
Self-Assembling to Improve Performance
in Swarm Robotics

Joachim Halvorsen
Hege Beate Seilen

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

i

Problem Description

This master thesis aims to show how a swarm of robots can cooperate, to improve their
mobility in difficult environments. Self-assembling should increase their capability of
handling environmental challenges, such as ice and strong wind. Through local interac-
tions, the robots will decide autonomously if self-assembling is necessary, without human
intervention or global control. Both the training and the performance evaluation of the
robot controllers will be conducted in simulation.

• Assignment given: 15 January 2014

• Supervisor: Professor Keith Downing

ii

Abstract

This thesis gives a brief introduction to the field of swarm robotics, and investigates
the advantages of using self-assembling for swarm robots in difficult environments. The
current research in swarm robotics has already demonstrated advantages of using self-
assembling, including the ability of the swarm to drive up steep slopes and the ability to
pull objects that are larger than the robots themselves. Robots can have multiple advan-
tages by being small. With the ability to self-assemble the robot swarm can physically
connect to become a larger entity, when this is advantageous. This project continues
the research in swarm robotics, by investigating self-assembling in environments with
complicating factors, such as ice, strong wind and obstacles.

We made a robot simulator to be able to perform experiments, and designed several
scenarios with difficult environments. By using mechanisms inspired by social insects,
the robots were able to perform complex tasks when working together as a swarm.
Each robot was controlled by an arbitration architecture, where behavior modules vote
for actions. The votes are weighted based on the general and specific importance of the
behavior module, which is found by an evolutionary algorithm and an objective situation
manager respectively.

The results from this thesis demonstrate that self-assembling can improve the mobility
of a swarm of robots, in environments with complicating factors, such as ice, strong wind
and obstacles. When gradually increasing the wind velocity in sequential experiments,
we found that the use of self-assembling went from being unnecessary, to become a faster
method to traverse the environment, and to finally become necessary in order to traverse
the whole environment. The robots adapted to the different experiments by increasing
the use of self-assembly as the wind velocity was increased. This thesis contributes to
the field of swarm robotics, by demonstrating and analyzing the mobility advantage of
the swarm robots by using self-assembling in these difficult environments.

iii

Sammendrag

(This is a Norwegian translation of the abstract)

Denne avhandlingen gir en kort introduksjon til forskningsfeltet svermrobotikk, og un-
dersøker fordelene med å bruke selvstendig sammenkobling for svermroboter i vanskelige
miljøer. Forskning innen svermrobotikk har allerede demonstrert fordeler ved å bruke
selvstendig sammenkobling, som muligheten for svermen til å kjøre opp bratte bakker
og mulighetene til å trekke objekter som er større enn robotene. Roboter kan ha flere
fordeler ved å være sm̊a. Med muligheten til selvstendig sammenkobling kan robotsver-
men koble seg sammen og bli en større enhet, n̊ar dette er fordelaktig. Dette prosjektet
fortsetter forskningen innen svermrobotikk, ved å undersøke selvstendig sammenkobling
i miljøer med kompliserende faktorer, som omr̊ader med is, sterk vind og andre hin-
dringer.

Vi har laget en robotsimulator for å kunne utføre eksperimenter, og har designet flere
scenarier med vanskelige miljøer. Ved å bruke mekanismer som er inspirert av sosiale
insekter, kan robotene utføre komplekse oppgaver ved å jobbe sammen som en sverm.
Hver robot blir kontrollert av en meklingsarkitektur, hvor moduler for oppførsel stemmer
p̊a mulige handlinger som roboten kan utføre. Stemmene vektes basert p̊a den generelle
og den spesifikke innflytelsen til modulene, som er henholdsvis bestemt av en evolusjonær
algoritme og en objektiv situasjonsbehandler.

Resultatene fra denne avhandlingen viser at bruken av selvstendig sammenkobling kan
forbedre mobiliteten til svermroboter i miljøer med kompliserende faktorer, som omr̊ader
med is, sterk vind og andre hindringer. Ved å gradvis øke vindhastigheten i sekven-
sielle eksperimenter, fant vi at bruken av selvstendig sammenkobling gikk fra å være
unødvendig, til å gjøre robotene raskere p̊a oppgaven, og til slutt være nødvendig for
at robotene kunne traversere hele miljøet. Robotene tilpasset seg de forskjellige eksper-
imentene, ved å øke bruken av selvstendig sammenkobling ettersom vindhastigheten
ble økt. Denne avhandlingen bidrar til forskningsfeltet innenfor svermrobotikk, ved å
vise og analysere bevegelsesfordelene til svermrobotene n̊ar de bruker selvstendig sam-
menkobling i disse vanskelige miljøene.

iv

Preface

This project is the authors’ master thesis at the Department of Computer and Informa-
tion Science, Norwegian University of Science and Technology.

We wish to thank our supervisor Professor Keith Downing, at the Department of Com-
puter and Information Science, Norwegian University of Science and Technology, for his
invaluable guidance throughout this project.

We would also like to thank Jean-Marc Montanier, Research Assistant at the Department
of Computer and Information Science, Norwegian University of Science and Technology,
for giving us valuable insight to the field of Swarm Robotics.

Joachim Halvorsen and Hege Beate Seilen

Trondheim, 4 June 2014

v

Contents

List of Figures vii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goal and Research Questions . 2
1.3 Research Method . 3
1.4 Contributions . 4
1.5 Thesis Structure . 4

2 Background 5
2.1 Swarm Intelligence . 5
2.2 Swarm Robotics . 6

2.2.1 Evolutionary Robotics . 7
2.3 Common Solution Techniques . 7

2.3.1 Evolutionary Algorithms . 7
2.3.2 Brooks’ Subsumption Architecture 9
2.3.3 Arbitration via Action Selection 10
2.3.4 Artificial Neural Networks . 11
2.3.5 Simulator . 12

2.4 Structured Literature Review . 13
2.4.1 Identification of research . 13
2.4.2 Screening process . 14

2.5 Related Systems and Projects . 15
2.5.1 Swarm-bots . 15
2.5.2 Swarmanoid . 17
2.5.3 Symbrion . 19
2.5.4 Other systems . 21

2.6 Background Discussion . 23

vi Contents

3 Methodology 25
3.1 System Overview . 25
3.2 The Robot . 26
3.3 The Scenarios . 27
3.4 The Robot Controller . 30

3.4.1 Behavior Coordination and Action Selection 30
3.4.2 Actions . 33
3.4.3 Common Thresholds . 34
3.4.4 Behaviors . 35

3.5 The Choice of Creating a Simulator . 41
3.6 Modeling Physics . 42

3.6.1 Movement from Motors and Wheels 43
3.6.2 Friction . 44
3.6.3 Wind Force . 44
3.6.4 Light . 47

3.7 The Evolutionary Algorithm . 49
3.7.1 Reasons to use Evolutionary Algorithms 49
3.7.2 Genetic Encoding and Translation 49
3.7.3 Fitness . 50
3.7.4 Selection . 53
3.7.5 Reproduction and Elitism . 54

4 Results and Discussion 56
4.1 Results from the Evolutionary Algorithm 56
4.2 Results with Various Wind Velocities . 58
4.3 Resulting Behavior Weights and Thresholds 64
4.4 Discussion . 66

4.4.1 Self-assembling in Low Wind Velocities 66
4.4.2 Self-Assembling in Higher Wind Velocities 69
4.4.3 Analyzing Additional Situations 73

5 Conclusion 81
5.1 Goal Evaluation . 82
5.2 Contributions . 84
5.3 Further Work . 85

A Example of Voting 87

B Resulting Wind Blocking 88

C Additional Fitness Plots 89

D System Instructions 90

Bibliography 91

vii

List of Figures

2.1 Primary generation loop in the evolutionary algorithm 8
2.2 Brooks architecture, levels of control . 9
2.3 The arbitration architecture . 11

3.1 Primary system components and their interactions 25
3.2 Multiple views of the robot, all facing right 26
3.3 Scenarios with opposing wind . 28
3.4 Scenarios with wind from the side . 29
3.5 The action selection network . 31
3.6 The weight update process . 32
3.7 The goal converging behavior . 36
3.8 The self-assemble behavior . 37
3.9 The collision avoidance behavior . 38
3.10 The hole avoidance behavior . 40
3.11 The model for calculating approximate blocking of the wind 46
3.12 Inverse square law illustrated . 47
3.13 The light angle of impact, on the sensor 48
3.14 The genetic encoding in the evolutionary algorithm 50
3.15 Visualizing the fitness function of the evolutionary algorithm 51

4.1 Fitness plots from the evolutionary algorithm 58
4.2 Plots of the best found fitness in different wind velocities 59
4.3 Plots of the average self-assemble behavior weight in different wind velocities 60
4.4 Plots of the connection rate in different wind velocities 61
4.5 Screenshots: connection not used in an experiment without wind 67
4.6 Screenshots: robots using a long time to overcome the wind and ice alone 69
4.7 Screenshots: robots self-assemble to overcoming the wind and ice together 71
4.8 Screenshots: the robots easily overcomes the ice area with 4 m/s wind . . 73
4.9 Screenshots: the robots reach the goal in a chain formation (S2) 74
4.10 Screenshots: the robots reach the goal in a chain formation (S3) 75
4.11 Screenshots: situation where one robot is left behind 76
4.12 Screenshots: situation where triangular formation is used to reach the goal 77
4.13 Screenshots: situation where the robots move along the right hole edge . . 78

viii List of Figures

4.14 Screenshots: situation where the robots move along the edge of the left hole 79

A.1 A running example of weighting, behaviors, voting and actions 87

B.1 Resulting wind blocking in the simulator 88

C.1 Fitness plots for a single evolution . 89

ix

List of Tables

2.1 Search term groups . 14
2.2 Inclusion and quality criteria for the screening process 14

3.1 Overview of the actions . 34
3.2 Distance and light thresholds, used in the controller 35
3.3 Overview of the behaviors . 35
3.4 Friction coefficients . 44

4.1 Parameters for the evolutionary algorithm and the simulator 57
4.2 Evolved controller variables . 65

x

List of Abbreviations

2D 2-Dimensional

3D 3-Dimensional

ANN Artificial Neural Network

CPU Central Processing Unit

DAMN Distributed Architecture for Mobile Navigation

EA Evolutionary Algorithm

EANN Evolutionary Artificial Neural Network

EDSA Enhanced Directional Self-Assembling

GA Genetic Algorithm

GUI Graphical User Interface

S1 Scenario 1

S2 Scenario 2

S3 Scenario 3

S4 Scenario 4

1

Chapter 1

Introduction

In our master thesis, we have researched the state of the art in the field of swarm robotics.
We have studied how a swarm of robots can cooperate, by physically connecting to each
other, to improve their mobility in difficult environments.

This chapter is the introduction to the thesis. Section 1.1 contains the background
and motivation for our master thesis. In Section 1.2 we present the goal and research
questions. Section 1.3 describes the research method we have used. Section 1.4 explains
the contributions we have made to the field of swarm robotics. Section 1.5 gives an
overview of the thesis structure.

1.1 Background and Motivation

Swarm robotics is an emergent field of robotics, which is inspired by nature. The concepts
and approaches in this field comes from studying animal species, which have evolved and
adapted to survive, in the changing environment on earth, for millions of years. The
animal species have developed from simple organisms to complex species. As in Darwin’s
evolutionary theory [Darwin, 1859], natural selection and mutations are concepts used
in swarm robotics to evolve robot controllers. We find these concepts very interesting
and believe it is possible to learn much more from nature.

For swarm robotics, the greatest inspiration from biology is the self-organization in
animals. Animals use self-organization to gain multiple advantages in nature. Their
individual behaviors are often based on simple rules, with only local interactions, and
often no assigned leader. Still their collective behavior can be very complex. Some
examples are, when birds fly in a v-formation to reduce drag and conserve energy, and
when ants distribute their workload to build their nest and search nearby areas for food.
The fire ant species use the approach of self-assembling, which is to form a physically
connected structure, only by using local interactions. The fire ants use self-assembling to

2 Goal and Research Questions

create waterproof rafts of themselves to survive floods, and they exchange positions and
use air bubbles to minimize the drowning of individual ants [Mlot et al., 2011]. Other
biological approaches are also used in swarm robotics. These include nervous system
modeling, which is often used to control robots, and processes inspired by evolution,
which can be used to train these robot controllers.

We believe that robots will become an increasing part of our world in the future. In the
last years, we have already begun to see robots in the everyday life, outside factories
and research labs. This includes automatic lawn mowers, vacuum cleaners, and delivery
robots used in the same rooms and corridors as people, like at St. Olavs Hospital in
Trondheim. Robots can also be used as eyes and tools for humans in areas where humans
cannot go, either because it is too dangerous or because the area is too small. The robots
can be used for exploring the Moon and Mars, and for searching for people in collapsed
or dangerous buildings, damaged by fires, earthquakes or tornadoes.

Traditional robots are already used in these areas, and small swarm robots can possibly
perform similar tasks in the future. Having smaller robots can be advantageous in
multiple situation. They are lighter, meaning they can more easily be carried into the
area where they are needed, for instance by small quad-copters. Small robots can also
get into smaller passages. With an ability to self-assemble, the small swarm robots can
also get the advantages of being a larger entity, including the ability to pull large objects.
Much research have been done in the field of swarm robotics, in the last decade, but
most systems are still in the research lab. Before swarm robotics can move more into
the real world, we believe more research is needed.

We believe that swarm robotics can be useful out in the real world, and want to con-
tribute to the development within the field. During our research process, we found the
projects Swarm-bots [Dorigo et al., 2006], Swarmanoid [Swarmanoid, 2010] and Symbrion
[Symbrion, 2013], which have done experiments with self-assembling in swarm robotics.
These projects show successful self-assembling, with swarms managing to climb slopes,
cross holes and create structures. We found these studies very interesting, but their
self-assembling systems were only explored in a few scenarios. We believe that self-
assembling need to be considered in more environments before it can be used in the
real world. To contribute, by continuing this research, we will explore the advantages of
self-assembling for a swarm of robots in other difficult environments.

1.2 Goal and Research Questions

In this section, the goal and the research questions of this project are presented.

Goal statement:

The goal of the project is to demonstrate advantages of emergent self-
assembling, for a swarm of robots in difficult environments.

Introduction 3

We will investigate the use of self-assembling in difficult environments by considering
the two research questions defined below. We will create a robot simulator and perform
experiments with the simulated robots in multiple scenarios.

Research Question 1:

How can self-assembling improve the mobility of a robot swarm in diffi-
cult environments?

We will specifically look at environments with complicating factors, such as ice and wind.
Self-assembling could possibly be advantageous in these environments, by increasing
the grip on ice and to reduce the effect of a powerful wind. One property of these
environments is that they could easily be altered in a simulator. By simply adjusting
the strength of the wind, the performance and use of self-assembling could be very
different in the same environment, which could be interesting to analyze.

Research Question 2:

How can the robots decide when to self-assemble through local interac-
tions and sensing the environment?

We will investigate how the robots are able to form a more global structure from local
interactions. The robots are only able to sense the environment from their set of sen-
sors, including light and distance sensors, meaning their view of the environment is very
limited. Their communication methods are also very limited, having no digital commu-
nication, no global control and no explicit negotiation methods. It will be interesting
to investigate if these simple robots are able to find reasons to self-assemble and then
manage to complete the self-assembling process.

1.3 Research Method

To be able to address the research questions, we designed a robot simulator, where
we could perform experiments with a swarm of robots, which are able to self-assemble
into larger groups. By creating a robot simulator, we were able to do experiments on
multiple environments, with multiple parameters and multiple robots, and still keep
the experiments both fast and cheap. We made a virtual robot that was inspired by
robots used within the field of swarm robotics. The robot has different sensors, wheels,
and a gripper, to be able to sense the environment and act in response to it and other
robots.

To evaluate the mobility of the swarm in difficult environments, we designed four different
scenarios in our simulator, with challenging features including ice, strong wind and
obstacles. We used artificial evolution to train the robot controller, which is based

4 Contributions

on a known robot controller architecture. With the training, the robot could become
better at navigating towards the goal and overcome these environmental challenges. The
simulator was then used to evaluate the performance of different robot controllers, found
during the artificial evolution.

Finally, we analyzed the resulting performance, features and situations we found using
the best robot controllers, to be able to decide if the use of self-assembling actually
improved the mobility of the swarm, in the different experiments.

1.4 Contributions

Our contribution to the field of swarm robotics is to continue to experiment with self-
assembling in a swarm of robots, in other challenging environments. Our experiments
demonstrate that self-assembling can improve mobility in environments with ice and
strong wind. Depending on the strength of the wind in our experiments, the use of
self-assembling goes from being unnecessary, to becoming a faster method, and finally
to become a necessary method for the robots to traverse the difficult environment.

1.5 Thesis Structure

The thesis is divided into five chapters. Chapter 2 contains research from the field of
swarm intelligence and swarm robotics, common solution techniques, a literature review
covering related projects, and background discussion. Chapter 3 contains the method-
ologies that we have used and describes the robot, the scenarios, the robot controller,
the choice of creating a simulator, how we modeled the physics in our simulator, and the
evolutionary algorithm. Chapter 4 contains the results and analysis of the experiments
we performed, and a discussion about them. Finally, Chapter 5 contains the conclusions
of our project.

5

Chapter 2

Background

This chapter contains the background research for our thesis. Section 2.1 introduces
concepts within swarm intelligence. Section 2.2 gives an overview of the field of swarm
robotics and explains what evolutionary robotics can be used for. Section 2.3 covers
the common solution techniques used in this field. Section 2.4 contains a structured
literature review. Section 2.5 describes systems and projects that are related to our
thesis. In Section 2.6 we discuss how the fields and projects from this chapter have
influenced our own project.

2.1 Swarm Intelligence

Swarm Intelligence: From Natural to Artificial Systems [Bonabeau et al., 1999], is a
book that contains an overview of the field of swarm intelligence, from the bio-inspired
perspective to the first swarm robotics. This section will cover the most relevant concepts
from this book.

The inspiration for swarm intelligence comes from social insects. Insects, such as ants,
bees, wasps and termites can perform tasks that seem to have a complex, centralized
control, like building large nests and find optimal paths for finding food. However, these
tasks are the result of decentralized, distributed tasks, among insects with different
responsibilities. In an ant colony for example, there are different kinds of workers. Some
have the responsibility of building and expanding the nest, cleaning the nest, and feeding
the brood, while others find food and defend the nest. The ants also adapt to changing
environments and situations. If a group of workers is underrepresented or removed,
others can change their tasks to compensate for the loss of workers. There is a high
degree of plasticity in the division of tasks.

To obtain a decentralized control, and thereby self-organization, of a colony of social
insects, interactions among the insects are essential. Interactions can be either direct or

6 Swarm Robotics

indirect. Direct interactions can be physical contact, visual contact or chemical contact.
Indirect interactions can be stigmergy, a concept where an insect modifies the environ-
ment and others are indirectly affected because they change their behavior based on the
environment.

In the end of the book, the authors describe issues with applying swarm intelligence to
solve problems. First, it is difficult to program the individual robots to make the swarm
perform the desired task. Second, it is difficult to determine how complex each robot
should be, in terms of communication, sensors, ability to learn, and knowledge of the
environment. Last, there are two major problems for adaptive problem-solving systems:
the lack of absolute reliability when unexpected events occur, and the lack of standard
benchmarks to evaluate the performance. The authors also present solutions for these
issues. For the first issue, evolution can be used to efficiently try out different solutions
and come up with a good one. For the second issue, a solution is to start simple and
extend the functionalities gradually. The lack of absolute reliability can be solved by
thoroughly exploring the adaptive system’s behavior. There is no simple solution to
the lack of standard benchmarks. It requires a set of problems suited for evaluation of
adaptive and swarm-intelligent systems.

2.2 Swarm Robotics

The book Bio-Inspired Artificial Intelligence [Floreano and Mattiussi, 2008] gives an
overview of the field of Swarm robotics. Swarm robotics is self-organization of a swarm
of autonomous robots. The robots are simple, which means that they follow simple
rules, have simple sensors, mechanisms and electronics, and have decentralized control.
The idea behind swarm robotics is to have simple robots working together to solve
complex problems. This can be done by using emergent behaviors, similar to social
insects, as described in Section 2.1. Usually a swarm of robots consists of three to a
hundred robots, where the swarm can achieve more than the sum of the achievements of
each robot. Different types of robots can work together in a swarm, for example flying
robots, walking robots or robots with wheels, but we will focus on robots with wheels.
In this section we will explain the phenomena self-assembling and self-aggregation, and
in Section 2.2.1 we will describe what evolutionary robotics can be used for.

Self-assembling is a phenomenon where a swarm of robots gathers and connect to each
other. Direct or indirect communication is often used within the swarm to know how and
where to self-assemble. The robots can form a chain or different shapes when connecting
to each other. Their gripper can connect to a connection ring or a specific connection
area on another robot. The concept of self-assembling robots was introduced by Fukuda
et al. [Fukuda et al., 1989] (as cited in [Bonabeau et al., 1999]). They developed a self-
assembling cell structured robot, CEBOT, where each cell could connect, disconnect and
communicate with each other. This was the beginning of trying to design self-assembling
robotic systems.

Background 7

Aggregation is another phenomenon, where a swarm gathers, but does not connect to
each other. This can for example be used in a box pushing problem, where the swarm
gathers around the box to push it collectively.

2.2.1 Evolutionary Robotics

Using artificial evolution to evolve software or hardware components for robots is called
evolutionary robotics [Cliff et al., 1993]. In this section, we will focus on evolution of
robotic software, and what it can be used for.

Evolutionary robotics can be used for exploring design spaces or scientific hypothesis,
and for autonomous robots to develop their own controllers and body configurations
[Floreano et al., 2007]. Evolutionary robotics can generate artificial brains and mor-
phologies for robots. Autonomous robots can learn how to adapt to the environment
by using evolved controllers. The robots can also learn to cooperate with each other
to solve a task together. For self-assembling and morphologies, the use of evolutionary
robotics is the most common approach. When using artificial evolution, it is sometimes
possible to find solutions humans have not thought of. It is also possible to make task
specific behaviors that can adapt to the environment. Floreano et al. [Floreano et al.,
2007] believe that growing and further progression of evolutionary robotics eventually
can lead to developing of new species of machines, capable of self-evolution.

Simulation is often used when evolving controllers, since it is very time expensive to
transfer genotypes to physical robots for each generation. We will describe the advan-
tages and drawbacks of using simulations in Section 2.3.5.

2.3 Common Solution Techniques

This section describes relevant common solution techniques within the field of Swarm
robotics. These are: evolutionary algorithms, Brooks’ subsumption architecture, an
action selection architecture, artificial neural networks, and simulators.

2.3.1 Evolutionary Algorithms

Evolutionary algorithms (EA) are used to find good candidate solutions to optimization
and search problems, including optimization of robot controllers. They are inspired by
biological evolution, where a population of individuals is evolved through generations.
The traits of each individual can be different, leading to a diverse population. Each
individual can be selected to produce an offspring, and the offspring can then inherit
traits from their parents, through recombination and mutation. Not every individual
is selected for reproduction, but the selection is not completely random. The selection
is inspired by Darwin’s theories about natural selection [Darwin, 1859]. Individuals in

8 Common Solution Techniques

Figure 2.1: Primary generation loop in the evolutionary algorithm
Based on text in [Floreano and Mattiussi, 2008]

nature that have good traits, have a higher chance of finding food, avoiding predators
and finding a partner. This makes it more probable that an individual with good traits
is able to reproduce, compared to individuals without good traits. Individuals with
higher fitness values in the artificial evolution are more likely to be selected to survive
to adulthood and be selected to be a parent.

The process of the artificial evolution is described in Bio-Inspired Artificial Intelligence
[Floreano and Mattiussi, 2008] and illustrated in Figure 2.1. First, the genotypes, rep-
resenting the individuals’ genomes, are initialized. Second, a developmental process is
used to translate the genotypes into phenotypes. The phenotype represents the traits
of the individual in the environment. Third, the fitness of each individual is evaluated
in a fitness test, which tests the ability of the phenotype to handle a given problem. A
numeric score, called the fitness value, is given to be able to compare different results.
Fourth, different selection mechanisms decide which of the individuals that can become
adults and then which of them are able to become parents. These methods combine ex-
ploitation and exploration. The fifth step is the reproduction process, where the genetic
operator crossover is used to combine two parents to produce new individuals. Mutation
can be used to make small random changes to the genotypes. One parent alone can also
produce a new individual, by copying itself. When the best individuals are chosen for
this, it is called elitism. Finally, the whole process starts from the second step again,
and continues until it has iterated the given number of generations, or a good enough
solution is found.

Most of the EAs used in the projects described later in this chapter, use a type of EA
called genetic algorithm. In these algorithms the individuals operate on a binary rep-

Background 9

Figure 2.2: Brooks architecture, levels of control
The figure is based on text and figures by Brooks [Brooks, 1985].

resentation [Holland, 1992] (as cited in [Floreano and Mattiussi, 2008]). The binary
encoding is often represented by a string or array of bits. Crossover and mutation can
then be done by respectively combining two arrays, by taking a set of bits from each,
and randomly flipping bits in the array. Other types of EAs include evolutionary pro-
gramming, evolutionary strategies, multiobjective evolutionary algorithms and genetic
programming. In genetic programming, for example, the genes can represent tree-based
programs and circuits [Floreano and Mattiussi, 2008].

2.3.2 Brooks’ Subsumption Architecture

Brooks’ subsumption architecture [Brooks, 1985] is a reactive architecture for handling
behaviors in a robot controller. A behavior can be anything the robot is designed to
accomplish, including avoiding objects and constructing maps. The architecture has no
centralized control mechanism or global memory, and the intelligence will arise from the
robot’s interaction with the environment.

Brooks describes the traditional decomposition of the robot controller as a horizontal
sequence of modules, where the output from one module becomes the input for the
next. Only the first module reads the sensor data, and only the last module controls the
actuators. Brooks subsumption architecture has a vertical decomposition, where each
behavior can both read from the sensor and send signals to the actuators, as illustrated
in Figure 2.2. The different behaviors are represented by layers, which are ordered by
their level of competence. Higher level layers have priority and subsume the roles of
lower level layers. The coordination between the behaviors is done through inhibition
and suppression. Inhibition happens when one layer prevents the output from another
layer from reaching the actuators. Suppression happens when a layer overwrites the
signal from a lower layer.

By using this architecture, it is possible to construct a controller layer by layer, without
having to change the underlying layers. Each layer can have different goals, which means

10 Common Solution Techniques

that the robot can have different goals depending on the situation.

2.3.3 Arbitration via Action Selection

Rosenblatt and Payton proposed an alternative concept to the subsumption architecture
[Rosenblatt and Payton, 1989] in 1989. The goal of the new architecture was to improve
upon limitations they found by working with the subsumption architecture. One of
their improvements was to increase the coordination among the components. In the
subsumption architecture, a conflict among behaviors often result in situations where
one behavior overrides the output from the other. The information from the lower level
behavior is then completely lost. In the new architecture, coordination is achieved by a
democratic voting mechanism. The behaviors cast weighted votes and the action that
receives the most votes is selected.

One example of an action node is illustrated in Figure 2.3(a). Each action node j receives
votes from the behaviors i through its incoming edges. The output vote from a behavior
node to an action node is denoted oij in the figure and can range from -1 to 1. Each
of the edges from a behavior node to an action node can be weighted differently, with
wij . This makes it possible to have behaviors that are more powerful than others. After
all the votes in an action node are counted, it outputs the result oj on the edge going
out of the node. The overall action selection network is illustrated in Figure 2.3(b).
The outputs from the actions all go to the module responsible for selecting the winning
action, which selects the action with the highest output.

Rosenblatt and Payton also found that this architecture improved the modifiability of
the system. New behavior modules could now be easily added without modifying the
existing ones. They had found this aspect harder in the subsumption architecture,
because of the need for a higher level behavior to decide if it should override a signal
from a lower level behavior. Because it considers the output from the lower layers, the
coupling between them is increased. With the increased coupling it becomes harder to
make changes, including adding new behaviors. Another improvement compared to the
subsumption architecture is that the need for the designer to assign priorities is reduced,
by removing the hierarchy and only have weights that should be selected. The weights
are easier to change, and can even be changed by another component in the system. The
prioritized hierarchy is an aspect Pattie Maes has criticized the subsumption architecture
for needing [Maes, 1991].

A module for changing the weights during runtime was proposed by Rosenblatt when
creating DAMN. DAMN is a distributed architecture for mobile navigation [Rosenblatt,
1997], which builds upon the action selection architecture Rosenblatt and Payton pro-
posed in 1989. The architecture is used in an example to control a vehicle with behaviors
for avoiding obstacles, road following, avoid tipping over and more. The module man-
ager, as seen in Figure 2.3(c), is one of the additions to the architecture. It is responsible
for changing the weights on the edges, before the DAMN arbiter chooses an action that

Background 11

(a) Weighted voting on actions.
The figure is based on a figure by
Rosenblatt and Payton [Rosen-
blatt and Payton, 1989].

(b) The action selection net-
work. The figure is based on a
figure by Rosenblatt and Pay-
ton [Rosenblatt, 1997; Rosen-
blatt and Payton, 1989].

(c) DAMN Structure. The figure is based on a fig-
ure by Rosenblatt [Rosenblatt, 1997].

Figure 2.3: The arbitration architecture

gets control over the vehicle controller. The DAMN arbiter is similar to the action selec-
tion network presented in Figure 2.3(b). The module manager did, however, only make
changes to the weights in a predefined schedule in Rosenblatt’s example system, and he
admits there was no learning in their system at the time [Rosenblatt, 1997].

2.3.4 Artificial Neural Networks

Artificial neural networks (ANN) are computational models inspired by biological ner-
vous systems, with good features such as robustness, flexibility and generalization [Flo-
reano and Mattiussi, 2008]. An ANN consists of a network of artificial neurons with
weighted connections. The neurons are divided into different layers: an input layer,
an output layer and possible hidden layers. The input layer receives input from the
environment. When used in a robot controller, it usually receives sensor input, where
each sensor is represented by an input neuron. The output layer gives the result of the
network. In a robot controller, the output neurons can represent actuators like motors
and grippers, where each actuator is represented by a neuron. The hidden layers perform
the calculations between the input layer and the output layer. The connections between
neurons are weighted, which means that each neuron can have different influences on
the other neurons.

Evolutionary artificial neural network (EANN) is an ANN where the weights of the edges
between the neurons, and possibly other variables, are evolved. In evolutionary robotics,

12 Common Solution Techniques

reinforcement learning is often used, where the feedback comes from a simulator. A
genetic algorithm can be used for the evolutionary process, where the weights and values
are represented by the genotype.

It is possible to create very advanced structures in ANNs, with multiple layers and
recurrent connections. However, most of the studies that are discussed later in this
chapter, which use ANNs, use a single layer feedforward neural network in combination
with different robot behaviors. The input neurons, in a single layer feedforward neural
network, are connected directly to the output neurons, without directed cycles in the
network.

2.3.5 Simulator

Using a simulator instead of real robots brings both advantages and drawbacks, which are
discussed in this section. Additionally, two existing robot simulators are presented.

Advantages and drawbacks
Experiments with robot controllers in simulators are less time-consuming than on real
robot hardware. Especially when dealing with learning and evolution, a high number of
lengthy evaluations are required [Floreano and Mattiussi, 2008]. For real robot hardware,
the environment and the initial positions of the robots should be restored, before each
evaluation. This is a very time-consuming and repetitive process, especially for humans.
Even though the process is faster in simulation it can still be very time consuming on a
single PC. Evans et al. solved this by turning off unnecessary features of their simulator
[Evans et al., 2010], like friction in their case, and distributing the evaluations among a
cluster of 50 machines.

By using a simulator, we avoid the disadvantages of working with robot hardware. The
hardware itself can be very expensive, and can easily be damaged during experiments.
This can happen in several ways, including components overheating or poorly performing
individuals crashing during the evolution [Floreano and Mattiussi, 2008]. Energy con-
sumption is additionally a problem. Rapidly changing and recharging batteries is very
time consuming. The other alternative is to use long energy wires to each robot, but with
a high number of robots in a swarm, the cables can quickly become tangled. Simulation
brings increased modifiability as different components, methods and environments can
be altered and tested in the system.

The largest drawback is that a simulated system is not a perfect representation of the
real world. A controller that has evolved or learned from simulated training might
depend too much on reliable sensor readings or precise motor control. In real life, the
sensors might get noisy readings, the motor can drift and the wheels can start spinning.
In an experiment by Grefenstette et al [Grefenstette et al., 1990], their robot controller
performed worse in real life than in the simulator. This was due to the noise on sensors in
real life. They showed that this performance difference could be reduced by introducing
noisy sensors in the simulation, which encouraged solutions that are more general.

Background 13

Existing simulators
This section contains brief descriptions of two simulators often used for swarm robotics,
ARGoS and Webots.

ARGoS is a multi-robot simulator developed for the Swarmanoid project [Pinciroli et al.,
2012]. It can handle large swarms of robots of different types. ARGoS is, according to
the authors of the article, the first multi-robot simulator to be both efficient and flexible.
It has good performance and is highly customizable for different experiments. Both 2-
dimensional (2D) and 3-dimensional (3D) physics engines can be used, also in parallel
where the simulation space is partitioned into subspaces with different physics engines.
The simulator supports three types of visualization: an interactive GUI based on Qt4
and OpenGL, a high-quality rendering engine based on POV-RAY, and a text-based
visualization. The controllers need to be written in C++. ARGoS is a free, open source
software that currently runs on Linux and Mac OS X.

Webots is a mobile robotics simulation software [Michel, 2004]. It was developed by the
Swiss Federal Institute of Technology in Lausanne in 1996, and is now a commercial
product available from their spin-off company, Cyberbotics Ltd. Webots can model and
simulate any mobile robot, and includes a library for sensors and actuators, which can
be used to modify or make a new robot. Controllers can be written in C, C++ , Java,
Python or using MATLAB. Webots uses Open Dynamics Engine library for physics
simulation. It uses a virtual time, which means that it can run faster simulations than
what is possible for physical robots. A controller can easily be transferred to physical
robots. Third party software can connect to Webots, to either supervise simulations
or for global and local communication within a multi-agent system. The supervisor
capability can be used for computationally expensive simulations like genetic evolution
and neural networking.

2.4 Structured Literature Review

The purpose of this structured literature review is to get an overview of the field of
swarm robotics. It is based on a template made by Anders Kofod-Petersen, at the
Department of Computer and Information Science, Norwegian University of Science and
Technology.

2.4.1 Identification of research

We used the search terms in Table 2.1 when using the online libraries: Google Scholar,
IEEE Xplore, SpringerLink and ScienceDirect. The table is divided into groups and
terms. Each group contains terms that are either synonyms, different forms of the same
word, or terms that have similar or related semantic meaning, within the domain. A

14 Structured Literature Review

logical expression of the search terms was created by applying AND between groups,
and OR between terms within a group.

Domain specific sources were found talking to domain expert, Jean-Marc Montanier,
who has a PhD in the field of swarm robotics, and now works as a postdoc at Norwegian
University of Science and Technology. He recommended us to look into the work of
Dario Floreano, and in the process we found relevant projects, including Swarm-bots
and Symbrion. The researchers behind the Swarm-bots project have continued their
research into two following projects Swarmanoid and E-Swarm. In addition, we found
papers from the courses TDT04 Advanced Bio-inspired Methods and TDT11 Advanced
Bio-inspired Technologies at Norwegian University of Science and Technology.

Table 2.1: Search term groups

Group 1 Group 2 Group 3 Group 4 Group 5
Term 1 Swarm robotics Assembling Evolutionary algorithm Simulation Rough terrain
Term 2 Docking EA Slope
Term 3 Gripping Artificial Neural Net Hill
Term 4 Aggregation ANN Obstacle
Term 5 Evolution
Term 6 GA

2.4.2 Screening process

By performing a screening process we reduced the number of studies from 876 to 25.
First, we did a basic screening by removing studies perceived irrelevant based on their
title. Second, we did a quality screening in three steps, based on the criteria in Table
2.2. We used the remaining 25 studies as a basis to write the rest of this chapter.

Table 2.2: Inclusion and quality criteria for the screening process

Id Criteria Screening step
IC 1 The studys main concern is P First
IC 2 The study is presenting empirical results First
IC 3 The study focuses on M Second
IC 4 The study describes an S Second
QC 1 There is a clear statement of the aim of the research Third
QC 2 The study is put into context of other research Third

Inclusion (IC) and quality criteria (QC) for the screening process. We have defined the
specific problem P as: how to get robots to traverse in environments where they cannot
traverse alone, the methods M as: self-assembling and evolutionary algorithms, and the
resulting system S as: a homogenous controller system for a swarm of robots.

Background 15

2.5 Related Systems and Projects

This section describes the projects and studies we found in our literature review: the
Swarm-bots project, the Swarmanoid project, the Symbrion project and four individual
studies.

2.5.1 Swarm-bots

The Swarm-bots project is a swarm robotics project, coordinated by Dr. Marco Dorigo.
It is inspired by the collective behavior in social insect colonies and other animal societies,
especially the ability of self-organization and self-assembling [Dorigo et al., 2005]. The
project’s duration was from 2001 to 2005.

The main goals of the project were to make a new swarm robotic system called swarm-
bot and to bring self-assembling to the forefront of multi-robot research [Dorigo et al.,
2006]. The project used homogenous robots called s-bots. When the s-bots are assem-
bled into a group, the multi-robot organism gets the name swarm-bot. The s-bots are by
themselves relative simple robots, with limited sensors, motors and computational capa-
bilities [Mondada et al., 2004]. The sensors include infrared proximity sensors, light and
humidity sensors, and accelerometers. Each s-bot has one gripper for a firm and close
grasp between two s-bots, and one gripper on a flexible arm, giving a wider grasp, where
the robots can move more freely. Brooks’ subsumption architecture is used in cases
where it is possible to decompose the tasks into sub-tasks and corresponding behaviors,
while evolutionary algorithms are used when training is needed. At the time of this
project, little attention had been devoted to research into self-assembling of robots. The
mechanism is highly complex, which was troublesome for existing systems [Dorigo et al.,
2006]. By addressing and reducing this complexity, the ambition was to inspire more
research and bring self-assembly to the forefront of multi-robot research. The project
has led to publishing of several papers, most of which explores the possibilities of the
swarm-bot and the control of the s-bots.

In experiments with aggregation and coordination, a behavior-based controller was used
to move the robots into a chain formation [Nouyan and Dorigo, 2004, 2005]. The objec-
tive was to make a virtual chain between a food source and their common nest, where
the distance between them was too large for a single robot to perceive them both. The
controller had specific rules for transiting between the different behaviors. The behav-
iors are: search, explore, chain, and finish. The transportation of a large food item was
considered in another experiment [Gross et al., 2005b]. This time the robots connected
physically with their gripper, to get more pulling force and be able to transport a food
item, which was bigger than the s-bots.

One study presents the first robot controller that is capable of functional self-assembling,
which is the ability of the robots to assemble by themselves in response to the task
or environment [O’Grady et al., 2005]. The robots’ task is to navigate independently

16 Related Systems and Projects

towards a food source, represented by a light, which happens to be on the other side of
a steep hill. If a robot finds a hill that is too difficult to pass over alone it will move
back and change into an aggregation phase. In this phase it turns its LED lights blue,
signaling that it needs help. After attracting nearby robots, they will self-assemble and
align their direction, before moving towards the hill. In the experiment, a single robot
could not complete the task, two robots succeeded 65 % of the time, and three robots
succeeded 86.67 % of the time. The controller is made with a combination of behavior
phases and an artificial neural network. The self-assembly process is also showed to work
in more rough terrains [Gross et al., 2005a,b], however the advantages of self-assembly
in these types of terrains are not considered in these studies.

Another study describes how the controllers, developed for hole avoidance, can be used
to pass over a trough that can be bridged by a swarm-bot [Trianni and Dorigo, 2005].
The swarm-bot was already assembled before the start of these experiments, as the study
is more about why the robots should self-assemble instead of describing how to do it.
The decision of whether to move back from a gap or bridge over is a collective decision
that emerges purely from the interactions between the s-bots and the environment. An
ANN, whose parameters are set by an evolutionary algorithm, is controlling the robots.
The fitness value is calculated by using the distance between the start and end point,
divided by the maximum possible distance the swarm-bot could possibly cover. This
gives a number between 0.0 and 1.0.

In an experiment, from another paper, different methods of communication between the
robots are explored [Trianni and Dorigo, 2006]. The communication methods insects use
can be grouped into indirect communication, direct interaction and direct communica-
tion. Ants use indirect (stigmergic) communication by leaving a trail of pheromones, to
find good paths, but can also use direct interaction with their antennas. Direct commu-
nication is used by the honeybees with their waggle dance, to signal the direction and
distance to interesting locations, such as sources for food or housing. This study looks
at the use of different communication strategies in a hole avoidance scenario with s-bots
connected in a square formation. The scenario was tested with no direct communication,
handcrafted signaling and a completely evolved approach. The study concludes that the
evolved approach gives the highest performance, by reducing the number of times the
swarm fell into the hole.

Several of the robot controllers in the Swarm-bots project were made by evolving artificial
neural networks. In one experiment, a feed-forward ANN was used to guide the robots
in an assembling process. The s-bots’ sensor inputs were preprocessed, before it was
applied to the ANN [Tuci et al., 2005]. The ANN had three output neurons, one for
each of the two wheels and one for the firm gripper. The connection weights were trained
with evolution, where the fitness was evaluated using Swarmbot3D, a simulation tool
created for this project.

Multiple studies discuss a significant high variance when evaluating fitness for robot
controllers. There are several reasons for this. The robots are controlled by themselves,

Background 17

with no global interactions or knowledge. How they act depends on what they see
around them, locally, and this can change during each run. The robots are usually
placed randomly in the environment, to make sure the controller works, no matter
the starting positions. In addition, many robots are used, and most of them need to
cooperate in order to get a satisfactory result. In order to obtain more reliable fitness
evaluations, Dorigo et al. ran the evaluation eight times [Dorigo et al., 2004], and Trianni
and Dorigo ran the evaluation five times [Trianni and Dorigo, 2005]. The average from
these evaluations was used as the final fitness result. It is also interesting that they used
only reproduction without re-combination. Both of them used an approach where the
20 % best individuals were selected for reproduction, and each generated five offsprings.
Mutation was then used on the offsprings with a 3 % chance of flipping each bit. Dorigo
et al. did not use elitism, while Trianni and Dorigo skipped mutation on one of each of
the five offsprings.

The Swarm-bots project gave several contributions to the field of swarm robotics. It
is one of the first works in which functional self-assembly in a homogeneous group of
robots has been achieved [O’Grady et al., 2005]. It demonstrates that evolution is
able to produce a self-organized system that relies on simple and general rules, scales
well to the number of robots, and is robust to changes in the environment. It also
brought both a hardware and a software robot system in the s-bots and the Swarmbot3D
respectively.

The project has multiple implications for us. It has showed us that evolving controllers
for a swarm of homogeneous robots is possible, which have influenced our decision to
use artificial evolution to train our robot controllers. This does, however, increase to the
computation effort, which grows even further if multiple evaluations of each individual
is needed, to get an accurate fitness value. The project has experimented with the
ability of a swarm of robots to navigate in rough terrain. This was a key inspiration for
our thesis, especially regarding Research Question 1. This also meant that we did not
have to research the same scenarios regarding self-assembling, as in this project, such
as going up a steep hill and pulling large objects. The s-bots were also an inspiration
when we designed our virtual robot, and decided which sensors to use. The main task of
navigating towards a goal, represented by a light, will also be used in our system.

2.5.2 Swarmanoid

The Swarmanoid project followed the Swarm-bots project, with Dr. Marco Dorigo as
coordinator. It was the first project to study how to design and control a swarm of
heterogeneous robots, operating in a 3D environment [Swarmanoid, 2010]. The project’s
duration was from October 2006 to September 2010. In addition to using the s-bots
from the Swarm-bots project during this project, three robot systems were constructed:
a foot-bot, a hand-bot and an eye-bot. The foot-bot is similar to the s-bot, but is larger
and has a different gripper. The new gripper is not capable of lifting another robot,
like the s-bot’s gripper is. The hand-bot can climb up shelves, and has a wire it can

18 Related Systems and Projects

connect to the ceiling, by launching a magnet. It uses the wire for safety reasons and to
lower itself down to the ground, when holding an object. The hand-bot can also grab
larger objects than the other robot types. To move on the floor, it needs help from at
least two foot-bots. The eye-bot can fly and lift the other robots. It keeps an overview
over the environment and communicates with the other robots, to guide them. By using
these robots, the Swarmanoid project demonstrates how different types of robots can
help each other. The ARGoS simulator was created during this project [Pinciroli et al.,
2012].

During the Swarmanoid project, several articles were published. The next paragraphs
describe the most relevant ones for this master thesis. Most of the experiments were
performed with a swarm of either s-bots or foot-bots.

In the first article, a mechanism for autonomous self-assembling was introduced, called
Swarmorph [O’Grady et al., 2009]. This is a mechanism for distributed morphology gen-
eration. The authors saw lack of morphology control as a limitation, since the resulting
morphologies were not necessarily able to perform any tasks. The Swarmorph mech-
anism controls, through local morphology extension rules, the morphologies that are
formed. By doing this, task specific morphologies can be made. The experiments were
performed using a swarm of s-bots. All the experiments were first done in simulation,
and then a few were performed using the real s-bots. The mechanism made the swarm
of robots self-assemble into different morphologies, such as a line, a star, an arrow and a
rectangle. The s-bots communicate through LED lights. A robot indicate with its LED
lights that it has a free connection point. Non-connected robots wander around until
they discover a free connection point. A robot that is navigating towards a connection
point continuously calculates the approach vector. Swarmorph works in parallel, since a
morphology can have several open connection points simultaneously. After performing
the experiments, the mechanism was found both robust and precise, since they achieved
a high success rate when building four different morphologies. They also found the
mechanism to scale well, when using a large number of robots in simulation.

The second article introduces a method for self-assembling between two robots, with-
out direct communication [Ampatzis et al., 2009]. The controllers are evolved artificial
neural networks, which control all the actuators of the robots. Based on the robots’
interactions, roles are allocated between them, which cause dynamic specialization of
the robots. The fact that there are no direct communication means that the LED lights
are not in use, unlike in the previous article. Two s-bots were used in the experiments.
The two robots were placed next to each other before each experiment started, due to
limitations regarding the camera range. Reinforced learning was used for the fitness
evaluation, where the robots were rewarded based on a combination of an aggregation
component, a collision component and a self-assembly component. This fitness evalu-
ation was meant to lead to a collision-free self-assembling for the robots. The results
of the experiments showed that it is possible to make two robots autonomously self-
assemble, using controllers with evolved artificial neural networks. The scalability of
this system was not tested in the experiments. A major contribution from this article is

Background 19

to demonstrate that such controllers can be reliable and efficient for fine sensory-motor
coordination, like connecting two robots. The authors state that it is important to
understand which principles make evolution produce efficient rules for guiding robots,
rather than identifying each of the rules.

In the last one of these articles, a control mechanism called enhanced directional self-
assembling (EDSA) was introduced [Mathews et al., 2011]. This mechanism was used
for fast morphology growth through high-speed communication in a swarm of foot-
bots. A robot connects to another robot by first recruiting the best located neighbor,
and second, guiding it to an optimal connection point on its chassis. Communication
between the robots are based on a combination of radio and infrared lights. This makes
them able to give location based messages to each other. To test the EDSA, the swarm
was placed in a dynamic environment, so that the morphology was grown in response to
its environment. An example of such a response is forming a chain of robots to cross a
hole, too large for a robot to cross alone. In the experiments, morphologies were grown,
and the results showed that the EDSA was precise, robust and fast. This also showed
that the EDSA enabled morphology growth in motion, parallelism, adaptive recruitment
and connection in dynamic environments. In the end of the article about the EDSA,
the authors also presented ongoing work. First, how the EDSA can form larger task-
specific robot morphologies, and second, how to form large morphologies by forming
small segments in parallel and then assemble the small segments into the large target
morphology.

From the articles above, we found useful points to consider for our project. Our robots
have a connection area on the back, and a gripper in front, which would limit the mor-
phologies to either chain formations or chain formations with branches. This makes the
self-assembling easier for the robots, requiring less communication, and they should still
be able to perform the task. The task-specific morphologies used in Swarmorph would
be interesting to implement in our controllers, and can improve the performance, but
would require a larger project scope. The different articles used different forms of com-
munication between the robots. The first one used LED lights to guide robots towards
free connection slots. The second one used no direct communication, and therefore had
to place the robots close to each other to make them interact. In the last article, com-
munication through radio and infrared lights was used. In our project, we considered
the different types of communication, and ended up with using LED lights for commu-
nication between our robots. One of the reasons behind this decision was that we would
use light sensors for converging towards the goal, and could use a very similar approach
when the robots needed to communicate about converging towards each other.

2.5.3 Symbrion

Symbrion is a project about self-reconfiguring modular robots, and is a platform for
exploring artificial evolution and evolve-ability [Symbrion, 2013]. It started in 2008 and
finished in 2013. The robots used in Symbrion are different from the ones used in Swarm-

20 Related Systems and Projects

bot and Swarmanoid. Their mobility by themselves are more limited compared to a single
s-bot or foot-bot. Their wheels are only used for movement in the self-reconfiguration
process. However, they have the ability to self-assemble into much larger shapes, even in
vertical formations, where each robot is only a small part of the system. This can lead
to chained robots with snake-like movements, or robots with leg-like structures similar
to insects, or possible structures not even imagined. When self-assembled these robots
have increased mobility, and can be able to climb stairs, or walk over obstacles. The
Symbrion robots do also have powerful on-board computational resources. These can be
used to do on-board simulations, so that the robots can make adjustments in unknown
environments.

Even though the robots are different from the ones we will use in our project, we can
learn from their experiences, especially from the studies about evolutionary processes.
One of the articles studies the fitness functions used in evolutionary robotics [Nelson
et al., 2009]. In the article, it is argued that robot designers may not be able to provide
appropriate control algorithms in the case of unforeseen situations or environments.
Thus, the robot should be able to learn and adapt their controller without supervision
from humans. In this process, the fitness function is responsible for comparing potential
controllers. Further, the article evaluates the benefits of different fitness functions. A
behavior based fitness function is hand-formulated to the task, and can measure multiple
aspects of what the robot is doing. To create these functions, a high degree of a priori
knowledge is needed. Another type, called aggregated fitness function, needs less a
priori knowledge and only evaluates if the task is completed or not. Using less a priori
knowledge is advantageous, as it can lead to solutions that are more general. However,
by using an aggregated fitness function, a working solution can be hard to find, as the
evolutionary process can not get feedback about being close to a solution, which can be
problematic in the selection process. The article also discusses functional incrementing
fitness functions. This is the process of explicitly training sub-behaviors, one at the
time, before training the more complex behaviors. This addresses the problem that an
initial population might have large problems with completing a difficult task. In these
methods, the designer is responsible for both the evaluation metrics and for structuring
the search path of the controller’s search space. This can lead to a restriction on the
possible cooperation methods between the behaviors, and the evolution might not be
able to reach the entire solution space.

One of the experiments of the Symbrion project involved improving the evolutionary
engine by including a distance and diversity measure during the evolutionary process
[Winkler et al., 2011]. It was shown that there is a correlation between the relative
diversity of the population and the relative increase in fitness between generations. A
low diversity probably means that the whole population is converged to individuals in a
local optimum. Exiting the local optima is very advantageous, as it can lead to better
solutions in a shorter time. This can be accomplished by increasing the mutation rate
or by initializing new individuals.

The studies from Symbrion imply an advantage of using a behavior based fitness function,

Background 21

compared to an aggregated or incremental fitness function. This discussion impacted
our project, and we chose to create a behavior based fitness function. Winkler et al.
demonstrated that a diversity measure could be used to exit local optima and speed up
the evolutionary process. This discussion influenced our project, because speeding up
the evolutionary process is important when evolving robot controllers. This is normally
a very tedious process, which several of these related projects confirm, and we need an
acceptable runtime to do numerous experiments.

2.5.4 Other systems

This section describes four individual articles found in our literature review.

A study from 2007 focuses on self-organized aggregation in swarm robotic systems [Soysal
et al., 2007]. The approach of evolving an artificial neural network controller is inves-
tigated and compared to handcrafting a probabilistic controller. The evolved controller
uses a single-layer feedforward neural network. Inputs from microphones and infrared
sensors are fed directly to three output neurons: the left wheel, the right wheel and a
speaker. In the evolutionary algorithm, elitism is used by passing the 10 % best of the
individuals directly to the next generation. The rest of the individuals are recombined
using crossover with 80 % probability, and mutation with 1 % probability of flipping
each bit. The probabilistic controller is a finite state machine with behaviors as states.
Switching between the behaviors is managed by specific rules, such as when another
robot is close, or by a probability rule. The results showed that the evolved controller
performed better than the probabilistic, even when trying multiple strategies for the
probabilistic controller. The article ends with four rules of thumb for evolving robot
controllers. The most important one for us is to keep the number of simulation steps
as low as possible, but still give the robots enough time to accomplish their goal. This
is important to be able to increase the number of evaluations, and keep an acceptable
runtime of the system. The number of simulation steps is the number of times the sim-
ulator is updated during a single simulation. This can be reduced by either reducing
the number of updates per second or by reducing the total duration of each simulation.
The number of evaluations is the number of times a specific controller will be tested in
a simulation, before combining the results to a fitness value. When combining these re-
sults, the article states that using the minimum score from the evaluations is better than
using the average, the median, or the maximum score. The research showed that, in this
case, an artificial neural network controller had higher performance than a probabilistic
controller. When evolving our controller, we will test if the rules of thumb can improve
the results from our evolutionary processes.

A study from 2009 describes an amoeboid modular robot called Slimebot [Shimizu and
Ishiguro, 2009]. The Slimebots use velcro strap to connect, and directly contacting elec-
trodes to communicate with each other. In the control mechanism there is an oscillator
in combination with different control algorithms. The purpose of this study was to show
real-time adaptive reconfiguration of a swarm of Slimebots, by demonstrating that an

22 Related Systems and Projects

assembled swarm can reconfigure when there are obstacles ahead. An example of this
is when an assembled swarm of robots approaches a narrow pathway, and they need to
reconfigure the shape of the swarm to get through. The results showed that this was
possible both in simulation and with physical robots, and that the Slimebot enabled
both adaptive amoeboid locomotion and reconfiguration. The results also showed high
adaptivity, high scalability and high fault tolerance. This study shows an example of
how a swarm of robots can adapt as a response to the environment.

An evolutionary robotics approach is presented in a study from 2010 [Ohkura et al.,
2010]. This approach is to design controllers by evolving artificial neural networks. The
performance depends on the topological structure of the neural network. To find the
best structure, four recurrent neural networks were tested in simulations, on a coop-
erative package pushing problem. The results of these experiments showed that the
artificial neural network where the hidden layer was a small-world graph, had the best
performance, flexibility and scalability. In the experiments, ten robots with sensors, and
four packages were used. Different packages required different number of robots to be
pushed. The input layer in the neural network represents the sensors, and the output
layer represents the motors. The fitness function in the evolution is based on points
that the swarm gets for pushing a package to the goal line, for touching a package for
x number of ms, and for the distance between a package and the goal line when the
timesteps run out. In the experiments, the robots start next to each other behind a
specific line, if they successfully complete the task, five additional tasks are given. For
the additional tasks, they start on a random position in the field, to avoid overfitting.
The fitness points are summed up for the tasks, with more weight on the first task. If
a swarm does not complete the first task, the collected points are given as the fitness
points. Giving points for the distance to the goal, was an inspiration when we made our
fitness function. We also used a similar environment setup by combining the random
placing of the robots, with placing them in a fixed area, in our case a defined starting
area, when starting a simulation.

A novel heterogeneous robot approach enabling aerial robots to aid and control ground-
based self-assembling robots is studied in a paper related to the E-Swarm project [Math-
ews et al., 2012]. The E-Swarm project continued the research of the Swarmanoid project.
The aerial robots, the eye-bots, use their enhanced view of the environment to detect the
need of self-assembling the foot-bots on the ground. Two images, taken by the eye-bots,
are used to create a height map representation of the environment. After the height map
is ready, a simulation on-board the eye-bots is used to determine what morphology the
foot-bots should use. Finally, each of the foot-bots are guided into the target morphol-
ogy formation, and the navigation task is started. In their experiment, the foot-bots
were guided over a steep slope towards a food resource on the other side. The eye-bot
was stationary attached to the ceiling, and a pre-calculated height map was used, which
means that this part was not shown. This study is relevant for both of our research
questions. It shows a way in which self-assembling improves the mobility of a robot
swarm, and a way to get the robots to decide when to self-assemble. This means that

Background 23

we can direct our research towards finding other possible improvements for mobility of
a swarm, and ways to decide when to self-assemble.

2.6 Background Discussion

In this section, we discuss how the studies described in this chapter have influenced our
project. We will explore how these studies solved the problem of traversing in difficult
environments, how they made their robots self-assemble, what the limitations of current
research are, and how the studies in general have impacted our project.

Traversing in difficult environments
Physically connecting robots is a solution which can lead to improved mobility in difficult
environments. In the projects described, self-assembling improved the swarm’s ability
to drive up steep slopes, pass over gaps and remain upright in uneven environments.
During our research, we found two main kinds of robots that can connect physically
to each other. The first kind is the small, wheeled robot with grippers, used in the
Swarm-bots and Swarmanoid projects. The second is the kind of modular robots used
in the Symbrion project. These robots work as parts and joints in larger structures of
robots, and might not rely on wheels to move around. Most of the solutions involve no
global interactions or control. Each robot is controlled by analyzing the input from their
sensors, like infrared and proximity sensors, and applying the results to the actuators,
such as wheels and gripper.

There are several methods used, to make robots self-assemble. One method is to let
the creators design a complete, handcrafted controller. The communication methods,
the behaviors, and the handling between sensor input and actuator output, are defined
and implemented by the creators. Another method is to use evolutionary robotics.
Here, the communication methods, behaviors, and handling of input and output are
only partially defined by the creators, and are then evolved to adapt to a given problem
or environment. Most of the systems discussed in this chapter, included aspects that
were handcrafted by the designer, such as the communication and the behaviors of the
robots, and other aspects that were evolved through an evolutionary process, including
the handling between sensor input and actuator output.

Limitations of current research and our contributions
We think that interaction and collaboration between researchers and studies could be
utilized more in this field. The research we found was often inspired by other research,
in their methods and hardware, but we did not find much work on improving upon the
work of others in similar settings with the same robot hardware. In the field of machine
learning, one can find hundreds of standard and free datasets. By using these, it is
easy to compare multiple classifier algorithms. The field is increasingly brought further,
as better algorithms are found and discussed. We think that more collaboration and
standard benchmarks in swarm robotics would enhance the field, and we hope to see

24 Background Discussion

more of this in the future.

The current research in self-assembling swarm robotics has managed to show that self-
assembling can improve performance of a swarm in multiple specific situations. Before
swarm robotics goes from the research labs and into use in the outside world, experience
with more general adaptivity is needed. We think that the current research has shown
a good start, and the researchers should continue to search for more situations and
environments, where self-assembling would give an advantage to a robot swarm.

It is natural to consider improving on these areas in our project, as it can lead to
contributions to the field. The lack of standard benchmarks is too large in scope for this
project and should be considered by researchers with years of experience in the field. We
are, however, able to contribute to the current research by looking at more situations and
environments, where self-assembling in a swarm of robots can be advantageous. We have
not found any research about how self-assembling can improve the mobility of swarm
robots in environments with both ice and strong wind. We will contribute to to the field
of swarm robotics by researching self-assembling in these kinds of situations.

Impacts on our project
As implied over, the research we found was a significant inspiration when deciding to
do this project, especially the experiments describing the ability of a swarm of robots to
navigate in rough terrains. The robots we are going to use are inspired by the s-bots from
the Swarm-bots project and the foot-bots from the Swarmanoid project. The research
demonstrated that evolved controllers could get better performance than handcrafted
controllers. This strengthened our desire of using an EA in our project. These systems
involved complex subsystems such as ANNs, EAs and simulation of robots. The studies
we found gave us recommendations for improvements to one or more subsystems. This
includes using an average over multiple simulations, to get a more precise fitness value
in the EA. More information on impacts from each individual study or group of studies
can be found in the previous sections where the studies are discussed.

The research on the different robot controller architectures were also interesting when
deciding if we should use one of them or make a new architecture. This impacted
our project, because we chose to create a controller based on Rosenblatt and Payton’s
architecture [Rosenblatt and Payton, 1989], with arbitration via action selection. We
also decided to use a manager similar to the module manager, and multiple behavior
modules proposed by Rosenblatt [Rosenblatt, 1997]. This decision is described more
thorough in the Methodology chapter.

25

Chapter 3

Methodology

In this chapter, we describe the tools and methods we have used to investigate our
research questions. The overview of the system is presented in Section 3.1. Section
3.2 contains the description of our robots. The scenarios used in our experiments are
demonstrated in Section 3.3, and the robot controller is described in Section 3.4. The
choice of creating a simulator is explained in Section 3.5, and the modeling of the physics
in the simulator is described in Section 3.6. Section 3.7 contains the description of the
evolutionary algorithm used in this project.

Figure 3.1: Primary system components and their interactions

3.1 System Overview

Our system consists of three primary components: the robot controller, the simulator,
and the evolutionary algorithm. The interactions between these components are illus-
trated in Figure 3.1. We use the evolutionary algorithm to evolve the robot controller,
by adapting weights and thresholds in the controller. The simulator is then responsible
for performing the fitness evaluation on the controller. The components are designed to
have low coupling between them. One can for instance use the evolutionary algorithm
to solve entirely different problems, by only making small changes to a few key classes
(fitness evaluator and development). The low coupling should make it easier to modify,
reuse or replace each component.

26 The Robot

(a) Side view (b) Top view (c) Top view, in the simulator

Figure 3.2: Multiple views of the robot, all facing right

3.2 The Robot

The robot swarm consists of a set of equal robots. We wanted to design the robots in a
realistic way, and chose to keep their properties close to the e-puck robot [Cyberbotics
Ltd., 2007], an already existing physical robot. We have also been inspired by the s-bot
and foot-bot, described in the Background chapter. Our robot is illustrated in Figure
3.2. We use similar sizes as the e-puck robot, which is 5 cm in height, and has a diameter
of 7 cm on the top ring. The wheels have a radius of 2.5 cm. The total weight of the
robot is 200 g, including wheels and sensors. We have given small improvements to the
robot’s sensor and motor abilities, to make the robot able to reach a top speed of 0.25
m/s. It was important for us to keep the robot realistic, even though we did all our
experiments in simulation, to get more meaningful results, which are more applicable
outside the simulated world.

The devices and features highlighted in Figure 3.2 are: two partial rings of LED-lights (1
and 2), multiple light sensors (3), a gripper (4), two wheels (5) and an accelerometer (6).
The LED-lights are primarily used to signal the direction of the robot to other robots.
If a robot wants to self-assemble to another it uses its gripper. The gripper contains
a small magnet, which can be connected to the back of other robots. The green LED-
light makes it possible for the robots to converge toward this connection area, without
requiring communication that is more advanced. The light sensors are, similarly to the
e-puck robots, used for both light and distance detection. The distance is calculated by
sending out infrared light and measuring how long it takes before it is reflected back.
The range of the distance sensor is highlighted as the cone shape coming out of each
sensor (the black dots on the robot) in Figure 3.2(c)

The robot also has hole detection sensors, below the light sensors. These work in a
similar way as the distance detection in the light sensors, but the sensors are tilted
downwards, which makes their range shorter. The hole detection sensors can detect a
hole in the ground within 10 cm of the sensor.

Methodology 27

3.3 The Scenarios

We have performed experiments with the robots on four scenarios (environments). Each
scenario has a starting area, where the robots are placed in the start of every simulation.
Both the position inside the starting area and the rotation of the robots are randomized.
These random elements are used to avoid overfitting and make the robots more general,
by not only training on a specific starting condition. The main task for the robots is then
to move to the goal object. This object could be anything, but is often a food source
represented by a light. The robots are able to sense the light and converge towards the
goal. This approach, with a food source as the goal, is also used in experiments in the
Swarm-bots project [O’Grady et al., 2005].

Environmental features such as strong wind and areas of ice, make the task harder for the
robots, and are present in all our scenarios. The scenarios are made in order to investigate
if the swarm is able to improve their performance by cooperating and overcome these
challenging environmental features. Three of the scenarios have additional elements, like
obstacles, blocking the way towards the goal, or holes, which the robots should avoid
falling into. The wind in each scenario extends across the whole environment and has
a fixed direction. The velocity of the wind can easily be changed before starting each
experiment.

We have kept the size of each scenario and the number of robots in the swarm consistent
to make each scenario comparable to the others. The scenarios are 1.5 meters in width
and 3 meters in height (when seen from above). There are walls around the environments,
to keep the robots from going outside the boundaries. We performed the experiments
with a swarm of four robots. This is enough robots to make them able to explore the
environment on their own, and to self-assemble into bigger structures. Having a small
number of robots is important to keep the runtime of the system low.

Scenario 1 serves as the basic experiment on a plain environment, with only a single ice
area and wind going south. It is illustrated in Figure 3.3(a). This scenario is interesting
because the robots need to travel in the opposite direction of the wind to get to the goal.
The ice can cause the robots to spin or slide. The combination of ice and strong wind
can cause the robots to be pushed back towards the starting area.

Scenario 2 has a similar layout as scenario 1, but in addition it has obstacles spread
around the environment. This is illustrated in Figure 3.3(b). The obstacles, resembling
rocks, can both have a positive and a negative effect for the performance of the robots.
They are additional objects the robots need to avoid, and they force the robots to steer
in between them, making the task harder. Moving between the objects should be even
harder if the swarm has assembled into a bigger structure. The positive aspect for the
robots is that the obstacles can block a part of the wind. When the robots are behind
an obstacle they should be less affected by the wind, making the movement easier. The
combination of both positive and negative aspects makes this scenario interesting to
investigate.

28 The Scenarios

(a) Scenario 1: Opposing wind (b) Scenario 2: Opposing wind with obstacles

Figure 3.3: Scenarios with opposing wind

Methodology 29

(a) Scenario 3: Side wind with obstacles (b) Scenario 4: Side wind and holes

Figure 3.4: Scenarios with wind from the side

30 The Robot Controller

Scenario 3 is similar to scenario 2, with the same starting area, ice area, goal and
obstacles. The difference is that in this scenario, the wind comes from the side, going
in the east direction. Scenario 3 is illustrated in Figure 3.4(a). The wind should not
directly prevent the robots from moving towards the goal, but it can make it difficult to
move left against the wind. This means that it can be challenging for the robots to steer
in between the obstacles. As in scenario 2, the robots can get an advantage of moving
behind obstacles, because the obstacles can shield the robots from the wind. To prevent
the robots from choosing an easy solution, by driving along the right wall, we placed an
obstacle near the end of the ice area on the right side. This should cause more trouble
for the robots when moving towards the goal, when the wind is strong. It is the only
obstacle that has been strategically placed.

Scenario 4 is illustrated in Figure 3.4(b). As in the previous scenarios, the same starting
area, ice area and goal area are used. Scenario 4 has no obstacles, and the wind direction
is from west to east. There is one hole to the left of the ice area and one to the right of
the ice area. In strong wind the robots could easily be pushed into the right hole. On
the other hand, if a robot tries to move too fast against the wind, it could fall into the
left hole. If a robot falls into a hole, it is not able to get out and can thereby not reach
the goal. An interesting part of this scenario, is that self-assembling can make the group
more capable of handling the strong wind, however a larger group might be a problem
when avoiding the holes, especially when the wind is pushing from the side.

3.4 The Robot Controller

The controller, used to decide how the robot should act in the world, is based on multiple
reactive behavior modules. Each behavior module is responsible for a single behavioral
goal for the robot, such as avoid collisions or converge towards the goal. The implemen-
tation of our robot controller is described in this section.

3.4.1 Behavior Coordination and Action Selection

To coordinate the behaviors, we used a reactive architecture, based on Rosenblatt and
Payton’s architecture for arbitration via action selection [Rosenblatt, 1997; Rosenblatt
and Payton, 1989]. Having worked with the subsumption architecture in a previous
project, we agreed with the limitations identified by Rosenblatt and Payton, and their
proposed improvements, which is described in the Background chapter.

A reason to use this architecture is to increase the cooperation between the behaviors.
This can lead to smarter decisions. An example situation is: the collision avoidance
behavior tries to avoid an obstacle by turning either left or right, and the goal converging
behavior senses a weak light from the goal on the right side, and will rotate towards it.
In this situation, collision avoidance is more critical than goal converging, because the

Methodology 31

Figure 3.5: The action selection network
Partially based on a text and figure in Behavior-Based Robotics [Arkin, 1998] and the
DAMN architecture [Rosenblatt, 1997]. All behaviors cast weighted votes for actions.
The action receiving the most votes is selected, and the action is applied on the actuators.

light from the goal is very weak at this distance. By only considering the most critical
behavior, the result would be to turn right 50 % of the time and left the other 50 %.
This is only a good result for the goal converging behavior 50 % of the time. By voting
for actions and considering both behaviors, the result would always be to turn right in
this exact situation. The robot would then both turn away from the obstacle, and turn
towards the goal, making a good result for both behaviors.

The architecture for arbitration via action selection requires no states or phases for
the robots. Using phases, was an approach used in the Swarm-bots project, when self-
assembling was used to get the robots up a steep hill [O’Grady et al., 2005]. Having the
whole swarm agree upon a state would be hard. This requires both more communication,
and negotiation, meaning the robots would need to be more advanced, and more time
would need to be used to negotiate.

With our architecture it is possible to divide the behaviors in such a way that each
behavior is not very complex by itself. With these simple behaviors, we managed to get
good results without using an ANN to control the behaviors. Introducing an ANN would
possibly also make the scope of the project too large, considering the time restrictions
and the other complex components.

There are both predefined behaviors and actions in our system. These actions include
move forward, and turn hard to either the left or the right side. Each behavior uses
data from the sensors, to decide which actions it wants to select. To choose an action
as a group, a plurality voting procedure is used. The process is visualized in Figure 3.5.
Each behavior can cast weighted votes for multiple actions. The action receiving the
highest number of votes is selected, and its response should be applied to the actuators.
The action selection network selects a new action every time the controller is updated,

32 The Robot Controller

Figure 3.6: The weight update process
The total weight depends on the evolved behavior weight and the situation weight. The
resulting total weight is used in the action selection network in Figure 3.5.

which is 30 times per second in our simulator.

The votes for each action are summarized, using Formula 3.1:

votea =
N∑

n=1
voteanwn (3.1)

• votea is the total sum of the weighted votes given to action a

• votean is the vote given to action a, by behavior n

• wn is the weight for behavior n

A vote can be either positive or negative. Negative votes are used to reduce the chance
of selecting an action. If a robot has a wall on the right side, the collision avoidance
behavior will give a negative vote to the turn right action. All the votes are from -1 to 1.
We do not use any restrictions on the total sum of votes coming from a single behavior,
as this could lead to situations where it is better to vote for a single action, even though
a second action is also very good for the behavior. We have other mechanisms in place,
such as the behavior weight, to make sure that one behavior is not too influential without
being helpful.

Weight for behavior n is calculated using Formula 3.2:

wn = wb
nw

s
n (3.2)

• wn is the weight for behavior n

• wb
n is the behavior weight, given by the phenotype, for behavior n

• ws
n is the situation weight, given by the situation-weight manager, for behavior n

The votes are weighted, based on two types of weights. Both is in range from 0 to
1, and are multiplied to get the resulting total weight. The weight update process is
presented in Figure 3.6. The first type of weight is the behavior weight wb. It reflects the
general importance of the behavior module. This weight is similar to the weight used by

Methodology 33

Rosenblatt and Payton [Rosenblatt and Payton, 1989]. It can be changed before starting
a simulation, but remains constant until the simulation is over. Each behavior weight
was hand designed in Rosenblatt and Payton’s system. We are using more behaviors
than Rosenblatt and Payton, and want to have more learning in the system. We use our
evolutionary algorithm to find good behavior weights.

The second type of weight we used is the situation weight ws. It reflects the importance
of the behavior in the current situation of the robot. Changing the weights during
runtime by a module manager was proposed by Rosenblatt [Rosenblatt, 1997] as part of
the DAMN structure. Our approach is slightly different from the one in DAMN, as their
module manager alters the behavior weights. We keep the behavior weights constant
during the simulation, but use an additional weight, the situation weight, to alter the
importance of the behavior based on the situation of the robot. These situation weights
are adjusted during the simulation by the situation-weight manager. This objective
manager is similar to the module manager proposed by Rosenblatt. We changed the
name, to make it more explanatory to its responsibility, in our opinion. The situation
weight can, for instance, be used to give a high weight to the collision avoidance behavior,
if the robot detects an object in close proximity. In our controller, each situation weight
can have one of three predefined values. A ws of 0.0 means the behavior should have no
influence, a ws of 0.5 means that the behavior should have normal influence and a ws of
1.0 means that the behavior is very important in this situation, and should have high
influence. Using a larger set of predefined values is possible here. However, in our case,
we wanted a large part of the exploration to be left to the artificial evolution, instead of
handcrafting too many specific situation weights.

We decided to use these two weight types, because each of them has a role we want in the
system. With the situation weights, we are able to contribute our knowledge to make the
robots perform better on a general basis. The behavior weights, on the other hand, can
be adapted by evolution to make the robots perform better on more specific cases and
scenarios. With a large set of behaviors, it is possible that emergent properties can arise
in the system. These properties could be both surprising and interesting. The solutions
found by artificial evolution could also be better than the solutions we would handcraft,
and are easier to adapt to different environments, as we can run the evolution on new
environments to adapt the behavior weights. A running example of voting in the robot
controller, with these two weight types, the behaviors, and the actions is demonstrated
in Appendix A.

3.4.2 Actions

An action is an operation that the controller can perform on the robot. The behaviors
vote for an action to be applied to the actuator, in each frame. The actions have a
predefined and fixed response. For instance, the turn hard right action rotates the left
wheel forward and the right wheel backward, to make a right turn.

34 The Robot Controller

Our approach is slightly different from what Rosenblatt used in the DAMN architecture
[Rosenblatt, 1997]. Their controller was used on a vehicle with four wheels. Two of
them could rotate, for turning, and two where connected to the motor, to give the
vehicle speed. They used both a turning arbiter and a speed arbiter to choose both
a turn action and a speed action. Only one arbiter and action selection process is
needed in our system, since our robot only has two wheels. A hard turn is achieved by
rotating the wheels in opposite directions, and a turn while moving forward is achieved
by rotating both wheels forward with different velocities. Because the turning and the
speed are so interconnected in our system, and that the robot’s max speed is only 0.25
m/s, we decided to only use one arbiter and to have actions, which decide both speed
and turning.

Table 3.1: Overview of the actions

Action Short description
Turn hard left Rotate left on the spot
Forward left Move forward, while turning left
Forward Move forward
Forward right Move forward, while turning right
Turn hard right Rotate right on the spot
Backward Move backward
Grip Try to connect to another robot by gripping
Release grip Release the physical connection from another robot

An overview of the actions we used in our controller is presented in Table 3.1. The
actions are related to moving the robot, or to physically connect the robot to another
robot. The grip action tries to connect the gripper (in front of the robot) to another
robot. At the same time, it rotates the wheels forward at a slow speed, to make sure
the other robot is within the range of the gripper. By doing this, the robots are able
to assemble into bigger groups. The gripping process takes 2 seconds, to make it more
realistic. During this time, the robot is not able to do other actions. The final action
we use is the release grip action. It makes the gripper let go of the other robot. This
can be used to get out of situations where the whole group of assembled robots is stuck,
or in other situations where assembling is no longer needed.

3.4.3 Common Thresholds

Multiple behaviors use common thresholds, to determine if the light and distance sensor
senses a close or a far away object. We used our evolutionary algorithm to find the
thresholds that would get the best results. The threshold variables are presented in
Table 3.2.

Methodology 35

Table 3.2: Distance and light thresholds, used in the controller

Variable name Description Example value
ΓDF Distance threshold, for far distances 30 cm
ΓDC Distance threshold, for close distances 10 cm
ΓLF Light threshold, for sensing a light source far away 0.0002 W
ΓLC Light threshold, for sensing a close light source 0.005 W

3.4.4 Behaviors

This section describes each of the behaviors used in our controller, together with how
they vote for actions and how their situation weight is calculated. The purpose of the
behaviors is to move the robot, assemble with other robots, increase the safety of the
robot, or recover from situations where the robot has not been able to move. Each
behavior is presented in Table 3.3, and then described more thorough in the following
sections.

Table 3.3: Overview of the behaviors

Behavior Short description
Goal converging Converge the robot towards the goal
Wander Move around in a random direction
Maintain turn Avoid unnecessary oscillations when turning
Self-assemble Converge towards, and physically connect to other robots
Follow leader When assembled, follow the robot in front
Collision avoidance Avoid obstacles in the world, like walls or rocks
Hole avoidance Avoid falling into holes
Stagnation recovery Get away from situations where the robot is stuck
Assemble recovery Release the grip and move away from the group

Goal Converging
The goal converging behavior tries to converge the robot towards red light. It will vote
1.0, the full positive vote, in the direction with the strongest sensed light, which has a
close resemblance to red light. Each sensor is here related to an action. The front sensor
will, for instance, vote on the drive forward action, and the sensor on the right side of
the robot will vote on the turn hard right action. To achieve this we use Formula 3.3,
where x identifies the sensor. Lightr(x) gets its value from the light sensor, but only if
the measured color is approximately red. An example situation is illustrated in Figure
3.7. Here, the forward right action gets a full vote, and the forward and hard right
actions gets a partial vote. We have a special case for the sensors that go diagonally,
which have two related actions. They will normally vote for a forward turn, but if the
distance that their sensor measures is very low (distance < ΓDC), they will vote for a

36 The Robot Controller

Figure 3.7: The goal converging behavior
Example of votes when the robot is close to the red goal, before weight is considered.

hard turn, to avoid crashing into the nearby object. The situation weight of the goal
converging behavior becomes larger than 0 if red light is detected (sensed light > ΓLF).
By looking at the strength of the sensed red light, it decides if the light source is close
(sensed light > ΓLC). The situation weight becomes 1 if it is close, and 0.5 otherwise.
Formula 3.3 is used to find the goal converging vote:

vote(x) = lightr(x)
max(lightr(X)) (3.3)

• vote(x) is the vote in direction x, from this behavior

• lightr(x) is the sensed light in direction x , if the color is approximately red

• max(lightr(X)) is the strongest and approximately red light sensed in any direction

Wander
The wander behavior is the basic movement behavior, making the robot move around,
searching the environment. This is especially helpful in situations where the other be-
haviors are not voting, as it prevents the robot from standing still. This behavior will
vote either a full positive vote or a vote of 0.2 for multiple movement actions, to make
the robot move around randomly. Each action has its own probability of getting a full
positive vote. These are 1.0 for forward, 0.6 for soft turns, 0.4 for hard turns and 0.4
for driving backwards. The situation weight is always 0.5 for this behavior as it should
always have normal influence.

Maintain Turn
The maintain turn behavior helps the robot to turn in a more continuous way, by reducing
the stuttering that happens if the robot changes the turning direction frequently. The
action selection network will find a new action 30 times per second, so reducing this
stuttering is important. At the same time, this behavior should not cause the robot to
take longer turns than necessary. To accomplish this, full negative votes are given in the
opposite direction of the ongoing turn. If the last action was turn hard right, then both
turn hard left and forward left will get a negative vote from this behavior. The situation

Methodology 37

(a) Step 1: Converge towards the
other robot

(b) Step 2: Connect to the other
robot’s connection area (in the
back), by using the gripper, when
it is close enough

(c) Result of self-assembling, the
red line over the gripper illus-
trates the physical connection

Figure 3.8: The self-assemble behavior
In a situation where another robot is seen, example of votes before weight is considered

weight is always 0.5 for this behavior as it should always have normal influence. The
idea of this behavior was found in the article about the DAMN architecture [Rosenblatt,
1997].

Self-Assemble
The self-assemble behavior is divided into two steps. The first step is to converge towards
other robots, as illustrated in Figure 3.8(a). It will give a full positive vote in the direction
with the strongest green light, which is the color of the backlights of the robots. The
converging part is the same as in the goal converging behavior, where each sensor votes
for an action, with a vote that is relative to how strong the sensed light is compared
to the strongest detected light of the right color. The second step happens when the
robot is close to the connection area of another robot. It will then give a full positive
vote for the grip action, to connect to the other robot, as illustrated in Figure 3.8(b).
The result of two self-assembling robots is illustrated in Figure 3.8(c). In this case, the
behavior will ignore inputs from the other sensors. Formula 3.3, from the goal converging
behavior, is rewritten to concern green light instead of red light, resulting in Formula
3.4 for converging (step 1):

vote(x) = lightg(x)
max(lightg(X)) (3.4)

• vote(x) is the vote in direction x, from this behavior

• lightg(x) is the sensed light in direction x , if the color is approximately green

• max(lightg(X)) is the strongest and approximately green light in any direction

There is a special case during the converging phase of this behavior. If the back sensor

38 The Robot Controller

(a) Example of votes before weight is considered (b) Illustration of the distances used in formula 3.5:
The vote depends on the lengths represented with
a green and a red line

Figure 3.9: The collision avoidance behavior

senses the front light (blue light) of another robot behind it, it will try to wait for it by
voting negative on both the forward action and the forward while turning actions.

The situation weight can become larger than 0 if the robot has not already connected to
another robot. The situation weight is then decided by the strongest light of the right
color, detected by the sensors. Green light is considered the right color for all of the
sensors except for the back sensor, which according to the special case mentioned above
also considers blue light. The situation weight will be 0 if no light of the right color
is detected (sensed light < ΓLF), 1 if the strongest detected light is close (sensed light
≥ ΓLC), and 0.5 otherwise.

Collision Avoidance
The collision avoidance behavior will give a full negative vote in the direction that is
closest to another object. The role of this behavior is only to prevent the robot from
going in that direction, and not to say which other direction to move in. Other behaviors
should make the robot move. This behavior should not avoid light sources like the goal,
as this would be counter productive. If there are close objects in multiple directions, the
other directions will get a partial negative vote, depending on the distance. An example
situation with multiple objects is illustrated in Figure 3.9. Formula 3.5 is used to find
the vote from this behavior, in the direction related to sensor x:

Methodology 39

vote(x) = Lgreen

Lred
− 1 = distance(x)−min(distance(X))

ΓDF −min(distance(X)) − 1 (3.5)

• vote(x) is the vote in direction x, from this behavior: vote(x) ∈ [−1, 0]

• Lgreen = distance(x)−min(distance(X)) , illustrated in Figure 3.9(b)

• Lred = ΓDF −min(distance(X)), illustrated in Figure 3.9(b)

• distance(x) is the detected distance, with the distance sensor, in direction x. (pur-
ple line in Figure 3.9(b))

• min(distance(X)) is the shortest detected distance in any direction (blue line in
Figure 3.9(b))

• ΓDF is the far distance threshold (yellow line in Figure 3.9(b))

The situation weight of this behavior is 0.5, if the robot can sense another object in
medium proximity (distance < ΓDF), which is not a light source. This weight is further
increased to 1 if the detected object is in very close proximity (distance < ΓDC).

Follow Leader
The follow leader behavior is only active when the robot has connected to the back of
another robot. It will vote to follow the light of the robot in front of it, which is usually
green. The one exception is when the robot in front sends out an orange light. This
signal means that the robot in front is trying to drive backwards. The robot might be
driving backwards because it has come to a dead end or it senses a hole in the ground.
Therefore, it is important that the follow leader behavior replicates that action. A full
positive vote is given for driving backwards, and negative for driving forward, including
forward turns. This behavior has normal influence, giving a situation weight of 0.5, when
the robot has connected to another robot, and 0 weight in other situations. Formula
3.4 is also used to find the vote from this behavior, in the direction related to sensor
x, when orange light is not detected. This behavior will only look at the three front
sensors.

Hole Avoidance
The hole avoidance behavior should vote to avoid falling into holes. It gives a full negative
vote in every direction a hole is detected. If either the front left sensor or the front right
sensor detects a hole, the forward action will be given a full negative vote as well, as
illustrated in Figure 3.10. If the front sensor detects a hole, all of the three forward
directions will be given full negative votes. The robot has a hole detection sensor which
can detect a hole in two distances, where the closest distance is 5 cm, and the longest is
10 cm. This behavior will not vote differently for the two distances, which means that
it will vote a full negative vote for a hole detection in any of the two distances. The
situation weight, on the other hand, will be 1 if a hole is detected within the closest
distance, 0.5 if a hole is detected within the longest distance, and 0 otherwise.

40 The Robot Controller

Figure 3.10: The hole avoidance behavior
In a situation where the robot is close to a hole. The sensor shadow represents the hole
detection sensors (10 cm range). The values of the votes are before weight is considered.

Stagnation Recovery
The stagnation recovery behavior will start acting if the robot has not moved in 3
seconds. It will then try to move the robot away, with a full positive vote in any
direction without objects, and a partial vote in directions with objects, depending on
the distance to them. It continues this voting procedure until the robot is moving, and
then for 3 additional seconds. This behavior gets the situation weight of 0.5 if the robot
has not moved in 3 seconds. This is further increased to 1.0 if it has not been able to
move in the last 6 seconds. Formula 3.6 is used to find the vote from this behavior, in
the direction related to sensor x:

vote(x) = min

(
1.0, distance(x)

ΓDF

)
(3.6)

• vote(x) is the vote in direction x, from this behavior

• distance(x) is the detected distance, with the distance sensors, in direction x

• ΓDF is the far distance threshold

Assemble Recovery
The assemble recovery behavior will start acting if the robot is connected to other robots
and has not been able to move in 3 seconds. It is then assumed that the whole group is
stuck, and this behavior will try to disconnect the robot from the group, by voting for
the release grip action. It will keep doing this until the robot releases the grip or the
robots manage to move again. Similar to the stagnation recovery behavior, the situation
weight is 0.5, if the robot has not moved in 3 seconds. The weight is further increased
to 1.0 if it has not been able to move in the last 6 seconds. The situation weight of this
behavior is always 0.0 if the robot is not connected to another robot.

Methodology 41

3.5 The Choice of Creating a Simulator

The use of simulation is a common approach when developing robot controllers. The
simulator is responsible for performing the fitness evaluation for the evolutionary algo-
rithm. In this section, we present the requirements we have for the simulator, and eval-
uate these requirements for two popular simulators used in the field of swarm robotics,
before explaining the choice of creating our own simulator.

The following requirements are what we need of a simulator:

R1: The robots
The robots need wheels to move around, lights and light sensors to see the environ-
ment and other robots, and a gripper to be able to physically assemble with the other
robots.

R2: Environment and physics
To experiment with our scenarios, the robots will need to move around in a 2D environ-
ment. Using 3D is also feasible, but the performance loss can be too significant, resulting
in a preference for 2D environments. The environment and physics engine should be able
to handle both normal ground properties and ice, obstacles, wind and holes. The physics
engine should handle friction, collisions and physical connections between robots.

R3: Easy collaboration with our other components
The evolutionary algorithm needs to be able to start a simulation with parameters such
as the phenotype. The result should then be returned to the evolutionary algorithm
automatically. This requires easy collaboration between the simulator and the other
components.

R4: Well documented
To be able to set up the simulator, make the necessary changes in the system, and
create the communication channels to our other components, the simulator should have
a thorough and easy accessible documentation.

R5: License to use
The simulator should be either free to use or licensed for us to use.

Discussion of the options
Based on the requirements for the simulator, we considered using either ARGoS, Webots
or writing our own 2D simulator. ARGoS and Webots are two popular simulators within
swarm robotics. They are described in Section 2.3.

The first option was to use ARGoS. ARGoS is open-source and free, which fit very well
to requirement R5. We knew that it would support our type of robots, as it supports
the foot-bots from the Swarmanoid project and the s-bots from the Swarm-bots project.
However, we found this simulator to be hard to use, as it did not fit well with requirement
R4, which also made it hard to test requirement R2 and R3.

42 Modeling Physics

Webots is better on requirement R4. It has a substantial documentation and supports
multiple programming languages and all main operating systems. We have seen examples
of gripping robots with this simulator, and have experience using it in multiple earlier
swarm robotics projects. However, their license program limits a few features to the
professional edition, including the fast simulation mode. This mode is not available in
the education edition, which is the edition we can access. We need fast simulations for
the evolutionary algorithm, meaning we can not use Webots without the fast simulation
mode.

The third option was to write our own 2D simulator. An advantage is that we can
make sure that it fits well with all our requirements. The trade-off is that it can be
very time consuming to make. While trying to create a prototype, we found it hard to
implement the collision detection and the resulting reaction. We found an open-source
plug-in JBox2D [Murphy, 2014], for collision handling and general physics, which should
make this process less time consuming. By making our own simulator, it is also easier
to distribute parts of it to multiple machines or cores/threads, to make it more efficient.
In a preliminary experiment, we managed to solve a problem around five times faster,
using eight threads compared to only using one thread (4 cores and 8 threaded CPU).
This should help to make the evolution faster.

Based on our requirements, the problems we had with the ARGoS simulator, and the
limitations for the use of all the Webots features, it was clear that none of the considered
existing simulators were a good match for our project. Searching for more possible
simulators was possible, but the two we considered as the best candidates did not match,
and many simulators are not using aspects we need, such as friction, so we decided to
create our own 2D simulator. We could then make an optimal simulator for our use,
with only the most essential features.

3.6 Modeling Physics

We have used a physics engine called JBox2D [Murphy, 2014], to model the basic physics
of our simulator. It models the world and can handle collision detection, friction and
movement forces. JBox2D uses formulas for classical mechanics, including Formula 3.7-
3.9, which we have verified with a formula booklet [Utdanningsdirektoratet, 2005].

The velocity formula for constant acceleration a (constant in a single step), where v is
the new velocity, v0 is the previous velocity, and t is the duration of a step:

v = v0 + at (3.7)

The movement formula for constant velocity v (constant in a single step), where s is the
new position, s0 is the previous position, and t is the duration of a step:

s = s0 + vt (3.8)

Methodology 43

Newton’s 2. law of motion, for the relation between acceleration a and the forces F :∑
F = ma (3.9)

The physics engine did not directly support the use of wind, ice, light, and a top down
view, with friction on the ground (it is built for a side view). We use this section to
describe how these features are added to the physics engine.

3.6.1 Movement from Motors and Wheels

The movements of the robot are simulated by modeling a motor connected to the wheels.
By doing this, we find the rotational speed of both the motor and the wheels. This is
needed to calculate acceleration and max speed for the robot. The following formulas,
Formula 3.10, 3.11 and 3.12, describe how the maximum motor force is calculated [V-
Neun and Neun, 2005].

In Formula 3.10, the torque from the motor, τmotor, is calculated:

τmotor = τmax

(
1− ωmotor

ωfree

)
= mgµ

(
1− ωmotor

ωfree

)
(3.10)

• τmax = mgµ is the maximum torque of the motor [Nice, 2001].

• m is the mass of the robot: 0.2 kg

• g is the gravity constant: 9.81 m/s2

• µ is the friction coefficient, depending on the surface and if the robot is sliding

• ωfree is the rotational free speed (no load speed) of the motor: 4829 RPM (calcu-
lated backwards to get a max speed of 0.25 m/s)

• ωmotor is the rotational speed of the motor, based on the previous step.

The gearbox torque, the torque on the wheels, is calculated in Formula 3.11:

τgearbox = η%τmotor (3.11)

• η is the efficiency of the motor: 100 %.

• % is the gear ratio of the motor: 1
50

• τmotor is the motor torque, defined in Formula 3.10

The maximum forward force on the wheels, Fwheels, is calculated in Formula 3.12:

Fwheels = Fa −Rroll = τgearbox

r
−Rroll (3.12)

• Fa is the acceleration force

44 Modeling Physics

• Rroll is the friction resistance when rolling, defined in Formula 3.13

• r is the wheel radius: 2.5 cm

The motor gets an input related to how much the motor should be used. Applying the
value one gives maximum rotation speed forward, and minus one for maximum reverse
rotation speed. Different values for the two wheels leads to the robot turning. For
example, a left input of minus one and a right input of one lead to a counter-clockwise
turn on the spot. Input values between minus one and one can also be applied, and be
used for a soft turn. The controller is responsible for setting these inputs.

3.6.2 Friction

The simulator operates with different kinds of friction: static friction, kinetic friction
and rolling friction. It also operates with both normal ground and ice. We used fric-
tion coefficients from a formula collection [Utdanningsdirektoratet, 2005], with minor
adjustments and additions. The friction coefficients are listed in Table 3.4:

Table 3.4: Friction coefficients

Friction/Ground Normal Ice
Static 0.5 0.04

Kinetic 0.4 0.03
Rolling 0.001 0.001

Formula 3.13 is the formula for friction:

R = mgµ (3.13)

• m is the mass of the robot: 0.2 kg

• g is the gravity constant: 9.81 m/s2

• µ is the friction coefficient

3.6.3 Wind Force

We use formulas from fluid dynamics to calculate dynamic pressure, and use this pressure
to find the force inflicted on an object standing in the wind. Formula 3.14 is used to
find the dynamic pressure in a fluid [The Engineering Toolbox, 2014b]:

pd = 1
2ρv

2 (3.14)

Methodology 45

• pd is dynamic pressure in pascals [N/m2]

• ρ is the density of the fluid [kg/m3]

• v is the velocity of the fluid [m/s]

To calculate the drag force on an object from the dynamic pressure, both the projected
surface area of the object and the drag coefficient should be considered. The robot
has a cylinder shape, so parts of the wind should be pushed to the side without giving
much impact force. This is accounted for in the drag coefficient cd of the object. For
small cylinders, like the robot, the drag coefficient cd = 0.8. Formula 3.15 is found by
multiplying these factors. It is used to find the drag force of the fluid [The Engineering
Toolbox, 2014a]:

Fd = pdcdA (3.15)

• Fd is the drag force [N]

• cd is the drag coefficient for the object in the fluid

• A is the projected surface area of the object (the part that the fluid can hit) [m2]

Formula 3.16 is found from combining Formula 3.14 and 3.15:

Fd = 1
2ρv

2cdA (3.16)

Inserting variables related to wind and the robot leads to Formula 3.17:

Fmax
w = 1

2ρairv
2
wcdArobot (3.17)

• Fmax
w is the drag force from the wind, on a robot fully exposed to the wind [N]

• ρair is the density of air in 0 ◦C : 1.29 kg/m3 [The Engineering Toolbox, 2012]

• vw is the velocity of the wind [m/s]

• cd is the drag coefficient of the robot: 0.8

• Arobot is the projected surface area of the robot: 28 cm2

The robots are not necessarily fully exposed to the wind. If one robot is behind another,
the robot in front should absorb and block a part of the wind. Calculating the percent
of wind, γ, in an area, could be very performance heavy, and it needs to be updated
every frame of every simulation. To use this with an evolutionary algorithm and keep
an acceptable runtime, we had to make a simplified model.

The model we made divides the wind area into small cells of 1 cm2, each representing
the percent of wind γc, in the given subarea (cell). Each cell gets its value based on its

46 Modeling Physics

Figure 3.11: The model for calculating approximate blocking of the wind
Update rules example on a small area. The percentage in each cell is γc , the percent of
wind in the area. Cells are updated based on neighbor cells.

neighbors. The update rule starts by setting all cells to 100 % in the row or column
where the wind comes from. In the example in Figure 3.11 the wind direction is east, so
the first column from the left is set to 100 %. All the cells covered by an obstacle are
then set to 0 %, as the obstacles block the wind in those cells. All the other cells are
then updated sequentially, starting from the row or column where the wind comes from.
They are updated based on three neighbor cells, depending on the direction of the wind.
Because the wind is going towards east in the example, the cells should be updated
based on the neighbor cells from the west side (including north west and south west),
using Formula 3.18. The green cell in Figure 3.11 is an example of an ongoing update.
It takes 40 % of its value from the left (west) cell and 30 % from each cell diagonally to
the left. Also a small constant ψ is added, which we found to be good at 1 % for the
current cell size. This represents the wind coming over the object. The model assumes
that the wind is in a direction of either north, east, south or west. The results from
performing these calculations on a larger area with multiple objects are demonstrated
in Appendix B.

The update rule depends on the wind direction. The coordinates of the neighbor cells
need to be changed according to this direction. Formula 3.18 works when the wind is
going from west to east:

γc(x,y) = 0.3γc(x−1,y−1) + 0.4γc(x−1,y) + 0.3γc(x−1,y+1) + ψ (3.18)

• γc is the percent of wind in cell c (an area of the world)

• x and y is coordinates in the cell array

• ψ is the constant related to wind coming over the object: 1 %

Methodology 47

Figure 3.12: Inverse square law illustrated
Partially based on text and figures from HyperPhysics [HyperPhysics, 2012a]. The
surface of the red square is fixed at 1 m2. As the radius r increases, the surface of the
red square becomes relatively smaller, compared to the surface of the whole sphere.

Formula 3.19 is used to reduce the drag force depending on the exposure:

Fw = γcF
max
w (3.19)

• Fw is the drag force from the wind, depending on the wind exposure [N]

• γc is the percent of wind in cell c (an area of the world)

• Fmax
w is the drag force from the wind [N], with full wind exposure (Formula 3.17)

3.6.4 Light

The use of light was not supported directly in the physics engine. We found that the
best approach for us was to calculate light directly between each sensor and light source.
This is a compromise between the accuracy and the performance of the simulator, and
was needed to get a usable runtime. This does however mean that we do not get any
reflections in our simulator, all the light gets absorbed when it hits a surface. Before
using the formulas below, to calculate the light a sensor sees from each light source, we
check that the light source is visible from the sensor.

Sensed light can be measured by the light intensity per square meter, called illuminance
[HyperPhysics, 2012a]. We use the inverse-square law to reduce the measured intensity,
as the distance r from the light source increases. The inverse-square law comes from
looking at the radiation in all directions as a sphere, and is illustrated in Figure 3.12.
When the distance r increases, the energy (going in all directions) is spread over a larger
surface. The energy that hits each square meter of the surface is then decreased.

48 Modeling Physics

Figure 3.13: The light angle of impact, on the sensor
The angle α between the light sensor’s normal ~N and the vector to the light source ~L.

Formula 3.20 defines the illuminance on the light sensors:

E = P0
ASphere

= P0
4πr2 (3.20)

• E is the illuminance, the light intensity per square meter [W/m2]

• P0 is the power from the light source [W]

• ASphere is the surface area of the sphere, with radius r, from Figure 3.12 [m2]

The light has a maximal effect on the sensor only when the sensor points directly towards
the light source, meaning the angle α, between the sensor and the light source, is 0◦. This
angle is illustrated in Figure 3.13. As α increases, the effect of the light decreases. If α
becomes larger than 90◦, the sensor is not able to detect any light from the light source.
This reduction of the effect is accounted for using Lambert’s cosine law [Lambert, 1760].
It states that the intensity of the light that lands on a surface is proportional to the cosine
of the angle α between the illuminating source and the normal of the surface.

Formula 3.21 Lambert’s cosine law [Lambert, 1760]:

light direction factor = cos(α) (3.21)

• α is the angle between the sensor surface normal and the direction of the light
source

The radiant flux ΦE is the total power of the light that lands on the surface of the sensor
[HyperPhysics, 2012b]. It is used further as the value the robot can read from the sensor,
and is measured in watts. It is found by multiplying the illuminance with the sensor
surface area and the light direction factor, resulting in Formula 3.22:

ΦE = EAsensor cos(α) (3.22)

• ΦE is the radiant flux, the power of the light landing on the sensor surface [W]

• E is the illuminance, defined in Formula 3.20

Methodology 49

• ASensor is the surface area of the sensor: 1.0 cm2

• cos(α) is the light direction factor (Lambert’s cosine law)

3.7 The Evolutionary Algorithm

We have used an evolutionary algorithm to evolve the controller of the robots. In the
following sections we will describe why we used an evolutionary algorithm, the genetic
encoding and translation, how we calculated the fitness value for an individual, the
selection mechanisms, and the reproduction process. The main evolutionary process
together with a figure showing the generation cycles, are presented in Section 2.3.1.

3.7.1 Reasons to use Evolutionary Algorithms

We wanted to use an evolutionary algorithm to train the robots, to increase the learning
capabilities of our system. From our background research, we found that many of the
related projects had success with using an evolutionary algorithm in swarm robotics.
This included training robot controllers, evolving artificial neural networks for the robot
behaviors or controllers, and evolving communication methods.

Using an evolutionary algorithm gives advantages for us. Evolutionary algorithms are
good optimization tools on large search spaces that do not require a needle in haystack
solutions, such as our system. Multiple solutions can give good results in our system, but
the search space is very large. We are evolving 9 behavior weights and 4 thresholds, each
of them having 5 bits (n = 5), resulting in 2(9+4)5 = 3.7∗1019 unique combinations. The
algorithm should still be able to find good solutions, without using too much time.

Having an automatic search procedure also makes it easier to adapt the controller to new
scenarios. These scenarios might require new controller solutions, which can be found by
rerunning the evolutionary algorithm with the new scenarios. This can be done without
requiring further human changes of the design or parameters of the system. The evolved
controllers might also end up using solutions humans think of as strange and would
possibly not consider at all. The evolutionary algorithm, however, does not give any
explanations to the solution, which can make them harder to analyze. Even though this
is a drawback, we have not found any alternatives that we could use, which also would
give more explanations to its solutions.

3.7.2 Genetic Encoding and Translation

The genetic encoding is illustrated in Figure 3.14. The genotype consists of binary values
and is m genes long, where each gene consists of n bits. To translate the binary genotype

50 The Evolutionary Algorithm

Figure 3.14: The genetic encoding in the evolutionary algorithm

into the float phenotype, each gene is translated into an integer and then normalized
between a minimum and a maximum value, using Formula 3.23:

float(b) = min+ Integer(b)
maxInteger(n)(max−min) (3.23)

• Integer(b) is the integer value of the binary number b, e.g. Integer(1101) = 13

• maxInteger(n) is the biggest integer with n bits, e.g. maxInteger(5) = 31

• min and max is the minimal and maximal number in the float range

The different genes represent the behavior weights and the thresholds used by the con-
troller. For a behavior weight, the minimum and maximum values are 0.0 and 1.0
respectively. For all the thresholds, the minimum value is 0.0002, while the maximum
value for the distance threshold is 0.3, and the maximum value for the light threshold
is 0.5. We use five bits to represent each gene (n = 5), which means that each float in
the phenotype can be evolved to 25 = 32 different values. We also tried with a higher
number of bits, but it did not give an observable impact on the results.

3.7.3 Fitness

The fitness evaluation returns a number representing the performance of the individual
on a specific problem. In our case, the robots get a score between 0.0 and 1.0 on their
performance on getting to the goal, where 1.0 is the best possible value. The simulator
performs the fitness evaluation. When the simulator is called to evaluate a phenotype,
the float numbers from the phenotype are mapped into the controller. The controller is
then evaluated in a predefined scenario, where the robots can use up to 90 seconds to
reach the goal area.

To get a good fitness value, the robots need to reach the goal area fast. The fitness
function is visualized in Figure 3.15. We use the method of giving partial credit before
the robot reaches the goal, based on the distance between the robot and the goal, in the

Methodology 51

Figure 3.15: Visualizing the fitness function of the evolutionary algorithm
The fitness function in our system (brown), uses partial credit for time and distance in
the fitness score. The aggregated fitness function (blue) gives either 1 or 0 and nothing
in between.

end of the simulation. If the robot reaches the goal, the elapsed time will also be used
as a part of the fitness value. The use of an aggregated fitness function was discussed
in Section 2.5.3 and is also presented in Figure 3.15. The aggregated fitness functions
gives 1.0 if the task is finished and 0.0 otherwise. Our fitness function gives at least two
benefits compared to the aggregated fitness function. The first benefit is that it helps
the evolution when comparing solutions that were not able to reach the goal. A solution
that nearly reached the goal is better than one that did not move at all. By slightly
modifying a solution that nearly reached the goal, the new solution might be able to
reach it. The second benefit is that it makes room for improvements also after reaching
the goal. By reducing the time needed to reach the goal, the robots become better at
the task.

The method of subtracting the optimal time from the total time used on the task, is
used in several of the related projects. We found it hard to calculate the optimal time in
our experiments, given the different unpredictable effects of the environmental features,
such as ice and wind. We decided to only use the total time, and to not subtract
the optimal time. This makes it impossible to get a perfect fitness score of 1.0, since
the robots will always use more than zero seconds to get to the goal area, but the
results from different scenarios are more comparable. This decision should not affect our
selection process negatively, because only the individual with the highest fitness value
or a random individual is selected, and the relative fitness value among the individuals
does not matter.

Each of the four robots is rated independently in the simulator, and the average score
from the robots is used for the overall fitness value. As mentioned, the fitness is based
on both the distance to the goal and the elapsed time.

52 The Evolutionary Algorithm

The score based on distance is calculated using Formula 3.24:

Sr
D = 1− d(t)

d(0) (3.24)

• Sr
D is the score of robot r depending on the distance from the goal

• d(t) is the distance from the goal area at time t, d(0) = the initial distance

The score based on the time used to reach the goal, is calculated using Formula 3.25:

Sr
T =

1− g(r)
tmax

, if goal is reached

0, otherwise
(3.25)

• Sr
T is the score of robot r depending on the time used to reach the goal area

• g(r) is the time robot r has used to reach the goal area

• tmax is the maximal simulation time: 90 s

The fitness scores are then combined and averaged using Formula 3.26. We found that
using 0.9 for the time weight and 0.1 for distance weight had two positive effects. First,
it made the time part of the fitness value more important, but at the same time it gave
the robots room for improvements in the beginning, even before they are able to reach
the goal. Second, when using a tmax = 90 seconds, a fitness reduction of 0.01 means that
the average time increased with one second. This makes it easy to see the differences in
time between two fitness values.

Formula 3.26 combines the distance and time scores for each robot, to an overall fitness
value:

Fitness = 1
|R|

R∑
r=1

(wtS
r
T + wdS

r
D) (3.26)

• R is the set of all robots

• wt is the weight on the time part of the score: 0.9

• wd is the weight on the distance part of the score: 0.1

Using the average of multiple samples to reduce variance
As we discussed in the background chapter, the variance when simulating a controller
could be significant. It is a common solution technique to run a simulation multiple times
and either use the average, the minimal or the median result. Soysal et al. found it best
to keep the simulation steps as small as possible to be able to increase the number of
evaluations of each controller, and use the minimum when combining the results [Soysal
et al., 2007] .

However, after experimenting with using average, minimal and median to combine the
results, we found that using average was more reliable than both minimal and median.

Methodology 53

The minimal could have a large drop in one sample of a good controller, for instance if
three robots assembled together and a forth robot wandered alone. Median was more
reliable, but the results could jump a little here as well. Average gave the most consis-
tent results, so we decided to use average going forward. We found that running the
simulation three to five times before averaging the results, gave a good balance between
lowering the variance and keeping an acceptable runtime. The average of three simu-
lations was only used when finding statistics from hundreds of runs of the evolutionary
algorithm, as this was very time consuming, otherwise the average of five simulations
was used.

Increasing the performance
It is a slow process to perform the fitness evaluation for each individual. Each fitness
evaluation is fortunately independent of the others, making them suitable to do in par-
allel. By starting new threads for each simulation, the system could handle up to eight
simulations at the same time, each of them with four robots. This made the system
around five times faster, on a CPU with four cores and eight threads.

3.7.4 Selection

The selection process first decides which individuals should survive, and thereafter which
of them should become parents. This can be seen as the artificial method of natural
selection in the population. Natural selection is a term Charles Darwin used to describe
the process of real evolution, where traits become less common if they have a negative
effect on the chance of an individual’s reproduction, and more common if they have a
positive effect [Darwin, 1859].

In the evolutionary algorithm we have tested different selection mechanisms, based on
the ones described by Floreano and Mattiussi [Floreano and Mattiussi, 2008]. These
include rank selection, tournament selection, full generational replacement and genera-
tional mixing. The selection process is divided into two steps. The first step is the adult
selection process, were the individuals that survive to adulthood is selected. After the
adults are selected, we have a parent selection process. Here, a number of adults are
selected to become parents. A single adult can be selected multiple times as a parent,
which can result in multiple offsprings from the same individual.

We use full generational replacement as the adult selection mechanism. In this mecha-
nism, all the individuals in the child population will become adults and replace the old
adult population [Floreano and Mattiussi, 2008]. We have chosen to use this mechanism
because we want to keep all individuals, to maintain high diversity in the population.
We also want to make sure that the individuals that are competing against each other in
one generation are also tested in the same generation. This is to make sure an individual
with a high fitness value does not get influence over several generations, without being
evaluated each time, in case it was very lucky in the first evaluation.

We use tournament selection as the parent selection mechanism. In this mechanism,

54 The Evolutionary Algorithm

the individuals from the adult population are divided into tournament groups [Floreano
and Mattiussi, 2008]. We use tournament groups of size 5. Each group will have a
winner chosen by the highest fitness value. However, there is a probability of e, to
choose a random winner. New tournaments are performed, with different groups each
time, until the number of winners are equal to the population size. This means that
an individual can win more than one time. Since there are new random groups each
time, the individuals should get to compete against different individuals in multiple
different groups. All of the winners become parents. We chose to use tournament
selection after testing and comparing with the parent selection mechanisms, such as
fitness proportionate, rank selection, and sigma scaling [Floreano and Mattiussi, 2008].
We found that by using tournament selection, the fitness values were higher earlier in
the generations, i.e., the plots for maximal fitness and average fitness were steeper. The
parameters for group size and the probability variable e have been chosen to get diversity
in the population. With groups of size five, and a population size of 20, there are enough
groups to make sure that not only a few individuals win each tournament. At the same
time, the groups are large enough to make sure that the individuals with low fitness
values do not win too often. The value for the probability variable e is chosen to be 0.3,
because we want a few random winners to keep a diverse population.

3.7.5 Reproduction and Elitism

The reproduction phase of the evolutionary algorithm uses the processes crossover and
mutation, to create new genotypes, and elitism to copy the best genotype. They are all
used to make the individuals of the new child population.

Crossover is a process with similarities to two parents making two children. Two parents
make two new genotypes in the algorithm, by copying a part of the genotype from the
first parent, and the rest from the second. The second genotype is made in the same
way, but using the opposite parents for the first and second part of the genotype. The
point where the parent is changed is called a crossover point, and is in our case selected
randomly. It is also possible to use multiple crossover points, but we saw no advantage
of using more than one.

Using crossover can also have a negative effect on the individuals, because all behavior
weights are relative to one another. For instance, behavior a could be the most important
behavior in parent one, with a behavior weight of 0.5 and an average behavior weight of
0.2, and still not be among the most important behaviors in an offspring, after crossover.
For parent one, 0.5 is a high weight, because the average weight for this individual is
much lower. In parent two, on the other hand, the average behavior weight could be 0.7.
If we consider an offspring, where behavior a is taken from parent one and the rest is
taken from parent two, the weight of behavior a will suddenly be below the new average
behavior weight, even though it was the highest behavior weight for its parent. This
means that behavior a will have a low influence on the offspring, even though it had a
very high influence on the parent. We still found that using crossover gave good results,

Methodology 55

but we ended up with a lower crossover rate than we have used in previous projects,
because of this negative effect. We ended up with a crossover rate of 0.6, which means
that 60 % of the parent population takes part in the crossover process. The last 40 %
of the parent population is copied directly to the genotype pool.

The mutation mechanism in the EA is inspired by natural mutation. For evolutionary
algorithms, it is often distinguished between a mutation rate for each individual and one
more specific for each bit or gene. The first one is the chance that a new genotype will
be selected for the mutation process, and the second one is the chance that a single bit
or gene should be mutated. We keep the first rate at 100 %, meaning all individuals
can be mutated, and then we have a low chance of 1.5 % for each bit to be mutated.
If a bit is selected for mutation, then it is flipped, giving it the opposite value. With
65 bits (9 ∗ 5 + 4 ∗ 5) a mutation rate of 1.5 % means that one bit will be changed on
average (1/65 = 1.5%). Having one or fewer bit mutations on average is preferred, to
not create too much change in a single generation. Too many changes could lead to
very random individuals, making the evolution process harder. Mutations can happen
on genotypes created from both crossover and copying of the remaining parents, but
not on the elites, as they should remain unchanged. Using an adaptive mutation rate
can speed up the evolutionary process. This is demonstrated by Winkler et al., who
used a distance measure to increase the mutation rate in populations with low diversity
[Winkler et al., 2011]. We did not implement an adaptive mutation rate, because our
evolutionary process consistently found good solutions using few generations and a small
population size, so these measures were not necessary to perform our experiments.

We also use elitism, which instead of creating a new genotype by crossover and mutation,
directly copies the genotype of the best adults. Good solutions can easily change to bad
ones by mutation or crossover in our system. For instance if the weight for the goal
converging behavior is turned very low by mutation, or if two parents with high fitness
values produce a child with a poor combination of behavior weights, as discussed. By
using elitism, we ensure that the best solutions are not lost in the following generation.
We used two elites, to make sure the genotypes from the best individuals are kept
unchanged, and at the same time keep the diversity by letting most of the population
evolve using crossover and mutation.

56

Chapter 4

Results and Discussion

In this chapter, the results of our experiments are presented and analyzed. Section
4.1, contains the resulting fitness plots from running the evolutionary algorithm on the
scenarios, with a fixed wind velocity of 6 m/s. Section 4.2 contains the result of the
swarm’s performance, when the wind velocity is gradually increased from 0 m/s to 8
m/s between evolutions. Section 4.3 contains the weights and thresholds of the best
controllers we found in three different experiments. Section 4.4 contains a thorough
analysis and discussion of the presented results, and a discussion of common situations
found when running the best controllers in different experiments.

4.1 Results from the Evolutionary Algorithm

The results from running the evolutionary algorithm on all scenarios are presented in
this section. These runs use our standard setup, with wind velocity at 6 m/s. The
fitness plots for each scenario are placed in Figure 4.1 The fitness of the average and the
best (maximal) individual in each generation are plotted, together with the standard
deviation of the fitness values. Each of these plots comes from averaging the results
from running the evolutionary algorithm 10 times on the given scenario, to give more
accurate data. The runs on each scenario use the same parameters to keep it consistent.
Appendix C, contains similar fitness plots, without averaging over 10 evolutions. The
parameters used for the evolutionary algorithm and the simulator are presented in Table
4.1.

The results from scenario 1, where the wind comes from the north, are presented in
Figure 4.1(a). We observe a steep climb in the first generations, both for average and
maximal fitness. After about 10 generations, the line for maximal fitness stops growing,
around a value of 0.78. A fitness value of 0.78 means that the average robot in the
simulations used 22 seconds to get to the goal area. This is a short time, considering the

Results and Discussion 57

Table 4.1: Parameters for the evolutionary algorithm and the simulator

Population size 20
Generations 50
Adult selection Full generational replacement
Parent selection Tournament selection
Tournament group size 5
Tournament randomness factor e 0.3
Mutation rate (per bit) 1.5 %
Crossover rate 60 %
Number of bits per gene 5
Number of elites 2
Number of samples per plot point 10 evolutions
Runs per fitness evaluation 5 simulations
Number of robots 4
Wind velocity 6 m/s

wind and ice they need to overcome in this experiment. The line for standard deviation
is around 0.2 throughout the evolution.

The resulting plot from scenario 2, in Figure 4.1(b), is similar to the one from scenario
1. This is observed in both the maximal and the average fitness lines, which are just
marginally lower than in scenario 1. The difference between scenario 1 and 2 is the
obstacles added in scenario 2. It is interesting that these had little impact on the
result in these plots. The obstacles bring both advantages, by reducing the wind, and
disadvantages, by forcing the robots to navigate between them, which is especially hard
in bigger groups. Having both a negative and a positive effect might be the reason why
the results are very similar. Another interesting observation is that the lines for maximal
fitness and average fitness in scenario 2, are very steep in the first 5 generations, and
then they flatten out after 10 generations. The line for standard deviation does not show
any significant increase or decrease.

Figure 4.1(c) presents the results from scenario 3. We observe that both the maximal
fitness and the average fitness are slightly higher than in scenario 1 and 2. The difference
from scenario 2 is that the wind comes from the west and not from the north. This makes
it easier to move towards the goal, which is north. The obstacles will still reduce the
movement, but can also block a part of the wind. It is interesting to see that the line for
maximal fitness reaches 0.8 after only 3 generations, and that the line for average fitness
reaches 0.6 after 5 generations. This could mean that it is easy to find a controller that
works well in this scenario.

In scenario 4, the wind comes from the west, and there is a large hole on each side, which
means that the robots only have a small passage they can go through. Figure 4.1(d)
presents the resulting plot from this scenario. We observe that both the maximal and

58 Results with Various Wind Velocities

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4.1: Fitness plots from the evolutionary algorithm
Each point in the plot are averaged from 10 runs of the evolutionary algorithm. The
lines show the average, the maximal and standard deviation of the fitness values.

average fitness are lower than in the other scenarios. This indicates that this scenario
is harder than the other scenarios. The lower fitness values mean that the robots on
average use longer time to reach the goal, if the goal is reached at all. In this case, the
best individuals got a fitness value of around 0.65, which means that the average robot
reached the goal in 35 seconds. If a robot falls into a hole it will contribute zero points to
the individual’s fitness score, resulting in a large reduction in the fitness score for every
robot that falls.

4.2 Results with Various Wind Velocities

We have used the three types of plots found in Figure 4.2-4.4, to explore the use of
self-assembling in wind velocities between 0 and 8 m/s and on the different scenarios.
We describe each type of plot in general, before we consider the information they give
in the different scenarios.

Results and Discussion 59

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4.2: Plots of the best found fitness in different wind velocities
Both with self-assembling turned on and off. Using the average from 8 samples of
evolutions for each point in the plot.

Description of the figures
In Figure 4.2, the best found fitness is plotted, depending on the wind velocity. The
turquoise line on the plot resembles the normal situation in our system. The behavior
weights are trained with evolution and the robot can choose to use the self-assembling
behavior. The green line resembles a situation where the self-assemble behavior is turned
off by setting the behavior weight to be 0.0.

The difference between the turquoise and the green line can indicate the importance of
the assemble behavior. If the two lines have similar fitness values, then the use of the self-
assembling behavior gave no significant improvements to the situation, indicating that
it was not very important in that scenario in the given wind velocity. If the turquoise
line is higher than the green line, then the use of the self-assembling behavior gave
advantages in the situation. This can indicate that it was an important behavior in that
scenario, with the given wind velocity. It is important to note that the turquoise line
should never be below the green line. If the use of self-assembling is disadvantageous in

60 Results with Various Wind Velocities

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4.3: Plots of the average self-assemble behavior weight in different wind velocities
Using the average from 8 samples of evolutions for each point in the plot. All weights
are normalized, so their sum is 1.0. Standard deviation on the self-assemble behavior
weight is listed as SD.

the scenario, the evolution will adapt and turn it off (give it zero weight). The result
should then be that the turquoise and the green line have equal fitness values, as the use
of self-assembling is the only difference between them.

The weights for the self-assemble behavior are plotted in Figure 4.3. It uses data from
the same runs used in Figure 4.2, with self-assembling turned on. It brings additional
information about the actual weight on the self-assemble behavior. The black line il-
lustrates the average weight for the self-assemble behavior. All the weights in this plot
are normalized, so that the sum of the weights in all the competing behaviors for an
individual will be 1.0. The weights are normalized, because only the relative weight is
important when comparing among other individuals. The average behavior weight in

Results and Discussion 61

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4.4: Plots of the connection rate in different wind velocities
The connection rate is the percentage of robots that connected to another robot (self-
assembled). Using the average from 8 samples of evolutions for each point in the plot.

different individuals can be vastly different. For scenario 1 to 3 there are normally six
competing behaviors, resulting in an average behavior weight of 1/6 = 0.17 after normal-
ization. This is illustrated with the gray line in these plots. Here, the follow leader, hole
avoidance and assemble recovery behaviors are not competing with the self-assembling
behavior, as there are no holes in the scenario and the other behaviors cannot be used at
the same time as self-assembling. Note that in scenario 4, the hole avoidance behavior
is active, resulting in seven active behaviors and an average weight of 1/7 = 0.14 after
normalization. The average weight for self-assembling is the average taken from all in-
dividuals in the last generation, and the yellow line illustrates the standard deviation
from the same data.

The average connection rates are plotted in Figure 4.4. It illustrates the percentage of

62 Results with Various Wind Velocities

robots that have connected to another robot during the simulation. It takes data from
all individuals in the last generation, using the same runs with self-assembling on as in
Figure 4.2 and in Figure 4.3. These plots give additional information about the actual
use of self-assembling. Connecting with the gripper is the method the robots have for
self-assembling in our simulator. When a robot connects to another, both robots will be
considered as having been connected.

Parameters
The runs on each scenario use the same parameters as the ones described in Section 4.1,
with two exceptions. The number of simulations per fitness evaluation is reduced to 3
(from 5), and the number of generations is reduced to 25 (from 50), to get an acceptable
runtime. Each data point in these plots comes from the average value when running the
evolutionary algorithm eight times. These artificial evolutions were evaluated on each
of the nine wind velocity integers between zero and eight, both with assembly on and
off.

Using more samples of evolutions per data point, smaller steps for wind velocity, more
generations, and a higher number of evaluations per fitness test was something we
wanted, but could not do because of the runtime. We also turned off the evolving
of thresholds, and set the thresholds to the example values given in Section 3.4.3. Doing
these adjustments could result in a small drop in the maximal found fitness value, but
this compromise was needed to reduce the runtime. Usually the maximal fitness value
stopped growing before the 15th generation, which means that the reduction in the num-
ber of generations should not have a large effect on the results. Considering the need to
do 144 (8 samples * 2 situations (on and off) * 9 wind integers) runs of the evolutionary
algorithm for each scenario, the runtime was still numerous hours per scenario.

Scenario 1
Running the system with scenario 1 resulted in the (a) plots in Figure 4.2-4.4. In the
plot for best found fitness (Figure 4.2(a)), we observe that for wind velocities under
4 m/s, the green line (self-assemble off) is nearly on the same level as the turquoise
line (self-assemble on). The fitness values are above 0.85 in both cases, meaning the
robots used less than 15 seconds on average to reach the goal. As expected, more wind
caused the robots to use more time to reach the goal. This is observed in both lines,
which decrease as the wind increases. The rate of the decrease is, however, much higher
when self-assembling is turned off. When the wind goes from 5 to 6 m/s we observe a
significant decrease in the fitness in the green line (self-assemble off) and only a small
decrease in the fitness value of the turquoise line (self-assemble on).

We observe that the average weight of the self-assemble behavior (black line), in Figure
4.3(a), is considerably lower than the average behavior weight (gray line). We note that
the standard deviation is around 0.03, which is very low, meaning that most individuals
have a weight that is close to the average weight for the self-assemble behavior. We also
note that the self-assemble behavior weight is still not 0.0. Similar to what we observed
from the first plot, there is a significant change in this plot for wind velocities in the range

Results and Discussion 63

4 to 5 m/s. The average weight on the self-assemble behavior goes from 0.07 to 0.23 in
this wind velocity range. From 5 m/s wind, the weight on self-assembling is higher than
the average behavior weight. We observe this sudden change in Figure 4.4(a) as well.
The average connection rate, the percentage of robots involved in self-assembling goes
from being well below 0.2 when the wind velocity is 4 m/s or less, to becoming above
0.9 when the wind reaches 5 m/s in velocity.

Scenario 2
The results from scenario 2 are illustrated by the (b) plots in Figure 4.2-4.4. Figure
4.2(b) is very similar to the plot from scenario 1, Figure 4.2(a). In the plot for the
self-assemble weight, Figure 4.3(b), we observe that the black line (average self-assemble
weight) started at 0.06 and increases to 0.1 when the wind velocity is 4 m/s. This is
earlier than for scenario 1, which has a nearly straight line from 0 to 4 m/s. The self-
assemble weight in scenario 2 increases even more for the wind velocities 5 and 6 m/s,
before it flattens out from 6 to 8 m/s, at a weight of 0.23. The increase was lower than
for scenario 1, which went from weight 0.07 to 0.3, between the wind velocities 4 and
8 m/s. In Figure 4.4(b), we observe that the average connection rate has higher values
from the beginning for scenario 2 compared to scenario 1. There is a small increase from
0.18 to 0.25 for the wind velocities from 0 to 3 m/s. For the wind velocities 4 and 5 m/s,
there are significant increases in the average connection rate. From a value of 0.93 for
wind velocity 5 m/s, the average connection rate slowly increases towards a value of 1.0
for 8 m/s.

Scenario 3
Having very similar plots for scenario 1 and 2, the differences in the results from scenario
3 are clearer. The plots from scenario 3 are presented in the (c) plots in Figure 4.2-4.4.
In the best found fitness plot (Figure 4.2(c)), we observe a less steep decline in fitness,
as the wind velocity increases. The turquoise line (self-assemble on) goes from a fitness
value of around 0.9 to 0.8, which is a much smaller decline compared to scenario 1 and
2, where this line went from around 0.9 to around 0.7 in both scenarios. In the green
line (self-assemble off), the change is even larger. This line begins with a fitness value
around 0.85, when the wind velocity is 0 m/s, in all three scenarios. In the two first
scenarios the green line ends with a fitness value around 0.1, when the wind velocity
is 8 m/s. In scenario 3 however, this line only drops to a value of about 0.5. Another
interesting observation from this figure, is that it is first at wind velocity 8 m/s, that
the difference between the lines is larger than 0.2. This happens much earlier in the first
two scenarios, at 5 m/s wind in both cases.

The plot of the weights for the self-assemble behavior (Figure 4.3(c)) in scenario 3 is more
similar to the first two. The black line, representing the weight on the self-assembling
behavior starts off very low, and so does the standard deviation. Similar to the first two
scenarios, the black line starts increasing when the wind velocity becomes larger than 4
m/s. The line grows to a weight of 0.3 when the wind velocity is 8 m/s, which is the
same result as in scenario 1. The increase is however much slower than in both of the
first two scenarios. The point where the self-assemble behavior weight becomes larger

64 Resulting Behavior Weights and Thresholds

than the average behavior weight is between 6 and 7 m/s, compared to between 4 and 5
m/s in the first two scenarios. In the connection rate plot, in Figure 4.4(c), we observe
similar characteristics. It looks like the ones from the first two scenarios, as it has a very
small connection rate from the beginning, and by the end, it has grown to near 100 %.
The increase is, however, much slower than in the first two scenarios.

Scenario 4
The results from scenario 4 are illustrated by the (d) plots in Figure 4.2-4.4. For scenario
4, the plot in Figure 4.2(d), is very different from the other scenarios. It is similar to
scenario 3 from wind velocities of 0 to 5 m/s, but after that, both the turquoise (self-
assemble on) and the green (self-assemble off) lines decrease significantly, as the wind
velocity is gradually increased to 8 m/s. The turquoise line goes from a value of 0.9 to
0.1, and the green line goes from a value of 0.83 to 0.07. This is the only scenario where
the turquoise (self-assemble on) line decreases almost as much as the green (self-assemble
off) line. It is interesting to see that even though they both decrease so drastically, the
turquoise line is still above the green line, which means that the self-assemble behavior
gave at least a small advantage.

The plots for self-assemble behavior weight, in Figure 4.3(d), and average connection
rate, in Figure 4.4(d), are also very different from the other scenarios. In the plot for the
self-assemble weight, the black (average for assemble weight) line is nearly straight from
0 to 6 m/s, at a value around 0.05. The value of the average behavior weights are lower
in this scenario, because we also use the behavior for hole avoidance, which is not used in
the other scenarios. At wind velocity 7 m/s, the black line (average weight for the self-
assemble behavior) increases towards the gray line (the average behavior weight) at 0.14,
and then it decreases for 8 m/s, towards 0.06. In this scenario, the self-assemble weight
is thereby never above the average behavior weight. The plot for average connection rate
illustrates that the connection part of the self-assemble behavior is not used very often,
compared to the other scenarios. The connection rate is approximately a straight line
from 0 to 6 m/s, at a value around 0.1, then it increases towards 0.6 for a wind velocity
of 7 m/s, and drops towards 0.2 for 8 m/s. This pattern corresponds to the plot for self-
assemble weight. In the plots for the other scenarios, the lines start increasing after 3 to
4 m/s and continue to increase steeply until the last wind velocity at 8 m/s. Scenario 4
is the only scenario where the connection rate has a significant decrease.

4.3 Resulting Behavior Weights and Thresholds

In this section, we present the best individuals we found in three different situations and
compare their behavior weights and thresholds. We chose scenario 1 with 0 m/s wind
and 6 m/s wind, to see how the wind affects the weights and thresholds, and scenario
2 with wind at 6 m/s, to compare the effect of the different scenarios. The parameters
used here are the same as used in the evolutions described in Section 4.1.

Results and Discussion 65

Table 4.2: Evolved controller variables

Symbol S1(0 m/s) S1(6 m/s) S2(6 m/s) Description
wb

1
(a)0.26 (a)0.16 (a)0.25 The goal converging b. weight

wb
2 0.08 0.15 0.07 The wander b. weight

wb
3 0.27 0.01 0.11 The maintain turn b. weight

wb
4

(b)0.02 0.23 0.16 The self-assemble b. weight
wb

5 0.16 0.11 0.01 The follow leader b. weight
wb

6
(c)0.10 (c)0.17 (c)0.14 The collision avoidance b. weight

wb
7 (No holes) (No holes) (No holes) The hole avoidance b. weight

wb
8 0.0 0.04 0.14 The stagnation recovery b. weight

wb
9 0.10 0.14 0.12 The assemble recovery b. weight

ΓDC 0.17 0.09 0.18 Distance threshold, close distances
ΓDF

(d)0.27 (d)0.30 (d)0.30 Distance threshold, far distances
ΓLC 0.06 0.05 0.02 Light threshold, close
ΓLF

(e)0.002 (e)0.002 (e)0.002 Light threshold, far away
Evolved controller variables for the robots running on Scenario 1 (S1) and Scenario 2
(S2), for wind velocity 0 m/s and 6 m/s

The result is presented in Table 4.2. The weights are here normalized to make them
comparable, as only the relative weight between the behaviors affects the influence of
each behavior. When comparing the weight, we look at trends in the data and not
the exact weights. This is because multiple solutions can give good results, and there
are additional variance sources because of the dependencies between the weights. For
instance if the self-assemble behavior weight is 0 or nearly 0, then the follow leader and
the assemble recovery behavior weight will not matter much for the individual. The
weights of these behaviors will then not have a significant effect on the fitness value,
making them difficult to train. We observed trends in the weights in Table 4.2, and have
verified that these trends happen over multiple runs, and not only from the ones listed
in this table.

The first trend is that the goal converging behavior weights, marked with (a) in the
table, are higher than the average behavior weight (1/8 = 0.125). This behavior is, as
the name implies, responsible for making the robots finish their main task, moving to
the goal, so it is not surprising that it is evolved to have an above average weight in all
three situations. The second trend is that the self-assemble behavior weights, marked
with (b) in the table, are much higher in the situations where the wind velocity is 6
m/s compared to 0 m/s. This is similar to what we observed in the results presented in
Section 4.2.

A third trend is that the collision avoidance behavior weights, marked with (c) in the
table, are high. They are either near average or above the average behavior weight in all
three situations. There is no fitness punishment or possibility of destroying components

66 Discussion

when the robots collide in our simulator, but there are still reasons to have a high
collision avoidance. A collision can take time to navigate away from and the friction will
cause the robots to move slower if they are bumping into a wall. In addition, driving
into a wall means that the robot is not driving in the right direction.

We observe that the distance threshold for far distances are always near the maximal
value of 0.3 (the distance sensor is able to detect obstacles 0.3 meters away). These are
marked with (d) in the table. For the collision avoidance behavior, a high threshold
means it will start avoiding an obstacle as soon as it is detected. Note that the situation
weight of the collision avoidance behavior becomes 0.5 if an obstacle is detected closer
than this threshold. The situation weight becomes 1.0 if the distance is shorter than the
distance threshold for close distances. This threshold had much lower values than the
values for the far distance threshold, but the variety was also larger.

The light threshold for recognizing that a light sensor has sensed a light far away, is also
evolved to an extreme value, the minimal value in its range (0.002 W), marked with
(e) in the table. Compared to a higher threshold, a lower threshold leads to the robots
being able to start converging at longer distances. With a threshold this low, the goal
converging behavior will try to converge towards the goal as soon as it senses light that
is close to red light and above 0.002 W. This is reasonable because it is advantageous
to converge early, and there are no disadvantages to do so in the simulator. However, a
real sensor would possibly have more noise in the data, resulting in a higher threshold
to make sure it is not just noise.

4.4 Discussion

We use examples from running simulations and the results from the previous plots, to
analyze the use of self-assembling in these experiments. We begin by discussing the use
of self-assembling when the wind is low (0 to 4 m/s), and then consider the differences
when the wind velocity is increased, before analyzing additional situations, including
situations where self-assembling gave few advantages.

4.4.1 Self-assembling in Low Wind Velocities

Self-assembling gave small improvements when the wind velocity was low. This is indi-
cated by the small difference in the fitness values plotted in Figure 4.2 for wind in the
range 0 to 4 m/s, in all scenarios. With these low wind velocities, the robots could easily
navigate the environments, and are able to reach the goal fast, even when they travel
alone. A common run of the simulation is illustrated in the screen shots in Figure 4.5.
The opposing wind scenario is used, but the wind velocity is set to 0 m/s. Without the
wind we observe that it is easy for the robots to move from the start area to the goal.

Results and Discussion 67

(a) t = 0 (b) t = 5 (c) t = 8 (d) t = 14

Figure 4.5: Screenshots: connection not used in an experiment without wind
Taken on scenario 1, with opposing wind (0 m/s) and the ability to self-assemble turned
on. Screenshots taken on time t, the duration from the start of the simulation.

In this run they all reached the goal in less than 15 seconds, without connecting to each
other.

From Figure 4.3, we observed a clear trend when the wind is in the range of 0 to 4 m/s.
The average weight on the self-assemble behavior, the black line, is around 0.05 to 0.1 for
all scenarios. This is lower than the average behavior weight after normalization, which
is 0.17 in scenario 1-3 and 0.14 in scenario 4. The low weights for the self-assembling
behavior indicate that this behavior is not much used in this situation.

This is confirmed by the low connection rates in Figure 4.4, when observing the same
wind range. We observed that the standard deviation line, in Figure 4.3, has a low value
of around 0.04 in all scenarios, for low wind velocities. This means that most individuals
have a self-assemble weight that is close to the average self-assemble weight for the entire
population. This can indicate a high selection pressure on this behavior weight, and that
having a self-assembling weight close to this value is important to get the best results.
The low weight on the self-assembling behavior in the given wind range is observed in
each scenario, and each of them were found using multiple samples. The consistency
indicate that this result is not random. Given that the weight for the self-assembling
behavior is both important and consistent, and at the same time is well below the average
behavior weight, we believe that it must be a reason to why evolution has nearly turned
it off in this wind range.

We have found three disadvantages for using the self-assembling behavior, which can
be the reason for the low behavior weight when the wind is low. The first is that

68 Discussion

it is harder for the robots to navigate in a self-assembled structure. With their limited
communication methods, they are not able to vote among them to decide which direction
to move in. They are only trying to follow the movement from the robot in front of them.
In scenario 4, we also observed that the entire group of assembled robots could fall in the
holes if one of them fell in, and in scenario 1 and 2 it was harder for a larger structure to
navigate between the obstacles. We will look closer at these situations later. The second
disadvantage is that it takes time to self-assemble. We observed that the best robots are
on average able to reach the goal in 10-15 seconds in scenario 1, when there is no wind.
The 2 seconds used on the connection process becomes a significant amount of time in
this situation, especially if it happens with multiple robots, connecting in sequence. The
third disadvantage is that trying to self-assemble can lead the robot in other directions,
than what other behaviors want. Votes from the self-assembling behavior might result
in not performing the action that had the most votes before. For example, if there is
a goal on the left side and another robot on the right side of the robot, depending on
the distances and the behavior weights, the robot might choose to self-assemble with the
other robot, instead of going towards the goal.

With these disadvantages in mind one could easily believe that the best individuals
would turn the self-assembling behavior off. However, as we observed in Figure 4.3, this
is not the case. The average behavior weight for self-assembling is lower than the average
behavior weight, but not completely off. In Figure 4.2 it is also clear that using self-
assembling gave small advantages also in the wind range of 0 to 4 m/s, as the turquoise
line is always above the green line in each scenario. We have found two reasons for why
this low self-assembling weight is still advantageous. First, it is so low that it will not
often interfere with other important tasks. Second, by going towards other robots there
are better chances of going in a good direction, since the other robot is heading that
way. The other robot is probably not driving straight into a wall, and might even have
sensed the goal and is on the way towards it. This may also explain why the robots are
grouped together on the left side in Figure 4.5, which occurred in many of the runs we
observed.

Note that going towards other robots is listed as both an advantage and a disadvantage.
If the self-assembling weight is very high, its votes might be so large that the votes
from other behaviors does not matter much. It can then happen that it would do the
opposite of other behaviors. This could be a disadvantage, like in the example of not
going towards the goal, if it sees a robot in another direction. However, when the weight
on self-assembling is very low, the votes from the other behaviors matter more. Now it
is probably only able to influence the decision between actions that the other behaviors
also want. This results in a possible advantage, because these decisions can be slightly
better, as there are more cooperation.

Results and Discussion 69

(a) t = 1 (b) t = 7 (c) t = 20 (d) t = 90

Figure 4.6: Screenshots: robots using a long time to overcome the wind and ice alone
Taken on scenario 1, with opposing wind (6 m/s) and the ability to self-assemble turned
off. Screenshots taken on time t, the duration from the start of the simulation.

4.4.2 Self-Assembling in Higher Wind Velocities

As expected, the environments become more difficult for the robots to traverse when the
wind has a higher velocity. This is indicated by all plots in Figure 4.2. In all scenarios
the fitness value is higher when the wind velocity is 0 m/s compared to 8 m/s, both when
the ability to use self-assembling is turned on, and off. In scenario 1 and 2 the plots are
very similar. When the wind goes from 4 m/s to 8 m/s and the self-assembling behavior
is turned off, the fitness result in both plots (Figure 4.2(a) and 4.2(b)) falls from a value
of around 0.8 to a value below 0.1. Note that this fitness value is below the value given
to individuals for reaching the goal (with an average robot), which is 0.1. This means
that the average robot is not even able to reach the goal in the given 90 seconds.

A common run of the simulation with a strong wind and the ability to self-assemble
turned off, is illustrated in the screenshots in Figure 4.6. Scenario 1, the opposing wind
scenario, is also used here, but this time the wind velocity is set to 6 m/s. The strong
wind makes the environment harder to traverse for the robots. The main challenge
brought by the wind is that it counteracts the forward force from the robot motors,
making their acceleration and velocity lower. This can cause problems with the robots
moving forward, especially when the robots are driving on ice, as their forward force is
already much lower because of the reduced grip. From the observations when running
the simulator and the screenshots depicted here, we can confirm that it is the traversing
over the ice area that takes the longest time for the robots. Three of the robots reached
the ice area after 7 seconds in Figure 4.6, but none of them had passed the ice area when

70 Discussion

the simulation stopped after 90 seconds. This is a significant difference from the run in
Figure 4.5, where the robots only spent about 10 seconds on crossing the ice area.

When the robots start to have problems overcoming the wind and ice alone, we observe
a significant increase in the average weight for the self-assemble behavior. This increase
is clear in scenario 1 to 3 in Figure 4.3. For instance in scenario 1, the weight for the
self-assemble behavior is increased from 0.06 to 0.25, when the wind goes from 4 m/s
to 5 m/s. The weight goes from being way below the average behavior at 4 m/s, which
is 0.17, to become above average at 5 m/s. When the assemble weight increases, the
actual connection rate, observed in 4.4(a), increases as well, as expected. The connection
rate changes from being below 0.2 to becoming above 0.9 in the same wind range. This
displays that the robots actually complete the connection process over 90 % of the time
when the wind is strong. The results from both scenario 1 and 2 are similar.

In scenario 3, we also observed that the self-assembling behavior weight starts below
average, at low wind velocities. Similar to scenario 1 and 2 the self-assembling behavior
weight gets higher when the wind gets stronger. In this scenario however, the first time
this weight is larger than the average behavior weight, is when the wind velocity is
between 6-7 m/s. This is later than in scenario 1 and 2, where it already happened with
wind between 4-5 m/s. In scenario 3, the wind comes from the side, which resulted in
lesser significance of the impact from the wind. From Figure 4.2(c) we observed that the
first significant impact from the wind on the fitness values happened at a higher wind
velocity in this scenario, compared to the other scenarios.

The increased use of self-assembling in the first three scenarios gave significant improve-
ments for the robots. When the wind goes from 4 m/s to 8 m/s and the self-assembling
behavior is turned on, then the fitness result in both plots (Figure 4.2(a) and 4.2(b)) falls
from a value of around 0.85 to a value around 0.65-0.7. The decrease for the turquoise
(self-assemble on) lines are smaller than for the green (self-assemble off) lines in these
scenarios, which fell from a value of around 0.8 to a value below 0.1. The fitness score of
0.65 means that the average robot used 35 seconds to reach the goal. This is better than
when self-assembling was turned off, where not all robots reached the goal. In scenario
3, it is also clear that using self-assembling is an advantage when the wind is 8 m/s. The
turquoise line decreases very slow in this scenario, while the green line has a significant
fall from around 0.75 to around 0.5 when the wind velocity is between 7-8 m/s.

When self-assembling is turned on, in the same situation as in Figure 4.6, the robots
perform considerably better. A common situation that appeared in these new runs is
illustrated in the screenshots in Figure 4.7. The robots start to follow each other from
the beginning, and are able to self-assemble into a chain of robots, before reaching the
ice area. By moving in a chain formation in the opposite direction of the wind, the
robots are able to traverse the ice area in less than 15 seconds. This is a very good
result compared to the situation we presented in Figure 4.6, where they could not use
self-assembling. In that situation, they used more than 80 seconds in the ice area, and
were not past the ice at the end of the 90 given simulation seconds.

Results and Discussion 71

(a) t = 0 (b) t = 2 (c) t = 13 (d) t = 23

Figure 4.7: Screenshots: robots self-assemble to overcoming the wind and ice together
Taken on scenario 1, with opposing wind (6 m/s) and the ability to self-assemble turned
on. Screenshots taken on time t, the duration from the start of the simulation. On
t = 13 the robots have connected to each-other with their gripper.

We have found three main reasons to why self-assembling is helpful when the wind is
strong. The first reason is that a robot moving against the wind can block much of
the wind from robots right behind it. This results in increased thrust from the robot
behind, which increases the forward push on the robot in front. The second reason is that
pushing other robots is easier if some of them are on ice and others are not. The robots
that are not on ice have great grip, while the robots they are pushing or pulling have low
friction against the ice beneath them. The third reason is already discussed when we
analyzed why the robots still use self-assembling, but with a low weight, when the wind
velocity is low. The reason is that following other robots can be advantageous, because
there might be a good reason to why a robot is heading in a specific direction.

We observed in the fitness plots in Figure 4.1 that good controllers with fitness values
around 0.8 can be evolved in scenario 1 to 3, this was also confirmed in Figure 4.2. In
these scenarios, a fitness value close to the maximal found during the whole evolution
was found in less than 10 generations. This implies that finding a good solution, in
these scenarios, is not very hard for the evolutionary algorithm. Scenario 4 however,
ended up with a much lower maximal and average fitness value in Figure 4.1(d). The
evolutionary algorithm did not find a better solution than the ones giving a fitness value
slightly above 0.6. In the plot in Figure 4.2(d), the result for wind velocity 6 m/s, was
slightly higher. The reason for this might be high variance in the results. We believe
that the high variance comes from the fact that this scenario is hard for all controllers,
because the robots can easily fall into the holes.

72 Discussion

The plot for best found fitness for scenario 4 (in Figure 4.2(d)), gave very different
results compared to the plots from the other scenarios. For the lower wind velocities,
the best found fitness is above 0.8, like in the other scenarios. The green line, taken
from runs where assembling is turned off, suddenly has a drastic decline, when the wind
is in the range 5-7 m/s. Having a sudden drop in this green line is also similar to the
other scenarios. The major difference however, is that the turquoise line, for runs using
self-assembling, has an equally large drop as the green line. In the other scenarios,
using self-assembling gave a large advantage, but with the lines being that close in this
scenario, we cannot say that a very significant advantage was found.

For scenario 4, the plots that show the use of self-assembling in Figure 4.3(d) and average
connection rate in Figure 4.4(d), are also very different compared to the other scenarios,
which all have more similar plots. The average weight for the self-assembling behavior
never becomes larger than the average behavior weight, and the average connection rate
is lower compared to the other scenarios. The self-assembling behavior weight does have
a spike, going up to the average line at 7 m/s, but decreases again at 8 m/s. As we
will discuss when looking at specific situations from this scenario, robots moving in a
self-assembled swarm can easily fall into a hole, dragging the whole group down. This
could be the reason for why the self-assembling behavior weight is low in this scenario,
even when the wind is 8 m/s. It is, however, important to note that the fitness score
is very low at 7 m/s and 8 m/s wind in Figure 4.2(d). This could mean that none of
the solutions did significantly better than the rest, resulting in a high variance in the
evolved weights. This variance could also be a part of the reason for the spike at 7
m/s, in the plots for the self-assemble weight in Figure 4.3(d) and the connection rate
in Figure 4.4(d).

The sudden increase in use of self-assembling
The use of self-assembling had a sudden and large increase between the wind velocities
4-6 m/s, in scenario 1, 2 and 3. To understand why the increase was so sudden, it is
important to look at the difficulties the robots would get, if they had not used self-
assembling. We will consider situations from scenario 1, to find the reason for this
sudden increase in the use of self-assembling. We have already discussed the problems
that the robots had when going over the ice area alone, with a wind velocity of 6 m/s.
These problems were also observed in the screenshots in Figure 4.6. When running the
simulation on the same scenario, with wind velocity decreased to 4 m/s, we observed a
clear difference, which is presented in the screenshots in Figure 4.8. In this wind velocity,
the robots can still easily traverse the ice area. This is observed from t = 4, where the
two leading robots are in the beginning of the ice area, and they are nearly at the end
of it when t = 11.

We have already implied, from analyzing the plot in Figure 4.2(a), that traversing this
scenario becomes much harder without self-assembling, when the wind velocity is in-
creased from 4 m/s to 6 m/s. These screenshots support this implication. When using
self-assembling to a large degree, we observed, in the screenshots in Figure 4.7 and from
analyzing the plots in Figure 4.2(a), that traversing the environment becomes easier,

Results and Discussion 73

(a) t = 4 (b) t = 11 (c) t = 20 (d) t = 38

Figure 4.8: Screenshots: the robots easily overcomes the ice area with 4 m/s wind
Taken on scenario 1, with opposing wind (4 m/s) and the ability to self-assemble turned
off. Screenshots taken on time t, the duration from the start of the simulation.

even with the wind velocity at 6 m/s.

Traversing the environment with wind at 4 m/s is easy for the robots. The disadvantages
of heavy use of self-assembling overcomes the benefits. When the wind is increased to
6 m/s, the environment becomes much harder to traverse. The advantages of using
self-assembling to a high degree is now much larger, while we believe the disadvantages
are the same as before. The advantages now out weights the disadvantages. This is the
reason for the large and sudden increased use of self-assembling, between wind velocities
of 4 m/s and 6 m/s, in scenario 1.

4.4.3 Analyzing Additional Situations

We ran simulations of the best controllers found during the evolutionary runs in Section
4.1, and found interesting patterns in how the robots behaved in the different scenar-
ios. The wind speed was set to 6 m/s in all scenarios. In this section, we describe
situations from different scenarios and explain how they occurred. We also explain why
self-assembling gave few advantages in scenario 4.

A situation that often occurs in scenario 2, is that the robots connect to each other in a
chain formation and use the obstacles as shields from the wind, as illustrated in Figure
4.9. By moving in a chain formation, they can also shield the wind for each other,
since they are moving against the wind direction, which means that they can move
faster than one robot alone. In this situation, the behavior weights for self-assembling,

74 Discussion

(a) t = 1 (b) t = 8 (c) t = 17 (d) t = 22

Figure 4.9: Screenshots: the robots reach the goal in a chain formation (S2)
Taken on scenario 2, with opposing wind (6 m/s). Screenshots taken on time t, the
duration from the start of the simulation.

follow leader, collision avoidance and stagnation recovery were high, while the assemble
recovery behavior weight was low. The combination of these behavior weights made
the swarm able to move easily between the obstacles towards the goal, without being
stuck in any obstacles. The high weight on the collision avoidance behavior helped the
swarm not to collide with the obstacles, resulting in a lower chance of them becoming
stuck. The distance thresholds were especially important for obstacle scenarios. The
threshold for the far distance range was evolved to 19 cm, while it was evolved to 3.9
cm for the close distance range. This made the robots able to get close enough to the
obstacles to be shielded from the wind, but not become stuck to the obstacles. Self-
assembling, in combination with goal converging and follow leader helped the robots to
move fast towards the goal. The goal converging behavior made the first robot in the
chain stay focused on the goal, while the follow leader behavior made the rest of the
robots follow the movements of the robots in front of them. Having a low behavior weight
for the assemble recovery behavior means that the robots will seldom disconnect from
each other, when they have first connected. The controller has thereby learned through
evolution that self-assembling in this scenario, with this wind velocity, is beneficial. This
is also confirmed by the high connection rate for wind velocity 6 m/s in the plot in Figure
4.4(b), and by the high average behavior weight for self-assembling in the plot in Figure
4.3(b).

In scenario 3, we observed the same situation as in scenario 2, that when the self-
assemble behavior weight was high, usually all the robots connected to each other in
a chain formation and moved between the obstacles towards the goal. This situation

Results and Discussion 75

(a) t = 12 (b) t = 16 (c) t = 20 (d) t = 29

Figure 4.10: Screenshots: the robots reach the goal in a chain formation (S3)
Taken on scenario 3, with wind from the side (6 m/s). Screenshots taken on time t, the
duration from the start of the simulation.

is captured in Figure 4.10, and is also documented by the plots in Figure 4.3(c) and
Figure 4.4(c), for wind speed from 6 to 8 m/s. The obstacles in this scenario can be a
disadvantage in low wind speeds, because it is easy for long chains of robots to become
tangled around them, and to be slowed down from friction against the obstacles. In
cases with high wind speeds, on the other hand, the obstacles can give advantages. If a
chain of robots move on the right side of the obstacle, at least one robot will be sheltered
from the wind, while they pass by. The sheltered robot(s) will not be pushed as much in
the wind direction as the others, and can thereby keep the others from sliding as much
as they would if the obstacle had not been there. This effect will be beneficial until the
last robot in the chain has passed the obstacle. A chain of robots moving on the left
side of an obstacle, as in the figure, can experience a similar effect. The difference is
that the obstacle will no longer shelter the robots, but can physically keep them from
being pushed by the wind. Even if only a few robots are near an obstacle, it will affect
the rest of the chain as well, because the robots will not be pushed as far as they would
have been without the obstacle. When a robot is in contact with an obstacle, friction
between them can slow down the robot. However, in the situations we observed, the
swarm was always able to drag the colliding robots away from the obstacles.

We sometimes observed that one or two robots could be left behind, and not always
reach the goal. This happened more often when the self-assemble behavior weight was
lower than the average behavior weight. An example of this situation is captured in
Figure 4.11, where a robot becomes stuck behind an obstacle, and does not manage to
reach the goal before the maximal time is used. In this situation we also observed that

76 Discussion

(a) t = 3 (b) t = 10 (c) t = 14 (d) t = 90

Figure 4.11: Screenshots: situation where one robot is left behind
The rest of the robots reach the goal by connecting to each other. Taken on scenario 3,
with wind from the side (6 m/s). Screenshots taken on time t, the duration from the
start of the simulation.

the stagnation recovery weight was lower than the average behavior weight, which made
it difficult for the robot that was alone, to get away from the obstacle. In this case, the
robot was turning and moving forward and back again, because of the wind. The robot
was not standing completely still, which meant that the stagnation recovery behavior
did not activate the recovery mode. We observed that the goal converging behavior
weight was high, and that the front sensor of the robot could sense the red light from
the goal. This means that the forward action got a strongly weighted vote from the
goal converging behavior, in addition to the standard vote from the wander behavior.
The collision avoidance behavior voted to get away from the obstacle, but did not vote
negative on the forward action, because the front sensor did not sense the obstacle. This
can possibly have caused most of the turning movements of the robot. The collision
avoidance behavior weight was lower than the goal converging weight, in this case. The
result was that the winning action shifted between being the action of the direction of
the goal and the left turn action. In addition, the robot was unable to get away from the
obstacle because of the friction between the robot and the obstacle and the strong wind
that went in the opposite direction of the robots’ forward direction. Since this situation
does not occur too often, the controller has not learned to avoid it. In most cases, the
robot will manage to get away from the obstacle, or get help from the other robots. This
situation shows the importance of self-assembling in this scenario.

In scenario 4, we observed that the self-assemble behavior influenced the movement of the
robots, even though its behavior weight was very low in all of the controllers we looked

Results and Discussion 77

(a) t = 4 (b) t = 8 (c) t = 22 (d) t = 32

Figure 4.12: Screenshots: situation where triangular formation is used to reach the goal
Taken on scenario 4, with wind from the side (6 m/s) and holes. Screenshots taken on
time t, the duration from the start of the simulation.

at, including the ones in Figure 4.3(d). A low weight on the self-assemble behavior is
usually not enough for activating the grip action. This is confirmed by the plot for
average connection rate in Figure 4.4(d). Even small weights can, however, have an
impact on the movement actions, and make the robots follow each other. This is similar
to the situations where low weights on the self-assembling behavior, was used in low
wind velocities to make the robots follow each other without connecting, as described
in Section 4.4.1. Scenario 4 is a special case since the self-assemble behavior weight is
evolved to be low in experiments with high wind velocities as well.

We also observed that the robots sometimes would form a triangular formation, without
physically connecting to each other. This is captured in Figure 4.12. In this situation,
the robots got the benefits of wind blocking, and also the ability to move freely without
limitations of being connected to others. When they did not need the help from the
others anymore, they broke out of formation and continued towards the goal. This
situation can be explained by the combination of two advantages. First, the advantage
of following each other. Second, by the advantage of moving faster when another robot
is blocking the wind. The wind blocking can explain how they got into the cluster
formation, since the robots blocking the wind would move slower than the robots in
shelter of them, in the opposite direction of the wind. In very few cases, we observed
the same triangular formation, in an assembled group of robots. This kind of situation
seldom occurs since the robots have small connection areas, leading to a small chance
that two robots manage to connect to the same area. Because the gripper is fixed on the
front of the robot, the triangular formation can lead to the connecting robots not facing

78 Discussion

(a) t = 3 (b) t = 6 (c) t = 10 (d) t = 16

Figure 4.13: Screenshots: situation where the robots move along the right hole edge
The robots are able to reach the goal. Taken on scenario 4, with wind from the side
(6 m/s) and holes. Screenshots taken on time t, the duration from the start of the
simulation.

in the exact same direction, as each other or the robot in front. This slows the robots
down. The connection area is currently not very large, to avoid this problem.

Self-assembling gave few advantages in scenario 4
When doing experiments on scenario 4, we observed that self-assembling gave few ad-
vantages. The weight of the self-assemble behavior in this scenario was usually very low,
as discussed earlier. This indicates that a high weight on this behavior is not advan-
tageous in this scenario. The following paragraphs contain a discussion of a situation
where connecting to each other would not be an advantage for the robots, and another
situation where neither connection nor following each other was an advantage.

In the first situation, we observed that the robots often reached the goal if they followed
each other on the right side of the environment, and then moved slowly next to each
other with their backs to the edge of the right hole. Their direction was angled between
the direction of the goal and the direction opposite of the wind direction, to be able to
move towards the goal. An example of this situation is captured in Figure 4.13. In this
situation, it was an advantage to be able to follow each other without connecting to each
other.

A second situation that often occurred, was that the robots followed each other towards
the left hole. They then turned away from this hole, making them move in the direction
of the wind straight towards the right hole, without knowing it. When they finally sensed
the right hole, it was too late to avoid it, before falling in one by one. This situation

Results and Discussion 79

(a) t = 3 (b) t = 5 (c) t = 7 (d) t = 10

Figure 4.14: Screenshots: situation where the robots move along the edge of the left hole
The robots then turn right to avoid the hole, and are later not able to get away from the
right hole. Taken on scenario 4, with wind from the side (6 m/s) and holes. Screenshots
taken on time t, the duration from the start of the simulation.

is captured in Figure 4.14. This is a situation which is hard to avoid, because there is
no way for the controller to learn not to move towards the left in the beginning of the
simulation. The hole avoidance behavior works hard to avoid the second hole, but does
not succeed because of the short range of the hole sensors, and the large momentum the
robots have achieved when moving in the same direction as the wind, while on ice. If the
robots had been connected to each other, it would probably have been even harder to
try to avoid the hole, since the movement of the robots would depend on other robots.
The controller could have evolved an even lower weight for the assemble behavior to
try to avoid that all of the robots follow if one robot turns towards the left side of the
environment in the beginning. The self-assemble behavior thereby has few advantages
in this situation. However, the assemble weight was not set to 0.0 in any of the cases we
looked at, because it is an advantage to follow each other in other situations.

Self-assembling would not help in these two situations, since the robots need to carefully
adjust their direction along the way, to be able to resist the wind and not falling into
the holes. If they move in the direction of the wind, they would slide on the ice, and fall
into the right hole. Moving in a self-assembled chain formation can make it difficult to
obtain a good direction relative to the wind. If a robot, connected to other robots, fall
into a hole, it is hard for the others to avoid falling in as well, even though they let go of
the falling robot. Since the wind comes from the side, robots in a chain formation do not
help blocking the wind for each other, while going straight towards the goal. Long chains
are thereby not advantageous in this scenario. However, we have seen cases where only

80 Discussion

two robots connect to each other and have reached the goal. We believe, as mentioned
earlier, that the controllers have a very low weight on the self-assemble behavior to avoid
the disadvantages of the long connection chains, but still have enough weight to be able
to follow each other in situations where this is beneficial, and sometimes connect in small
chains.

If the robots were able to align their directions after connecting, then other formations,
like a triangle, could be used without the problem of slowing them down. This could
possibly improve the result in scenario 4, because the robots could then block more wind
from each other. This possibility is discussed further in the section about further work
(Section 5.3).

81

Chapter 5

Conclusion

During our master thesis, we have given a brief introduction to the fields of swarm
robotics and evolutionary robotics, and focused on the area of self-assembling. In this
chapter, we start by giving an overview of the project. In Section 5.1 we discuss the goal
and research questions. In Section 5.2 we discuss our contributions to the field of swarm
robotics. In Section 5.3 we present suggestions to further work.

In Chapter 2, we gave an overview of related projects. During the research phase
we found that we could contribute to the field by performing experiments with self-
assembling, in new and difficult environments. We also studied the robot and simula-
tor technologies, and the solution techniques that the researchers used. These related
projects had a large influence on our choices, when designing our system.

Chapter 3 contains detailed descriptions of our choices of technology, solution techniques,
simulator design, robot design, and robot controller architecture. We built a system
for experimenting with self-assembling in different scenarios. The system consists of a
simulator and an evolutionary algorithm, and is designed to evolve robot controllers that
are capable of traversing difficult environments. The scenarios we designed, contained
different combinations of ice areas, wind, holes, and obstacles, to make it difficult for
the robots to navigate to the goal area. We used virtual robots, influenced by robots
used in the related projects. The robots have sensors for measuring distance, and the
intensity and color of light. They also have distance sensors that are tilted downwards
for detecting nearby holes. The robot controller was built using a reactive architecture
based on arbitration via action selection, where behavior modules vote on actions. An
evolutionary algorithm evolved the behavior weights and sensor thresholds used by the
controller.

In Chapter 4, we described and discussed the results from our experiments, and explained
how and why different situations occurred. In three of the scenarios, we found that self-
assembling could be an advantage, when traversing ice areas in high wind velocities. In
the fourth scenario, on the other hand, self-assembling gave few advantages, as the sce-

82 Goal Evaluation

nario became too hard to traverse in strong wind, even when using self-assembling.

5.1 Goal Evaluation

The goal of this project was to demonstrate advantages of emergent self-assembling, for
a swarm of robots in difficult environments. By creating a simulator for robots with
evolvable controllers and self-assembling abilities, we managed to demonstrate that self-
assembling can improve the mobility of the swarm in environments with complicating
factors, such as ice and strong wind. These experiments served as the basis for Chapter
4, and gave us insight to answer the research questions defined in Section 1.2. This
section contains a thorough discussion of answers for these research questions.

Research question 1: How can self-assembling improve the mobility of a robot swarm
in difficult environments?

Other researchers have already found situations where self-assembling can improve the
mobility of a robot swarm. O’Grady et al. found, during the Swarm-bots project,
that self-assembling can get a group of robots over steep slopes, which could not be
traversed by a single robot [O’Grady et al., 2005]. Trianni and Dorigo found, that a
swarm can self-assemble into a bridge structure, and pass over a trough [Trianni and
Dorigo, 2005]

In our experiments, we found that using self-assembling was advantageous in multiple
scenarios with ice and wind. When the wind velocity was low, the advantage was small
and only resulted in slightly faster movement of the swarm. However, when the wind
velocity was high, the advantage was more significant. In these experiments, the robots
were able to traverse the whole environment by using self-assembling, but without this
feature the robots got nowhere.

The first way that self-assembling improves the mobility, is that the group is more
resistant against a strong wind, when being assembled. If the robots are assembled
in a chain formation and are going straight towards an opposing wind, the first robot
will absorb much of the force from the wind, meaning that the robots behind are more
shielded from the wind. Being less affected by the wind, the robots behind are able to
get a larger thrust, and can give a stronger push forward, meaning that the first robot
gets pushed farther. Being assembled is thus beneficial both for the first robot and for
the ones behind, in this situation.

Being able to push and pull other robots when assembled, gave improved mobility when
the robots were on ice. When the robots are in a long chain formation in environments
with ice, it often happens that parts of the assembled group are on an ice area while
others are not. If the robots in the back of the group are on the normal ground and the
rest are on ice, then the robots in the back can easily push the robots on the ice forward.
The robots on the normal ground have good grip on their wheels, while the others have

Conclusion 83

low friction against the ice. A similar advantage happens if the robots in the front are
on normal ground and pulls the other robots out of the ice area. These two techniques
made it easier for the robots to traverse the ice area.

Being assembled was also advantageous when strong wind came from the side, and the
robots traversed an ice area with small obstacles. A robot going alone could easily
be pushed to the side by the strong wind. If however, a larger assembled group was
pushed to the side by the wind, they could more easily be stopped by colliding with
the small obstacles, resulting in the group being more able to move straight forward.
The robot colliding with the obstacle would be slowed down from friction between them,
but the other robots were able to pull the whole group forward, in the situations we
observed.

In order to self-assemble, the robots needed to group at the same location. This resulted
in a need to converge towards other robots, which made the robots faster in traversing the
environments in our experiments. By going after other robots, we observed a decrease
in the time used searching around, resulting in shorter time used to find the correct
direction to go in.

We have now demonstrated reasons to why self-assembling can improve the mobility of a
robot swarm in difficult environments. We believe there are more difficult environments
where self-assembling can improve the mobility for a robot swarm, and more reasons
to how this can happen. This is discussed more thorough in the section about further
work.

Research question 2: How can the robots decide when to self-assemble through local
interactions and sensing the environment?

We found that it was possible for the robots to decide when to self-assemble, with very
limited communication abilities and only local control. In Chapter 3, we described
our behavior based controller architecture, which uses variables evolved by artificial
evolution. Using this approach, the artificial evolution defines how much influence the
self-assembling behavior should have. We found that the general influence of the self-
assembling behavior was often high when the wind was strong, because self-assembling
could then improve the mobility of the swarm. The final decision of whether to try to
self-assemble or not, was continuously evaluated in each robot controller, where each
behavior module interpreted the sensor input, and then voted for which action to use.
The robot could then choose the action leading to self-assembling, either if this action
corresponds to the action other behaviors voted on, or if the self-assembling behavior
has so much influence that its single vote is enough to choose this action.

The need to converge towards other robots gave an interesting effect in our system. In
experiments without strong wind, the self-assembling behavior was generally given low
influence. With the low influence, the robots seldom managed to self-assemble physically
with other robots. The converging part, however, still managed to affect the movement.
This could happen in cases where the sum of other votes were close among the actions

84 Contributions

with the most votes from the other behaviors, and the self-assembling behavior could
manage to influence the final decision. The robots then got the advantages of converging,
without the disadvantages of physically connecting. This, and other outside the box
solutions, found by exploiting the system in ways the designers do not even think of,
makes it very interesting, in our opinion, to work with evolutionary robotics.

We believe more research should be done to answer this research question further. This
includes more research into how the robots can decide when to self-assemble, in more
dynamic environments. We will examine this when discussing further work.

5.2 Contributions

The current research in swarm robots with self-assembling abilities, presented in Section
2.5, have managed to use self-assembling to improve performance of the swarm, in several
situations. These include the ability to drive up steep slopes, pass over gaps (holes),
remain upright in uneven environments and pull large objects. These projects were an
inspiration for our research, and we contributed to the field by exploring additional use of
self-assembling. Using swarm robots with self-assembling abilities, can give advantages
over other robots, including being very small, getting through small passages, and still
be able to assemble into a bigger structure and pull large objects. By finding more
advantages of using self-assembling, we believe the use of swarm robots can become a
more viable alternative to traditional robots in the future.

We have found that self-assembling can lead to improved mobility of the swarm in sim-
ulated environments, with ice and strong wind. By using self-assembling in experiments
with strong wind, the swarm could usually traverse the whole environment. The swarm
was, however, not able to traverse the environment, when self-assembling was turned
off. These experiments demonstrate that self-assembling improved the mobility of the
swarm.

In other experiments, we found that it was possible to traverse the environment, even
without self-assembling. Depending on the strength of the wind, a swarm using self-
assembling could be many times faster in traversing the environment, compared to
swarms without this ability. These experiments also demonstrate that self-assembling
can improve the mobility.

In experiments with weak or no wind, it was not necessary for the swarm to use self-
assembling, as the swarm was able to traverse the environment fast also when robots
were going alone. In these cases, we observed that self-assembling was rarely used, as it
would take too much time to accomplish.

Conclusion 85

The main lessons from this project:

Using self-assembling is not always an advantage for a swarm of robots
in a specific situation, but it is in general very advantageous to have this
ability. Self-assembling can greatly improve the mobility of the swarm
in environments with complicating factors, such as ice and strong wind,
and it can easily be turned off when it is not needed.

5.3 Further Work

In this section we present further work, to give more answers for research question 2,
improve the performance in the most difficult scenario, and find additional situations
where self-assembling improves the mobility of a swarm of robots.

Increased Adaptability
We believe research question 2 should be investigated further, especially to consider how
the robots can decide when to self-assemble in dynamic environments. Our experiments
are performed on difficult, but static environments, meaning the robot controllers are
trained to navigate in a specific environment with a specific and constant wind strength.
In real life situations, the environments are more dynamic. For instance, the wind could
suddenly increase. The robots should adapt to this or other changes.

The robots cannot currently adjust their behavior weights while running, to adapt to a
changing environment. One possible solution could be to train the controllers to adapt
to multiple environments and their possible changes. Another possible solution could be
that the robots are able to evolve new controllers while running. The robots could then
run a new artificial evolution, when the environment has changed. A wind sensor on the
robots could be used to let the robots become aware of the change, and then evolve a
new controller.

Training controllers on new and unknown environments would still be hard. To be able
to find a good controller, the whole environment must be known for the simulator. The
sensors on the robots can only sense small distances. They cannot be used for sensing
the entire environment from a distance. One solution to a similar problem was proposed
during the E-Swarm project [Mathews et al., 2012], where an aerial robot was used to
get an overview of the environment, and this information was used to guide the swarm
on the ground.

Increasing the adaptability in more general situations, with new and unknown envi-
ronments, would be required before these types of robots can be used in dynamic and
unknown real world scenarios.

86 Further Work

Additional Formations
In our experiments, self-assembling gave advantages to mobility in all scenarios except
for one. In this scenario the forward chain formation, which we typically observed in
other experiments, gave no or few improvements. Moving in a chain formation often
resulted in the swarm falling into a hole. They did not manage to shield each other
from the wind, and if one robot fell into a hole, the rest could easily be dragged down
with it. We observed that when moving in a triangle formation, the robots where able
to traverse the scenario better, but were often slowed down, because their alignment
in this formation was not perfect, meaning their heading directions were not the same.
Their small connection areas and their fixed located gripper, would prevent them from
heading in any other direction than the direction of their gripper, and would make it
hard for two robots to connect to the same robot.

If the robots were able to align their directions after connecting, then other formations,
including a triangle formation, could be used without the problem of slowing them down.
However, this requires big changes. The robots would need a gripper that can rotate
around their body, to be able to align with the other robots. They would need a bigger
gripping area, like a gripping ring, so that other robots are able to connect to them in
any direction. The robots would also need more advanced communication, to be able to
decide which direction the group should be facing. Coordinating their movements would
also require more communication, as it would no longer be enough to follow the robot
in front of them, when multiple robots can be in front of the group. With the ability
to form other formations, the robots could form a denser group, and shield each other
better from the wind.

Additional Situations
Both in former research and in this thesis, situations where self-assembling can improve
the mobility of a swarm of robots are identified. We believe that more of these situations
should be identified. Self-assembling can possibly improve the mobility of small robots
in deserts or other large areas with sand. A larger group can possibly be better at
avoiding the problem of becoming stuck in the sand. The large group can also be
more robust in situations where sandstorms can occur. For robots that move over large
distances, it is also possible that self-assembling can reduce fuel usage, giving larger reach
before refueling. Every situation where self-assembling can improve the mobility brings
advantages to these kinds of robots, and progressively makes them a better alternative
to use.

87

Appendix A

Example of Voting

Figure A.1: A running example of weighting, behaviors, voting and actions
The lines from behaviors (blue boxes) to actions (green boxes) represent the weighted
votes on the actions. Thicker lines represent larger votes and red lines represent negative
votes. The forward action was selected in this example. It received votes from both the
wander behavior and the highly weighted (in this case) self-assemble behavior. It received
negative votes from collision avoidance, but the positive votes were larger.

88

Appendix B

Resulting Wind Blocking

Figure B.1: Resulting wind blocking in the simulator
The environment is divided into cells of 1 cm2, where dark cells represent areas blocked
from the wind. Black cells represent areas with 0 % wind. Here we have eight robots
and six blue obstacles. The wind coming from west is blocked on the east side of the
objects. The number on the robots represent the wind percent where they stand.

89

Appendix C

Additional Fitness Plots

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure C.1: Fitness plots for a single evolution
The result from a single evolutionary run (one sample), for each scenario, with the
average from 5 simulations for each fitness evaluation. The lines show the average, the
maximal and the standard deviation of the fitness values.

90

Appendix D

System Instructions

The system requires at least Java version 7. All the components we have implemented, in
addition to Java 7 and the libraries we have used, should be able to run on Windows, Mac
OS X and Linux. They are currently tested on Windows 7. A CPU with multiple cores
and threads are recommended to reduce the runtime of the evolutionary algorithm.

To run the system, open the project in an integrated development environment for
Java, such as Eclipse. The classes for running the system are located in the folder:
Swarm\common\run. Use the class RunSingleEvolution to run the evolutionary algo-
rithm. The best phenotypes are saved automatically and placed in the folder:
Swarm\data\results\phenotypes. The class Replay is used to run visual simulations us-
ing the saved phenotypes. New scenarios can be added by inserting a new ”.ini” file in
the folder: Swarm\data\environments. Use a similar format as used in the other ”.ini”
files in this folder.

91

Bibliography

Christos Ampatzis, Elio Tuci, Vito Trianni, Anders Lyhne Christensen, and Marco
Dorigo. Evolving self-assembly in autonomous homogeneous robots: experiments with
two physical robots. Artificial life, 15(4):465–84, January 2009.

Ronald C. Arkin. Behavior-based Robotics. Bradford book. MIT Press, 1998.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from natural
to artificial systems. Oxford University Press, Inc., New York, NY, USA, 1999.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of robotics and automation, 2(1):14–23, 1985.

Dave Cliff, Phil Husbands, and Inman Harvey. Explorations in Evolutionary Robotics.
Adaptive Behavior, 2(1):73–110, 1993.

Cyberbotics Ltd. e-puck, 2007. URL http://www.cyberbotics.com/e-puck/e-puck.
pdf. Visited on 2014-01-15.

Charles Darwin. On the Origin of Species by Means of Natural Selection or the Preser-
vation of Favored Races in the Struggle for Life. Murray, London, 1859.

Marco Dorigo, Vito Trianni, Roderich Gross, and Thomas Halva Labella. Evolving
Self-Organizing Behaviors for a Swarm-Bot. Autonomous Robots, 17(2/3):223–245,
2004.

Marco Dorigo, Elio Tuci, Roderich Gross, Vito Trianni, Thomas Halva Labella, Shervin
Nouyan, Christos Ampatzis, Jean-Louis Deneubourg, Gianluca Baldassarre, Stefano
Nolfi, Francesco Mondada, Dario Floreano, and Luca Maria Gambardella. The
SWARM-BOTS Project. Swarm Robotics, 3342:31–44, 2005.

Marco Dorigo, Elio Tuci, Vito Trianni, Roderich Gross, Shervin Nouyan, Christos Am-
patzis, Thomas Halva Labella, Rehan O’Grady, Michael Bonani, and Francesco Mon-
dada. Swarm-bot: Design and implementation of colonies of self-assembling robots.
In Computational Intelligence: Principles and Practice, pages 103–136, 2006.

William C. Evans, Grégory Mermoud, and Alcherio Martinoli. Comparing and Modeling
Distributed Control Strategies for Miniature Self-Assembling Robots. IEEE Interna-
tional Conference on Robotics and Automation, pages 1438–1445, 2010.

http://www.cyberbotics.com/e-puck/e-puck.pdf
http://www.cyberbotics.com/e-puck/e-puck.pdf

92

Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence: Theories,
Methods, and Technologies. The MIT Press, 2008.

Dario Floreano, Phil Husbands, and Stefano Nolfi. Evolutionary Robotics chapter 61.
In Handbook of Robotics, pages 1423–1451. 2007.

Toshio Fukuda, Seiya Nakagawa, Yoshio Kawauchi, and Martin Buss. Structure decision
method for self organising robots based on cell structures-CEBOT. 1989 International
Conference on Robotics and Automation, pages 695–700, 1989.

John J. Grefenstette, Connie Loggia Ramsey, and Alan C. Schultz. Learning sequential
decision rules using simulation models and competition. Machine Learning, pages
355–381, 1990.

Roderich Gross, Michael Bonani, Francesco Mondada, and Marco Dorigo. Autonomous
Self-assembly in a Swarm-bot. Proc. of the 3rd Int. Symp. on Autonomous Minirobots
for Research and Edutainment, pages 314–322, 2005a.

Roderich Gross, Michael Bonani, Francesco Mondada, and Marco Dorigo. Autonomous
Self-assembly in Swarm-bots. IEEE Transactions on Robotics, 22(6):1115–1130,
2005b.

John Henry Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. Bradford
Books. MIT Press, 1992.

HyperPhysics. Inverse Square Law, 2012a. URL http://hyperphysics.phy-astr.gsu.
edu/hbase/forces/isq.html. Visited on 2014-01-20.

HyperPhysics. Radiant Flux, 2012b. URL http://hyperphysics.phy-astr.gsu.edu/
hbase/vision/radiant.html. Visited on 2014-01-20.

Johann Heinrich Lambert. Photometria. W. Engelmann, 1760.

Pattie Maes. The Agent Network Architecture (ANA). SIGART Bulletin, 2(4):115–120,
July 1991.

Nithin Mathews, Anders Lyhne Christensen, Rehan O’Grady, Philippe Retornaz,
Michael Bonani, Francesco Mondada, and Marco Dorigo. Enhanced directional self-
assembly based on active recruitment and guidance. 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4762–4769, September 2011.

Nithin Mathews, Alessandro Stranieri, Alexander Scheidler, and Marco Dorigo. Super-
vised Morphogenesis: Morphology Control of Ground-based Self-assembling Robots
by Aerial Robots. Proceedings of the 11th International Con- ference on Autonomous
Agents and Multiagent Systems, 1:97–104, 2012.

Olivier Michel. Webots TM : Professional Mobile Robot Simulation. International
Journal of Advanced Robotic Systems, 1(1):39–42, 2004.

http://hyperphysics.phy-astr.gsu.edu/hbase/forces/isq.html
http://hyperphysics.phy-astr.gsu.edu/hbase/forces/isq.html
http://hyperphysics.phy-astr.gsu.edu/hbase/vision/radiant.html
http://hyperphysics.phy-astr.gsu.edu/hbase/vision/radiant.html

Bibliography 93

Nathan J. Mlot, Craig A. Tovey, and David L. Hu. Fire ants self-assemble into waterproof
rafts to survive floods. 2011.

Francesco Mondada, Giovanni C. Pettinaro, Andre Guignard, Ivo W. Kwee, Dario Flo-
reano, Jean-Louis Deneubourg, Stefano Nolfi, Luca Maria Gambardella, and Marco
Dorigo. Swarm-Bot: A New Distributed Robotic Concept. Autonomous Robots, 17
(2/3):193–221, September 2004.

Daniel Murphy. JBox2D, a java physics engine, 2014. URL http://www.jbox2d.org/.
Visited on 2014-01-06.

Andrew L. Nelson, Gregory J. Barlow, and Lefteris Doitsidis. Fitness functions in evo-
lutionary robotics: A survey and analysis. Robotics and Autonomous Systems, 57(4):
345–370, April 2009.

Karim Nice. How Four-Wheel Drive Works, April 2001. URL http://auto.
howstuffworks.com/four-wheel-drive.htm. Visited on 2014-01-21.

Shervin Nouyan and Marco Dorigo. Chain Formation in a Swarm of Robots. March
2004.

Shervin Nouyan and Marco Dorigo. Chain Based Path Formation in Swarms of Robots.
Ant Colony Optimization and Swarm Intelligence, 4150:120–131, 2005.

Rehan O’Grady, Roderich Gross, Francesco Mondada, Michael Bonani, and Marco
Dorigo. Self-assembly on Demand in a Group of Physical Autonomous Mobile Robots
Navigating Rough Terrain. Advances in Artificial Life, 3630:272–281, 2005.

Rehan O’Grady, Anders Lyhne Christensen, and Marco Dorigo. SWARMORPH:
Multirobot Morphogenesis Using Directional Self-Assembly. IEEE Transactions on
Robotics, 25(3):738–743, 2009.

Kazuhiro Ohkura, Toshiyuki Yasuda, and Yukihiko Kotani. A Swarm Robotics Approach
to Cooperative Package-Pushing Problems with Evolving Recurrent Neural Networks.
SICE Annual Conference 2010, pages 706–711, 2010.

Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele
Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Caro, Frederick Ducatelle, Mauro
Birattari, Luca Maria Gambardella, and Marco Dorigo. ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4):271–295,
November 2012.

Julio Kenneth Rosenblatt. DAMN: a distributed architecture for mobile navigation.
Journal of Experimental and Theoretical Artificial Intelligence, 9(2/3):339–360, 1997.

Julio Kenneth Rosenblatt and David W. Payton. A fine-grained alternative to the
subsumption architecture for mobile robot control. International Joint Conference on
Neural Networks, 2:317–323, 1989.

http://www.jbox2d.org/
http://auto.howstuffworks.com/four-wheel-drive.htm
http://auto.howstuffworks.com/four-wheel-drive.htm

94

Masahiro Shimizu and Akio Ishiguro. An amoeboid modular robot that exhibits real-time
adaptive reconfiguration. 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1496–1501, October 2009.

Onur Soysal, Erkin Bahceci, and Erol Sahin. Aggregation in Swarm Robotic Systems:
Evolution and probabilistic control. Turkish Journal of Electrical Engineering and
Computer Sciences, 15(2):199–225, 2007.

Swarmanoid. The Swarmanoid Project, 2010. URL http://www.swarmanoid.org/.
Visited on 2013-08-22.

Symbrion. The Symbrion Project, 2013. URL http://www.symbrion.eu/. Visited on
2013-09-20.

The Engineering Toolbox. The Engineering Toolbox: Air Density, 2012. URL http://
www.engineeringtoolbox.com/air-density-specific-weight-d_600.html. Vis-
ited on 2014-01-06.

The Engineering Toolbox. The Engineering Toolbox: Drag Coefficient, 2014a. URL
http://www.engineeringtoolbox.com/drag-coefficient-d_627.html. Visited on
2014-02-06.

The Engineering Toolbox. The Engineering Toolbox: Dynamic Pressure, 2014b. URL
http://www.engineeringtoolbox.com/dynamic-pressure-d_1037.html. Visited
on 2014-02-06.

Vito Trianni and Marco Dorigo. Emergent Collective Decisions in a Swarm of Robots.
2005 IEEE Swarm Intelligence Symposium, 2005:249–256, June 2005.

Vito Trianni and Marco Dorigo. Self-organisation and communication in groups of sim-
ulated and physical robots. Biological cybernetics, 95(3):213–31, September 2006.

Elio Tuci, Roderich Gross, Vito Trianni, Francesco Mondada, Michael Bonani, and
Marco Dorigo. Cooperation through self-assembling in multi-robot systems. ACM
Transactions on Autonomous and Adaptive Systems, 1(2):115–150, November 2005.

Utdanningsdirektoratet. Tabeller og formler i fysikk. Gyldendal, 2005.

John V-Neun and John Neun. Advanced Drivetrain Calculations (Presentation
slides), 2005. URL http://thinktank.wpi.edu/cgi-bin/index.cgi?n=Article:
ArticleView&rid=44. Visited on 2014-01-23.

Lutz Winkler, Heinz Worn, and Adrian Friebel. A distance and diversity measure for
improving the evolutionary process of modular robot organisms. 2011 IEEE Interna-
tional Conference on Robotics and Biomimetics, pages 2102–2107, December 2011.

http://www.swarmanoid.org/
http://www.symbrion.eu/
http://www.engineeringtoolbox.com/air-density-specific-weight-d_600.html
http://www.engineeringtoolbox.com/air-density-specific-weight-d_600.html
http://www.engineeringtoolbox.com/drag-coefficient-d_627.html
http://www.engineeringtoolbox.com/dynamic-pressure-d_1037.html
http://thinktank.wpi.edu/cgi-bin/index.cgi?n=Article:ArticleView&rid=44
http://thinktank.wpi.edu/cgi-bin/index.cgi?n=Article:ArticleView&rid=44

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and Motivation
	Goal and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background
	Swarm Intelligence
	Swarm Robotics
	Evolutionary Robotics

	Common Solution Techniques
	Evolutionary Algorithms
	Brooks' Subsumption Architecture
	Arbitration via Action Selection
	Artificial Neural Networks
	Simulator

	Structured Literature Review
	Identification of research
	Screening process

	Related Systems and Projects
	Swarm-bots
	Swarmanoid
	Symbrion
	Other systems

	Background Discussion

	Methodology
	System Overview
	The Robot
	The Scenarios
	The Robot Controller
	Behavior Coordination and Action Selection
	Actions
	Common Thresholds
	Behaviors

	The Choice of Creating a Simulator
	Modeling Physics
	Movement from Motors and Wheels
	Friction
	Wind Force
	Light

	The Evolutionary Algorithm
	Reasons to use Evolutionary Algorithms
	Genetic Encoding and Translation
	Fitness
	Selection
	Reproduction and Elitism

	Results and Discussion
	Results from the Evolutionary Algorithm
	Results with Various Wind Velocities
	Resulting Behavior Weights and Thresholds
	Discussion
	Self-assembling in Low Wind Velocities
	Self-Assembling in Higher Wind Velocities
	Analyzing Additional Situations

	Conclusion
	Goal Evaluation
	Contributions
	Further Work

	Example of Voting
	Resulting Wind Blocking
	Additional Fitness Plots
	System Instructions
	Bibliography

