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On Implementations of Bus Travel Time
Prediction Utilizing Methods in Artificial
Intelligence

Aleksander Sjafjell, Erlend Dahl and Simen Skogen

Abstract—Travel time prediction is an important part of intelligent transportation systems. This work is a continuation
of a state-of-the-art review identifying four prominent machine learning algorithms used for bus arrival prediction:
Kalman filtering, k-Nearest Neighbor, Artificial Neural Network, and Support Vector Regression. The Weka library
implementations of the latter three classifiers are utilized on bus travel time prediction in Trondheim, Norway. A brief
overview of the data collection process and a rationale for selecting the data sources is given. Next, the parameters
of the classifiers are optimized, and different partitions of training and test periods are evaluated. An attribute analysis
investigates the use of other variables hypothesized to influence travel time prediction, such as weather, to improve the
prediction accuracy. Finally, a proof of concept model for real-time prediction is presented, with its performance being

competitive to the existing real-time system.

Index Terms—intelligent transportation system, prediction, support vector machine, k-nearest neighbor, artificial neural

network, machine learning, bus arrival time prediction

1 INTRODUCTION

ntelligent transportation systems (ITS) is a
I generic term for the integrated application of
communications, control and information pro-
cessing technologies to transportation systems
[1]. This can provide improved information
services, simplified management, and poten-
tially smoother traffic flow [2] [3]. Since the
early 2000s the advancements in information
and communication technologies have made
it possible for transport systems to become
more intelligent, efficient, safe and eco-friendly.
Car navigation, automatic vehicle location, in-
ductive loop detection, variable message signs,
and speed cameras are examples of early ITS
technologies that are already extensively used
worldwide [4] [5] [6].

Machine learning, a branch of Artificial In-
telligence (AI), and statistics have been ap-

. This work was partially funded by the SMIO-project, a
research project funded by the Regional Research Fund Capital
area.

plied to ITS-collected data in a progressively
increasing extent. Particularly applications that
require large amounts of recent data, such as
travel time prediction, has become a vital and
prominent part of Al research.

This work is based on a state-of-the-art litera-
ture review of travel time prediction for public
transport in urban areas where AI methods
were utilized, see Appendix I. An extended
version of this work can be found at [7]. The
literature review identified and compared four
well established methods for travel time pre-
dictions in the traffic domain, namely k-Nearest
Neighbor (kNN), Artificial Neural Network
(ANN), Support Vector Regression (SVR) and
Kalman filtering.

The literature review was unable to pinpoint
a single classifier as the best option for bus
travel time prediction. Therefore, this research
will apply and compare these classifiers on bus
travel time prediction in the medium sized city
of Trondheim, Norway. Several aspects of the
prediction are considered in the research:

o Fetching, merging and preprocessing data

from multiple data sources (Chapter 2).
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o Optimizing the method-specific parame-
ters for higher prediction accuracy (Chap-
ter 3).

« Comparing the methods’ performance on a
wide range of different dataset types to de-
cide which datasets are most suitable, and
try to identify the best method (Chapter 4).

« Analyzing the influence of different at-
tributes in the datasets to identify the most
important information (Chapter 5).

In chapters 2-5, the data is aggregated on
individual trips, i.e. one data row for each bus
arrival at the chosen bus stop. Consequently,
predictions on future buses may be done after
the most recent bus has arrived. This predic-
tion is typically 15-30 minutes into the future,
depending on the headway between the buses.
In Chapter 6 however, data is aggregated on
every bus stop passage. This corresponds to a
near real-time prediction, as new predictions
may be done at every bus stop passage.

Furthermore, Chapters 2-5 consider predic-
tion of arrival delay. For reasons to be dis-
cussed, Chapter 6 considers prediction of travel
time instead of delay.

Chapter 2 explains how data was fetched
from different sources and combined into a
tinal data table to prepare for prediction. Chap-
ter 3 explains how the three methods (kNN,
ANN and SVR) are optimized for the datasets,
and Chapters 4 and 5 explains the dataset anal-
ysis that compares the methods on the different
dataset types, and the attribute analysis that
attempts to find out which attributes works
best on the different dataset types. In Chapter
6, a proof of concept method for real-time
prediction is presented and compared to the
existing system. Finally, in chapters 7 and 8§,
conclusions and future work are given. Ad-
ditional details on the methods, datasets and
analyses are added as appendices.

2 DATASET PREPARATIONS

Al methods, such as kNN, ANN and SVR (of-
ten referred to as classifiers), require a training
set to create their models and a testing set
for performance validation. The sets contain
instances, or rows, that hold values for different
attributes, very much like a database table.

Training and testing is normally carried out
with k-fold cross-validation; the data is ran-
domly partitioned into k equal subsets, with k-1
subsets for training and the remaining subset
for testing. By repeating the process k times,
every instance is used both for training and
testing, resulting in a legitimate evaluation of
how the methods will generalize to unseen
data. However, when predicting travel time
based on earlier data, partitioning into random
subsets should be avoided, since the only in-
teresting timespan to predict in practice is the
future. Consequently, in this work the datasets
were separated in such a way that the instances
of the test set follow the training instances
chronologically, and the relative sizes of the
partitioned training and testing sets varies from
dataset to dataset.

Trips from bus line 8 (going from Kongens
Gate K2 to Blakli), as illustrated in Figure 1,
were set as basis for predictions. Its total length
of 8140 meters include 20 bus stops, 16 intersec-
tions (of which 13 are signalized), 11 pedestrian
crossings, two roundabouts and a football sta-
dium, located at Lerkendal. It is also among the
most frequently driven lines in Trondheim. Due
to the high frequency of intersections, crossings
and stops, travel time becomes hard to pre-
dict. However, this is suitable for parameter
optimization and attribute analysis, as differ-
ent configurations of attributes and parameters
will affect the predictions to such an extent that
an optimal configuration is more likely to be
found.

In order to test the classifiers in different
conditions, three bus stops with different levels
of occupancy along the route were selected
for further analysis: Samfundet (near the city
center of Trondheim), Lerkendal (close to the
football stadium) and Steindalsvegen (in the
outskirts of the city).

2.1

Atb AS (AtB) is the administrative company
for most of the public transport in Trondheim,
Norway. AtB provided multiple tables with
logging information from their bus operations,
including every time a bus passes bus stops
and virtual loops, with information such as

Data sources
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Fig. 1: Route Kongens Gate K2 - Blakli, line 8. Map by
Google Maps

the specific vehicle in use, which route it was
driving, the scheduled and actual time of pass-
ing and the duration of the stop at this loca-
tion. The tables also contained static informa-
tion about all bus stops and all bus routes in
Trondheim, which proved useful for selecting
a suitable research area.

In addition to the bus logs, AtB also provided
anonymized ticket data. This included logs
from smartphone tickets, manual cash tickets,
and for some periods travel card validations.
In Trondheim, all tickets must be validated
when entering the bus, even if using a monthly
subscription. This means that the ticket data
may be an important factor for bus stop-time,
since each ticket validation results in a minor
delay. The travel card validations were used
in the final datasets, but the smartphone and
cash ticket data was excluded, as it was aggre-
gated on a daily basis, and therefore difficult
to combine with the other data sources. A

passenger counting system was installed in one
of the buses on the route at the time of writing.
Counting data from this bus was included as
an attribute in the datasets.

The shifting weather conditions in Trond-
heim were hypothesized to influence the num-
ber of people traveling by bus. Hence, weather
data was collected from yr.no, which is a joint
online weather service provided by the Norwe-
gian Meterological Institute and the Norwegian
Broadcasting Corporation [8]. Data collected
included temperature, precipitation, wind and
humidity.

Another assumption was that people attend-
ing large events cause more traffic, which in
turn influences the bus delays. In Trondheim,
the largest recurring events are the football
matches at Lerkendal stadium, that often cause
traffic jams in the proximity of the stadium.
Attendance statistics were collected from TV2,
a Norwegian television broadcaster.

The Norwegian Public Road Administration
(NPRA) provides information on travel time
for arterial roads in Trondheim. This informa-
tion is based on passage detections of vehicles
with Autopass transponders installed [9]. Due
to a large extent of bus lanes in the city, the
private transport is more or less separated from
the public transport, and the correlation of
the respective travel times are hypothesized
to decrease where bus lanes are present. Also,
since the arterial roads are not part of the areas
of interest for bus arrival prediction, the data
obtained from NPRA was not utilized.

HTML scraping was applied to regularly
retrieve bus arrival predictions from the current
real-time service available at AtB’s website.
These predictions were applied for comparison
to the proof of concept model, as presented in
Chapter 6.

All data sources were inserted into an SQL
database, which was then accessed locally on
the development computers to provide the
performance needed to run the analysis. The
weather data had to be interpolated to fill a few
missing data points . A more detailed explana-
tion of how the data sources were combined
into a single table can be found in Appendix
A.
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Table 1: The full list of datasets.

ID Description Number
of sets

la Train on one hour, test on the following hour. 30
1b Train on two hours, test on the following hour. 30
1c Train on three hours, test on the following hour. 30
1d Train on four hours, test on the following hour. 30
le Train on five hours, test on the following hour. 30
2 Train on Monday-Thursday, test on Friday. 12
3 Train on Monday-Sunday, test on each of the days the following week. 42
4 Train on Monday-Friday, test on each of the weekdays the following week. 30
5 Train on two weeks, test on the following week. 6
6 Train on three weeks, test on the following week. 12
7 Train on three weeks, test on the week one week later. 6
8 Train on three weeks, test on the week two weeks later. 6
9 Train on one day, test on the same day the following week. 21
10 Train on two consecutive recurring days, test on the same day the following week. 21
11 Train on three consecutive recurring days, test on the same day the following week. 21
12 Train on four consecutive recurring days, test on the same day the following week. 21
13 Train on five consecutive recurring days, test on the same day the following week. 21
14 Train on one month, test on the following month. 3
15 Train on one month, test on each of the weeks in the following month. 12
16 Train on two succeeding months, test on the following month. 3
17 Train on two succeeding months, test on each of the weeks in the following month. 12
18a Train on 100 succeeding days, test on the 1, 2, 7 and 14 following days. 12

18b  Train on 100 succeeding days, test on 1, 2, 7 and 14 succeeding days approximately three months later. 12

423

2.2 Dataset assembly

423 different datasets were assembled from the
data, 141 for each of the three bus stops. The
exact attributes of the final datasets are listed
in Appendix B, Table Al. The datasets were
mostly from the period 01.09.2013 to 23.12.2013,
but there are a few testing sets from Febru-
ary 2014. These periods were chosen because
they had data without any missing data points
(for example bus routes with missing parts
due to system failures) or extremely high or
low values on any of the selected bus stops.
The annual autumn vacation for schools was
avoided as much as possible, as it was expected
to change the traffic pattern from regular day-
to-day operations. When all school buses are
stopped, and random vacation activities take
their place, the traffic patterns will be different.

This range of datasets was specifically assem-
bled to test a range of different cases:

1) Training length: some datasets had train-
ing sets with a duration of a few hours,
others multiple days, weeks, or even
months.

2) Day patterns: some training sets were
from consecutive days within the same
week, others from the same days in con-
secutive weeks (for example five Mon-
days in a row).

3) Continuity: some test sets continued right
where the training set stopped, while oth-
ers started weeks later.

An exact list of the datasets can be seen
in Table 1, where they are listed in different
groups depending on where they fit in the
aforementioned cases. Note that each group
has at least one dataset for each of the three bus
stops, and then most of them have additional
datasets of the same type, but from different
weeks or months to verify the results. Because
of the ticket data, these datasets can not be
publicized without permission from AtB.

2.3 Representative datasets

A representative subset of the datasets was
created for the more time consuming analyses,
since running all tests on all 423 datasets would
be infeasible because of budget restrictions. As
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the datasets were created to test a wide range of
assumptions, the representative subset should
resemble a variety similar to the 423 datasets, in
order to produce reasonable results. Therefore,
one representative set was selected from each
of the groups shown in Table 1, except set 18b,
since the datasets in group 18 were very large
and time-consuming to classify. These sets will
be known as the 23 representative datasets for
the rest of this work.

2.4 Classifier implementations

To easily test a large variation of classifiers
and classifier parameters, it was decided to use
the Weka library (v.3.6.10) [10]. This allowed
easy setup in Java, and no time was spent
reimplementing Al methods. As Weka did not
support Kalman filters at the time of writing,
the Kalman filter was excluded from the anal-
yses.

2.5 Processing power

The parameter analyses were particularly time-
consuming and the processing power of three
regular desktop computers was limited. There-
fore, two Amazon Elastic Compute Cloud
(Amazon EC2) computers with 32 cores each
was rented for a week to supplement the pro-
cessing power of the desktop computers [11].

2.6 Rating function

It is important to recall that travel time pre-
diction systems for buses is created to aid the
users deciding which bus to take, and when to
go to the bus stop. The mean absolute error
(MAE) gives the average prediction error in
seconds, while the standard deviation of the
prediction errors (STD) indicates the stability
of the predictions. Even though a low MAE is
important, it is just a part of what the users
want. As a user, the stability of the predictions
is often far more important, since this is what
shows how trustworthy the system is. It is
adequat to know that the bus is 5 minutes late
as long as this prediction is stable and does
not abruptly change. A stable configuration is
particularly important in this work, since the

parameter optimizations were only run on a
subset of all the datasets.

A rating function taking this into account
was created to decide which configuration of
attributes or parameters that performed best.
A good function is one that rewards systems
with a low MAE and STD at the same time,
and it was therefore decided to be Rating =
MAFE + STD, where lower is better. As there
is no standards or good literature on weigh-
ing such a function now, the weights on both
parameters are simply 1. This is good enough
for our analysis, but other weights should be
considered for practical use.

3 PARAMETER OPTIMIZATION

kNN, ANN and SVR are all data dependent
methods. Since there is no general rule on how
to structure the methods for a specific prob-
lem, the optimal parameters are typically found
empirically, rather than analytically [5] [12]
[13]. Consequently, method specific parameters
should be optimized on individual datasets
in order to classify with maximum accuracy.
However, in this chapter, each classifier was
optimized for multiple datasets with identical
attributes, but different time structures, to as-
sess in which degree an optimization could be
generalized.

Before the different classifiers were opti-
mized, each of them was run with their default
parameters on all the 423 datasets. These re-
sults are compared with the optimized results
in Section 3.4 to evaluate the parameter opti-
mization.

3.1 k-Nearest Neighbor parameters

The kNN implementation in Weka uses cross-
validation and distance weighting [14]. It has
three important parameters: the distance mea-
surement, how many neighbors to use (k), and
the algorithm used for finding the k nearest
neighbors. The algorithms for finding the near-
est neighbors also had some parameters of their
own which had to be tested. To save comput-
ing time, only the representative datasets were
used, as discussed in Section 2.3.

There were four different neighbor al-
gorithms implemented: BallTree, CoverTree,
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KDTree, and LinearNN [15] [16] [17]. Some
manual testing indicated that most of the pa-
rameters on the individual neighbor algorithms
made no differences on the datasets used in this
analysis. The only setting that changed the pre-
dictions was using different distance functions
on LinearNN. The three different distance algo-
rithms available were Chebyshev distance (the
greatest distance from all dimensions), Man-
hattan distance (sum of the distances in all di-
mensions), and Euclidean distance (direct line-
distance). See Figure 2 for a visual explanation.
This left six different neighbor algorithm con-
figurations to test: BallTree, CoverTree, KDTree,
LinearNN with Manhattan distance, LinearNN
with Chebyshev distance, and LinearNN with
Euclidean distance.

Euclidean Manhattan Chebyshev

-
-
-

-
Tesmsmmmmmn @
T I

X

>
>

Fig. 2: The different distance algorithms of kNN: Eu-
clidean (shortest path), Manhattan (sum of distance in
x- and y-dimension) and Chebyshev distance (largest of
distances in x- and y-dimension). Here shown between
two points in a 2D space.

For distance weighting on the classifier it-
self, Weka has three alternatives: No dis-
tance weighting (called “"None”), weight by 1/d
(called "InverseDistance”), and weight by 1 —d
(called “Distance”). d is the distance between
the current instance and its neighboring in-
stances, used for selecting the nearest neigbors.

For each of the representative datasets, the
kNN classifier was run with all combinations of
the six neighbor algorithm configurations, the
three distance weighting options, and a total of
185 different k-values. For a detailed overview
of the k-values, see Appendix C.1.

The results of the tests were given a rating
as explained in Section 2.6. As shown in Table
2, all of the five best configurations used the
LinearNN-algorithm with Manhattan-distance
for choosing neighbors, and the InverseDis-

tance method for weighting the distances. In
fact, the top 15 configurations only differ in
k-value, where all of them use values around
n/25 (where n is the number of instances in
the dataset). As can be seen, there are very
small differences in rating among the best con-
tigurations, but n/22 is slightly better than the
neighboring k-values.

The results indicated that the optimal kNN
parameters were the LinearNN algorithm with
Manhattan-distance as nearest-neighbor algo-
rithm, InverseDistance as distance weighting,
and a k-value of n/22 (or 5 if this value was
lower than 5, as discussed in Appendix C.1).

3.2 Artificial Neural Network parameters

Weka’s implementation of a neural network is
a feed forward artificial neural network that
applies backpropagation to classify instances
[10].

There are four parameters of the ANN that
are essential to optimize in Weka: the network
topology, learning rate, momentum and epochs
(training time). As ANN has a much higher
run time than kNN, it is not feasible to test all
combinations of these parameters within a rea-
sonable time frame. Tests were therefore first
executed on the hidden layers, then learning
rate and momentum, and finally the number
of epochs.

The topology of an ANN is an explicit rep-
resentation of what the network has learned
in the training phase. Too few nodes will give
the network problems with representing data
learned, while too many nodes will lead to
a network where the nodes act like a pure
memory unit and generalization is lost.

There are rule-of-thumb methods for finding
the number of nodes in the hidden layers of
a neural network [18] [19] [20]. A neural net-
work with one or two hidden layers is often
sufficient to solve non linear problems, but if
long training time is acceptable and accuracy
is very important, 3 layers can be used. [21]

See Appendix C.2, Table A2 for a detailed de-
scription of the testing of network topologies,
and the selection of the five best of them.

The learning rate and momentum ranges
between 0 and 1. The learning rate controls
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Table 2: The 5 best configurations of the kNN classifier, and the 3 worst for comparison (note: the entire table
consists of 73 260 rows, and can not be included for obvious reasons). n is the number of instances in a dataset.

Nearest-neighbor algorithm Distance k-value MAE STD Rating
weighting
LinearNN with Manhattan-distance InverseDistance n/22 103.95 44.25 148.20
LinearNN with Manhattan-distance InverseDistance n/23 103.90 44.34 148.24
LinearNN with Manhattan-distance InverseDistance n/21 104.06 4421 148.26
LinearNN with Manhattan-distance InverseDistance n/28 104.37 43.90 148.27
LinearNN with Manhattan-distance InverseDistance n/27 104.39 43.89 148.27
LinearNN with Manhattan-distance Distance 98 171.18 150.50 321.68
LinearNN with Manhattan-distance  Distance 99 171.20 150.50 321.69
LinearNN with Manhattan-distance  Distance 100 171.21 150.49 321.70

how fast the weights of the nodes are changed
during the training phase [22]. If this value
is close to 1, it may cause the network to
learn quicker, but if the variability of the input
data is high, the prediction accuracy may be
reduced due to oscillations [23]. In order to
increase the learning rate without leading to
oscillations, the momentum is used to control
the effect of past weight changes on the current
direction of weight change [24]. A high mo-
mentum value can result in faster convergence,
but the best solution may not be found [22].
The learning rate and momentum parameters
were adjusted on the five best networks to
find the optimal values, which then were used
to find the optimal number of epochs for the
same networks. For a more detailed description
of the parameter value selection process, see
Appendix C.

3.3 Support Vector Regression parameters

The SVR implementation in Weka has two im-
portant parameters: the C-value, and the kernel
to use. The kernel itself may have additional
parameters that need testing. Weka supports
four kernels that were chosen for testing: poly-
nomial, normalized polynomial, Pearson VII
function based (PUK), and radial basis function
(RBF). The rest of the kernels supported by
Weka were excluded from these tests because
they needed precomputed matrices or specially
formatted data.

When training the SVR, the C-value tells
how much incorrectly classified values should
be punished. This means that a high C-

value creates a stricter classification model,
but also makes the model creation more time-
consuming, and can lead to overfitting. Manual
testing in Weka showed that a C-value between
0 and 10 usually gave good results.

Running the SVR classifier is very time con-
suming, and some shortcuts had to be made. In
order to lower the number of needed param-
eters, the first test that was run simply tested
the four kernels on C-values from 0 to 10 (with
an increment of 0.1). This test showed that both
polynomial kernels were a lot slower than the
RBF- and PUK-kernels, and that the RBF-kernel
gave the lowest average MAE in this range
of C-values, as seen in Figure 3. It was also
reported earlier that the RBF-kernel generally
gave good bus arrival prediction results in the
traffic literature [7]. For these reasons, the RBF-
kernel was chosen as the kernel to test more

thoroughly.
180
160
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Fig. 3: For each kernel: average MAE with C-values from
0.1 to 10 on the 23 representative datasets.

In addition to the C-value, the RBF-kernel
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has a 7-value that also had to be optimized.
The ~-value decides how much influence each
instance has [25]. To find the best combination
of the C-value and the ~v-value, five gradually
more detailed grid searches were performed.
A grid search is a simple search method for
searching a large space in a short time, by
starting out with a very sparse search, then
zoom in on the most promising area, and repeat
the process with a more and more detailed
search [26].

The first grid was designed to search the
entire feasible range of C- and v-values, but
very sparsely. See Appendix C, Table A4 for
a detailed overview of the search spaces and
step sizes of the five grids that were used.

The ratings for all values of the fifth search
had no clear gradients. Because of this, the
search was ended, and the best values were
selected to be: C'=5.717,v = 0.0256.

3.4 Comparison of default and optimized
parameters

As seen in Figure 4, the parameter optimiza-
tions made the classifiers perform better on
most of the groups. kNN improved slightly,
while ANN and SVR had major improvements;
the overall MAE was lower and much more
stable with the improved settings.

It is important to note that the classifiers did
not perform better on each and every dataset
after this optimization. Since the optimal pa-
rameters were chosen by averaging over all
representative datasets, the improved settings
was better on average, but not necessarily on
every single dataset. This is sufficient when
the goal is to compare the classifiers against
each other on all datasets, but in practice, the
parameter optimization should be run on a
single dataset type to find the best parameters
for that configuration.

The SVR classifier had a particularly high
average MAE on all datasets before the param-
eter optimization, due to the polynomial kernel
being the default kernel in Weka. With this ker-
nel, SVR had problems classifying certain sets,
resulting in extreme MAE-values that skewed
the average.

k-Nearest Neighbors

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Group

Average MAE per group (seconds)

------- Default ——Improved

Artificial Neural Network
500

400

300

200

100 Ctes,eeeesennn., <

O T T T T T T T T T T T T T T T T T 1
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Group

Average MAE per group (seconds)

------- Default =——Improved

Support Vector Regression

300 : T — T :
- . H H H : :
< : : I H :
g 250 : : HE :
o 200 : : HE : : //
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£ 150 e vl : /
50
T T T T T T T T T T T T

Average MAE
o
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Group

------- Default ——Improved

Fig. 4: The default classifier settings versus the optimized
settings averaged on all datasets in the 18 groups. Note
that the default SVR settings has several huge spikes that
disappears outside of the plot.

4 DATASET ANALYSIS

The datasets that were assembled for this work
were designed to test a wide range of dif-
ferent possibilities. This included the length
of the training and testing period, which was
tested from a few hours up to a hundred days.
The distance between the training and testing
period was tested, and ranged from letting
the testing start immediately after the training
ended, to testing almost three months later.
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Finally, the connection between the training
and testing periods was tested with different
training systems — some of the training periods
were just a single continuous period of time,
while others consisted of consecutive recurring
days to see if that improved the prediction
accuracy.

This chapter will analyze the results from all
the different dataset types. To ease the reading
experience, a subset of Table 1 containing the
currently discussed groups is included in each
section.

4.1 Training on a few hours

Table 3: A subset of table 1, listing the dataset types
discussed in this section.

ID Description

la  Train on one hour, test on the following hour.
1b  Train on two hours, test on the following hour.
1c  Train on three hours, test on the following hour.
1d  Train on four hours, test on the following hour.
le  Train on five hours, test on the following hour.

e
A

Average MAE (seconds)

1 2 3 4 5
Number of hours trained

—ANN —KkNN SVR

Fig. 5: The three classifiers trained on 1-5 hours, and
tested on the following hour.

These datasets were made to test how well
the classifiers can perform on small amounts
of data. The results must be analyzed with
caution, since there is only about 4 bus stop
passages per hour. In addition, some of the data
sets crossed the two daily traffic peaks (when
people travel to and from work), and may
have been influenced by this. When trained on
longer time periods, the classifiers are assumed
to learn to predict the daily peaks on their own

by using the TimeOfDay attribute, without be-
ing manually configured for it. This is one of
the benefits with data-driven approaches. It
is worth noting that ANN performed best on
these very small sets, with kNN a few seconds
behind. The 1 hour sets gave a much lower
MAE than the 2-5 hour sets, but since the 1
hour sets only had very few instances, this is
not enough to make any rigorous conclusions.
The 2-5 hour sets had a potential pattern of
decreasing MAE (especially kNN, as seen in
Figure 5), which indicates that on such small
datasets, the accuracy is improved when the
number of training hours is increased. This
is probably because training on a too small
timespan does not give enough information
to create a good model, since only a single
corrupted instance will be a large percentage
of the dataset.

4.2 Training on a week

Table 4: A subset of table 1, listing the dataset types
discussed in this section.

ID Description

2 Train on Monday-Thursday, test on Friday.

3 Train on Monday-Sunday, test on each of the days the
following week.

4 Train on Monday-Friday, test on each of the weekdays
the following week.

In group 2, the classifiers were trained on
Monday-Thursday in one week, and tested on
the Friday in the same week. This group was
created to assess the assumption that each day
has very different traffic patterns, by training
on four different days, and testing on the fifth.
With a MAE of 85 seconds, attained by SVR, it
can be seen that even though the days were dif-
ferent, the traffic patterns were similar enough
to be used for prediction between days.

Groups 3 and 4 were trained on the entire
week and the weekdays respectively, and then
tested on each of the days the following week.
These datasets served two purposes: a) inves-
tigating the prediction accuracy when training
on an entire week, but testing on a single day,
and b) investigating the fact that weekends
are traffic-wise very different from the regular
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weekdays, and how this may influence the
prediction accuracy [27].

Figure 7 shows that the difference in training
resulted in a minimal difference in output —
kNN trained on five days and kNN trained
on seven days performed almost equally when
tested on the same days, and the same trend
can be seen for the two other classifiers.
The classifiers trained on five days performed
slightly better, probably because Saturday and
Sunday changed the pattern. It is also worth
to note that except for kNN on the Monday,
all classifiers followed the same pattern, with
Monday and Friday being easiest to predict,
and Wednesday and Sunday hardest. That
weekends are harder to predict is to be ex-
pected, since the traffic pattern on these days
is very different from the pattern on weekdays.

In the autumn, the normal traffic pattern
for cities in Norway is that Monday is the
day with the least traffic congestion, and then
the congestion increases for each day until
the weekend begins [27]. The average delay
of week 40 and 47, however, was higher on
the Wednesday, which would suggest a high
traffic congestion. As seen in Figure 6, which
plots the average delay of the buses each day,
this pattern was mostly from week 47, while
week 40 was almost flat. The higher congestion
in the middle of the week may explain the
prediction difficulties for these days, while the
lower congestion on Mondays and Fridays may
explain the good results these days.

SVR and kNN had very similar predictions,
and outperformed ANN on these datasets.
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Fig. 6: The average delay of the buses on each day of the
test weeks.
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Fig. 7: The three classifiers trained on a full week (x7)
and only the weekdays in a week (x5), then tested on
each of the days in the following week. Averaged over
three different bus stops in two different weeks (weeks
40 and 47).

4.3 Training on multiple weeks

Table 5: A subset of table 1, listing the dataset types
discussed in this section.

ID Description

Train on two weeks, test on the following week.
Train on three weeks, test on the following week.
Train on three weeks, test on the week one week later.
Train on three weeks, test on the week two weeks later.

3| | 1

When trained on these datasets, the classi-
fiers had a longer period of time and more data
to learn from. This was assumed to improve the
prediction accuracy. In addition, the datasets
test the assumption that it is easier to predict
immediately after the training period ended,
than weeks later.

As Figure 8 shows, when testing on the
week immediately following the training pe-
riod, training on two weeks seems to give
a lower MAE than training on three weeks,
regardless of classifier (the two leftmost bars in
each section). This can be explained as overfit-
ting; training on an additional week may cause
the classifier models to become unnecessarily
complex, resulting in worse predictions.

What cannot be explained as overfitting,
though, is the decrease in MAE when expand-
ing the amount of time between the end of
the training period and the start of the test
period. In Figure 8, the three rightmost bars
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in each section represents groups 6, 7 and 8 in
the dataset groups respectively. Each of them
were trained on the exact same data, but they
were tested on the weeks immediately after
the training period, and 2 and 3 weeks later
respectively. The authors would have expected
the MAE to increase when expanding the gap,
but the MAE clearly decreased instead. As
Appendix D, Figure 21 indicates, this pattern
was strongest on the second period (trained on
weeks 46-48), while the first period (trained on
weeks 36-38) was flatter, but still had a slight
decline.

On average, SVR outperformed the other
classifiers on these relatively large datasets.
The MAE of kNN was usually a few seconds
higher, while the MAE of ANN was from 5 to
10 seconds higher.
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m 2 weeks (0)
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Fig. 8: The three classifiers trained on 2 and 3 weeks,
and tested on the week following immediately, 1 and 2
weeks later. 2 weeks (0) means training on 2 weeks, with
0 weeks between test and training period.

4.4 Training on consecutive recurring days

Table 6: A subset of table 1, listing the dataset types
discussed in this section.

ID Description

9 Train on one day, test on the same day the following
week.

10 Train on two consecutive recurring days, test on the
same day the following week.

11 Train on three consecutive recurring days, test on the
same day the following week.

12 Train on four consecutive recurring days, test on the
same day the following week.

13 Train on five consecutive recurring days, test on the
same day the following week.

These datasets were based on the fact that the
same weekdays show the same traffic patterns
[27]. This could mean that it is better to train
on Mondays only if the goal is to predict bus
arrival times on a Monday. This assumption
was assessed by training on 1, 2, 3, 4 and 5
consecutive recurring days, and then testing on
the next. For example, one group was trained
on five Mondays in a row, then tested on the
6th, while another was trained on five Tuesdays
in a row, then tested on the 6th, and so on for
the rest of the seven days in the week.

Figure 9 shows the results, here averaged
over all days to make a simple plot. The aver-
aged plot shows that there was a general MAE
increase when training on 1 to 5 consecutive
recurring days, but a sudden decrease when
training on three days. When the data behind
this plot was analyzed, this trend was visible
on all bus stops for all classifiers on all days,
even when the classifiers were run on the base
attributes only. This could be because the third
week was particularly easy to predict, but it
could also be an indication that three days is
the optimal amount of days to train on in this
scenario.

kNN had the best average results on all of
these datasets, with an average MAE of 78
seconds. The best result on a single group,
however, was 61 seconds by SVR when training
on three consecutive recurring days.
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Fig. 9: The three classifiers trained on 1-5 consecutive
recurring days and tested on the next, for example
trained on 3 Wednesdays and tested on the 4th.

4.5 Training on months

Table 7: A subset of table 1, listing the dataset types
discussed in this section.

ID Description

14  Train on one month, test on the following month.

15 Train on one month, test on each of the weeks in the
following month.

16 Train on two succeeding months, test on the following
month.

17 Train on two succeeding months, test on each of the
weeks in the following month.

These groups were created to test how well
classifiers can predict when being trained on
relatively long periods, and then tested on
either long periods immediately after the train-
ing period ended, or shorter periods a while
later.

Groups 14 and 16 were trained on one and
two months respectively, and then tested on the
immediately following month. They were both
tested on the same month (November), but
group 14 was trained on October only, while
group 16 was trained on both September and
October.

As presented in Figure 10, the prediction ac-
curacy was very similar regardless of training
period. ANN had the largest difference, but
even then the MAE difference was less than
5 seconds. This indicates that when trained on
a whole month, additional data does not im-
prove the predictions. SVR got the best results,
with an average MAE of ca 95 seconds on both

106
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94 -

Average MAE (seconds)
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88

ANN

kNN SVR

M One month MW Two months

Fig. 10: The three classifiers trained on one or two
months, and tested on the immediately following month.

groups.

Groups 15 and 17 are trained on the same
months as groups 14 and 16, but tested on
all four weeks of November instead of the
entire month at once. As Figure 11 shows,
the difference between training period is again
very small, and it is clear that the prediction
accuracy decreases for all classifiers as the time
gap between testing and training is increased.

Again, SVR attained the best MAE for all
datasets in these groups, with a minimum of
73 seconds when tested on the first week of
November, regardless of training period. ANN
and kNN were not far behind, but the dif-
ferences were clear. It is interesting to note
that both kNN and SVR performed extremely
similar when trained on one and two months,
suggesting that they used the same neigh-
bors/support vectors in both cases. ANN does
not have this benefit.

4.6 Training on 100 days

Table 8: A subset of table 1, listing the dataset types
discussed in this section.

ID  Description

18a  Train on 100 succeeding days, test on the 1, 2, 7 and
14 following days.
18b  Train on 100 succeeding days, test on 1, 2, 7 and 14

succeeding days approximately three months later.
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Fig. 11: The three classifiers trained on one or two
months (Im and 2m), and tested on the four weeks of
the immediately following month.

All datasets in these groups were trained on
the exact same 100 days, going from September
1st to December 8th. These datasets were as-
sembled to investigate how the classifiers per-
form when trained on a very long time period,
possibly going from a summer/autumn traffic
pattern, and over to a winter traffic pattern.

The trained classifiers were tested on the 1,
2, 7 and 14 days immediately following the
training period, and then on the same amount
of days in February 2014. As Figure 12 shows,
the MAE decreased when increasing the size of
the testing set. One possible explanation is that
the first days of the testing set were particularly
hard to classify, and that the periods of length
7 and 14 contained easier days that lowered the
average.

A more interesting result was that kNN
achieved better results when tested on the
datasets of length 7 and 14 in 2014, than it
did on the corresponding sets from 2013. This
can also be explained with hard or easy days,
but it is still very interesting that it is possible
to get an average MAE of 85 seconds when
the testing period is more than two months
from the training period. SVR, on the other
hand, had great difficulty with the testing sets
in 2014, but made the trend with a decreasing
MAE when increasing the testing set length
very obvious.

4.7 Discussion

Table 9 summarizes the results from the
dataset analysis. As illustrated, there was not
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Fig. 12: The three classifiers trained on 100 successive
days, and tested on periods of 1, 2, 7 and 14 successive
days either immediately after the training period ended,
or 2.5 months later.

much variation between the different types
of datasets. This is probably because the gap
between the time of the last given information
to the actual arrival of the bus is small (usually
15-30 minutes, as discussed in Chapter 1). The
average delay from all datasets is 144 seconds,
and the standard deviation is 184 seconds. This
means that with average MAEs between 60 and
80 seconds, the predictions are good, and far
from being simple averages.

The results indicate that training on the same
kind of day that is to be predicted is reasonable,
and that training on three in a row is enough.
This makes intuitive sense, since the traffic
pattern is very similar on consecutive recurring
days, but still changes with different times
of the year [27]. Too few training days may
not give the classifier enough data to create a
durable model, while too many training days
may conflict with the periodically changing
traffic pattern.

SVR and kNN both performed well on most
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Table 9: A summary of the data set analysis.

Section Training on Best MAE  Best classifier

Comments

41 A few hours 70 seconds ANN

Training on a single hour gave the lowest MAE, but with only
4 data points, it is difficult to be certain. Training on 2-5 hours
gave similar results.

4.2 A week 86 seconds SVR

SVR and kNN perform very similarly on these sets, but on
average, SVR is slightly better.

43 Multiple weeks 80 seconds SVR

kNN only slightly worse than SVR on these sets. Training on
two weeks gave a lower MAE than training on three weeks,
except when the testing period starts later (strangely enough).

44 Days of same type 61 seconds kNN

All classifiers show a higher MAE when trained on a higher
amount of days, except when trained on three days, which
gives the minimum.

45 Months 73 seconds SVR

Best performance when trained on 2 months and tested on
the first week of the 3rd month. Very small difference between
being trained on 1 and 2 months.

4.6 100 days 74 seconds kNN

The best results were attained when tested on 2 weeks. kNN
best when gap between training and testing, SVR best without

&ap-

of the dataset types, while ANN usually at-
tained a higher MAE. It is also worth noting
that on the groups that kNN did not have
the lowest MAE, it was usually very close.
This indicates that KNN performs well on data
from the traffic domain. Both SVR and kNN
generally gave good results, suggesting that the
use of neighbors/support vectors helped them
find the most important cases, while ANN
struggled to create good models. Future studies
should investigate the most interesting dataset
types in the dataset analysis further, as this
work merely scratches the surface.

In addition, kNN was clearly the fastest clas-
sifier. SVR was about five times slower than
kNN when both methods employed optimized
parameters, and ANN was almost a 100 times
slower when using the 49, 49, 49 network. How-
ever, if speed is more important than accuracy,
using 3, 3,3 as the network topology for ANN
achieved a running time slightly lower than
SVR with approximately the same rating as
49, 49, 49.

kNN was also the classifier that gave the
best results before the parameter optimization,
without any MAE spikes. After the optimiza-
tion, the MAE was very similar, but slightly
lower. This proves that kNN is not as depen-
dent on the perfectly optimized parameters as
the other classifiers. Thus, kNN proves to be
both precise, fast, and robust.

All classifiers were lightning fast when test-
ing — even in the extreme cases where the
training took several weeks (some SVR con-
figurations on the largest datasets), the testing
was still done in less than a second.

5 ATTRIBUTE ANALYSIS

The purpose of an attribute analysis is to as-
sess the level of importance for the attributes
used in the datasets. The analysis was done
by comparing the prediction MAE of only the
base attributes with the MAE of the base at-
tributes combined with additional attributes
for weather, football, ticket, and passenger
data. The base attributes and the additional
attribute sets are listed in Appendix B, Table
Al.

The inclusion of the attributes TicketVali-
dationsLastThreeHours and FootballMatch al-
ways resulted in reduced, or at best unchanged
accuracy, and was therefore ignored in the anal-
ysis. As for the football matches, the increased
congestion close to Lerkendal stadium did not
influence the bus delays noteworthy. This may
have been due to the separation of public and
private transport lanes in the area. Note that
these two attributes still are a part of the all
attributes set, since they were included in the
initial processing.

Since this analysis was run in parallel with
the parameter optimization, the optimal pa-
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rameters were not yet discovered. Therefore,
all classifiers were trained with the default
parameter settings. The following sections will
explain important trends and observations over
the different datasets for the different classi-
fiers.

5.1 k-Nearest Neighbor attributes
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Fig. 13: Training kNN on depicted number of hours.
Tested on the following hour.

When training on a few hours, the limited
amount of training instances caused the pre-
dictions to fluctuate. Still, as Figure 13 shows,
a pattern of declining MAE could be observed.
Note that ticket data did not change the out-
come of the predictions for 1 and 2 hours, but
increasingly improved the predictions for 3 to
5 hours. Clearly, the weather did not improve
the predictions.
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Fig. 14: Average Attributes MAE for dataset group nr. 3
(Train on Monday-Sunday, test on each of the days the
following week) with the kNN classifier.

In group 3, training was done on Monday-
Sunday and tested on each of the days in the

following week. This was done in two time
periods; weeks 46/47, and weeks 39/40. When
training on week 46 and testing on week 47,
the MAE of the base attributes was 67 percent
higher than when training on week 39 and
testing on week 40. Why week 47 was harder
to predict can be explained with the abrupt
temperature change in the middle of week 47,
which may have posed a challenge for how
kNN picks the relevant neighbors.

Note that the predictions of kNN were
slightly improved when adding the weather
attributes in week 47. A possible explanation
can be found in the temperature change, where
temperature dropped to minus degrees centi-
grade. Adding the weather attributes reduced
the average MAE slightly for week 47, but
increased the MAE for week 40 where the tem-
perature was stable. See Appendix E, Figure 22
for a detailed temperature overview. Note that
each of the weather attributes separately did
not reduce the MAE as much as all combined.

5.2 Artificial Neural Network attributes
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Fig. 15: Training ANN for hours.

As Figure 15 shows, the MAE of the ANN
classifier was notably increased when weather
attributes were included for hourly training.
The same can be seen to a lesser degree when
the training was done on a set of consecutive
recurring days, for example training on a set of
Mondays, and testing on the last, as shown in
Figure 17.

For training on multiple weeks, adding the
passenger and ticket attributes made ANN
perform slightly better when the test week
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Fig. 16: Training ANN on 1-5 consecutive recurring
days and tested on the next, for example trained on 3
Wednesdays and tested on the 4th.
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Fig. 17: Training ANN on depicted number of weeks.
2 weeks (0) means training on 2 weeks, with 0 weeks
between training and test period.

immediately followed the training weeks, as
presented in Figure 17.

5.3 Support Vector Regression attributes

Adding extra attributes did not seem to note-
worthy change the prediction performance for
SVR, as seen in Appendix F. There were some
minor differences, but not enough to draw
any conclusions. This may be a result of how
SVR uses support vectors to classify future
instances. If the additional attributes does not
improve the model, SVR will use mostly the
same (or similar) instances as support vectors,
and the classifier will use a similar hyperplane
for classification [7].

5.4 Discussion

There were very few large football matches in
the training period, since this is a relatively
small city. The passenger counting was also
poor, since only one bus had it installed, and
since it had not been tested long enough to
actually be known to work at the time of
writing. As such, more studies should be per-
formed to investigate the actual influence of
such attributes.

When training on 3-5 hours, the ticket at-
tributes improved the prediction accuracy of
kNN. In contrast, the inclusion of weather at-
tributes reduced the accuracy. The overall MAE
for the base attributes decreased as the number
of hours (and thereby the number of instances
in the datasets) increased. This makes sense,
as the relative weighting of each neighbor is
smaller, reducing the importance of outliers.

Regardless of training period, it is clear that
the ANN classifier does not perform better
when using weather. When training on hours
and consecutive recurring days, weather re-
duces the prediction accuracy. A reason for this
may be that with hourly training, the weather
data is superfluous and the classifier fails to
generalize on the smallest datasets, while on
the longer, the weather data is so different
that the classifier is unable to see a connection
between the weather and the delays.

The SVM classifier is stable and performs
well on all attribute sets. This may be a result
of the classifier’s ability to ignore attributes not
improving the model. There are minor differ-
ences, but these can not be used to draw any
conclusions.

6 REAL-TIME PREDICTION

In Chapters 4 and 5, the predictions on the
different datasets and attributes rarely resulted
in mean errors below 70 seconds. As discussed
in Chapter 1, these predictions are typically
given 15 to 30 minutes prior to the bus arrival.
However, by utilizing real-time information
such as when the bus passes different bus
stops, the predictions can be improved as the
bus progresses through its route. Due to the
frequent bus stop passages in urban areas, this



DEPT. OF COMPUTER AND INFORMATION SCIENCE, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, JUNE 2014 17

approach provides near real-time predictions,
benefiting waiting passengers.

Late findings, as illustrated in Appendix G,
indicated that the correlation between travel
times of consecutive trips was higher than be-
tween delays of consecutive trips. In addition,
travel times accumulate at passages after de-
parture, starting from zero, while a delay may
have accumulated prior to departure, and does
not necessarily increase during the trip. For
these reasons, the prediction error was hypoth-
esized to decrease when predicting travel times
instead of delays. The POC model assessed this
hypothesis by predicting travel time to a stop
once the bus had started moving, and then
at all intermediate bus stops. The model was
conceptual, in the sense that it was provided
with simulated data from an interface and in-
frastructure that were both hypothetical.

The POC model utilized a classifier (kNN,
ANN or SVM) for its predictions. Hence it
needed to do training and testing on instance-
based data where every instance represented a
single trip. The following set of attributes were
utilized from the trips:

o Travel times to consecutive bus stops (ac-
cumulated by arrival times, in seconds).
The last stop and consequently the total
travel time was the class attribute.

« Stopping time at bus stops (accumulated
to the respective stop, in seconds)

« Time of departure (in hours)

e Scheduled travel time (derived from
scheduled arrival time, in seconds)

« Average travel time for the three previous
buses

The instances were split into a single training
and test set for every stop between the depar-
ture stop and the stop for which the travel time
was to be predicted. Hence, it was possible to
simulate real-time by predicting the total travel
time for every bus stop passage.

In order to evaluate the POC model, it was
compared to the existing real-time system from
AtB. The AtB system and the dataset (testing
environment) is described in more detail in the
following sections, together with a comparison
of candidate models for the POC.

6.1

The existing AtB system at the time of writ-
ing includes passenger information displays in-
stalled in the most popular stops in the Trond-
heim region. Every minute, new predictions are
conveyed to the displays, informing waiting
passengers about line-specific arrival times. In
addition, the real-time service is available via
AtB’s website. Real-time data from this website
was fetched in order to compare the models in
a simulated real-time environment.

AtB’s real-time system is developed by
Swarco, who has delivered similar solutions
in Spain, Italy, Greece and Sweden [28]. Their
model applied for prediction (from now on
referred to as the AtB model) should therefore
be a worthy competitor for the POC model. The
AtB model employs GPS and odometer data for
its predictions [29]. However, the details of the
implementation remain hidden, and the model
is therefore considered a “black box”.

Existing Real-Time System

6.2 Dataset

In order to take advantage of the findings
from the parameter optimization and attribute
analysis in Chapters 3 and 5, the same route
was selected for prediction. As mentioned in
Chapter 2, the many intersections, crossings
and stops resulted in a stochastic environment
where travel time was hard to predict. Con-
sequently, the predictions became more easily
distinguishable when compared to another.
Due to frequent loss of both passage data
and AtB predictions towards the end of the
route, the three last stops were excluded, and
travel times were predicted for stop 17 (Risvol-
lan Senter). In addition, the period of testing
was set from Monday 17th to Friday 21th of
February, 2014. The weekend was excluded due
to missing AtB predictions. The resulting test
set included a total of 340 trips, or instances.

6.3 Model Selection

When the dataset and attributes were selected,
the selection of a prediction model remained.
This included the selection of which method
to employ (ANN, kNN or SVR), the parame-
ters for the method (topology, kernel values,
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Fig. 18: Average prediction errors on travel time to stop
17, Risvollan Senter, at bus stop passages 1 to 16.
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Fig. 19: Prediction errors on travel time to stop 17,
Risvollan Senter

etc.) and on which days preceding the days of
testing to train the method.

The fine-tuning of classifier parameters was
avoided by reusing the best parameter con-
tigurations for each method found in Chapter
3. Although these parameters were specialized
for prediction of delays on other datasets, they
were general in the perspective of domain and
prediction type.

There were four generated training sets;
training on 7 and 14 consecutive days, and
training on 3 and 12 consecutive recurring
weekdays. The ANN, kNN and SVR classifiers
were trained on each of the four training sets,
and the methods were compared by predicting
the travel times to stop 17, at the time of depar-
ture from Kongens Gate K1 and the passages of
the 15 intermediate stops. The prediction MAE
at each of the 16 stops were then averaged for
all predictions on the 5 weekdays of testing.

Figure 18 illustrates the average prediction
error for all stops, when each method was
trained on the different training sets. The best
configurations (ANN and SVR on 14 days,
kNN on 7 days) were compared stop by stop,
as seen in Figure 19. The results indicated that
SVR was the preferred candidate method, with
the lowest MAE at all stops. Hence, this SVR
configuration was employed in the POC model.

6.4 Performance Comparison

The AtB model predicts about every minute,
in contrast to the POC model which predicts
at every bus stop passage. In order to compare
the models without reducing the accuracy of
the AtB model, a simple rule was attached to
the POC model: if more than one minute had
passed since the last bus stop passage at the
time of a new AtB prediction, the POC model
would predict the same arrival time as at the
previous passage.

Once every now and then, the bus signals
are lost. Consequently, if the signal for the bus
closest to arrival is lost, the AtB model may
predict arrival for the next bus, if there is one.
Typically the signal is back a minute later. To
compensate, every time the AtB model pre-
dicted with an error exceeding 5 minutes of the
previous prediction (indicating a signal loss),
the prediction value was set to the previous
prediction, thereby reducing the error.

Figure 20 shows the performance of the POC
model and the AtB model, predicting the ar-
rival time at Risvollan Senter for the 340 trips
on Monday to Friday (17.02.2014-21.02.2014),
x minutes after departure from Kongens Gate
K2. The performances for the individual days
are listed in Appendix H. The whiskers are
minimum and maximum errors, and the box-
plots are first, second (median) and third quar-
tiles. The comparison is illustrated by box- and
whisker-plots to facilitate the importance of the
error distribution from a travelers perspective;
a lower MAE is not necessarily better, if the
maximum errors are much higher.

The results indicated that the POC model
predicted very similar to the AtB model in the
tirst minutes from departure, with a slightly
lower MAE, but with higher maximum er-
rors. However, in the minutes closer to arrival,
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Fig. 20: Prediction errors on travel times to Risvollan Senter on trips from Kongens Gate K2, 17.02.2014-21.02.2014

the POC model clearly outperformed the AtB
model with both lower variance and MAE. As
a bus progressed on its route, the travel time
profile of the respective instance became more
detailed (travel times and stopping times for
all stops passed on the trip were included).
As a result, the prediction accuracy increased
closer to arrival. This was a clear tendency
on all days in the testing period. The average
travel time for the period was approximately 17
minutes. Consequently, the errors depicted for
the last minutes in the figure represented only
a few trips. As in this case, the errors may have
increased due to the rare occurrence of similar
trips in the training set.

6.5 Discussion

Despite the promising performance of the proof
of concept model, incorporating the model into
a real system would be hard, or even unfeasi-
ble, due to limitations in the infrastructure. A
real system would require an extension of the
model to predict travel times to all consecutive
stops on a route. In the case of the POC model,
a straightforward extension would require 16
predictions to stop 17, 15 predictions to stop
16, and so on. In general, a route with n stops
would require 3 "_] n classifiers. Consequently,
a route with 30 stops require Zioz_ll n = 435 pre-
diction models. Although training this amount

of classifiers may be feasible at say, every night
to Monday, the system would become unnec-
essary complex with respect to data logistics
and scalability. Hence, an alternative approach
should be employed in case of production.
Also, since predictions are done per passage,
the model may not perform equally well in
suburban areas, as the distances between stops
typically increase.

7 CONCLUSION

The parameter optimization improved the pre-
diction accuracy of all classifiers, particularly
ANN and SVR, which had multiple occur-
rences of very high MAE before the optimiza-
tion. The MAE was smoothed and lowered
after optimizing the parameters. This shows
that optimizing the parameters is an important
part of preparing for arrival time prediction,
especially for ANN and SVM.

While all classifiers performed well, kNN
and SVR attained the best predictions on most
of the datasets. Furthermore, kNN clearly had
the shortest training time and its predictions
was more stable with respect to parameter
tuning. Hence, it is suitable for real-time de-
manding and constantly changing traffic envi-
ronments.

The dataset analysis found that the best way
to predict the arrival time on one particular



DEPT. OF COMPUTER AND INFORMATION SCIENCE, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, JUNE 2014 20

day, is to train on the three previous days of
the same type. This means that if the goal
is to predict for the coming Wednesday, the
classifier should be trained on the previous
three Wednesdays.

Adding weather information gave no clear
prediction improvements. The amount of peo-
ple taking the bus each day is so large that
even when some of them decide not to take
the bus, there could very well be an equally
large group that would otherwise walk or cycle
taking it instead. Passenger and ticket data
has promising results for some of the training
periods for ANN and kNN.

It was indicated by the proof of concept
model that use of travel time rather than delay;,
improves prediction accuracy. Furthermore, the
proof of concept model was able to predict
travel time with an accuracy and stability com-
petitive to the existing real-time system by
employing SVR and bus stop passage data. In
addition, the model is openly explained and
the source code is freely available, which is
beneficial for further study and improvements
[30].

8 FUTURE WORK

The following future work is suggested:

1) Further investigating the most promising
dataset types. Any training sets with du-
ration of a few hours should be planned
in such a way that they avoid the large
pattern differences from the rush hours
to the regular hours.

2) Investigating how to weight the different
factors in the rating function to make the
average user trust such a system.

3) Running a parameter optimization on
kNN with only the best datasets, to fur-
ther improve the prediction accuracy.

4) Datasets for passenger counting, ticket
data and football matches were sparse.
Investigate if better data would improve
predictions.

5) No clear improvements with additional
attributes for SVM was found. This
should be analyzed further

6) Investigate how weather affects passen-
gers’ travel plans and how this may in-
fluence bus arrival times.

7) In order to scale the model to predict
travel times to multiple bus stops, alter-
natives that reduce the number of classi-
fiers required should be investigated. This
includes multiple outputs per classifier,
interpolation of predictions, and partly
substitution of classifers by rules based on
domain-specific knowledge.
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APPENDIX A
DATASET AGGREGATION DETAILS

The final 423 datasets used for testing were
all created from a single, aggregated data table
that combined all the data sources.

Each row in this table represents a row from
an AtB table that contained a log of all passages
at the different bus stops. This table was filtered
so that it contained only passages where a bus
on line 8 passed one of the three selected bus
stops.

For each remaining row, the following data
was added (see Appendix B, Table Al for an
overview of all attributes):

1) Football match data: all data rows that
were within 2.5 hours from the middle
of the football match got the number of
spectators of this match as the value of the
FootballMatch attribute. All other rows
got a 0 on this attribute.

2) Weather data: all data rows got the val-
ues of Temperature, Wind, Humidity and
Precipitation from yr.no as values of the
corresponding weather attributes. These
values were all collected on an hourly
basis (a limitation of yr.no), so multiple
data rows may have the same values if
they are close enough in time.

3) Passenger counting: all data rows that
were from the bus with a passenger
counting system got the current number
of passengers as the value of the Passen-
gersPresent attribute. All other rows got
a 0 on this attribute.

4) Ticket data: all data rows that were
within the two weeks were ticket data
was provided by AtB got the number of
tickets validated the last 1 and 3 hours
as values of the corresponding ticket at-
tributes. All other rows got a 0 on these
attributes.

5) Delay aggregations: all data rows got
multiple aggregations of previous delays
at the current bus stop. These values were
calculated by picking previous data rows
by some criteria (for example the last 3
for AverageLast3, and the last three trips
on the same type of day for Average-
Last30fSameDay) and averaging them.

Since ScheduledArrivalTime was used to
identify data rows, previous rows were
selected by this attribute.
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APPENDIX B
DATASET ATTRIBUTES

Table Al: The exact attributes of the datasets.

Attribute Comment Reasoning Attribute

type

DayOfWeek The day of week for this bus trip. The traffic follows approximately the Base

same pattern on the same weekdays.

TimeOfDay The scheduled arrival time for this bus, Same as above. Base
measured in quarters since midnight.

StopTime The duration of which the previous bus  Knowing the previous stop time at the Base
stopped on this bus stop. Measured in  bus stop gives an indication of how much
seconds. stop time the next bus will need.

Delay Delay of the actual arrival of the bus. The class attribute. We want to predict Base
Measured in seconds. This is the class how delayed the bus going to be.
attribute.

DelayLast Delay of the previous bus was at this bus  If preivous bus that arrived at this stop  Base
stop. was delayed, this one may be so too.

AverageDelayLast3 The average delay of the previous 3 buses ~ Same as above. Base
that arrived at this bus stop.

DelayYesterday The delay of the bus with this Sched- If bus(es) at this time of day tend to be  Base
uledArrival time from yesterday (or the delayed, this one may be so too.
previous day it was driven).

DelayDayBeforeYesterday The delay of the bus with this Sched- Same as above. Base
uledArrival time from the day before yes-
terday (or the previous day it was driven).

DelayLastWeek The delay of the bus with this Sched- Same as above. Base
uledArrival time from exactly one week
ago (or the previous week it was driven).

AverageDelayLast30fSameDay The average delay of the buses with this Same as above. Base
ScheduledArrival time from the last three
weeks.

PassengersPresent The number of passengers present at the The number of passengers present will —Passenger
previous bus stop. influence the stop time, since more pas-

sengers need to get on or off.

Temperature The temperature of the hour of Sched- Influences the amount of people that pre- Weather
uledArrival. Measured in degrees celsius.  fer to travel by bus.

Precipitation The precipitation of the hour of Sched- Same as above. Weather
uledArrival. Measured in millimeters.

Wind The wind of the hour of ScheduledAr- Same as above. Weather
rival. Measured in meters per second.

Humidity The humidity of the hour of ScheduledAr-  Same as above. Weather
rival. Measured as a percentage.

FootballMatch The number of spectators if there was a A high amount of people driving cars Football
soccer match within 2 hours from Sched- and/or buses to the soccer stadium will
uledArrival. Otherwise zero. influence the traffic around it.

TicketValidationsLastHour The number of ticket validations the last If a lot of tickets were validated, we can  Ticket
hour. expect more traffic and higher delays.

TicketValidationsLastThreeHours =~ The number of ticket validations the last ~Same as above. Ticket

three hours.
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APPENDIX C
PARAMETER OPTIMIZATION DETAILS
C.1 k-Nearest Neighbor

The k-value can be anything from 1 to the
number of instances in the training set. If it is
equal to or larger than the number of instances,
all instances are used, which effectively reduces
the kNN to a simple averaging function.

The k-values selected for testing were static
k-values from 1 to 100, in addition to dynamic
k-values that were based on n, which is the
number of instances in the training set. The
dynamic k-values ranged from /500 to n, with
steps of 10 on most of the range (more detailed
closer to n). The k-value was rounded to the
closest integer, and increased to 5 if it was
lower than that (as our tests showed that it
was always preferable to use more than one
neighbor).

C.2 Artificial Neural Network

Table A2: The network topology of the test networks. The
first cells of each row list the topology, with eacy layer
separated with a comma. In cases where the amount of
nodes was a decimal number, it was rounded down-
wards.

Topology Values

n n from 1 to 25, and 30, 50, 100, and a

5,n n from 1 to 10

10,n n from 1 to 10

a,n n from 1 to 10, and 20, 30, 50 and 100
n,10 n from 20 to 100, with an increment of 10
n,n,n n from 1 to 100

n n
7275

n n from 10 to 100, with an increment of 5

The following networks were tested:

o One hidden layer with 1 to 100 nodes.
The dataset dependent value a (attributes
+ classes /2) was also tested.

« Two hidden layers, the first with a nodes,
the second with different numbers of
nodes.

o Three symmetric hidden layers with n
nodes in each, where n went from 1 to 50.

The networks with one single hidden layer

got a lower rating when increasing the number
of nodes to about 30-50. For the larger networks
a tendency of better rating for 50 or more nodes

in three hidden layers were clear. Therefore,
the search was expanded with the following
networks:

o Three symmetric hidden layers with n
nodes in each, where n went from 50 to
100.

« Three hidden layers with n, n/2 and n/5
nodes respectively.

Networks with three layers with n, n/2 and
n/5 nodes respectively were added to the
search since some networks that had fewer
nodes in the second layer did well in the pre-
vious search. An assumption was made, that a
network does not need as many nodes in the
latter layers, since it processes the data more
and more for each layer, and wanted to test
this.

This search showed that the networks with
uniform layers continued to give good pre-
dictions until they reached approximately 80
nodes, and then the performance decreased.
The search was thus not continued further.
The networks with gradually smaller layers
did contribute with two of the best performing
networks (75,37,15 and 10, 5,2). A search past
100 nodes for the gradually smaller layers were
not performed because a decrease in rating
from 75 up to 100 nodes was clear.

The last parameter to test for is number
of epochs. The optimal value for epochs was
found for all of the aforementioned networks
with the the values found for learning rate and
momentum. Tests with epochs from 1 to 1150
was performed. The Weka default value is 500.
For the networks 3, 3,3 and 10, 5, 2 it was clear
that we needed to expand to be sure that the
best epochs value was chosen. For these two
networks we tested up to 5000.

C.3 Support Vector Regression

Table A4 lists the five grids that were used for
the parameter optimizing grid search for SVM.
Each cell consist of the formula (2" or n), the
range for n, and how much n was incremented
for each step within this range (”inc”).
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Table A3: The five best network topologies, their best rating and the momentum and learning rate that caused this
rating, and finally the average training time over all datasets.

Network Best rating Learning rate Momentum Epochs Avg. training time
49,49,49  151.40 0.1 0.2 250 121 287 ms
75,37,15 15341 0.1 0.0 750 68 939 ms

3,3,3 154.68 0.1 0.7 450 2 147 ms

57,57,57  156.03 0.0 0.0 200 124 816 ms

10,5,2 158.46 0.1 0.7 650 5204 ms

Table A4: The five grid searches performed to find the
best combination of C- and ~-values for the RBF-kernel.
The step sizes/increments are marked “inc” in each cell.

C ¥

2" n € [-15,15], inc 1 2" n € [-15,15], inc 1
2" n € [-1,4], inc 0.2 2" n € [—6,—3], inc 0.2
2", n € [2,3], inc 0.05 2" n € [-5.6,5], inc 0.05

n,n € [5.657,6.057], inc 0.05

n,n € [0.0237,0.0257], inc

0.0005

n,n € [5.657,5.757], inc 0.01

n,n € [0.0247,0.0257], inc

0.0001
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APPENDIX D
DATASET ANALYSIS DETAILS
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Fig. 21: The three classifiers trained on 3 weeks, and
tested on the week following immediately, 1 and 2 weeks
later.
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APPENDIX E
K-NEAREST NEIGHBOR ATTRIBUTE
ANALYSIS PLOTS
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Fig. 22: Weather for weeks 39-40 and 46-47.
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Fig. 23: Training kNN for 1 month and longer. Legend
numbers depicts the dataset number. See Table 1 for
dataset description.
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APPENDIX F
SUPPORT VECTOR REGRESSSION AT-
TRIBUTE ANALYSIS PLOTS
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Fig. 24: Training SVR for 1-5 hours and testing on the
following hour.
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Fig. 25: Training SVR for days. Legend numbers depicts
the dataset number. See Table 1 for dataset description.
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Fig. 26: Training SVR on 1-5 consecutive recurring days
and tested on the next, for example trained on 3 Wednes-
days and tested on the 4th.
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Fig. 27: Training SVR depicted number of weeks.
2 weeks (0) means training on 2 weeks, with 0 weeks
between training and test period. Testing always done
on one week.
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Fig. 28: Training SVR for 1 month and longer. Legend
numbers depicts the dataset number. See Table 1 for
dataset description.
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APPENDIX G
CORRELATIONS OF TRAVEL TIMES AND
DELAYS
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Fig. 29: Travel times for consecutive trips, f-1 and t,
to bus stop Lerkendal, 17.02.2014-21.02.2014. Correlation:
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Fig. 30: Delays for consecutive trips, -1 and t, to bus
stop Lerkendal, 17.02.2014-21.02.2014. Correlation: 0.189
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APPENDIX H

PROOF OF CONSEPT RESULTS
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Fig. 31: Prediction errors on arrival times at Risvollan
Senter on trips from Kongens Gate K2, monday 17.02.2014
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Senter on trips from Kongens Gate K2, tuesday 18.02.2014
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Intelligent Transportation Systems and Artificial

Intelligence — a State of the Art Review
Aleksander Sjafjell, Erlend Dahl and Simen Skogen

Abstract—Travel time prediction is an important part of intelligent transportation systems. The purpose of this work is
to provide a general overview of the most important Al methods in the traffic domain, focusing on travel time prediction
for public transport in urban areas. An extensive literature review is presented, which reveals that the most frequently
applied prediction methods are k-nearest neighbor, artificial neural networks, support vector machines, Kalman filters,
and some general statistics. Despite minor limitations in the methods, they are shown to outperform baseline models
applied in real-world applications. The search procedures in the literature review are explained in detail, and the following
section gives an introduction to each of the methods and how they are applied in the current literature. At the end of
this section, the different areas of applications observed among these methods are briefly discussed. The different
environments and data sets used in the literature complicate the comparison between the methods. Therefore, the final
section consists of a brief summary of important features, a discussion of general trends observed in the literature, and
some suggestions for future work. No methods were found to consistently outperform the others.

Index Terms—state of the art, intelligent transportation system, prediction, support vector machine, kalman filter, k-
nearest neighbor, artificial neural network, machine learning
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1

1 INTRODUCTION

ntelligent transportation systems (ITS) are ad-
Ivanced transportation systems which aim to
apply information technology to provide im-
proved information services, simplified man-
agement, and smoother traffic flow. Since the
early 2000s the advancements in information
and communication technologies have made it
possible for transport systems to become more
intelligent, efficient, safe and eco-friendly. Car
navigation, automatic vehicle location, induc-
tive loop detection, variable message signs, and
speed cameras are examples of ITS technolo-
gies that are already extensively used world-
wide.

Methods from the field of artificial intelligence
(AI), machine learning and statistics have been
applied to ITS-collected data in a progressively
increasing extent. These methods are typically
categorized in search, optimization, classifica-
tion, or a combination of these. In the early
days of ITS, classical Al-algorithms were pri-
marily applied for search and optimization,
such as path-finding in car navigation. Due to
the vast amount of higher-quality data avail-

able nowadays, ITS has allowed Al to be ap-
plied to predictions. Therefore, the cutting edge
applications and research combining ITS and
Al focus predominantly on traffic variable pre-
diction.

Providing travel and traffic information to
transport users anywhere and at any time
will improve the efficiency and security of
transport, ease congestion, and increase public
transit ridership, benefiting the users and the
environment. Consequently, the prediction of
travel time has become a vital and prominent
part of ITS applications and Al research.

This work presents a state of the art (STAR) lit-
erature review on methods for predicting traffic
variables through available intelligent trans-
portation systems, with special focus on travel
time for buses. Firstly, section 2 presents the
structured literature search, in which the choice
of reviewed articles is substantiated. Secondly,
section 3 gives an introduction to prediction in
general. The most common methods, including
kNN, ANN, SVM, Kalman filter and general
statistics, are then briefly explained, together
with more details on how they are imple-
mented in the literature. Finally, in section 4 the
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applied methods are compared and discussed.
On the basis of this discussion, suggestions for
future work are proposed.

2 THE LITERATURE REVIEW

To retrieve as much information about the com-
bination of Al and ITS as possible, the literature
search needed to be very broad. A search query
was created, but the results showed that it
was impossible to create one that included all
relevant parameters without returning to many
articles.

The goal of this work was to get a bet-
ter understanding of earlier works related to
buses and travel time prediction. The chosen
approach was to create three search queries;
one that focused on Al methods, one for ITS,
and one for travel time prediction. In addition,
we also included an ITS conference (ITS Eu-
rope 2013), as this would include many of the
newest articles in the field.

The search queries were executed in the
IEEEXplore Command Search-utility [1], and
were as follows:

Search 1: (vehicle OR bus OR train
OR tram OR subway OR airplane) AND
(“intelligent transportation system” OR
“smart city”) AND (planning OR esti-
mation OR coordination OR "big data”
OR prediction OR "travel time”)

Search 2: (transport) AND (planning
OR estimation OR coordination OR "big
data” OR prediction OR "travel time”)
AND ("artificial intelligence” OR svm
OR svr OR “ant colony” OR id3 OR cbr
OR "neural network”)

Search 3: ((transport* OR apts OR
“intelligent”) AND (estimation OR pre-
diction OR regression) AND ("travel
time”))

For more information on the search syntax,
please see ref. [1]. It is important to note that
we have only included results from the year
2000 and onwards. At the time of the search,
October 11, 2013, a total of 837 articles were
obtained (196, 175, 241, 225 for Search 1, Search
2, Search 3 and the ITS Conference, respectively).

To narrow down the set of articles the reduc-
tion process was done in three steps:

1) Filtering by title text.
2) Filtering by abstract.
3) Filtering by full article.

2.1

An article was included and brought on to
the next phase if the title gave an indication
that the article included one or more of the
following items:

1) Predicts or models transport variables.

2) Addresses a solution for a transport prob-
lem.

3) Increases the efficiency and/or adaptabil-
ity of bus traffic.

4) Gives more insight in the ITS domain, or
how problems in the domain are solved.

5) Has at least one of the keywords: bus, ITS,
real-time or travel time prediction.

6) Mentions what it tries to solve.

7) Uses a relevant algorithm which can be
utilized in public transport.

8) Is a STAR article in transportation or
other similar field.

The articles were divided into three groups,
where one person was responsible for filtering
each group. A calibration was done on the first
25 articles of each of the groups to ensure that
the inclusion criteria were interpreted in the
same manner. After filtering on these criteria,
a subset of 260 articles remained.

Filtering by title text

2.2 Filtering by abstract

In the second phase, the articles were fil-
tered by considering the abstracts. The criteria
weights, decided by the criterium’s perceived
importance, are listed in parentheses at the end
of each criterium. The new quality criteria are
as follows:

1) The number of times, n, an article has
been selected in the searches (since mul-
tiple articles were returned by more than
one search) gives the number of starting
points. Articles from the ITS Conference
are given three points by default, as they
do not get the benefit of being found in
the searches. (0.5 - n)

2) The problem is within the transport do-
main. (1)



DEPT. OF COMPUTER AND INFORMATION SCIENCE, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, DECEMBER 2013 3

3) The solution uses an algorithm that can
be connected directly, or by some modifi-
cations, to the transport domain. (2)

4) The result is clearly conveyed and can be
reproduced. (0.67)

5) The solution worked like intended. (0.33)

6) The problem is relevant for traffic model-
ing. (2.5)

7) A STAR article is unable to get some of
the points, and is awarded 4 points as
compensation. (4)

8) The article is understandable. (1)

The points per article were counted, and a
reasonable point cutoff was found at seven
points by considering the relevance of articles
above and below this line. All articles with
fewer points than this were excluded. This
incidentally resulted in exactly 100 articles, a
reasonable amount to include in the final fil-
tering step.

2.3 Filtering by full article

Entering the third and final stage, the articles
was to be read more thoroughly. The result was
the following three quality criteria, which were
given points on a scale from one to five, based
on the guidelines under each criterium.

1) The reproducibility of the presented so-
lution was important, and major features
were:

a) Extensive and good descriptions.

b) Good examples.

¢) Understandable results.

d) Not too specific on something irrel-
evant.

2) The perceived relevance of the article was
assessed by these features:

a) Available data.

b) Available tools.

¢) Is in urban environments.

d) Is in some way connected to public
transport by bus.

e) The project described must be within
reasonable boundaries regarding im-
plementation time.

3) Is a status article. All articles being STAR
articles or case studies that contributes
with good and usable information.

Regular articles were rewarded points for
criteria 1 and 2, and status articles for criteria
2 and 3. Note that the criteria were vague by
decision, and some individual judgments were
necessary to avoid excluding potential relevant
articles. Finally, the point cutoff was set to
seven points to catch the most relevant articles,
giving the final set of 38 articles listed in the
appendix.

3 STATE OF THE ART

3.1 Introduction

When predicting traffic variables, it is neces-
sary to collect enough historical data to train
the methods. Such data may include arrival
times for buses, earlier travel times, measured
speeds, or the level of congestion on road
segments. As an example, the congestion and
arrival time at previous bus stops may be
used as input to predict the arrival time at the
current stop. These types of data are typically
stored and updated continuously in intelligent
transport systems.

The aggregated data is split into a training
set and a test set, and the training consists of
the learning method finding a function that
maps the input/output pairs in the training
set. Next, the method is evaluated on the test
set, and it is given feedback on whether the
predictions are correct or not. This explicit feed-
back forms the basis of supervised learning,
in contrast to unsupervised learning, where no
teedback is supplied. In practice, however, the
learning is semi-supervised, since both noise
and lack of outputs in ITS-data create a con-
tinuum between supervised and unsupervised
learning. [32]

The most common prediction methods in the
reviewed literature are to be briefly explained
and investigated in more detail in this chap-
ter. These include k-nearest neighbors, artifi-
cial neural networks, support vector machines,
Kalman filtering and general statistics. While
statistics in general is not considered to involve
Al or machine learning, this review confirms its
strong presence in the ITS domain.



DEPT. OF COMPUTER AND INFORMATION SCIENCE, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, DECEMBER 2013 4

The most common methods and applications found by the litterature review.
Environment Prediction goal
| Freeway Urban Bus |  Travel time prediction Traffic variable prediction
2008 Zou [2],
2011 Simroth [3],
2008 Zou [2], 2012 Liu [5], 2012 Guo [4],
kNN 2011 Simroth [3] 2012 Guo [4] 2012 Baptista [6] 2012 Liu [5],
2012 Baptista [6]
2004 Jeong [13],
2008 Zhipeng [8], 2008 Zhipeng [8],
i 2004 Vanajakshi [7
2004 Vanajakshi [7], 2009 Li [9], 2008 Zou (2], 004 Vanajakshi [7],
ANN 2008 Zou [2] 2009 Liu [10], 2004 Jeong [13] 2009 Liu [10], 2010 Zhengxiang [14],
2010 Su [11], 2009 Li [9], 2011 Zheng [15]
2011 Hinsbergen [12] 2010 Su [11],
2011 Hinsbergen [12]
2003 Wu [16],
SVM 2003 Wu [16], 2009 Wang [17], 2004 Vanajakshi [7],
2004 Vanajakshi [7] 2009 Peng [18] 2009 Wang [17],
2009 Peng [18]
2005 Yang [20],
2005 Yang [20], 2006 Liu [21],
Kalman 2008 Jula [19] 2006 Liu [21], 2010 Padmanaban [23] 2008 Jula [19],
2009 Zhu [22] 2009 Zhu [22],
2010 Padmanaban [23]
2004 Sun [26], 2002 Li [24],
2002 Li [24], 2010 Lin [27], 2011 Zha 25] 2011 Zhu [25], 2004 Sun [26],
Statistics 2011 Simroth [3], 2012 Lan 28], 2013 Gon 1) 2012 Hadachi [30], 2010 Lin [27],
2011 Zhu [25] 2012 Hofleitner [29], ong 2012 Hofleitner [29], 2012 Lan [28]
2012 Hadachi [30], 2013 Gong [31]
2013 Gong [31]

3.2 k-Nearest Neighbor

k-Nearest Neighbor (kNN) is an instance based
learning algorithm. In contrast to learning
methods that construct a general, explicit de-
scription of the target function when training
examples are provided, instance based learning
methods simply store the training examples
and use them directly to classify later examples
[33].

The training step of the kNN algorithm is
therefore just saving the training examples to a
database. It is assumed that all training exam-
ples correspond to points in an n-dimensional
space, and that the position of the examples
in the space is based on the values of their
features.

The classification is done by looking up the
k nearest neighbors and using their feature
values to classify the current example. How
to find the nearest neighbors and how to use
their values to decide the current classification
are two separate problems. A typical similarity
function used to select the k nearest neigh-
bors, is to use the Euclidian distance. A typical

classification function is to average the chosen
neighbors’ classifications. [33]

One of the reasons kNN performs so well
compared to its simplicity is because it does
not require any analysis of the data. A major
drawback is that it will underperform when
used with noisy data. An approach used to
tackle this is to include a preprocessing stage.

For noisy data, Singular Spectrum Analysis
(SSA) can be a solution. SSA is a technique
that can extract a noise series from a plot, and
leave a smoothed trend curve that is a better
input for kNN. The noise part of the data is
analyzed to give an estimated noise, and is
then combined with the estimation from kNN
to give a final prediction.

For missing data points, for example a se-
quential GPS series with some missing loca-
tions, interpolation can help reconstruct the
route [5]. In addition to noise and flaws, GPS
data are not equally spaced neither in time
nor in space, which can make comparisons
difficult. Interpolation has been used to be able
to compare travel time on every point of the
route [6].
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Ref. [6] proposes the following improve-
ments to the generic kNN algorithm:

« An exponential sliding window for giving

more weight to the most recent values.

« A correction factor to adjust historical data
to increase similarity or reduce distance to
current time series.

« Weigh the nearest neighbors more than the
distant ones.

o Error correction between the observed
ground truth and the prediction value.

The sliding window was shown to not of-
fer any significant improvements on the pre-
diction, and was removed from future tests.
The other three suggestions, however, gave a
consistently better prediction in all cases (error
decreased by up to 30%), independent of the
chosen value of k.

The accuracy of a kNN implementation is
dependent on a well-chosen value of k. The
most common value of £ in the traffic domain
seems to be around 10 [5] [6], but ref. [4]
chooses a value of 30.

Another important factor when utilizing a
kNN method is the distance measurement. It is
very common to utilize the Euclidian distance
between the examples [4] [6], although some
choose to use variants with clustering [5] or
upper and lower feature bounds [2].

Finally, the method for extracting a good pre-
diction from the chosen neighbors must be con-
sidered. Most current studies use a weighted
average of the neighbors classification [4] [5]
[6].

Ref. [5] compared their kNN implementa-
tion to a baseline artificial neural network,
and the results indicated an improvement over
the neural network in prediction accuracy. The
topology of the implemented neural network
conflicts with general guidelines, as the size of
the hidden layer is more than twice of the input
layer [34]. Consequently, the neural network
may easily overfit the data, leading to lower
prediction accuracy. Hence, the results may
not hold in general. It was also shown that
the kNN’s accuracy improved as the historical
data accumulated, since this made it easier to
find a matching cluster for the input examples.
This had the added benefit that it reduced
redundancy and improved prediction speed

[5]. Ref. [4] further improved kNN with the
SSA preprocessing step, which made it perform
better than support vector regression under
both normal and incident conditions.

3.3 Artificial Neural Networks

Artificial neural networks (ANNs) are simple ab-
stractions of the neural networks of a human
brain, and consist of interconnected neurons,
or nodes. The network is adapted for compu-
tation by using input nodes that are fed with
parameters for the specific task to be solved,
and output nodes that provide a solution. In
between the input and output nodes there are
one or more layers of inner nodes. An acti-
vation function converts input signals to an
output signal for every node in the network. It
is worth mentioning that the input nodes serve
the inputs for the environment, normally with-
out alternation. Hence, the identity function is
employed in the input layer.

In feed-forward neural networks, the signals
propagate in one direction only — from input
to output. However, in recurrent networks the
connections can be directed backwards to pre-
vious layers or to nodes in the same layer.
Feed-forward networks are most commonly
used, as they are simpler to implement and
analyze than recurrent networks. Some of the
connections are more important (i.e., stronger
weighted) than others for producing the correct
output. The optimal weights on the connections
are often learned in a supervised fashion by
training on samples that we know the solution
to. To minimize the error (amount of incorrect
classifications) during training, the backpropa-
gation algorithm presented by ref. [35] is the
most commonly used.

ANNSs are popular due to their ability in
finding nonlinear patterns in complex prob-
lems, purely based on the data. However,
the process of training is typically very time-
consuming compared to other methods. In ad-
dition, the network topology (the amount of
nodes and their connections), the learning rule
of adjusting the weights, and the activation
functions are interdependent; they need to fit
together. As an example, backpropagation re-
quires the activation function to be differen-
tiable. This interdependency means that there
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are many variations of ANNSs suited for differ-
ent problems.

Although the nodes have very limited com-
puting capabilities, they can perform compli-
cated tasks when connected together. The col-
lective emergent behavior is difficult to inter-
pret, as the knowledge during training is stored
in an implicit manner. The behavior of ANNs
are therefore often referred to as a “black box”
[7]. Since there are no general rule on how
to structure the ANN for specific problems,
the optimal structure (the number of input
notes, layers and hidden neurons) is typically
found empirically, rather than analytically [7]
[13] [15].

ANNs have proven to be competitive to
other methods for the prediction of traffic pa-
rameters. The optimal structure of an ANN
is highly dependent on the specific problem,
which has led to many specialized variations
of the general feed-forward ANN described
here. However, the general multi-layered feed-
forward ANN is still much applied and com-
pared to other methods for traffic prediction [7]
[10] [13] [15].

Ref. [13] applies ANN for bus arrival time
prediction by incorporating dwell time, sched-
ule adherence and arrival time for each stop
as input variables. The number of hidden neu-
rons, in addition to the training and learning
functions, are chosen through empirical anal-
ysis. The ANN clearly outperforms the imple-
mented models based on linear regression and
historical averaging. However, the inclusion
of real time schedule adherence data did not
improve the ANN-predictor noteworthy. They
hypothesized that this outcome was caused by
the nonlinear relationship between arrival time
and schedule adherence, despite the capabili-
ties of ANNs to solve nonlinear problems in
general. In ref. [7] and ref. [13], the networks
output predictions of the same variable type
that is used for input, namely traffic speed and
arrival time. However, ref. [10] argues that the
dynamic change of such a variable is due to
external factors, and that it has no causal rela-
tionship to itself. In response, they propose an
indirect approach, using other traffic quantities
than the variable to be predicted as input.

Combining prediction models by taking a

weighted average of their predictions is a well
-established approach. It has been shown that
such an ensemble or committee approach can-
not lead to increased prediction error; com-
mittees of neural networks in special, have
shown accurate predictions [12]. In this study;,
230 ANNs with different structures are com-
bined in a committee and applied to travel
time prediction in urban road segments. A
Bayesian framework is used to train and rank
the networks for selection and combination.
Despite the stochastic nature of urban travel
times, the committee proved to be able to
predict the underlying, low-frequency trends
with accuracy very similar to the prediction of
freeway travel time with the same framework.
In ref. [9], the AdaBoost method is used on
a committee of ANNs with the same purpose
of predicting travel time. They confirm that
the committee of ANNSs outperforms a single
network. Although combining models typically
improves the accuracy, it requires significantly
more computation time, both with respect to
training and classification. Hence, committees
may not be suitable for real-time applications.

Radial Basis Function (RBF) networks is an-
other type of neural networks that has been
applied to traffic prediction [11] [14]. These
networks are trained in two phases; first unsu-
pervised by clustering, then supervised. Since
the supervised training does not require back-
propagation, these networks can be more effi-
cient in terms of speed [11] [32]. However it
is not clear whether or not these networks out-
perform general feed-forward backpropagation
ANNSs in accuracy.

3.4 Support Vector Machines

Support Vector Machines (SVM) can be utilized
when specific domain knowledge cannot be
used, or does not exist. To illustrate how SVMs
work, input data can be visualized as a two-
dimensional graph, where the goal is to draw a
single line to separate the data into two groups.
The assumption is that if this linear separation
is good, a future data point will be placed in
the correct half of the space. [32]

Since few actual data sets can be separated
in the two-dimensional space, SVMs use kernel



DEPT. OF COMPUTER AND INFORMATION SCIENCE, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, DECEMBER 2013 7

functions to map the data to a higher dimen-
sion, where it will be linearly separable. In
general, a data set with n data points will be
linearly separable in a space with n—1 or more
dimensions. This means that even though the
data set looks garbled in the original space,
an SVM can draw a hyperplane in a higher
dimension, and then transform this line back
to the original space to produce a non-linear
separator that can be used to classify future ex-
amples. A penalty parameter on misclassified
examples is used to choose between high and
low complexity functions. [32]

As they can work in higher dimensions,
SVMs have the ability to represent complex
functions. Since they use a maximum margin
separator to classify the input data, they also
generalize very well. The result of this is that
only some of the data points (the support vec-
tors) are essential to create the separator, and
the SVMs are thus resistant to overfitting. [32]

Support Vector Regression (SVR) is a version
of the SVM which, as the name suggests, is
adapted to performing regression. This is par-
ticularly useful in traffic scenarios, since a lot
of the data can be represented as time series
that can be expanded by regression.

When using SVM predictors, there are two
important decisions that are discussed. Firstly,
one has to choose a kernel function, and sec-
ondly, one has to find the right parameters for
the chosen kernel.

The four most popular kernels in the traffic
literature are the linear kernel, the polynomial
kernel, the RBF kernel, and the sigmoid ker-
nel. Some studies have compared the different
kernels, and have found that the Linear and
RBF kernels are the best for traffic prediction
[16] [17]. The latter reference proposed that
RBF is the best of these, since it is the only
kernel which performance does not degrade
when sample size decreases. When the kernel
function has been determined, its parameters
have to be selected, usually by trial and error.

SVMs have been compared to some simple
historical statistical predictors and to an ANN.
It consistently outperformed the statistical pre-
dictors [16], and was shown to give better pre-
dictions than the ANN when they were given
just a few days of training data [7]. The ANN

did, however, outperform the SVM when given
more data.

A proposed improvement for the SVMs used
in traffic prediction is to exchange the normal
penalty factor ¢ with the parameter v. The ¢
parameter is usually used to apply a penalty
to examples that are on the wrong side of the
hyperplane, while the supposedly improved
v parameter sets a limit on both the number
of examples that are support vectors, and the
number of examples that are on the wrong side
[36]. The v-SVM has been tested and proven
to be reliable, but it was not compared to a
standard ¢-SVM, which makes it difficult to
assess the improvement [17].

Another suggestion is to use a relevance
vector machine (RVM) instead of an SVM. The
RVM is a probabilistic model that is very sim-
ilar to the SVM, but it is trained under the
Bayesian framework, and has a few advantages
compared to the SVM; it has fewer parameters
to estimate, its kernel function can be more
relaxed, and the computational complexity is
lower. In addition, the RVM has the advantage
that it can return the uncertainty of the pre-
diction, which could be useful in assessing the
predictions. [18]

3.5 Kalman Filter

Kalman filtering is a method that can be used
to predict future states when working with
observations presumed to be noisy. In traffic
prediction, the observations are often GPS mea-
surements, which are known to be imprecise.
They are also seldom real-time, but rather sent
periodically, for example once every few min-
utes. The Kalman filter then calculate future
state vectors, which can be used to estimate
travel time or traffic volume.

A Kalman filter will use previous observa-
tions and estimations to calculate the future
estimations. When a new observation arrives,
weighted averages will be used to update the
estimation to improve the precision of follow-
ing estimations. Since the estimated state is cu-
mulative, the filter will only need the previous
estimate and the latest observation to make
another estimate, which makes it very suitable
for online applications.
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When using the Kalman filtering technique,
the most prevalent data collection method is to
use passive test vehicles (e.g., coils or roadside
detectors) [2] [19] [21] [22] . HowevVer, research
has been done with active test vehicles too —
ref. [23] uses a technique based on Kalman
filtering on consecutive buses. Another small
scale study was done using cars rigged with
GPS equipment that drove through congested
arteries with five minute intervals to probe the
traffic status. [20].

How often to collect data is a difficult prob-
lem that requires careful assessment. A high
frequency of data collection will give higher
prediction accuracy up to a certain point, but
more data has to be stored and more processing
power will be needed to analyze it. Having the
logging frequency too low can result in losing
important traffic trends, and having it to high
can make the method run too slow for real-
time usage. Multiple studies have found that a
frequency in the range of 2-5 minutes is a good
compromise [19] [20] [21] [22].

When considering urban traffic, a challenge
is how to do calculations when roads influence
each other at intersections. One article added
link relations to the Kalman filter to handle
this, and got a very effective predictor that
got half the MAPE of a simple time series
prediction method, but was unfortunately not
compared to other Kalman models [22]. An-
other study on Kalman filtering halved their
MARE by adding slope adjustment and two-
point data interpolation [20]. Ref. [21] tried
to train an ANN with a Kalman filter, and
found that this combination performed better
when given noisy data than a state space model
solved by a Kalman filter.

3.6 Statistical Methods

Several of the reviewed articles employ simple
statistical methods in order to have a base-
line method to compare with their supposedly
improved methods. A few articles, however,
have created stand-alone statistical methods in
attempts to improve the predictions, and these
will be discussed briefly in this section.

A very simple statistical approach that has
been used in practice, is to calculate the average

speed for travel segments based on the GPS
positions of buses, and on historical data if
the real-time data is faulty or missing [37]. A
slightly more complex method is a Markov
Chain with a Gaussian Mixture model and
Monte Carlo integration that is used to do bet-
ter predictions in situations with missing data.
This method was shown to outperform simple
statistical methods, such as historical average,
regular Markov chains, and combinations of
these [26].

Another example is a small scale study
where GPS data from three sequential buses
were used to predict the travel time of the
last of the three [38]. This approach was later
improved so that it did not need data from
all three vehicles, and made more suitable for
real-time applications [23]. This method works
by analyzing the GPS data, and tries to pre-
dict running time (the time actually spent in
movement) and delay time (delay as a result
of traffic conditions) in order to get an overall
prediction. A similar technique was utilized in
another study, where moving average was used
to predict running time and dwell time (the
time standing still at bus stops).

A slightly newer study calculates bus travel
time by simply using average speed from the
GPS if the destination is one stop ahead, since
the chances of traffic condition changes are
small on such short distances. When the bus
is more than two stops ahead, the prediction
is divided into running time, dwell time and
delay time — a small addition to the previously
mentioned studies, which did not consider all
of these separately. These three predictions are
combined to give a final prediction on a per
link basis and then summed up across the
entire distance. This method gave promising
results, and it is interesting to note that the
dwell time seems to be easiest to predict, with
the two other having nearly twice as high
MAPE. [25]

3.7 Areas of application

As table 1 shows, the papers are partitioned
into three different environments, and two dif-
ferent prediction goals. A paper normally ap-
pears once in one of the three first columns,
and once in the two last.
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The papers about highway prediction typi-
cally report good results with simple methods,
while the methods will need higher complex-
ity in urban environments. This is because of
the added complexity given by typical urban
obstacles such as road segments meeting in
intersections, stop lights, and the queues these
result in. The bus predictions are further com-
plicated by the time the bus has to spend at
bus stops, loading and unloading passengers.

The methods mentioned in section 3 are
the most common returned by the literature
review. These were mostly used for travel time
predictions, but there were some papers about
general traffic status prediction, and a few pa-
pers covering other areas, such as passenger
flow or supply capacity. The articles covering
other areas than travel time predictions are
grouped together in the rightmost column.

When dealing with bus travel times, a good
approach seems to be to partition the overall
prediction into multiple parts, considering the
different movement patterns of a bus. Several
articles separate the travel times into running
time and non-running time [31] [38], while
other partition it further by splitting the non-
running time into time spent on bus stops, and
time spent waiting in traffic [6] [25]. As the
bus stops frequently, and spends a significant
part of the overall travel time at bus stops,
partitioning the prediction time is reasonable,
and gives better overall results.

The other areas of application are usually
attempts to estimate the traffic flow on road
segments. The most common is to estimate the
traffic speed [7] [27] [28], while the last few
papers attempt to estimate other features that
can tell us something about the traffic flow,
which includes transport volume [14], vehicles
per hour [26] and passenger count on a railway
[15].

4 CONCLUSION AND SUGGESTIONS
FOR FUTURE WORK

There are four commonly used methods in the
current traffic literature: kNN, ANN, SVM and
Kalman filters. All of these methods are ca-
pable of making travel time predictions better
than baseline models, either on their own or

combined. Since most articles apply methods
to different data sets, it is difficult to compare
them on a fair basis. Hence, comparisons are
only summarized from articles that explicitly
focus on this. More importantly is the analysis
of each of the applied methods.

Despite the simplicity of kNNs in general,
improvements have been proposed. Firstly,
kNN achieved higher accuracy by utilizing
preprocessing steps like SSA, in addition to
the extension of a correction factor on chosen
neighbors and error correction on predicted
values. Secondly, ref. [2] demonstrated good
results with a combination of kNN and ANN.

When improved with SSA, the kNN method
implemented by ref. [4] outperformed an SVR
implementation, almost halving its error. This
is a promising result for the kNN method,
but in lack of comparisons against the cutting-
edge implementations of ANN and SVR mod-
els found in the current literature, it is difficult
to draw any conclusions.

ANNSs are still much applied without sub-
stantial specialization. Although committees of
ANNSs have shown promising results, they may
not be suitable for real-time applications, due
to the extensive computation time and resource
requirements. RBF networks are faster learners
and may be better suited for such applications.
However, more research on the prediction ac-
curacy of RBF networks in comparison to feed-
forward backpropagation networks is needed
in order to evaluate its payoffs.

The SVM implementations in the current
literature are also very similar, with only a
tew articles selecting other kernel functions
than the usual RBF kernel. Two promising
implementation variations, v-SVM and RVM,
have been proposed and shown to be reliable,
but neither of them has been compared to the
original SVM to show an actual improvement.

The predictions of Kalman filters have been
improved with slope adjustments and inter-
polations. Although unscented Kalman filters
have been proven to consistently outperform
extended Kalman filters [39], no implementa-
tions are found in the literature. Hence, future
research should evaluate the potential of the
unscented variant in the ITS domain.

A more thorough comparison between
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ANNs and SVMs was performed by ref. [7].
Their results indicated that with less training,
the implemented SVM would outperform the
ANN, while the ANN would outperform the
SVM with more training. They argued that
since the SVM is independent of the train-
ing data once the support vectors are chosen,
more training data will not necessarily induce
a lower error.

The optimal structure and choice of parame-
ters are highly dependent on the specific prob-
lem for all applied methods. This leads to a
lot of trial and error approaches to decide im-
portant parameters, such as the value of k for
kNN, the network topology for ANNSs, and the
kernel function with its parameters for SVMs.
This way of determining optimal values is time
consuming, and future work should focus on
finding alternative ways where possible.

kNN methods, Kalman filters and SVMs are
possibly better suited for doing real-time traffic
predictions than ANNSs, since the nature of the
latter makes it necessary to train it all over
again to add any recent observations from the
traffic. Nevertheless, the ANNs have shown
potential, and may be trained less frequently
while still being applicable for real-time pre-
dictions.

The research on travel time prediction in
urban environments, which has been on the
rise the recent years, is heavily influenced by
knowledge from previous research on travel
time prediction in single links, such as freeway
sections. However, due to the stochastic nature
of urban environments, predicting travel time
accurately has been proven hard. This difficulty
is typically reinforced by the limited amount of
different data sources applied; the prediction
models are sometimes based solely on histori-
cal travel times.

Specifically for bus travel time prediction
in urban environments, partitioning the travel
time into running time, dwell time and delay
time has given good results. This makes intu-
itive sense, as the three parts are not neces-
sarily interdependent. In addition, experiments
considering relations between connected road
segments have been performed with promising
results. The segment relations may be vital for
further research.

Although travel time distributions show pe-
riodic trends on a daily basis, travel time
has no causal relationship to itself; subsequent
travel times are not dependent on each other,
but rather on external factors. Therefore, one
should include other data sources that are hy-
pothesized to influence the travel time, such as
weather data or information about large events.
In general, travel time prediction should start
moving towards the science of big data in order
to handle the increasing amount of available
and potentially relevant input data.

APPENDIX
THE FINAL SET OF ARTICLES WITH
SCORES

Table A1 lists the final set of articles and their
score.
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