
Human Reliability Assessment and
Software Development

Olav Alexander Lende

Master of Science in Computer Science

Supervisor: Tor Stålhane, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Master Thesis in Computer Science

Human Reliability Assessment and

Software Development

Olav Alexander Lende
Supervisor: Tor St̊alhane

Norwegian University of Science and Technology
Department of Computer and Information Science

Trondheim, June 2014

Acknowledgements

I would like to express my thanks and gratitude to my supervisor, Professor Tor
St̊alhane for all guidance, advise, feedback and support during the last year.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Research Questions . 1

1.2.1 Research Questions . 2

2 Human Reliability Assessment 3
2.1 Overview . 3

2.1.1 History . 3
2.1.2 The HRA Process . 5

2.1.2.1 Task Analysis - Human Task Analysis (HTA) . . . 5
2.1.2.2 Human Error Identification 5
2.1.2.3 Human Error Quantification 7
2.1.2.4 Human Error Reduction 7

2.2 Previous Work - Finding a compatible HRA Method 7

3 Standardized Plant Analysis Risk - Human Reliability Analysis
(SPAR-H) 9
3.1 Overview . 9
3.2 Performance Shaping Factors PSF 14

3.2.1 Available Time . 14
3.2.2 Stress . 15
3.2.3 Complexity . 16
3.2.4 Experience/Training . 17
3.2.5 Procedures . 17
3.2.6 Ergonomics/HMI . 18
3.2.7 Fitness for Duty . 19
3.2.8 Work Processes . 20

4 Evaluation of PSFs 21
4.1 Selected Performance Shaping Factors 24

iii

5 Experiment 27
5.1 Introduction . 27
5.2 Design . 27
5.3 Execution . 32

6 Analysis and Discussion 33
6.1 Processing Data . 33

6.1.1 Evaluating Code . 33
6.1.2 Survey . 36
6.1.3 Data Summary . 38

6.2 Analyzing Data . 38
6.2.1 Exclusions . 38
6.2.2 Relations between Time and Complexity 39

6.3 Test Validity . 45
6.3.1 Conclusion Validity . 45
6.3.2 Construct Validity . 46
6.3.3 External Validity . 46

6.4 Experiment Conclusion . 46

7 Conclusion and Further Work 47
7.1 Conclusion . 47
7.2 Further Work . 48

A Survey 49

B Experiment Task A 53

C Experiment Task B 59

D Experiment Results 67

E Asserter.java 81

Bibliography 103

iv

Chapter 1

Introduction

1.1 Motivation

Bugs, faults, glitches, unintended or inaccurate behaviour; Errors in software
development comes in many forms and varieties. Common to most of them is
that they are caused by human errors. These errors can potentially be the source
of substantial cost to both developers and users, both financial and reputational.
Errors in emergency systems can in a worst-case scenario contribute to the loss
of human lives.

Traditional industry have long been aware of the cost and dangers of human
error when working with automated systems, including e.g. in nuclear power
plants and the oil industry. To mitigate the possibility of human error in these
fields, there have been developed a number of Human Reliability Analysis (HRA)
methods which is used within these and a number of other fields.

Seeing the place HRA methods has in other industries, the question is raised
whether or not these could also be applied to software development.

1.2 Goals and Research Questions

:

G1: Study how to apply Human Reliability Assessment(HRA) to the field of
software development, by studying how the HRA method SPAR-H can be
applied to software development.

This is goal is to be achieved by answering the following research questions:

1

1.2.1 Research Questions

The primary sub-goals are for the document to:

RQ1: Are there any of SPAR-H’s Performance Shaping Factors (PSF) that is
more useful to the field of software development than others, based on an
evaluation of SPAR-H’s PSFs?

RQ2: Does SPAR-H’s PSFs actually affect performance in a software develop-
ment scenario, based on an experiment using SPAR-H’s PSFs as indepen-
dent variables?

2

Chapter 2

Human Reliability
Assessment

2.1 Overview

2.1.1 History

Human Reliability Assessment (HRA), also called Human Reliability Analysis, is
the study of finding possible human errors in cases of Human-Machine interaction
and quantifying them with the intent to minimize human error proactively, or
determining which role human error had or could have retroactively. It is a field
which has it roots in studies of the “Human Factors Engineering” and the field
of Ergonomics which first arose in the U.K. and the U.S. in the first two decades
after the second world war.

The primary goal of these fields of study was to “reduce the frequency of
unwanted consequences of human errors in the operation of complex systems”
[6]. The industry at the time, and in large part industry since the start of the
industrial revolution, relied on machines which in itself was designed to fulfill
a certain purpose or produce a certain product and the way an operator would
interacted with the machine was more often than not reliant on learning and
training. I.e. the human would have to learn to fit the machine so to speak.
Ergonomics and related fields, including HRA, are concerned with making the
operator and the machine match in order to improve efficiency and safety.

The industry at the mid- to late 40s had been pushed to its limits during
the war, and the “growing red threat” made the need for a more efficient indus-
try apparent. First and foremost the military industry and systems, but HRA
spread out to non-military appliance in the 60s when the use of nuclear reac-

3

tors and power plants demanded absolute minimizing of potential human error
and development of routines which avoided or took into account potential hu-
man error. From there it spread to the chemical industry, other industries such
as petroleum, and non-industry applications ranging from air-traffic control to
NASA space programs.

HRA methods is usually divided into three generations of methods. It is im-
portant to notice the difference in generation lays in the focus of the methods
as well as the time aspect, so first generation methods are not necessarily ren-
dered redundant by the emersion of the second and third generation. To the
contrary, first generation methods are considered “tried and true” and is thus
often preferred over newer, less tested methods.

First generation:

First generation methods refer to all developed before the second generation
(early 90s), where new methods where developed with a different focus,
including newer versions and variations to the original methods developed
after 1990. The methods developed in this period, especially in the early
50s and 60s, focused on application in environments with extreme failure
states such as death, more specifically, operation of nuclear reactors for
military, scientific, or civilian purposes; expanding to chemical and other
industries later. The common approach in these, especially early versions, is
methodical breakdown of tasks into sub-tasks where the potential for human
error were explored within each sub-task, or sub-task of the sub-task etc.
Newer versions of these methods such as SPAR-H, which is discussed later,
generalize this division into sub-tasks more based on experience and use of
the older methods. Especially noteworthy methods from this generation is,
THERP, HEART and SPAR-H.

Second generation:

Second generation methods refer to methods developed with a higher focus
on context and error of commission. This trend arose in the early 90s and
considered to be still ongoing. However, most of these methods are rarely
used used in practice. This can partially be explained by the simple fact
that applying new methods always involves some degree of risk, and most
of the industry that are using HRA methods are more content with what
is considered known and safe. Second generation methods include CREAM
and ATHEANA[1].

Third generation:

Third generation methods refers to new methods developed with the same
focus as first generation methods, but developed after the emergence of the

4

second generation methods. These can often be based on first generation
methods, but is not considered a variation or update to an existing method.
This generation is as of 2009 still considered fairly young and is not always
referenced and there is ”(...) little consensus about which they are, and what
they are.” (Hollnagel [3]) One of the few examples of a third generation
method is NARA which is based on the first generation method HEART.

2.1.2 The HRA Process

Kirwan describes the Human Error Assessment process as a flow-chart(Fig.2.1)
[4]. Its components are covered within the different HRA methods/techniques.
The major parts of the HRA process can be summarized in three steps: Human
Error Identification (HEI), Human Error Quantification (HEQ), and Human Er-
ror Reduction (HER).

2.1.2.1 Task Analysis - Human Task Analysis (HTA)

Task analysis is an essential part of HRA as it is the process of identifying the
tasks and sub-tasks where human error can occur. With few exceptions this
process is performed using the Hierarchical Task Analysis (HTA) method (see [4]
and [5]).

Hierarchical Task Analysis (HTA) is a top-down hierarchical method as the
name implies. HTA can be summarized as dividing task down to their essential
components. This is done by dividing tasks into sub-tasks which is again divided
themselves if the resulting sub-tasks won’t be considered too trivial, e.g “Pull
lever” have the trivial sub-task “Raise hand”. The sub-tasks, which are divided
into hierarchical level is assigned a “plan” which indicate the order the sub-tasks
is to be performed. This can be “Do in order”, “Any order”, or some form of
algorithmic “if-then-else-then”, or some other form of specified order.

2.1.2.2 Human Error Identification

Human Error Identification (HEI) is continuing the division of tasks Task Analy-
sis did, but instead of dividing tasks into sub-task HEI is concerned with dividing
tasks into possible Human Errors. This is done either by methods which goes
through a checklist of regular Human Errors and the underlying related task, or
by diving the task into its most fundamental components and analysis possibili-
ties for Human Error at that level.

5

Figure 2.1: The HRA process, from [4]

6

2.1.2.3 Human Error Quantification

Human Error Quantification is quantifying identified Human Errors by calcu-
lating Human Error Probability (HEP). HEP is the quotient of the number of
errors which occurred and number of opportunities of which error could poten-
tially occur. Real HEP calculations are ,however, rarely used in practice or
theory. Normally HEP is calculated based on standardized HEP, approximations
or assumptions.

2.1.2.4 Human Error Reduction

HER is the by far the least defined step in the process, while also arguably
being the most important. Based on the HEP calculated in HEQ, action or
planning of action must take place to prevent Human Error from occurring, or
if done retroactively, see how Human Error could have been prevented. There
are different approaches to HER, but generally it boils down to “expert opinion”
from an expert on the systems or processes which are being assessed.

2.2 Previous Work - Finding a compatible HRA
Method

The author has previously conducted a study of how to apply HRA to the field
of software development in order to create a basis for further studies (such as this
thesis) as a part of a specialization project.

A part of this study included an evaluation of different HRA methods which
could be applicable to the field of software development. The results of the
evaluation is cited presented as:

7

From “TDT4501 MTDT Specialization Project: Human Reliability Assessment
and Software Development” by O. A. Lende:

Recommended HRA Methods

Generality Usability Validity Recommended

HEI
GEMS H M M

SHERPA H M(H) H X

HEQ
THERP M(H) L(M) H
HEART H M H
SPAR-H M(H) H H X

(...)

Recommended Human Error Quantification Method

General Recommendation: SPAR-H SPAR-H is recommended mod-
ified by removing alternative worksheets which are considered unrelated to
software development. It is also recommended specifiably for software de-
velopment processes where the number of tasks are great and time/cost is a
great factor.

(...)

This forms the basis of why we will be studying SPAR-H in this thesis.

8

Chapter 3

Standardized Plant Analysis
Risk - Human Reliability
Analysis (SPAR-H)

3.1 Overview

The Standardized Plant Analysis Risk Human reliability analysis (SPAR-H)
method is originally developed for use within the context of nuclear power plants
by Idaho National Laboratories while contracted by the U.S. Nuclear Regulatory
Commission [2].

SPAR-H is designed to be easy to use. It covers both HEI and HEQ by as-
suming a set of general Human Errors related to a preset of Performance Shaping
Factors (PSF). In its simplest form it consist of going over a checklist of PSF and
grading their relevance based on expert opinion and pre-set PSF Levels. Finally,
HEP is calculated based on which levels are chosen for each PSF:

• Available time

• Stress and stressors

• Complexity

• Experience and training

• Ergonomics (incl. human-machine interface)

• Procedures

9

• Fitness for duty

• Work Processes

The first three of these are included in all models, but the rest is situational.
The detailed approach is show in the flowchart in Fig.3.1.

10

Figure 3.1: SPAR-H Flowchart[2]

11

One of the more interesting features of SPAR-H is that the method can be
applied retroactively, i.e. trying to resolve possible reasons of ”why” a specific
error occurred, instead of ”if”.

The worksheets, such as the one shown in Fig.3.2, are general enough that
they can apply to situations and PSFs within the field of software development.
There is the possibility that they are too general: SPAR-H uses factors such as
stress, but by rating it on a scale, thus leaving it to the assessor (the one in charge
of following the method) and/or the subject in question (the ”worker”) to rate
on notion, which might be different for another assessor/subject.

The general PSFs may, however, not be sufficient to cover all possible PSFs
within the specific field of software development.

12

Figure 3.2: Example of a SPAR-H (AT POWER) Worksheet[2]

13

3.2 Performance Shaping Factors PSF

SPAR-H operates with eight different PSF. In comparison THERP have over
fifty where many are highly situational, e.g. “Quality of Environment: Noise and
Vibration”. SPAR-H focuses on more general PSFs such as “Available Time” and
“Stress” which makes SPAR-H more accessible across different industries. Kirwan
describe it as late as in 2007 to be among the methods in regular use, and referred
to to a recent NASA review of HRA methods where it was listed together with
SPAR-H and four others as interesting, in context of possible space-missions to
Mars[?].

3.2.1 Available Time

SPAR-H define Available Time as the time available to an individual or a team to
react on an abnormal event. This includes both the diagnosis and the act itself.

Unit of Measure Available Time is measured in time units (days, hours, min-
utes, seconds etc.)

PSF Levels (Diagnosis) SPAR-H operates with five levels of Available Time
to Diagnose which are all based on expert opinion, and/or empirical data, of what
is considered to be sufficient time required to diagnose the problem at hand.

Inadequate Time It is considered impossible to diagnose within
the time available. This sets P(failure) = 1.0
which is guaranteed failure.

Barley Adequate Time 2/3 of required time.

Nominal Time About what is considered required time.

Extra Time From more than required time to two times re-
quired time. This level also has an additional
rule: Available Time must also exceed 30 min-
utes independent of what is considered required
time.

Expansive Time Available Time is considered to be more than
two times the required time, while also being
more than 30 minutes.

14

PSF Levels (Action) SPAR-H operates with five levels of Available Time to
Act which are all based on expert opinion, and/or empirical data, of what is
considered to be minimum time required to diagnose the problem at hand.

Inadequate Time It is considered impossible to act within the time
available. This sets P(failure) = 1.0 which is
guaranteed failure.

Time available is equal to time
required

Available Time is considered to be about the
minimum time required to perform the action.

Nominal Time Available Time is considered to be above mini-
mum time required with a little additional time
to spare, while still being less than five times the
minimum time.

Time Available ≥ 5x Time
Required

Available Time is considered to be equal or greater
than five times the minimum time required.

Time Available ≥ 50x Time
Required

Available Time is considered to be equal or greater
than fifty times the minimum time required.

Available Time is the only PSF in SPAR-H which overrides all the others,
i.e. if Available time is considered to be inadequate SPAR-H considers the task
impossible regardless of the other factors. Available Time however is related to
other factors. Different complexity would require different time to complete. If
the description of the task tells the expert analyst; it will probably take a week;
and the time available is a single day, then the analysis can stop there.

In terms of software development, Available Time is a well known performance
shaping factor.

3.2.2 Stress

Stress in SPAR-H is an interpretation of what the the analyst considers the level
of stress put on an individual or a team based on expert opinion, human factors,
and context of the problem at hand. Please note that this particular PSF is
closely tied to SPAR-H’s origins, i.e. Nuclear Power Plants. In other words,
Stress in SPAR-H is designed to range from dismissive to extreme, in context of
threats to the life of oneself and others.

Unit of Measure Stress as a PSF in SPAR-H is measured based on subjective
levels based on expert opinion.

15

PSF Levels SPAR-H differentiate Stress into three levels:

Extreme A level of stress so extreme there is a risk of per-
formance deteriorating drastically. E.g. Threats
to physical well-being, professional status, or ca-
reer.

High A level of stress high enough to expect decreased
performance as a result. E.g. Known conse-
quences to failure or distractions which shifts
focus from the task at hand.

Nominal A level of stress is not high enough to expect to
decreased performance.

In terms of software development, stress rarely concerns itself with the phys-
ical well-being off an individual, however, whether the completion or quality of
performing a task affects a group or an individual’s career is arguably quite com-
mon. One could also argue that the development of high-critical systems such as
air traffic control systems indeed does affect the physical well-being of others.

3.2.3 Complexity

Complexity in SPAR-H is based on expert opinion of the problem and its context
in accordance to a set of factors [FIGURE p.22 2-3 spar-h].

Unit of Measure Complexity as a PSF in SPAR-H is measured based on
subjective levels based on expert opinion.

PSF Levels SPAR-H operates with four levels of complexity:

Highly Complex The task is considered very difficult to perform.
The problem involves high levels of ambiguity to
how it is diagnosed and/or solved.

Moderately Complex The task is considered moderately difficult to
perform. The problem involves moderate lev-
els of ambiguity to how it is diagnosed and/or
solved.

Nominal The task is considered to not be difficult to per-
form. Diagnosing and solving the problem is
considered to be relatively unambiguous.

16

Obvious Diagnosis Diagnosis is considered to be so simple and ob-
vious it should be trivial to the individual or
team performing the task. However, this level
does not cover “Obvious Action”, which is con-
sidered encompassed by the “Nominal” level.

3.2.4 Experience/Training

Experience and training in SPAR-H is based on expert opinion of whether the
individual or team is considered sufficiently competent to perform the task. It can
take into account acquired certificates, diploma, and similar, but it also covers
whether experience is expected to be sufficient.

Unit of Measure Experience/Training as a PSF in SPAR-H is measured based
on subjective levels based on expert opinion.

PSF Levels SPAR-H operates with three levels of Experience/Training:

Low Insufficient experience/training. Less than six
months of experience and/or training.

Nominal Sufficient experience/training. More than six
months of experience and/or training.

High Highly sufficient experience/training. Experi-
ence and/or training is considered to be at a
level of a master. High familiarity with the task
and/or similar scenarios.

3.2.5 Procedures

Procedures refer to existence and use of formal operating procedures in accor-
dance with diagnosis and execution of a task.

Unit of Measure Procedures as a PSF in SPAR-H is measured based on
subjective levels based on expert opinion.

PSF Levels (Diagnosis) SPAR-H uses five levels for the PSF of Procedures
of Diagnosis:

Not Available No formal operating procedure exists for diag-
nosing the task.

17

Incomplete Necessary information is not covered by the pro-
cedure.

Available, but poor Procedure is available, but does not enhance
performance due to inconsistencies, incompati-
bility, ambiguity, or similar.

Nominal Procedures exist and they enhance performance
of diagnosis.

Diagnostic/Symptom oriented Procedures exists that are symptom oriented (and
enhance performance). Symptom oriented pro-
cedures refers to procedures which does not re-
quire a full diagnosis, just a direct response to
certain symptoms. Thus allowing a faster re-
sponse in critical situations, e.g. a pilot’s check-
lists.

PSF Levels (Action) SPAR-H uses four levels for the PSF of Procedures of
Action:

Not Available No formal operating procedure exists for execut-
ing the task.

Incomplete Necessary information is not covered by the pro-
cedure.

Available, but poor Procedure is available, but does not enhance
performance due to inconsistencies, incompati-
bility, ambiguity, or similar.

Nominal Procedures exist and they enhance performance
of execution.

3.2.6 Ergonomics/HMI

Ergonomics and Human Machine Interaction (HMI) is the PSF covering con-
dition, quality, design etc. concerning the instrument used in the task. It is
first and foremost concerned with the quality of a physical machine’s input and
output, e.g. does the instrument read correctly, or are the controls intuitive in
comparison to established standards etc.

Unit of Measure Ergonomics/HMI as a PSF in SPAR-H is measured based
on subjective levels based on expert opinion.

18

PSF Levels SPAR-H operates with four levels of Ergonomics/HMI:

Missing/Misleading The instrument is missing, misleading, unreli-
able, or unintuitive to a point where operators
ignore it.

Poor The instrument functions so poorly that it ef-
fects performance negatively.

Nominal The instrument functions as expected. It does
not improve performance, but it does not de-
crease it either.

Good The instrument functions so good that it posi-
tively effect performance.

In terms of software development, Ergonomics/HMI does not necessarily fit
intuitively as a PSF. Software development are usually only concerned with a
keyboard and mouse environment. However, one could argue familiarity and user-
friendliness of development software, programming language, and the underlying
operating system are HMI in a similar sense to HMI in industrial machines.

3.2.7 Fitness for Duty

Fitness for Duty is a PSF in SPAR-H which takes into account the condition of
the individual or team in context of the task, i.e. expert opinion on the physical
and mental state of the individual/team. This is not on a deeper psychological
level, but on a level which is concerned with fatigue, sickness, known personal
problems, distractions, overconfidence, drug use (alcohol) etc. The context of the
task is naturally a factor here.

Unit of Measure Fitness for Duty as a PSF in SPAR-H is measured based on
subjective levels based on expert opinion.

PSF Levels SPAR-H operates with three levels of Fitness for Duty:

Unfit The individual is considered unable to perform
the task.

Degraded Fitness The individual is considered able to perform the
task in some respect, but performance is to some
degree degraded. E.g. an individual with a bro-
ken leg pumped up on pain killers may be tech-
nically able to perform some task, but might at

19

the same time be drowsy and unable to diagnose
a task properly.

Nominal The individual is considered able to perform the
task, as no factor has been found to indicate
negatively affected performance.

3.2.8 Work Processes

Work Processes refer to the culture in the workplace, organization, management,
polices and so forth. It is evaluated using expert opinion on whether it affect
performance in a negative or positive fashion.

Unit of Measure Work Processes as a PSF in SPAR-H is measured based on
subjective levels based on expert opinion.

PSF Levels SPAR-H arranges Work Processes into three levels:

Poor Work Processes is considered to affect the per-
formance of the individual or the team in a neg-
ative fashion. E.g. the culture in a workplace
environment can be infested with misplaced loy-
alty in an older, proven inefficient, system for
the sole sake of familiarity.

Nominal Work processes is considered to not affect the
performance significantly.

Good Work Processes is considered to affect the per-
formance of the individual or the team in a pos-
itive fashion. E.g. organization helps communi-
cations between different team working on dif-
ferent parts of the same project.

20

Chapter 4

Evaluation of PSFs

Each PSF is evaluated based on the criteria listed below. Each PSF is rated on
a three level scale:
low (L), medium (M), or high (H):

• Relevance to Software Development

• Relation to performance

• Measurability and controllability

“Relevance” is the most important criteria, while “Relation” comes in as a
close second. The reason for this is that if a PSF is barely relevant in software
development, the potential performance increase or decrease from this factor is
close to irrelevant. Finally, “Measurability and Controllability” is in relation to
low budget experiments. For instance, “Stress” is very difficult to measure di-
rectly without proper medical equipment and expertise. Additionally, simulating
degrees of “Stress” is difficult at lower degrees as it often is very subjective.

21

Figure 4.1: PSF Relations

Available Time Relevance H

Relation H

Measurability H

Available Time is highly relevant to any type of development process, includ-
ing software development. In terms of relation to other PSFs, Available Time is
the among the most important as shown in FIG.4.1. It is also easy to control.

Complexity Relevance H

Relation H

Measurability M

Complexity is as important as Available Time and they are directly related.
I.e. the more complex a task is, the more time is required to perform it properly.
However, what qualifies as complex is difficult to assess on its own without in-
volving other PSFs, such Experience, which can be difficult to assess in it’s own
right. Complexity is not directly related to performance, but is directly to both
Available Time and Stress which are directly related to performance.

Stress Relevance H

22

Relation H

Measurability L

Stress is also an important factor in software development, and has strong ties
to Available Time and Complexity. However, it is difficult to control since what
is considered stressful or not can vary dramatically between individuals. True
unbiased measurements of stress, as in chemicals released into the blood stream,
require advanced medical knowledge and equipment.

Experience Relevance H

Relation M

Measurability M

Experience with the problem at hand is relevant to software development, but
only with a medium degree relationship to Available Time.

Procedure Relevance M

Relation H

Measurability M

Procedures within software development exists for the overall development
process in the form of development models such as waterfall or Scrum. On lower
levels of development, i.e. writing code etc., there are rarely any form of for-
mal procedure. A possible exception would be checking an existing library for
functions and pre-written code, but this would be situational depending on the
environment. Procedure does have a strong relation to Available Time, but as
with Experience it does not directly affect performance.

Ergonomics Relevance L

Relation H

Measurability H

Ergonomics has little relevance to software development as man-machine in-
teractions tend to be limited to standardized keyboard-mouse-monitor interfaces.

Fitness for Duty Relevance M

Relation M

Measurability L

Fitness for Duty has some relevance to Software Development, but has only
some relation to Complexity and Available Time.

23

Work Processes Relevance M

Relation L

Measurability L

Work Processes do have some relevance, but has the weakest relation to other
PSFs.

4.1 Selected Performance Shaping Factors

Relevance Relation Measurability Recommended

PSF
Available Time H H H X

Complexity H H M X
Stress H H L X

Experience H M M
Procedures M H M

Fitness for Duty M M L
Work Processes M L L

Ergonomics L M M

Based on the evaluation “Available Time”, “Complexity”, and “Stress” is
chosen as three PSF which will be the main focus of the experiment. However,
as “Stress” is rated low in “Measureability and Controllability” it won’t be used
directly as an independent variable. It is, however, an important PSF which
theoretically is influenced heavily by both “Complexity” and “Available Time”.
It will therefore be used as a dependent variable measured by the students own
experience of stress. This is not as reliable or objective as measuring stress
using medical equipment, but it will give some indication of whether the students
experienced stress and how the degree of the reported stress compares to the
achieved result.

24

Figure 4.2: SPAR-H’s PSFs

25

26

Chapter 5

Experiment

5.1 Introduction

If we assume SPAR-H can to be used within the field of Software Development,
then the most relevant and influential PSFs used in SPAR-H needs to be influ-
ential to performance in Software Development. In order to investigate whether
this is the case we will perform an experiment using student voluntaries. The
student voluntaries are expected to be 2nd graders studying Computer Science
at NTNU.

The experiment itself will be low budget as the students will get paid for
their time, but will provide their own equipment (Laptops). The focus of the
experiment will be to investigate differentiating results using selected PSFs used
in SPAR-H as independent variables. The selection of PSFs is based on the
evaluation in Section 4.

5.2 Design

This is a summary of the design choices used when planning the experiment.

Context

The context is an experiment with thirty-eight 2nd grade students of Computer
Science at NTNU as subjects. The experiment is low budget, where the students
are paid for their time while providing their own equipment (Laptops). The
experiment itself consist of letting the students solve software development tasks
based on modified exam problems from the NTNU course TDT4100 Object-
oriented Programming.

27

Subjects

The subjects, i.e. the students, will be divided into two-person groups using Single
random sampling. There are 38 participants, which leaves about 19 groups.

Variables

Based on the evaluation we use the following variables:

Independent variables

• Time

• Complexity

Time will be the available time the groups have to work on the provided
problems and Complexity the total amount of problems to be solved.

Dependent variables

• Completion

• Perceived Stress

• Perceived Available Time

• Perceived Difficulty/Complexity

Completion is the result a group gets, based on their completion of the task
they where given, measured in percent. The completion is measured based on a
score of points divided by total amounts of points available.

Perceived Stress is the subjects own rating of experienced stress on a scale
form 1 to 10 where higher, is higher more stressful. Additionally, the subject will
also report whether they felt that the stress affected their performance positively,
negatively, or both positively and negatively. This is because SPAR-H operates
with stress as a negative factor, and whether this holds true in software develop-
ment scenarios (where stress rarely reaches SPAR-H’s life-threatening degree of
stress) is essential in regard to the PSF “Stress” can be considered relevant in a
software development environment.

Perceived Available Time and Complexity is the subject’s own rating of how
they individually perceived the constraints set by the independent variables.
SPAR-H operates with terms such as “Extra Time” and “Inadequate Time”.
Thus while the constraints set by the independent variables may be objectively
more or less sufficient, the dependent variable Perceived Time is used to measure
the students’ subjective experience of whether there was sufficient or insufficient
time available.

28

Hypothesis

We operate with four hypotheses for this experiment:

H0

The null hypothesis.

H1

Available Time will significantly effect the results, but not Complexity.

H2

Complexity will significantly effect the results, but not Available Time.

H3

Both Available Time and Complexity significantly effect the results.

Design Type

Two factors with two treatments gives us a 2*2 factorial design.

Instrumentation

• A survey (See Appendix A)

• Two sets of tasks (one more complex than the other) (See Appendix B and
C)

• Laptops (provided by the students)

Survey

The survey sheet (Appendix A) is the main method used to collect the majority
of the dependent variables. After the student groups are either done with the
provided task or their set time have run out, they deliver their work and are
handed out a survey to answer individually.

The survey asks the student to rate, on a scale from 1 to 10 where higher is
more, how they found:

• The Difficulty of the task provided

• Available Time was sufficient for performing the task provided

29

• Stress effected performance

The students are also asked if they feel stress effected their performance:

• Positively

• Negatively

• Both/Don’t know

Additionally, the survey provide students with space to comment their rating,
explaining if anything unexpected or unforeseen effected their performance, and
space for any additional comment.

Task sets

Figure 5.1: The tasks are centered
around moving pieces in chess

There are two set of tasks, Task A
(Appendix B) and Task B (Appendix
C). The difference between the two
tasks are that B have additional prob-
lems to solve. This is done to give B a
higher degree of complexity. Complex-
ity can be difficult to assess or com-
pare as different individuals may have
different opinions as to what they con-
sider lesser or more complex. How-
ever, we can assume that one task
will be objectively more difficult than
another task if the first task is the
same as the second task with addi-
tional things to do within the same
limit of time.

The set of tasks are modified ver-
sions of sub-tasks from “Task 1” and “Task 2” from “Final Exam in TDT4100
Object-oriented Programming June 6th 2008” by Hallvard Trætteberg. The orig-
inal exam was written in Norwegian and as the students are expected to know
Norwegian, the modified versions are also in Norwegian. The software develop-
ment part of the exam is programming tasks such as (translated):

b) Implement the Board class with the internal table

and the two following functions:

Piece getPiece(String position) { ... }

30

void setPiece(String position, Piece piece) { ... }

* getPiece returns the piece from the square labeled with position,

or null of the square is empty.

* setPiece places the piece "piece" in the square labeled with position

This example is among the easier tasks, but it is time consuming. The other
part of the original exam tasks are theoretical questions related to the course
which requires a written answer. These are removed in the modified version as
it is not the intention to test the students theoretical knowledge.

The original exam was written for pen and paper and the two tasks Task A
and B are based upon constituted 40% (Task 1) to 65% (Task 1 + Task 2) of
a four hour exam. I.e. the original exam expected these unmodified tasks to
take about 96 minutes (1h 36min) to 156 minutes (2h 36min) when solved solely
on paper by an individual. Taking into account that the tasks are to be solved
with pair-programming; in a proper programming environment (contrary to pen
and paper); by students who has an additional year of programming experience
since they had their own exam in TDT4100; it is assumed the students require
less time to solve the programming tasks, even with the added modifications and
extensions. It is not the intention that most groups should be able to complete the
all the tasks within the given time frame. I.e. the experiment is more interested
in how far groups are able to get with a certain amount of time to work on a
task with a certain complexity. If a large portion of the groups are done before
the given time, especially if their done within the shortest time frame, the result
would not reflect the difference between the smaller and the larger time frame.
Therefore the two time frames, which are the two treatments to the independent
variable “Time”, are set to 60 minutes and 90 minutes which are about 60% of the
time given to solve the unmodified versions of Task A (Task 1 from the original
exam) and Task B (Task 1 + Task 2 from the original exam) respectively.

Each student groups are thus given one of four tasks which represent a given
combination of the independent variables:

Less time + Lower complexity Task A with 60 minutes (A60)

Less time + Higher complexity Task B with 60 minutes (B60)

More time + Lower complexity Task A with 90 minutes (A90)

More time + Higher complexity Task B with 90 minutes (B90)

31

5.3 Execution

Date: 2014-03-26

Time: 14:15-16:00

Location: Auditorium S2, Campus Gløshaugen, NTNU

Participants: 38 second year students of Computer Science at the Department
of Computer and Information Science

The students were first given a short presentation of the agenda:

• They would be divided into groups of two

• Each group would be given one of two tasks, marked with either A or B.

• There would be two different time limits; Marked on the front of the task
as either 60 minutes or 90 minutes.

• No communication with other groups was allowed.

• The programming language to be used was Java. However, they were free
to use whatever development environment they felt most comfortable with,
e.g. Eclipse.

• When the provided time was over: The written code should be set to a
provided e-mail address marked with task name (A or B), time frame (60
or 90), and group name; Each students would then be required to answer
the survey before confirming presence by signature (for payment).

• Practical information regarding payment for participation.

The students were then divided into groups of two and the groups were spread
out in the auditorium to avoid communication. Additionally, the observer re-
mained in the auditorium at all times to further prevent communication between
groups.

When the experiment started a representative from each group received a task
from the observer, the timer was started, and the groups started working. Due
to there only being 38 participants, 40 were expected, one of the task sets, Task
B with 60 minutes (B60), was only given to four groups, whereas the other three
was given to five.

The groups were given two announcements by the observer of remaining time
left during the experiment, at 15 minutes and 5 minutes left for each of the two
time limits. After the experiment a short reminder of how to deliver and to fill
out the survey was also given.

32

Chapter 6

Analysis and Discussion

6.1 Processing Data

The raw output of the experiment, the gathered data, consisted of two separate
sets of data:

• Compressed .zip-folders with collected code, one from each group.

• Answered surveys, one from each student.

The delivered code will be used to calculate a score for each group which
represent the amount and quality of the work done. This score is what will rep-
resent the experiments dependent variable “Completion”. The dependent vari-
ables “Perceived Stress”, “Perceived Available Time”, and “Perceived Difficulty”
on the other hand are gathered from the survey.

6.1.1 Evaluating Code

The evaluation of the delivered code was done in two parts. First the tasks were
divided into sub-tasks of approximately equal size. This size generally entail the
creation of separate functions. For example, this task:

b) Implement the Board class with

the internal table and the two following methods:

Piece getPiece(String position) { ... }

void setPiece(String position, Piece piece) { ... }

(...)

33

is divided into two sub-tasks: “b) getPiece” and “b) setPiece”. The complete
list of sub-tasks can be seen in Table D.2.

Using this list each sub-task for each group is assigned points based on the
following criteria:

0 Points Nothing, or practically nothing, is done.

1 Point Incomplete/ Not working, this is given to tasks that are either incom-
plete, not working due to bugs or not functioning in the manner specified
by the task description.

3 Points Complete, the code is implemented and working as the task specifies.

The difference in points between “Incomplete” and “Complete” is there to re-
ward functioning code over non-functioning code.

Originally the intention was to assign the “Nothing Done” by hand and differ-
entiate between “Complete” and “Incomplete” by asserting the majority of the
remaining code with a pre-written Java program (Appendix E): Asserter.java).
In theory this would work as all written functions from the tasks had to follow a
specified format with the same name, return type, parameters, such as:

boolean isStraight(String from, String to){...}

which could easily be asserted with:

private static void assertC(){

Board board = clearBoard(new Board());;

assert(board.isStraight("a1", "a2"));

assert(board.isStraight("a2", "a4"));

assert(board.isStraight("b3", "b6"));

assert(board.isStraight("c5", "c8"));

assert(board.isStraight("a1", "b1"));

assert(board.isStraight("c3", "f3"));

(...)

However, after working with the code from a couple of different groups it
became apparent this too had to be done by hand as many groups failed to

34

follow the specified format, for instance by adding their own parameters or using
different return types.

The points from each sub-task was then combined giving each group a score
in points as shown in red in Figure. 6.1.

Figure 6.1: Score (Points)

The score is then calculated as percent to reflect completion of the given task
(Task A or B) based on the total amount of points in available in each task,
39 points and 51 points respectively which is shown in blue in Figure.6.1. This
results in the scores shown in Figure.6.2.

Figure 6.2: Score (Percents)

35

6.1.2 Survey

The survey is the source of the data on the dependent variables for perceived
stress, time, and difficulty. The three values are graded by the students answering
the survey on a scale from 1 to 10 where higher is more, i.e. a score of 10 would
indicate that; stress effected performance to a high degree; available time was
very sufficient; and the task was very difficult.

The rating each student gave is summarized in Figure. 6.3, Figure. 6.5, and
Figure. 6.4. Additionally, the students were asked to rate how they felt stress
effected their performance. This is shown in Figure.6.6.

Figure 6.3: Stress

Figure 6.4: Difficulty

36

Figure 6.5: Time

Figure 6.6: Reported Effect of Stress

37

6.1.3 Data Summary

Table 6.1: Raw Results
Task Group Score Student Difficulty (1-10) Time (1-10) Stress (1-10) Stress Effect Comment

A60 1 15 % 1 8 2 6 Negative
2 7 1 3 Negative

2 21 % 3 4 3 3 Both/Don’t know
4 4 3 1 Both/Don’t know

3 26 % 5 3 4 5 Both/Don’t know
6 4 5 6 Both/Don’t know

4 26 % 7 7 2 6 Both/Don’t know
8 6 3 8 Both/Don’t know

5 0 % 9 5 4 3 Positive
10 5 6 4 Both/Don’t know

A90 6 100 % 11 3 3 2 Negative
12 8 3 2 Both/Don’t know

7 46 % 13 3 7 8 Positive
14 5 5 5 Both/Don’t know

8 38 % 15 8 3 7 Both/Don’t know
16 2 3 1 Positive

9 54 % 17 6 3 8 Positive
18 6 4 5 Positive

10 100 % 19 7 9 5 Positive
20 6 10 3 Positive

B60 11 43 % 21 5 1 4 Both/Don’t know
22 6 3 4 Both/Don’t know

12 31 % 23 4 3 4 Both/Don’t know
24 4 2 2 Both/Don’t know

13 39 % 25 7 2 3 Both/Don’t know
26 7 2 3 Both/Don’t know

14 29 % 27 3 2 3 Both/Don’t know
28 4 2 3 Both/Don’t know

B90 15 35 % 29 7 3 7 Both/Don’t know
30 7 3 6 Both/Don’t know

16 43 % 31 7 3 5 Both/Don’t know
32 8 2 5 Both/Don’t know

17 35 % 33 8 3 9 Negative
34 7 2 10 Negative

18 37 % 35 8 3 4 Both/Don’t know
36 9 1 3 Both/Don’t know

19 51 % 37 7 4 6 Positive
38 7 3 8 Both/Don’t know

6.2 Analyzing Data

6.2.1 Exclusions

Among the groups scores (see Figure.6.2) there are 3 scores which strikingly sticks
out from the others. These are the scores from Group 5, Group 6, and Group 10;
which scores are 0%, 100%, and 100% respectively.

38

Group 5 did deliver a folder with some of the Java classes, but all the files
where empty. Their comments in the survey insinuates they where not done sub-
task d) (Implying they were done with a), b), and c)). It is thus assumed that
this is a case of delivering the wrong files and all data from Group 5, both from
code and survey, are excluded from further analysis.

Group 6 and Group 10 both managed get a perfect 100% score. This is
extraordinary considering considering the total average among all groups are
36% and the highest scoring group after them have a 54% score. It is assumed
this points to one of two explanations, significantly higher skill than other groups
or plagiarism.

In regards to the skill explanation, this is a definite possibility. Many of
the tasks which to an experienced programmer seems trivial was not performed
correctly by many of the groups. For instance, sub-task a) asks the groups to
create an enum with two values and a function which returns the non-selected
value. Five of eighteen (excluding Group 5 as mentioned above) did not manage
to solve this task completely. However, while this experiment uses second year
students as subjects, it is not a goal of the experiment to observe difference in
skill between between them. On the contrary, significant difference in skill among
the subjects, either positively or negatively, is undesired in such a small pool of
just 38 subjects.

In regards to plagiarism the original exam is not mentioned or referenced in
Task A or Task B which were handed out to the students. However while the
tasks are modified and expanded upon to some degree, the solution set of the
original exam is available publicly (if one is looking for it) and would outright
provide the solution for some of the tasks and a similar way to solving others.
So when one of the students in these two groups mentions remembering this
particular exam from when he practiced his own exam in the same course there
is at least reason for concern.

As both possible explanation are undesirable both groups and data related to
them are excluded from further analysis.

6.2.2 Relations between Time and Complexity

Due to the already small sample size which is further divided into four groups
based on Time-Complexity combinations (A60, A90, B60, and B90), all further
analysis will be primarily concerned with the averages of the different dependent
variables over different groups, as shown in Table 6.2.

39

Averages A60 B60 A90 B90 All

Score 22 % 36 % 46 % 40 % 36 %
Perceived Stress 4,75 3,25 5,67 6,30 5,03
Perceived Time 2,88 2,13 4,17 2,70 2,88

Perceived Difficulty 5,38 5,00 5,00 7,50 5,88

Table 6.2: Averages

First perform two sample t-tests on all the combinations of averages of the
dependent variables for the time-complexity combinations. The resulting p-values
are shown in Table 6.3, while more details are found in Appendix D.

P-values(t-Tests) Score Perceived Stress Perceived Time Perceived Difficulty

A60 A90 0,017 0,511 0,136 0,742
A60 B60 0,014 0,110 0,161 0,664
A60 B90 0,002 0,164 0,738 0,004
A90 B60 0,132 0,073 0,026 0,049
A90 B90 0,343 0,636 0,076 0,017
B60 B90 0,332 0,002 0,115 0,115

Table 6.3: p-values (t-tests)

Further, we calculate the main effect of Complexity and Time and their in-
teraction effect for all dependent variables by solving the following design of
experiments (DoE) table:

Complexity Time CxT Dependent Variable

A60 - - + AA60 (Average for A60)
A90 - + - AA90 (Average for A90)
B60 + - - AB60 (Average for B60)
B90 + + + AB90 (Average for B90)

Effects Main Effect(Complexity) Main Effect(Time) Interaction Effect(Complexity x Time)

Table 6.4: DoE Table

Using this table, we calculate the main effect for Complexity:

Effect(Complexity) =
−AA60−AA90 + AB60 + AB90

2

where AA60 represent the average of a dependent variable’s value over A60,
and AB90 over B90 etc. Similarly, we calculate the main effect of Time and the
Interaction effect:

40

Effect(Time) =
−AA60 + AA90−AB60 + AB90

2

Effect(ComplexityxT ime) =
+AA60−AA90−AB60 + AB90

2

This calculates the Marginal Means for time and complexity and subtracts the
mean for the lower time/complexity values from the mean for the higher higher
time/complexity values to find Main effect. The interaction effect is found by
calculating the cross product of Complexity and Time.

The resulting effects are shown in Table 6.2.2.

Complexity Time CxT Score Perceived Stress Perceived Difficulty Perceived Time

A60 - - + 22 % 4,75 5,38 2,88
A90 - + - 46 % 5,67 5,00 4,17
B60 + - - 36 % 3,25 5,00 2,13
B90 + + + 40 % 6,30 7,50 2,70

Effect(Score) 0,04 0,14 -0,10 36 %
Effect(Perceived Stress) -0,43 1,98 1,07 4,99

Effect(Perceived Difficulty) 1,06 1,06 1,44 5,72
Effect(Perceived Time) -1,11 0,93 -0,36 2,97

Table 6.5: Effects

Score

From just observing the box-plot (Fig.6.7) of the score one will notice the scores
from Task A with 60 minutes (A60) appear to vary significantly from the other
three combinations. After using two sample t-tests on the different combinations
(more details in Fig.D) and observing the resulting p-values (see Fig.6.3) we
find significant difference between A60 and all other combinations as resulting
p-values are <0.05 and we can thus assume this with about 95% certainty.

41

Figure 6.7: Boxplot: Score

However, there does not seem to be a significant difference between any of
the other combinations unless we accept a lower degree of certainty. Even then
we would have to go down to about 85% certainty to find significant difference
between B60 and A90, while still not between B60 and B90.

This would indicate that the specific combination of low complexity (Task A)
and low time (60 minutes) results in significantly poorer results, even compared
to B60 where the groups had to do more work for the same score within the
same time frame. This result was unexpected and is difficult to explain, but two
possible explanations comes to mind.

Firstly, it could be a fluke. The sample size is extremely small as only four
groups, i.e. 8 students, worked with A60. It is entirely possible the four groups
which worked with B60 happened, by chance, to be significantly more experienced
than the ones which worked with A60 even though the groups and tasks were
assigned randomly.

Alternatively, there could be unknown psychological factors at play. This
would fall outside the author’s field of study and would have to be investigated
by an expert in psychology, but it is the idea that, for instance, an individual
with a known, set time-frame aim to be done at the end of the time frame, thus
working faster and achieving more if he aims to be done with more within the
same time-frame.

42

Figure 6.8: Effect(Score)

When calculating the effects of complexity and time (see Table 6.2.2) on score
we find the main effect of complexity and time to be 4% and 14% respectively,
while the interaction effect is -10% as shown in Fig.6.8. The main effect of
complexity appears to be dismissible while the main effect of time appears to
be significant, however the interaction effect appears to be both significant and
negative. This can be explained by the same reasons as discussed above, as this
stems from the gap in difference between A60 and A90 compared to B60 and
B90.

In the end, however, these effects indicate that both time and complexity
significantly effects the score. “Time” directly and “Complexity” through inter-
action with “Time”. Thus, the results from the scores supports the H3 hypothesis
(both independent variables effect the results) while also dismissing the null hy-
pothesis H0 (none of the independent variables effect the result).

Perceived Stress, Time, and Difficulty

The three dependent variables collected through the survey all share one in-
heritable weakness: They, in essence, are a collection individuals’ experience of
concepts rated on an arbitrary scale from one to ten where each individual have
their own understanding of both the concepts, the scale and how the concepts
affect them. Remember, while stress can be measured using medical equipment
and expertise, what is measured here is individuals’ “experience of stress”.

43

Figure 6.9: Boxplot: Perceived Stress

While SPAR-H generally operates with stress as a negative factor, the survey
indicates very few of the students see stress as solely negative factor (see Fig.6.10).
Further, if we observe the box-plot of perceived stress we find the range of each
task set to span over half the scale with B60 as an exception. The sample size is
large enough to detect some degree of clustering, but this is around 5 which for
many is the go to value on arbitrary scales.

Figure 6.10: Reported effect of stress

These weaknesses makes it harder to explain oddities and trust expected re-
sults with a sample size of only six to ten per task set, but the results can arguably
be used to show small degrees of effect from time or complexity, but will then

44

require larger effects to not be dismissed. The effects of time, complexity and
their interaction is listed in Table 6.2.2. Most of the effects are <1 or barely
more than 1 which isn’t much on a one to ten arbitrary scale. Because of the
weaknesses described above all these effects are dismissed as too small, however
“Time’s” main effect (1.98) on stress is considered large enough to be considered
significant. Thus, the dependent variable “Perceived Stress” appears to indicate
some support to the experiments H1 hypothesis, while also indicating dismissal of
Ho. While the dependent variables “Perceived Available Time” and “Perceived
Difficulty” fail to prove significant effect of either “Time” or “Complexity”, thus
supporting the null hypothesis Ho.

Figure 6.11: Effect(Perceived Stress)

6.3 Test Validity

6.3.1 Conclusion Validity

38 participants divided into groups of two, and then again divided by four by
the task sets. These groups are then further reduced by data reduction. This
experiment has a problem with low statistical power due to the small sample
size. As mentioned both in the analysis of score and the values collected from
the survey.

Reliability of measure is also also a problem when it comes to the measure-
ments collected from the survey. As discussed earlier these measurements are in
essence a collection of individuals’ experience of concepts rated on an arbitrary
scale from one to ten where each individual have their own understanding of both
the concepts, the scale and how the concepts affect them. This is also a problem
in any poll, but it gets worse due to the low statistical power.

45

6.3.2 Construct Validity

Experimenter expectancies can have affected the experiment to some degree. The
experiment wishes to investigate if familiar concepts such as time and complexity
effects the result of solving a task. However, finding someone with no expectations
to how time and complexity effects task-solving may be proven difficult.

6.3.3 External Validity

The experiment used second year computer science students, because they were
available and were expected to be familiar with software development. While they
can be expected to have a shared lower boundary of experience and knowledge
due to their shared three semester, there is no upper boundary. Individuals
could have years of experience, training and programming skills even before they
entered university. This lack of upper boundary leaves the uncertainty of results
are based on skill or on cheating, which was the reason two groups were excluded
in Section 6.2.1.

6.4 Experiment Conclusion

After the analysis we find that analysis the dependent variable “Score” indi-
cates support to the H3 hypothesis and “Perceived Stress” indicates support to
H1, while they both dismiss the null hypothesis Ho which “Perceived Available
Time” and “Perceived Difficulty” supports. Due to the aforementioned weak-
nesses of the dependent variables from the survey, and the more empirical nature
of “Score”; “Score” will be considered to have more weight. Additionally, H3

requires there to be a significant effect on any of the results for either “Time” or
“Complexity”. So to this respect “Perceived Stress” only strengthens the notion
that “Time” significantly effect the result, while not undermining “Complexity’s”
effect in other results. Thus, this analysis conclude that the experiment supports
hypothesis H3: “Both Available Time and Complexity significantly effect the
results”.

There are however considerations to this conclusion as discussed in above in
Section 6.3. The conclusion validity is lowered due to low statistical power, which
in turn lowers the validity of the experiment and it’s conclusion. However, even
when accounting for this we still found significant differences and effects for some
of the results. Thus, the conclusion stands, but with a remark to a lower validity
than preferred.

46

Chapter 7

Conclusion and Further
Work

7.1 Conclusion

The goal of this thesis was to study how to apply Human Reliability Assess-
ment(HRA) to the field of software development, by studying how the HRA
method SPAR-H can be applied to software development.

In order to reach that goal this document has answered two research questions:

R1

Are there any of SPAR-H’s Performance Shaping Factors (PSF) that is more
useful to the field of software development than others, based on an evaluation
of SPAR-H’s PSFs?

This thesis have answered this by performing an evaluation on SPAR-H’s
PSFs, where the PSFs “Available Time”, “Complexity”, and “Stress” was rec-
ommended as most suited for within the field of software development.

R2

Does SPAR-H’s PSFs actually affect performance in a software development sce-
nario, based on an experiment using SPAR-H’s PSFs as independent variables?

This thesis have answered this by performing an experiment using “Complex-
ity” and “Available Time” as independent variables. The experiment concludes

47

that both “Complexity” and “Available Time” affects the result, and thus the
performance, in software development. However, with remarks to lower degrees
of conclusion validity due to a small sample size.

7.2 Further Work

The lower validity of the experiment generates a degree of uncertainty to the
conclusion. For further work a retake on the experiment with a larger sample size
and more experienced participants would help remove some of this uncertainty.

Beyond that point, applying SPAR-H or a modification of SPAR-H directly
on a software development projects to see if HRA can be applied to the field
software development.

48

Appendix A

Survey

49

Survey

ID

Group

Task

Rate how difficult you found the task (Higher is more difficult):

1 2 3 4 5 6 7 8 9 10

Rate whether time available was sufficient for performing the task (Higher is
more sufficient):

1 2 3 4 5 6 7 8 9 10

Additional comment? Write below.

Rate to which degree you feel stress effected your performance in this task
(Higher is to a higher degree):

1 2 3 4 5 6 7 8 9 10

Additional comment? Write below.

Turn page

Would you say stress effected your performance more positively or negatively?

© Positive © Negative © Both/Don’t know

Additional comment? Write below.

Did anything unexpected or unforeseen effect your performance in any way?
Write below.

Anything else? Write below.

52

Appendix B

Experiment Task A

53

Task A

Tidsfrist: 1,5 time (90 minutter)

Du skal lage et sjakkspill, med klasser for å representere brikkefarge, brikker
og brettet med alle brikkene. Reglene er noe forenklet, bl.a. er omgjøring av
bønder og rokkade utelatt.

Sjakk spilles p̊a et 8x8 brett, hvor rutene angis med bokstav a-h for kolonnen
og tall 1-8 for raden. Nederste venstre hjørne har koordinatene ”a1” og motsatt
hjørne har koordinatene ”h8”. En rute p̊a brettet kan være tom eller inneholde
en hvit eller sort brikke.

Det er 6 forskjellige typer brikker, med hver sine regler for hvordan de flytter.
Generelt kan en brikke enten flytte til et tomt felt eller til et felt med en brikke
med motsatt farge, heretter kalt en motstanderbrikke. Det siste kalles å sl̊a og
brikken som flyttes vil da erstatte motstanderbrikken.

• Bonden flytter normalt 1 rute frem, men kan ogs̊a flytte 2 (uten å hoppe
over andre brikker) dersom den (fortsatt) st̊ar i utgangsposisjonen. Bonden
sl̊ar motstandere 1 rute diagonalt forover, dvs. oppover for hvit og nedover
for svart.

• Springeren (hest) flytter 2 ruter i én retning og 1 rute i retning vinkelrett
p̊a første, f.eks. 2 ruter frem og 1 til venstre eller 1 rute bakover og 2 til
høyre. Springeren kan hoppe over andre brikker.

• Løperen (biskop) flytter 1 eller flere ruter diagonalt i en av 4 retninger og
kan ikke hoppe over andre brikker.

• T̊arnet flytter 1 eller flere ruter rett frem eller til siden i en av 4 retninger
og kan ikke hoppe over andre brikker.

• Dronningen flytter 1 eller flere ruter rett frem, til siden eller diagonalt i en
av 8 retninger og kan ikke hoppe over andre brikker.

• Kongen flytter 1 rute rett frem, til siden eller diagonalt i en av 8 retninger.
Dersom kongen st̊ar slik at den kan sl̊as av motstanderen i neste trekk, s̊a
er den sjakk.

Figure B.1: Sjakkbrett

Ved start har hver spiller 8 bønder, 2 springere, 2 løpere, 2 t̊arn, 1 dronning
og 1 konge. Den ene spilleren har hvite brikker og den andre svarte. Utgangspo-
sisjonen er som vist i figuren, med 1 rad bønder og 1 rad med hhv. t̊arn, springer,
løper, dronning, konge, løper, springer og t̊arn, for hver spiller. De hvite bøndene
flytter oppover og de sorte bøndene nedover.

55

a) Definer en enum-klasse kalt PieceColor, med verdiene WHITE og BLACK.
Implementer metoden getOtherColor, som ikke tar noen parametre og som re-
turnerer den andre fargeverdien.

Grensesnittet Piece er definert som følger:

public interface Piece {
public PieceColor getPieceColor();
public boolean canTake(String from, String to, Board board);
public boolean canMove(String from, String to, Board board);
}

Tanken er at dette grensesnittet skal implementeres av 6 brikkeklasser Pawn
(bonde), Knight (springer), Bishop (løper), Rook (t̊arn), Queen (dronning) og
King (konge).

Klassen Board skal representere sjakkbrettet vha. en tabell (array) med Piece-
objekter, med dimensjoner 8x8. Metodene som refererer til ruter, skal bruke
String-posisjoner (koordinater) p̊a formatet ”a1” til ”h8”, som vist i figuren over.

b) Implementer Board-klassen med den interne tabellen og følgende to innkap-
slingsmetoder.

Piece getPiece(String position) { . . . }
void setPiece(String position, Piece piece) { . . . }

• getPiece returnerer brikken p̊a ruta angitt med position, eller null dersom
ruta er tom. F.eks. skal getPiece(”a1”) og getPiece(”h8”) returnere en evt.
brikke i hhv. ruta nederst til venstre og øverst til høyre.

• setPiece plasserer brikken piece i ruta angitt med position.

c) Implementer følgende hjelpemetoder i Board-klassen:

boolean isStraight(String from, String to) { . . . }
boolean isDiagonal(String from, String to) { . . . }
boolean isOccupiedBetween(String from, String to) { . . . }

• isStraight returnerer en boolean som angir om et flytt fra from til to g̊ar
langs en rad eller kolonne, alts̊a i en av de 4 retningene parallelt med kantene
p̊a brettet.

• isDiagonal returnerer en boolean som angir om et flytt fra from til to g̊ar
diagonalt, alts̊a i en av de 4 retningene p̊a skr̊a over brettet.

• isOccupiedBetween skal returnere en boolean som angir om én eller flere av
rutene mellom (og ikke inkludert) from og to er fylt med en brikke.

d) Implementer de 6 brikkeklasser Pawn (bonde), Knight (springer), Bishop
(løper), Rook (t̊arn), Queen (dronning), og King (konge); som alle implementerer
grensesnittet Piece. Implementer ogs̊a en konstruktør, som brukes for å sette
brikkefargen. Logikken til metodene i Piecegrensesnittet skal være som følger:

• getPieceColor returnerer fargen til brikken.

• canMove returnerer en boolean som angir om denne brikken, dersom den
st̊ar p̊a from-posisjonen, har lov til å flytte til to-posisjonen. Du trenger
ikke sjekke om brikken faktisk st̊ar p̊a from eller om to er tom.

• canTake returnerer en boolean som angir om denne brikken, dersom den
st̊ar p̊a from-posisjonen, har lov til å ta en motstanderbrikke p̊a to-posisjonen.
Du trenger ikke sjekke om brikken faktisk st̊ar p̊a from eller om det faktisk
st̊ar en motstanderbrikke p̊a to.

58

Appendix C

Experiment Task B

59

Task B

Tidsfrist: 1,5 time (90 minutter)

Du skal lage et sjakkspill, med klasser for å representere brikkefarge, brikker
og brettet med alle brikkene. Reglene er noe forenklet, bl.a. er omgjøring av
bønder og rokkade utelatt.

Sjakk spilles p̊a et 8x8 brett, hvor rutene angis med bokstav a-h for kolonnen
og tall 1-8 for raden. Nederste venstre hjørne har koordinatene ”a1” og motsatt
hjørne har koordinatene ”h8”. En rute p̊a brettet kan være tom eller inneholde
en hvit eller sort brikke.

Det er 6 forskjellige typer brikker, med hver sine regler for hvordan de flytter.
Generelt kan en brikke enten flytte til et tomt felt eller til et felt med en brikke
med motsatt farge, heretter kalt en motstanderbrikke. Det siste kalles å sl̊a og
brikken som flyttes vil da erstatte motstanderbrikken.

• Bonden flytter normalt 1 rute frem, men kan ogs̊a flytte 2 (uten å hoppe
over andre brikker) dersom den (fortsatt) st̊ar i utgangsposisjonen. Bonden
sl̊ar motstandere 1 rute diagonalt forover, dvs. oppover for hvit og nedover
for svart.

• Springeren (hest) flytter 2 ruter i én retning og 1 rute i retning vinkelrett
p̊a første, f.eks. 2 ruter frem og 1 til venstre eller 1 rute bakover og 2 til
høyre. Springeren kan hoppe over andre brikker.

• Løperen (biskop) flytter 1 eller flere ruter diagonalt i en av 4 retninger og
kan ikke hoppe over andre brikker.

• T̊arnet flytter 1 eller flere ruter rett frem eller til siden i en av 4 retninger
og kan ikke hoppe over andre brikker.

• Dronningen flytter 1 eller flere ruter rett frem, til siden eller diagonalt i en
av 8 retninger og kan ikke hoppe over andre brikker.

• Kongen flytter 1 rute rett frem, til siden eller diagonalt i en av 8 retninger.
Dersom kongen st̊ar slik at den kan sl̊as av motstanderen i neste trekk, s̊a
er den sjakk.

Figure C.1: Sjakkbrett

Ved start har hver spiller 8 bønder, 2 springere, 2 løpere, 2 t̊arn, 1 dronning
og 1 konge. Den ene spilleren har hvite brikker og den andre svarte. Utgangspo-
sisjonen er som vist i figuren, med 1 rad bønder og 1 rad med hhv. t̊arn, springer,
løper, dronning, konge, løper, springer og t̊arn, for hver spiller. De hvite bøndene
flytter oppover og de sorte bøndene nedover.

61

a) Definer en enum-klasse kalt PieceColor, med verdiene WHITE og BLACK.
Implementer metoden getOtherColor, som ikke tar noen parametre og som re-
turnerer den andre fargeverdien.

Grensesnittet Piece er definert som følger:

public interface Piece {
public PieceColor getPieceColor();
public boolean canTake(String from, String to, Board board);
public boolean canMove(String from, String to, Board board);
}

Tanken er at dette grensesnittet skal implementeres av 6 brikkeklasser Pawn
(bonde), Knight (springer), Bishop (løper), Rook (t̊arn), Queen (dronning) og
King (konge).

Klassen Board skal representere sjakkbrettet vha. en tabell (array) med Piece-
objekter, med dimensjoner 8x8. Metodene som refererer til ruter, skal bruke
String-posisjoner (koordinater) p̊a formatet ”a1” til ”h8”, som vist i figuren over.

b) Implementer Board-klassen med den interne tabellen og følgende to innkap-
slingsmetoder.

Piece getPiece(String position) { . . . }
void setPiece(String position, Piece piece) { . . . }

• getPiece returnerer brikken p̊a ruta angitt med position, eller null dersom
ruta er tom. F.eks. skal getPiece(”a1”) og getPiece(”h8”) returnere en evt.
brikke i hhv. ruta nederst til venstre og øverst til høyre.

• setPiece plasserer brikken piece i ruta angitt med position.

c) Implementer følgende hjelpemetoder i Board-klassen:

boolean isStraight(String from, String to) { . . . }
boolean isDiagonal(String from, String to) { . . . }
boolean isOccupiedBetween(String from, String to) { . . . }

• isStraight returnerer en boolean som angir om et flytt fra from til to g̊ar
langs en rad eller kolonne, alts̊a i en av de 4 retningene parallelt med kantene
p̊a brettet.

• isDiagonal returnerer en boolean som angir om et flytt fra from til to g̊ar
diagonalt, alts̊a i en av de 4 retningene p̊a skr̊a over brettet.

• isOccupiedBetween skal returnere en boolean som angir om én eller flere av
rutene mellom (og ikke inkludert) from og to er fylt med en brikke.

d) Implementer de 6 brikkeklasser Pawn (bonde), Knight (springer), Bishop
(løper), Rook (t̊arn), Queen (dronning), og King (konge); som alle implementerer
grensesnittet Piece. Implementer ogs̊a en konstruktør, som brukes for å sette
brikkefargen. Logikken til metodene i Piecegrensesnittet skal være som følger:

• getPieceColor returnerer fargen til brikken.

• canMove returnerer en boolean som angir om denne brikken, dersom den
st̊ar p̊a from-posisjonen, har lov til å flytte til to-posisjonen. Du trenger
ikke sjekke om brikken faktisk st̊ar p̊a from eller om to er tom.

• canTake returnerer en boolean som angir om denne brikken, dersom den
st̊ar p̊a from-posisjonen, har lov til å ta en motstanderbrikke p̊a to-posisjonen.
Du trenger ikke sjekke om brikken faktisk st̊ar p̊a from eller om det faktisk
st̊ar en motstanderbrikke p̊a to.

e) Implementer en konstruktør for Board som setter opp brikkene riktig og at
klassen i tillegg har følgende metoder:

boolean isLegalMove(PieceColor color, String from, String to) { . . . }
void movePiece(String from, String to) { . . . }
boolean isCheck(PieceColor color) { . . . }

• isLegalMove returnerer en boolean som angir om det er lov for spilleren
med fargen color å flytte brikken p̊a from- posisjonen til to-posisjonen.

• movePiece flytter en brikke fra from-posisjonen til to-posisjonen.

• isCheck returnerer en boolean som angir om kongebrikken med fargen color
er sjakk.

f) Implementer en main-metode, som oppretter et sjakkbrett og lar bruk-
eren skrive inn flytt (velg selv formatet). Husk p̊a at hvit trekker først og at de
deretter veksler mellom å trekke. Programmet skal si fra n̊ar en konge blir sjakk
og avslutte n̊ar en konge blir tatt. Ellers trenger du ikke bry deg om regler ut
over de som er beskrevet over.

64

Under ser du mulig utskrift og input ved kjøring av en slik main-metode.

WHITE’s turn:
d2-d4
BLACK’s turn:
e7-e5
WHITE’s turn:
d2-d4
Illegal move!
WHITE’s turn:
d4-e5
BLACK’s turn:

66

Appendix D

Experiment Results

Table D.1: Raw Results
Task Group Score Student Difficulty (1-10) Time (1-10) Stress (1-10) Stress Effect Comment

A60 1 15 % 1 8 2 6 Negative
2 7 1 3 Negative

2 21 % 3 4 3 3 Both/Don’t know
4 4 3 1 Both/Don’t know

3 26 % 5 3 4 5 Both/Don’t know
6 4 5 6 Both/Don’t know

4 26 % 7 7 2 6 Both/Don’t know
8 6 3 8 Both/Don’t know

5 0 % 9 5 4 3 Positive
10 5 6 4 Both/Don’t know

A90 6 100 % 11 3 3 2 Negative
12 8 3 2 Both/Don’t know

7 46 % 13 3 7 8 Positive
14 5 5 5 Both/Don’t know

8 38 % 15 8 3 7 Both/Don’t know
16 2 3 1 Positive

9 54 % 17 6 3 8 Positive
18 6 4 5 Positive

10 100 % 19 7 9 5 Positive
20 6 10 3 Positive

B60 11 43 % 21 5 1 4 Both/Don’t know
22 6 3 4 Both/Don’t know

12 31 % 23 4 3 4 Both/Don’t know
24 4 2 2 Both/Don’t know

13 39 % 25 7 2 3 Both/Don’t know
26 7 2 3 Both/Don’t know

14 29 % 27 3 2 3 Both/Don’t know
28 4 2 3 Both/Don’t know

B90 15 35 % 29 7 3 7 Both/Don’t know
30 7 3 6 Both/Don’t know

16 43 % 31 7 3 5 Both/Don’t know
32 8 2 5 Both/Don’t know

17 35 % 33 8 3 9 Negative
34 7 2 10 Negative

18 37 % 35 8 3 4 Both/Don’t know
36 9 1 3 Both/Don’t know

19 51 % 37 7 4 6 Positive
38 7 3 8 Both/Don’t know

68

Table D.2: Score (Points) Overview
Group Total Score a) b1) getPiece b2) setPiece c1) isStraight c2) isDiagonal c3) isOccupiedBetween -

Group 1 6 3 3 0 0 0 0 -
Group 2 8 1 1 1 3 1 1 -
Group 3 10 1 1 1 3 3 1 -
Group 4 10 3 1 1 3 1 1 -
Group 5 0 0 0 0 0 0 0 -
Group 6 18 3 3 3 3 3 3 -
Group 7 8 1 1 1 3 1 1 -
Group 8 10 3 1 1 3 1 1 -
Group 9 10 3 1 1 3 1 1 -

Group 10 18 3 3 3 3 3 3 -
Group 11 10 3 1 1 3 1 1 -
Group 12 16 3 3 3 3 3 1 -
Group 13 16 1 3 3 3 3 3 -
Group 14 12 3 1 1 3 3 1 -
Group 15 16 3 3 3 3 3 1 -
Group 16 12 3 1 1 3 3 1 -
Group 17 11 3 1 1 3 3 0 -
Group 18 14 1 3 3 3 3 1 -
Group 19 16 3 3 3 3 3 1 -

d) Pawn canMove d) Pawn canTake d) King canMove d) Queen canMove d) Rook canMove d) Bishop canMove d) Knight canMove e1) isLegalMove e2) movePiece e3) isCheck f)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
3 3 3 3 3 3 3
0 1 1 3 3 1 1
1 1 0 0 0 0 3
1 1 0 3 3 3 0
3 3 3 3 3 3 3
1 1 1 3 3 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 3 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 3 3 0 3 0 0 0 0 0 0
0 0 0 3 1 3 0 0 0 0 0
1 0 0 0 3 1 0 0 0 0 0
3 1 3 0 3 0 0 0 0 0 0

Figure D.1: Score (Points)

Figure D.2: Score (Percents)

70

Figure D.3: Stress

Figure D.4: Difficulty

71

Figure D.5: Time

Figure D.6: Reported Effect of Stress

72

Figure D.7: Boxplot: Score

Figure D.8: Boxplot: Perceived Stress

73

Figure D.9: Boxplot: Perceived Time

Figure D.10: Boxplot: Perceived Difficulty

74

Complexity Time CxT Score Stress Rep. Difficulty Rep. Time

A60 - - + 22 % 4,75 5,38 2,88
A90 - + - 46 % 5,67 5,00 4,17
B60 + - - 36 % 3,25 5,00 2,13
B90 + + + 40 % 6,30 7,50 2,70

Effect(Score) 0,04 0,14 -0,10 36 %
Effect(Stress) -0,43 1,98 1,07 4,99

Effect(Rep. Difficulty) 1,06 1,06 1,44 5,72
Effect(Rep. Time) -1,11 0,93 -0,36 2,97

Table D.3: Effects

Figure D.11: Effect(Score)

Figure D.12: Effect(Perceived Stress)

75

Figure D.13: Effect(Perceived Difficulty)

Figure D.14: Effect(Perceived Time)

76

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Stress (A60) Stress (A90) Stress (A60) Stress (B60)
Gjennomsnitt 4,75 5,666666667 Gjennomsnitt 4,75 3,25

Varians 5,071428571 7,066666667 Varians 5,071428571 0,5
Observasjoner 8 6 Observasjoner 8 8

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 10 fg 8

t-Stat -0,681032027 t-Stat 1,797434069
P(T¡=t) ensidig 0,255656313 P(T¡=t) ensidig 0,054991721

T-kritisk, ensidig 1,812461102 T-kritisk, ensidig 1,859548033
P(T¡=t) tosidig 0,511312625 P(T¡=t) tosidig 0,109983443

T-kritisk, tosidig 2,228138842 T-kritisk, tosidig 2,306004133

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Stress (A60) Stress (B90) Stress (A90) Stress (B60)
Gjennomsnitt 4,75 6,3 Gjennomsnitt 5,666666667 3,25

Varians 5,071428571 4,9 Varians 7,066666667 0,5
Observasjoner 8 10 Observasjoner 6 8

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 15 fg 6

t-Stat -1,462050395 t-Stat 2,169987692
P(T¡=t) ensidig 0,082180736 P(T¡=t) ensidig 0,036531594

T-kritisk, ensidig 1,753050325 T-kritisk, ensidig 1,943180274
P(T¡=t) tosidig 0,164361471 P(T¡=t) tosidig 0,073063188

T-kritisk, tosidig 2,131449536 T-kritisk, tosidig 2,446911846

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Stress (A90) Stress (B90) Stress (B60) Stress (B90)
Gjennomsnitt 5,666666667 6,3 Gjennomsnitt 3,25 6,3

Varians 7,066666667 4,9 Varians 0,5 4,9
Observasjoner 6 10 Observasjoner 8 10

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 9 fg 11

t-Stat -0,490414446 t-Stat -4,103304043
P(T¡=t) ensidig 0,317787351 P(T¡=t) ensidig 0,000874776

T-kritisk, ensidig 1,833112923 T-kritisk, ensidig 1,795884814
P(T¡=t) tosidig 0,635574703 P(T¡=t) tosidig 0,001749553

T-kritisk, tosidig 2,262157158 T-kritisk, tosidig 2,200985159

Table D.4: t-Tests: Stress

77

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Time (A60) Time (A90) Time (A60) Time (B60)
Gjennomsnitt 2,875 4,166666667 Gjennomsnitt 2,875 2,125

Varians 1,553571429 2,566666667 Varians 1,553571429 0,410714286
Observasjoner 8 6 Observasjoner 8 8

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 9 fg 10

t-Stat -1,637812815 t-Stat 1,513574937
P(T¡=t) ensidig 0,067942848 P(T¡=t) ensidig 0,080539359

T-kritisk, ensidig 1,833112923 T-kritisk, ensidig 1,812461102
P(T¡=t) tosidig 0,135885696 P(T¡=t) tosidig 0,161078717

T-kritisk, tosidig 2,262157158 T-kritisk, tosidig 2,228138842

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Time (A60) Time (B90) Time (A90) Time (B60)
Gjennomsnitt 2,875 2,7 Gjennomsnitt 4,166666667 2,125

Varians 1,553571429 0,677777778 Varians 2,566666667 0,410714286
Observasjoner 8 10 Observasjoner 6 8

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 12 fg 6

t-Stat 0,341907622 t-Stat 2,949606076
P(T¡=t) ensidig 0,369166835 P(T¡=t) ensidig 0,012813029

T-kritisk, ensidig 1,782287548 T-kritisk, ensidig 1,943180274
P(T¡=t) tosidig 0,738333669 P(T¡=t) tosidig 0,025626057

T-kritisk, tosidig 2,178812827 T-kritisk, tosidig 2,446911846

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Time (A90) Time (B90) Time (B60) Time (B90)
Gjennomsnitt 4,166666667 2,7 Gjennomsnitt 2,125 2,7

Varians 2,566666667 0,677777778 Varians 0,410714286 0,677777778
Observasjoner 6 10 Observasjoner 8 10

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 7 fg 16

t-Stat 2,083460385 t-Stat -1,666022473
P(T¡=t) ensidig 0,037848705 P(T¡=t) ensidig 0,057581444

T-kritisk, ensidig 1,894578604 T-kritisk, ensidig 1,745883669
P(T¡=t) tosidig 0,07569741 P(T¡=t) tosidig 0,115162887

T-kritisk, tosidig 2,364624251 T-kritisk, tosidig 2,119905285

Table D.5: t-test: Time

78

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Difficulty (A60) Difficulty (A90) Difficulty (A60) Difficulty (B60)
Gjennomsnitt 5,375 5 Gjennomsnitt 5,375 5

Varians 3,410714286 4,8 Varians 3,410714286 2,285714286
Observasjoner 8 6 Observasjoner 8 8

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 10 fg 13

t-Stat 0,338630403 t-Stat 0,444400903
P(T¡=t) ensidig 0,37094544 P(T¡=t) ensidig 0,332030485

T-kritisk, ensidig 1,812461102 T-kritisk, ensidig 1,770933383
P(T¡=t) tosidig 0,741890879 P(T¡=t) tosidig 0,66406097

T-kritisk, tosidig 2,228138842 T-kritisk, tosidig 2,160368652

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Difficulty (A90) Difficulty (B60) Difficulty (A90) Difficulty (B90)
Gjennomsnitt 5 2,125 Gjennomsnitt 5 2,7

Varians 4,8 0,410714286 Varians 4,8 0,677777778
Observasjoner 6 8 Observasjoner 6 10

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 6 fg 6

t-Stat 3,115921527 t-Stat 2,469014121
P(T¡=t) ensidig 0,010346057 P(T¡=t) ensidig 0,024261267

T-kritisk, ensidig 1,943180274 T-kritisk, ensidig 1,943180274
P(T¡=t) tosidig 0,020692114 P(T¡=t) tosidig 0,048522534

T-kritisk, tosidig 2,446911846 T-kritisk, tosidig 2,446911846

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Difficulty (A60) Difficulty (B90) Difficulty (B60) Difficulty (B90)
Gjennomsnitt 5,375 2,7 Gjennomsnitt 2,125 2,7

Varians 3,410714286 0,677777778 Varians 0,410714286 0,677777778
Observasjoner 8 10 Observasjoner 8 10

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 9 fg 16

t-Stat 3,805474889 t-Stat -1,666022473
P(T¡=t) ensidig 0,002091033 P(T¡=t) ensidig 0,057581444

T-kritisk, ensidig 1,833112923 T-kritisk, ensidig 1,745883669
P(T¡=t) tosidig 0,004182065 P(T¡=t) tosidig 0,115162887

T-kritisk, tosidig 2,262157158 T-kritisk, tosidig 2,119905285

Table D.6: t-test: Difficulty

79

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Score (A60) Score (A90) Score (A60) Score (B60)
Gjennomsnitt 0,217948718 0,461538462 Gjennomsnitt 0,217948718 0,357843137

Varians 0,002410695 0,00591716 Varians 0,002410695 0,004197104
Observasjoner 4 3 Observasjoner 4 4

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 3 fg 6

t-Stat -4,80026595 t-Stat -3,441929681
P(T¡=t) ensidig 0,008602758 P(T¡=t) ensidig 0,006884179

T-kritisk, ensidig 2,353363435 T-kritisk, ensidig 1,943180274
P(T¡=t) tosidig 0,017205515 P(T¡=t) tosidig 0,013768358

T-kritisk, tosidig 3,182446305 T-kritisk, tosidig 2,446911846

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Score (A60) Score (B90) Score (A90) Score (B60)
Gjennomsnitt 0,217948718 0,403921569 Gjennomsnitt 0,461538462 0,357843137

Varians 0,002410695 0,004536717 Varians 0,00591716 0,004197104
Observasjoner 4 5 Observasjoner 3 4

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 7 fg 4

t-Stat -4,785844996 t-Stat 1,886410461
P(T¡=t) ensidig 0,000999358 P(T¡=t) ensidig 0,066148894

T-kritisk, ensidig 1,894578604 T-kritisk, ensidig 2,131846782
P(T¡=t) tosidig 0,001998716 P(T¡=t) tosidig 0,132297789

T-kritisk, tosidig 2,364624251 T-kritisk, tosidig 2,776445105

t-Test: To utvalg med antatt ulike varianser t-Test: To utvalg med antatt ulike varianser

Score (A90) Score (B90) Score (B60) Score (B90)
Gjennomsnitt 0,461538462 0,403921569 Gjennomsnitt 0,357843137 0,403921569

Varians 0,00591716 0,004536717 Varians 0,004197104 0,004536717
Observasjoner 3 5 Observasjoner 4 5

Antatt avvik mellom gjennomsnittene 0 Antatt avvik mellom gjennomsnittene 0
fg 4 fg 7

t-Stat 1,073677755 t-Stat -1,041704464
P(T¡=t) ensidig 0,171711123 P(T¡=t) ensidig 0,166092199

T-kritisk, ensidig 2,131846782 T-kritisk, ensidig 1,894578604
P(T¡=t) tosidig 0,343422245 P(T¡=t) tosidig 0,332184399

T-kritisk, tosidig 2,776445105 T-kritisk, tosidig 2,364624251

Table D.7: t-test: Score

P-values(t-Tests) Score Stress Time Difficulty

A60 A90 0,017 0,511 0,136 0,742
A60 B60 0,014 0,110 0,161 0,664
A60 B90 0,002 0,164 0,738 0,004
A90 B60 0,132 0,073 0,026 0,049
A90 B90 0,343 0,636 0,076 0,017
B60 B90 0,332 0,002 0,115 0,115

Table D.8: p-values (t-tests)

80

Appendix E

Asserter.java

package Test;

public class Asserter {

private static Board clearBoard(Board b){

b.setPiece("a1", null);

b.setPiece("b1", null);

b.setPiece("c1", null);

b.setPiece("d1", null);

b.setPiece("e1", null);

b.setPiece("f1", null);

b.setPiece("g1", null);

b.setPiece("h1", null);

b.setPiece("a2", null);

b.setPiece("b2", null);

b.setPiece("c2", null);

b.setPiece("d2", null);

b.setPiece("e2", null);

b.setPiece("f2", null);

b.setPiece("g2", null);

b.setPiece("h2", null);

b.setPiece("a3", null);

b.setPiece("b3", null);

b.setPiece("c3", null);

b.setPiece("d3", null);

b.setPiece("e3", null);

b.setPiece("f3", null);

b.setPiece("g3", null);

b.setPiece("h3", null);

81

b.setPiece("a4", null);

b.setPiece("b4", null);

b.setPiece("c4", null);

b.setPiece("d4", null);

b.setPiece("e4", null);

b.setPiece("f4", null);

b.setPiece("g4", null);

b.setPiece("h4", null);

b.setPiece("a5", null);

b.setPiece("b5", null);

b.setPiece("c5", null);

b.setPiece("d5", null);

b.setPiece("e5", null);

b.setPiece("f5", null);

b.setPiece("g5", null);

b.setPiece("h5", null);

b.setPiece("a6", null);

b.setPiece("b6", null);

b.setPiece("c6", null);

b.setPiece("d6", null);

b.setPiece("e6", null);

b.setPiece("f6", null);

b.setPiece("g6", null);

b.setPiece("h6", null);

b.setPiece("a7", null);

b.setPiece("b7", null);

b.setPiece("c7", null);

b.setPiece("d7", null);

b.setPiece("e7", null);

b.setPiece("f7", null);

b.setPiece("g7", null);

b.setPiece("h7", null);

b.setPiece("a8", null);

b.setPiece("b8", null);

b.setPiece("c8", null);

b.setPiece("d8", null);

b.setPiece("e8", null);

b.setPiece("f8", null);

b.setPiece("g8", null);

b.setPiece("h8", null);

return b;

}

82

private static void assertA(){

// assert(false);

assert(PieceColor.WHITE != null);

assert(PieceColor.BLACK != null);

assert(PieceColor.WHITE.getOtherColor() == PieceColor.BLACK);

assert(!(PieceColor.WHITE.getOtherColor() == PieceColor.WHITE));

assert((PieceColor.BLACK.getOtherColor() == PieceColor.WHITE));

assert(!(PieceColor.BLACK.getOtherColor() == PieceColor.BLACK));

}

private static void assertB(){

// Board b = clearBoard(new Board());

Board b = new Board();

Piece p = new Piece() {

@Override

public PieceColor getPieceColor() {

// TODO Auto-generated method stub

return null;

}

@Override

public boolean canTake(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

@Override

public boolean canMove(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

};

b.setPiece("a3", p);

assert(b.getPiece("a3").equals(p));

b.setPiece("f4", p);

assert(b.getPiece("f4").equals(p));

b.setPiece("c2", p);

assert(b.getPiece("c2").equals(p));

assert((b.getPiece("g5") == null || !(b.getPiece("g5").equals(p))));

assert((b.getPiece("h6") == null || !(b.getPiece("h6").equals(p))));

83

assert((b.getPiece("a1") == null|| !(b.getPiece("a1").equals(p))));

}

private static void assertC(){

Board board = clearBoard(new Board());;

assert(board.isStraight("a1", "a2"));

assert(board.isStraight("a2", "a4"));

assert(board.isStraight("b3", "b6"));

assert(board.isStraight("c5", "c8"));

assert(board.isStraight("a1", "b1"));

assert(board.isStraight("c3", "f3"));

assert(board.isStraight("a7", "a2"));

assert(board.isStraight("a8", "a5"));

assert(board.isStraight("b7", "b1"));

assert(board.isStraight("c8", "c1"));

assert(board.isStraight("f1", "a1"));

assert(board.isStraight("h3", "c3"));

assert(!board.isStraight("h6", "c3"));

assert(!board.isStraight("b3", "a2"));

assert(!board.isStraight("e1", "g8"));

assert(board.isDiagonal("a1", "h8"));

assert(board.isDiagonal("a2", "d5"));

assert(board.isDiagonal("b5", "c4"));

assert(board.isDiagonal("c6", "f3"));

assert(board.isDiagonal("d4", "g7"));

assert(board.isDiagonal("a7", "b8"));

assert(board.isDiagonal("a6", "c8"));

assert(board.isDiagonal("a5", "d8"));

assert(board.isDiagonal("a4", "e8"));

assert(board.isDiagonal("a3", "f8"));

assert(board.isDiagonal("h8", "a1"));

assert(board.isDiagonal("h1", "a8"));

assert(!board.isDiagonal("a3", "d8"));

assert(!board.isDiagonal("a2", "e8"));

assert(!board.isDiagonal("a4", "f8"));

assert(!board.isDiagonal("h6", "a1"));

assert(!board.isDiagonal("h8", "a8"));

assert(board.isOccupiedBetween("a3", "h3") == false);

board.setPiece("d3", new Piece() {

@Override

public PieceColor getPieceColor() {

// TODO Auto-generated method stub

return null;

}

84

@Override

public boolean canTake(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

@Override

public boolean canMove(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

});

assert(board.isOccupiedBetween("a3", "h3") == true);

assert(board.isOccupiedBetween("b4", "d6") == false);

board.setPiece("c5", new Piece() {

@Override

public PieceColor getPieceColor() {

// TODO Auto-generated method stub

return null;

}

@Override

public boolean canTake(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

@Override

public boolean canMove(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

});

assert(board.isOccupiedBetween("b4", "d6") == true);

assert(board.isOccupiedBetween("f5", "c8") == false);

board.setPiece("e6", new Piece() {

@Override

public PieceColor getPieceColor() {

// TODO Auto-generated method stub

return null;

}

@Override

public boolean canTake(String from, String to, Board board) {

85

// TODO Auto-generated method stub

return false;

}

@Override

public boolean canMove(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

});

assert(board.isOccupiedBetween("f5", "c8") == true);

}

private static void assertD() {

Board board =clearBoard(new Board());

Pawn p = new Pawn(PieceColor.WHITE);

Pawn p2 = new Pawn(PieceColor.BLACK);

King k = new King(PieceColor.WHITE);

King k2 = new King(PieceColor.BLACK);

Queen q = new Queen(PieceColor.WHITE);

Queen q2 = new Queen(PieceColor.BLACK);

Bishop b = new Bishop(PieceColor.WHITE);

Bishop b2 = new Bishop(PieceColor.BLACK);

Knight kn = new Knight(PieceColor.WHITE);

Knight kn2 = new Knight(PieceColor.BLACK);

Rook r = new Rook(PieceColor.WHITE);

Rook r2 = new Rook(PieceColor.BLACK);

assert(p.getPieceColor() == PieceColor.WHITE);

assert(!(p2.getPieceColor() == PieceColor.WHITE));

assert(k.getPieceColor() == PieceColor.WHITE);

assert(!(k2.getPieceColor() == PieceColor.WHITE));

assert(q.getPieceColor() == PieceColor.WHITE);

assert(!(q2.getPieceColor() == PieceColor.WHITE));

assert(b.getPieceColor() == PieceColor.WHITE);

assert(!(b2.getPieceColor() == PieceColor.WHITE));

assert(kn.getPieceColor() == PieceColor.WHITE);

assert(!(kn2.getPieceColor() == PieceColor.WHITE));

assert(r.getPieceColor() == PieceColor.WHITE);

assert(!(r2.getPieceColor() == PieceColor.WHITE));

assert(!(p.getPieceColor() == PieceColor.BLACK));

assert(p2.getPieceColor() == PieceColor.BLACK);

assert(!(k.getPieceColor() == PieceColor.BLACK));

assert(k2.getPieceColor() == PieceColor.BLACK);

assert(!(q.getPieceColor() == PieceColor.BLACK));

assert(q2.getPieceColor() == PieceColor.BLACK);

assert(!(b.getPieceColor() == PieceColor.BLACK));

86

assert(b2.getPieceColor() == PieceColor.BLACK);

assert(!(kn.getPieceColor() == PieceColor.BLACK));

assert(kn2.getPieceColor() == PieceColor.BLACK);

assert(!(r.getPieceColor() == PieceColor.BLACK));

assert(r2.getPieceColor() == PieceColor.BLACK);

//Pawn

assert(p.canMove("e2", "e4", board));

board.setPiece("e3", p2);

assert(!p.canMove("e2", "e4", board));

assert(p.canTake("f2", "e3", board));

assert(p.canMove("f3", "f4", board));

assert(p2.canMove("e7", "e5", board));

board.setPiece("e6", p);

assert(!p2.canMove("e7", "e5", board));

assert(p2.canTake("e3", "f2", board));

assert(p2.canMove("f4", "f3", board));

board.setPiece("e3", null);

board.setPiece("e6", null);

assert(!p.canTake("f3", "f4", board));

assert(!p.canMove("g4", "g3", board));

assert(!p.canMove("g4", "h3", board));

assert(!p.canTake("g4", "g3", board));

assert(!p.canTake("g4", "f3", board));

assert(!p2.canTake("f3", "f4", board));

assert(p2.canMove("g4", "g3", board));

assert(!p2.canMove("g4", "h3", board));

assert(!p2.canTake("g4", "g3", board));

assert(p2.canTake("g4", "f3", board));

assert(!p2.canMove("c4", "d4", board));

assert(!p.canMove("c4", "d4", board));

//King

assert(k.canMove("e1", "e2", board));

assert(!k.canMove("e1", "e3", board));

assert(!k.canMove("e1", "c3", board));

assert(!k.canMove("e1", "d3", board));

assert(k.canMove("e1", "d2", board));

assert(k.canMove("d5", "e5", board));

assert(k.canTake("e1", "e2", board));

assert(!k.canTake("e1", "e3", board));

assert(!k.canTake("e1", "c3", board));

87

assert(!k.canTake("e1", "d3", board));

assert(k.canTake("e1", "d2", board));

assert(k.canTake("d5", "e5", board));

//Queen

assert(q.canMove("e1", "e2", board));

assert(q.canMove("e1", "e3", board));

assert(q.canMove("e1", "c3", board));

assert(!q.canMove("e1", "d3", board));

assert(q.canMove("e1", "d2", board));

assert(q.canMove("d5", "e5", board));

assert(q.canTake("e1", "e2", board));

assert(q.canTake("e1", "e3", board));

assert(q.canTake("e1", "c3", board));

assert(!q.canTake("e1", "d3", board));

assert(q.canTake("e1", "d2", board));

assert(q.canTake("d5", "e5", board));

assert(q.canTake("a1", "h1", board));

assert(q.canTake("a1", "h8", board));

assert(!q.canTake("a1", "h6", board));

assert(!q.canMove("a1", "h6", board));

board.setPiece("b1", k);

assert(!q.canTake("a1", "h1", board));

board.setPiece("b1", null);

//Bishop

assert(b.canMove("c1", "f4", board));

assert(b.canMove("f8", "h6", board));

assert(b.canTake("c1", "f4", board));

assert(b.canTake("f8", "h6", board));

assert(!b.canMove("c1", "f5", board));

assert(!b.canMove("f3", "h6", board));

assert(!b.canTake("c2", "f4", board));

assert(!b.canTake("f7", "h6", board));

assert(b.canMove("a1", "h8", board));

assert(!b.canMove("a1", "h1", board));

//Rook

assert(r.canMove("h1", "a1", board));

assert(r.canMove("a8", "a1", board));

assert(r.canTake("a4", "e4", board));

board.setPiece("d4", p);

assert(!r.canTake("a4", "e4", board));

88

board.setPiece("d4", null);

assert(!r.canMove("a1", "h8", board));

assert(!r.canMove("f4", "d2", board));

//Knight

assert(kn.canMove("g1", "f3", board));

assert(kn.canTake("f6", "d5", board));

assert(!kn.canMove("a1", "h8", board));

assert(!kn.canMove("a1", "a2", board));

assert(!kn.canMove("g8", "h8", board));

assert(!kn.canMove("e6", "c8", board));

assert(!kn.canMove("f1", "d3", board));

}

private static void assertE1(){

Board board = new Board();

assert (board.getPiece("a1") instanceof Piece);

assert (board.getPiece("b1") instanceof Piece);

assert (board.getPiece("c1") instanceof Piece);

assert (board.getPiece("d1") instanceof Piece);

assert (board.getPiece("e1") instanceof Piece);

assert (board.getPiece("f1") instanceof Piece);

assert (board.getPiece("g1") instanceof Piece);

assert (board.getPiece("h1") instanceof Piece);

assert (board.getPiece("a2") instanceof Piece);

assert (board.getPiece("b2") instanceof Piece);

assert (board.getPiece("c2") instanceof Piece);

assert (board.getPiece("d2") instanceof Piece);

assert (board.getPiece("e2") instanceof Piece);

assert (board.getPiece("f2") instanceof Piece);

assert (board.getPiece("g2") instanceof Piece);

assert (board.getPiece("h2") instanceof Piece);

assert (board.getPiece("a3") == null);

assert (board.getPiece("b3") == null);

assert (board.getPiece("c3") == null);

assert (board.getPiece("d3") == null);

assert (board.getPiece("e3") == null);

assert (board.getPiece("f3") == null);

assert (board.getPiece("g3") == null);

assert (board.getPiece("h3") == null);

assert (board.getPiece("a4") == null);

assert (board.getPiece("b4") == null);

assert (board.getPiece("c4") == null);

assert (board.getPiece("d4") == null);

assert (board.getPiece("e4") == null);

89

assert (board.getPiece("f4") == null);

assert (board.getPiece("g4") == null);

assert (board.getPiece("h4") == null);

assert (board.getPiece("a5") == null);

assert (board.getPiece("b5") == null);

assert (board.getPiece("c5") == null);

assert (board.getPiece("d5") == null);

assert (board.getPiece("e5") == null);

assert (board.getPiece("f5") == null);

assert (board.getPiece("g5") == null);

assert (board.getPiece("h5") == null);

assert (board.getPiece("a6") == null);

assert (board.getPiece("b6") == null);

assert (board.getPiece("c6") == null);

assert (board.getPiece("d6") == null);

assert (board.getPiece("e6") == null);

assert (board.getPiece("f6") == null);

assert (board.getPiece("g6") == null);

assert (board.getPiece("h6") == null);

assert (board.getPiece("a7") instanceof Piece);

assert (board.getPiece("b7") instanceof Piece);

assert (board.getPiece("c7") instanceof Piece);

assert (board.getPiece("d7") instanceof Piece);

assert (board.getPiece("e7") instanceof Piece);

assert (board.getPiece("f7") instanceof Piece);

assert (board.getPiece("g7") instanceof Piece);

assert (board.getPiece("h7") instanceof Piece);

assert (board.getPiece("a8") instanceof Piece);

assert (board.getPiece("b8") instanceof Piece);

assert (board.getPiece("c8") instanceof Piece);

assert (board.getPiece("d8") instanceof Piece);

assert (board.getPiece("e8") instanceof Piece);

assert (board.getPiece("f8") instanceof Piece);

assert (board.getPiece("g8") instanceof Piece);

assert (board.getPiece("h8") instanceof Piece);

assert (board.getPiece("a1") instanceof Rook);

assert (board.getPiece("b1") instanceof Knight);

assert (board.getPiece("c1") instanceof Bishop);

assert (board.getPiece("d1") instanceof Queen);

assert (board.getPiece("e1") instanceof King);

assert (board.getPiece("f1") instanceof Bishop);

assert (board.getPiece("g1") instanceof Knight);

assert (board.getPiece("h1") instanceof Rook);

assert (board.getPiece("a2") instanceof Pawn);

assert (board.getPiece("b2") instanceof Pawn);

assert (board.getPiece("c2") instanceof Pawn);

assert (board.getPiece("d2") instanceof Pawn);

90

assert (board.getPiece("e2") instanceof Pawn);

assert (board.getPiece("f2") instanceof Pawn);

assert (board.getPiece("g2") instanceof Pawn);

assert (board.getPiece("h2") instanceof Pawn);

assert (board.getPiece("a8") instanceof Rook);

assert (board.getPiece("b8") instanceof Knight);

assert (board.getPiece("c8") instanceof Bishop);

assert (board.getPiece("d8") instanceof Queen);

assert (board.getPiece("e8") instanceof King);

assert (board.getPiece("f8") instanceof Bishop);

assert (board.getPiece("g8") instanceof Knight);

assert (board.getPiece("h8") instanceof Rook);

assert (board.getPiece("a7") instanceof Pawn);

assert (board.getPiece("b7") instanceof Pawn);

assert (board.getPiece("c7") instanceof Pawn);

assert (board.getPiece("d7") instanceof Pawn);

assert (board.getPiece("e7") instanceof Pawn);

assert (board.getPiece("f7") instanceof Pawn);

assert (board.getPiece("g7") instanceof Pawn);

assert (board.getPiece("h7") instanceof Pawn);

}

private static void assertE2(){

Board board = clearBoard(new Board());

//movePiece

Piece piece1 = new Piece() {

@Override

public PieceColor getPieceColor() {

// TODO Auto-generated method stub

return null;

}

@Override

public boolean canTake(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

@Override

public boolean canMove(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

91

};

Piece piece2 = new Piece() {

@Override

public PieceColor getPieceColor() {

// TODO Auto-generated method stub

return null;

}

@Override

public boolean canTake(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

@Override

public boolean canMove(String from, String to, Board board) {

// TODO Auto-generated method stub

return false;

}

};

board.setPiece("e5", piece1);

board.setPiece("g8", piece2);

assert(board.getPiece("e5") == piece1);

assert(board.getPiece("g8") == piece2);

assert(board.getPiece("g8") != piece1);

assert(board.getPiece("e5") != piece2);

assert(board.getPiece("g8") != null);

assert(board.getPiece("e5") != null);

board.movePiece("e5", "g8");

assert(board.getPiece("e5") == null);

assert(board.getPiece("e5") != piece1);

assert(board.getPiece("e5") != piece2);

assert(board.getPiece("g8") == piece1);

assert(board.getPiece("g8") != piece2);

//isCheck

board = clearBoard(board);

King k = new King(PieceColor.WHITE);

King k2 = new King(PieceColor.BLACK);

Bishop b2 = new Bishop(PieceColor.BLACK);

92

Rook r2 = new Rook(PieceColor.BLACK);

Knight kn2 = new Knight(PieceColor.BLACK);

Queen q2 = new Queen(PieceColor.BLACK);

Pawn p2 = new Pawn(PieceColor.BLACK);

Pawn blocker = new Pawn(PieceColor.WHITE);

board.setPiece("e4", k);

//Pawn

board.setPiece("e5", p2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("e5", null);

board.setPiece("f5", p2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f5", null);

board.setPiece("d3", p2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d3", null);

board.setPiece("d6", p2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d6", null);

board.setPiece("d5", p2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

//King

board.setPiece("e5", k2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("e5", null);

board.setPiece("f5", k2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f5", null);

board.setPiece("d3", k2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d3", null);

board.setPiece("d6", k2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d6", null);

board.setPiece("d5", k2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

93

board.setPiece("f3", k2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("d4", k2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d4", null);

board.setPiece("f4", k2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f4", null);

board.setPiece("c4", k2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("c4", null);

//Knight

board.setPiece("f6", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f6", null);

board.setPiece("d6", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d6", null);

board.setPiece("g5", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("g5", null);

board.setPiece("g3", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("g3", null);

board.setPiece("c3", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("c3", null);

board.setPiece("c5", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("c5", null);

board.setPiece("d2", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d2", null);

board.setPiece("f2", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f2", null);

//---

94

board.setPiece("e5", kn2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("e5", null);

board.setPiece("f5", kn2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f5", null);

board.setPiece("d3", kn2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d3", null);

board.setPiece("d5", kn2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

board.setPiece("f3", kn2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("d4", kn2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d4", null);

board.setPiece("f4", kn2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f4", null);

//Queen

board.setPiece("e5", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("e5", null);

board.setPiece("f5", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f5", null);

board.setPiece("d3", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d3", null);

board.setPiece("d6", q2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d6", null);

board.setPiece("d5", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

95

board.setPiece("f3", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("d4", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d4", null);

board.setPiece("f4", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f4", null);

board.setPiece("c4", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("c4", null);

board.setPiece("c6", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d5", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

board.setPiece("c6", null);

board.setPiece("e8", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("e6", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("e6", null);

board.setPiece("e8", null);

board.setPiece("h1", q2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("g2", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("g2", null);

board.setPiece("h1", null);

board.setPiece("g3", q2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("g3", null);

//Bishop

board.setPiece("e5", b2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("e5", null);

96

board.setPiece("f5", b2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f5", null);

board.setPiece("d3", b2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d3", null);

board.setPiece("d6", b2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d6", null);

board.setPiece("d5", b2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

board.setPiece("f3", b2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("d4", b2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d4", null);

board.setPiece("f4", b2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f4", null);

board.setPiece("c4", b2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("c4", null);

board.setPiece("c6", b2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d5", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

board.setPiece("c6", null);

board.setPiece("e8", b2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("e6", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("e6", null);

board.setPiece("e8", null);

board.setPiece("h1", b2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("g2", blocker);

97

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("g2", null);

board.setPiece("h1", null);

board.setPiece("g3", b2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("g3", null);

//Rook

board.setPiece("e5", r2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("e5", null);

board.setPiece("f5", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f5", null);

board.setPiece("d3", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d3", null);

board.setPiece("d6", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d6", null);

board.setPiece("d5", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

board.setPiece("f3", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("d4", r2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d4", null);

board.setPiece("f4", r2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("f4", null);

board.setPiece("c4", r2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("c4", null);

board.setPiece("c6", r2);

98

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d5", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d5", null);

board.setPiece("c6", null);

board.setPiece("e8", r2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("e6", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("e6", null);

board.setPiece("e8", null);

board.setPiece("h1", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("g2", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("g2", null);

board.setPiece("h1", null);

board.setPiece("g3", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", null);

board.setPiece("g3", null);

//Multiple

board.setPiece("a3", p2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("g3", r2);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("f3", blocker);

assert(!board.isCheck(PieceColor.WHITE));

board.setPiece("d6", kn2);

assert(board.isCheck(PieceColor.WHITE));

board.setPiece("d6", null);

board.setPiece("f3", null);

board.setPiece("g3", null);

//isLeagalMove

board = clearBoard(board);

//Pawn

board.setPiece("e7", p2);

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "e8"));

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "e7"));

99

assert(board.isLegalMove(p2.getPieceColor(), "e7", "e6"));

assert(board.isLegalMove(p2.getPieceColor(), "e7", "e5"));

board.setPiece("e6", blocker);

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "e5"));

board.setPiece("e6", null);

board.setPiece("e5", blocker);

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "e5"));

board.setPiece("e5", null);

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "d6"));

board.setPiece("d6", blocker);

assert(board.isLegalMove(p2.getPieceColor(), "e7", "d6"));

board.setPiece("d6", null);

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "f6"));

board.setPiece("f6", blocker);

assert(board.isLegalMove(p2.getPieceColor(), "e7", "f6"));

board.setPiece("f6", null);

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "d8"));

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "f8"));

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "d5"));

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "f5"));

board.setPiece("e8", k2);

board.setPiece("e2", new Rook(PieceColor.WHITE));

board.setPiece("f6", blocker);

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "f6"));

board.setPiece("d6", new Knight(PieceColor.WHITE));

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "e6"));

assert(!board.isLegalMove(p2.getPieceColor(), "e7", "d6"));

assert(board.isLegalMove(p2.getPieceColor(), "e8", "d7"));

board.setPiece("e2", null);

assert(board.isLegalMove(p2.getPieceColor(), "e7", "d6"));

board.setPiece("d7", null);

board.setPiece("e8", null);

board.setPiece("e2", null);

board.setPiece("f6", null);

board.setPiece("e7", null);

//King

board.setPiece("f4", k);

board.setPiece("d5", b2);

assert(!board.isLegalMove(k.getPieceColor(), "f4", "e4"));

assert(board.isLegalMove(k.getPieceColor(), "f4", "f5"));

board.setPiece("e1", q2);

assert(!board.isLegalMove(k.getPieceColor(), "f4", "e3"));

board.setPiece("h2", kn2);

assert(!board.isLegalMove(k.getPieceColor(), "f4", "g4"));

assert(board.isLegalMove(kn2.getPieceColor(), "h2", "g4"));

100

board.setPiece("f4", null);

//Knight

board.setPiece("h1", k2);

assert(board.isLegalMove(kn2.getPieceColor(), "h2", "g4"));

board.setPiece("h6", new Rook(PieceColor.WHITE));

assert(!board.isLegalMove(kn2.getPieceColor(), "h2", "g4"));

board.setPiece("h6", null);

board.setPiece("f1", new Rook(PieceColor.WHITE));

assert(!board.isLegalMove(kn2.getPieceColor(), "h2", "g4"));

assert(board.isLegalMove(kn2.getPieceColor(), "h2", "f1"));

}

public static void main(String[] args) {

System.out.println("Starting assertion...");

// System.out.print("Asserting A...");

// assertA();

// System.out.println("Done");

// System.out.print("Asserting B...");

// assertB();

// System.out.println("Done");

System.out.print("Asserting C...");

assertC();

System.out.println("Done");

// System.out.print("Asserting D...");

// assertD();

// System.out.println("Done");

// System.out.print("Asserting E:");

// System.out.print("E1...");

// assertE1();

// System.out.print("Done.");

// System.out.print("E2...");

// assertE2();

// System.out.print("Done.");

// System.out.println("Asserting E Done");

System.out.println("Assertion Done");

// String a = "a5";

// System.out.println((int)a.charAt(0) - ’a’);

}

}

101

102

Bibliography

[1] Bell, J., and Holroyd, J. Review of human reliability assessment meth-
ods. Tech. rep., Health and Safety Laboratory for the Health and Safety
Executive 2009 (UK), 2009.

[2] Gertman, D., Blackman, H., Marble, J., Byers, J., and Smith, C.
The spar-h human reliability analysis method. Tech. rep., Idaho National
Laboratory, 2005.

[3] Hollnagel, E. Reliability analysis and operator modelling. Reliability En-
gineering and System Safety 52 (1996), 327–337.

[4] Kirwan, B. A Guide to Practical Human Reliability Assessment. Taylor &
Francis Ltd, 1994.

[5] Stanton, N. A. Hierarchial task analysis: Development, applications, and
extensions. Applied Ergonomics 37 (2006), 55–79.

[6] Swain, A. D. Human reliability analysis: Need, status, trends and limita-
tions. Reliability Engineering and System Safety 29 (1990), 301–313.

103

