

1

Exploring Instruction Level Energy Efficiency
Terje Runde and Stian Hvatum

TDT4501 - Computer Science, Specialization Project
Department of Computer Science, NTNU

{terjr,hvatum}@stud.ntnu.no

Abstract—Modern microprocessors are limited by power den-
sity and new designs must emphasize energy efficiency to become
successful. Building energy efficient hardware requires better
understanding of how the ISA and its implementation relates
to energy efficiency. This paper investigates the instruction level
energy efficiency of an ARM Cortex-A9 and presents current
drain and pipeline utilization for different instructions. These
numbers reveal information about how instructions are executed
and how energy efficient their implementations are in this
proprietary architecture.

The testbench used in the experiments relies on accurate en-
ergy measurements. This is achieved by measuring voltage drop
over a shunt resistor placed between the CPU core voltage supply
pins and an external power supply. Memory usage is avoided
by exploiting instruction buffers and omitting loads/stores. This
renders the memory hierarchy unused, isolating the core as much
as possible.

The results shows that the ARM ISA is well balanced. Com-
monly used instructions such as add, sub and mul seems to be
energy efficient. Unfortunately, the ISA suffers from an inefficient
handling of conditional execution and status flag updates. Such
instructions seems to force synchronization, which then leads
to inefficient utilization of the otherwise computationally strong
core.

Index Terms—Energy efficiency, microprocessor chips, perfor-
mance analysis

I. INTRODUCTION

MAKING processors burn less energy while at the same
time increasing performance is currently one of the

greatest challenges hardware designers are facing. Perfor-
mance alone can be improved by cramming more components
onto integrated circuits [1] utilizing new process technologies.
However, due to the end of Dennard scaling [2], power density
on chip will increase linearly with transistor count. Computer
designers are forced to employ novel techniques mitigating
this issue, such as shutting down parts of the chip [3] and
designing specialized hardware.

As processors grow more sophisticated, it becomes harder
to reason about their energy efficiency. Even RISC processors,
which traditionally were designed to be simple[4], have seen
a steep increase in complexity during the last decade[5].
Features that previously only existed in CISC processors are
now entering the RISC domain; more complex operations
are done per clock cycle. Current RISC designs may have
deep pipelines, increased component complexity, advanced
branch predictor units and a high degree of instruction level
parallelism. They include features that aims to reduce energy
consumption and increase throughput in return for added
complexity. Moreover, processors are increasingly designed

to integrate seamlessly with external components such as
accelerators and the memory system.

The need for energy efficient processors is increasing. To
better understand how execution of different instructions con-
tribute to energy consumption we propose a method to measure
energy efficiency at the instruction level of a processor. Being
able to model and monitor energy consumption has recently
got the industry’s attention: Semiconductor companies are
making software and hardware targeting the embedded market
providing a monitor for energy consumption on-chip, giving
application engineers the opportunity to optimize for energy.

With the emergence of performance counters, it is now
possible to detect how different pipeline stages affects the
overall power consumption. Previous research correlates power
drain seen from the wall outlet with performance counters on
the CPU[6]–[8]. Others look at energy usage under different
workloads[9].

In this paper, we analyze the instruction level energy
efficiency of a modern RISC architecture. We isolate as
many architecture components as possible by correlating per-
formance counters with observed current drain for specific
instructions. We also show that it is feasible to get a per
instruction energy overview of an existing architecture by
understanding the hardware and writing benchmark programs.
We look at simple single-cycle instructions as well as the
most complex instructions using multiple cycles on our target
processor. When each relevant instruction has been measured,
we compare their normalized energy consumption and discuss
properties of different instructions.

This work is motivated by and related to the SHMAC
project[10]–[12] at NTNU. The goal of the SHMAC project is
to build an energy efficient heterogeneous many-core computer
architecture: multiple processing cores with different capabil-
ities share a single ISA and can be put on the same die to
create a processor tailored for a specific application. Exploring
instruction level energy efficiency gives us a better view
on how different ISA implementations perform at different
tasks[13]. This information can be useful in the design phase
of novel computer architectures such as SHMAC.

Another use for this kind of information is that compilers
can optimize code for energy efficiency and not only perfor-
mance. Further, it can enable simulators to estimate energy
consumption of a given program and even compare energy
efficiency on different cores, as shown to be effective in [13].

2

1.3V

ODROID-X2

ARM cores

5.0V

12mΩ

V core Vsys

Fig. 1: Experiment setup

Manufacturer Hardkernel
Platform ODROID-X2
SoC Samsung Exynos 4412 ”Prime”
CPU Core ARM Cortex-A9 (r3p0)
Number of Cores 4
Clock Freq. 1.7 GHz
Core Voltage 1.3V
OS Debian GNU/Linux Testing (“jessie”)
Kernel Linux 3.8 (custom)
Voltmeter Agilent 34410A
Power Supply Agilent E3631A
Shunt Resistor Thermovolt AB 5697 0002 12mΩ

TABLE I: System specifications

II. METHODOLOGY

A. Test Environment

In our experiments, we are using the ODROID-X2 [14]
developer platform, which has an Exynos 4412 ”Prime”
System-on-Chip with four ARM Cortex-A9 processor cores.
We disable three of the cores through sysfs, leaving only one
core available to the scheduler. The processor runs at a fixed
frequency of 1.7 GHz. The test environment is sketched in
Figure 1 and the details are summarized in Table I.

The Cortex-A9 is a 32-bit out-of-order dual-issue specula-
tive RISC processor, and even though its primary use is in
mobile and embedded applications, it shares many features
with current desktop processors [15], [16]. It can issue two
instructions per cycle and branches its pipeline into four lanes,
as depicted in Figure 2. Most instructions can execute in
either of the two general ALU’s, but multiply instructions must
execute in the ALU with a hardware multiplier. The processor
core also has separate units for floating point operations (the
NEON co-processor) and address manipulation, but these will
not be further considered in this paper.

In general, energy consumption of a processor varies with
respect to the workload; the harder it has to work, the
more energy it uses. In this paper, we seek to achieve the
highest possible ALU throughput the processor can offer. To
accomplish this, we are required to gain knowledge of the
pipeline and other components within the CPU.

Official documentation of the pipeline structure is limited to
the “Cortex-A9 Technical Reference Manual” [18] and “The
ARM Cortex-A9 Processors” whitepaper [17]. However, by

Fig. 2: ARM Cortex-A9 pipeline and peripherals[17]

running some architectural experiments and consulting the
performance counters we are able to infer some details.

B. Architectural Experiments

The A9 processor has 58 distinct events1 that each can
be mapped to one of six generic event counters in the
Performance Monitor Unit (i.e. only six generic events can be
tracked simultaneously). It also has a separate cycle counter.
By comparing execution unit counters for the two ALUs
and the cycle counter, we obtain detailed statistics about the
pipeline activity. For example, we run add instructions with
and without hazards, and verify that the core is able to share
the work between execution units in the latter case. Note
that these performance counters are approximate due to the
speculative core, and only serves as a guideline and sanity
check for our assumptions.

Using performance counters as above, we are able to
confirm a feature on the A9 processor that is very vaguely
documented; fast-loop mode. As the name suggests, this
feature enables rapid execution of small loops. It does so by
fetching instructions from the instruction cache only at the
first loop iteration, effectively voiding time and energy spent
on instruction lookups between iterations. However, which
loops that falls into this category is not documented, but by
using performance counters we are able to determine this with
confidence. We disable the L1 cache, penalizing runs that do
not fit in fast-loop, making it easy to distinguish between
runs within and outside fast-loop. We find that for a loop
to be executed in fast-loop it must hold one subtle property:
the loop in its entirety must fit within the first 60 bytes of
a 64 byte cache line. Consequently, the loop body must be
13 instructions or less (15 including sub and bne). Loops
without this property will cause code to be executed outside
fast-loop and get a significant decrease in performance.

Furthermore, executing code within fast-loop limits the
number of cache mispredicts to two, independent of the
iteration count. We confirm this by looking at the cache
mispredict performance counter.

1A complete overview can be seen in table A.18 in [18]

3

label :
instruction
. . . ; repeats 13X
instruction
subs
bne label

Fig. 3: Instruction loop

C. Benchmarks

As a first approximation, the benchmark programs consists
of an infinite series of identical instructions. Since the A9
core runs at a fixed frequency and we are providing a fixed
core voltage, so energy usage per instruction can be deduced
from the continuous power drain during instruction runs. In
general, the power drain related to a particular instruction can
be calculated as following:

Pinstruction = Iinstruction · Vcore (1)

The fixed core clock cycle gives a fixed amount of time per
cycle. Thus, we use clock cycles as our base time unit. Energy
is then given as

Einstruction = Pinstruction · cycles (2)

We are unable to measure core power directly with our
equipment. However, voltage and frequency are assumed
constant, which gives a linear relation between current and
consumed energy. Instead of providing numbers in Joule per
instruction, we measure the current drain and multiply with
the number of cycles the instruction lies within any of the
processors functional units. This gives us the unit of Ampere-
cycles, which in our environment maps directly to energy. We
neglect the voltage drop over the shunt resistor, which is in
the order of a few mV.

This simple setup does not take the memory system into
account; we are undoubtedly not able to feed the processor
instructions at no cost in terms of access speed and – more
importantly – memory system energy usage. Thus, we enhance
our setup by running all benchmark code within fast-loop. To
explicitly feed the processor instructions without the overhead
of interrupts, we write Linux kernel modules that once in-
serted, execute a loop similar to the one shown in Figure 3.
Note that the subs and bne are used to generate a loop body
small enough to fit in fast-loop, and at the same time allows
us to terminate the program after some number of iterations.

It is stated in [18] that branching to immediate locations
does not use clock cycles. Our micro-benchmarks branches to
immediate locations, but it does so conditionally. We assume
that the calculation of the branch condition, the subs, takes its
normal execution time, while the following branch instruction
is invisible.

D. Power Measurements

To measure energy consumption, we use an Agilent 34410A
multimeter[19] to sense the voltage drop over a shunt resistor,

set up as shown in Figure 1. The multimeter is configured to
sample at its highest sampling rate of 10 kHz. This yields
one sample every 170,000 instructions with an error of at
most 1mV . It is obvious that we are unable to observe inter-
cycle fluctuations with this equipment, but as we run the same
instruction practically indefinitely we extract the average. The
loop for each instruction runs for about 20 seconds and we
gather 50,000 samples (over a period of 5 seconds) in the
middle of this loop. Observational errors are accounted for
by running the power measurement loop many times for each
instruction. We also sleep 30 seconds in between runs to dilute
the effect of temperature variations. Running over the entire
testbench takes about 100 minutes and we average the medians
for each instruction run to get a single value.

We separate power consumption on the ARM cores and
the development board by modifying the ODROID-X2 and
providing a separate power supply for the A9 cores. They get
powered by an external power supply giving 1.3V DC, while
the rest of the board is powered from a another power supply
at 5.0V , as depicted in Figure 1. We cannot verify that CPU
cores sit alone on the 1.3V power rail, but we observe a strong
degree of correlation between core activity and Vcore power
drain.

Certain instructions use more than one cycle to complete
their work, so the energy usage has to be normalized. An
instruction that occupies the pipeline for two cycles is believed
to use approximately twice as much energy. By normalizing,
we can convert point-in-time current drain in terms of Amperes
to energy per instruction in Ampere-cycles.

E. Pitfalls

We measure the current drain of different instructions sep-
arately, so we need to fix as many parameters as possible. We
must acknowledge that some factors affects power consump-
tion and produces noise in our data.

One obvious such factor is the chip temperature: it is known
that power consumption increases at higher core temperatures.
We explore the boundaries by physically applying cooling
spray and notice that our measurements on average gets 4%
higher with a temperature increase from 9◦C to 63◦C . The
mul instruction had the greatest leap and used 7% more energy
at 63◦C. In our experiments, only one of the four available
cores are used. Stressing a single core over time did not
increase temperature by more than 7◦C (from idle at 47◦C to
54◦C at load) and reached an equilibrium where temperature
remained constant. Assuming that it is generally true that a
single core cannot heat the entire SoC significantly, and that
the increase in power consumption is at most 10% over 50◦C,
we get

Pinc = Porig · Tinc ·
0.10

50
= Porig · Tinc · 0.002 (3)

Assuming the trend is close to linear, output will increase
by 0.2% per ◦C increased. Also, we start our measurements
several seconds after the benchmarks, giving the core plenty of
time to reach work temperature. For our purpose, the time used
to reach work temperature was pretty much instant. Note that

4

this temperature logging was done with a different kernel as it
required support for Dynamic Voltage and Frequency Scaling
(DVFS), which we disabled in the test setup in order to fix
the clock frequency.

Energy consumption is almost certainly affected by the
amount of bit flipping within the core. In all the tests, the
instruction arguments are static. This means that the results
could be different if we changed the arguments. To mitigate
this, we used as equal arguments as possible. Still, different
instructions contain and use arguments differently, so we
cannot guarantee complete fairness between instructions.

We are running Linux as the base environment for our
tests, which makes it simpler to run our micro-benchmarks.
However, running an entire operating system beneath our
benchmark programs implies that there is much going on
where we have no direct control. To mitigate the artifacts
originating from the operating system, we disable all the
maskable interrupts and run our benchmark programs entirely
uninterrupted as a kernel module.

As explained in section subsection II-B, we utilize the fast-
loop mode of the processor to avoid memory access latency.
We disable the L1 cache to easier detect when we are outside
the fast-loop mode, and thus we are certain that there is no
memory access going on.

III. RESULTS

A. Introduction

In this section we present data gathered from our experi-
ments on the ARM Cortex-A9. A brief description of each in-
struction can be found in the ”ARM and Thumb-2 Instruction
Set Quick Reference Card”[20]. First, we discuss performance
counters from experimental testbench runs. Together with the
sparse official documentation, it enables us to make some
assumptions about how different instructions are executed
in the processor. We then discuss the results from the per
instruction energy analysis.

B. Decomposing the Core

Instructions executed in the processor will utilize a subset
of all the available core components. By combining the
components depicted in Figure 2 with the performance counter
data listed in Table II and Table III, we can deduce which
instructions that trigger what parts. We can also see how
frequently each part of the pipeline is used, as a fraction of
cycle count and the given component event counters.

All results in Table II and Table III are gathered by
running each instruction included in our experiments using
the template shown in Figure 3. The cycle count (Cycles) tells
us how long time, in terms of clock cycles, it took for the
processor to execute the 252 · (13 + 2) = 3780 instructions.
The loop has room for 13 test instructions, while the last 2 is
the loop head consisting of subs and bne. Main Ex. is the
number of cycles where the main execution pipeline is active,
labeled ALU/MUL in Figure 2. Second Ex. is for the second
execution pipeline, labeled ALU. All instructions in our test
bench have a correct branch prediction count of 251 (Pred.).
This is most likely because the first and the last iteration of

Instr. Cycles Main
Ex.

Second
Ex. Pred. Mis

pred.
No

disp.
Issue

Empty
adc 1976 1762 1758 251 2 89 89
adcs 3599 1762 1756 251 2 1693 1690
add 1976 1762 1758 251 2 89 89
addeq 6594 1635 1883 251 2 4709 4709
addne 3349 1762 1758 251 2 1463 1463
adds 3598 1761 1757 251 2 1712 1712
and 1976 1762 1758 251 2 89 89
ands 3599 1762 1756 251 2 1693 1690
asr 1976 1762 1758 251 2 89 89
asrs 6361 2135 1385 251 2 2968 204
bic 1976 1762 1758 251 2 89 89
bics 3599 1762 1756 251 2 1693 1690
clz 2104 1824 1699 251 2 151 88
cmn 3599 1761 1757 251 2 1713 1713
cmp 3598 1761 1757 251 2 1712 1712
cpsid 14627 3516 1 251 2 11110 11110
eor 1976 1762 1758 251 2 89 89
eors 3600 1762 1756 251 2 1694 1691
lsl 1976 1762 1758 251 2 89 89
lsls 6361 2135 1385 251 2 2968 204
lsr 1976 1762 1758 251 2 89 89
lsrs 6362 2135 1385 251 2 2969 205
mov 1976 1762 1758 251 2 89 89
movs 3599 1762 1756 251 2 1693 1690
mvn 1976 1762 1758 251 2 89 89
mvns 3600 1762 1756 251 2 1694 1691
nop 3604 3268 251 251 2 84 84
orr 1976 1762 1758 251 2 89 89
orrs 3599 1762 1756 251 2 1693 1690
pkhbt 1976 1762 1758 251 2 89 89
pkhtb 1976 1762 1758 251 2 89 89
qadd 3598 1761 1757 251 2 1712 1712
qdadd 3600 1885 1633 251 2 1712 1588
qdsub 3600 1885 1633 251 2 1712 1588
qsub 3598 1761 1757 251 2 1712 1712
rev16 2104 1824 1699 251 2 151 88
rev 2104 1824 1699 251 2 151 88
revsh 2105 1824 1699 251 2 152 89
ror 1976 1762 1758 251 2 89 89
rors 6361 2135 1385 251 2 2968 204
rrx 1976 1762 1758 251 2 89 89
rrxs 3599 1762 1756 251 2 1693 1690
rsb 1977 1762 1758 251 2 90 90
rsbs 3598 1761 1757 251 2 1712 1712
rsc 1976 1762 1758 251 2 89 89
rscs 3599 1762 1756 251 2 1693 1690
sbc 1976 1762 1758 251 2 89 89
sbcs 3599 1762 1756 251 2 1693 1690
sel 2100 1761 1758 251 2 337 89
setend 14627 3516 1 251 2 11110 11110
ssat16 3598 1761 1757 251 2 1712 1712
ssat 3598 1761 1757 251 2 1712 1712
sub 1977 1762 1758 251 2 90 90
subs 3598 1761 1757 251 2 1712 1712
sxtab16 6443 3021 3761 251 2 1832 77
sxtab 4481 2932 2344 251 2 666 81
sxtah 6443 3021 3761 251 2 1832 77
sxtb16 2104 1824 1699 251 2 151 88
sxtb 2104 1824 1699 251 2 151 88
sxth 2104 1824 1699 251 2 151 88
teq 3599 1762 1756 251 2 1693 1690
tst 3600 1762 1756 251 2 1694 1691
usat16 3598 1761 1757 251 2 1712 1712
usat 3598 1761 1757 251 2 1712 1712
uxtab16 6443 3021 3761 251 2 1832 77
uxtab 6443 3021 3761 251 2 1832 77
uxtah 6443 3021 3761 251 2 1832 77
uxtb16 2105 1824 1699 251 2 152 89
uxtb 2104 1824 1699 251 2 151 88
uxth 2104 1824 1699 251 2 151 88

TABLE II: Performance counter data from 252 iterations of
all tested instructions, excluding multiply

5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

b
a

s
e

n
o

p

c
m

p

c
m

n

ro
rs

ls
rs

ls
ls

a
s
rs

te
q

ts
t

s
u

b
s

a
d

d
s

rs
b

s

s
s
a

t1
6

u
s
a

t1
6

s
b

c
s

m
o

v
s

a
n

d
s

o
rr

s

b
ic

s

e
o

rs

rr
x
s

a
d

c
s

m
v
n

s

rs
c
s

s
u

b

a
d

d

a
n

d

b
ic

s
b

c

e
o

r

a
d

c

rs
b

o
rr

p
k
h

tb

rs
c

rr
x

m
o

v

ls
r

ro
r

ls
l

a
s
r

p
k
h

b
t

m
v
n

re
v
s
h

re
v
1

6

c
lz

re
v

s
e

l

A
m

p
e

re
 ⋅
 c

y
c
le

s

Fig. 4: Energy profile of single-cycle instructions, excluding multiply

the loop is mispredicted (Mis pred.). No disp. is the number of
cycles where there the processor was unable to dispatch any
instructions to any execution lane. Issue Empty is the number
of cycles where there was no instructions in the instruction
queue. Note that we can see how many cycles the processor
is stalling by looking at the No disp. and the Issue Empty
counters. When the No disp. number is higher than Issue
Empty, it means that the processor had to stall due to hazards
or intended flushing (e.g. setend flushes the pipeline as all
further issued instructions must follow the new endianess). In
special cases, such as our baseline instruction setend, we
see that the amount of No disp. is very high, which again
means that the CPU is mostly stalling. It seems to be a strong
relation between low power usage and high stall numbers.

C. Instruction Level Energy Efficiency

We distinguish between single-cycle instructions and multi-
cycle instructions because they behave differently in and
around the execution pipelines. Instructions using only one
cycle are fairly easy to reason about as there is no need
to normalize energy consumption with respect to the cycle
count (i.e. time). However, it is important to also recognize
CPU capabilities such as dual issuing which are present on
the processor: most single-cycle ALU instructions execute
pairwise in parallel – one in each ALU – giving a peak
performance of two instructions per clock cycle. Multi-cycle
instructions needs to be carefully considered. Typically, multi-
cycle instructions divide work which can be done in a subset
of the available ALUs (e.g. one) over several cycles, and
can therefore introduce bottlenecks in the execution path.
This again makes the processor do less, lowering the average
current drain. For all these reasons, we partition the measured
data in two data sets; one for single-cycle instructions and one
for multi-cycle instructions.

Figure 4, 6, 7 and 5 displays our results from measuring
current drain for each instruction. The instructions is sorted

in increasing order by Ampere cycles. Green bars represents
single-cycle instructions, light blue are two-cycle instructions,
while dark blue represents three-cycle instructions. The red
bar to the left on each graph shows the baseline for current
measurement. The baseline is an alias for the least power-
consuming instruction we could find, which is the setend-
instruction. This instruction sets the endianness for all memory
operations to either big or little endian [21], and has a current
drain of only 161.3mA when executed repeatedly. This is
expected because it would force pipelines to be empty most
of the time.

During measurements, Vcore was kept stable at 1.3V ±
50mV , well within the specifications of the processor. The
pipelines were kept as full as possible, avoiding hazards and
instruction loading. This implies that instructions utilizing
large parts of the processor will most likely be more energy
consuming than those using only few components. This state-
ment is supported by the fact that the setend-instruction
has little pipeline activity at the same time as it has a low
continuous current drain.

D. Single-Cycle Instructions

On our target CPU, 70 of the 115 tested instructions2 use a
single cycle, while the remaining 45 uses 2 or 3. Nearly half
of the instructions are multiply instructions, so these will be
discussed separately. Figure 4 displays a comparison of the 50
non-multiply single-cycle instructions.

The results in Figure 4 shows that the ordinary single-cycle
instructions do not differ very much. An interesting result is
how instructions bearing the s-flag seems to have a lower
consumption than their non-s companion. These instructions
updates status flags and will likely force in-order execution.
According to the performance counters in Table II there is
reason to believe that the processor has to stall one cycle

2119 including conditionals

6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

b
a
s
e

a
d
d
e
q

a
d
d
s

a
d
d
n
e

a
d
d

A
m

p
e
re

 ⋅
 c

y
c
le

s

Fig. 5: Energy profile showing conditional execution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

b
a

s
e

q
s
u

b

q
a

d
d

u
x
th

u
x
tb

s
x
th

u
x
tb

1
6

s
x
tb

1
6

s
x
tb

u
s
a

t

s
s
a

t

u
x
ta

b

u
x
ta

b
1

6

s
x
ta

b
1

6

u
x
ta

h

q
d

a
d

d

q
d

s
u

b

s
x
ta

h

s
x
ta

b

A
m

p
e

re
 ⋅
 c

y
c
le

s

Fig. 6: Energy profile of multi-cycle instructions, excluding
multiply.

between each issue. From our results, it seems that this
saves energy. However, the instructions needs longer time to
complete, which is indeed less energy efficient.

The results from the conditional-executed instructions are
also subject to forced in-order execution. We can see from
Figure 5 how variations of add compares. In the figured test,
addne is committed every time, while addeq never has its
results committed. It is interesting to see that even though
addeq is never committed, it uses almost as much power as
the other adds. By looking at Table II we see that addeq and
addne introduces a lot of both No disp. and Issue Empty. We
do not know exactly why, but it is reasonable to believe that
one must assure that the previous instruction did not alter the
status flags before the results are committed or discarded. In an
in-order single-issue processor, conditional execution provides
a framework to avoid unnecessary jumps, while in an out-of-
order core, conditional execution is most likely much harder
to implement. Also note that this test is very synthetic and
the ISA is likely to be unoptimized for such activity. In a real
world workload, it is possible that the required synchronization
is hidden.

Further, Figure 4 shows that the nop-instruction has a rather
low power consumption. This is a bit misleading, as the nop-
instruction assembles to mov r0, r0, having both read-
after-write and write-after-write hazard on itself. This makes
the nop-instruction serialize itself, and it is hard to fill the
pipeline with this instruction. Knowing this, it makes sense
that nop works in this way, as it is often used to fill out clock
cycles with non-destructive work. It would not make sense to
optimize the nop instruction, as it then would fail to complete
it’s goal as a space-and-time filler.

Generally, when accounting for the number of cycles used
by the different instructions, we see that the least current

demanding single cycle instructions are add and sub at
216.2mA, while rev and sel consumes slightly more with
a drain of 225.4mA. The measurements have a standard devi-
ation of 4mA and 3.7mA, respectively. Overall, the standard
deviation ranges from 2mA to 7mA, which we consider to be
more than good enough.

E. Multi-Cycle Instructions

45 of the instructions that was compared used 2 or 3
cycles to complete their results. 18 of these instructions are
non-multiply. Non-multiply instruction power measurements
are displayed in Figure 6. A selection of the performance
counter results are shown in Table II. We see that the unsigned
extend instructions(ux*) are slightly cheaper than signed
extend (sx*). This might indicate that some hardware is left
idle when not needing sign extension. The instructions are
normalized according to their stated cycle count in the table
B-5 in [18].

F. Multiply

The ARM Cortex-A9 contains a single multiply pipeline,
but has two general ALUsFigure 2. The multiply instructions
are queued up waiting to execute through the same pipeline.
This implies that multiply instructions would have a lower
continuous power drain because it does less useful work
and will seemingly use less energy compared to instructions
utilizing both pipelines at its full potential. We have not
compensated for this matter other than multiplying the power
drain with the number of cycles used to finish one multiply
instruction. It is unknown how the different multiply instruc-
tions utilize the pipeline(s). As we can see from Table III,
there is reason to believe that at least some of the multiply-
accumulate instructions utilize both pipelines[22]. This means
that some instructions are able to utilize more hardware while
still queuing up through the multiply-enabled main pipeline.

By looking at Figure 7 we see that the single-cycle multiply
instructions are quite similar, but those using two or three
cycles are more interesting. We do not know why the results
are as stated, as most of the internal architecture are not
available for the public. According to Table B-5 in [18], some
multiply instructions uses more time than others before the
result is available.

From the performance counters in Table III, we see that
instructions are treated differently by the architecture. We
have not considered all the tested instructions in detail, but
it is evident to us that there is a strong negative correlation
between performance counters (No Disp. and Issue Empty) and
processor power drain. The results in Figure 7 shows power
drain in Amperes multiplied by the cycle counts. The values
are not normalized according to the performance counter
values.

G. Evaluation

Each instruction was measured 41 times. We found small
variations in power consumption between testbench runs, but
all results shows the same trend. As stated in subsection II-E,

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

b
a

s
e

s
m

u
lt
b

s
m

u
lb

b

s
m

u
lw

b

s
m

u
lt
t

s
m

u
s
d

x

s
m

u
a

d
x

s
m

u
s
d

s
m

u
a

d

s
m

u
lb

t

s
m

la
tt

s
m

la
b

b

s
m

u
lw

t

s
m

la
b

t

s
m

la
w

b

s
m

la
tb

s
m

la
w

t

s
m

la
d

x

s
m

la
d

s
m

ls
d

x

s
m

ls
d

m
u

ls

m
la

s

m
u

l

s
m

m
u

lr

s
m

m
u

l

s
m

m
la

m
la

s
m

m
ls

s
m

la
lt
b

s
m

la
lt
t

s
m

m
ls

r

s
m

la
lb

b

s
m

la
ld

x

s
m

la
ld

s
m

m
la

r

s
m

ls
ld

x

s
m

ls
ld

s
m

la
lb

t

u
m

u
lls

s
m

u
lls

u
m

la
ls

s
m

la
ls

u
m

u
ll

s
m

u
ll

u
m

a
a

l

u
m

la
l

s
m

la
l

A
m

p
e

re
 ⋅
 c

y
c
le

s

Fig. 7: Energy profile of multiply instructions.

 20

 22

 24

 26

 28

 30

 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run

Ampere X 100 Heatsink temp. (C) Ambient temp. (C)

Fig. 8: Changes in heat and energy consumption for add at
different runs together with heatsink and ambient temperature

the power consumption is not easily pushed by temperature.
Figure 8 shows how the change in power consumption of the
instruction add over different runs combined with the ambient
temperature and the heatsink temperature. According to these
results, we assume that the change in power consumption was
not due to heat. We did not log temperature for all test runs,
but assume that the results from Figure 8 holds, and that this
small change in temperature is at least not solely responsible
for variations in the current drain measurements.

IV. CONCLUSION

We have explored the inner workings of the ARM Cortex-
A9 processor core and measured energy consumptions for
various instructions. We found that the energy consumption
for simple single-cycle instructions are rather equal. This RISC
processor also includes a range of more advanced instructions
that needs more than a single cycle to complete. We have
looked into all multi-cycle instructions related to multiply
and multiply-accumulate, along with a few register level data
movement instructions.

Our main observation is that those instructions that are
unable to fully fill the pipelines comes out as more energy
efficient on the current readings. This is most likely because

near empty pipeline consume less energy than a full pipeline.
We must emphasize that these instructions are not more energy
efficient than their counterparts, only slower in producing their
intended results. Apart from this, the numbers tell that the most
efficient instructions are sub and add, followed by common
logical functions. This is expected as all these instruction are
both easily implemented and commonly used.

It is also seen that the instructions executing conditionally
and those settings status flags are subject to a less efficient
instruction dispatching. We assume that synchronization is
needed for this kind of instructions. Conditional executing
is most likely better idea in a simple in-order CPU than
in advanced out-of-order CPU cores. We also notice that
instructions that should not be committed is issued, executed
and then discarded.

For the multi-cycle instructions, we observed that even
though the processor datasheet[18] states a number of cycles
for each instruction to complete its result, different pipelining
schemes apply to the different instructions. Multiply can
only be done in the main execution unit, while accumulate
is seemingly executed in the second pipeline. This means
that even though mul introduces queueing for access to the
main pipeline, multiply-accumulate (mla), is equally fast, see
Table III.

A. Further Work

Our results comes from completely synthetic benchmarks,
and we do not yet know how this would differ from real
world workloads. The synthetic tests fill the pipeline with
equal instructions, while common workloads would at least
contain a few different instructions simultaneously.

The results was normalized according to numbers found in
the CPU datasheet. We believe that more informative results
would emerge if the performance counter data was used to
adjust the measured current drain, rather than number of cycles
used. This is after all a multiple-issue pipelined processor core.

8

Instr. Cycles Main
Ex.

Second
Ex. Pred. Mis

pred.
No

disp.
Issue

Empty
mla 6608 6530 4895 251 2 76 76
mlas 15639 6529 12548 251 2 8857 73
mul 6602 6525 252 251 2 3336 76
muls 15617 6526 252 251 2 12100 61
smlabb 3604 3518 3265 251 2 83 83
smlabt 3604 3518 3265 251 2 83 83
smlad 3604 3518 3265 251 2 83 83
smladx 3604 3518 3265 251 2 83 83
smlal 7106 7028 5020 251 2 575 76
smlalbb 7102 7021 5019 251 2 3582 76
smlalbt 7102 7021 5019 251 2 3582 76
smlald 7102 7021 5019 251 2 3582 76
smlaldx 7102 7021 5019 251 2 3582 76
smlals 15888 6529 12548 251 2 9106 73
smlaltb 7102 7021 5019 251 2 3582 76
smlaltt 7102 7021 5019 251 2 3582 76
smlatb 3604 3518 3265 251 2 83 83
smlatt 3604 3518 3265 251 2 83 83
smlawb 3604 3518 3265 251 2 83 83
smlawt 3604 3518 3265 251 2 83 83
smlsd 3604 3518 3265 251 2 83 83
smlsdx 3604 3518 3265 251 2 83 83
smlsld 7102 7021 5019 251 2 3582 76
smlsldx 7102 7021 5019 251 2 3582 76
smmla 6608 6530 4895 251 2 76 76
smmlar 6608 6530 4895 251 2 76 76
smmls 6608 6530 4895 251 2 76 76
smmlsr 6609 6530 4895 251 2 77 77
smmul 6602 6525 252 251 2 3336 76
smmulr 6603 6525 252 251 2 3337 77
smuad 3602 3266 252 251 2 334 334
smuadx 3602 3266 252 251 2 334 334
smulbb 3353 3267 252 251 2 84 84
smulbt 3353 3267 252 251 2 84 84
smull 6857 6779 6774 251 2 326 76
smulls 15637 6528 15558 251 2 8856 72
smultb 3353 3267 252 251 2 84 84
smultt 3353 3267 252 251 2 84 84
smulwb 3353 3267 252 251 2 84 84
smulwt 3353 3267 252 251 2 84 84
smusd 3602 3266 252 251 2 334 334
smusdx 3602 3266 252 251 2 334 334
umaal 7106 7028 5020 251 2 575 76
umlal 7106 7028 5020 251 2 575 76
umlals 15888 6529 12548 251 2 9106 73
umull 6857 6779 6774 251 2 326 76
umulls 15637 6528 15558 251 2 8856 72

TABLE III: Performance counter data from 252 iterations of
all tested multiply instructions.

Also, we have not yet dived into how instruction arguments
affects the energy usage on modern processors. We believe that
instruction patterns that causes a high degree of bit toggling
would yield higher energy usage, due to the amount of energy
used to charge and release the transistors. A problem rising is
the fact that we do not know how the processor schedules or
distributes the different instructions, thus one has to be very
careful when writing the benchmarks.

When selecting instructions for our benchmarks, we have
omitted the set of floating-point instructions. This is because
in the ARM Cortex-A9, the floating point unit (NEON) is
considered a co-processor[18], and thus out of our scope.
Investigating the energy efficiency of co-processors versus
processors that embed such functionality would add value to
our results.

There are also room for improvements regarding the experi-

mental setup. Ultimately, one would like to be able to measure
each instruction individually, but according to the Nyquist-
Shannon theorem[23], this would require a sampling rate of
at least 3.4 GHz. We could not simply go slower on the clock,
as a clock frequency reduction will affect the energy efficiency,
possibly in the negative direction[24].

Compilers, simulators and synthesis tools would benefit
from this kind of information, and one could possibly generate
output that is more energy optimized than currently available.

REFERENCES

[1] G. E. Moore et al., “Cramming more components onto integrated
circuits,” 1965.

[2] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-
S. P. Wong, “Device scaling limits of Si MOSFETs and their application
dependencies,” Proceedings of the IEEE, vol. 89, no. 3, pp. 259–288,
2001.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Computer
Architecture (ISCA), 2011 38th Annual International Symposium on.
IEEE, 2011, pp. 365–376.

[4] S. P. Dandamudi, Guide to RISC Processors for Programmers and
Engineers. Springer, 2005, ch. 3.

[5] A.-E. Bogen, “Risc versus cisc,” http://alfbogen.com/2013/06/16/
risc-versus-cisc/.

[6] S. A. M. Karan Singh, Major Bhadauria, “Real Time Power Estimation
and Thread Scheduling via Performance Counters,” May 2009.

[7] R. B. et.al., “Decomposable and responsive power models for multi-core
processors using performance counters,” June 2010.

[8] Bircher and John, “Complete system power estimation using processor
performance events,” April 2012.

[9] A. Carroll and G. Heiser, “An analysis of power consumption in
a smartphone,” in Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, 2010, pp. 21–21.

[10] NTNU, “The Single-ISA Heterogeneous MAny-core Computer
(SHMAC),” http://www.ntnu.edu/ime/eecs/shmac, Desember 2013.

[11] Y. Umuroglu, “SHMACsim : A Cycle-accurate Simulation Infrastructure
for the Heterogeneous SHMAC Multi-Core Prototype,” p. 111, 2013.

[12] L. T. Rusten and G. I. Sortland, “Implementing a heterogeneous multi-
core prototype in an fpga,” Ph.D. dissertation, Norwegian University of
Science and Technology, 2012.

[13] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction,” in Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on.
IEEE, 2003, pp. 81–92.

[14] Hardkernel, “hardkernel.com,” http://www.hardkernel.com/renewal
2011/products/prdt info.php?g code=G135235611947.

[15] J. L. H. David A. Patterson, Computer Organization and Design, 4th ed.
Morgan Kaufmann, 2012.

[16] D. A. P. John L. Hennessy, Computer Architecture, A Quantitative
Approach, 5th ed. Morgan Kaufmann, 2012.

[17] “The ARM Cortex-A9 Processors,” http://www.arm.com/files/pdf/
ARMCortexA-9Processors.pdf.

[18] “Cortex-A9 Technical Reference Manual revision r3p0,”
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388g/
DDI0388G cortex a9 r3p0 trm.pdf.

[19] I. Agilent Technologies, “Agilent 34410A and 34411A multimeters
data sheet,” http://www.home.agilent.com/en/pd-692834-pn-34410A/
digital-multimeter-6-digit-high-performance, April 2013.

[20] “ARM and Thumb-2 Instruction Set Quick Reference Card,”
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001
UAL.pdf.

[21] “ARM Compiler toolchain Version 4.1 Assembler Reference,”
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489c/DUI0489C
arm assembler reference.pdf.

[22] R. Radhakrishnan, “Integer pipeline description for cortex a9.” http://
gcc.gnu.org/ml/gcc-patches/2009-10/msg01858.html, October 2009.

[23] C. E. Shannon, “Communication in the presence of noise,” Proceedings
of the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[24] T. D. Burd and R. W. Brodersen, “Energy efficient cmos microprocessor
design,” in System Sciences, 1995. Proceedings of the Twenty-Eighth
Hawaii International Conference on, vol. 1. IEEE, 1995, pp. 288–297.

AppendixBModifications to gem5

All file paths are relative to the root of gem5. Diffs are based of gem5-stable revision
aaf017eaad7d.

B.1 configs/common/Exynos_4412P.py

1 # Copyright (c) 2012 The Regents of The University of Michigan
2 # All rights reserved .
3 #
4 # Redistribution and use in source and binary forms , with or without
5 # modification , are permitted provided that the following conditions

are
6 # met: redistributions of source code must retain the above copyright
7 # notice , this list of conditions and the following disclaimer ;
8 # redistributions in binary form must reproduce the above copyright
9 # notice , this list of conditions and the following disclaimer in the

10 # documentation and/or other materials provided with the distribution ;
11 # neither the name of the copyright holders nor the names of its
12 # contributors may be used to endorse or promote products derived from
13 # this software without specific prior written permission .
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
17 # LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 # A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT
19 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL ,
20 # SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT
21 # LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE ,
22 # DATA , OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 # THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
24 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 # OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
26 #
27 # Authors : Ron Dreslinski
28
29

67

68 B. MODIFICATIONS TO GEM5

30 from m5. objects import *
31
32 # Simple ALU Instructions have a latency of 1
33 class Exynos_Simple_Int (FUDesc):
34 opList = [OpDesc (opClass ='IntAlu ', opLat =1)]
35 count = 1
36
37 # Complex ALU instructions have a variable latencies
38 class Exynos_Complex_Int (FUDesc):
39 opList = [OpDesc (opClass ='IntMult ', opLat =4, issueLat =1) ,
40 OpDesc (opClass ='IntAlu ', opLat =1) ,
41 OpDesc (opClass ='IntDiv ', opLat =12 , issueLat =12) ,
42 OpDesc (opClass ='IprAccess ', opLat =3, issueLat =1)]
43 count = 1
44
45
46 # Floating point and SIMD instructions
47 class Exynos_FP (FUDesc):
48 opList = [OpDesc (opClass ='SimdAdd ', opLat =4) ,
49 OpDesc (opClass ='SimdAddAcc ', opLat =4) ,
50 OpDesc (opClass ='SimdAlu ', opLat =4) ,
51 OpDesc (opClass ='SimdCmp ', opLat =4) ,
52 OpDesc (opClass ='SimdCvt ', opLat =3) ,
53 OpDesc (opClass ='SimdMisc ', opLat =3) ,
54 OpDesc (opClass ='SimdMult ',opLat =5) ,
55 OpDesc (opClass ='SimdMultAcc ',opLat =5) ,
56 OpDesc (opClass ='SimdShift ',opLat =3) ,
57 OpDesc (opClass ='SimdShiftAcc ', opLat =3) ,
58 OpDesc (opClass ='SimdSqrt ', opLat =9) ,
59 OpDesc (opClass ='SimdFloatAdd ',opLat =5) ,
60 OpDesc (opClass ='SimdFloatAlu ',opLat =5) ,
61 OpDesc (opClass ='SimdFloatCmp ', opLat =3) ,
62 OpDesc (opClass ='SimdFloatCvt ', opLat =3) ,
63 OpDesc (opClass ='SimdFloatDiv ', opLat =3) ,
64 OpDesc (opClass ='SimdFloatMisc ', opLat =3) ,
65 OpDesc (opClass ='SimdFloatMult ', opLat =3) ,
66 OpDesc (opClass ='SimdFloatMultAcc ',opLat =4) ,
67 OpDesc (opClass ='SimdFloatSqrt ', opLat =9) ,
68 OpDesc (opClass ='FloatAdd ', opLat =4) ,
69 OpDesc (opClass ='FloatCmp ', opLat =5) ,
70 OpDesc (opClass ='FloatCvt ', opLat =5) ,
71 OpDesc (opClass ='FloatDiv ', opLat =9, issueLat =9) ,
72 OpDesc (opClass ='FloatSqrt ', opLat =33 , issueLat =33) ,
73 OpDesc (opClass ='FloatMult ', opLat =5)]
74 count = 1
75
76
77 # Load/ Store Units
78 class Exynos_LS (FUDesc):
79 opList = [OpDesc (opClass ='MemRead ',opLat =1) ,
80 OpDesc (opClass ='MemWrite ',opLat =1)]
81 count = 1

B.1. CONFIGS/COMMON/EXYNOS_4412P.PY 69

82
83
84 # Functional Units for this CPU
85 class Exynos_FUP (FUPool):
86 FUList = [Exynos_Simple_Int () , Exynos_Complex_Int () ,
87 Exynos_LS () , Exynos_FP ()]
88
89 # Tournament Branch Predictor
90 class Exynos_BP (BranchPredictor):
91 predType = " tournament "
92 localPredictorSize = 512
93 localCtrBits = 2
94 localHistoryTableSize = 512
95 globalPredictorSize = 2048
96 globalCtrBits = 2
97 choicePredictorSize = 8192
98 choiceCtrBits = 2
99 BTBEntries = 2048

100 BTBTagSize = 18
101 RASSize = 16
102 instShiftAmt = 2
103
104 class Exynos_3 (DerivO3CPU):
105 LQEntries = 4
106 SQEntries = 4
107 LSQDepCheckShift = 0
108 LFSTSize = 1024
109 SSITSize = 1024
110 decodeToFetchDelay = 1
111 renameToFetchDelay = 1
112 iewToFetchDelay = 1
113 commitToFetchDelay = 1
114 renameToDecodeDelay = 1
115 iewToDecodeDelay = 1
116 commitToDecodeDelay = 1
117 iewToRenameDelay = 1
118 commitToRenameDelay = 1
119 commitToIEWDelay = 1
120 fetchWidth = 2
121 fetchBufferSize = 16
122 fetchToDecodeDelay = 2
123 decodeWidth = 2 # syslevel benchmark
124 decodeToRenameDelay = 2
125 renameWidth = 2
126 renameToIEWDelay = 1
127 issueToExecuteDelay = 1
128 dispatchWidth = 4 # syslevel benchmark
129 issueWidth = 2 # marketing
130 wbWidth = 2
131 wbDepth = 2
132 fuPool = Exynos_FUP ()
133 iewToCommitDelay = 1

70 B. MODIFICATIONS TO GEM5

134 renameToROBDelay = 1
135 commitWidth = 4
136 squashWidth = 2
137 trapLatency = 37
138 backComSize = 5
139 forwardComSize = 5
140 numPhysIntRegs = 56
141 numPhysFloatRegs = 192
142 numIQEntries = 16
143 numROBEntries = 40
144
145 switched_out = False
146 branchPred = Exynos_BP ()
147
148 # Instruction Cache
149 class Exynos_ICache (BaseCache):
150 hit_latency = 2 # 7cpu
151 response_latency = 2 # 7cpu
152 mshrs = 6
153 tgts_per_mshr = 8
154 size = '32 kB '
155 assoc = 4
156 is_top_level = 'true '
157
158 # Data Cache
159 class Exynos_DCache (BaseCache):
160 hit_latency = 3 # 7cpu
161 response_latency = 8 # 7cpu
162 mshrs = 16
163 tgts_per_mshr = 8
164 size = '32 kB '
165 assoc = 4
166 write_buffers = 16
167 is_top_level = 'true '
168
169 # TLB Cache
170 # Use a cache as a L2 TLB
171 class ExynosWalkCache (BaseCache):
172 hit_latency = 7 #7cpu
173 response_latency = 7 # 7cpu
174 mshrs = 16
175 tgts_per_mshr = 8
176 size = '2kB '
177 assoc = 2
178 write_buffers = 16
179 is_top_level = 'true '
180
181
182 # L2 Cache
183 class ExynosL2 (BaseCache):
184 hit_latency = 37 # 7cpu?
185 response_latency = 37 # 7cpu?

B.2. CONFIGS/EXAMPLE/SE.PY 71

186 mshrs = 32
187 tgts_per_mshr = 8
188 size = '1MB '
189 assoc = 16
190 write_buffers = 8
191 prefetch_on_access = 'true '
192 # Simple stride prefetcher
193 prefetcher = StridePrefetcher (degree =1, latency = 2)

B.2 configs/example/se.py

1 diff --git a/ configs / example /se.py b/ configs / example /se.py
2 --- a/ configs / example /se.py
3 +++ b/ configs / example /se.py
4 @@ -104 ,7 +104 ,7 @@
5 idx += 1
6
7 if options .smt:
8 - assert (options . cpu_type == " detailed " or options . cpu_type == "

inorder ")
9 + assert (options . cpu_type == " arm_detailed " or options . cpu_type

== " inorder ")
10 return multiprocesses , idx
11 else :
12 return multiprocesses , 1
13 @@ -219 ,7 +219 ,7 @@
14 system .cpu[i]. createThreads ()
15
16 if options .ruby:
17 - if not (options . cpu_type == " detailed " or options . cpu_type == "

timing "):
18 + if not (options . cpu_type == " arm_detailed " or options . cpu_type ==

" timing "):
19 print >> sys.stderr , "Ruby requires TimingSimpleCPU or O3CPU !!

"
20 sys.exit (1)
21
22 @@ -255 ,4 +255 ,5 @@
23 MemConfig . config_mem (options , system)
24
25 root = Root(full_system = False , system = system)
26 + print options
27 Simulation .run(options , root , system , FutureClass)

72 B. MODIFICATIONS TO GEM5

B.3 configs/common/CacheConfig.py

1 diff --git a/ configs / common / CacheConfig .py b/ configs / common / CacheConfig
.py

2 --- a/ configs / common / CacheConfig .py
3 +++ b/ configs / common / CacheConfig .py
4 @@ -55,9 +55 ,22 @@
5
6 dcache_class , icache_class , l2_cache_class = \
7 O3_ARM_v7a_DCache , O3_ARM_v7a_ICache , O3_ARM_v7aL2
8 + elif options . cpu_type == " exynos_4412p ":
9 + try:

10 + from Exynos_4412P import *
11 + except :
12 + print " exynos_4412p is unavailable . Did you compile the O3

model ?"
13 + sys.exit (1)
14 +
15 + dcache_class , icache_class , l2_cache_class = \
16 + Exynos_DCache , Exynos_ICache , ExynosL2
17 +
18 else :
19 dcache_class , icache_class , l2_cache_class = \
20 L1Cache , L1Cache , L2Cache
21 + print dcache_class
22 + print icache_class
23 + print l2_cache_class
24
25 # Set the cache line size of the system
26 system . cache_line_size = options . cacheline_size
27 @@ -71,8 +84 ,9 @@
28 size= options .l2_size ,
29 assoc = options . l2_assoc)
30
31 + print system . cpu_clk_domain
32 system . tol2bus = CoherentBus (clk_domain = system .

cpu_clk_domain ,
33 - width = 32)
34 + width = 64)
35 system .l2. cpu_side = system . tol2bus . master
36 system .l2. mem_side = system . membus . slave

B.4. CONFIGS/COMMON/CPUCONFIG.PY 73

B.4 configs/common/CpuConfig.py

1 diff --git a/ configs / common / CpuConfig .py b/ configs / common / CpuConfig .py
2 --- a/ configs / common / CpuConfig .py
3 +++ b/ configs / common / CpuConfig .py
4 @@ -116 ,6 +116 ,13 @@
5 except :
6 pass
7
8 +
9 +try:

10 + from Exynos_4412P import Exynos_3
11 + _cpu_classes [" exynos_4412p "] = Exynos_3
12 + except :
13 + pass
14 +
15 # Add all CPUs in the object hierarchy .
16 for name , cls in inspect . getmembers (m5.objects , is_cpu_class):
17 _cpu_classes [name] = cls

B.5 src/arch/arm/linux/process.cc

1 diff --git a/src/arch/arm/ linux / process .cc b/src/arch/arm/ linux / process
.cc

2 --- a/src/arch/arm/ linux / process .cc
3 +++ b/src/arch/arm/ linux / process .cc
4 @@ -66,7 +66 ,7 @@
5
6 strcpy (name ->sysname , " Linux ");
7 strcpy (name ->nodename , "m5.eecs. umich .edu");
8 - strcpy (name ->release , " 3.0.0 ");
9 + strcpy (name ->release , " 3.10.2 ");

10 strcpy (name ->version , "#1 Mon Aug 18 11:32:15 EDT 2003");
11 strcpy (name ->machine , " armv7l ");

74 B. MODIFICATIONS TO GEM5

B.6 scr/mem/SimpleDRAM.py

1 d i f f −−g i t a / s r c / m e m / S i m p l e D R A M . py b / s r c / m e m / S i m p l e D R A M . py
2 −−− a / s r c / m e m / S i m p l e D R A M . py
3 +++ b / s r c / m e m / S i m p l e D R A M . py
4 @@ −258 ,6 +258 ,62 @@
5 t X A W = ' 50 ns '
6 a c t i v a t i o n _ l i m i t = 4
7
8 +# A s i n g l e LPDDR2−S4 x32 400MHz i n t e r f a c e (one command/ a d d r e s s bus)
9 +c l a s s L P D D R 2 _ S 4 _ 8 0 0 _ x 3 2 (S i m p l e D R A M) :

10 + # 1 x32 c o n f i g u r a t i o n , 1 d e v i c e with a 32− b i t i n t e r f a c e
11 + d e v i c e _ b u s _ w i d t h = 32
12 +
13 + # LPDDR2_S4 i s a BL4 and BL8 d e v i c e
14 + b u r s t _ l e n g t h = 8
15 +
16 + # Each d e v i c e has a page (row b u f f e r) s i z e o f 1KB
17 + # (t h i s depends on the memory d e n s i t y)
18 + d e v i c e _ r o w b u f f e r _ s i z e = ' 1 kB '
19 +
20 + # 1 x32 c o n f i g u r a t i o n , so 1 d e v i c e
21 + d e v i c e s _ p e r _ r a n k = 1
22 +
23 + # Use a s i n g l e rank
24 + r a n k s _ p e r _ c h a n n e l = 1
25 +
26 + # LPDDR2−S4 has 8 banks i n a l l c o n f i g u r a t i o n s
27 + b a n k s _ p e r _ r a n k = 8
28 +
29 + # Fixed at 15 ns
30 + t R C D = ' 15 ns '
31 +
32 + # 8 CK read l a t e n c y , 4 CK w r i t e l a t e n c y @ 533 MHz, 1 . 8 7 6 ns c y c l e time
33 + t C L = ' 15 ns '
34 +
35 + # Pre−charge one bank 15 ns (a l l banks 18 ns)
36 + t R P = ' 15 ns '
37 + t R A S = ' 42 ns '
38 +
39 + # 8 b e a t s a c r o s s an x32 DDR i n t e r f a c e t r a n s l a t e s to 4 c l o c k s @ 400 MHz.
40 + # Note t h i s i s a BL8 DDR d e v i c e .
41 + # Requests l a r g e r than 32 bytes are broken down i n t o m u l t i p l e r e q u e s t s
42 + # i n the c o n t r o l l e r
43 + t B U R S T = ' 7 . 5 ns '
44 +
45 + # LPDDR2−S4 , 16 Gbit
46 + t R F C = ' 2 1 0 ns '
47 + t R E F I = ' 3 . 9 us '
48 +
49 + # I r r e s p e c t i v e o f speed grade , tWTR i s 7 . 5 ns
50 + t W T R = ' 7 . 5 ns '
51 +
52 + # A c t i v a t e to a c t i v a t e i r r e s p e c t i v e o f d e n s i t y and speed grade
53 + t R R D = ' 1 0 . 0 ns '
54 +
55 + # I r r e s p e c t i v e o f d e n s i t y , tFAW i s 50 ns
56 + t X A W = ' 50 ns '
57 + a c t i v a t i o n _ l i m i t = 4
58 +
59 # A s i n g l e WideIO x128 i n t e r f a c e (one command and a d d r e s s bus) , with
60 # d e f a u l t t i m i n g s based on an e s t i m a t e d WIO−200 8 Gbit part .
61 c l a s s W i d e I O _ 2 0 0 _ x 1 2 8 (S i m p l e D R A M) :

From XKCD [73].

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	
	
	
	

	
	
	
	

	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	
	

