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Abstract

Energy efficiency is currently one of the biggest challenges in modern
computer design. High power density limits further performance growth,
and energy efficiency affects both the power bill for supercomputers
and battery lifetime for embedded devices. A better understanding of
energy efficiency during the design stage eases development of better
architectures. In this thesis, we investigate energy consumption and
architectural properties of an ARM Cortex-A9 processor. Further, this
information is used to create a tool for estimating its power consumption
through simulation.

Instruction level energy consumption is determined through measurements
and experiments on real hardware, which are further mapped to certain
architectural events found in the gem5 simulator. The tool utilizes these
events together with a simulator trace log and outputs a representation
of energy consumption over time.

This method can be applied during the development process at the simula-
tor level, while traditional methods typically involves hardware synthesis.
The results show that this tool can estimate energy consumption with
margin of error of 5 % on general workloads, and is able to identify power
consumption trends throughout a program.





Sammendrag

Energieffektivitet er en av de største utfordringene i moderne datama-
skindesign. Videre ytelsesøkning begrenses av høy strømtetthet, i tillegg
har energieffektivitet stor betydning i alt fra strømregningen på super-
datamaskiner til batterlevetid for små innebygde enheter. Bedre forståelse
for energieffektivitet vil gjøre det lettere å utvikle bedre arkitekturer. I
denne masteroppgaven ser vi nærmere på arkitekturen og energiforbruket
til en ARM Cortex-A9. Vi lager deretter et verktøy for å forutsi dens
strømforbruk gjennom simulering.

Gjennom målinger og eksperimenter gjort på ekte maskinvare bestemmes
strømforbruk på instruksjonsnivå. Videre blir dette koblet til bestemte
hendelser i den samme arkitekturen modelert i gem5-simulatoren. Verktøy-
et vårt benytter så disse hendelsene, sammen med loggfiler fra simulatoren,
til å lage en representasjon av prosessorens strømforbruk over tid.

Vår metode kan benyttes i prosessorutvikling allerede i simulatorfasen,
mens tradisjonelle metoder ikke virker før maskinvaren er ferdig syntetisert.
Resultatene viser at verktøyet vårt kan estimere strømforbruk innenfor
5 % feilmargin på normale arbeidslaster. Det kan også identifisere positive
og negative utviklinger i strømforbruket gjennom kjøringen av et program.
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Title: Power Profiling: From Measurements to Simulation Models
Students: Terje Runde & Stian Hvatum

Problem description: The SHMAC prototype is an ongoing research project
within the Energy Efficient Computing Systems (EECS) strategic research area.
SHMAC is planned to run in an FPGA and be an evaluation platform for research on
heterogeneous multi-core systems. Due to the Dark silicon effect, future computing
systems are expected to be power limited. The goal of the SHMAC project is to
propose software and hardware solutions for future power-limited heterogeneous
systems.

The micro architecture level is an implementation of the Instruction Set Architecture
(ISA). Energy efficiency of an ISA is as such given by the chosen micro architecture.
To be able to take the "right" design choice to optimize for energy efficiency, knowledge
of energy and power for instruction types, e.g., instructions of type float, nop, copy,
are needed.

The goal of this sub-project within the SHMAC platform is to gain knowledge
of energy/power consumption of different instruction types to be able to extract
information that can be used to improve the micro architecture design of SHMAC-
cores. This project will take a twofold approach; 1) Investigate the power/energy
consumption of simple benchmark programs on real hardware, i.e. create benchmark
programs and evaluate performance by measurements. 2) Investigate the same
benchmark programs in simulations as to ensure a good understanding of the relation
between measurements and simulated results.

The project will include:

– Devising small benchmark programs, e.g., C or assembly, that isolate specific
functions at the micro architecture level.

– Run test on real hardware to collect data.
– Run tests in simulation to relate measurements to simulation results.

An ARM processor is going to be the target ISA for measurements and simulations.
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Chapter1Introduction

The steep increase in single-threaded performance during the last few decades seems
to have come to an end. Figure 1.1 shows how Moore’s law is continuing [1, 2]; the
transistor count on-die is still increasing exponentially. As we have seen the end
of Dennard scaling [3, 4], power density increases as more transistors are crammed
together. Too much power on a tiny area leads to more heat than conventional
cooling solutions can dissipate. Today, computer designers are striving to achieve
higher performance without further increase in power density.

Figure 1.1: Historical trends in CPU performance, from [5].
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2 1. INTRODUCTION

1.1 Historical Perspective

Computers have emerged in many roles in our society, and the demand for greater
computer resources is ever increasing. Throughout the ’80s and ’90s, the increasing
demand for performance was met by increasing the clock frequency. Shortening the
critical path and exploiting instruction level parallelism allowed the CPU to run at
higher clock speeds to improve throughput [2]. Consequently, processor manufacturers
were able to double single-threaded performance approximately every 18th month
[1]. The tradeoff, however, was an increased amount of complex logic added to
the processor core. Techniques such as pipelining, superscalarity and out-of-order
execution all improved performance by leveraging the increased number of transistors
[6]. For a long time, new process technologies allowed for smaller and less energy
consuming transistors, but as we approached the end of Dennard scaling [3, 4], the
amount of gates required to accommodate speedups could not fit on the die due to
thermal constraints. Heat generation on-chip became overwhelming; one could no
longer add more logic and increase the frequency to gain additional performance.

1.2 Demand for Energy Efficiency

We are now at the beginning of an era where energy efficiency and performance are
tightly coupled. When improving performance, one must take care not to exceed the
physical limitation of power dissipation. Thus, energy efficiency is key to additional
performance gain; performance per Watt must be emphasized.

Heat is not the only motivating factor to keep energy consumption down. Processors
targeting laptops, cellphones and other mobile devices have always been energy-
constrained due to their use of batteries. Lower energy consumption would allow for
longer battery life and/or heavier applications. More recently, mobile processors have
become increasingly popular in alternative domains, such as supercomputing. Their
low cost and high performance per Watt ratio makes them attractive for massively
parallel problems, which is currently done on large and expensive supercomputers.
These machines have huge energy budgets and are taken out of service after just a
couple of years, being replaced by new machines that offer better performance for less
power. Building data centers from low-cost embedded processors is believed to have
a huge potential and could change the landscape of supercomputing in the future [7].

Not only data centers benefit from the use of mobile processors. The SHMAC research
project at NTNU aims to build a single-ISA heterogeneous computing platform with
processing cores specialized for energy efficiency. Using the most efficient processor
or hardware accelerator – in terms of both energy and performance – is the key to
success for such platforms.
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There are several reasons to minimize a processors energy consumption. Batteries
would last longer, applications become richer and it will enable processor performance
growth to continue. Energy efficiency has become crucial; performance alone is no
longer the single most important attribute of processors.

1.3 Optimizing for Energy Efficiency

Given the availability of advanced hardware design tools, it is possible to model
and simulate performance of an unimplemented architecture with decent accuracy.
However, modeling power consumption is a more elaborate process: current techniques
works on a low level and uses circuit-level models to obtain energy metrics. This
method makes them accurate, but also heavy and time consuming. Being able
to rapidly prototype and visualize how changes in the microarchitecture affects
energy performance is an advantage when designing energy efficient hardware. Some
solutions already exists [8, 9], but most of them inspect energy consumption at a fine
granularity and requires ASIC synthesis of HDL code. During the design process,
there is a great need for tools that help developers predict the changes in power
consumption when new features are implemented.

The immediate lack of a system that is easy to use and set up motivates the creation
of a new high-level tool. We introduce PET; a tool that is able to estimate power
usage over time for a given workload on a given architecture. It will use an energy
metric profile together with a simulator trace log to calculate energy usage. Using
this approach, PET will be able to detect if hardware modifications done to the
simulation level model will be beneficial in the realized hardware. PET will also tell
if a processor implementation is more energy efficient than another given a specific
workload. Thus, it can help building workload optimized tiles for the SHMAC project
[10]. Using PET, one can also adjust the energy metric profile and simulate power
usage with one component cheaper or more expensive to use in terms of energy.
This will enable hardware designers to understand which optimizations are most
beneficial and identify possible routes of exploration in their journey of processor
energy optimization.

1.4 Assignment Interpretation

Based on the assignment description text, the following main tasks were identified.

Task 1: Quantify the exact cost of executing specific instructions on a modern
out-of-order CPU core.

Task 2: Create a software suite that accentuate energy consumption during software
execution on various hardware.
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Task 1 involves performing energy measurements on hardware components to obtain
numbers of a processors energy characteristics. Task 2 depends on the results from
the former and can only be solved after the completion of Task 1.

Task 1 was solved as a part of the specialization project (TDT4501) during the fall
of 2013, and the final report in its entirety is attached in Appendix A. The review of
Task 2 is the main emphasis of this master’s thesis. In order to solve it, a simulation
environment must be created and combined with a method for power estimation.

1.5 Report Organization

Chapter 1: Introduction provides a historical perspective to the trends in pro-
cessor design and motivates the need for energy efficient hardware.

Chapter 2: Background contains supportive material on subjects used through-
out this thesis, as well as explanations that justify decisions made later in the
report.

Chapter 3: Building a Power Estimation Tool is the main piece of our prob-
lem solution. It contains an in-detail review of what PET does and how it is
built.

Chapter 4: PET Performance Tuning describes considerations needed when
porting the use of PET to support new hardware configurations.

Chapter 5: Experiments and Results presents the tests used to evaluate PET,
along with accuracy and performance data.

Chapter 6: Conclusion and Further Work provides the concluding remarks on
the work described in this thesis and suggests possible areas of interest for
further research.



Chapter2Background

This thesis touches subjects such as artificial intelligence, computer architecture
and electronics. Some background information on the most important subjects is
provided in this chapter.

2.1 Energy Consumption in CPUs

Two sources of energy consumption in a CPU can be distinguished: static and
dynamic. Static energy consumption is caused by a small current continuously
leaking through the transistors, while dynamic is due to charges being moved towards
ground when transistors are toggling [11]. Figure 2.1 shows how current flows through
a NOT gate at the transistor level. The green arrow indicates where static leakage
occurs and the two red arrows shows where charges escapes when switching. As
feature size decreases, a significant part of overall energy consumption is due to
static leakage [12]. This means that simply powering the chip without any toggling
generates a significant amount of heat [13, 14]. Static power consumption origins
from transistor size and layout, while dynamic power consumption depends on the
amount of transistor switching. From an architectural point of view, the dynamic
power consumption is easier to influence.

2.2 Instruction Level Energy Measurements

High precision instruction level energy models can be derived for pipelined processors
by monitoring the instantaneous current drawn by the processor at each clock cycle,
as explained in [15]. Modern processors commonly operate at a few GHz, and the
Nyquist-Shannon sampling theorem [16] states that the sampling frequency must
be at least twice the frequency of the signal being measured. The signal sampled
from the processor might change at least once per clock cycle, so obtaining accurate
measurements would require use of very expensive instruments.

5
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Figure 2.1: Static and dynamic power through a NOT gate.

Figure 2.2: The shunt resistor used in our experiments.

In [17], single instructions were measured by exploiting fast-loop-mode [18] and
looping over a group of equal instructions. A bench multimeter was used to measure
the voltage drop over a shunt resistor as seen in Figure 2.2, set up as illustrated in
Figure 2.3. From this, the current flowing from the Vcore power rail and through
the processor core was inferred. The peripherals were isolated and excluded from
the measurements. The shunt resistor was chosen such that the voltage drop over
it resided in the range 0 – 100 mV. According to the datasheet [19], the voltage
readings would then have 0.003 % margin of error.

The use of a shunt resistor to infer current is equivalent to how ammeters work
internally. However, the internal shunt resistor is not scaled for the dynamic range
of a specific target. Also, a too large resistor would drop the voltage relative to the
impedance in the load, and in the case of a processor this can give unpredictable
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CPU coresΩ

V core Vsys

SoC

Figure 2.3: Experiment setup for measuring single instruction current drain.

results. Figure 2.4 illustrates two scenarios where voltage drops over a 0.1 Ω shunt
resistor and a variable load (e.g., the CPU core). There is a trade-off between
accuracy in measurements and voltage variations across the circuit. If the shunt
resistor is too small, the voltage drop diminishes and is difficult to measure.

0.1 Ω

1.3V 0.01V 1.29V

GND0.1V 1.2V

Figure 2.4: The red and green lines represents two snapshots in time with different
variable loads. A higher current drain through the circuit changes the ratio of voltage
drop between the two loads.

Figure 2.5 presents results from [17], and shows how different instructions use
different amounts of energy. This indicates that the architecture impacts how efficient
each instruction is. base refers to the cheapest instruction in the ISA and roughly
corresponds to the static power consumption.

2.3 Hardware Platform

The ODROID-X2 developer platform [20] was used as the reference hardware for all
experiments in this thesis. An image of the platform is shown in Figure 2.6. Its core
voltage is accessible on an attached daughter board beneath the heat sink, making it
easy to conduct power measurements. The board is equipped with a Samsung Exynos
4412 “Prime” [21], a modern SoC (“System-on-Chip”) featuring four ARM Cortex-A9
[18] CPU cores, a Mali-400 GPU and 2 GB of on-chip DRAM. The Cortex-A9 is
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(b) Non-multiply multi-cycle instructions.

Figure 2.5: Figures from [17] showing the results of measuring the current drain
through the CPU core while running isolated instructions in a loop. The values are
measured current drain multiplied by the average number of cycles used.

Figure 2.6: Image of the Hardkernel ODROID-X2 from the Hardkernel ODROID-X2
product page [20].

one of ARM’s mid-to-high-range application processors. It features an out-of-order
dual-issue speculative RISC core, and it seems to be designed with emphasis on
energy efficiency. This processor is primarily found in low-powered embedded devices
with a modest demand for performance, such as smartphones and tablets.

Figure 2.7 shows an overview of the ARM Cortex-A9 architectural structure. It
features an out-of-order multi-issue module after the decode stage. This module
can do speculative issue and schedules two arithmetic operations per cycle. It also
features a multiplexed lane for address operations and floating point operations (the
NEON FPU). In this experiment, a 4-core variant of the processor was used, but 3
of the cores were disabled to ease both the measurement and the simulation process.
Table 2.1 enumerates the most important properties of the SoC.



2.4. HARDWARE SIMULATORS 9

Figure 2.7: An overview of the Cortex-A9 Pipeline, figure taken from the ARM
Cortex-A9 White paper [18].

Manufacturer Hardkernel
Platform ODROID-X2

SoC Samsung Exynos 4412 “Prime”
CPU Core ARM Cortex-A9 (r3p0)

Number of Cores 4
Clock Frequency 1.7 GHz
Core Voltage 1.3 V
L1 Cache Dual 32 KB
L2 Cache 1 MB

Main Memory 2 GB LP-DDR2 880 MHz

Table 2.1: Hardware specifications ODROID-X2.

2.4 Hardware Simulators

As computer architecture development meets more challenging demands, a versatile
set of software tools have been developed to help the designers. In this collection
of tools lies a set of computer architecture simulators meant to evaluate processors
at the architectural level. They provide the ability to model hardware at a higher
abstraction layer than what is expressed by the underlying circuit.



10 2. BACKGROUND

2.4.1 A Brief Comparison of Hardware Simulators

To support our power estimation tool, a simulator front-end must provide a good
picture of events that occur in a hardware implementation of the architecture.
The out-of-order property significantly increases the level of complexity which the
simulator must handle. The following simulators were considered:

Sniper
Sniper is a high-speed, multicore, multi-threaded and cycle-accurate computer
architecture simulator [22, 23, 24]. It already integrates with McPAT [25, 26]
and it is open source. Sniper only works with x86 targets, and is therefore not
applicable for simulation of ARM-based architectures.

SimpleScalar
SimpleScalar is a popular commercial architectural simulator that comes with
a free academic license providing full source code [27, 28, 29]. SimpleScalar
supports the ARM instruction set among many others, and looks like a decent
simulator for advanced out-of-order core simulation. SimpleScalar is also the
simulator used by the Wattch-project [30]. However, the SimpleScalar project
seems to be in a state of abandonment. The source code for SimpleScalar v3 is
still available and received patches in 2003.

QEMU
QEMU is a generic open source machine emulator which enables near real-time
performance on architectures like ARM, even on x86 host machines [31, 32, 33].
However, QEMU is a machine emulator rather than an architectural simulator.
Despite its great performance of running ARM-binaries, it will not produce
CPU and memory event trace logs, and is not suitable for this project.

gem5
gem5 is a merger between the M5 simulator [34] and the GEMS simulator
project [35]. gem5 includes ARM-support with out-of-order execution and
provides cycle-accurate trace logs which are appropriate for this project [36].
Its core is written in C++ and has a highly modular interface that allows users
to specify simulator targets through Python scripts. Many of the maintainers
are employees of ARM Corp., and the activity on the mailing lists suggests
high project activity [37].

Provided this comparison of simulators, and given that NTNU has previous experience
with gem5, gem5 was the natural winner and our choice of an architectural simulator.
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2.4.2 The gem5 Simulator

The gem5 project [38] merges the best features of M5 [34] and GEMS [35] and
includes a wide range of CPU and memory models [39].

The gem5 simulator comes bundled with different CPU models ranging from in-order
models without timing constraints, such as AtomicSimpleCPU, to detailed out-of-
order cores such as O3CPU. During the merge between M5 and GEMS, two memory
systems emerged: M5’s simple memory system and the more advanced Ruby Memory
System from the GEMS project. M5’s memory system is simple, and works by
settings delays to each memory request, depending on how they hit in the memory
hierarchy. Ruby is a more complete memory system simulation tool, and can be
used to model new types of memory systems. The Ruby memory system is currently
unsupported for ARM architectures.

The simulator has two main execution modes: Syscall Emulation (SE) or Full System
(FS). In SE mode, the simulator runs without any real operating system. gem5
traps system calls from the executable and emulates them, often by passing them to
the host operating system. In FS mode, the simulator can load an entire operating
system, e.g., a GNU/Linux distribution, and run applications within the OS. gem5
supports many architectures; it can run binaries compiled for ALPHA, SPARC,
MIPS, ARM, x86 and POWER architectures.

During simulation, gem5 keeps track of hundreds of different events related to the
CPU core and memory system. In-detail statistics, similar to performance counters
on real hardware, are then dumped for subsequent inspection. gem5 is also able to
output a trace log while it runs, originally intended for debugging of gem5. A trace
log contains user-selected events that happens within the simulated hardware. These
trace logs grow quickly in size, easily tens of gigabytes, but provides useful insights
of the simulated execution. In particular, they describes CPU activity down to the
microarchitecture level and outputs simulated processor activity.

2.5 Global Optimization

Optimization is a field of applied mathematics that deals with finding the best
set of parameters to optimize an objective function. A problem with N variables
{n0, . . . , nN−1} in range ni ∈ {0, . . . , k−1} will have a search space with kN possible
solutions. Each solution can be evaluated by applying the objective function to it, to
obtain the solutions fitness. The fitness is a measure of how good the solution is and
it is used to assist the selection of candidate solutions for evaluation.

The solution space can be thought of as a (N+1)-dimensional space that directly
relates to the number of variables in the solution, plus one axis for the fitness value.
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E.g., when a problem contains a single variable, its solution space might look like
Figure 2.8 where the X-axis is the value of the single variable and the Y-axis is the
fitness of this solution. Problems with more variables will have more axes. The
optimization algorithms can be thought of as methods for exploring and finding the
highest or lowest point in of the fitness-axis.

As k and N grow large, it becomes infeasible to search through and evaluate the
vast amount of permutations and other techniques must be employed. Finding an
arbitrary local optimum is often straight forward using classical local optimization
methods such as a simple hill climbing algorithm. However, these methods cannot
always be used to find a global optimum. A wide range of algorithms to search
through a subset of the solution space exists, each with different approaches and
properties. Many of these are described in detail in [40].

Figure 2.8: A one-dimensional fitness landscape. The arrows indicate the preferred
flow of a population on the landscape, and the points A and C are local optima. The
red ball indicates a population that moves from a very low fitness value to the top of
a peak. Borrowed from [41].

In general terms, optimization algorithms can be divided into deterministic and
non-deterministic approaches. The deterministic approaches can be thought of as a
single path in the solution space that starts at a defined but most likely suboptimal
solution and ends at the best solution. The non-deterministic approaches usually
selects one or more paths at random such that each run might yield a different
outcome. Deterministic algorithms will always find the same solution, but if the
search space is large this might be extremely time consuming. Non-deterministic
algorithms tend to have an explorative behavior [42]; each computation of the next
state includes some form of randomness. E.g., simulated annealing will do the same
as the hill climbing algorithm, but will have some chance of moving downhill, thus
it will be less prone to be stuck in a local optimum. A brief overview of algorithms
considered for this thesis is provided below.
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Regression is described as a study of dependence between properties [43]. When
data set contains values from at least two properties, regression can be used
to find one value as a function of the other. An example of a regression
technique is the least square method. This method will try to find a linear
function, y = a1x1 +a2x2 + ...+anxn + b, that minimizes the least square error.
Implementations of linear regression solvers often formulate the problem as a
system of linear equations [44], which can be solved by Gaussian elimination.
More advanced forms for regressions can be used when the problem cannot be
well mapped with a linear function, such as the Gauss-Newton algorithm [45].

Simulated Annealing is a technique that belongs to the field of stochastic opti-
mization and metaheuristics, inspired by the process of annealing in metallurgy
[46]. It starts in a random state s, and for each iteration it probabilistically
decides between moving the system to a neighboring state s′ or staying in state
s. To avoid ending up in a local optimum, the probability starts high, but
decreases over time. Hence, simulated annealing can quickly consider the most
important parts of the state if configured adequately.

Evolutionary Algorithms is a term that refers to computational methods inspired
by the process and mechanisms of biological evolution [47]. They differ from
conventional algorithms by selecting the best-fit individuals in a population for
reproduction and applying crossover and mutation to produce offspring. Only
the best fit individuals go on to the next generation [48].

Global optimization problems are a well studied research area and there are countless
ways to solve them. It can be difficult to know in advance which methods will provide
the most rewarding results. Also, multiple approaches can be combined in efforts to
extract the best properties from several branches, or to speed up convergence.

In this thesis, we have chosen to use an evolutionary approach called 1 + λ, with
λ = 4. It includes the following steps:

1. Generate λ random individuals.

2. Evaluate population.

3. Select the best individual.

4. Mutate λ new individuals from the best-fit individual.

5. Repeat step 2 through 4 for each generation.

In addition, we have borrowed ideas from simulated annealing by letting the proba-
bility of mutation decrease as fitness improves.
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Figure 2.9: The SHMAC architecture. The figure shows how different kind of tiles
are combined together and form a complete architecture. From [10].

2.6 SHMAC

SHMAC is a hardware prototype of a Single-ISA Heterogeneous MAny-core Computer
[49, 10, 50]. It is an ongoing research project within the Energy Efficient Computing
Systems (EECS) research area at the Department of Computer and Information
Science, and Department of Electronics and Telecommunications at NTNU. The
SHMAC project is driven by the dark silicon effect: as transistors become smaller,
only parts of a chip can be powered simultaneously [4]. SHMAC implements two
main strategies to mitigate the dark silicon effect, heterogeneity and specialization.

The SHMAC architecture is tile-based. Processing elements are laid out in a rect-
angular grid with connections to their nearest neighbor, as depicted in Figure 2.9.
A router device present in all SHMAC tiles handles communication and data flow
between tiles. In SHMAC, different kinds of specialized tiles/accelerators can be
composed as desired, to form a computer tailored to the application. With the
ability to evaluate different tiles with respect to energy and performance, the most
advantageous core composition can be chosen.



Chapter3Building a Power Estimation Tool

The ultimate goal for this project is to model and estimate energy consumption for
not yet implemented computer architectures. This allows new ideas to be prototyped
and evaluated with respect to energy efficiency already at the design stage, easing
the process of building energy efficient hardware. These evaluations can only serve as
estimates and will doubtedly be truly accurate. Nevertheless, it can be used to test
specific workloads and applications on specific processor configurations and evaluate
ideas rapidly during the design phase.

As we are already supplied with a computer architecture simulator capable of tracing
all sorts of hardware events, the next step is to extract power information from these
event logs. In this chapter we introduce PET, a Power Estimation Tool. PET provides
guided information about power usage for computer architectures and represents a
major piece of our problem solution.

PET is implemented in C++ using the Boost Library [51]. The source code for PET
and the rest of this project can be found Github:

git clone https :// github .com/ terjr / thesis .git

3.1 What is PET?

PET is a tool for power estimation of new as well as old architectures. It is built
by measuring existing hardware with great detail, capturing discrete events and
assigning each event a certain energy cost. When selected events have been weighted,
one can run test programs through a simulator which is configured to act as the
target hardware, as depicted in Figure 3.1. The simulator will generate a trace log
containing the weighted events, which is then processed by PET. From this workflow,
PET can produce a data set containing power consumption distributed over the
simulation lifetime – a power profile of the program execution.

15
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Measured
weights

Power
estimate

Apply to PET

Source
code

new
arch.
binary

cross-compile detailed
trace
log

Simulate new hardware

Parse with PET

Figure 3.1: Example usage of the PET program.

When estimating power for an unimplemented hardware platform, the new hardware
will be weighted similar to an existing implementation. As a consequence, this
method requires a certain similarity between old and new hardware. We claim that
in general, all modern computer architectures are built from comparable principles,
and thus mappable to each other.

The accuracy will indeed suffer the more the model deviates from the reference
hardware. PET’s primary use is to identify variations between two implementations
of the same instruction set architecture. For instance, one can experiment with a
larger L2 cache to see how it affects energy usage and performance. The additional
energy used by a larger L2 cache can be derived from existing implementations.

3.2 Approach

There are many considerations to take before creating a tool that should pretend
to understand the implementation of hardware and the implications of features
regarding energy efficiency. Through the next sections, we a model to be used in
PET is developed and its inputs are defined.

3.2.1 Energy Modeling

Song et. al [52] identifies three major approaches to processor power modeling used
in the past, and introduces an instruction-based energy estimation model that can
be used for energy simulation at high speed. Their proposed method is expressed
through the following equation, and includes the desired features of previous energy
models.

Pcore(t) = Eunit ·Adatapath · w(t) + Estatic

Tsampling
(3.1)
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This method has two dependencies. First, one must have sufficient details of the
processor in order to identify datapath components to form the Adatapath matrix. The
entries in Adatapath are the invocation counts of physical components in the datapath
with respect to the workload metric w(t). w(t) is typically comprised of instruction
types or key operational parameters such as cache miss, ratio, pipeline stall cycles
and number of executed instructions. Secondly, the energy unit vector Eunit, a
vector enumerating the per-access energy cost, requires circuit-level knowledge of the
target processor to calculate. Adatapath can often be found by reverse engineering
and benchmarking. The Eunit, however, is rarely available for commercial processors.

When building the model for PET, the model from [52] is simplified by combining
Adatapath and Eunit to form a vector of weights that directly corresponds to the cost
of an event. We call this vector C. Power for each core over time, Pcore(t), is then
modeled by the following formula.

Pcore(t) = C · w(t) + Estatic

Tsampling
(3.2)

Here, C represents the global cost vector – a matrix enumerating the cost for all
event types. Note that it is global and do not depend on time. Tsampling represents
the sampling period and Estatic the static energy consumption.

3.2.2 Power Consuming Events

Choosing which events should be tracked and which workloads that would give good
metrics is an important part of our method. We account for two main groups of
events; CPU instruction events and memory activity events. The events in these
groups are listed in Table 3.1. It is desirable to estimate energy consumption on
literally all types of computing systems, ranging from large-size clusters to embedded
systems. To provide this flexibility it was decided that PET should parse log files
from the simulators rather than being built-in on a specific simulator. Most active
and working architectural simulators supports this sort of trace logs. Even if they
are formatted differently, the effort of adjusting to a new format is a lot less than
the effort of building this tool within a simulator.

The trace logs contains information about everything that goes on within the fictional
computer. Such a piece of information is defined in PET as a simulator event. A
simulator event can be thought of as a unit of work that uses a specified amount of
energy. When PET finds such an event, it increases the modeled energy consumption
at the correct point in time where the event took place.
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IntAlu Basic integer ALU operation
IntMult Integer multiply ALU operation
MemRead Memory Read issued, triggers LS unit
MemWrite Memory Write issued, triggers LS unit
SimdFloatMisc NEON unit activated

(a) CPU core events.
L1IR L1 instruction cache, read
L1IW L1 instruction cache, write
L1DR L1 data cache, read
L1DW L1 data cache, write
L2R L2 cache, read
L2W L2 cache, write
PhysR Main memory, read
PhysW Main memory, write

(b) Memory events.

Table 3.1: Power consuming events.

The events described in Table 3.1 are the ones currently recognized by PET, but
adding more (or removing) events is trivial. These events are selected mainly based
on the information which is easily extracted from a gem5-formatted trace log, but
also adjusted according to what could be checked with performance counters on the
target hardware. Most of this information is available from [17], where different
instruction loops were measured with both ammeter and performance counters. This
is then correlated with the properties of the pipeline (as seen in Figure 2.7).

3.3 Input

PET needs two types of data in order to model power; a simulator trace log and
event-type weights. Optionally, PET can also read an annotation file and display
function calls in the output.

3.3.1 gem5 Trace Logs

In order to create the simulator trace log with the information required by PET,
gem5 must be run with a specific set of parameters. By executing gem5 with
——debug-flags=Bus,Cache,MemoryAccess,Exec, gem5 will output trace files that
look like Listing 3.1.
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1 3 0 2 1 : s y s t e m . p h y s m e m : W r i t e of s i z e 8 on a d d r e s s 0 x 8 2 f e 0 d a t a 0 x e 1 a 0 f 0 0 e e e 1 d 0 f 7 0
2 3 0 2 1 : s y s t e m . c p u . i c a c h e : a c c e s s f o r R e a d R e q a d d r e s s 9 c0 s i z e 64
3 3 0 2 1 : s y s t e m . c p u . i c a c h e : R e a d R e q ( i f e t c h ) 9 c0 miss −
4 . . .
5 3 4 3 2 : s y s t e m . c p u . d c a c h e : B l o c k a d d r 81 f0 m o v i n g f r o m s t a t e 0 to s t a t e : 7 v a l i d : 1
6 3 4 3 2 : s y s t e m . c p u . d c a c h e : L e a v i n g r e c v T i m i n g R e s p w i t h R e a d R e s p f o r a d d r e s s 81 f 0 0
7 3 4 3 2 : s y s t e m . t o l 2 b u s . r e s p L a y e r 1 : T h e b u s is n o w b u s y f r o m t i c k 234320 to 236376
8 1 6 4 2 : s y s t e m . c p u T0 : 0 x 8 9 d 4 . 0 : l d r r1 , [ sp ] #4 : M e m R e a d : D=0 x 0 0 0 0 0 0 0 0
9 1 6 4 2 : s y s t e m . c p u T0 : 0 x 8 9 d 4 . 1 : a d d i _ u o p sp , sp , #4 : I n t A l u : D=0 x 0 0 0 0 0 0 0 0 b

10 1 7 0 1 : s y s t e m . c p u T0 : 0 x 8 9 d 8 : m o v r2 , sp : I n t A l u : D=0 x 0 0 0 0 0 0 0 0 b
11 1 7 0 1 : s y s t e m . c p u T0 : 0 x 8 9 d c . 0 : s t r r2 , [ sp , #−4]! : M e m W r i t e : D=0 x 0 0 0 0 0 0 0
12 1 7 6 0 : s y s t e m . c p u T0 : 0 x 8 9 d c . 1 : s u b i _ u o p sp , sp , #4 : I n t A l u : D=0 x 0 0 0 0 0 0 0 0 b
13 1 7 6 0 : s y s t e m . c p u T0 : 0 x 8 9 e 0 . 0 : s t r r0 , [ sp , #−4]! : M e m W r i t e : D=0 x 0 0 0 0 0 0 0
14 4 0 0 0 : s y s t e m . m e m b u s : r e c v T i m i n g R e s p : s r c s y s t e m . m e m b u s . m a s t e r [ 0 ] R e a d R e s p 0 x 1 6 4 0
15 4 0 0 0 : s y s t e m . l2 : H a n d l i n g r e s p o n s e to R e a d R e s p f o r a d d r e s s 1640
16 4 0 0 0 : s y s t e m . l2 : B l o c k f o r a d d r 1640 b e i n g u p d a t e d in C a c h e

Listing 3.1: gem5 trace log.

Each line in Listing 3.1 represents an event that happens in the simulated hardware.
Line 1 tells that a write access to physical memory has happened. Line 2 is the
event of instruction cache access, while Line 3 shows that this request failed. During
this simulation, there is also events like Line 5 which represents that the data cache
updates some content. The discrete instructions running through the CPU is also
logged, e.g., Line 8 shows a load instruction and Line 9 shows an add instruction.

The trace log input can be opened as a file or read from a Unix pipe. Discrete events
are extracted from the trace log and power consumption is accumulated in equally
sized timeslots in PET. Internally, these time steps are called buckets and its size is
parameter controlled. Often, it is more practical to specify the number of buckets in
the output rather then specifying the number of simulator ticks in each bucket. PET
is able to estimate the bucket size by peeking at the last tick of a trace file. This is
not possible when reading from a pipe, i.e., stdin. The trace file is not necessarily
in tick order, but close enough to set a reasonable bucket size. The bucket size
estimation algorithm is shown in Algorithm 3.1.

Listing 3.1 shows that the events in the trace log is not necessarily in their correct
order. This means that PET must accumulate power consumption to the entire
timeline at all times. Consequently, it is not possible to produce a continuous output
flow. The results are stored in memory and written out when the entire input is
parsed.

3.3.2 PET Weight Files

Equally important as finding the correct events is assigning each event the correct
amount of power consumption. As each event will count differently depending on the
architecture, PET will read a weight file along with the gem5 trace log. A sample
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Algorithm 3.1 Bucket size detection algorithm.

1 function numTicks ( traceFile ):
2 # Find file size
3 eof_pos = traceFile . getSize ()
4
5 # Seek almost to end , avoid last newline
6 traceFile .seek( eof_pos - 3 )
7
8 # Trace from back of file to second last newline
9 while not traceFile . currentChar is '\n':

10 traceFile . seek_backwards
11
12 # File stream position is now at beginning of last line
13 # Parse this line
14 simulatorEvent = parseLine ( traceFile . getLine () )
15
16 # Return the tick of the retreived event
17 return simulatorEvent . getTick ()

weight file is shown in Listing 3.2. As the timeslots are specified in simulator ticks
instead of CPU cycles, the values have been chosen to match a 2 GHz processor,
i.e., one CPU cycle per 500 simulator ticks 1. If this method was to be applied to
a processor with a different clock speed than 2 GHz, the weights would have to be
scaled proportionally. This is not the case for the static power drain, as it is added
to each timeslot, and not scaled in accordance with bucket size. It is also important
to understand that the weight is applied once for each event, so events that naturally
takes a number of cycles will have a high weight, which is in reality distributed over
many ticks. This will not be accurate if an expensive event is applied at the border
of a bucket. It is assumed that accuracy at this level is not important enough to
increase the complexity of PET.

The weights displayed in Listing 3.2 are accumulated each time PET discovers a
recognizable event in the log file. A simplified version of this algorithm can be found
in Algorithm 3.2

3.3.3 Program annotation files

PET has the ability to annotate its output using a map from PC to function name
(or rather, symbol name). The simulated binary itself is not an input to PET, instead
PET comes bundled with an annotation tool: scripts/annotate.sh. This tool
extracts symbols from the binary file, compiled with debugging symbols, to a text
file in the format seen in Listing 3.3. The left column represents the address where
the function is found, and the right column is the function name. PET will tag

1This is the default gem5 simulation granularity.
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1 # This file contains weights for the ARM Cortex -A9 embedded within
2 # Samsung Exynos 4412 Prime meassured on an Odroid X2. Details in
3 # Runde & Hvatum 2013 " Exploring Instruction Level Energy Efficiency "
4
5 # CPU Core Activity
6 IntAlu 170
7 IntMult 300
8 MemRead 80
9 MemWrite 50

10 SimdFloatMisc 400
11
12 # Memory related activity
13 L1IR 230
14 L1IW 340
15 L1DR 230
16 L1DW 340
17 L2R 1100
18 L2W 1300
19 PhysR 2600
20 PhysW 2800
21
22 # Static power
23 Static 70

Listing 3.2: Weight file example.

Algorithm 3.2 Power accumulation algorithm.

1 # map of accumulated power for each time step
2 map <time ,power > output
3
4 # input is all trace log lines , elements in weight file and
5 # the determined bucket size ( number of simulator ticks in
6 # each bucket )
7
8 function assignWeights ( traceLogLines , weightMap , bucketSize )
9 # run through each line

10 for each line in traceLogLines :
11 # extract event parameters from line
12 simulatorEvent = parseLine ( line )
13
14 # get the assigned weight from weight file
15 eventWeight = weightMap [ simulatorEvent . getEventType ()]
16
17 # add this weight to the output map
18 output [ simulatorEvent . getTick ()/ bucketSize ] += eventWeight
19 return output
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1 00008120 read_int
2 00008194 group_number
3 00008680 strip
4 00008734 read_int
5 000087 a4 group_number
6 000089 bc fini
7 00008 a08 call_weak_fn
8 00008 a2c deregister_tm_clones
9 00008 a64 register_tm_clones

10 00008 aec frame_dummy
11 00008 b44 main
12 00008 f40 check_one_fd
13 00009420 abort
14 000097 ac exit
15 000099 ec rand
16 00009 ed0 flush_cleanup
17 00009 ff0 save_for_backup
18 0000 bd44 malloc_init_state
19 0000 bda4 ptmalloc_unlock_all2
20 0000 be3c mem2mem_check
21 0000 beb8 mem2chunk_check
22 0000 c128 ptmalloc_lock_all
23 0000 c318 new_heap

Listing 3.3: Annotation File Example.

each bucket with the last seen symbol within that bucket. scripts/annotate.sh is
constructed using objdump and is shown in Listing 3.4.

1 #!/ bin/sh
2 BINARY =$1
3 OBJDUMP =$( which arm -linux -gnueabi - objdump )
4 if [ -z " $OBJDUMP " ]
5 then
6 OBJDUMP =$(find / -name 'arm -*- objdump ' -print -quit 2>/ dev/null )
7 fi
8
9 $OBJDUMP -S $BINARY | grep '<.*>:' | grep -v '<_' | tr -d '<>:'

Listing 3.4: scripts/annotate.sh: Script to extract symbols from a binary.

It should be mentioned that a program compiled with debugging symbols contains
hundreds, if not thousands of symbols. Often, many of these symbols are called in
clusters, while long periods of the program are spent in loops that are not using any
symbols at all. This often renders a graphical representation of the power log with
complete annotation as a complete mess. We recommend creating the annotation file
using the mentioned tools, but manually filtering out only the symbols of interest.
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3.4 Output

When a log file is consumed by PET, the output should be usable for many applica-
tions. In early stages of the design phase, or when great differences are expected,
a sparse annotated graphical output might be the best way of visualizing power
consumption. As the project evolves and more subtle changes are evaluated, a textual
output will be easier to compare. PET supports three different output options:

graph
This format is the default, and provides an overview of the entire program in an
easily digestible format. An example of such a graph is printed in Figure 3.2.

plain
The example in Listing 3.5 shows the plain format, which is intended to be
used for further machine processing.

table
The table format, with an example shown in Listing 3.6, shows a terminal-
printable output which is easier to read. It might come in handy as the default
format might be hard to read when you are looking for specific information.

3.4.1 Units

The output format is understood as timeslots in which the architecture has a certain
current drain, which should be multiplied with applied voltage to get consumed
energy. The values are given as milliamperes, equal to milliwatt if voltage is 1 V .
Milliamperes are used as it is easier to find current drain rather than wattage with
the setup used in this project, as described in section 2.2. When power is estimated
for a new architecture, the resistance of the circuit is difficult to deduce, and voltage
might also be an unknown factor. Given Ohms law in Equation 3.3 and the definition
of electric power in Equation 3.4

I = U

R
(3.3)

P = U · I (3.4)

it can be found that power equals current squared times resistance

U = R · I
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P = (R · I) · I

P = I2 ·R (3.5)

and that power equals voltage squared divided by resistance

P = U · U
R

P = U2

R
(3.6)

Thus, estimating only the current drain means that the power at each point will
be unknown without knowing resistance or voltage. Further, energy consumption
cannot be estimated unless the new architecture is similar in terms of voltage and
resistance to a chip where these numbers are available. Even the current drain might
not be representable at all; if resistance or voltage is unequal to the levels found in
the reference chip, the final numbers will be far off.

Equation 3.5 and Equation 3.6 states how voltage and current is important for energy
consumption. The current is, from Equation 3.3, dependent on resistance as well as
voltage. With this in mind, and knowing that power in a complex environment is
a delicate matter, the most important application for PET is to point in the right
direction. PET will never give accurate power estimations for new chips, but will
provide useful information for seeing if a new feature or architectural fix will render
the final architecture more energy efficient or not.

3.4.2 Examples of Output Data

Visualization is often a good thing when inspecting old or trying to understand
new problems. Figure 3.2 shows an example of PET graph output format, with
annotations.

Example of the plain output format can be seen in Listing 3.5. The left column is
the bucket number, while the right column is instant current draw from the modeled
architecture.

When reading the output directly from console, a more descriptive output format is
the table format. An example using this option is rendered in Listing 3.6.

3.5 Architecture

The trace logs read by PET can easily grow to 10s of gigabytes. Due to memory
constraints on commonly available computers, it is not feasible to read the entire log
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Figure 3.2: PET graphical output. This example contains annotations, each label
represents the entrance of a function.

0 120 memcpy
1 113 start
2 150 main
3 123 main
4 133 fun1
5 117 main

Listing 3.5: PET plain output with function annotations.

file into memory and then start parsing. One of PET’s major design goals is to be
user friendly and convenient to use, and as a consequence it must be reasonably fast.
To gain speed, the PET core is built around a parallel pattern similar to MapReduce
[53].

3.5.1 Overview

In order to obtain acceptable performance, we have looked at different ways of
digesting large data sets. The final implementation of PET follows a scheme borrowing
ideas from the producer-consumer pattern as explained by Gamma et. al. in [54] and
the MapReduce algorithm. As depicted in Figure 3.3, this scheme makes it rather
easy to let a producer (sequentially) read the lines from the log file into ring buffers
(produce) and let multiple consumers pick from their ring buffer (consume). Each
consumer parses the log lines they pick, and apply the weight of each read event to
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/----------------------------------------\
| Bucket | milliAmps | Symbol |
|------------|------------|--------------|
| 0 | 120.000000 | memcpy |
| 1 | 113.000000 | start |
| 2 | 150.000000 | main |
| 3 | 123.000000 | main |
| 4 | 133.000000 | fun1 |
| 5 | 117.000000 | main |
\----------------------------------------/

Listing 3.6: PET table output with function annotations.
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Figure 3.3: How PET works.

their result vector (map). When all lines are read and parsed, the result vectors are
merged (reduce) and idle-task power and static power consumption is added. This
combination of algorithms allows PET to take advantage of all available cores.

The next subsections will describe in detail the most important parts of the workflow,
in sequential order. For further understanding of the program flow, a call graph is
seen in Figure 3.4.

3.5.2 Argument Parsing and Program Options

As any other non-trivial programs, PET has to adapt to input options given from
the command line or from a settings file. PET makes extensive use of the Boost
library and utilize Boost::Program_options for parsing the command line. This
allows easy extraction of program options, both with long (——option=value ) and
short (—o value ) option style.
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main Pet::main

processProgramOptions

Pet::processStreams

Pet::produceOutput

vPrintparseAnnotationFile

parseWeightFile

doWork

findPowerModelMaxSize

sumStats

normalize

PowerModel::run

PowerModel::calculate

TraceLine::getSimEvent

PowerModel::annotate

SimEvent::getTick

PowerModel::updateStats

cleanStack

SimEvent::getType

Instruction::getPC

instrTypeToString

memTypeToString

OutputFormatter::addAnnotations

OutputFormatter::produce
Output

Figure 3.4: Call graph.

3.5.3 Reading Trace Logs

When arguments are parsed and a trace log has been specified, either by path or
as stdin, a single thread is kicked off reading each line of the log file into a C++
string container. This happens in the Pet::processStreams class member function
seen in Figure 3.4. The string container is then inserted into one of many circular
buffers. The circular buffers are implemented with boost::lockfree::spsc_queue,
a lock-free single producer, single consumer queue. The property of being lock-free is
explained by Tim Blechmann in [55]:

Data structures are lock-free, if some concurrent operations are guaranteed
to be finished in a finite number of steps. While it is in theory possible
that some operations never make any progress, it is very unlikely to
happen in practical applications.

In PET, this queue has a fixed size of 8192 elements, but dynamic size is also available
in the library implementation. Which buffer the string is inserted into is determined
by a simple circular algorithm; the next ring buffer is selected when the current one
is full. When the buffers are small, each are filled fast enough to keep all workers
occupied. We observed that this method avoids locking better than using a single
ring buffer shared by all worker threads. The number of threads and the size of the
ring buffers are tightly coupled with how fast the host computer is able to feed PET
with the log files.

3.5.4 String to Event Mapping and Power Accumulation

String parsing and mapping are the most compute-intensive parts of PET. PET
spawns multiple worker threads as specified by the user. As the producer fills the
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ring buffers for each of the workers, the workers pick strings from their pool. The
strings are popped from the ring buffer, thus making space for new elements right
away. Each string is parsed by the TraceLine class, which looks for patterns in the
strings containing known event types. When connecting PET with gem5, the trace
logs as previously seen Listing 3.1 contains an event type designation in the second
colon-separated column. The TraceLine class extracts this part by string trimming.

The event types are instantiated as objects of their parent type (Instruction- or
Memory-event). The right parameters are found from progressive string parsing. If
the event is unrecognized, a dummy object of type UnknownEvent is returned. This
type has zero cost later in the reduce phase. Each event object is able to figure out
its own weight as written in the weights-file. After the event has been parsed, the
weight is added to the power model at the corresponding time step.

In order to reduce the time used for disposal of the string objects after they are
parsed, they are placed in a static-size array. When this array is full, or the ring
buffer is empty, the worker frees all the string data. This helps keeping the memory
footprint low while avoiding unnecessary calls to free(). This optimization does
not have a massive impact on performance, but as can be seen from [56], the free()
implementation contains enough pointer arithmetic to make a difference in a tight
loop.

3.5.5 Data Reduction

When all lines from the trace log have been consumed by the workers, the threads are
joined and their data is returned as standard C++ vectors. These vectors are further
wrapped in yet another standard C++ vector. The inner vectors are then combined;
the value from the corresponding buckets in each vector is added together and put in
a result vector. This reduction happens as the last part of Pet::processStreams,
as seen in Figure 3.4.

After this reduction, the number of idle cycles is estimated by subtracting recorded
events from the maximum number of events in a bucket. This is done more simplistic
than accurate using Equation 3.8. eventsInWorkerBucket is the number of events
recorded in each vector at each bucket, and each event is pinned to the cycle where it
originated. Note that N is the number of worker threads, not the number of buckets.

eventsInBucket =
N∑

n=1
eventsInWorkerBucketn (3.7)

idleEvents = ticksInBucket

ticksInCycle
− eventsInBucket (3.8)
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It should also be noted that even though this method might work well in a single-cycle
in-order CPU, the out-of-order nature of the Cortex-A9 makes it hard to tell how
many idle cycles actually occurred. E.g., a single cycle may fill the pipeline with
four events, then idle the three next cycles; this would be calculated as no idle time.
When the approximate numbers of idleEvents have been estimated, that number
is multiplied by the Idle-weight and added to the sum in the result vector. Finally,
the entire vector is normalized according to bucket size and then static current drain
is added.

3.5.6 Output Production and Annotations

After the result vector has been completely accumulated, annotation is added to
a new vector in the same manner as the data reduction. With the new, merged
annotation map containing all last matches between a symbol and the program
counter within each measure point, this map is fed to the OutputProducer object
as seen in Figure 3.4. The OutputProducer is responsible for generating output as
defined by the input arguments. Its options have already been described in section 3.4,
and its implementation is a simple nested if-else-clause that calls internal functions
for each output type. The graphical output is produced using a wrapper around
gnuplot, while the textual outputs are created by printf-statements.

3.5.7 Unit Tests

All internal string parsing is verified by unit tests. The unit tests are written with
help from the Boost Test Library [57].

The test library generates a new binary with the same program content, except the
main function, thus the program flow is different. The test binary will run through
the listed functions with a certain input, and if the output is unexpected, the test
binary will print to the console an error message containing a description of what
went wrong.
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Several factors affect the PET model accuracy. We now consider the steps needed to
adapt the use of PET on a new architecture. First, one must create a CPU model
using gem5’s Python interface, resembling the modeled hardware. Then, finding
proper weights is formulated as a global optimization problem and matched up
against existing hardware.

4.1 Measuring a Real World Processor

The results contributed in this work relies on the existence of a method to isolate and
measure core voltage on a hardware implemented reference CPU. This is possible
due to the Vcore separation on the development kit, as mentioned in section 2.3.

In [17], we conducted experiments to quantify the energy cost of an instruction
executing on a modern out-of-order mobile processor. We were able to do this by
completely bypassing the memory hierarchy utilizing special hardware (fast-loop
mode) and sampling a running average. Voltage drop over a shunt resistor set in
series with the ODROID-X2 development board was measured. This voltage drop
was used to calculate energy used in the processor core. The results obtained are
further used to tune PET towards this architecture.

4.2 Simulator Environment

PET relies heavily on a front-end that can execute a binary on a simulator and output
(time, event) tuples as a trace of execution. In this thesis, we are using the gem5
simulator, but technically PET could be modified to support any simulator front-end.
The power profile generated by PET are derived from the weight configuration given
as input and the simulation trace, so it is important that the simulator trace is
similar to a hardware execution.

31
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Butko et al. [58] reports gem5 runtime accuracy to vary from 1.39 % to 17.94 %,
with the most accurate results coming from programs with low memory usage. The
benchmarks used represents a wide variety of scientific workloads, as well as media
applications and memory intensive synthetic benchmarks. The benchmarks used has
a high degree of instruction diversity, so they get away with having a simple CPU
model. The real program flow gets diluted and accurate timings are obtained simply
by setting the correct CPI value. In fact, they used an in-order model to simulate an
out-of-order core.

We claim that the key to obtain high precision power estimates is an architectural
simulator with great accuracy. The simulator must exhibit similar timing character-
istics as the target hardware under all workloads considered, such that the simulated
execution resembles the hardware execution as close as possible. This means that
accurate power estimation needs these discrete events to happen, and they must
happen with a realistic timing related to their triggering cause. Without a simulator
capable of providing decent accuracy over system events, power estimation using
methods as suggested in this report will fail. We will now explain how gem5 can
be configured to improve simulator accuracy for a particular CPU core, as well as
pointing out difficulties with this approach.

4.2.1 gem5 CPU configuration

The gem5 simulator is bundled with an out-of-order core implementing the ARMv7
ISA. It serves as a basis for the evolution of our custom core meant to model a
Cortex-A9 on the Exynos 4412 SoC. ARM cores can be configured with caches of
varying sizes decided by the implementing vendor and will have varying performance
accordingly. Thus, it is important to tune all CPU parameters so that it matches
the modeled SoC. It is not publicly known which SoC the default configuration
attempts to model, but according to the gem5 mailing list it is neither Cortex-A9 nor
Cortex-A15 [59]. However, the fact that it is made for the ARMv7 instruction set
and is out-of-order leads us to think that minor modifications will make it a decent
Cortex-A9 model.

The model gem5 uses in its simulations can easily be configured using a Python
interface. We started with gem5 changeset aaf017eaad7d and added a new CPU
configuration file for the Exynos 4412; gem5/configs/common/Exynos_4412P.py. A
few other files were edited to accommodate the new processor definition. Please refer
to Appendix B to see all patches applied in these experiments.

We found many sources of information claiming to know implementation details of
the Cortex-A9, including [58, 60, 61, 62, 63, 64, 65, 66].

Combining this information helps us build a gem5 model for the Exynos SoC, but
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it is still not trivial. We found the simulator to perform different from the physical
hardware, even though the system parameters were set equal. We claim that this
is due to the abstraction the simulator provides us; the simulator is not a complete
model of the hardware. Gibson et. al. [67] have done a similar experiment using
different simulators and concluded that bugs and omissions in system simulators may
render accuracy tuning difficult.

To improve our results, we adjusted the model specification such that it performed
similar to the hardware, i.e., programs executed in about the same number of
clock cycles. Even if the processor implementation would have been completely
transparent, it would still be hard to leverage the use of a multi-architecture computer
simulator. Features such as fast-loop mode found in certain ARM cores must have a
corresponding implementation in the simulator for complete correctness; it would be
infeasible to include such details in a general simulator.

We scripted the simulator to run a wide variety of configurations, about 50 in total.
We evaluated their performance by comparing simulated execution time to execution
time on real hardware. Real execution time was inferred by measuring power during
program executions and identifying when the CPU was working. The final CPU
configuration is shown in its entirety in section B.1.

4.2.2 gem5 Memory Model

The memory system is an important part of a system simulator when doing per-
formance estimations. At the time of writing, gem5 will not easily work with an
out-of-order CPU model together with the GEMS Ruby memory system. Lacking
other methods and considering our resources, the simple memory system will provide
events that PET can use to determine memory and memory bus communications.
The simple memory model was tuned as shown in section B.6.

4.3 Multi-objective Weight Optimization

With an accurate CPU model, the event weights used by PET must now be tuned
to match measured power consumption on real hardware. We formulated this as a
multi-objective optimization problem.

We started by creating a set of training workloads, essentially computer programs
designed to hold certain characteristics compiled to a native ARMv71 binary. The
design and selection of these will be elaborated in the next subsection. We executed
the binaries in the gem5 simulator with the CPU model from last section to obtain

1ARMv7 is the instruction set architecture supported by ARM Cortex-A9.
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Algorithm 4.1 Algorithm used to evolve a set of event weights.

1 individuals = createIndividuals ()
2 generations = 6000
3
4 best = None
5 for 1 to generations :
6 for ind in individuals :
7 evaluate (ind)
8 if ind betterthan best:
9 best = ind

10 individuals = mutate (ind)
11
12 print best

a file containing (time, event) tuples from the (modeled) execution, just like in
Listing 3.1. The next challenge was to assign each of these events a cost.

We attack this problem by running a multi-objective optimization algorithm. We
picked a subset of event types that is believed to impact energy consumption, as we
described in subsection 3.2.2. Choosing too many events could give us overfitting
issues, but taking too few out could lead to lack of detail in our model. We
experimented with dozens of optimization algorithms and ended up combining a
1 + λ evolutionary strategy with simulated annealing. The evolutionary part would
make sure that our algorithm was explorative enough (i.e., it covered large parts of
the candidate solution space), while the simulated annealing part made the algorithm
more aggressive to start with. Using DEAP [68], a Python framework for evolutionary
algorithms, we were able to prototype our ideas rapidly. Algorithm 4.1 describes the
final algorithm.

Figure 4.1: Sample individuals.

Each individual is a set of CPU events, each mapped to an energy cost. Figure 4.1
illustrates what individuals in the population look like. The top row enumerates all
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event types; e.g., the cost of an integer multiply event for individual 2 is 1400. The
unit here is not really important, but roughly corresponds to Ampere · cycles, with
static drain deducted. The evolutionary algorithm starts by generating 10 individuals
by using the algorithm shown in Algorithm 4.2. It assigns most weights a random
value in range {0, . . . , 999}, while guiding some weights to a known value. E.g., the
static energy contribution is known to lie around 96 mA by physical measurements,
so its weight is believed to be close to that number. Please note that there is not
necessarily a direct mapping between the GA (Genetic Algorithm) weights and
measured milliamperes; it is up to the evolutionary algorithm to figure out what
causes a best fit.

Algorithm 4.2 Algorithm used to generate individuals.

1 # Properties kept by each individual
2 individualProperties = {
3 'IntAlu ', 'IntMult ', 'IntAlu ', 'IntMult ', 'MemRead ', 'MemWrite ',
4 'SimdFloatMisc ', 'L1IR ', 'L1IW ', 'L1DR ', 'L1DW ', 'L2R ', 'L2W ',
5 'PhysR ', 'PhysW ', 'Static ', 'Idle '}
6
7 # Generate random individual
8 def createIndividual ():
9 ind = EmptySet

10 for prop in individualProperties :
11 ind[prop] = random () *1000
12 ind['Static '] = 96*( random () +0.5)
13 ind['Idle '] = 50*( random () +0.5)
14 return ind
15
16 # Generate 10 random individuals
17 def createIndividuals ():
18 individuals = EmptyList
19 for 1 to 10:
20 individuals .add( createIndividual ())
21 return individuals

To calculate the fitness of an individual, we run PET with the genome weights on a
set of workloads and compare the energy profiles with measurements on hardware.
The two sets are then compared using Algorithm 4.3, resulting in the individual’s
fitness – lower is better.

We emphasize that the use of an evolutionary algorithm is an arbitrary choice.
Technically, any algorithm could have done this for us. When the weights have
evolved to match the hardware measurements, the method used to obtain the weights
is of no importance.
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Algorithm 4.3 Algorithm used to evaluate an individual.

1 # Evaluate individual
2 tests = {'trend ', 'submul ', 'sha2 ', 'pi '}
3
4 # Find RMS distance between two data sets
5 def distance (graph1 , graph2 ):
6 diff = 0
7 for points in graph1 , graph2 :
8 diff += ( points [1] - points [2]) ** 2
9 return sqrt(diff / minsizeof (graph1 , graph2 ));

10
11 # Find RMS distance between PET estimate and measured power consumption
12 def runTest (ind , test):
13 data = runPET ( getWeights (ind), test)
14 measure = getMeasureData (test)
15 return rmsDiff (data , measure )
16
17 # Find all distances and return result as RMS
18 def evaluate (ind):
19 fitness = 0
20 for test in tests :
21 testFit = runTest (ind , test)k
22 fitness = fitness + ( testFit ** 2)
23 return sqrt( fitness )

4.4 Choosing Workloads

When running a genetic algorithm, it is critical to lead the evolution in the correct
direction. In our case, this is done by providing a reasonable set of workloads (i.e.,
ARMv7 programs) that stresses distinct modules in the processor. For instance, a
memory intensive workload will have high density of memory-related events from the
simulator, and will support the genetic algorithm in determining cost for memory
accesses. It is important for the set of workloads that are chosen to be diverse and
stress many conditions the processor can operate in, e.g., mixes of compute intensive
and memory intensive programs. A poorly chosen set of workloads will not give a
fair judgment on which genomes that fit well. A bad workload might be too biased
towards a few parameters, neglecting the rest, or even mislead the GA into a local
optimum [48]. All training programs are compiled with soft-floats to keep simulation
complexity low. Another worry is that within the training set, there will most likely
exist multiple Pareto optimal solutions [69], but only one of these can truly match
the real power consumption.

We came up with the following four workloads.
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Pi
This test calculates Pi using Monte Carlo simulation. It includes floating point
multiply and division. It runs for a fixed amount of iterations.

SHA-512
The SHA-512 algorithm is a hashing algorithm used in cryptography. It includes
a mix of integer operations and memory usage. Implementation from [70].

Trend
This test has two parts. It starts with a tight add loop, and then continues
with extensive memory allocation. Presumably, this will create a shift in energy
consumption between the two stages.

SubMul
The SubMul test borrows ideas from the previous program, but instead of
testing ALU and memory, this test compares subtract and multiply (both
ALU).

We claim that the workloads used in this experiment spans the most common
instruction types while being simple enough to be simulated in gem5 on reasonable
time.

4.5 Results

We have now discussed how PET must be tuned to work with satisfying accuracy.
Here we present the results obtained by tuning towards the ARM Cortex-A9.

4.5.1 gem5 CPU Model Accuracy

We modeled different CPU configurations for gem5 and achieved runtime in millisec-
onds as tabulated in Table 4.1. Each test was run with the command in Listing 4.1,
with $CPU changed to exynos_4412p, arm_detailed and timing.

$ build /ARM/gem5.opt --remote -gdb -port =0 -d m5out
configs / example /se.py -c bin --cpu -type=$CPU
--mem -type= LPDDR2_S4_800_x32 --sys - clock =440 MHz
--cpu - clock =1700 MHz --num - l3caches =0 --caches --l2cache
--l2_assoc =16 --l2_size =1 MB --l1d_size =32 kB
--mem -size =2048 MB --l1d_assoc =4 --l1i_assoc =4

Listing 4.1: gem5 Command Line.

As can be seen, we were able to get the runtime of our modified O3 model (exynos_4412p)
fairly close. With ordinary workloads Pi and SHA-512, the execution time differed
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Pi SHA-512 Trend SubMul
Real hardware 13.500 22.600 14.600 28.200
exynos_4412p 13.790 22.819 11.898 23.978
arm_detailed 6.708 10.368 4.344 8.653
timing 19.564 40.659 20.503 41.964

Table 4.1: gem5 runtime accuracy (O3 with classic memory system). In milliseconds.

1 Idle 437
2 IntAlu 239
3 IntMult 256
4 L1DR 54
5 L1DW 28
6 L1IR 15
7 L1IW 129
8 L2R 97
9 L2W 785

10 MemRead 542
11 MemWrite 56
12 PhysR 0
13 PhysW 0
14 SimdFloatMisc 1648
15 Static 6

Listing 4.2: Final weight configuration.

by less than 2.2 %. Trend and SubMul, the synthetic tests, differed by 22.7 % and
17.6 %, respectively.

4.5.2 Optimization using 1 + λ

PET has been optimized by a genetic inspired algorithm, so it was expected to
perform very well on the training data sets. Listing 4.2 lists out the final weights
found by the GA. The weights have reasonable values for the ALU operations (IntAlu,
IntMult, MemRead, MemWrite, SimdFloatMisc) compared to the results found in
[17]. The values for the cache hierarchy (L1DR, L1DW, L1IR, L1IW, L2R, L2W)
does also seem adequate. PhysR and PhysW are set to zero because the physical
memory of the Exynos 4412 Prime is not believed to be powered by Vcore. However,
peculiar values are set for Idle and Static. Our theory is that CPU idle time is
often caused by high I/O activity; this would explain how an idle CPU could use
much power. However, we can not be certain how the events match to the hardware.
The GA only optimizes the event weights and ignores the intended meaning of them.
One must also remember that the Idle events are calculated by a very simple model,
and the cost can be high if too few idle cycles are recognized by PET.
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Results for each training set after the training session are displayed in Figure 4.2,
Figure 4.5, Figure 4.3 and Figure 4.4. Each figure represents one of the workloads
explained in section 4.4. The red line in each figure represents the prediction by
PET, while the green line is a direct plot of readings from the test setup. To remedy
the mismatch in execution time, the prediction done by PET is stretched.

Training Set: Pi

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0  2  4  6  8  10  12  14

C
u
rr

e
n
t 

(m
A

)

Time (ms)

PET Estimate
Measured

Figure 4.2: Overlay of PET training results (red) and training data (green) for the
Pi test.

The Pi test uses floating point and random values with a static seed. The program
is compiled with soft-float, so it can be viewed as an integer stress test. We obtain
rather good accuracy with this test, in general the error is a below 10 mA. As it
represents a common workload, this is a very promising result. It is interesting that
the beginning and the end of the program are the most power consuming pieces. This
is probably due to the simplistic method idle time is calculated, and the out-of-order
nature of the processor makes the genetic algorithm overestimate the cost of idle.
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Training Set: Trend
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Figure 4.3: Overlay of PET training results (red) and training data (green) for the
Trend test.

The Trend test checks if PET can follow the flow from an ALU intensive program
to a memory intensive program. The accuracy is close to the Pi training set, but
the most important factor with this test is that the drop at 7 ms is resembled in
the prediction. Given that PET recognizes this drop, we know that PET adjusts
correctly for the change in instruction flow. The fact that the sudden drop in power
consumption seems to come a bit too slow is most likely due to discrepancies between
the gem5 model and the real hardware.
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Training Set: SubMul
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Figure 4.4: Overlay of PET training results (red) and training data (green) for the
SubMul test.

Further, the SubMul test is created to follow the shift from simple integer operations
to a multiplication-dominated loop. PET again follows the trend, but overestimates
the cost of multiply. Again, the trend is the most important factor. It should also be
noted that even tough the loop contains a lot of multiply instructions, the assembled
binary still uses a lot of basic integer operations for program flow, storage, registers,
addresses, and so on. Note that the shift now happens earlier in PET than in the
hardware, the opposite of Trend. This is likely due to runtime variatons in gem5
versus real hardware.
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Training Set: SHA-512
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Figure 4.5: Overlay of PET training results (red) and training data (green) for the
SHA-512 test.

The last test in the performance tuning algorithm calculates a SHA-512 hash sum.
The test results are shown in Figure 4.5 and differs from the other tests by being
more memory intensive at the same time as it is an extensive user of both multiply
and simpler integer operations. This test is well within 3 % of measured and is yet
another example of accurate prediction on general workloads.
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We have built PET and trained it to match our reference hardware. Now, a control
test is used to verify that the result is good for the general problem, not only the
specific instances used for training. This chapter will describe and discuss the test
benches used for evaluation as well as the results. It will also discuss challenges in
simululation level power estimation.

5.1 Test Environment

PET has already proven that it is able to do the job of power estimation for the
training data. The set of workloads has been split in training sets and test sets. This
separation is necessary in order to achieve a good result from the genetic algorithm
[40, 71].

The test data set consists of a short Dhrystone run and a synthetic add loop, each
representing different use of the processor. The Dhrystone test aims to measure
overall performance of the general processor, while the add loop will stress the ALUs,
leaving most of the other parts of the CPU idle. The Dhrystone test is run for 100 000
iterations. This is too short for benchmarking performance, but it is long enough to
measure current drain and short enough to simulate on a simple workstation.

There are sources claiming that gem5 is very accurate [58, 72], but these claims
are done with focus on overall performance of long-running benchmarks, not the
correctness of the architectural events. This renders a problem for PET, which needs
correct architectural events to happen in order to calculate the power profile. Yet
another important issue is that the gem5 processor model is not identical, but merely
similar to the Exynos 4412. Properties like the fast-loop mode are not implemented
in gem5, and parameters for the branch-predictor are not publicly available. Further,
this means that some discrepancy between the measurements and PET’s prediction
is inevitable.

43
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5.2 Power Estimation Challenges

Creating PET has revealed a number of challenges of simulator supported power
estimation. The goal of any power estimation tool would be to deliver the correct
answer of how much power a certain architecture would use, but many caveats makes
this almost impossible with current methods. A non-complete list of things that
are important with respect to power consumption, but are hard to get correct in a
simulator are described below.

Cache and memory state: The cache and memory systems, together with various
cache prefetchers, branch predictors, fast-loop queues and so on will make it
difficult to assure that the simulated system are in the exact same state as the
physical system.

Interrupts: It is hard to predict when interrupts occur. Interrupts causes context
switches, and thus a change in system behavior and power drain.

Undisclosed CPU and system specifications: Unless the whole system is built
in-house, there will often be certain specifications that are not available to the
tester. PET was built against a CPU where many details were undisclosed; it
was not trivial to find sufficient details to configure the simulator.

The above list is by no means a show stopper. However, half-measures must be taken
if a non-complete simulator is used. Nevertheless, fruitful results can still be obtained.
The best power estimator that could be built around a simulator would be the one
that reflected the ideas of the simulated hardware in the best possible way. This
estimator would give a hint about final power consumption and its trend over a set
of test programs, and would be usable for application specific power optimization.

5.3 Results and Discussion

PET has been benchmarked by simulating the test workloads and comparing measured
current drain from the ammeter with the output from PET. This is similar to how
fitness is calculated from the training data sets and their corresponding measurements
in section 4.3.

5.3.1 Presentation of Test Sets

We now present the two test sets used to evaluate PET performance, Dhrystone and
Add.
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Evaluation Set: Dhrystone
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Figure 5.1: Overlay of PET training results (red) and training data (green),
Dhrystone test.

The Dhrystone test results drawn in Figure 5.1 is chosen as one of the final tests for
PET as it utilize a wide range of both the integer parts and memory system of the
processors. There is a chance that the values are weighted wrongly, but still matches
the sum of the real power drain. We claim that decent hits on all four training
sets and the Dhrystone test indicates that the GA found a proper set of weight for
the ARM Cortex-A9 processor. Please note that the y axis in Figure 5.1 starts at
200 mA, and that the error is less than 3.9 %.
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Evaluation Set: Add
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Figure 5.2: Overlay of PET training results (red) and training data (green), Add
test.

The next test is Add, which is displayed in Figure 5.2. It is particularly interesting
because it utilized the fast-loop in the Cortex-A9. This implies that it would not need
its L1-cache nearly as much as the simulator, as the simulator does not implement
fast-loop. However, the real hardware would keep its ALUs more active than the
simulated results, thus PET will predict a lower power drain, as it thinks that the
caches are in use. This is a problem one must be aware of when the simulator and
realized hardware does not completely correspond to each other. However, the main
purpose of PET is to estimate changes visible at the simulation level. Thus, this is
not a real problem in the ordinary scenarios.

5.3.2 Explanations and Errors

The estimates given by PET is created from a very high level of abstraction, and will
never contain enough information to exactly resemble the power profile of the realized
chip. However, given that the power consuming events are carefully selected and
properly weighted, the current results indicate that this method works satisfactory.

In Figure 5.3, recreated from Figure 8 in [17] which uses exactly the same power
measurement setup, it is clear that the measured current drain varies over time
seemingly uncorrelated to both on-chip and ambient temperature. Each data point
in the figure represents the results from a test run of the Add test with about one
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Figure 5.3: Variations in measurements.

hour between each run. The results ranges from 208 mA to 224 mA and averages to
216 mA. The results can be written as:

Iadd = 216 mA± 8 mA = 216 mA± 3.8 %

With a measured error of ±3.8 % it is not unreasonable to expect a 7.6 % error in
all measurements. This means that the weights found using measurements and a
GA might be wrong since each training set might have slight discrepancies between
each other. This again renders it impossible to get correct results. By chance, some
genome could fit all training set even though it contains errors, but the weights would
most likely be unequal to the “correct” weights.

Most search algorithms are prone to a phenomenon called overfitting [40]. Overfitting
happens because the genetic algorithms will find any kind of obscure patterns in the
data sets, e.g., if a high power drain was seen randomly, but a specific event often
happens at that particular time, the algorithm would try to blame the event for it.

It is clear from Table 4.1 that the CPU model used in gem5 is not exactly equal to
the Cortex-A9 core used in the Samsung Exynos 4412 Prime SoC, thus each graph in
both training and results are stretched to match each other. This is certainly a source
of error, but from Trend in Figure 4.3 and SubMul in Figure 4.4 it is reasonable to
believe that the scaling works, as the change in program flow is shown not far from
each other in the predicted graph and real measurement graph.

5.3.3 PET Processing Performance

To test the performance of PET, we ran a simple benchmark on a system consisting
of an Intel Core i7 4820, 32 GB DDR3 SDRAM and reading trace log files from a
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software RAID Level-0 consisting of two Western Digital Caviar Black 750 GB disks.

The results shows that reading the trace log file is not the bottleneck, and that the
program itself is CPU-bound. It is easy to feed at least 8 cores when the log file is
hosted on a reasonable fast drive. PET running with 8 threads on this particular
system is consuming log files at a rate of 133 MB/s, regardless of whether the log
files resides in RAM or on disk. The benchmark used a log file of 5458 MB and took
40.871 seconds to process.



Chapter6Conclusion and Further Work

In this thesis, we have taken advantage of hardware measurements on real hardware
and an architectural simulator to create a power estimation tool. The following
sections will highlight our contribution, discuss use cases and relate it to existing
solutions. We will also provide a review of interesting topics for further work.

6.1 Conclusion

PET, a power estimation tool, is a software tool for estimating power consumption
on existing as well as non-existing computer architectures. It uses output from gem5
together with a set of weighted parameters to estimate energy consumption of a
program running on a given hardware model. The weighted parameters are selected
by investigating the pipeline of an ARM Cortex-A9 processor. We have run a set
of workloads on the hardware platform and logged their current drain over time.
Further, the results were used as input for a genetic algorithm that mapped the
correct energy usage to each architectural event in the simulator.

PET is not designed to be as accurate as possible, but to assist hardware developers
as early in the design stage as possible. As opposed to classical methods, PET can be
applied to a design already when only a simulation model exists. Well known tools
such as Wattch [30] or McPAT [25, 26] also utilizes a simulator, but requires more
knowledge about the final hardware, e.g., RTL and process technology. Regardless
of such information, PET is able to estimate current drain with a margin of error
within 5 % when testing against the ARM Cortex-A9 processor.

Because PET is a tool meant to be used early and rapidly in the design phase, it has
to be fast and easy to use. PET will predict power usage from log files and is tested
to evaluate about 133 MB of log files per second on a commodity computer. Even
with log files expanding tens of gigabytes, running PET takes less time than running
a low-level power estimator.
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An excessive amount of time has been used for tweaking PET, gem5 and the genetic
algorithm to match our reference hardware platform as precisely as possible. Still,
we believe that the effort needed to port our methods to a new hardware platform or
architecture is much less. The genetic algorithm was in our case able to find good
weights within few hours, and with carefully selected power consuming events it is
likely that this is the same for other architectures. Unrealized hardware still needs
to derive weights from similar hardware.

Our observation is that PET allows evaluation of the big picture easier and earlier in
the design stage than existing solutions, simply because it estimates power with less
hardware details. We hope that PET will be useful when developing both tiles for
SHMAC architecture and processors in general.

All in all, using PET or other tools built from the same concept of weighting
architectural events is possible for a set of scenarios. How exact the model is will
depend on the simulator tuning and the genetic algorithm used to match ammeter
measurements. The process of settings weights for PET seems cumbersome, but for
most practical settings the most important thing is to have the weights reasonably
proportioned among themselves.

6.2 Further Work

PET has proven to work quite well with the ARM Cortex-A9, but no effort has
been put into verifying that the concept works for multiple architectures. Testing
against other both realized and non-realized processors is yet to be done. An other
important section where PET could prove useful, is in the development of memory
hierarchies. PET has not been tested very well for this purpose as it is not clear
from the provided data sheets how the main memory is powered on the ODROID-X2
platform. A similar experiment on fully disclosed hardware would most likely provide
much more accurate information for the idea of event based power consumption
prediction. An interesting experiment would be to compare the accuracy of PET to
tools that work on the RTL-level, even though the major purpose of PET is rough
estimation rather than correct predictions.

When it comes to the SHMAC project, an important piece of work will be to use PET
and its ideas early in the design phase. Taking advantage of this can can shorten the
path to more energy efficient tiles.
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AppendixATDT4501: Exploring Instruction
Level Energy Efficiency

In the pages to follow, the paper from our fall specialization project (TDT4501) is
attached. Raw data and source code used to create that project can be found at
github.com and can be cloned with:

git clone https :// github .com/ terjr /arm - project .git

The fall project solved part 1 of the problem as described in the problem description:

Investigate the power/energy consumption of simple benchmark programs
on real hardware, i.e., create benchmark programs and evaluate perfor-
mance by measurements.

Hardware and test setup is the same as used in the thesis.
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Exploring Instruction Level Energy Efficiency
Terje Runde and Stian Hvatum
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Abstract—Modern microprocessors are limited by power den-
sity and new designs must emphasize energy efficiency to become
successful. Building energy efficient hardware requires better
understanding of how the ISA and its implementation relates
to energy efficiency. This paper investigates the instruction level
energy efficiency of an ARM Cortex-A9 and presents current
drain and pipeline utilization for different instructions. These
numbers reveal information about how instructions are executed
and how energy efficient their implementations are in this
proprietary architecture.

The testbench used in the experiments relies on accurate en-
ergy measurements. This is achieved by measuring voltage drop
over a shunt resistor placed between the CPU core voltage supply
pins and an external power supply. Memory usage is avoided
by exploiting instruction buffers and omitting loads/stores. This
renders the memory hierarchy unused, isolating the core as much
as possible.

The results shows that the ARM ISA is well balanced. Com-
monly used instructions such as add, sub and mul seems to be
energy efficient. Unfortunately, the ISA suffers from an inefficient
handling of conditional execution and status flag updates. Such
instructions seems to force synchronization, which then leads
to inefficient utilization of the otherwise computationally strong
core.

Index Terms—Energy efficiency, microprocessor chips, perfor-
mance analysis

I. INTRODUCTION

MAKING processors burn less energy while at the same
time increasing performance is currently one of the

greatest challenges hardware designers are facing. Perfor-
mance alone can be improved by cramming more components
onto integrated circuits [1] utilizing new process technologies.
However, due to the end of Dennard scaling [2], power density
on chip will increase linearly with transistor count. Computer
designers are forced to employ novel techniques mitigating
this issue, such as shutting down parts of the chip [3] and
designing specialized hardware.

As processors grow more sophisticated, it becomes harder
to reason about their energy efficiency. Even RISC processors,
which traditionally were designed to be simple[4], have seen
a steep increase in complexity during the last decade[5].
Features that previously only existed in CISC processors are
now entering the RISC domain; more complex operations
are done per clock cycle. Current RISC designs may have
deep pipelines, increased component complexity, advanced
branch predictor units and a high degree of instruction level
parallelism. They include features that aims to reduce energy
consumption and increase throughput in return for added
complexity. Moreover, processors are increasingly designed

to integrate seamlessly with external components such as
accelerators and the memory system.

The need for energy efficient processors is increasing. To
better understand how execution of different instructions con-
tribute to energy consumption we propose a method to measure
energy efficiency at the instruction level of a processor. Being
able to model and monitor energy consumption has recently
got the industry’s attention: Semiconductor companies are
making software and hardware targeting the embedded market
providing a monitor for energy consumption on-chip, giving
application engineers the opportunity to optimize for energy.

With the emergence of performance counters, it is now
possible to detect how different pipeline stages affects the
overall power consumption. Previous research correlates power
drain seen from the wall outlet with performance counters on
the CPU[6]–[8]. Others look at energy usage under different
workloads[9].

In this paper, we analyze the instruction level energy
efficiency of a modern RISC architecture. We isolate as
many architecture components as possible by correlating per-
formance counters with observed current drain for specific
instructions. We also show that it is feasible to get a per
instruction energy overview of an existing architecture by
understanding the hardware and writing benchmark programs.
We look at simple single-cycle instructions as well as the
most complex instructions using multiple cycles on our target
processor. When each relevant instruction has been measured,
we compare their normalized energy consumption and discuss
properties of different instructions.

This work is motivated by and related to the SHMAC
project[10]–[12] at NTNU. The goal of the SHMAC project is
to build an energy efficient heterogeneous many-core computer
architecture: multiple processing cores with different capabil-
ities share a single ISA and can be put on the same die to
create a processor tailored for a specific application. Exploring
instruction level energy efficiency gives us a better view
on how different ISA implementations perform at different
tasks[13]. This information can be useful in the design phase
of novel computer architectures such as SHMAC.

Another use for this kind of information is that compilers
can optimize code for energy efficiency and not only perfor-
mance. Further, it can enable simulators to estimate energy
consumption of a given program and even compare energy
efficiency on different cores, as shown to be effective in [13].
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Fig. 1: Experiment setup

Manufacturer Hardkernel
Platform ODROID-X2
SoC Samsung Exynos 4412 ”Prime”
CPU Core ARM Cortex-A9 (r3p0)
Number of Cores 4
Clock Freq. 1.7 GHz
Core Voltage 1.3V
OS Debian GNU/Linux Testing (“jessie”)
Kernel Linux 3.8 (custom)
Voltmeter Agilent 34410A
Power Supply Agilent E3631A
Shunt Resistor Thermovolt AB 5697 0002 12mΩ

TABLE I: System specifications

II. METHODOLOGY

A. Test Environment

In our experiments, we are using the ODROID-X2 [14]
developer platform, which has an Exynos 4412 ”Prime”
System-on-Chip with four ARM Cortex-A9 processor cores.
We disable three of the cores through sysfs, leaving only one
core available to the scheduler. The processor runs at a fixed
frequency of 1.7 GHz. The test environment is sketched in
Figure 1 and the details are summarized in Table I.

The Cortex-A9 is a 32-bit out-of-order dual-issue specula-
tive RISC processor, and even though its primary use is in
mobile and embedded applications, it shares many features
with current desktop processors [15], [16]. It can issue two
instructions per cycle and branches its pipeline into four lanes,
as depicted in Figure 2. Most instructions can execute in
either of the two general ALU’s, but multiply instructions must
execute in the ALU with a hardware multiplier. The processor
core also has separate units for floating point operations (the
NEON co-processor) and address manipulation, but these will
not be further considered in this paper.

In general, energy consumption of a processor varies with
respect to the workload; the harder it has to work, the
more energy it uses. In this paper, we seek to achieve the
highest possible ALU throughput the processor can offer. To
accomplish this, we are required to gain knowledge of the
pipeline and other components within the CPU.

Official documentation of the pipeline structure is limited to
the “Cortex-A9 Technical Reference Manual” [18] and “The
ARM Cortex-A9 Processors” whitepaper [17]. However, by

Fig. 2: ARM Cortex-A9 pipeline and peripherals[17]

running some architectural experiments and consulting the
performance counters we are able to infer some details.

B. Architectural Experiments

The A9 processor has 58 distinct events1 that each can
be mapped to one of six generic event counters in the
Performance Monitor Unit (i.e. only six generic events can be
tracked simultaneously). It also has a separate cycle counter.
By comparing execution unit counters for the two ALUs
and the cycle counter, we obtain detailed statistics about the
pipeline activity. For example, we run add instructions with
and without hazards, and verify that the core is able to share
the work between execution units in the latter case. Note
that these performance counters are approximate due to the
speculative core, and only serves as a guideline and sanity
check for our assumptions.

Using performance counters as above, we are able to
confirm a feature on the A9 processor that is very vaguely
documented; fast-loop mode. As the name suggests, this
feature enables rapid execution of small loops. It does so by
fetching instructions from the instruction cache only at the
first loop iteration, effectively voiding time and energy spent
on instruction lookups between iterations. However, which
loops that falls into this category is not documented, but by
using performance counters we are able to determine this with
confidence. We disable the L1 cache, penalizing runs that do
not fit in fast-loop, making it easy to distinguish between
runs within and outside fast-loop. We find that for a loop
to be executed in fast-loop it must hold one subtle property:
the loop in its entirety must fit within the first 60 bytes of
a 64 byte cache line. Consequently, the loop body must be
13 instructions or less (15 including sub and bne). Loops
without this property will cause code to be executed outside
fast-loop and get a significant decrease in performance.

Furthermore, executing code within fast-loop limits the
number of cache mispredicts to two, independent of the
iteration count. We confirm this by looking at the cache
mispredict performance counter.

1A complete overview can be seen in table A.18 in [18]
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Fig. 3: Instruction loop

C. Benchmarks

As a first approximation, the benchmark programs consists
of an infinite series of identical instructions. Since the A9
core runs at a fixed frequency and we are providing a fixed
core voltage, so energy usage per instruction can be deduced
from the continuous power drain during instruction runs. In
general, the power drain related to a particular instruction can
be calculated as following:

Pinstruction = Iinstruction · Vcore (1)

The fixed core clock cycle gives a fixed amount of time per
cycle. Thus, we use clock cycles as our base time unit. Energy
is then given as

Einstruction = Pinstruction · cycles (2)

We are unable to measure core power directly with our
equipment. However, voltage and frequency are assumed
constant, which gives a linear relation between current and
consumed energy. Instead of providing numbers in Joule per
instruction, we measure the current drain and multiply with
the number of cycles the instruction lies within any of the
processors functional units. This gives us the unit of Ampere-
cycles, which in our environment maps directly to energy. We
neglect the voltage drop over the shunt resistor, which is in
the order of a few mV.

This simple setup does not take the memory system into
account; we are undoubtedly not able to feed the processor
instructions at no cost in terms of access speed and – more
importantly – memory system energy usage. Thus, we enhance
our setup by running all benchmark code within fast-loop. To
explicitly feed the processor instructions without the overhead
of interrupts, we write Linux kernel modules that once in-
serted, execute a loop similar to the one shown in Figure 3.
Note that the subs and bne are used to generate a loop body
small enough to fit in fast-loop, and at the same time allows
us to terminate the program after some number of iterations.

It is stated in [18] that branching to immediate locations
does not use clock cycles. Our micro-benchmarks branches to
immediate locations, but it does so conditionally. We assume
that the calculation of the branch condition, the subs, takes its
normal execution time, while the following branch instruction
is invisible.

D. Power Measurements

To measure energy consumption, we use an Agilent 34410A
multimeter[19] to sense the voltage drop over a shunt resistor,

set up as shown in Figure 1. The multimeter is configured to
sample at its highest sampling rate of 10 kHz. This yields
one sample every 170,000 instructions with an error of at
most 1mV . It is obvious that we are unable to observe inter-
cycle fluctuations with this equipment, but as we run the same
instruction practically indefinitely we extract the average. The
loop for each instruction runs for about 20 seconds and we
gather 50,000 samples (over a period of 5 seconds) in the
middle of this loop. Observational errors are accounted for
by running the power measurement loop many times for each
instruction. We also sleep 30 seconds in between runs to dilute
the effect of temperature variations. Running over the entire
testbench takes about 100 minutes and we average the medians
for each instruction run to get a single value.

We separate power consumption on the ARM cores and
the development board by modifying the ODROID-X2 and
providing a separate power supply for the A9 cores. They get
powered by an external power supply giving 1.3V DC, while
the rest of the board is powered from a another power supply
at 5.0V , as depicted in Figure 1. We cannot verify that CPU
cores sit alone on the 1.3V power rail, but we observe a strong
degree of correlation between core activity and Vcore power
drain.

Certain instructions use more than one cycle to complete
their work, so the energy usage has to be normalized. An
instruction that occupies the pipeline for two cycles is believed
to use approximately twice as much energy. By normalizing,
we can convert point-in-time current drain in terms of Amperes
to energy per instruction in Ampere-cycles.

E. Pitfalls

We measure the current drain of different instructions sep-
arately, so we need to fix as many parameters as possible. We
must acknowledge that some factors affects power consump-
tion and produces noise in our data.

One obvious such factor is the chip temperature: it is known
that power consumption increases at higher core temperatures.
We explore the boundaries by physically applying cooling
spray and notice that our measurements on average gets 4%
higher with a temperature increase from 9◦C to 63◦C . The
mul instruction had the greatest leap and used 7% more energy
at 63◦C. In our experiments, only one of the four available
cores are used. Stressing a single core over time did not
increase temperature by more than 7◦C (from idle at 47◦C to
54◦C at load) and reached an equilibrium where temperature
remained constant. Assuming that it is generally true that a
single core cannot heat the entire SoC significantly, and that
the increase in power consumption is at most 10% over 50◦C,
we get

Pinc = Porig · Tinc ·
0.10

50
= Porig · Tinc · 0.002 (3)

Assuming the trend is close to linear, output will increase
by 0.2% per ◦C increased. Also, we start our measurements
several seconds after the benchmarks, giving the core plenty of
time to reach work temperature. For our purpose, the time used
to reach work temperature was pretty much instant. Note that
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this temperature logging was done with a different kernel as it
required support for Dynamic Voltage and Frequency Scaling
(DVFS), which we disabled in the test setup in order to fix
the clock frequency.

Energy consumption is almost certainly affected by the
amount of bit flipping within the core. In all the tests, the
instruction arguments are static. This means that the results
could be different if we changed the arguments. To mitigate
this, we used as equal arguments as possible. Still, different
instructions contain and use arguments differently, so we
cannot guarantee complete fairness between instructions.

We are running Linux as the base environment for our
tests, which makes it simpler to run our micro-benchmarks.
However, running an entire operating system beneath our
benchmark programs implies that there is much going on
where we have no direct control. To mitigate the artifacts
originating from the operating system, we disable all the
maskable interrupts and run our benchmark programs entirely
uninterrupted as a kernel module.

As explained in section subsection II-B, we utilize the fast-
loop mode of the processor to avoid memory access latency.
We disable the L1 cache to easier detect when we are outside
the fast-loop mode, and thus we are certain that there is no
memory access going on.

III. RESULTS

A. Introduction

In this section we present data gathered from our experi-
ments on the ARM Cortex-A9. A brief description of each in-
struction can be found in the ”ARM and Thumb-2 Instruction
Set Quick Reference Card”[20]. First, we discuss performance
counters from experimental testbench runs. Together with the
sparse official documentation, it enables us to make some
assumptions about how different instructions are executed
in the processor. We then discuss the results from the per
instruction energy analysis.

B. Decomposing the Core

Instructions executed in the processor will utilize a subset
of all the available core components. By combining the
components depicted in Figure 2 with the performance counter
data listed in Table II and Table III, we can deduce which
instructions that trigger what parts. We can also see how
frequently each part of the pipeline is used, as a fraction of
cycle count and the given component event counters.

All results in Table II and Table III are gathered by
running each instruction included in our experiments using
the template shown in Figure 3. The cycle count (Cycles) tells
us how long time, in terms of clock cycles, it took for the
processor to execute the 252 · (13 + 2) = 3780 instructions.
The loop has room for 13 test instructions, while the last 2 is
the loop head consisting of subs and bne. Main Ex. is the
number of cycles where the main execution pipeline is active,
labeled ALU/MUL in Figure 2. Second Ex. is for the second
execution pipeline, labeled ALU. All instructions in our test
bench have a correct branch prediction count of 251 (Pred.).
This is most likely because the first and the last iteration of

Instr. Cycles Main
Ex.

Second
Ex. Pred. Mis

pred.
No

disp.
Issue

Empty
adc 1976 1762 1758 251 2 89 89
adcs 3599 1762 1756 251 2 1693 1690
add 1976 1762 1758 251 2 89 89
addeq 6594 1635 1883 251 2 4709 4709
addne 3349 1762 1758 251 2 1463 1463
adds 3598 1761 1757 251 2 1712 1712
and 1976 1762 1758 251 2 89 89
ands 3599 1762 1756 251 2 1693 1690
asr 1976 1762 1758 251 2 89 89
asrs 6361 2135 1385 251 2 2968 204
bic 1976 1762 1758 251 2 89 89
bics 3599 1762 1756 251 2 1693 1690
clz 2104 1824 1699 251 2 151 88
cmn 3599 1761 1757 251 2 1713 1713
cmp 3598 1761 1757 251 2 1712 1712
cpsid 14627 3516 1 251 2 11110 11110
eor 1976 1762 1758 251 2 89 89
eors 3600 1762 1756 251 2 1694 1691
lsl 1976 1762 1758 251 2 89 89
lsls 6361 2135 1385 251 2 2968 204
lsr 1976 1762 1758 251 2 89 89
lsrs 6362 2135 1385 251 2 2969 205
mov 1976 1762 1758 251 2 89 89
movs 3599 1762 1756 251 2 1693 1690
mvn 1976 1762 1758 251 2 89 89
mvns 3600 1762 1756 251 2 1694 1691
nop 3604 3268 251 251 2 84 84
orr 1976 1762 1758 251 2 89 89
orrs 3599 1762 1756 251 2 1693 1690
pkhbt 1976 1762 1758 251 2 89 89
pkhtb 1976 1762 1758 251 2 89 89
qadd 3598 1761 1757 251 2 1712 1712
qdadd 3600 1885 1633 251 2 1712 1588
qdsub 3600 1885 1633 251 2 1712 1588
qsub 3598 1761 1757 251 2 1712 1712
rev16 2104 1824 1699 251 2 151 88
rev 2104 1824 1699 251 2 151 88
revsh 2105 1824 1699 251 2 152 89
ror 1976 1762 1758 251 2 89 89
rors 6361 2135 1385 251 2 2968 204
rrx 1976 1762 1758 251 2 89 89
rrxs 3599 1762 1756 251 2 1693 1690
rsb 1977 1762 1758 251 2 90 90
rsbs 3598 1761 1757 251 2 1712 1712
rsc 1976 1762 1758 251 2 89 89
rscs 3599 1762 1756 251 2 1693 1690
sbc 1976 1762 1758 251 2 89 89
sbcs 3599 1762 1756 251 2 1693 1690
sel 2100 1761 1758 251 2 337 89
setend 14627 3516 1 251 2 11110 11110
ssat16 3598 1761 1757 251 2 1712 1712
ssat 3598 1761 1757 251 2 1712 1712
sub 1977 1762 1758 251 2 90 90
subs 3598 1761 1757 251 2 1712 1712
sxtab16 6443 3021 3761 251 2 1832 77
sxtab 4481 2932 2344 251 2 666 81
sxtah 6443 3021 3761 251 2 1832 77
sxtb16 2104 1824 1699 251 2 151 88
sxtb 2104 1824 1699 251 2 151 88
sxth 2104 1824 1699 251 2 151 88
teq 3599 1762 1756 251 2 1693 1690
tst 3600 1762 1756 251 2 1694 1691
usat16 3598 1761 1757 251 2 1712 1712
usat 3598 1761 1757 251 2 1712 1712
uxtab16 6443 3021 3761 251 2 1832 77
uxtab 6443 3021 3761 251 2 1832 77
uxtah 6443 3021 3761 251 2 1832 77
uxtb16 2105 1824 1699 251 2 152 89
uxtb 2104 1824 1699 251 2 151 88
uxth 2104 1824 1699 251 2 151 88

TABLE II: Performance counter data from 252 iterations of
all tested instructions, excluding multiply
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Fig. 4: Energy profile of single-cycle instructions, excluding multiply

the loop is mispredicted (Mis pred.). No disp. is the number of
cycles where there the processor was unable to dispatch any
instructions to any execution lane. Issue Empty is the number
of cycles where there was no instructions in the instruction
queue. Note that we can see how many cycles the processor
is stalling by looking at the No disp. and the Issue Empty
counters. When the No disp. number is higher than Issue
Empty, it means that the processor had to stall due to hazards
or intended flushing (e.g. setend flushes the pipeline as all
further issued instructions must follow the new endianess). In
special cases, such as our baseline instruction setend, we
see that the amount of No disp. is very high, which again
means that the CPU is mostly stalling. It seems to be a strong
relation between low power usage and high stall numbers.

C. Instruction Level Energy Efficiency

We distinguish between single-cycle instructions and multi-
cycle instructions because they behave differently in and
around the execution pipelines. Instructions using only one
cycle are fairly easy to reason about as there is no need
to normalize energy consumption with respect to the cycle
count (i.e. time). However, it is important to also recognize
CPU capabilities such as dual issuing which are present on
the processor: most single-cycle ALU instructions execute
pairwise in parallel – one in each ALU – giving a peak
performance of two instructions per clock cycle. Multi-cycle
instructions needs to be carefully considered. Typically, multi-
cycle instructions divide work which can be done in a subset
of the available ALUs (e.g. one) over several cycles, and
can therefore introduce bottlenecks in the execution path.
This again makes the processor do less, lowering the average
current drain. For all these reasons, we partition the measured
data in two data sets; one for single-cycle instructions and one
for multi-cycle instructions.

Figure 4, 6, 7 and 5 displays our results from measuring
current drain for each instruction. The instructions is sorted

in increasing order by Ampere cycles. Green bars represents
single-cycle instructions, light blue are two-cycle instructions,
while dark blue represents three-cycle instructions. The red
bar to the left on each graph shows the baseline for current
measurement. The baseline is an alias for the least power-
consuming instruction we could find, which is the setend-
instruction. This instruction sets the endianness for all memory
operations to either big or little endian [21], and has a current
drain of only 161.3mA when executed repeatedly. This is
expected because it would force pipelines to be empty most
of the time.

During measurements, Vcore was kept stable at 1.3V ±
50mV , well within the specifications of the processor. The
pipelines were kept as full as possible, avoiding hazards and
instruction loading. This implies that instructions utilizing
large parts of the processor will most likely be more energy
consuming than those using only few components. This state-
ment is supported by the fact that the setend-instruction
has little pipeline activity at the same time as it has a low
continuous current drain.

D. Single-Cycle Instructions

On our target CPU, 70 of the 115 tested instructions2 use a
single cycle, while the remaining 45 uses 2 or 3. Nearly half
of the instructions are multiply instructions, so these will be
discussed separately. Figure 4 displays a comparison of the 50
non-multiply single-cycle instructions.

The results in Figure 4 shows that the ordinary single-cycle
instructions do not differ very much. An interesting result is
how instructions bearing the s-flag seems to have a lower
consumption than their non-s companion. These instructions
updates status flags and will likely force in-order execution.
According to the performance counters in Table II there is
reason to believe that the processor has to stall one cycle

2119 including conditionals
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Fig. 5: Energy profile showing conditional execution.
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Fig. 6: Energy profile of multi-cycle instructions, excluding
multiply.

between each issue. From our results, it seems that this
saves energy. However, the instructions needs longer time to
complete, which is indeed less energy efficient.

The results from the conditional-executed instructions are
also subject to forced in-order execution. We can see from
Figure 5 how variations of add compares. In the figured test,
addne is committed every time, while addeq never has its
results committed. It is interesting to see that even though
addeq is never committed, it uses almost as much power as
the other adds. By looking at Table II we see that addeq and
addne introduces a lot of both No disp. and Issue Empty. We
do not know exactly why, but it is reasonable to believe that
one must assure that the previous instruction did not alter the
status flags before the results are committed or discarded. In an
in-order single-issue processor, conditional execution provides
a framework to avoid unnecessary jumps, while in an out-of-
order core, conditional execution is most likely much harder
to implement. Also note that this test is very synthetic and
the ISA is likely to be unoptimized for such activity. In a real
world workload, it is possible that the required synchronization
is hidden.

Further, Figure 4 shows that the nop-instruction has a rather
low power consumption. This is a bit misleading, as the nop-
instruction assembles to mov r0, r0, having both read-
after-write and write-after-write hazard on itself. This makes
the nop-instruction serialize itself, and it is hard to fill the
pipeline with this instruction. Knowing this, it makes sense
that nop works in this way, as it is often used to fill out clock
cycles with non-destructive work. It would not make sense to
optimize the nop instruction, as it then would fail to complete
it’s goal as a space-and-time filler.

Generally, when accounting for the number of cycles used
by the different instructions, we see that the least current

demanding single cycle instructions are add and sub at
216.2mA, while rev and sel consumes slightly more with
a drain of 225.4mA. The measurements have a standard devi-
ation of 4mA and 3.7mA, respectively. Overall, the standard
deviation ranges from 2mA to 7mA, which we consider to be
more than good enough.

E. Multi-Cycle Instructions

45 of the instructions that was compared used 2 or 3
cycles to complete their results. 18 of these instructions are
non-multiply. Non-multiply instruction power measurements
are displayed in Figure 6. A selection of the performance
counter results are shown in Table II. We see that the unsigned
extend instructions(ux*) are slightly cheaper than signed
extend (sx*). This might indicate that some hardware is left
idle when not needing sign extension. The instructions are
normalized according to their stated cycle count in the table
B-5 in [18].

F. Multiply

The ARM Cortex-A9 contains a single multiply pipeline,
but has two general ALUsFigure 2. The multiply instructions
are queued up waiting to execute through the same pipeline.
This implies that multiply instructions would have a lower
continuous power drain because it does less useful work
and will seemingly use less energy compared to instructions
utilizing both pipelines at its full potential. We have not
compensated for this matter other than multiplying the power
drain with the number of cycles used to finish one multiply
instruction. It is unknown how the different multiply instruc-
tions utilize the pipeline(s). As we can see from Table III,
there is reason to believe that at least some of the multiply-
accumulate instructions utilize both pipelines[22]. This means
that some instructions are able to utilize more hardware while
still queuing up through the multiply-enabled main pipeline.

By looking at Figure 7 we see that the single-cycle multiply
instructions are quite similar, but those using two or three
cycles are more interesting. We do not know why the results
are as stated, as most of the internal architecture are not
available for the public. According to Table B-5 in [18], some
multiply instructions uses more time than others before the
result is available.

From the performance counters in Table III, we see that
instructions are treated differently by the architecture. We
have not considered all the tested instructions in detail, but
it is evident to us that there is a strong negative correlation
between performance counters (No Disp. and Issue Empty) and
processor power drain. The results in Figure 7 shows power
drain in Amperes multiplied by the cycle counts. The values
are not normalized according to the performance counter
values.

G. Evaluation

Each instruction was measured 41 times. We found small
variations in power consumption between testbench runs, but
all results shows the same trend. As stated in subsection II-E,
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Fig. 7: Energy profile of multiply instructions.
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Fig. 8: Changes in heat and energy consumption for add at
different runs together with heatsink and ambient temperature

the power consumption is not easily pushed by temperature.
Figure 8 shows how the change in power consumption of the
instruction add over different runs combined with the ambient
temperature and the heatsink temperature. According to these
results, we assume that the change in power consumption was
not due to heat. We did not log temperature for all test runs,
but assume that the results from Figure 8 holds, and that this
small change in temperature is at least not solely responsible
for variations in the current drain measurements.

IV. CONCLUSION

We have explored the inner workings of the ARM Cortex-
A9 processor core and measured energy consumptions for
various instructions. We found that the energy consumption
for simple single-cycle instructions are rather equal. This RISC
processor also includes a range of more advanced instructions
that needs more than a single cycle to complete. We have
looked into all multi-cycle instructions related to multiply
and multiply-accumulate, along with a few register level data
movement instructions.

Our main observation is that those instructions that are
unable to fully fill the pipelines comes out as more energy
efficient on the current readings. This is most likely because

near empty pipeline consume less energy than a full pipeline.
We must emphasize that these instructions are not more energy
efficient than their counterparts, only slower in producing their
intended results. Apart from this, the numbers tell that the most
efficient instructions are sub and add, followed by common
logical functions. This is expected as all these instruction are
both easily implemented and commonly used.

It is also seen that the instructions executing conditionally
and those settings status flags are subject to a less efficient
instruction dispatching. We assume that synchronization is
needed for this kind of instructions. Conditional executing
is most likely better idea in a simple in-order CPU than
in advanced out-of-order CPU cores. We also notice that
instructions that should not be committed is issued, executed
and then discarded.

For the multi-cycle instructions, we observed that even
though the processor datasheet[18] states a number of cycles
for each instruction to complete its result, different pipelining
schemes apply to the different instructions. Multiply can
only be done in the main execution unit, while accumulate
is seemingly executed in the second pipeline. This means
that even though mul introduces queueing for access to the
main pipeline, multiply-accumulate (mla), is equally fast, see
Table III.

A. Further Work

Our results comes from completely synthetic benchmarks,
and we do not yet know how this would differ from real
world workloads. The synthetic tests fill the pipeline with
equal instructions, while common workloads would at least
contain a few different instructions simultaneously.

The results was normalized according to numbers found in
the CPU datasheet. We believe that more informative results
would emerge if the performance counter data was used to
adjust the measured current drain, rather than number of cycles
used. This is after all a multiple-issue pipelined processor core.



8

Instr. Cycles Main
Ex.

Second
Ex. Pred. Mis

pred.
No

disp.
Issue

Empty
mla 6608 6530 4895 251 2 76 76
mlas 15639 6529 12548 251 2 8857 73
mul 6602 6525 252 251 2 3336 76
muls 15617 6526 252 251 2 12100 61
smlabb 3604 3518 3265 251 2 83 83
smlabt 3604 3518 3265 251 2 83 83
smlad 3604 3518 3265 251 2 83 83
smladx 3604 3518 3265 251 2 83 83
smlal 7106 7028 5020 251 2 575 76
smlalbb 7102 7021 5019 251 2 3582 76
smlalbt 7102 7021 5019 251 2 3582 76
smlald 7102 7021 5019 251 2 3582 76
smlaldx 7102 7021 5019 251 2 3582 76
smlals 15888 6529 12548 251 2 9106 73
smlaltb 7102 7021 5019 251 2 3582 76
smlaltt 7102 7021 5019 251 2 3582 76
smlatb 3604 3518 3265 251 2 83 83
smlatt 3604 3518 3265 251 2 83 83
smlawb 3604 3518 3265 251 2 83 83
smlawt 3604 3518 3265 251 2 83 83
smlsd 3604 3518 3265 251 2 83 83
smlsdx 3604 3518 3265 251 2 83 83
smlsld 7102 7021 5019 251 2 3582 76
smlsldx 7102 7021 5019 251 2 3582 76
smmla 6608 6530 4895 251 2 76 76
smmlar 6608 6530 4895 251 2 76 76
smmls 6608 6530 4895 251 2 76 76
smmlsr 6609 6530 4895 251 2 77 77
smmul 6602 6525 252 251 2 3336 76
smmulr 6603 6525 252 251 2 3337 77
smuad 3602 3266 252 251 2 334 334
smuadx 3602 3266 252 251 2 334 334
smulbb 3353 3267 252 251 2 84 84
smulbt 3353 3267 252 251 2 84 84
smull 6857 6779 6774 251 2 326 76
smulls 15637 6528 15558 251 2 8856 72
smultb 3353 3267 252 251 2 84 84
smultt 3353 3267 252 251 2 84 84
smulwb 3353 3267 252 251 2 84 84
smulwt 3353 3267 252 251 2 84 84
smusd 3602 3266 252 251 2 334 334
smusdx 3602 3266 252 251 2 334 334
umaal 7106 7028 5020 251 2 575 76
umlal 7106 7028 5020 251 2 575 76
umlals 15888 6529 12548 251 2 9106 73
umull 6857 6779 6774 251 2 326 76
umulls 15637 6528 15558 251 2 8856 72

TABLE III: Performance counter data from 252 iterations of
all tested multiply instructions.

Also, we have not yet dived into how instruction arguments
affects the energy usage on modern processors. We believe that
instruction patterns that causes a high degree of bit toggling
would yield higher energy usage, due to the amount of energy
used to charge and release the transistors. A problem rising is
the fact that we do not know how the processor schedules or
distributes the different instructions, thus one has to be very
careful when writing the benchmarks.

When selecting instructions for our benchmarks, we have
omitted the set of floating-point instructions. This is because
in the ARM Cortex-A9, the floating point unit (NEON) is
considered a co-processor[18], and thus out of our scope.
Investigating the energy efficiency of co-processors versus
processors that embed such functionality would add value to
our results.

There are also room for improvements regarding the experi-

mental setup. Ultimately, one would like to be able to measure
each instruction individually, but according to the Nyquist-
Shannon theorem[23], this would require a sampling rate of
at least 3.4 GHz. We could not simply go slower on the clock,
as a clock frequency reduction will affect the energy efficiency,
possibly in the negative direction[24].

Compilers, simulators and synthesis tools would benefit
from this kind of information, and one could possibly generate
output that is more energy optimized than currently available.
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AppendixBModifications to gem5

All file paths are relative to the root of gem5. Diffs are based of gem5-stable revision
aaf017eaad7d.

B.1 configs/common/Exynos_4412P.py

1 # Copyright (c) 2012 The Regents of The University of Michigan
2 # All rights reserved .
3 #
4 # Redistribution and use in source and binary forms , with or without
5 # modification , are permitted provided that the following conditions

are
6 # met: redistributions of source code must retain the above copyright
7 # notice , this list of conditions and the following disclaimer ;
8 # redistributions in binary form must reproduce the above copyright
9 # notice , this list of conditions and the following disclaimer in the

10 # documentation and/or other materials provided with the distribution ;
11 # neither the name of the copyright holders nor the names of its
12 # contributors may be used to endorse or promote products derived from
13 # this software without specific prior written permission .
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
17 # LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 # A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT
19 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL ,
20 # SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT
21 # LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE ,
22 # DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND ON ANY
23 # THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
24 # ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE
25 # OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
26 #
27 # Authors : Ron Dreslinski
28
29

67
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30 from m5. objects import *
31
32 # Simple ALU Instructions have a latency of 1
33 class Exynos_Simple_Int ( FUDesc ):
34 opList = [ OpDesc ( opClass ='IntAlu ', opLat =1) ]
35 count = 1
36
37 # Complex ALU instructions have a variable latencies
38 class Exynos_Complex_Int ( FUDesc ):
39 opList = [ OpDesc ( opClass ='IntMult ', opLat =4, issueLat =1) ,
40 OpDesc ( opClass ='IntAlu ', opLat =1) ,
41 OpDesc ( opClass ='IntDiv ', opLat =12 , issueLat =12) ,
42 OpDesc ( opClass ='IprAccess ', opLat =3, issueLat =1) ]
43 count = 1
44
45
46 # Floating point and SIMD instructions
47 class Exynos_FP ( FUDesc ):
48 opList = [ OpDesc ( opClass ='SimdAdd ', opLat =4) ,
49 OpDesc ( opClass ='SimdAddAcc ', opLat =4) ,
50 OpDesc ( opClass ='SimdAlu ', opLat =4) ,
51 OpDesc ( opClass ='SimdCmp ', opLat =4) ,
52 OpDesc ( opClass ='SimdCvt ', opLat =3) ,
53 OpDesc ( opClass ='SimdMisc ', opLat =3) ,
54 OpDesc ( opClass ='SimdMult ',opLat =5) ,
55 OpDesc ( opClass ='SimdMultAcc ',opLat =5) ,
56 OpDesc ( opClass ='SimdShift ',opLat =3) ,
57 OpDesc ( opClass ='SimdShiftAcc ', opLat =3) ,
58 OpDesc ( opClass ='SimdSqrt ', opLat =9) ,
59 OpDesc ( opClass ='SimdFloatAdd ',opLat =5) ,
60 OpDesc ( opClass ='SimdFloatAlu ',opLat =5) ,
61 OpDesc ( opClass ='SimdFloatCmp ', opLat =3) ,
62 OpDesc ( opClass ='SimdFloatCvt ', opLat =3) ,
63 OpDesc ( opClass ='SimdFloatDiv ', opLat =3) ,
64 OpDesc ( opClass ='SimdFloatMisc ', opLat =3) ,
65 OpDesc ( opClass ='SimdFloatMult ', opLat =3) ,
66 OpDesc ( opClass ='SimdFloatMultAcc ',opLat =4) ,
67 OpDesc ( opClass ='SimdFloatSqrt ', opLat =9) ,
68 OpDesc ( opClass ='FloatAdd ', opLat =4) ,
69 OpDesc ( opClass ='FloatCmp ', opLat =5) ,
70 OpDesc ( opClass ='FloatCvt ', opLat =5) ,
71 OpDesc ( opClass ='FloatDiv ', opLat =9, issueLat =9) ,
72 OpDesc ( opClass ='FloatSqrt ', opLat =33 , issueLat =33) ,
73 OpDesc ( opClass ='FloatMult ', opLat =5) ]
74 count = 1
75
76
77 # Load/ Store Units
78 class Exynos_LS ( FUDesc ):
79 opList = [ OpDesc ( opClass ='MemRead ',opLat =1) ,
80 OpDesc ( opClass ='MemWrite ',opLat =1) ]
81 count = 1
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82
83
84 # Functional Units for this CPU
85 class Exynos_FUP ( FUPool ):
86 FUList = [ Exynos_Simple_Int () , Exynos_Complex_Int () ,
87 Exynos_LS () , Exynos_FP ()]
88
89 # Tournament Branch Predictor
90 class Exynos_BP ( BranchPredictor ):
91 predType = " tournament "
92 localPredictorSize = 512
93 localCtrBits = 2
94 localHistoryTableSize = 512
95 globalPredictorSize = 2048
96 globalCtrBits = 2
97 choicePredictorSize = 8192
98 choiceCtrBits = 2
99 BTBEntries = 2048

100 BTBTagSize = 18
101 RASSize = 16
102 instShiftAmt = 2
103
104 class Exynos_3 ( DerivO3CPU ):
105 LQEntries = 4
106 SQEntries = 4
107 LSQDepCheckShift = 0
108 LFSTSize = 1024
109 SSITSize = 1024
110 decodeToFetchDelay = 1
111 renameToFetchDelay = 1
112 iewToFetchDelay = 1
113 commitToFetchDelay = 1
114 renameToDecodeDelay = 1
115 iewToDecodeDelay = 1
116 commitToDecodeDelay = 1
117 iewToRenameDelay = 1
118 commitToRenameDelay = 1
119 commitToIEWDelay = 1
120 fetchWidth = 2
121 fetchBufferSize = 16
122 fetchToDecodeDelay = 2
123 decodeWidth = 2 # syslevel benchmark
124 decodeToRenameDelay = 2
125 renameWidth = 2
126 renameToIEWDelay = 1
127 issueToExecuteDelay = 1
128 dispatchWidth = 4 # syslevel benchmark
129 issueWidth = 2 # marketing
130 wbWidth = 2
131 wbDepth = 2
132 fuPool = Exynos_FUP ()
133 iewToCommitDelay = 1
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134 renameToROBDelay = 1
135 commitWidth = 4
136 squashWidth = 2
137 trapLatency = 37
138 backComSize = 5
139 forwardComSize = 5
140 numPhysIntRegs = 56
141 numPhysFloatRegs = 192
142 numIQEntries = 16
143 numROBEntries = 40
144
145 switched_out = False
146 branchPred = Exynos_BP ()
147
148 # Instruction Cache
149 class Exynos_ICache ( BaseCache ):
150 hit_latency = 2 # 7cpu
151 response_latency = 2 # 7cpu
152 mshrs = 6
153 tgts_per_mshr = 8
154 size = '32 kB '
155 assoc = 4
156 is_top_level = 'true '
157
158 # Data Cache
159 class Exynos_DCache ( BaseCache ):
160 hit_latency = 3 # 7cpu
161 response_latency = 8 # 7cpu
162 mshrs = 16
163 tgts_per_mshr = 8
164 size = '32 kB '
165 assoc = 4
166 write_buffers = 16
167 is_top_level = 'true '
168
169 # TLB Cache
170 # Use a cache as a L2 TLB
171 class ExynosWalkCache ( BaseCache ):
172 hit_latency = 7 #7cpu
173 response_latency = 7 # 7cpu
174 mshrs = 16
175 tgts_per_mshr = 8
176 size = '2kB '
177 assoc = 2
178 write_buffers = 16
179 is_top_level = 'true '
180
181
182 # L2 Cache
183 class ExynosL2 ( BaseCache ):
184 hit_latency = 37 # 7cpu?
185 response_latency = 37 # 7cpu?
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186 mshrs = 32
187 tgts_per_mshr = 8
188 size = '1MB '
189 assoc = 16
190 write_buffers = 8
191 prefetch_on_access = 'true '
192 # Simple stride prefetcher
193 prefetcher = StridePrefetcher ( degree =1, latency = 2)

B.2 configs/example/se.py

1 diff --git a/ configs / example /se.py b/ configs / example /se.py
2 --- a/ configs / example /se.py
3 +++ b/ configs / example /se.py
4 @@ -104 ,7 +104 ,7 @@
5 idx += 1
6
7 if options .smt:
8 - assert ( options . cpu_type == " detailed " or options . cpu_type == "

inorder ")
9 + assert ( options . cpu_type == " arm_detailed " or options . cpu_type

== " inorder ")
10 return multiprocesses , idx
11 else :
12 return multiprocesses , 1
13 @@ -219 ,7 +219 ,7 @@
14 system .cpu[i]. createThreads ()
15
16 if options .ruby:
17 - if not ( options . cpu_type == " detailed " or options . cpu_type == "

timing "):
18 + if not ( options . cpu_type == " arm_detailed " or options . cpu_type ==

" timing "):
19 print >> sys.stderr , "Ruby requires TimingSimpleCPU or O3CPU !!

"
20 sys.exit (1)
21
22 @@ -255 ,4 +255 ,5 @@
23 MemConfig . config_mem (options , system )
24
25 root = Root( full_system = False , system = system )
26 + print options
27 Simulation .run(options , root , system , FutureClass )
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B.3 configs/common/CacheConfig.py

1 diff --git a/ configs / common / CacheConfig .py b/ configs / common / CacheConfig
.py

2 --- a/ configs / common / CacheConfig .py
3 +++ b/ configs / common / CacheConfig .py
4 @@ -55,9 +55 ,22 @@
5
6 dcache_class , icache_class , l2_cache_class = \
7 O3_ARM_v7a_DCache , O3_ARM_v7a_ICache , O3_ARM_v7aL2
8 + elif options . cpu_type == " exynos_4412p ":
9 + try:

10 + from Exynos_4412P import *
11 + except :
12 + print " exynos_4412p is unavailable . Did you compile the O3

model ?"
13 + sys.exit (1)
14 +
15 + dcache_class , icache_class , l2_cache_class = \
16 + Exynos_DCache , Exynos_ICache , ExynosL2
17 +
18 else :
19 dcache_class , icache_class , l2_cache_class = \
20 L1Cache , L1Cache , L2Cache
21 + print dcache_class
22 + print icache_class
23 + print l2_cache_class
24
25 # Set the cache line size of the system
26 system . cache_line_size = options . cacheline_size
27 @@ -71,8 +84 ,9 @@
28 size= options .l2_size ,
29 assoc = options . l2_assoc )
30
31 + print system . cpu_clk_domain
32 system . tol2bus = CoherentBus ( clk_domain = system .

cpu_clk_domain ,
33 - width = 32)
34 + width = 64)
35 system .l2. cpu_side = system . tol2bus . master
36 system .l2. mem_side = system . membus . slave
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B.4 configs/common/CpuConfig.py

1 diff --git a/ configs / common / CpuConfig .py b/ configs / common / CpuConfig .py
2 --- a/ configs / common / CpuConfig .py
3 +++ b/ configs / common / CpuConfig .py
4 @@ -116 ,6 +116 ,13 @@
5 except :
6 pass
7
8 +
9 +try:

10 + from Exynos_4412P import Exynos_3
11 + _cpu_classes [" exynos_4412p "] = Exynos_3
12 + except :
13 + pass
14 +
15 # Add all CPUs in the object hierarchy .
16 for name , cls in inspect . getmembers (m5.objects , is_cpu_class ):
17 _cpu_classes [name] = cls

B.5 src/arch/arm/linux/process.cc

1 diff --git a/src/arch/arm/ linux / process .cc b/src/arch/arm/ linux / process
.cc

2 --- a/src/arch/arm/ linux / process .cc
3 +++ b/src/arch/arm/ linux / process .cc
4 @@ -66,7 +66 ,7 @@
5
6 strcpy (name ->sysname , " Linux ");
7 strcpy (name ->nodename , "m5.eecs. umich .edu");
8 - strcpy (name ->release , " 3.0.0 ");
9 + strcpy (name ->release , " 3.10.2 ");

10 strcpy (name ->version , "#1 Mon Aug 18 11:32:15 EDT 2003");
11 strcpy (name ->machine , " armv7l ");
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B.6 scr/mem/SimpleDRAM.py

1 d i f f −−g i t a / s r c / m e m / S i m p l e D R A M . py b / s r c / m e m / S i m p l e D R A M . py
2 −−− a / s r c / m e m / S i m p l e D R A M . py
3 +++ b / s r c / m e m / S i m p l e D R A M . py
4 @@ −258 ,6 +258 ,62 @@
5 t X A W = ' 50 ns '
6 a c t i v a t i o n _ l i m i t = 4
7
8 +# A s i n g l e LPDDR2−S4 x32 400MHz i n t e r f a c e ( one command/ a d d r e s s bus )
9 +c l a s s L P D D R 2 _ S 4 _ 8 0 0 _ x 3 2 ( S i m p l e D R A M ) :

10 + # 1 x32 c o n f i g u r a t i o n , 1 d e v i c e with a 32− b i t i n t e r f a c e
11 + d e v i c e _ b u s _ w i d t h = 32
12 +
13 + # LPDDR2_S4 i s a BL4 and BL8 d e v i c e
14 + b u r s t _ l e n g t h = 8
15 +
16 + # Each d e v i c e has a page ( row b u f f e r ) s i z e o f 1KB
17 + # ( t h i s depends on the memory d e n s i t y )
18 + d e v i c e _ r o w b u f f e r _ s i z e = ' 1 kB '
19 +
20 + # 1 x32 c o n f i g u r a t i o n , so 1 d e v i c e
21 + d e v i c e s _ p e r _ r a n k = 1
22 +
23 + # Use a s i n g l e rank
24 + r a n k s _ p e r _ c h a n n e l = 1
25 +
26 + # LPDDR2−S4 has 8 banks i n a l l c o n f i g u r a t i o n s
27 + b a n k s _ p e r _ r a n k = 8
28 +
29 + # Fixed at 15 ns
30 + t R C D = ' 15 ns '
31 +
32 + # 8 CK read l a t e n c y , 4 CK w r i t e l a t e n c y @ 533 MHz, 1 . 8 7 6 ns c y c l e time
33 + t C L = ' 15 ns '
34 +
35 + # Pre−charge one bank 15 ns ( a l l banks 18 ns )
36 + t R P = ' 15 ns '
37 + t R A S = ' 42 ns '
38 +
39 + # 8 b e a t s a c r o s s an x32 DDR i n t e r f a c e t r a n s l a t e s to 4 c l o c k s @ 400 MHz.
40 + # Note t h i s i s a BL8 DDR d e v i c e .
41 + # Requests l a r g e r than 32 bytes are broken down i n t o m u l t i p l e r e q u e s t s
42 + # i n the c o n t r o l l e r
43 + t B U R S T = ' 7 . 5 ns '
44 +
45 + # LPDDR2−S4 , 16 Gbit
46 + t R F C = ' 2 1 0 ns '
47 + t R E F I = ' 3 . 9 us '
48 +
49 + # I r r e s p e c t i v e o f speed grade , tWTR i s 7 . 5 ns
50 + t W T R = ' 7 . 5 ns '
51 +
52 + # A c t i v a t e to a c t i v a t e i r r e s p e c t i v e o f d e n s i t y and speed grade
53 + t R R D = ' 1 0 . 0 ns '
54 +
55 + # I r r e s p e c t i v e o f d e n s i t y , tFAW i s 50 ns
56 + t X A W = ' 50 ns '
57 + a c t i v a t i o n _ l i m i t = 4
58 +
59 # A s i n g l e WideIO x128 i n t e r f a c e ( one command and a d d r e s s bus ) , with
60 # d e f a u l t t i m i n g s based on an e s t i m a t e d WIO−200 8 Gbit part .
61 c l a s s W i d e I O _ 2 0 0 _ x 1 2 8 ( S i m p l e D R A M ) :
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