. Lastly, the program is continued.

The procedure is simpler for static breakpoints. The stub just has to ensure that the
program continues execution on the instruction following the breakpoint, essentially
incrementing the PC register before returning from the GDB exception handler.

3.5.6 Single Stepping

The remote protocol requires that the stub implements the S (single step) packet.
When the stub receives this packet, the program will execute a single instruction and
then halt. The stub then replies the host with a stop reply packet. The packet has
an optional argument, the address at which to resume execution.

Design Alternatives

The CPU core does not provide hardware support for single stepping, so similarly to
breakpoints, single stepping had to be implemented in software.

There are two major design choices for single stepping, both briefly described in
[SPA+08]:

– Simulate the behaviour of the stepped instruction inside the debugger.

– Insert a temporary breakpoint at the next instruction after the one being single
stepped.

The first choice is the most complicated solution. The debugger must be able to
decode any valid instruction and simulate its behaviour, which may include modifying
registers and writing to main memory. The task is essentially to build a complete
instruction simulator for ARMv3. Another approach to instruction simulation is to
execute a displaced copy of the instruction. The latter approach is relatively easy
for all instructions that do not use PC. For instructions modifying PC, simulation is
required.
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Table 3.1: Instructions supported by the single step instruction decoder.

Instruction Description
add Add
b Branch
bl Branch and link
ldm Load multiple registers
ldr Load single register
mov Write to register
sub Subtract
swi Software interrupt

The second choice is simpler. The debugger inserts a breakpoint at the next instruction
after the one being single stepped. This is trivial for instructions that do not modify
the PC register: the next instruction is at location PC + 4. It is more complicated
for instructions modifying PC. Those instructions have be decoded, and the effect on
the PC register simulated to reveal the location of the next instruction.

Implementation

The second alternative described in section 3.5.6 was chosen, as it required a less
complex solution.

Support for determining the next value of PC was added for the most common in-
structions generated by the GCC compiler. Though many instructions are technically
allowed to modify PC, the compiler only use a small set of instructions for PC modifi-
cation. A binary program compiled for SHMAC was decompiled to determine which
instructions were commonly used. Based on the analysis, a subset of instructions was
selected. These instructions are listed in Table 3.1. The instructions come in many
variants, for instance some operands might either be a register or an immediate value.
Support for decoding the most common variants was prioritized, while rare variants
were left out.

Instruction Decoding

1. The first step is to examine the 4-bit condition code. The condition code is
evaluated against the condition code flags in the status register to determine if
the instruction will be executed. If that’s the case, the next step is performed.

2. The second step is to determine if the instruction type is supported by the
decoder. Certain bits from the instruction are extracted and compared to



3.5. IMPLEMENTATION 37

determine the type.

3. The third step is to determine the destination register (if any). The fourth
step is only performed if PC is set as destination register, or if the instruction
implicitly modifies PC.

4. The fourth step is to calculate the new value of PC. Any operands and flags are
extracted from the instruction. The evaluation of the operands may involve
reading register values and or content from main memory. The new value is
calculated based instruction type, operands and instruction flags.

Performing a Single Step

A temporary breakpoint is inserted at the location pointed to by the next PC value.
The original instruction is saved to a data structure prior to insertion, similar to how
insertion of a normal breakpoint is handled. When the program continues, it will
execute the single instruction and then hit the temporary breakpoint. The stub will
then restore the original instruction.

3.5.7 GDB Interrupts

The stub’s IRQ handler handles the data received from host, and is therefore also
responsible for detecting GDB interrupts. As described in section 2.2.3, an GDB
interrupt is transmitted as the byte 0x03. The byte 0x03 does only represent an
interrupt if not part of packet data. As a result, the IRQ handler has to implement
a finite state machine to be able to detect if a 0x03 is an interrupt or not. The FSM
is depicted in Figure 3.4.

Packet data

Anything else

0x03 Outside packet#
$

Anything else

Figure 3.4: The finite state machine for GDB IRQ handler.

The GDB exception handler is not invoked directly from the interrupt handler.
Instead, the program is interrupted using a temporary breakpoint. The interrupt
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handler knows the value of the program’s PC register. This is the location where the
temporary breakpoint is inserted. Once the interrupt handler returns, the program
start executing the instruction at PC and will then immediately halt.

A breakpoint is not inserted if the CPU was in und mode at the time of IRQ interrupt.
The reason is that it is very likely that the code running at that moment would be
the debugger itself.

3.5.8 Disabling the Debugger

The debugger can be disabled at compile time by defining the pre-processor macro
DISABLE_DEBUGGER. The macro has the following effect on the GDB stub:

– Static breakpoints behave like a no-op.

– The stub’s IRQ handler and undefined instruction handler will forward all
interrupts to the program’s handlers.

– The GDB initialization function does nothing.

3.6 Performance Enhancements

Several performance enhancements were added to the GDB stub. The SHMAC
CPU core has limited performance; it is clocked at only 60MHz, with both data
and instruction cache disabled due to a hardware defect. With such performance
limitation, extra precautions were made to ensure that common GDB operations
performed well. The focus was on reducing the packet traffic required for typical
GDB commands as each packet has a high cost in term of processing time and
network delay. The optimizations reduces the number of packets transmitted and
the size per packet. The sections below describe the optimizations implemented.

3.6.1 Range Stepping

GDB 7.7 added a feature called target-assigned range stepping [GDB14]. Range
stepping is a variant of single stepping where the stub steps over multiple instructions
as long as PC is within a specified range. The remote protocol is extended with a
new packet for commanding the stub to perform a range step. The range is given
as two memory addresses, a lower bound and an upper bound. The program will
continue execution as long as the program counter is in the range. Once the program
counter is outside the range, the program halts and the stub returns a stop reply
packet to the host.

Range stepping is particularly useful when stepping over a single line of code, which
only requires a single range step packet. GDB versions prior to 7.7 had to repeatedly
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issue single step commands to the stub to step over a single line, once for each
instruction constituting the line.

Range stepping brought a substantial reduction in packet traffic, especially for
stepping over code lines consisting of a large amount of instructions. A line consisting
of 100 instructions would result in 100 single step packets and 100 stop reply packets.

Range stepping was implemented using single stepping. When a range step packet
is received, a range step flag is set. The stub will then single step instructions as
long as the range step flag is set and PC is in the provided address range. Once PC is
outside the range, the flag is cleared, and the stub reports back to the host that the
range step is complete. Figure 3.5 illustrates the range stepping mode as an finite
state machine.

Range step mode

PC >= lower bound && PC < upper bound

Normal modePC < lower bound || PC >= upper bound
Range step packet received

Figure 3.5: Range stepping finite state machine.

3.6.2 Packet Compression

The remote protocol allows the remote to compress packet data in response packets.
A technique called run-length encoding is used as compression algorithm. Sequences
of identical characters are stored as a single character and a count. The compression
is particularly useful when reading larger blocks of memory from host, as large
sequences of zeroes are common.

3.6.3 Binary Transfer Packet

Binary data in most packets is encoded as two hexadecimal digits per byte of binary
data. This allowed the traditional remote protocol to work over seven-bit connections
[RSea14, p. 575]. As this encoding is wasting bandwidth on the eight-bit connections,
such as the TTY channels on SHMAC, hexadecimal encoding is not used in some
newer packets. One example is the X (binary download) packet, which is used for
writing content to the remote’s memory [RSea14, p. 584]. The content is transferred
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as raw binary data. This packet uses half as many bytes for the data part as the M
packet, as the hexadecimal encoding encodes each byte as two bytes.

3.6.4 Disabling Irrelevant Packets

GDB queries the remote target for certain types of information after certain events,
for instance when receiving a stop reply packet or when connecting to a target. The
information is queried using query packets. The query packets are generally optional
and may not be relevant for the remote target. These packets waste bandwidth if
the remote does not support them. The GDB host can be configured to not send
specific query packets.

Disabling the qTStatus packet saved a single round-trip time for every breakpoint
hit or instruction single stepped. The packet is used to query the status of all
trace experiments running. This packet is meaningless for SHMAC as support for
tracepoints is not implemented, and therefore no trace experiment may exist.

3.6.5 Extended Stop Reply

A stop reply packet is sent whenever the target halts. The simplest stop reply packet
only returns the signal explaining the reason for the halt. The remote protocol
defines several other versions which provide the host with more relevant information.
Bundling extra, relevant information in addition to the stop signal may save the host
for querying the information afterwards. GDB needs the PC value to determine the
location where program halted. By bundling PC and other special purpose registers,
the host will not need to explicitly fetch their values later on. For this reason, the
decision to use an extended stop reply was taken. The stop reply is implemented
such that it reports the register values for R11, R12, SP, LR, PC and CPSR. These
values eliminated the need for GDB to read out register values using the read register
packet in many situations, such when the program halts after hitting a breakpoint.

3.7 Multicore support

3.7.1 Analysis of Implementation Alternatives

Adding multicore support to the debugger was a highly prioritized goal. The stub
could only debug a single core initially. It was extended to enable multicore debugging
later in the implementation phase.

The analysis revealed three different alternatives for multicore debugging. The two
first alternatives relied on the thread abstraction in GDB described in section 2.2.3.
all-stop mode represents the first alternative, and non-stop mode represents the
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second alternative. They provide different semantics, all-stop mode provides a
simpler abstraction then non-stop mode.

The third and last alternative is fundamentally different, as it does not rely on a
thread abstraction. Instead, each core is debugged individually using a separate
GDB instance per core. This alternative gave the best trade-offs and the resulting
solution uses this approach.

The three alternatives are discussed in more detail in the sections below.

All-stop Mode and Non-stop Mode

The major difference between the modes is that in all-stop mode, all threads halt
whenever one thread halts. This allows the user to examine the overall state of the
program without worrying about the other threads. This is in contrast to non-stop
mode, where each thread may be halted and continued individually. Consequently,
adding support for non-stop mode would result in a more complex implementation
than all-stop mode.

The major advantage with both modes is that it provides a the user with a easier
abstraction than using a separate GDB instance for per core. Non-stop mode is
particularly useful when debugging real-time system where halting all threads might
not be desired due to timing constraints.

The thread abstraction was not selected due to technical limitations with the SHMAC
platform. It requires that SHMAC provides a reliable mechanism such that one core
may halt the execution of the other cores. A somewhat similar mechanism was added
in the third month of this project. It enabled a single core to send a soft interrupt
to the other cores. This mechanism was not deemed good enough as it relied on
interrupts, which would likely interfere with the program’s own use of interrupts.
The program might use global interrupts for its own purposes, and the program
might in some situations disable all interrupts.

Both modes expects that the threads are part of the same program. As a result,
the thread abstraction does not fit well in situations were some of the cores execute
separate programs.

One GDB Instance per Core

In this alternative, each CPU core is debugged by a separate GDB instance. Debug-
ging a program running on 4 cores will require that the host connects 4 separate
GDB instances to the remote. The host observes the remote as 4 separate targets.
Each core is debugged individually as independent targets.
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One of the drawbacks with this design is the fact that the number of cores that may
be debugged simultaneously is limited to the number of TTY channels available,
which is 16 if the program is using none of them. Non-stop mode and all-stop mode
does not have a thread count limit.

Nevertheless, this alternative has a two major advantages. First of all, it is a
simpler design. The main reason is the fact that there is no need for any global
coordination between the cores. This is important as SHMAC does not provide any
suitable mechanism for inter-core coordination. Secondly, it is a better alternative
for debugging software where each core is executing different programs or operate
more independently of each other. A good example is Barrelfish, where each core
runs a separate CPU driver instance.

3.7.2 Implementation

This section described the various modifications performed on the debugger to enable
multicore debugging. The selected alternative required that multiple GDB instances
should be able to connect to the same stub. The modifications mostly involved
duplicating data structures and usage of synchronization primitives to protect critical
regions.

The CPU cores share a single interrupt vector, located at address 0 in main memory.
Exceptions and interrupts generated by any of the cores will be handled by interrupt
handlers shared among the cores. In other words, all cores will share a single GDB
exception handler instead of having its own private copy. Though the GDB stub
itself is shared, every core has its own set of data structures. This effect was achieved
by placing the data structures in arrays, indexed by core id.

The technique is illustrated by the following example. The data structures storing
breakpoints were represented as two static variables in the original single core stub:

1 s t a t i c breakpoint_t breakpo int s [MAX_BREAKPOINTS] ;
2 s t a t i c breakpoint_t step_breakpoint ;

The code below shows how the data structures are defined in the multicore version:

1 typede f v o l a t i l e s t r u c t {
2 breakpoint_t breakpo int s [MAX_BREAKPOINTS] ;
3 breakpoint_t step_breakpoint ;
4 } core_state_t ;
5 s t a t i c core_state_t s t a t e [NUM_CORES] ;
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The two static variables are moved into a struct called core_state_t. This struct
contains all data private to each core. The static variable state is an array of
core_state_t with the size equal to the number of CPU cores in the system.

Debugger Initialization

Core #0 is responsible for initializing the stub. The initialization is performed as
described in subsection 3.5.2, which is to call the gdb_init function and insert a
static breakpoint. The debugger must be initialized prior to starting the other CPU
cores. In that way, none of the other cores may hit a static breakpoint before the
stub is properly initialized.

Breakpoints

Each core manages its own breakpoints; they can insert and remove breakpoints
without consulting the other cores. Access to the functions manipulating breakpoints
are mutually exclusive. Each function acquires a single global lock on entry. The same
lock is released on return. The use of locks ensures that all breakpoint operations
are atomic to protect against race conditions. Two debugger instances should for
instance not be able to insert a breakpoint at the same position simultaneously as
this may result in code corruption. The issue is demonstrated through the following
scenario:

Assume there are two instances trying to insert a breakpoint on the memory location.
Instance #1 may backup the just inserted breakpoint instruction of instance #2 prior
to inserting the breakpoint instruction itself. If instance #1 removes the breakpoint
after instance #2, the original instruction will be lost.

Host Communication

Each core uses a single TTY channel for host communication and each channel uses
a separate ring buffer where characters received from the host are stored. There is no
need for synchronization as none of the TTY channels are shared among the cores.





Chapter4GDB for Barrelfish

4.1 Motivation

Integrating the debugger with Barrelfish provided a great opportunity to test the
debugger on a larger software project. Experience during the Barrelfish integration
gave valuable feedback on the debugger functionality. For instance, debugging an
IRQ interrupt handler was recognized as an important feature during testing in
Barrelfish, and this feature was therefore added to the debugger later on.

Barrelfish was the first stable operating system for SHMAC. It represented an
important milestone for SHMAC, as having an operating system simplifies software
development to the platform. Adding debugging support to Barrelfish would make it
even more attractive as an operating system for SHMAC.

4.2 Specification

GDB for Barrelfish was planned to adhere to the following requirements:

Kernel debugging
The debugger should be able to debug the Barrelfish CPU driver. It should be
possible to debug system processes that are part of Barrelfish, for instance the
processes init and mem_serv.

Debug user programs
The debugger should be able to debug user programs.

Debug multiple cores simultaneously
The debugger should be able to debug multiple CPU cores simultaneously.
It should be possible to debug the CPU driver running on each CPU core
individually.
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Provide debug symbols
The stub should help GDB provide debug symbols for the CPU driver and
processes running on Barrelfish.

4.3 Implementation

4.3.1 Overview

The debugger support for Barrelfish is provided by a modified version of the GDB
stub for SHMAC. As the stub had to be tightly integrated with Barrelfish, the stub’s
source code was placed directly in the Barrelfish CPU driver.

As the CPU driver image is loaded to memory each time a new core is launched, one
stub instance exists per launched core. Only the GDB stub in the CPU driver image
of core #0 is active, the others are not used. All undefined instruction exceptions
and IRQ interrupts generated on any core are handled by the stub of core #0, similar
to how exceptions are handled in the standard GDB stub for SHMAC. Figure 4.1
presents an overview of the GDB stub in Barrelfish.

GDB Stub

CPU Driver

GDB Stub

CPU Driver

GDB Stub

CPU Driver

...

Und. instruction

...

...

...

...

IRQ

…

Interrupt 
vector

Core #0 Core #1 Core #2

Undefined instruction exception

Figure 4.1: Overview of the GDB setup in Barrelfish.

4.3.2 Multiprocess Mode

The stub implements the multiprocess protocol extension required for proper multi-
process mode in GDB. The extension affects the syntax of several packets. Process
id (pid) is added as a mandatory argument for several packets, like the stop reply
packets. The pid is required for GDB to detect which process is halted and to perform
process specific operations.

Additionally, extra packets for attaching, detaching and other process operations
were implemented. The packet vAttach is used to attach to a process. It takes one
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argument, a pid. Similarly, the packet D is used to detach a process, also taking a
pid as argument.

GDB expects that the stub is already attached to a process when initiating the
connections. The GDB connection is initiated at the start of the Barrelfish CPU
driver. Consequently, there exist no process to attach to at that moment. The issue
is resolved by pretending that the CPU driver is a process with id #0.

The debugger may only be attached to a single process at a time. GDB will explicitly
detach the existing process by sending a detach packet prior to attaching a new
process.

4.3.3 Barrelfish Hooks

Several hooks are inserted into Barrelfish to notify the stub when certain OS events
occur. The hooks can be divided into two categories; hooks related to initiating the
Barrelfish CPU driver on a CPU core, and hooks related to process life cycle events.
These hooks will be described in more detail in the sections below.

The hooks are created by modifying the source code of Barrelfish. Different mechanism
is used to report events depending on where the event occurred. If an event is reported
from the CPU driver of core #0, a direct function call to the stub is used. This
mechanism is used as the active GDB stub is the one linked to CPU driver at core
#0.

For the same reason, this mechanism cannot be used if reporting from a CPU driver
on a different core, or if the event is reported from a process. A different mechanism,
similar to how system calls work in operating systems, is used in those situations.
This mechanism is described in the next section.

The System Call Mechanism

This section describes the system call mechanism used in Barrelfish to notify the
stub about relevant events.

The first step of this mechanism is to invoke the function invoke_gdb_syscall,
passing an integer representing the event type and a pointer to a struct containing
any extra arguments:

1 process_created_params_t gdb_params ;
2 . . .
3 invoke_gdb_syscal l (PROCESS_CREATED, ( void ∗) &gdb_params ) ;
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The definition of invoke_gdb_syscall is simple, it consists of an undefined instruc-
tion and a return instruction. The undefined instruction generates a trap which is
handled by GDB exception handler.

1 invoke_gdb_syscal l :
2 mcr p1, 6 , R13, c 9 , c 4 , 5
3 mov pc , l r

The stub checks if the program halted because of a system call by examining the
PC register. The cause of halt is a system call if the instruction pointed by PC is a
specific undefined instruction.

1 i f ( i s_gdb_sysca l l ( r e g i s t e r s ) ) {
2 handle_gdb_syscal l ( r e g i s t e r s ) ;
3 r e turn prepare_return ( . . . ) ;
4 }
5

6 s t a t i c bool i s_gdb_sysca l l ( uint32_t ∗ r e g i s t e r s ) {
7 uint32_t ∗ pc = ( uint32_t ∗) r e g i s t e r s [ R15 ] ;
8 r e turn ∗pc == GDB_SYSCALL_INTERRUPT_INSTR;
9 }

The C calling convention for ARM guarantees that the two arguments of invoke_gdb_syscall
are located at register R0 and R1 respectively. The stub performs a specific operation
based of the content of these two registers. The implementation of the function is
shown in Figure 4.2.

1 s t a t i c void handle_gdb_syscal l ( uint32_t ∗ r e g i s t e r s ) {
2 sy sca l l_ ident_t type = ( sysca l l_ ident_t ) r e g i s t e r s [R0 ] ;
3 switch ( type ) {
4 case PROCESS_CREATED: {
5 process_created_params_t ∗ params = (

process_created_params_t ∗) r e g i s t e r s [R1 ] ;
6 gdb_on_process_created ( params−>handle , params−>

segment_address ) ;
7 break ;
8 }
9 case PROCESS_DESTROYED: {

10 process_destroyed_params_t ∗ params = (
process_destroyed_params_t ∗) r e g i s t e r s [R1 ] ;

11 gdb_on_process_destroyed ( params−>handle ) ;
12 break ;
13 }
14 }
15 }

Figure 4.2: The handle_gdb_syscall function.
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CPU Driver Initialization

The stub is initialized similarly to how it is done for a non-Barrelfish stub. The
difference is the inclusion of an extra function call to the stub, invoked by core #0
only. The function, gdb_on_core_setup, is called when instantiating the Barrelfish
CPU driver on additional CPU cores. The function has the following signature:

1 void gdb_on_core_setup ( uint32_t core_id , uint32_t text_segment ) ;

This hook provides the debugger with the CPU driver location in memory. Each
core has a separate image loaded into memory, where the location is determined at
runtime. GDB needs the text segment location to provide proper symbol information.
The details on how symbol information is provided is described in subsection 4.3.7.

Note that this function is not invoked for core #0, as its CPU driver image is always
located at address 0.

Process Creation and Destruction

Hooks are inserted into Barrelfish to notify the stub when a dispatcher object is
created or destroyed. A process is represented as several dispatcher objects, one for
each core the process may run on.

The hooks for dispatcher creation events are inserted into the code loading ELF files
to memory. The dispatcher handle and the text segment location is stored to a data
structure in the stub. In addition, the stub uses a counter to generate a unique id to
each dispatcher. This identifier is used by the GDB host to determine which process
to attach to. The text segment location is required for symbol information in GDB.

The hooks uses the system call mechanism described in section 4.3.3:

1 process_created_params_t gdb_params ;
2 gdb_params . handle = handle ;
3 gdb_params . segment_address = vbase + re l o c_d i s t ance ;
4 invoke_gdb_syscal l (PROCESS_CREATED, ( void ∗) &gdb_params ) ;

A similar hook notifies the stub when a dispatcher is destroyed. This hook ensures
that references to destroyed dispatchers are removed from the internal data structures.

4.3.4 Listing Available Processes

The remote protocol defines a packet called qRcmd which enables stub to implement
custom commands. The user can invoke custom commands by typing monitor
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[command-with-arguments] in the GDB CLI. The command with arguments is
transferred to the stub as a single text string with the qRcmd packet.

The stub implements a custom command to list available processes. This commands
is invoked by typing monitor processes in the GDB CLI. The stub will return a
string containing the name and process id for each active process.

4.3.5 Attaching a Process

The stub implements the vAttach packet. The packet takes a single argument, a
process id (pid), which is the process to attach to. The pid might refer to an existing
process and or future process (by guessing the pid of the desired process). The
GDB assumes that the remote responds with a stop reply packet once the process is
attached.

If the pid refers to an unknown dispatcher, the actual attaching is performed once
the stub gets notified about its creation.

The following steps is performed to attach to a dispatcher:

1. The dispatcher handle is retrieved by looking up the pid in the internal data
structures.

2. The dispatcher object is retrieved from Barrelfish using the dispatcher handle.

3. The dispatcher object holds the location to resume execution next time the
dispatcher is scheduled. The stub inserts a temporary breakpoint at that
location.

4. The debugger returns and Barrelfish resumes execution.

5. Once Barrelfish schedules the dispatcher, it will immediately hit the breakpoint,
and return control to the debugger.

6. The stub sends a stop reply packet to notify the host that the dispatcher
attachment is complete. This step completes the attachment process.

4.3.6 Obtaining the Currently Executing Process

The global variable dcb_current in the Barrelfish CPU driver holds a reference
to the dispatcher object of the currently active dispatcher. The stub accesses this
variable to determine the current process, which is reported back to GDB host in stop
reply packets. The location of the variable has to be calculated if the core running
the debugger is not core #0. The relative offset of dcb_current is added together
with the text segment location of the current core’s CPU driver. The resulting value
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is the correct address of dcb_current. The C code for the calculation is shown
below:

1 s t r u c t dcb ∗ current_disp = ∗ ( ( s t r u c t dcb ∗∗) ( ( ( uint32_t )&dcb_current )
+ text_re l oc ) ) ;

The calculation of current_disp consists of the following steps:

1. Get the relative address of the dcb_current variable.

2. Add the CPU driver text segment location to the relative address found in step
1.

3. Cast the resulting value to a pointer to the dcb_current variable. Note that
dcb_current itself is a pointer.

4. Dereference the pointer to get current core’s dcb_current value.

Once the dispatcher handler is found, the pid is determined by a lookup in the
internal data structures.

4.3.7 Providing Debug Symbols

The GDB stub uses two mechanism to ensure that GDB provides correct debug
symbols. GDB provides source code mapping, such as the location of instructions and
variables in memory, when debug symbols are available. The requisite is the presence
of the symbol file, e.g. the ELF file of the program, and the memory location where
the text segment is loaded.

Debug Symbols for CPU Driver

The CPU driver’s ELF file is passed as argument when launching GDB. This file
provides the debug symbols for the CPU driver. The text segment location is provided
by the stub. The GDB host queries the stub for relocation offsets at the beginning
of the session. The host sends a qOffsets packet. The stub responds with the text
string TextSeg=xxx, where xxx is text segment location. Note that this location is
provided by Barrelfish using the hook described in section 4.3.3.

Debug Symbols for Processes

The remote protocol defines a mechanism so a remote can notify GDB when a shared
library is loaded or unloaded. The stub halts the program and sends a stop reply
packet marked with a special flag on a shared library event. The host may then
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query the list of shared library using the Xfer:libraries:read packet. The remote
responds with a XML structure listing the library file path and segment address of
all shared libraries.

The XML code below presents an example:

1 <l ib r a ry − l i s t>
2 <l i b r a r y name=" / l i b / l i b c . so . 6 ">
3 <segment address=" 0x10000000 " />
4 </ l i b r a r y>
5 </ l i b r a ry − l i s t>

This mechanism is used to provide the path of the process symbol file and its text
segment location to GDB. The file path is the location of the program’s ELF file
relative to the Barrelfish build directory. When GDB is launched from this directory, it
will be able to automatically load debug symbols for all running Barrelfish processes.
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5.1 Testing Methodology

This chapter describes the testing scheme employed to verify the correctness of the
debugger. The standalone debugger and the debugger for Barrelfish were tested
separately, and they will be described in separate sections through this chapter.

The debugger for Barrelfish is technically very similar to the standalone debugger.
The major difference is that the Barrelfish stub also implements the multiprocess
extension required for the Barrelfish integration. For this reason, the tests for the
Barrelfish debugger focus on the functionality that is specific for Barrelfish. They
will not cover functionality that is also present in the standalone debugger.

The test scheme focuses on functional testing to ensure that debugger meets the
functional requirements. The debugger is mostly tested at a high level, with the
exception being the unit tests described in subsection 5.1.1. The tests were performed
by running a complete debugger setup and executing GDB commands on the host.
Such testing is known as system testing as the complete system is tested.

A single GDB command may result in several packets being transmitted back and
forth, and thus a single command will test several parts of the debugger. A good
example is the single step command, which utilizes several packets like the vCont for
range stepping and m for reading memory. As a result, most parts of the stub can be
tested by only executing a few different commands. The behaviour of an operation
is observed by inspecting packet content and state of the SHMAC system.

5.1.1 GDB for Bare-Metal Programs

This section explains the testing of the standalone GDB stub. The stub was tested
using both high-level tests (system testing) and low-level tests (unit testing). The
system tests cover the overall functionality, while the unit tests cover the instruction
decoder used for single stepping.

53



54 5. TESTING THE DEBUGGER

System Testing through GDB

A dedicated test application was developed for the single purpose of testing the
debugger. The tests are peformed by debugging this program application it is running
on SHMAC. As described in section 5.1, the tests are performed by executing GDB
commands on the host and examining the result.

The application is designed to cover all the required scenarios defined by the test plan.
Such scenarios include for instance the use of timed interrupts and software interrupts.
The code utilizes several types of C flow control statements (loops, branches) so that
single stepping and breakpoints can be tested thoroughly.

The source code of the test application can be located by consulting Appendix A.

Unit Testing Single Stepping

The correctness of the instruction decoder, which is part of the single stepping
mechanism, was verified using unit testing. The instruction decoder is responsible
for detecting and decoding instructions that may modify the PC register. Once
such instruction is decoded, the future value of PC is calculated. It is important
the calculated value is correct, so that the single step breakpoint is inserted at the
subsequent instruction. As several different instructions may modify the PC register,
and decoding these instructions are rather complex, the code for the instruction
decoder became a major part of the overall codebase. For this reason, manually
testing the instruction decoder was deemed as too time consuming. Instead, the unit
testing was chosen as it was considered more time effective, in addition to testing
the decoder more thoroughly.

The unit tests are designed to run on SHMAC itself. As parts of the instruction
decoder expected 32-bit address space, testing it on a 64-bit personal computer was
practically not possible.

The source code of the unit tests can be located by consulting Appendix A.

5.1.2 GDB for Barrelfish

The tests covers functionality that is specific to the GDB stub for Barrelfish, mainly
the commands which are part of the multiprocess extension. The tests were performed
on the multicore port of Barrelfish. This port was designed to run on a more powerful
Versatile Express development system featuring 4GB RAM. The SHMAC variant
with multiple TTY channels was at the time of testing only compatible with the
older RealView development system featuring only 32MB RAM. The GDB stub for
Barrelfish required the presence of multiple TTY channels, and could therefore not
run on the Versatile Express system. In order to run Barrelfish on only 32MB of RAM,
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certain modifications were performed on its codebase. System processes that were
not required for booting were disabled. In addition, Barrelfish was restricted to boot
two cores only, leaving the third core unused. With these modifications, Barrelfish
was able to boot the CPU driver and two system processes on two cores. Note that
these modifications were performed for testing purposes only. The SHMAC variant
with multiple TTY channels will in the future be compatible with the Versatile
development system, so that Barrelfish can be debugged without requiring any
modifications.

5.2 Test Plan

5.2.1 GDB for Bare-Metal Programs

System Testing through GDB

The test cases for system tests are listed below.

1. Verify that a GDB host is able to connect to the stub, using one GDB instance
per core. Each core should be connectable through the TTY channel specified
in the configure struct. The stub should send an initial stop reply packet once
the first static breakpoint is hit.

2. Verify that GDB is able to kill the program on SHMAC. The stub should call
the kill function specified in the configure struct.

3. Verify that disabling debugging on individual cores works as expected. The
program running on those cores should not halt on static breakpoints, but
continue execution to the subsequent instruction. If a disabled core hits a
breakpoint inserted by a different core, it should halt execution. Once the
breakpoint is removed, the core should continue execution.

4. Verify that the read and write register packets work correctly.

5. Verify that the memory write and memory read packets work correctly.

6. Verify that range stepping behaves correctly. A range step is performed using
the step command in GDB, which steps over a single line of code. This test
also verifies the instruction single step operation the and continue operation,
as range stepping implementation in the stub uses both those operations.
Stepping should behave correctly on all types of flow control statements in
the C language (if statements, switch statements, while/for/do-while loops,
function call, function return).
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7. Verify that the stub handles static breakpoints correctly. The program should
halt on all static breakpoint. The stub should be able to continue the program
afterwards.

8. Verify that the stub handles normal breakpoints correctly. The program should
halt on the locations where breakpoints are inserted. Removing a breakpoint
should restore the original instruction. The stub should be able to continue
the program afterwards. Breakpoints should behave correctly when inserted
on all types on flow control statements in the C language.

9. Verify that a GDB interrupt is able to halt the program. The stub should be
able to halt the program at any time given that interrupts are enabled and the
current mode is not und mode. Once halted, the stub should notify the host
that it was halted by a GDB interrupt. The stub should be able to continue
the program afterwards.

10. Verify that stub is able to debug code running in irq and svc mode. The test is
performed by inserting a breakpoint inside the software interrupt handler and
the IRQ interrupt handler. The program should halt on the breakpoint every
time a software interrupt or IRQ interrupt occur. The stub should be able to
continue execution after hitting any of the breakpoints. Note that fiq mode is
not tested as it is currently not supported by the CPU core.

11. Verify that the stub only enables interrupts for the debug channels when
entering the exception handler. This verification is performed by examining
the CPSR register and status registers of the interrupt controller.

Unit Testing Single Stepping

The test suite for the instruction decoder consists of 21 unit tests. Each test verifies
the PC calculation for a single instruction. One of the unit tests is presented below
as an example. This test verifies the decoding of the instruction add pc, r0, r1.
The hexadecimal literal (0xe090f001 ) is the machine code representation of the
instruction.

1 r e g i s t e r s [R0 ] = 0x100 ;
2 r e g i s t e r s [R1 ] = 0x8 ;
3 uint32_t addr2 = handle_add_pc_instr (0 xe090f001 , &r e g i s t e r s [ 0 ] ) ;
4 uint32_t expected_addr2 = r e g i s t e r s [R0 ] + r e g i s t e r s [R1 ] ;
5 as s e r t_equa l s ( expected_addr2 , addr2 , " add_pc_test_2 " ) ;

The unit tests are listed in Table 5.1.
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Table 5.1: Unit tests for instruction decoder.

Name Type Instruction
swi_test_1 swi swi 42

mov_pc_test_1 mov mov pc, lr
mov_pc_test_2 mov movs pc, lr
mov_pc_test_3 mov mov pc, r0
branch_test_1 b b 134
branch_test_2 b bl 134
add_pc_test_1 add add pc, r0, #4
add_pc_test_2 add add pc, r0, r1
add_pc_test_3 add addls pc, pc, r2, lsl #2
sub_pc_test_1 sub sub pc, lr, #4
sub_pc_test_2 sub subs pc, lr, #4
sub_pc_test_3 sub sub pc, r0, #8
ldr_pc_test_1 ldr ldr pc, [r3, #4]
ldr_pc_test_2 ldr ldr pc, [r0, r1]
ldr_pc_test_3 ldr ldrls pc, [pc, r3, lsl #2]
ldm_pc_test_1 ldm pop {r0, r1, r2, pc}
ldm_pc_test_2 ldm ldm r0, {r1, r2, pc}
ldm_pc_test_3 ldm ldmib sp!, {r0, r1, r2, pc}
ldm_pc_test_4 ldm ldmdb sp!, {r0, r1, r2, pc}
ldm_pc_test_5 ldm ldmda sp!, {r0, r1, r2, pc}
ldm_pc_test_6 ldm pop {lr, pc}

5.2.2 GDB for Barrelfish

The test cases for system tests are listed below.

1. Verify that the GDB host can connect to the stub, using one GDB instance
per core. The stub should provide the host with the correct text segment
location for each CPU driver. The values are verified by comparing each core’s
PC register with the respective text segment location.

2. Verify that the GDB host is able to attach to an existing dispatcher. The stub
should insert a temporary breakpoint at the correct location inside the dis-
patcher. Once the Barrelfish schedules the execution of the attached dispatcher,
the dispatcher should halt. The stub should then report back to the host that
the attachment is complete.
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3. Verify that the GDB host is able to attach to a dispatcher that will be created
in future. The stub should attach to the correct dispatcher based on the pid.
The temporary breakpoint should be inserted as soon at the stub is notified
about the dispatcher creation.

4. Verify that the stub notifies the GDB host once a new dispatcher is created.
The dispatcher name and the reported text segment location for each dispatcher
should be verified.

Note that both user programs and system processes use the same internal represen-
tation in Barrelfish, specifically as a set of dispatcher objects. This is the reason
why the test plan does not test debugging of user programs and system processes
separately.

5.3 Test Results

5.3.1 GDB for Bare-Metal Programs

The debugger was able to pass the tests listed in section 5.2.1. Although the tests
do not cover all possible scenarios, it gives a strong indication that the debugger
operates correctly.

All unit tests listed in section 5.2.1 passed. This indicates that the instruction
decoding works correctly for the instructions supported. It does not test single
stepping directly as only the decoding is tested. The range stepping test in section 5.2.1
covers the single step command. The combination of the unit tests and the range
stepping test gives strong indication that single stepping operates correctly.

5.3.2 GDB for Barrelfish

The debugger was able to pass the tests listed in subsection 5.2.2. The results give
a strong indication that the Barrelfish debugger operates correctly. Note that it
was only possible test a modified instance of Barrelfish running a limited set of
system processes. As the modified version does not significantly alter the internals of
Barrelfish, but mainly reduces the number of programs started, it is unlikely that
the debugger does not work similarly well with a complete Barrelfish setup.



Chapter6Evaluation

6.1 Performance Enhancements

Measuring the performance increase introduced by the enhancements in section 3.6
is not straightforward. Different operations takes different amount of time based on
many factors such as the number of instructions in the current line.

As single stepping is one of the most frequent operations performed during a debug
session, it was decided that measuring the duration of stepping a line of code was a
good indicator for the performance comparison. The test used the following line of
code:

1 i = i ∗ 10 − 3 ;

Prior to the optimizations, single stepping over the code line above took 8 seconds.
The optimizations reduced the duration down to 1.5 seconds, giving a 5 times speedup.
Different code lines will of course result in different speedups.

6.2 Limitations

6.2.1 Limitations with the Single Stepping Implementation

Single stepping is implemented in software and relies on proper detection and decoding
of instructions that modify the PC register. The stub has to insert a temporary
breakpoint at the subsequent instruction so that the program halts after executing
the single instruction. If the temporary breakpoint is inserted at an incorrect location,
the program will continue execution until it is halted for some other reason. The
current implementation only handles the instruction variants discovered during the
analysis of the instructions generated by the GCC compiler for ARM. There might
be other PC modifying instructions typically generated which were not discovered. If
such instruction is single stepped, it may lead to the temporary breakpoint being
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inserted at PC + 4 instead of the correct location. Hand-coded assembly code may
for instance use unusual instructions for branching for optimizations purposes, which
may also lead to faulty single stepping.

While the instruction decoder can be further developed to handle all types of
instructions, adding hardware assisted single stepping is the preferred approach
for proper single stepping. Handling all instructions would essentially require a
complete instruction simulator, which will enable correct single stepping for all kind
of instructions. The disadvantage with such solution is the implementation complexity.
Implementing and testing the simulator would take a considerable amount of time.

A better solution is to implement single stepping in hardware. The Amber CPU
core can be modified to include support for hardware assisted single stepping. Doing
single stepping in hardware is believed to require less effort than implementing an
instruction simulator. As this thesis focus on the software support for debugging,
modifying the Amber CPU was out of scope.

The single stepping mechanism can be implemented such that the it traps the program
after executing the instruction at a given memory address. Activating single stepping
could be as simple as writing the memory address to a dedicated co-processor register.

Imperfect single stepping can be mitigated by using breakpoints. The user of the
debugger can insert a breakpoint at subsequent instruction when single stepping an
instruction which the stub is known to not handle correctly. This workaround will
require that the user manually inspects the problematic instruction and is able to
predict where the program will branch to.

6.2.2 Using Breakpoints in Multicore Programs

Breakpoints are inserted to the program by substituting the original instruction with
a trap instruction. This approach has a few implications if this instruction is part of
a code segment shared by multiple cores. First of all, any breakpoint inserted will
trap all cores that will execute that instruction. This may or may not be intentional
by the user, but as the cores are debugged individually, it might not be the best
fitting behaviour.

A major issue with the breakpoint implementation is the fact that GDB removes
all breakpoints once the program halts (and reinserts them prior to continuing
the program). Once the owner of the breakpoints hits it, the breakpoint will be
removed and any other cores will execute the original instruction instead of hitting
the breakpoint. This behaviour is confusing for the user. GDB uses all-stop mode
per default and expects that all threads halt whenever one thread halts. That is the
reason why GDB assumes that it is safe to remove all breakpoints on halt.
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The proper solution of all the aforementioned issues is the use of hardware breakpoints.
Each core would then have a separate set of breakpoints. Inserting a hardware break-
point does not require substituting the original instruction with a trap instruction.
Instead, the CPU core is configured to trap when PC reaches a specific value. Adding
support for hardware breakpoints would require modifications of the Amber core,
which is out of scope for this project.

Shared breakpoints could be implemented if the debugger was modified to utilize
the GDB multithread abstraction (either all-stop mode or non-stop mode). Though,
as described in subsection 3.7.1, modifications to the SHMAC hardware would be
required.

6.2.3 GDB Interrupts

The GDB host will not be able to interrupt a core using Ctrl+C if that core has
interrupts disabled. The implementation of GDB interrupt relies on host interrupts
being enabled. If the core has interrupts disabled, it will not be notified about data
being sent through the debug channel. Consequently, it will not receive and detect
the interrupt token from the host. Note that the host will still be able to halt the
core using either standard or static breakpoints. This limitation affects Barrelfish as
its CPU driver is designed as an uninterruptable kernel.

6.3 The SHMAC Platform

The SHMAC platform was enhanced during the development of the stub. The CPU
tile received an update adding a newer ARM instruction set, and the APB tile was
upgraded with 15 new TTY channels. These two updates were beneficial for the
debugger implementation.

6.3.1 Benefits of ARMv3

The Amber CPU core was improved in the early phase of this project. The ISA was
upgraded from ARMv2a to ARMv3. The ARMv3 represents a major upgrade over
ARMv2a by migrating from a 26-bit to a 32-bit program counter. What benefitted
most was the introduction of a new operating mode; undefined (und) mode. ARMv2a
used svc mode for the undefined instruction handler, effectively making it impossible
to debug code running in svc mode. The issue is discussed in section 3.5.5.

6.3.2 Benefits of Multiple TTY Channels

The SHMAC test platform available during the two first months of this project had
limited communication capabilities. The original APB tile did only provide a single
TTY channel to the host controller. As a result, the debugger and program output
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had to share a single channel. The solution to this problem was to wrap all program
output in an O (program console output) packet [RSea14, p. 587]. The packet takes
a single argument, an ASCII string encoded in the hex format. The parameter is
decoded and printed to the GDB terminal when packet is received on GDB host.
Programs using the debugger had to use dedicated print functions supplied by the
GDB stub for console output. This requirement made it harder to integrate the
debugger, as it would likely involve larger modifications to a program’s source code.
In addition, it would be much harder to implement multicore support using the
current approach, as all the debug channels would have to be multiplexed over a
single TTY channel.

The need of special treatment of program output was eliminated once the APB tile
was extended to 16 TTY channels.

6.4 Comparing the Implementation with The Specification

This section evaluates the functionality of the implementation against the require-
ments listed in section 3.1 and section 4.2.

6.4.1 GDB for Bare-Metal Programs

Support breakpoints
The debugger supports both static breakpoints and standard breakpoints.
Insertion and removal of standard breakpoints is supported through the software
breakpoint packets defined in the remote protocol. Testing has verified that
the breakpoint functionality is working correctly.

Support GDB interrupts
GDB interrupts are supported by the debugger and testing has shown that is
working correctly. Though, the current implementation requires that the CPU
core has interrupts enabled. GDB is not able to interrupt code running in und
mode. As this mode is rarely used, the limitation is not a big issue.

Debug code running in any mode
The debugger is able to debug code running in all modes except und mode.
Und mode is not supported for technical reasons as explained in section 3.5.5.
Testing has shown that the debugger is able to debug code running in svc, irq
and usr mode. Fiq mode is not tested as it is not supported by CPU core.

Debug programs running on multiple cores
The debugger is able to debug multicore programs by debugging each core
individually with a separate GDB instance. This approach was determined to
be the best alternative, having the most suitable trade-offs.
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No dependencies on operating systems or external libraries
The debugger has no dependencies on libraries or operating systems. It is
written in C without standard library and ARM assembly. As a result, it is
easy to integrate the stub into SHMAC programs.

Simple to integrate into SHMAC programs
Integrating the stub to a program only requires small modification to the
interrupt vector and the program’s main function. These modification should be
relatively simple to perform on most program. Performing these modifications
on Barrelfish were for instance straightforward.

Adequate performance
Typically, single stepping over a single line of code takes less than two seconds.
Exceptions include stepping over long function calls, instructions with multiple
memory references, or complicated arithmetic expressions. Operations that
are more complex, such as calling a program function through GDB, will take
considerable more time. The performance is briefly discussed in section 6.1.

6.4.2 GDB for Barrelfish

Kernel debugging
The debugger is able to debug the CPU driver and system processes. The stub
implements the multiprocess extension for the remote protocol, which provides
commands for attaching and detaching any processes on SHMAC.

Debug user programs
As stated in the above item, the implementation of the multiprocess extension
provides the necessary support for debugging any process in Barrelfish. This
also includes user programs, as they use the same internal representation as
system processes.

Debug multiple cores simultaneously
The debugger is able to debug multicore programs by debugging each core with
a separate GDB instance.

Provide debug symbols
The debugger provides automatic lookup of debug symbols for the CPU driver
and processes running on Barrelfish.

6.5 Evaluating Assignment Tasks

This sections reviews the result in terms of the tasks identified in section 1.5.
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T1 Add support for debugging with the GNUDebugger (GDB) on SHMAC.
GDB debugging for SHMAC is enabled by the GDB remote stub described in chap-
ter 3. The debugger is a software solution, although it does require a SHMAC test
platform with certain characteristics. It is designed for ARMv3, and require the
presence of the enhanced APB tile with 16 TTY channels. The remote stub supports
the core debugger functionality such as breakpoints. Its functionality is tested and
verified, as described in chapter 5. The debugger is ready for use as it is today.

T2 Facilitate debugging of the Barrelfish kernel using the software devel-
oped in T1.
The GDB remote stub has been integrated with Barrelfish. The remote stub for
Barrelfish is extended to support the GDB multiprocess extension, which enables
debugging of processes and the CPU driver. Additionally, it is designed to help GDB
provide proper debug symbols, such that GDB will automatically give source code
mapping when attaching to a process. Its functionality is tested and verified, as
described in chapter 5.

T3 Extend the debugger implementation in T1 and T2 to enable debugging
of multiple SHMAC CPU cores simultaneously.
The solution for T1 and T2 is able to debug multiple cores simultaneously. The
challenges related to multicore debugging, and how the implementation addresses
those challenges, is described in section 3.7.

T4 Extend the debugger implementation in T2 to facilitate debugging of
user programs in Barrelfish.
The debugger for Barrelfish supports debugging of user programs in Barrelfish.
Barrelfish does not distinguish between system processes, i.e. processes that are
part of the operating system, and user programs. Both are represented as a set of
dispatcher objects. Consequently, when debugging support for system processes was
added, it also included support for debugging user programs.

T5 Extend the debugger implementation in T1 to enable debugging of the
Linux kernel.
This task was never initiated. The team porting Linux did not have a great need
for a debugger. In addition, the above tasks were prioritized thereby not leaving
enough time for this task. Linux provides its own GDB remote stub, although it is
not known if it supports older ARM ISAs such as ARMv4.

T6 Implement a software providing visualisation of core usage and com-
munication.
As this task was lower prioritized than the above tasks, time did not permit the
execution of this task.



Chapter7Future Work

7.1 Adding ARMv4 Support

The modified SHMAC CPU core is in progress of being upgraded to the ARMv4
instruction set [AA14]. Once the new CPU core is finished, it will become the default
CPU tile for SHMAC. For that reason, it is preferable that the debugger is updated
to support ARMv4 once the core is finished.

Adding ARMv4 support should only require minor modifications to the stubs. The
details are as following:

– ARMv4 introduced a new operating mode called system mode. The code
responsible for storing and restoring register values has to be modified to
handle traps coming from code executing in the new mode.

– The CPU core also supports the bx instruction even though it is part of the
ARMv4T (ARMv4 with Thumb) instruction set. The instruction was included
for better compatibility with the toolchain used for compiling Linux. As this
instruction is commonly used for branching, the instruction decoder used for
single stepping should be updated to support the new instruction.

7.2 Adding Debugging Capabilities to SHMAC CPU Core

7.2.1 Breakpoints and Single Stepping

The current SHMAC CPU core does not provide any dedicated debugging function-
ality. Having hardware assisted single stepping and breakpoints would solve many
of the limitations with current debugger implementation, as described in subsec-
tion 6.2.2 and subsection 6.2.1. If hardware breakpoints are added to the CPU, it
should provide a high enough capacity for breakpoints such that software breakpoint
would not be needed at all.
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7.2.2 Range Stepping

Range stepping is another operation that would be greatly improved with proper
hardware support. The current stub implements range stepping by single stepping
multiple instructions, which is terribly ineffective as the program is halted for each
instruction executed. With hardware assisted range stepping, the program would
only be halted after the range step operation is complete. The range step operation
could be initiated by writing range (start and stop address) to co-processor registers.

7.2.3 Dedicated Debug Interface

The CPU core could be further enhanced by adding a dedicated debug interface.
The host controller should be able to debug and control each CPU core through this
interface. The debug interface should preferably implement a request-reply protocol
similar to the GDB remote serial protocol. The GDB stub would then be modified
to run as a separate program on the host controller, controlling a CPU core through
the debug interface.

The protocol should implement necessary commands for basic debug operations:

1. Read/write SHMAC memory

2. Read/write registers

3. Stop/continue instruction execution

4. Single stepping and range stepping

5. Insert/remove breakpoints

In addition, the protocol should enable the CPU core to report exceptions as they
occur.

One of the advantages with this design is that it enables debugging of any program
running on SHMAC. The current design with a GDB stub is less practical as the
program has to be modified and recompiled to enable debugging. Having the debugger
in software makes it more fragile. If the program modifies the interrupt vector during
runtime, the debugger may malfunction. With the debug interface, there is no need
to link a GDB stub to the program, thereby removing many of the limitations with
the current design.

A disadvantage with the debug interface is that it will require larger modifications to
both the CPU core and the SHMAC infrastructure. New device drivers for Linux
has to be developed to enable communication over the new interface.



Chapter8Conclusion

This thesis provides the SHMAC project with a software debugger based on the GNU
Debugger (GDB). Future software development on SHMAC will greatly benefit from
having a proper debugging tool. As the debugger is based on GDB, it provides the
SHMAC developers with a familiar product that has a rich feature set.

The debugger has been integrated in Barrelfish, the first functional operating system
for SHMAC. This integration enables debugging of the OS kernel and processes
running on Barrelfish. The combination of a debugger and an operating system
represents a powerful software platform for SHMAC, greatly simplifying future
software development.

The thesis describes the implementation of a GDB remote stub, a software compo-
nent which, when linked to a SHMAC program, enables debugging through GDB.
The thesis discusses the challenges with multicore debugging and why the current
implementation achieves the best trade-offs. The integration of the remote stub with
Barrelfish demonstrates that the stub can easily be integrated with larger programs.
Various performance optimizations were performed to make the debugger more re-
sponsive, and the evaluation presents the substantial speedup attained. Future work
discuss the benefits with hardware assisted debugging, and describes how current
limitations with single stepping and breakpoint implementation can be solved by
enhancing the SHMAC CPU core. The last contribution is the user guide in the
appendix, which explains how to use the debugger.

The debugger has been extensively tested to ensure it is working correctly. The test
results are positive and concludes that debugger is stable. Overall, the thesis has
accomplished its primary goal, which is to provide SHMAC with a fully functional
debugger.
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AppendixASource code overview

This chapter presents an overview of the source code for the standalone debugger
and debugger for Barrelfish.

A.1 GDB for Bare-Metal Programs

The GDB stub + test program source code is located at https://bitbucket.org/bjorncs/gdb-
project. The source code can be downloaded manually from website or by using
git:

1 g i t c l one https : // bjorncs@bitbucket . org / b jo rnc s /gdb−p ro j e c t . g i t

The source code is also available as an attachment at DAIM (Digital Arkivering og
Innlevering av Masteroppgave).

The root folder contains 3 folders. Each of them are described in the table below:

Folder Description
gdb-stub The GDB stub source code.
test-program The test application source code. This application was used

during the functional testing.
single-step-tester Contains the unit tests for the single stepping instruction

decoder. The tests

The following table shows the total lines of code. The statistics are generated by
CLOC (Count Lines of Code) [CLO]. The line counts does not include blank lines or
comments.
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Language Files Lines of code
C 11 1636

C Headers 13 352
Assembly 3 420

Sum 27 2228

A.2 GDB for Barrelfish

The source code for Barrelfish with the GDB stub integrated is located at a private
repository owned by Benjamin Bjørnseth and Bjørn C. Seime.

The source code for the Barrelfish GDB stub alone is available as an attachment at
DAIM.

The GDB stub files are located in the following directory relative to root of the
Barrelfish codebase:

Type Location
Implementation files kernel/arch/shmac/gdb

Header files kernel/include/arch/shmac/gdb

The following table shows the total lines of code. The statistics are generated in the
same way as the source code for the standalone stub. Note that the line counts are
lower as the counts for the standalone stub also includes the source files for the test
application and the unit tests.

Language Files Lines of code
C 7 1610

C Headers 9 104
Assembly 1 145

Sum 17 1859



AppendixBUser Guide: Debugging Programs
on SHMAC

This is a guide that cover the necessary setup for using GDB for SHMAC. Note that
it does not explain how to use GDB in general.

The debugger is compatible with any SHMAC configuration having the following
properties:

– ARMv3 compatible CPU cores (e.g. arv3 ).

– The updated APB tile from Asbjørn (with 16 TTY channels).

B.1 Install GDB 7.7 for ARM

The stub is designed for GDB 7.7 or newer. Older versions are not tested, but might
still work. The GDB installation must have ARM as target platform. The easiest
way to obtain the correct version is to compile GDB from source. You may install
GDB either on your computer or on the host controller on SHMAC.

1. Download and extract the source code (http://ftp.gnu.org/gnu/gdb/gdb-7.7.tar.gz).

2. Compile GDB using the following commands:

1 mkdir gdb−bu i ld
2 cd gdb−bu i ld
3 CFLAGS=−Wno−e r r o r=deprecated−d e c l a r a t i o n s [ path to source code ] /

c on f i gu r e −−t a r g e t=armv3−none−eab i
4 make

B.2 Setup ser2net on SHMAC Host Controller

This step is not necessary if you intent to run GDB on host controller.
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1. Install ser2net from package manager:
1 sudo apt−get i n s t a l l s e r 2ne t

2. Edit the file /etc/ser2net.conf and remove the default configuration. Add
the following lines to the bottom of the file:

1 4242 : raw : 6 0 0 : / dev/ttySHMAC0:115200 8DATABITS NONE 1STOPBIT
2 4243 : raw : 6 0 0 : / dev/ttySHMAC1:115200 8DATABITS NONE 1STOPBIT
3 4244 : raw : 6 0 0 : / dev/ttySHMAC2:115200 8DATABITS NONE 1STOPBIT
4 4245 : raw : 6 0 0 : / dev/ttySHMAC3:115200 8DATABITS NONE 1STOPBIT
5 4246 : raw : 6 0 0 : / dev/ttySHMAC4:115200 8DATABITS NONE 1STOPBIT
6 4247 : raw : 6 0 0 : / dev/ttySHMAC5:115200 8DATABITS NONE 1STOPBIT
7 4248 : raw : 6 0 0 : / dev/ttySHMAC6:115200 8DATABITS NONE 1STOPBIT
8 4249 : raw : 6 0 0 : / dev/ttySHMAC7:115200 8DATABITS NONE 1STOPBIT
9 4250 : raw : 6 0 0 : / dev/ttySHMAC8:115200 8DATABITS NONE 1STOPBIT

10 4251 : raw : 6 0 0 : / dev/ttySHMAC9:115200 8DATABITS NONE 1STOPBIT
11 4252 : raw : 6 0 0 : / dev/ttySHMAC10:115200 8DATABITS NONE 1STOPBIT
12 4253 : raw : 6 0 0 : / dev/ttySHMAC11:115200 8DATABITS NONE 1STOPBIT
13 4254 : raw : 6 0 0 : / dev/ttySHMAC12:115200 8DATABITS NONE 1STOPBIT
14 4255 : raw : 6 0 0 : / dev/ttySHMAC13:115200 8DATABITS NONE 1STOPBIT
15 4256 : raw : 6 0 0 : / dev/ttySHMAC14:115200 8DATABITS NONE 1STOPBIT
16 4257 : raw : 6 0 0 : / dev/ttySHMAC15:115200 8DATABITS NONE 1STOPBIT

This configuration will map /dev/ttySHMAC0 to IP port 4242, /dev/ttySH-
MAC1 to 4243, etc.

3. Restart the ser2net service using the following command:
1 sudo / e tc / i n i t . d/ s e r2ne t r e s t a r t

B.3 Compile the GDB Stub

The GDB stub + test program source code is located at https://bitbucket.org/bjorncs/gdb-
project. The source code can be downloaded manually from website or by using
git:

1 g i t c l one https : // bjorncs@bitbucket . org / b jo rnc s /gdb−p ro j e c t . g i t

Prerequisites:

– A GCC toolchain for ARMv3. The GDB stub needs the libc headers. The
test program requires the libc itself in addition to the headers. The repository
contains a guide for setting up the toolchain required for compiling the GDB
stub and Barrelfish.
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The header file defs.h must be configured prior to compilation. It is located in the
directory gdb-stub/include. Modify the definitions defining the number of cores
and TTY channels:

1 #pragma once
2

3 #de f i n e NUM_CORES 3
4 #de f i n e NUM_TTY_CHANNELS 16

Navigate to the source code root directory. You may build the test program
and the stub with make. If you only want to build the stub, run make from
the directory gdb-stub. The resulting static library is (libgdbstub.a) located in
gdb-stub/build/libs/.

B.4 Integrate GDB Stub with Program

B.4.1 Insert Interrupt Hooks

1. Modify the interrupt vector so that the the GDB stub handles irq interrupts
and undefined instruction exceptions:

1 vec to r :
2 b reset_handler
3 b gdb_undef_instr_handler
4 b swi_handler
5 b . // Pre f e t ch abort
6 b . // Data abort
7 b . // Reserved
8 b gdb_irq_handler
9 b . // FIQ

2. Label the entry point for the program’s irq handler and undefined instruction
handler with gdb_irq_handler_program and gdb_undef_instr_handler_program
respectively:

1 gdb_irq_handler_program :
2 i rq_handler :
3 // Save r eg s
4 push {r0−r 3 , r 1 2 , l r }
5 . . .
6

7 gdb_undef_instr_handler_program :
8 undef_instr_handler :
9 // Save r eg s

10 push {r0−r 3 , r 1 2 , l r }
11 . . .
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B.4.2 Insert Call to gdb_init

Insert a call to the gdb_init function at the start of program. It takes a gdb_config_t
struct as only argument. gdb_config_t is defined in header file gdb.h. Example:

1 #inc lude " gdb . h "
2 . . .
3 void d i e ( void ) {
4 . . .
5 }
6 . . .
7 i n t main ( void ) {
8 i n t cpu_id = ∗TILEREG_CPUID;
9 i f ( cpu_id == 0) {

10

11 gdb_config_t gdb_config ;
12 gdb_config . tty_channel [ 0 ] = 3 ;
13 gdb_config . tty_channel [ 1 ] = 4 ;
14 gdb_config . tty_channel [ 2 ] = 5 ;
15 gdb_config . ki l l_program_handler = &die ;
16 gdb_init(&gdb_config ) ;
17 }
18 . . .
19 }

The config above configures core 0, 1 and 2 to use TTY channel 3, 4 and 5 respectively.
The function die will be invoked by the debugger when killing the program. It is up
to the program to decide what this function should do.

IMPORTANT: Make sure that gdb_init is called by a single core only (in case the
main function is run by multiple cores).

B.4.3 Insert the Initial Static Breakpoint

Place a static breakpoint somewhere after the call to gdb_init. The static breakpoint
is defined as a C pre-processor macro (GDB_TRAP). The program will initially halt at
the location of this breakpoint.

1 . . .
2 GDB_TRAP;
3 . . .

B.4.4 Compile the Program with the GDB Stub

Compile the program with the static library libgdbstub.a. The necessary header files
are located at gdb-stub/include. Make sure to compile with debug symbols. It is
recommended to compile without optimizations.
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B.5 Starting a Debugging Session

1. Start the program on SHMAC using shmac_program and shmac_reset.

2. Launch GDB on the host machine. Type the following commands to the GDB
CLI to attach to the program running on SHMAC:

1 s e t remotetimeout 12
2 s e t remote trace−s tatus−packet 0
3 s e t remote query−attached−packet 0
4 s e t can−use−hw−watchpoints 0
5 f i l e [ path to program e l f f i l e ]
6 t a r g e t remote [ shmac host ip ] : [ shmac host port ]

3. GDB is now ready to debug the program.

B.6 Using the Debugger

B.6.1 Interrupting the Program

You may halt the program by pressing Ctrl+C in the GDB CLI.

B.6.2 Static Breakpoints

You may insert static breakpoints to the program as described in subsection B.4.3.

B.6.3 Disabling the Debugger

You may disable the debugger by compiling the stub (libgdbstub.a) with the flag -D
DISABLE_DEBUGGER. Another way of disabling the debugger is to disable each core
individually in the gdb_config struct, as shown in subsection B.4.2.

B.6.4 Printing the SPSR Register

You can print the content of the SPSR register with the following command:

1 p $ fps





AppendixCUser guide: Debugging Barrelfish
on SHMAC

Prerequisites:

– A GCC toolchain for ARMv3. The repository contains a guide for setting up
the toolchain required for compiling Barrelfish on SHMAC.

– An installation of GDB 7.7 for ARM as described in section B.1.

– A Ser2net installation on the development system as decribed in section B.2

– The source code of the Barrelfish for SHMAC.

C.1 Enabling and Disabling Debugging

The debugger can be disabled by defining the pre-processor macro DISABLE_DEBUGGER
in the file kernel/include/arch/shmac/gdb/enable.h:

1 #pragma once
2 #de f i n e DISABLE_DEBUGGER

C.2 Compiling Barrelfish

Create directory where to build Barrelfish and navigate into it. Then execute the
following commands:

1 [ b a r r e l f i s h −s r c ] / hake/hake . sh −s [ b a r r e l f i s h −s r c ] −a shmac
2 make

81
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C.3 Starting a Debugging Session

1. Connect to the host controller using ssh and upload the following files to a
directory:

– shmac/shmacfish/header_segment.bin
– shmac/shmacfish/load_barrelfish.sh
– shmac/shmacfish/modules_segment.bin
– shmac/kernel/cpu.bin

The paths are relative to the Barrelfish build directory.

2. Start Barrelfish using the bootloader script load_barrelfish.sh.

3. Launch GDB on the host machine. Type the following commands to the GDB
CLI to attach to Barrelfish:

1 s e t remotetimeout 30
2 s e t remote trace−s tatus−packet 0
3 s e t can−use−hw−watchpoints 0
4 s e t stop−on−s o l i b −events 1
5 f i l e [ b a r r e l f i s h −bu i ld ] / shmac/ ke rne l /cpu_symbols . e l f
6 t a r g e t extended−remote [ shmac host ip ] : [ port ]

With the ser2net setup described in section B.2, core 0 is debugged from port
4243, core 1 from 4244, etc.

C.4 Using the Debugger

C.4.1 Listing Available Processes

Use the following GDB command to list all available processes in Barrelfish:

1 monitor p r o c e s s e s

The processes are listed with name and process id.

C.4.2 Attaching to a Process

Use the standard attach command in GDB to attach to a process. The required
process id is a positive integer. Use the command described in subsection C.4.1 to
determine the process id. The process id is determined by a global counter. Each
time a process is created, the counter is incremented, and the resulting value is used
as the process id for the newly created process. You may use this property to attach
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to a process that will be created in future. The attach command will in that case
not return until the process has been created.
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