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Abstract
Radio Frequency transmitters are becoming ubiquitous. For instance people often
carry around a mobile phone containing several such transmitters. Having the
ability to detect and locate such transmitters in noisy environments can there-
fore be very beneficial in search and rescue and disaster management. By using
amplitude measurements, simple hardware can be deployed on small and cheap
Unmanned Aerial Vehicles. The use of many cooperative Unmanned Aerial Vehi-
cles should enable rapid search and more precise geolocation of such transmitters.

This thesis explores different search strategies to use on autonomous agents
trying to detect a hidden Radio Frequency transmitter. By testing different
Swarm Intelligence strategies important insight into the search process is gained.
The experiments were run on a simulator to enable rapid testing of different
strategies. In addition to testing baseline algorithms from the literature, a new
strategy is created, the Call-out strategy.

The work done, shows that few cooperating searchers should prefer exploita-
tion of the transmitted signal over exploration. However, as more agents are
employed this focus is shifted over to exploration. In addition, this work show
that several simple searchers can perform the task with high performance. This
shows that Swarm Intelligence can be used to direct several cooperative searchers
in detecting a hidden Radio Frequency transmitter.
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Chapter 1

Introduction

In many different settings the process of rapidly collecting relevant information
can be very important. In search and rescue gathering information quickly can
be the difference between life and death. Environmental disasters require rapid
assessment of possible dangers and damages to avoid severe consequences. In-
formation gathered in situations like the above is time sensitive and needs to be
gathered in a timely fashion. By using multiple autonomous agents this informa-
tion gathering can be performed quicker and with greater reliability.

To enable this automatic information gathering there is a need for intelligent
systems which can operate with little to no input from humans. By having
systems which can react and adapt to unforeseen events, are scalable to new
operational requirements and survivable to failures within the system, human
involvement can be kept to a minimum.

One specific instance of such information gathering is the detection and lo-
cation of a Radio Frequency (RF) transmitter. Detecting and locating a RF
transmitter is an important endeavour because of its many uses in real world
situations. Most people carry around a mobile phone which can work as a radio
transmitter. Having the ability to locate such a transmitter can therefore aid in
many search and rescue situations.

Amplitude measurements are easy to gather and require relatively inexpensive
equipment. Power Difference of Arrival (PDOA) is based on measuring the effect
and is very well suited for simple agents trying to locate a transmitter. This sim-
plicity, both in hardware and in implementation, makes amplitude measurements
well suited for exploring detection.

In order to detect and locate a radio transmitter there is a need for a mo-
bile platform. Unmanned Aerial Vehicles (UAVs) are becoming a much more
available technology used in several civilian contexts. Some major advances in

1



2 CHAPTER 1. INTRODUCTION

miniaturization has made UAVs more affordable and available than previously.
This makes UAVs a good platform for many different tasks 1–2 ranging from
aerial photography to search and rescue. Their versatility and continued minia-
turization makes UAVs a very good candidate as a mobile platform for detecting
a hidden transmitter.

The exact position of a hidden transmitter could be possible to calculate given
enough time and enough information about the environment. However, in most
real life situations this might not be possible. Lowering response time in search
and rescue is of paramount importance. This means that the optimal solution
might not be feasible and some approximation is needed. If the approximation
is good enough, the system can function faster, with less available information
and still solve the information gathering problem. By having autonomous agents,
which can dynamically approximate the problem, an acceptable solution might
be achieved.

Artificial Intelligence (AI) is a branch of computer science which seeks to cre-
ate intelligent systems. These systems can range from a simple vacuum cleaner
robot to huge complex systems made up of several intelligent agents, which co-
operate to complete a task. Within AI, systems containing several cooperating
autonomous agents are often called agent based systems. Agent based systems
can broadly, for this work, be divided into two categories; systems where individ-
ual performance is the primary focus and systems where the performance of the
group as a whole is the focus. The main differentiating factor between these sys-
tems is how the individual agents within the system behave. When self interest
is the focus each agent will optimize its own gain. It can accomplish this through
cooperation, but the agent can never assume that another agent is willing to do
something that is not in its own best interest. The group focused system, on
the other hand, can assume that all other agents will cooperate to optimize the
groups performance.

Swarm Intelligence (SI) is within the group focused scope and uses inspiration
from nature to create systems which can complete tasks in various different ways.
Specifically, SI looks at cooperative organisms that work together to perform tasks
which are often more complex than what each individual organism could handle
alone. Examples of such organisms are bees and ants which create large and
complex hives, far too complicated for any individual to create on its own.

SI has been used in many different situations, from global optimization, in the
form of Ant Colony Optimization (ACO)[4, 18], to network routing and real-life
robotics. The interest in SI comes from the scalable nature of the algorithms.

1Norwegian article about the different areas in which UAVs are being used in Norway: http:
//nrkbeta.no/2013/06/08/nyttige-droner/

2Norwegian video describing how the Norwegian Air Ambulance service are explor-
ing the use of UAVs: http://www.nrk.no/video/norsk_luftambulanse_tester_droner/
72C8204286BF6A8E/

http://nrkbeta.no/2013/06/08/nyttige-droner/
http://nrkbeta.no/2013/06/08/nyttige-droner/
http://www.nrk.no/video/norsk_luftambulanse_tester_droner/72C8204286BF6A8E/
http://www.nrk.no/video/norsk_luftambulanse_tester_droner/72C8204286BF6A8E/
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Phase 1

Phase 2 Phase 3

Figure 1.1: The different phases when trying to locate a transmitter. Phase 1 is
to search for the transmitter. Phase 2 is to congregate at the transmitter. Phase
3 is to use some technique to estimate the transmitter position. Note that in
the phase 3 illustration the transmitter has not moved, only the perspective is
changed.

Because cooperation is the end goal of SI, the individual perspective is less im-
portant, making the swarm more fault tolerant. In addition, since cooperation is
based on local interaction SI is often scalable. This means that the swarm can
often grow large without loosing any performance.

1.1 Task Description
The problem considered in this thesis is only a part of a larger task. As mentioned
above, the task is to locate a hidden RF transmitter. A hidden transmitter in
this case is a transmitter for which there is no a priori knowledge, neither the
radiated power or the position is known. It is also assumed that the transmitter
is in a static location and that it transmits continuously. Broadly speaking the
task can be split into three phases, illustrated graphically in figure 1.1.

The three phases in figure 1.1 roughly equates to:

Phase 1: Search the area trying to detect the transmitter
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Phase 2: Once the transmitter is detected by an agent, converge at that agent

Phase 3: After converging spread out around the transmitter to precisely ge-
olocate the transmitter.

If the area is large compared to the range of the transmitter, the first phase
of the task is to detect the transmitter, obtaining the knowledge that there is
a transmitter in the area. The second phase is for the agents to converge on
the transmitter so that every agent, needed for the next phase, can detect the
transmitter. The last phase is to use some form of geolocating algorithm to
estimate the location of the transmitter. This last part has been studied in [16].

1.2 Goal and Research Questions
Goal Gain a deeper understanding of the potential for swarm intelligence to solve

problems related to detecting a hidden RF transmitter.

The goal for this project is to explore the possibility of detecting a hidden trans-
mitter using a swarm of UAVs. A swarm in this context means more than one
agent. The task is to search an area for a single transmitter, detecting its pres-
ence. In figure 1.1 the task is illustrated graphically as phase 1.

For this thesis the search part of figure 1.1 is considered exclusively. This will
aid in getting a deeper understanding for the spatial-search problem in addition
to narrowing the scope of the problem domain. To enable future systems to
encompass all parts of locating a hidden transmitter all three phases must be
tackled. The intention is to have this thesis as one part of such an extended
work.

1.2.1 Searching for a transmitter
Searching for an object is often just a means to an end. It is not the search itself
one is interested in, it is the time it takes to find the object of interest.

Before location of a transmitter can take place, the transmitter itself must be
detected and identified as the target of interest. In this thesis this is considered
as the main problem. The problem is defined as: Given a confined area. The
knowledge, that within the area there is a transmitter the agents are capable of
detecting. The agents should search the area, until the signal of the transmitter is
detected above a certain threshold. From the description of this problem it might
seem trivial to solve, since all agents know the transmitter is present there is no
need to detect it. However, it is not that straightforward, even though the agents
in this problem know that a transmitter is present, in most real life scenarios this
assumption may not be true. Often one assumes that a transmitter is present
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until the area has been searched, to a satisfying degree of certainty, before giving
up that assumption. Therefore, the search in question is interested in the time
it takes, from the agents start moving, until a detection is made.

To solve this problem a search strategy is needed to direct the agents so that
the area is searched. One example of such a strategy is a random walk, if all
agents move according to a random walk and can not move outside the search
area, one of the agents will detect the transmitter in a finite amount of time. It is
clear from this description that the transmitter will be found eventually, but one
is often concerned about the time needed to locate the transmitter. This means
that the time taken to find the transmitter is one important factor in the fitness
of a strategy.

Related to this problem is the following research questions:

Research question I Can several agents perform better than a single agent?

Having several agents cooperate to achieve a goal is often a way to increase per-
formance on a task. However this cooperation must be beneficial to the agents or
else the benefit of being several agents will disappear and each agent is better off
alone. For this reason it is interesting to compare the performance of algorithms
with several agents, both algorithms designed for several agents and algorithms
designed for single agents.

Research question II How does random walk exploration compare to an orga-
nized search?

In many real world scenarios, an organized search is performed by exhaustively
checking an area to locate a given emitter. In an RF setting, exhaustively is not
possible because of the need for a detection threshold. However, by making some
assumptions about the threshold an area can be searched in an organized fashion.
Such organization often requires a great deal of cooperation, and progress might
be slow. With random searching each participant in the search can move without
interruption or the need to coordinate with anyone. It is therefore interesting to
compare the performance of a random search with an organized search.

Research question III Can a technique which does not use any information
available in the environment compare to a technique which uses that infor-
mation?

Detecting a transmitter can be quite complicated. Long before a true detection
can be made the signal might be discernible from the noise in the environment.
Using this information a search strategy might be able to direct the search towards
the transmitter and thus perform better compared to a strategy which does not.
The problem with this is that, as will become evident in section 2.1.2, there is no
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guaranteed way of separating the signal from noise. This means that an agent
that tries to use the information in the environment might be following noise and
not performing any better than a random strategy. For these reasons comparing
different strategies with different utilization of the environmental information is
of interest.

1.3 Research Method
Using several UAVs flying together is a large undertaking, having them cooperate
to complete a task is even more challenging. Because of this, the work carried out
in this thesis tests different hypotheses in a limited simulated environment. By
keeping the environment limited, the work can concentrate on the implemented
agents, studying their behavior and performance on the problem in section 1.2.
This limits the scope of the results, but it creates a foundation which is possible
to extend in future work and in later real world experiments.

1.4 Thesis Structure
The thesis is structured as follows. In chapter 2 background information and
general theory about the field of research is presented. Chapter 3 introduces
the concrete model used to validate the research questions. The results from
simulations of the model are presented in chapter 4. In chapter 5 the result of
the thesis is discussed along with future work and conclusions.



Chapter 2

Background

In the following chapter the background theory and related work is presented.
First, information regarding radio signal propagation, detection and geolocaliza-
tion is presented. Next is an introduction to UAVs, which should motivate them
as an elevated mobile platform, before background theory related to agent based
systems is presented.

2.1 Geolocating a Radio Transmitter
This section will introduce the concept of geolocating a radio transmitter. Elec-
tromagnetic (EM) propagation will be introduced first describing how radio waves
propagate and how a signal is affected by elements in the environment. This sec-
tion will motivate the desire to elevate the radio receiver and explain why this
can lead to better location estimates. Then detection of RF signals is explained.
Lastly geolocalization algorithms are introduced which explains different tech-
niques to geolocate a hidden transmitter. This section motivates why several
cooperating agents are envisioned for the future system.

2.1.1 Electromagnetic propagation
EM radiation deals with how EM waves propagate. A radio wave is a form of
EM radiation where the frequency is between 3kHz and 300GHz[49].

When a radio wave propagates it will incur a propagation loss, L, which will
lower the received signal strength. This loss is defined as the ratio shown in
equation 2.1 where Pt is the transmitted power for the transmitter and Pr is the
received power at the receiver[49]. The equation also shows how the loss can be

7
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expressed as amplitude, where At is the transmitted amplitude and Ar is the
received amplitude at the receiver.

L =
Pt

Pr
=

(
At

Ar

)2

(2.1)

In a real world many components like buildings, structural elements and ter-
rain will interact with the radiated EM wave. To account for all these interac-
tions, it is common to characterize the loss by a propagation loss or path loss
model. Common to all propagation loss models is that they contain the free space
loss. The free-space path loss describes the loss an EM wave naturally incur when
propagating through an environment without any elements creating reflections or
diffractions. The loss is due to how an EM wave propagates, creating an expand-
ing sphere. As the sphere expands the surface area increases, resulting in a lower
power density. This is illustrated by the green circles in figure 2.1, the further
away from the transmitter the thinner the green circles become. In the figure
Pt represents the transmitter, Pr is the receiver, d is the distance between them
and L represents the loss affecting the signal as it is propagating. The free-space
path loss model is described by equation 2.2[49].

L =

(
4πd

λ

)2

(2.2)

In equation 2.2, d is the distance between the transmitter and receiver, while
λ is the wavelength of the transmitted RF signal.

The Log-distance path loss model[49] is a generalization of the path loss in
different environments. The model is given in equation 2.3,

L(d)dB = L(d0)dB + 10αlog10

( d

d0

)
(2.3)

where α is a loss factor accounting for different environments, L(d0) is the
path loss at a reference distance d0 and the result of the function is given in dB.
As shown in equation 2.2 the loss factor for the free space loss is 2. In other
environments, where buildings and other objects interact with the transmitted
signal, the loss factor can reach values in the range of 2-6[23]. A higher α value
means that the signal is damped more by the environment. As explained above
the dampening can have many different factors which the α value encompasses.
Using α in this form characterizes the propagation environment. In figure 2.2
the log-distance path loss model is plotted showing how α, the dampening in the
environment, affects the received power.

Since antenna design influences the way both the signal is propagated from
the transmitter and the way the signal is received, all propagation models must
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L

d

Pt Pr

Figure 2.1: Path loss between the transmitter and receiver, illustrating how a
signal propagates as a sphere.

make assumptions about antennas. Because the antenna can be optimized for
many different scenarios selecting one design can often be challenging. A good
initial model, is therefore an isotropic antenna. An isotropic antenna means that
the antenna can receive a signal equally well from all directions and elevations.

Most of the time the environment that is being modeled is not static. This
means that the received signal will be affected and will not be received as the pure
signal in figure 2.2, in other words there is additional noise. This effect varies
with time, frequency, position and is often modeled as normal random(Gaussian)
variable[23, 44]. This noise represents additional effects, often called fading, and
electronic noise experienced at the receiver. Formula 2.3 is therefore changed to
include a random variable χ, equation 2.4 shows how this is added. It is important
to note that both the α and this new noise are perceived as the same noise at
the receiver, but they are often modeled as two different aspects. This is because
they represent two different sources of noise where α is due to the environment
while χ is due to other sources, most often thermal noise in the receiver[44].

L(d)dB = L(d0)dB + 10αlog10

( d

d0

)
+ χσ (2.4)

In equation 2.4 χσ is a Gaussian random with a mean of 0 and a variance of σ.
Figure 2.3 shows how this changes the received signal by the noise affecting it. The
variance is dependant on the environment which the signal is propagating through
and the environmental fading can be between 1.5dB to more than 16dB[23].

The free-space path loss model has often been used as a model when working
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Figure 2.2: Log-distance propagation loss model, illustrating how α characterizes
the path loss in different environments
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Figure 2.4: Plot showing real world received values, at ground and 10m above
ground, compared to two different propagation loss models

with elevated receivers with line of sight to the transmitter. To test this an
experiment was conducted at Norwegian Defence Research Institute (FFI) to see
if the free-space path loss model equates to the actual Received Signal Strength
(RSS) when 10m above ground[57]. The experiment used an UAV, a mobile
phone and a regular Wi-Fi router, as the elevated platform, the receiver and the
transmitter respectively. In figure 2.4 the result of the experiment is shown.

Figure 2.4 shows the measured data compared with expected theoretical prop-
agation models. The red data points show values measured at 10m above the
ground and the blue plus signs show values measured at ground level. The data
shows that reflection from the ground affects the path loss and also show that
α increases when there is more dampening in the environment in the form of
reflections. Even though it is not clear on the figure, from the data one could
also see that the distance at which the phone could receive was greatly enhanced
by just being elevated 10m above the ground, somewhat evident by the lack of
blue plus signs at distances over 150m. This data illustrates that when elevated
the free-space path loss model is a good fit for actual data. This motivates the
desire for elevating the sensor platform and will later be shown to be important
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when geolocating a transmitter.

2.1.2 Detecting Radio Frequency signals

Because of the physical nature of RF waves can only be detected within a certain
range. This limitation comes from the receiver which has finite sensitivity and
problems with filtering out noise from the environment. Because of this limitation
receivers must have a threshold for when a signal can be classified as a distinct
signal and not just noise looking like a signal. In figure 2.5 an example signal is
compared to noise found in an environment. The figure illustrates the threshold,
explained below, and it shows how noise can influence the detection of a signal.
Only one of the two peaks above the threshold are an actual signal, meaning that
there is one false alarm. Such a distinction, of false alarm, is not possible to make
without complete information. This means that any sensible system must classify
the two peaks above the threshold in figure 2.5 as detections. The threshold puts
a limit on the statistical likelihood of the detected signal being a false alarm.
By increasing the threshold fewer peaks will go above the threshold yielding
fewer false alarms, but it can also mean that some signals are not classified as
detections because of dampening noise. This highlights the importance of setting
an appropriate threshold value. The threshold decides the probability of detection
and is connected to the Signal-to-Noise-Ratio (SNR) and the false alarm rate.
As mentioned above the threshold is connected to the probability of detection
because it decides what is considered a detection. It is also connected to the SNR
because the SNR is defined as the ratio of signal to noise. By increasing the SNR
- e.g. by increasing the transmitted power or reducing the noise - the signal peaks
increases and the difference between noise and signals becomes larger. This in
turn means that peaks above the threshold are more likely to be actual signals
and not noise. By relating the SNR to figure 2.5, one can see that by increasing
the SNR the peak marked signal would become taller in comparison to the other
peaks. The threshold and the false alarm rate are related, because the false alarm
rate is defined by the threshold and the noise. Again relating to figure 2.5, if the
false alarm rate was lowered the threshold would also be lowered. This means
that if one allows more probability of a false alarm, the threshold for deciding a
detection can be lowered which in turn gives a higher probability of detection.

Figure 2.6 illustrates the different aspects of detection. In the figure the red
line is white noise, the light blue line is the signal with added noise, the black line
is the threshold, the blue area is the probability of detection and the green area
is the probability of false alarms. In the figure everything above the threshold is
considered a detection, but as the green area illustrates there is a small chance
of a false detection, i.e. noise being classified as a detected signal. The figure
also illustrates the different dependencies between these factors. If the threshold
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is increased the probability of false alarms decreases, but at the same time the
probability of detection will decrease. From this one can see that the threshold
and the probability of detection is connected, by increasing the probability of
detection, the probability of false alarms will increase. This connection is further
illustrated in figure 2.7. In figure 2.7 PFa is the probability of a false alarm. From
the figure the connection between the false alarm rate, SNR and the probability
of detection is illustrated showing how an increase in each leads to different
characteristics of the others. More specifically if one decreases the probability of
a false alarm, for example move from the blue to the green line, the probability
of detection decreases for the same SNR.

Calculating the threshold can be accomplished by modeling the noise in the
environment and selecting a value which is large enough so that the probability of
such large noise values are unlikely. The noise added to the signal, as described in
section 2.1.1, is modeled as a normal random. As the signal is modeled using the
amplitude the noise can be modeled through a complex number. By generating
this number from two Gaussian random variables with equal variance and zero
mean, and by using only the magnitude the noise is distributed according to the
Rayleigh distribution. The magnitude is used because it describes the amplitude
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of the signal. This simplifies the calculation of the threshold and there is no
need to bootstrap, explained below, the process, the threshold can be calculated
directly. The threshold can be calculated by setting the Cumulative Distribution
Function (CDF) of the Rayleigh distribution equal to the desired probability of
detection. The CDF of the Rayleigh distribution is shown in equation 2.5 and is
rearranged in equation 2.6 to output the threshold.

CDF = 1− e
−x2

2σ2 (2.5)

f(p) =
√
−2σ2ln(1− p) (2.6)

where p is the defined to be 1− PFa.
As mentioned above the threshold could also be bootstrapped by generating

a large vector of complex numbers where the two parts comes from two randomly
selected values from a normal distribution. This vector represents the noise at
the receiver with no other signal present. The amplitude of this vector can be
extracted by calculating the magnitude of the complex numbers. Giving the
threshold by way of bootstrapping.

Whether a detected signal which is above the threshold is a true detection or
a false alarm, can then be checked with only the amplitude using equation 2.7.

f(rt, d, p) =
At√
dα

≥ Ap ∧ d ≤ rt (2.7)

In equation 2.7 rt is the radius of the transmitter, i.e. the radius where the
transmitted amplitude is equal to the threshold, At the amplitude of the signal,
d is the distance between the transmitter and receiver, α is used as a variable to
characterize the propagation environment, and Ap is the amplitude of the false
alarm rate, e.g. if p = 0.99, 99% of the time the signal is properly detected
and 1% of the time the receiver is either unable to detect a signal that should
be detected or detects noise as a signal. By using this equation a detection
can be ensured during simulation since it ensures that the amplitude the agents
receive is above the threshold while also ensuring that the agent is within range
of the transmitter. Ensuring that the agent is within range of the transmitter is
important because of the probability of a false alarm.

2.1.3 Geolocation algorithms
Geolocating a hidden transmitter can be very difficult for a number of reasons.
Because nothing is known about the transmitter, techniques based on frequency
and transmitted power can not be used. If both of these were known one could use
a propagation loss model and calculate the distance from a given measurement
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to the transmitter obtaining a radius in which the transmitter must lie within.
Having several measurements of the same transmitter would yield several inter-
secting circles and would indicate that the transmitter is located in one of the
intersection points.

Several techniques have been developed to overcome this challenge, using
different properties of the received signal. Below is a list of techniques developed
to locate a hidden transmitter.

• Angle of Arrival

• Time Difference of Arrival

• Frequency Difference of Arrival

• Power Difference of Arrival

Angle of Arrival (AOA) is based on measuring the direction of the signal
at the receiver[23]. To measure the direction a directional antenna is used. The
technique usually requires an array of receivers which can be large and bandwidth
limited. AOA has the advantage of requiring only a single receiver to get line of
direction, but two receivers are required to obtain a position in two dimensions.
AOA is well understood and simple to use, but require specialized hardware.

Time Difference of Arrival (TDOA) measures the difference in arrival time at
different locations[23]. By assuming that the signals travels at the same speed in
air, the difference in arrival time can be used to calculate the position. Different
receivers record the time of arrival which is then sent to a common site where
the difference in arrival time between pairs of receivers can be correlated. Using
three or more receivers a location can be calculated. The advantage of TDOA
is the good estimates it can produce, but at the cost of complicated hardware.
TDOA is often considered better than AOA because the antenna in TDOA is
omnidirectional.

Frequency Difference of Arrival (FDOA) uses the apparent change in fre-
quency occurring because of Doppler shift to the signal when a receiver is moving
towards or away from the transmitter[23]. By knowing the velocity and direction
of the receiver the Doppler shift can be calculated. Using the Doppler shift a line
towards the transmitter can be extracted. Using two receivers which relays the
information to a common site, a hidden transmitter can be detected by comparing
the received frequency and the differing Doppler shift.

PDOA uses the difference of intensity at two receivers to obtain position[23].
By using the RSS at several different locations together with a path loss model,
the distance between transmitter and receiver can be calculated. This distance
result in several possibly overlapping circles which can be used obtain a position
of the transmitter, again by looking at the intersections. This technique requires
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relatively inexpensive equipment which makes it suitable for several different
situations. However the reliance on a path loss model makes the technique sus-
ceptible to deviations from that model. PDOA is therefore often less accurate
than the other techniques described above.

From the description above several different geolocating techniques are avail-
able. In a related work[16], PDOA was chosen for several different reasons. Be-
cause PDOA uses simple hardware it is much easier to adapt the technique for
use on a small UAV. In addition to this because the UAV is assumed to elevate
the sensor the free-space path loss model can be used. This simplifies the calcula-
tion and, as shown in figure 2.4, is a reasonable assumption given that the sensor
is elevated. It is important to note this when working with spatial location and
detection as the assumptions made by PDOA could have an influence.

In addition to using intersecting circles to decide the position with PDOA
other techniques have been developed[23]. The following are methods investigated
in [16, 23]:

• Non-Linear Least Square

• Maximum Likelihood

• Discrete Probability Density

All these methods estimate the most likely place the transmitter is located
in, but do so in different ways. The different methods have very comparable
performance and in [16] Non-Linear Least Square (NLS) was chosen because of
its simplicity and performance. NLS calculates the pairwise difference in received
signal power at a given position, estimating the probability of a transmitter lo-
cated in that position. The method minimizes the sum of the difference between
the actual received value for the pairwise receivers, and the theoretical received
strength given that a transmitter is located in a position (x, y), by assuming
that the path loss model is equal at both receivers. Equation 2.8 describes the
calculation for a given position (x, y).

Q(x, y) =
∑
k<l

[
P̄kl − 5αlog10

[
(x− xl)

2 + (y − yl)
2

(x− xk)2 + (y − yk)2

]]
(2.8)

In equation 2.8 the summation is over all receivers, where (xl, yl) is the lo-
cation of receiver l, (xk, yk) is the location of receiver k and P̄kl is the actual
difference in received signal between receiver k and l. In simpler terms, the
method tries to find the position, (x, y), which minimizes the difference from
actual RSS measurements.

Equation 2.8 is non-linear meaning that to estimate the transmitter position
the function must be applied to a discrete grid where the size of the grid limits
the accuracy.
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(a) RQ-1 Predator (b) RQ-11 Raven (c) Black Hornet

Figure 2.8: Different UAVs illustrating the different sizes and different configura-
tions possible for a UAV. Black Hornet photo: Richard Watt/MOD.

2.2 Unmanned Aerial Vehicle
As mentioned in the introduction UAVs are envisioned as the vehicles to use the
results of this research on. It can therefore be of some use to introduce UAVs as
a concept.

In general a UAV is an aerial vehicle without a human pilot inside the aircraft.
It is often controlled from a ground station by a human operator and has a level
of autonomy ranging from none to completely autonomous. A typical system
consists of an elevated platform, the UAV, and a ground control station with a
communication link to the UAV.

UAVs come in many different sizes and many different types. The size can
range from the large UAVs operated by defence forces around the world to smaller
crafts designed for e.g. aerial photography or ground mapping. Figure 2.8 shows
different UAVs, their sizes are displayed showing the range and type differences
between some selected UAVs.

While there are different classes of UAVs differing in size, endurance, range,
payload capacity, etc., the most important property in the context of this work
is whether it is able to hover or not. Typically a UAV which can hover is some
form of helicopter which either uses a main rotor and a tail rotor or an even
number of pairwise counter-rotating rotors. The ability to hover influences how
algorithms working on the UAV has to operate. On an aircraft not able to hover,
the flight planner must always take into consideration that the UAV must move
forwards which influences how the aircraft can be used. As an example looking
at the work done in this thesis the model itself assumes that the agent is able
to come to a complete stop and wait for some period of time. The reason for
this requirement is to sample the RF environment or wait for other agents to
perform some task. This could possibly be extended so that the wait is a holding
pattern where the aircraft circles, but that will at the very least mean that the
algorithms must be updated to take into account the change in position for each
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RF sample. Both types of UAVs, hovering and non-hovering, have their own
strengths and weaknesses resulting from the differences in how they fly and what
other features they have in regards to movement. As noted this work is based on
the assumption that the vehicle is able to hover, but this ability usually means
that the aircraft has lower flight endurance.

The reason behind the choice of UAV as the intended platform is based on
a number of factors. Most importantly, the work considered here deals with
locating RF transmitters which have several possible noise sources. As explained
in section 2.1, these noise sources are greatly reduced by elevating the sensor
platform and thus UAVs can aid in the work as compared to other ground based
vehicles. Having the ability to hover means that the UAV is able to stop for some
time in one location and sample the RF environment. This can lead to better
performance as the platform can get multiple samples at the same location which
could be important1. The flight model also gives full flexibility with regards to
behavior which makes, future, real world experiments easier. In addition UAVs
are becoming more available, have better sensors and can have a small form
factor which also plays a role in the selection. UAVs are also highly mobile which
means that tasks can be performed with less time spent travelling and more time
performing the task.

2.3 Autonomous Control using Agent Based Sys-
tems

Controlling a vehicle without the use of a dedicated human requires some form
of autonomy. This section introduces the concept of an agent based system as a
control scheme for several vehicles. The section will first introduce agent based
systems before going into SI. SI will have a special focus and several techniques
are explained in relation to autonomous control.

Agent based systems are systems containing several agents interacting with
each other[67]. The interaction among the agents within the system can be either:

• Cooperative

• Selfish

Cooperative means that the collective good is the goal, as seen in SI, and
selfish meaning the individual good is the goal, as seen in a free market economy.
An agent in this context is simply some entity which can observe and influence
the environment it is situated within. It is important to note that this definition

1 When the RF environment is noisy, multiple samples can be correlated resulting in a
reduction in noise.



2.3. AUTONOMOUS CONTROL USING AGENT BASED SYSTEMS 21

does not specify if the environment is real or software defined, and does not
specify the intelligence of the agent.

An important concept is that an agent will always decide for itself what to
do next. This separates agents from a class in an object-oriented programming
language[67]. A regular class will have its methods called by other classes, or
objects. Because of this it could be viewed as an agent, but crucially a class such
as this has no choice to handle an incoming method call. This is in contrast to an
agent which will observe some change and decide to react to it. Nothing is forcing
it to react and the decision is made within the agent. An example of a system
which can be viewed as an agent is a simple thermostat system. The thermostat
system will react to the environment by sensing the temperature and decide to
turn on or off. This can be viewed as an agent because it can sense the environ-
ment and perform some action within that environment. It would seem that this
example is no different than the object-oriented class since one could seemingly
force the thermostat system to react by lowering the temperature. The differ-
ence however lies in how the two systems control their behavior. The thermostat
system senses the environment and decides to act, while the object-oriented class
must act if another object calls one of its methods. Wooldridge [67] put it quite
elegantly,

Objects do it for free; agents do it because they want to.

The environment an agent operates in can have several different properties
which influences how the agent operates. Since the agent and environment is so
closely linked, understanding the environment is important in understanding how
the agent should behave. The most important properties of the environment is
what information is available for the agent and how the environment is updated.
If every piece of information is available for the agent and nothing except the
agent updates the environment, the agent can operate with great proficiency,
deliberating in eternity before executing the perfect action. However this is rarely
the case and in a real world scenario things like uncertain measurements makes the
decision process of most agents quite difficult. Moreover the environment is often
dynamic where other agents make updates, meaning the agent can not deliberate
forever as assumptions made are subject to change. With such uncertainty any
agent must be able to react to events and must act within reasonable time.

Another important aspect of agent based systems are their social ability. Be-
cause agent based systems are assumed to be able to interact with other agents
they need to have some form of social ability. This result in agents that are
capable of cooperation, coordination and negotiation. Without this social ability
the agents would not be able to form coalitions and work together to achieve
some goal. This further separates agent systems from other AI systems such as
expert systems. The social ability comes in different forms as mentioned above
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and agent based systems do not have to cooperate. In many systems the agents
represents some interests and will cooperate only to achieve its own interests.
In contrast a cooperating system will sacrifice individual performance for global
performance if necessary.

The alternative to an agent based system is a centrally controlled system.
In such a system there is only one agent, the central controller, which controls
several other objects2 in the environment. Often the objects will be capable of
sensing and very simple autonomy, but coordination and decision making will
derive from the central. The major difference between the two systems is the
way the central controller directs several agent like objects as opposed to those
objects being agents with their own agenda. The central controller can still be
thought of as an agent built up of several unconnected pieces, but it is usually
contrasted with agent based systems as it limits autonomy of the objects inside
the environment. This sort of autonomous system is oftentimes easier to create
as coordination is handled in one place, the challenge however is the reliance on
one agent making all decisions. If the agent has to direct several objects the
calculation of these actions may take a long time. In addition the objects must
always be in contact with the central controller and if that central controller
encounters a problem the whole system must halt.

2.3.1 Swarm Intelligence
As mentioned in the previous section SI can be viewed as an agent based system
where the group performance is the objective. SI is attractive as a control system
for distributed agents because of its focus on group performance, local interaction
and emergent behavior.

SI takes its inspiration from nature, more specifically social insects. The field
grew from observation of social insects in their natural habitat wondering where
the level of organization came from. By observing social insects as a whole,
impressive structures emerges where some parts of the swarm are tasked with
finding food while others with hive defense. Looking closer at the individuals
reveal that they have their own agenda. They are not directed by a single leader,
but instead follow some internal guidance, they are autonomous agents. Only as
a whole are the social insects able to do the impressive array of building nests,
care for the brood or forage for prey to sustain the hive [4].

What seem to guide these social insects are simple local interactions which
together gives rise to complex behavior.

One important paper to mention is Mamei et al. [38]. The paper creates a
taxonomy for SI and will be used in this section as a common classification to

2These objects are distinct from the objects on object-oriented programming and are just
actors within the environment which act according to the central controller.
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base the theory around.

Social Insects

Social insects are a fascinating field of study. These insects live in societies of sev-
eral individuals cooperating to reach a common goal. These insects do not have a
leader3, but still complex behavior arises. Several such insects have been studied,
examples include the honey bee(Apis mallifica), the wasp(Polybia occidenyalis),
army ants(Eciton) and termites(Macrotermes) Bonabeau et al. [4]. These exam-
ples all show behavior much more complex than their individual capacity would
allow.

Self-Organization

As mentioned before Self-Organization (SO) is an important concept within SI.
SO is the order which emerges at a global level from strictly local interactions
within a collective of agents. Local interaction is in this case interaction happen-
ing between the lower level agents without any global mechanisms to guide them.
SO is the driving force behind the emergent behavior observed in social insects.

SO is driven by two prevailing feedback forces. Positive feedback reinforces
behavior making an insect more likely to do something. As can be seen in ants,
where worker ants have a higher probability of depositing material if there is
an unfinished structure. The other type of feedback is negative feedback which
dissuades behavior. This can be seen when social insects are clustering. When
an insect is clustering it will pick up items. The probability of picking up items is
influenced by its surroundings. If there are several similar items near each other
negative feedback will ensure that it is less likely for the insect to pick up the item.
In the last example already formed clusters provide negative feedback. While
positive feedback is used to reinforce or encourage behavior, negative feedback is
needed to stabilize the organization. Without negative feedback the organization
could never come to a stable equilibrium. In the clustering example, if there were
no negative feedback affecting the ants, they would continue to cluster already
deposited items indefinitely, never reaching an equilibrium of clustered objects.

In addition to feedback there is a need for some random element. The example
of clustering above alluded that workers might pick up objects already clustered,
but the chances should be small. This random element helps with exploration of
different solutions or alternate ways to achieve a goal. One example can be seen
with ants when creating a trail between the hive and a prey. In this situation the
ants will deposit pheromones, described in section 2.3.1, to create a path, other
ants will follow. Other ants will only follow the path with a given probability,

3Even though queens may sound like a leader they in fact do not perform any such task and
are just there to create offspring in most social insects.
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which is reinforced if more ants follow the path laying down more pheromones.
Such a path may be longer than another and over time some ants could chose the
shorter path randomly. If this new path is shorter the pheromone trail should
increase because ants using it will be able to take shorter trips resulting in more
pheromone deposition on the shorter path. Eventually this new shorter path
should overtake the longer path, in pheromone concentration, resulting in the
ants finding the shortest path. In this example the continuous random element
induces the ants to explore the environment which could lead to better solutions
being found.

Communication

Until now there has just been mentions of local interaction, but this interaction
needs to be facilitated somehow. For most social insects this is achieved through
some from of communication, either direct or indirect.

Stigmergy is a way to indirectly communicate by changing something in the
environment. Social insects have developed several ways to perform this task from
chemical deposits, known as pheromones, to indirect signs in the hive. Stigmergy
is a powerful tool which allows the social insects to cooperate without a specific
leader or explicit communication. One example of stigmergy is the example of
clustering among ants, as mentioned above. In the example clusters of objects
acts as a communication to other ants, that objects should be deposited here and
not removed. The communication is through the environment and thus can be
viewed as stigmergy. It is important to note that this communication is very
scalable. Because the environment is often much larger than the agents within,
it can accommodate many agents working in the same place at the same time.
Going back to the clustering example, one can see that if one ant deposit an
item at a cluster communication is happening. Yet the same thing is true if
ten or twenty ants deposit at the cluster at the same time. This is important
because an ant looking to pick something up will get the same information and
it will not be too much information. This last statement can be contrasted
with electronic communication where the number of messages and the number
of entities communicating can not grow over some given bound. If there are too
many communicating entities the system will uses all its time processing messages
until it can not handle more messages and stops communication.

Pheromones is an important concept used by ants to communicate. The
pheromone is marker based[38] and is used in many different ways. Pheromones
can be used both as a trigger based mechanism and also as a follow through
mechanism. In the shortest path example above, the ants used pheromones, as an
indirect form of communication (i.e. stigmergy), as a follow through mechanism.

Pheromones is a powerful way of communicating and since it is a form of
stigmergy it has the property of being scalable. Because the communication
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is through a marker being placed down, the communication is a diffusion of
information which enables the ant to place the marker and then forget about
the event. If the same ant travels over the pheromone, it will again detect it and
base its action around the environment and not its own short term memory. This
means that an agent using this technique can be simpler in its design or utilize
its resources for other tasks.

In 1967 Karl von Frisch discovered that bees communicate by dancing[62], a
discovery which later resulted in a Nobel Price4.

By dancing, bees can communicate different needs. One example is when
there are few foragers. In this situation one of the bees responsible for handling
the incoming foragers may notice that many bees are idling waiting for foragers.
The bee may then begin to dance to communicate that more bees are needed to
forage, which might influence other bees to start foraging.

Through this language bees can affect the environment and talk to each other.
It is important to note that this is not a direct form of communication and is
therefore a form of diffusion of information. The dance is not directed at any
specific drone in the hive, but the communication is directed at anyone taking the
time to notice and pay attention. This property leads to scalable communication
which is efficient in regards to autonomous agents.

Emergent Behavior

The different forms of communication all lead up to the interesting property
within the social insects; the fact that behavior on the global level emerges as a
property of the interactions on the basic level. This property is why SI is so inter-
esting, because local interactions can scale to large populations. Understanding
why these behaviors emerge can help design systems which can also scale. By
knowing why a few interactions among separate agents lead to clustering, sorting,
nest construction or recruitment, one can build ever larger systems with many
of the same capabilities. Most of the systems designed with SI in mind, try to
utilize emergent behavior in some form. Because much of the communication is
directed at anyone willing to receive, the agents are often interchangeable. This
leads to more fault tolerant systems which more gracefully handles failure of some
of the agents comprising the system. Since the communication arise on a local
level and the desired effects on a global level, the systems designed in this way
can be efficient and scalable.

4”The Nobel Prize in Physiology or Medicine 1973”. Nobelprize.org. Nobel Media AB 2013.
Web. 19 Mar 2014. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1973/

http://www.nobelprize.org/nobel_prizes/medicine/laureates/1973/
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2.3.2 Cooperative search
Cooperative search, in this context, looks at several agents, N > 1, which to-
gether are trying to achieve the goal of finding a given target. The agents may
communicate and can search in any manner which results in the agents as a whole
finding the target. The techniques presented in this section take inspiration from
several different places, not only from SI.

Cooperative search relates to the problem described in section 1.2.1, detecting
a transmitter. As the previous section on geolocating, section 2.1 explained using
more than one agent is often needed. Since noise is a factor which can be reduced
by having several independent samples, using several communicating agents can
diminish the impact of noise. This leads to the realization that using a cooperative
search strategy can improve detection time.

One important point to note here is that the search can be performed in one
of two ways:

• Utilizing the information in the environment

• Not utilizing the information in the environment

Since the object of the search is an RF transmitter there exists some infor-
mation in the environment. Since the transmitter is sending out a signal there is
an opportunity for the agents to search, directed by this signal.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a search and optimization technique in-
spired by how birds fly and search for food. PSO was first described by Eberhart
and Kennedy [15] who created the optimization technique by trying to recreate
the flocking of birds. They noticed that by using simple rules for flight the flock
could move in unison and also seemed to be directed towards a goal. A good
summary of PSO and different versions can be found in [26].

The simplest version of PSO is built around the notion that each solution, or
particle in PSO terms, move towards some previous best location this particle
has recorded and the best location that the swarm as a whole has currently. In
addition some randomness is included so that the swarm might also search other
areas where it might not have gone otherwise. In figure 2.9 a graphical overview
is given for the simple version of PSO.

The movement update in figure 2.9 is carried out by the following equation,

vid = vid + ϕ1 ∗ (pid − xid) + ϕ2 ∗ (pgd − xid) (2.9)
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Figure 2.9: A graphical overview of the PSO algorithm.

where vid is the velocity of particle i in dimension d, ϕ1 and ϕ2 are two
uniform random variables, pid is the individual best, xid is the current location
and pgd is the group best.

In a follow up paper Eberhart and Kennedy [14] changed the optimization
model to work with more local information, by having each particle converge
towards the best of some limited number of its neighbors instead of the population
best. Instead of comparing against pg each particle compares itself against some
number of particles from the neighborhood. This change had the effect of making
the swarm search a larger portion of the search space, but still converge quickly.
This version is also less susceptible to local minima. This change has many
similarities with simulated annealing[28] and the use of roulette wheel selection in
Genetic Algorithms (GAs)[18] which enables some inferior solutions to propagate
and give some diversity to the system.

An analysis of the convergence of PSO was undertaken by Clerc and Kennedy
[9]. The paper analysed the convergence and stability of PSO in five dimensional
space and found that by altering the original version of PSO one could achieve
better performance on several standard non-linear optimization problems. This
increased performance came with only a small increase in computational and
memory resources.

In addition to the analysis of PSO some authors have tried to simplify PSO
to better understand which elements of the original algorithm contributes which
characteristics. In [25] Kennedy developed a simplified version of the original
PSO algorithm and compared different versions to see the effect. This simplified
version performed better than the standard PSO algorithm. Another simplifica-
tion can be found in [6] where the authors created a version of PSO which does
not use a particle best, but utilizes the neighborhood in a different way to the
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standard PSO. They showed that by removing the stochasticity and the memory
from each particle, and using the particle neighbors in a novel way, they removed
the bursting behavior observed in most other forms of PSO. They also showed
that one of the most important things in PSO is the social interactions.

Other approaches to more robust PSO algorithms have been explored. In [31]
the authors combined PSO with a Gaussian distribution instead of a uniform
distribution in the standard PSO variant. Their work showed that the velocity
update in the PSO algorithm could be simplified by observing that the mean
values for the velocity update usually end up between some known limits. By
exchanging the uniform random number and the local best and neighborhood
best with a Gaussian function the algorithm became simpler, and less variables
had to be specified. As the Gaussian distribution has much larger tails than
a uniform distribution, the algorithms ability to escape local minima is larger.
Their results showed that this Gaussian PSO did not perform any worse than the
regular PSO, and in many cases performed better. An extension to this work and
the bare bones PSO created in [25] was explored in [46]. In their work the authors
changed the sampling distribution from a Gaussian and uniform to one based on a
Lévy distribution. Taking inspiration from the foraging pattern of animals (more
on this in section 2.3.2) this extension was tested against both Gaussian and
standard PSO and again showed improvements over both, especially in regard to
the spatial distribution of the particles. The last part should be of special notice
as it mitigates the risk of local minima in addition to sampling a larger space.

PSO has also been used in many practical applications. Some of which are
optimization of a function or several functions and some of which are related to
search. In [12] the authors used several instances of PSO to search for objects in
a closed off area. They used one PSO to tune the parameters of another PSO
which was used for searching in a two dimensional space. Derr and Manic [11]
used PSO and simulated robots to search for a wireless signal in an enclosed
area. They found that by distributing a number of agents randomly within an
area and using a fitness function based on the free space propagation loss model
they could find and converge on one and several transmitters. They also noted
that because of propagation loss due to reflection the task could become slower,
but the task would still be completed.

Artificial Potential Field

A large challenge in many mobile robots is the task of obstacle avoidance. Avoid-
ing obstacles can be a challenge because of unreliable sensors and inaccurate
actuators. It can also become difficult because of varying environments and the
need for overall good performance. Artificial Potential Field (APF) tries to solve
this problem by creating repulsive fields around obstacles which a robot must
avoid [27]. Khatib [27] showed that by constructing repelling forces between
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Figure 2.10: Illustration of APF in a robot domain. The orange triangles are
robots, the green areas are the reach of APF forces and the black arrows are the
current travel vector. Also shown is a red obstacle which will influence the robots
if approached.

obstacles, a robotic manipulator could operate without collisions with a simple
mathematical basis suitable for less powerful computers.

Figure 2.10 illustrates how APF could function in a mobile robot domain.
The bottom right robot is experiencing some forces, its current travel vector,
shown in yellow, points it down towards the outer wall, the red arrow is the APF
vector pushing it away from the wall and the blue arrow represents the updated
travel vector safely moving the robot away from the obstacle.

In [5] the authors used a combination of APFs and certainty grids[40], to
achieve a fast and accurate obstacle avoidance and route following algorithm. By
using certainty grids to contain unreliable sensor readings and APFs to manage
obstacle avoidance their algorithm could be used on a relatively fast robot.

Warren [65] used APFs and global knowledge of the environment to enable
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global path planning through an obstacle cluttered environment. By knowing in
advance where obstacles were placed the author created APFs at these obstacles,
constructed a path through the environment before updating the path under the
influence of the APFs. By doing this a global path was constructed for both a
robotic manipulator and a mobile robot. The major contribution of this work
was a path planner which was not as affected by local minima as previous APF
methods. In a follow up paper[66] the same author showed how the algorithm
above could, with some changes, be applied to the path planning of multiple
robots operating in the same environment. By giving each robot a priority the
path planning could be performed by having the robots plan according to priority.
The robot with the highest priority could plan its path by only considering the
stationary obstacles, as the previous algorithm by the same author. The next
highest priority robot could then plan its path by viewing the highest priority
robot as a moving obstacle to avoid.

Another work, by Lee and Park [35], used APFs together with simple neural
networks to generate a path. The authors used several agents representing points
on the path connected by line segments which updated their position according
to local rules to generate a near optimal path. By using neural networks to
represent obstacles efficient calculations could be performed with the addition of
output ranging from 0 to 1 used later. The authors used simulated annealing[28]
to escape local minima by utilizing the neural networks possibility of outputting
a degree of collision. This resulted in a fast algorithm capable of real-time opera-
tion. The algorithm was also massively parallel because of the local update rules
used.

By considering only the local path planning problem the authors in [34]
showed that local minima could be escaped by putting down virtual obstacles
when a local minima is detected. Their algorithm could efficiently maneuver an
environment with a local minima the plain APF method could not. Even though
the authors do not mention it, the solution is very similar to pheromones used
by ants.

As described above using APFs for local path planning has had academic
interest for some time. A challenge with APFs however is its one step reduction
of obstacles into vector forces. This problem was investigated in [29] where several
limitations with regards to APFs for local path planning was identified.

Other areas of robot control has also used APF with success. Howard et al.
[21] used APFs to solve the area coverage problem. The problem is to cover
a given area with some sensor platforms. The authors showed that by using
APFs and only local movement rules a swarm of robots could create a very good
coverage while simultaneously avoiding obstacles and each other.
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Figure 2.11: An example Lévy flight

Lévy Flight

A random walk is a path separated into segments where the direction and length
of each segment are sampled from one or two random distributions [43]. Often
the direction is sampled by a uniform random distribution, while the length is
sampled by another random distribution. In cases where the direction is uniform
and the length is of some special type, the random walk is often characterized by
the distribution of the length. Several such random walks exist from the uniform
random walk to the Brownian random walk. Of special interest is Lévy flight,
first mentioned by Mandelbrot [39], which is a random walk sampling lengths
from equation 2.10.

P (l) ∼ l−µ (2.10)

Equation 2.10 describes the probability of obtaining a length l which is dis-
tributed according to l to the power of a parameter µ.

The Lévy flight is characterized by many small consecutive jumps followed
by, often, one long jump. This can be seen in figure 2.11 where a sample path
is shown. From the distribution one can observe that the numbers will tend to
smaller values, but there is a possibility for large values as the distribution is
tail heavy. Another important factor is that Lévy flight is scale free, or scale
invariant. The scale invariant property means that the distribution can be scaled
arbitrarily large or small, which in turn makes the flight usable in several different
scenarios. For instance in figure 2.11 the scale could be an agent searching along
the northern coast of Norway looking for cities, or it could be bacterial movement
within a cell.
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Lévy flight can be observed in many patterns of animal foraging. In [59] the
authors observed how the foraging of Albatrosses can be modeled using Lévy
flight. Later the same authors showed how for an unknown number of sparsely
separated foraging sites the optimal strategy is to chose a Lévy flight with µ = 2
[60]. In a related work Reynolds [45] showed that for N > 1 foragers the optimal
search strategy when targets sites are randomly and sparsely separated is for
µ ∼ 1. The author noted that when cooperative foragers are able to communicate
target sites the above limit holds. The author also noted that this behavior might
also explain the orientation flight of honeybees, which was mapped by Capaldi
et al. [8]. An important note to make here is that this special flight where µ ∼ 1 is
applicable to both communicative foragers as well as non-communicative foragers
if target sites are densely populated. In [13] the authors disrupted the waggle
dance of three different spatially located colonies of honeybees and observed that
only the colony which had sparsely separated target sites where affected. This
hints at when target sites are densely populated around the foragers cooperation
has little effect on overall foraging.

Sutantyo et al. [56] used Lévy flight to search a two dimensional area coupling
it with APFs and comparing it with a uniform random walk for area exploration.
The authors noted that for exploration both Lévy flight with and without APF
performed better than random walk exploration.

In addition to these uses within search, other authors have used Lévy flight
for other purposes. Lee and Yao [33] used the Lévy probability distribution to
enhance mutations in a GA showing how the long tail of the distribution can help
with variability.

2.3.3 Source seeking
A lot of research has been done within the field of source seeking. The goal of
most of the research is the detection and localization of some source, most often
some form of chemical (for a good introduction to chemical plume tracking see
[20, 30]). Other sources have also been explored, but the unifying factor is that
the source is emitting some information into the environment. Most of the early
work went into single agent source seeking, a trend which has shifted over to a
more distributed approach recently[30]. By having several agents cooperate the
source seeking task can often be performed quicker and with less probability of
getting stuck in local minima. The research done within this field has mostly
focused on two areas, gradient climbing and memory based map building.

Gradient climbing

Most of the literature surrounding source seeking have worked with sources which
forms some sort of gradient. Moving on this gradient has therefore been given a
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lot of attention.
Because of the focus on chemical tracking a lot of inspiration has come from

biological systems with a special interest in the chemotaxis performed by bacteria
and some other animals[48]. Bacteria such as Escherichia coli search for nutrients
and avoids repellent by moving randomly for some lengths before selecting a new
random direction. The selection of direction is influenced by the current envi-
ronment and the change in direction occurs more frequently when in an repellent
or attractant environment[3, 37, 48], illustrated in algorithm 2.1. This random
walk, often called a biased random walk, directs the bacteria from repellent and
neutral areas towards attractant nutrients. Another early use of taxis was the
realisation that moving upwind when detecting a chemical, anemotaxis, can be a
good strategy to find a source[47]. In [22] the authors combine anemotaxis and
chemotaxis to perform a guided search towards a chemical source. This combina-
tion performed better than either taxis on its own, and they showed that by using
each taxis at the correct time can alleviate some of the problems experienced with
each taxis individually.

Algorithm 2.1 Algorithmic illustration of chemotaxis
while Not at goal do
Ct = Read sensor
if Ct > Ct−1 then

Turn ± Random(5◦)
Move forward

else
Turn ± Random(180◦)
Move forward

end if
end while

Some work has also been undertaken in the single agent search for EM signals.
In [55] the authors simulated a single agent with an RSS receiver which searched
for a transmitter. By estimating the RSS gradient their agent could move towards
the transmitter. They also noticed that by adapting the number of previous
measurements used, the agent could improve its movement depending on where
it was located. A similar study was undertaken in [69] where the authors also
estimated the gradient towards a transmitter. Their analytical approach showed
that estimating the gradient was possible and they created and algorithm which
was tested in a simulator. The same authors extended their work in [42] where
they expanded their analysis to two dimensions and showed again that their
algorithm was robust to noise. Wadhwa et al. [63] used a chemotaxis inspired
RSS based estimation algorithm which moved along the gradient, but made some
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special maneuvers when the rate of progress slowed beyond a given threshold. By
moving in a pattern to sample RSS the authors could more reliably estimate the
gradient. Because of their focus on a single agent searching, these results are
included as textual references, but is not implemented.

In recent years a lot of work has focused on distributed source seeking[1,
30, 68]. The difference is simply to use several cooperating agents to search for
the source. Much of the research has again revolved around chemical plume
tracking, making it comparable to the previous research. Hayes et al. [20] used
several, simulated and real world, robots to implement a cooperative chemical
plume tracking algorithm. They used energy and time as metrics for their result
and showed that several agents are better than singular, but also showed that
crowding could become a problem. In [2] the authors used collaborative formation
control to give the agent a stable form which could be used to estimate a gradient
to descend. However this form needed to be completely rigid which makes the
technique unsuitable for real world UAVs. The authors use inspiration from fish
schooling to derive an algorithm which can guide the agents down the gradient.
Ogren et al. [41] used APF for stable formation control and a gradient decent
algorithm to move in a noisy scalar field. Their important work showed that
by decoupling formation control and the gradient decent algorithm, the design
of the agent could become more robust. They also showed that by letting the
formation expand and contract in response to the scalar field, the agents could
overcome noisy measurements. Though the work is important, the need for a
rigid formation makes their result hard to transition to UAVs. In [24] the authors
modified the regular PSO algorithm to make it better suited for plume tracking,
by combining APF and PSO they showed that a plume tracking task could be
completed and increased the diversity of the area searched.

In a similar vein, Zarzhitsky et al. [70] used their previously developed physi-
comimietics [52, 53, 54] formation control and created a new form of taxis, called
fluxotaxis, to search for a chemical plume. Fluxotaxis is based on fluid dynamics
and uses the rigid formation created as a distributed computer to solve the fluid
flow problem. Their algorithm can intuitively be understood as using the rate of
fluid change in an area to guide the search. By comparing their new algorithm
with chemotaxis and anemotaxis they showed that their algorithm could perform
better both in regard to time-to-find and detection frequency. The drawback
of their implementation was the need for a rigid body to create the distributed
sensing platform. This could be interesting to test in future work and their
physicomimetics is an important technique to review when formation control is
desired.
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Memory based

Some work has also been undertaken in developing non gradient based source
seeking algorithms. What most of these have in common is their use of a persis-
tent map. By using a map to store information about past measurements, these
algorithms can both calculate a gradient to follow and can also utilize the map
to calculate where to measure in order to gain the most information. In [51] the
authors used a mobile robot to track and estimate the position of several non
persistent transmitters. Their work consisted of a directional antenna, used to es-
timate the direction of signals, and an occupancy grid[40] based solution to store
measurements and calculate movement from. By using Bayesian reasoning to
update the grid and using heuristics to move towards grid cells to increase their
probability of detection, the authors showed that this algorithm outperformed
an organized and a random search. A similar development was undertaken by
Scerri et al. [50]. In their work they also employed an occupancy grid inspired
map which they used Bayesian reasoning to update. From this map each UAV
calculated the point of which the swarm would gain the most out of measuring.
This was done by assuming that the UAVs knew about the transmitted power of
each transmitter. This assumption means that the transmitter in question was
not hidden or unknown to the agents within. By sharing some information be-
tween the UAVs this approach could avoid searching already explored areas and
because of the sharing of measurements the estimation of sources became more
robust. Ferri et al. [17] also used a Bayesian updated occupancy grid. Their
focus was in tracking multiple stationary indoor odor sources and showed that by
using an occupancy grid, continued search in the area could be performed even
after one or more odor sources was located. In [58] the authors used a Bayesian
updated occupancy grid, and because of the nature of the work they combined a
three part greedy heuristic to select where to explore next. By combining fron-
tier exploration and RSS the authors created an indoor source seeking algorithm
suitable for a single agent. Since only one agent was considered this algorithm
was not implemented in this work.
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Chapter 3

Model

This chapter will introduce the model and simulator used in this thesis. The
model will describe how different concepts from chapter 2 is used to build a
system which will try to answer the research questions presented in section 1.2.1.
In this chapter the simulator will be described in broad terms.

3.1 Simulator
In order to test different search strategies a simulator has been created. This
section will describe the different aspects of this simulator and the models which
are used in the simulations. For the simulations to work a propagation model for
the RF-signal and a movement model for the agents is needed. The simulations
are used to compare different operations and collect statistics. For this thesis a
general setting for searching was created with the intention of letting a number
of simulated agents move around inside an enclosed area.

The simulation loop is given in algorithm 3.1. This algorithm describes how
the simulator updates the different models.

3.1.1 RF propagation model
The goal of this thesis is to research different ways to use SI in order to detect a
hidden transmitter. For this to be possible there need to exist an RF propagation
model. To keep the propagation model simple, the signal is modeled as amplitude
with noise added. The noise is assumed to only come from the receiver and there
is no other noise in the environment, i.e. thermal noise. Dampening in the
environment is included in the α variable. The equation for this amplitude is

37
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Algorithm 3.1 simulate(agents, transmitter)
numberOfSteps = 0
repeat

update transmitter {Let the transmitter update its internal state if needed}

for agent a to Agents do
update agent calling algorithm 3.2

end for
numberOfSteps = numberOfSteps+ 1

until termination requirement is met
return numberOfSteps

shown in equation 3.1,

Ar =
At√
dα

(3.1)

where Ar is the amplitude at the receiver, At is the amplitude the transmitter
is sending at, d is the distance between the receiver and transmitter and α is a
variable defining the propagation loss of the environment. Noise is then added
to equation 3.1 to produce the final received amplitude, shown in equation 3.2.

Ar =
At√
dα

+N(0, σ) (3.2)

This model was chosen because it accurately represents the signal propagation
with line-of-sight to the transmitter when the α parameter is 2. In addition this
model is a good approximation when dealing with elevated sensor platforms as
was explained in section 2.1.1.

For this work the signal is assumed to be sending at all times which narrows
the scope. This means that an agent can always sample and assume that the
signal is present even if it is hidden in the noise. Thus intermittent transmission
is not considered.

3.1.2 Agent model
In addition to the RF propagation model there is also a need for an agent model
which defines the agents movements in the simulated world.

To simplify, the agents movement is restricted to two dimensional space. This
restriction keeps the model simple and can intuitively be viewed as a group of
UAVs flying at a constant specified altitude. This should not affect the over-
all conclusion since the comparisons performed are in between algorithms. The
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assumption being that if an algorithm performs better than another in two di-
mensions, it will also perform better in three dimensions. In algorithm 3.2 the
update function for an agent moving randomly is shown. All agents must im-
plement such a movement method, but the strategy decides exactly how the
movement is performed.

Algorithm 3.2 updateAgent(time amount, world, transmitter)
dx = rand(−1, 1);
dy = rand(−1, 1);
newX = dx ∗ timeAmount ∗ agentSpeed;
newY = dy ∗ timeAmount ∗ agentSpeed;
if newX inside world and newY inside world then

update current position
else

select new position
end if

In algorithm 3.2 the arguments to the update function is the time since last
update, the world representing the search area and the transmitter which the
agents can query to obtain the amplitude at the current location. The agentSpeed
is a known value for all agents which is the length an agent can move in a second.
As will be shown later, the simulator is responsible for checking if the stopping
condition has been met. For instance when search is the current goal of the
agents the simulator will check if any agent is within range of the transmitter.
It is important to note that the agent can not query the simulation environment
more frequent than its own update. This is done to enable the simulator to be
run as a single process and avoids many pitfalls related to multiprocess design.
In a real world situation an agent would be able to sample RF signals much more
frequently, but this can be included in the model by incorporating less noise. The
implication being that if the agent could sample more often it could calculate a
better average which would reduce the noise. At the same time, if the agents are
allowed to sample less frequently, by reducing the noise, their perceived view of
the world could be an acceptable simplification.

Another simplifying assumption made is that there is no collision between the
agents. This assumptions means that there is no problem for all agents to move
towards the same location at the same time. It also means that agents do not
have to be aware of other agents to move. This assumption is made to make the
strategies tested easier to implement and also aid in translation from abstract
concepts to concrete strategies. The assumption is justified because most of the
strategies would work if a collision avoidance layer was built into some part of
the agents movements, without the strategies having to incorporate knowledge
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about that layer. This means that most algorithms would work, but they might
perform slower than the results in this work would indicate.

The world model is a simple rectangle that the agents are not allowed to move
outside. For this thesis the agents know there is a transmitter somewhere inside
this area, but they have no other information.

To simulate a real search scenario all agents start in one corner of the search
area. There they are distributed randomly within a small circle, so that all the
agents do not move out from the same location. This is done to simulate a more
realistic start. The random placement is the same for each agent strategy.

3.2 Search Strategies
In this section different search strategies will be presented and the termination
requirement for the simulator during searching will be explained.

In this setting all the agents starts in one corner, because of symmetry which
corner is not important, and are then able to move around searching for the
transmitter. Each different strategy has a given way of moving each agent, but
parameters such as movement speed, transmitter parameters and world size is
kept constant over the different strategies. The termination requirement in this
setting is for at least one agent to discover the transmitter with some degree of
certainty. After this happens the simulation is stopped and statistics about the
run is recorded.

By stopping the simulation just after a detection is recorded means that
only the search strategy is compared. This makes comparisons between different
strategies easier to perform. It also makes it easier by dividing the problem of lo-
cating the transmitter into two separate parts. However this has some downsides
as several aspects of the agents as a group is not compared. If the simulation
had simulated the whole problem, several aspects of the emergent behavior of
the group would become evident. One example of this emergent behavior could
be that, given two search strategies, strategy A is slower than strategy B, but
because the agents are more grouped in strategy A they can come together faster
and locate the transmitter faster if both strategy A and B used the same locating
behavior. This would make comparisons harder, as one would need to analyze
which parts of the agents behavior results in the emergent behavior. This would
also mean that experiments would have to be controlled to a different extent,
because statistics alone could not reject the possibility that the combination of
different strategies is the problem and not individual strategies alone. In addi-
tion to these concerns the implementation would become harder as several parts
would need to be working before comparisons could be made, e.g. both a search
strategy and a locating strategy would need to be implemented before simula-
tions could be run. By only comparing the strategies their individual strengths
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should become easier to recognize and the result should become more versatile
as the comparison is more general.

In the searching configuration the simulator will run quite a few times for
each set of parameters. This is shown as pseudocode in algorithm 3.3.

Algorithm 3.3 Simulation setup for the searching problem
Get Transmitter configuration
Get World configuration
Create t number of Transmitters locations by using a uniform probability
within the given World configuration
for agentConfiguration a to AgentStrategies do

for numAgents n to NumberOfAgents do
for transmitter t to TransmittersLocations do

Create Set of agents from AgentStrategy a and numAgents n
repeat

Perform algorithm 3.1
until Number of simulations times

end for
end for

end for

In algorithm 3.3 NumberOfAgents is a list of different amount of agents to
simulate, e.g. (2, 3, 4) which would simulate with 2 agents, then perform the same
simulation with 3 and lastly with 4 agents. The AgentStrategies variable is also
a list which contains the different search strategies to apply. The reason for the
innermost repeat is so that stochastic strategies can be compared. If no repetition
was present the statistics collected would be based on one run where the initial
random number state would dictate the outcome. By repeating the simulator,
this random state will be mitigated by many runs and will give a clearer picture
of the strategy. On the other hand, for a deterministic strategy this repetition is
unnecessary as the number of steps in algorithm 3.1 would be identical.

The transmitter is placed at a random location using a uniform random distri-
bution. The range of the transmitter is controlled by the experiment performed,
but will be equal for all the different search algorithms tested.

3.2.1 Random strategy
The random search is one of two baseline strategies used to compare the other
strategies. As noted in section 1.2.1 the random strategy will in a finite amount of
time eventually find the transmitter. Since the strategy does not use any form of
direction when searching, the strategy does not take in to account the information
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in the environment. From this one can see that no strategy should perform worse
than the random search strategy. The pseudocode for the algorithm can be seen
in 3.2 which can be explained as selecting a direction at random and moving until
a wall is meet.

This strategy has some advantages and some disadvantages. The main dis-
advantage of the strategy is that it does not use any of the information in the
environment to guide its movement. This makes the strategy simple to use, but
it is expected to be slower than an equivalent strategy which make use of the
information. In addition to being simple it is also highly distributed and uses no
form of communication which makes it very scalable, which is desirable.

3.2.2 Call-out with Random

After some initial testing and some early results it was discovered that the random
strategy described above performed quite well. By studying the random strategy
in the graphical environment some thoughts around why this was (this is further
elaborated on in chapter 5) appeared. From this understanding, a new strategy
was created which should perform at least no worse than the random strategy.
By incorporating what was perceived as the best parts of the random agent
with some exploitation of the information in the environment this new agent was
created.

This agent differs from the random strategy above by incorporating some of
the information in the environment. By moving randomly until a sufficiently
strong RSS measurement is made before acting on it, a more efficient search can
be performed. When an agent measures above a certain configurable threshold
it calls agents close by. The recalled agents will then stop their current path and
turn towards the point it was called to. This call-out means that many agents
will try to move towards a point of some interest. If the recalled agents are
spread out before the call-out they will converge on the call-out point from many
different angles. This results in a high chance that one of the converging agents
will find the transmitter, if the call-out point is near it. Since the point it self is
not that interesting a random element is added to each converging agent so that
all agents move towards the vicinity of the call-out point. This random element
diversifies the search around the area of interest and adds additional exploration
of the immediate environment around the call-out point.

To allow for some movement a cool down period was added so that no agent
currently participating in a call-out can perform or join another call-out before
the cool down period is over.



3.2. SEARCH STRATEGIES 43

3.2.3 Organized strategy
The organized strategy is the other reference implementation. This strategy
shares the trait of not utilizing any information in the environment, and will
perform an exhaustive search of the area. In a deterministic environment this
strategy would on average always find the target quickest by searching every
point in the area only once. The strategy will behave in a similar manner in
the simulation performed, but because of the probability of not detecting the
transmitter, even though an agent is within range, the strategy will search the
area once before backtracking on the same path. The path is illustrated with the
thick black lines in figure 3.1. When the agent reach the far right of the enclosed
area they will move on the same black lines back towards the left, backtracking
on the path. This ensures that the strategy will eventually terminate, but it is
no longer guaranteed to be the quickest strategy as other strategies can utilize
the information in the environment and can adapt to the noise.

When more than one agent uses this strategy they will be evenly spaced and
move in a coordinated fashion. This coordinated search is illustrated in figure
3.1. This leads on to another problem with the strategy, the spacing between
the agents can lead to the transmitter not being detected because of noise. This
problem leads to a trade-off between utilization of the number of agents and the
desire to detect the transmitter on the first pass. Both of these concerns are a
consequence of wanting to find the transmitter as quickly as possible and both
present different ways of approaching the problem. One could try the maximum
spacing of agents, relying on low noise in the environment and quicker search
time because each agent can cover more of the search area thus leading to a
faster sweep. Or one could lower the spacing, taking a longer time to search the
area once, but having a higher probability of detecting the transmitter between
agents and not needing to backtrack.

In figure 3.1 a small sample of how five agents search is displayed. The large
orange circle is the transmitter, the small red circles are the agents with green
lines as the next destination and the black square is the search area. The total
path the agents will travel is also shown in the figure, marked as black lines.

This strategy is expected to be quicker compared to the random strategy,
because it searches each point only once [19]. But this comes at the cost of
being more complicated and not nearly as scalable. In the implementation used
a central controller is dictating the movement of each agent, this means that the
strategy is not distributed and has a single point of failure. Furthermore it means
that the strategy can not scale above what the single controller can handle. In
a real world scenario this complication could be even more difficult to overcome
as communication overhead would become a challenge. It is likely that some of
these problems can be overcome by changing the controller from a central to a
distributed model, but this would most likely lead to a higher communication
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Figure 3.1: A sample of how the organized search is conducted with five agents.
The red circles are the agents. The green lines is the next destination of the
agents. The black lines illustrate the whole path that the agents eventually will
travel and the orange circle is the transmitter.
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overhead as the agents would need to communicate among themselves to become
organized.

3.2.4 Chemotactic strategy
The chemotactic strategy is a direct implementation of chemotaxis shown in
algorithm 2.1. This strategy is included so that a comparison between a strategy
not utilizing the information in the environment can be compared to a strategy
that uses the information. Even though the utilization is quite naive the strategy
could still give some valuable insight into what is needed to search in a noisy
environment. This strategy should be comparable to the random strategy, but
it could be able to perform better as it actively tries to seek out the source.
The strategy seeks out the source by moving in directions where it perceives an
improvement on measurements.

One small alteration that was applied to this strategy was to give it the pos-
sibility of collecting several samples before calculating an average. The number
of samples can be controlled and can be set to any desired amount. This gives
the strategy some measure of noise reduction.

3.2.5 Lévy flight search strategy
Lévy flight is an interesting concept that could possibly result in a good search
strategy. As explained in the background chapter, Lévy flight is a random walk
inspired by nature. That inspiration is the basis of why it has been included in
this work.

The strategy works by selecting a random direction and then select a random
length where the length is calculated according to equation 2.10. In the same
way as the random search strategy, this strategy limits itself to the search area,
meaning some destinations will be cut short. This last part could become a
problem as the distribution of lengths are not distributed according to Lévy
flight when truncated, but this was seen as an acceptable solution since it should
happen relatively infrequent.

Lévy flight is interesting because of its derivation from natural phenomena.
Since many animals forage for food according to a Lévy flight pattern, there
could be some evolutionary advantage compared to a uniform random or Brow-
nian walk. Because of this, Lévy flight becomes very interesting as it might be
that Lévy flight solves the problems of searching for a target by encapsulating
the underlying mathematical basis for a search. This makes Lévy flight very at-
tractive since its random walk nature makes it extremely distributed and easy to
implement(to see how the Lévy flight distribution is implemented for this thesis,
see appendix A).
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3.2.6 Simple PSO strategy
The simple PSO strategy is a direct implementation of PSO explained in section
2.3.2. This strategy is included as a reference to how one of the basic SI algorithms
perform.

The major change from the assumptions made about the simple PSO in section
2.3.2 to the implemented version is related to the experiment setup. In most
versions of PSO there is an assumption or a requirement that all the agents
are randomly placed, as uniformly as possible, to enable the algorithm to work.
This assumption is not used in the implementation of the simple PSO since all
agents must start in one corner as mentioned above. This will most likely affect
the performance of the strategy because PSO is built around moving towards the
best position gaining variability from this movement where a random agent might
happen upon a better result. Since all agents start at the same location their
only source of variability is the random noise. This noise could help the agents
explore the search area by introducing a random element. When some agents
follow the noise they could also move towards the transmitter, thus moving the
swarm in the right direction. However if the distance is too large there is a greater
possibility that the swarm can get stuck in a local minima.

This strategy makes use of the information in the environment by incorpo-
rating the received signal in its movements. In the normal setting where PSO is
used as an optimization algorithm this information would always be of some use
as there is no noise on the metrics used. The inclusion of noise could therefore
become a problem for this strategy as it means that the local and global best
could constantly move between samples dominated by noise.

One interesting aspect of including this strategy is the realization that it
could potentially utilize each currently received signal in its update algorithm to
cancel out noise. This notion is further explored in the next strategy which is an
extension of the simple PSO search strategy.

3.2.7 Extended PSO strategy
By seeing how the simple PSO strategy operates several observations were made.
First it was noted that cooperation among several agents was advantageous.
Second, since the agents all start in one location, moving towards the best position
does very little to direct the search. From these two observations a new strategy
was created which tries to remedy some of the problems in the simple PSO
strategy.

By changing how the agents estimate their next position, better movement
could be accomplished. Instead of moving towards the best location in the swarm
a travel vector is calculated which guides the agents. After this travel vector is
calculated the agents move a certain distance along the vector before calculating
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a new vector. This ensures that no agent travel too far away if the vector was
heavily influenced by noise. The vector calculation is illustrated in figure 3.2.
To calculate the travel vector two other vectors are first calculated before being
summed. The global best vector represents the best direction of the swarm as a
whole, and the personal best vector is a locally calculated vector for each agent.
Both vectors are calculated in the same way, but they differ in how they compare
the agents. To calculate the global best vector, the agent with the current best
signal estimate is found. This agent is then compared with all the other agents
and vectors from the poorer agents to the best agent is created. These vectors are
then added to create the global best vector, in figure 3.2 this is illustrated with
the green arrows. If noise is taken out of the equation the global best vector will
move every agent closer to the transmitter. The personal best vector is created
in much the same way, but instead of comparing with the best agent, each agent
compares all the other agents against itself. For each comparison the agent checks
which agent, it or the other agent, has the best current estimate and creates a
vector from the worse to the better agent. These vectors are again added and the
personal best vector is created, this is illustrated in figure 3.2 with the orange
arrows. The global best vector and the personal best vector are then added to
create the travel vector.

The vector calculation above is influenced by PSO in the way PSO moves
towards the global and personal best. By moving towards the global and personal
best the swarm is moved towards the best position experienced by the swarm as
a whole, but retaining some exploration by including the personal best. When
considering that there is noise in the system the personal best vector is quite
important as it can diminish the effect of spurious noise measurements. Since the
global best could be selected on the basis of a noisy measurement, the local best
can in some ways counteract that vector as only a small part of the local best
vector is influenced by a noisy measurement.

To retain some stochasticity in the system, the travel vector is slightly modi-
fied by changing the direction according to a normal random. This aids in keeping
the agent exploring, searching a larger part of the search space than it otherwise
would.

To estimate the signal and reduce noise each agent collects some samples
before calculating an average. This average is controlled by the experiment and
can be changed to different amounts. This reduction in noise is contrasted with
the time needed to obtain the samples. The longer an agent must stand still
and sample, the more time it will use to find the transmitter. At the same time,
if the agent moves while collecting, the longer it collects while moving the less
representative it is for the area the agent is in when recalculating.

One thing that was noticed in the performance of the agent when experi-
ments began, was that the ability to locate the transmitter was very dependant
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Figure 3.2: Illustration of the elements in the vector calculation of the travel
vector for extended PSO



3.3. STATISTICS COLLECTED 49

upon the lengths of its movements. This motivated the inclusion of Simulated
Annealing (SA) like temperature changes. When the agent is far removed from
the transmitter it should make large leaps to try to get closer to the transmitter.
When it is close it should make small movement updates to not become too far
removed from the transmitter. The inclusion of SA was then implemented into
the agent which makes the movement dependant upon the perception of distance
between the agent and the transmitter. For this reason using the threshold as
the global maximum makes the inclusion of SA easier to implement. Noise can
interfere with this estimate, but since the noise will be periodic and not constant
it should only mean that the agent is trapped for a little while before moving
larger leaps again. The movement length update equation is given in 3.3.

lengthi = max(threshold− averagei, θmin) (3.3)

In equation 3.3 lengthi is the length to move, threshold is the threshold value
given by the transmitters false alarm rate and noise, averagei is the sampled
average and θmin is the minimum movement length.

3.3 Statistics Collected
To enable comparisons between different strategies some statistics are collected
from each run. As shown in algorithm 3.1 the number of simulation steps are
collected. The number of simulation steps is the most interesting statistic to col-
lect, because it can be directly compared between different strategies and it gives
a measure of the total time a strategy uses to complete. This statistics is also
independent of actual time needed to perform an algorithm which can be both
an advantage and a disadvantage. The advantage of it being independent of real
time is that the simulation is not affected by scheduling or other such operations
a modern operating system performs. This means that a direct comparison is
possible since the number of simulation steps is only a measure within the sim-
ulation. The disadvantage of this measure is that it does not take into account
the possibility of one strategy using more computational time calculating its next
action compared to another strategy. This might mean a good strategy might be
better because it uses a lot of computational power, but is not realizable for a
real world system.

The statistical methods applied in this thesis are described in appendix B.
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Chapter 4

Experiments and Results

In this chapter the results of the thesis is presented. First the experiment method-
ology is explained before the results are shown. The experiments are designed
to answer the research questions presented in section 1.2.1 and are the result of
running the simulator explained in section 3.2. For a more detailed explanation
on how to setup and run the simulator, see appendix E. Discussion and analysis
is performed in chapter 5.

4.1 Experimental Plan
In order to test different search strategies and highlight their strengths and weak-
nesses some experiments were created. The first experiment was designed to test
the search strategies over a range of different transmitter placements. The ex-
periments are run in a general search scenario. By comparing strategies in such
a general search scenario quite a lot of data is produced. Average and standard
deviation from the different transmitter placement is not possible to calculate
because of the huge differences which can occur between different transmitter
placements. Appendix B describes how the data is interpreted to create a good
statistical comparison. In short terms the data is compared using a Paired t-test
which results in a confidence interval. The confidence intervals are then summa-
rized using a Binomial test.

Since all strategies have the same movement speed and experiences the envi-
ronment in the same way, it was decided that only one search area was needed
for the experiments. The Organized strategy is the search strategy most severely
restricted by the size of the search area. Consequently, it became the basis to
decide the size of the search area. If the size of the search area and the distance
between the organized agents are correct, the agents will line up and do a singular

51
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Variable Value
Amplitudet 500

False alarm rate 1e−6

α 2
σ 1

Table 4.1: Transmitter configuration parameters for the search experiments

sweep of the search area. For this reason the search area is large enough to en-
compass the organized strategy, when the maximum amount of agents analysed
can perfectly fit the area.

During the experiments all other configurations variables were kept similar.
By keeping the other variables constant the results become easier to compare,
even across different tests. The transmitter signal configuration was the exact
same between the different tests. As stated this eases the comparison across
different tests, but it also facilitates an easier discussion about the properties of
the transmitted signal.

Since the system was created to be very easily reproducible, the exact con-
figuration of each experiment is added in the appendix and will be referenced in
the corresponding experiment setup.

The transmitter is setup with the parameters given in table 4.1. These param-
eters equates to the radiated signal shown in green in figure 4.1. As mentioned
above this signal is kept consistent throughout the different experiments, which
means that for the different tests the noise will be equal. The α value was chosen
on the basis of the free space path loss model, described in chapter 2, and is con-
sistent with perceived values experience in real world UAV testing[57]. The false
alarm rate was also chosen for its relation to real world values. The σ value was
chosen so that enough noise was introduced, this is also consistent with real world
values. The amplitude of the transmitter was chosen so that the area covered by
the transmitter was suitably large for the search area.

In figure 4.1 the signal is plotted showing how it will propagate from the
transmitter. It is important to note that from a distance of above 200 the signal
itself is quite hard to separate from the noise floor. This is important because
it means that agents further away must use some technique to filter the signal
to be able to move towards the transmitter. Another view can be seen in figure
4.2 where a three dimensional plot of the signal is shown. The emitter is located
at the origin and the color represents the RSS. The figure illustrates the scale of
the search area in comparison to the detectable range of the emitter, as an agent
approaches the center it should be able to gain more information. It is not until
the dark red areas where an agent is sufficiently close to determine a detection
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Figure 4.1: Illustration of the received amplitude at a given distance, with noise
and showing the threshold
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Figure 4.2: Illustration of the amplitude shown in figure 4.1 as a three dimensional
plot in an area 2000x2000. In the figure only the area shaded in the dark red is
above the threshold and thus is recognizable as a signal.
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Size Threshold coverage(%)
1590 x 1590 1.25%

Table 4.2: The search area size in relation to the estimated signal coverage and
the threshold coverage.

using a false alarm rate at 10−6.
In table 4.2 the search area is shown. The transmitter estimate is derived

from the discussion above using information from table 4.1 and the plotted sig-
nal in figure 4.1. The threshold coverage in the table illustrates the percentage
of the area in which an agent is able to detect the transmitter with the given
certainty, expressed as the false alarm rate. The agent travel speed, the num-
ber of repetitions per transmitter and the number of transmitters were all kept
constant.

In order to be able to compare the different search strategies a number of
different runs were set up. A list of randomly placed transmitters were generated.
The same list was used for each agent configuration and was static throughout
the experiment. The transmitters all share the same configuration as mentioned,
which results in comparable statistics. The results from these runs are then
compared through the statistical analysis shown in appendix B.

Included in the result is both the simulated time needed for each strategy
to detect the transmitter as well as the total length traveled. Simulated time
is necessary since time is the objective of interest in the search. The simulated
time gives an understanding of the real world time needed and because it stems
from the simulator it is unbiased. The time used also aids in illustrating the
energy needed. As explained in section 2.2, this work envisions UAVs capable
of hovering. This means that time is also a metric of energy used as the UAVs
would need to use energy to stand still in one location. Traveled length is also
included to identify if any strategy behaves different in regards to how it moves.
Length is interesting because it can give an idea about the energy expended by
each strategy, but it can also help illustrate unusual behaviors. One example of
such behavior could be a strategy which uses a long time estimating the gradient
towards the transmitter. Such a strategy may use more time than a strategy
which is actively searching, but because it is standing still it could expend less
energy.

4.2 Experimental Setup
As explained in the previous section the experimental setup is kept consistent.
For this reason the shared variables will be explained before the results are shown
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in the next sections.
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Variable Value Description
Seed 42 Global seed for the pseudo random generator. This variable will initialize

the global random generator which ensures that the experiments are re-
peatable. The basis for this value is quite random, the only real necessity
is that it is configurable to enable repeatable experiments.

Simulations 250 Value representing the number of repetitions performed per transmitter.
The number of simulations and the number of transmitters are closely
linked with the quality of the statistics the simulator produces. Because
of this the numbers were set reasonably high, this contrasts the need for
good statistics and the available computational time.

Number of transmitters 250 Number representing the amount of different randomly generated trans-
mitter positions. This number decides how many randomly generated
positions are generated. Se above point about why this value was chosen.

Speed 45 The speed which the agents are allowed to move by. This number represent
the number of movement units that the agents can travel per perceived
second. When running graphically the movement is given per real world
second. The reason behind this number is also quite arbitrarily. As long
as the number is equal for all agents no one will have any sort of movement
advantage.

Number of agents (2, 5, 10, 15) This list represents the number of agents to create during a run. For each
element in the list the simulator will create a run which consists of the
given number of transmitters above with the number of simulations for
each transmitter. The numbers for this list was chosen so that strategies
which benefit from more agents are given a chance.

Confidence 0.95 This value represents the confidence used when comparing the different
strategies. In appendix B this value is used to calculate the confidence
level and shown with α in equation B.5, B.6 and B.7.

Output types ”SimulationSteps” or ”LengthTraveled” This variable is a list of the different outputs that one wants to extract
data from. The variable has two possible values, as shown. Simulation
steps represents the time each strategy used. While length traveled is
the combined length of all agents tested, e.g. if Random is run with two
agents, the length is the sum of these two agents.

Output method ”RoundRobin” or ”RelativeMean” The output method decides how the results are compared. The round
robin alternative compares all strategies against all other strategies. Rel-
ative mean individually compares each strategy where the first amount of
agents, e.g. 2 above, is compared. This, output type and confidence are
all related to the output produced.

Table 4.3: A description of each variable and value of all shared variables for the search problem
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In table 4.3 a description of each variable and its corresponding value is shown.
The table is complete in regards to simulator specific variables, but agent specific
variables are not shown. With these values the transmitter is placed according
to figure 4.3. These settings corresponds to the JSON code shown in appendix
C, where the JSON code can be used with the simulator to recreate the results
shown below.

The values found in table 4.4 shows the specific configuration variables used for
the different search strategies. The values was chosen after preliminary testing of
each strategy testing different values. For this reason it is important to note that
these values are not optimal so more could be done in this respect. However, an
optimization of all the different algorithms employed is outside the scope of this
thesis. Before the experiments were run, each strategy was tested with several
different parameters before the ones shown in table 4.4 were selected. The testing
was done graphically, and was done to give each strategy a reasonable default
value.
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Agent strategy Values Description
Random N/A Because of the way the random strategy operates there are no configuration variables.

Call-out with Random

Number of samples 30

Steps between recall 200

Threshold for call-out 3.9

Random element 1.0

• The number of samples describes how many samples the agent should
collect before calculating an average to use to estimate the current
RSS.

• Since this strategy will call on all other agents to converge on suspicion
of a transmitter there is a need for a cool down period. This ensures
that no other agent performs a recall until at least a certain time has
passed.

• The threshold describes the amplitude an agent has to experience
before performing a call-out.

• To ensure that the agents do not crowd over one another a slight
random element is added. This random element is here one standard
deviation from the point at which a call-out occurred.

Lévy
α parameter 2.0

Scale parameter 100

• The α parameter specifies the alpha value used to generate the Lévy
flight.

• The scale parameter scales the flight so that it makes larger leaps.

Organized Distance between agents 150 • The distance between agents is the maximum distance any agent is
from any point in the search area.

Extended PSO

Number of samples 30

Maximum amplitude 5.2565

Smallest step 25

Largest step 50

• The number of samples taken before a new estimation of the direction
to travel in is taken.

• The maximum expected amplitude which is used to calculate the cur-
rent ”temperature”.

• The smallest step the agent will take, depending on the current ”tem-
perature” the agent might try to take a smaller step, this ensures that
it tries to move some to avoid local minima.

• The largest step the agent will take, this is again used to limit the
agent somewhat in its movement, it should not move to fast away
from an area.

Chemotaxis
Number of samples 30

Step length 40

• The number of samples taken before a new estimation of the direction
to travel in is taken.

• The step length used in movement.

Table 4.4: A description of each agent specific configuration variable.
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Figure 4.3: Transmitter positions generated from the values in table 4.3. The
blue circles are transmitter positions and the red circle encompasses the area
where the agents start from.

4.3 Results
In table 4.5 the simulated time results are shown for the search experiment. In
the table the overall performance of the agents are compared. The metric for
this comparison is the amount of simulated time a strategy has used to find the
transmitter. The data shows comparisons between all strategies for the different
amount of agents. The data shown in bold is the amount of agents used by the
strategies. The next number shows the probability of the strategies having equal
performance. The next number is the amount of times the strategy along the
row outperformed the strategy on the column. While the last number shows the
amount of times the strategy along the column outperformed the strategy along
the row.

The probability, of the strategies being equal, is calculated using a Bernoulli
test. As mentioned the probability shows the certainty of two strategies being
equal. It is important to note that while one strategy can have what appears to be
a significant advantage, it is the number of tests that end in a draw that influences
the probability the most. In other words, two strategies may appear different,
but if the number of draws outnumber the total number of times the strategies
were different, i.e. one strategy beat the other, the probability of those strategies
being equal is significantly increased. Another important point to note is that
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when the probability is low, but the numbers are quite similar, e.g. one strategy
beat the other 25 times while the other strategy won out 27 times, the strategy
with most victories can be declared better. This is because the certainty with
which a victor is declared is so high that when deciding between two strategies
the one outperforming the other must be strictly better. The last point to note
is that the results are not transitive.

The results shown are calculated according to appendix B and the comparison
is done with every one against everyone meaning that equation B.7 is used to
calculate the confidence level.
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Call-out with Random Lévy Organized Extended PSO Chemotaxis

Random

2 (1.0, 19, 72)

5 (1.41e−1, 16, 117)

10 (3.29e−1, 26, 102)

15 (6.74e−3, 55, 89)

2 (0.0, 188, 5)

5 (0.0, 188, 10)

10 (0.0, 209, 0)

15 (0.0, 234, 0)

2 (0.0, 47, 143)

5 (2.85e−8, 24, 143)

10 (0.0, 12, 190)

15 (1.83e−2, 37, 104)

2 (0.0, 179, 40)

5 (0.0, 169, 44)

10 (0.0, 229, 1)

15 (0.0, 240, 0)

2 (2.28e−14, 9, 174)

5 (2.28e−14, 52, 131)

10 (3.33e−16, 103, 84)

15 (5.30e−5, 130, 25)

Call-out with Random N/A

2 (0.0, 200, 2)

5 (0.0, 209, 8)

10 (0.0, 227, 5)

15 (0.0, 232, 2)

2 (1.11e−16, 70, 118)

5 (0.0, 78, 119)

10 (2.49e−2, 22, 118)

15 (2.78e−15, 95, 90)

2 (0.0, 187, 33)

5 (0.0, 197, 19)

10 (0.0, 232, 5)

15 (0.0, 240, 1)

2 (3.85e−4, 1, 150)

5 (1.36e−8, 94, 74)

10 (1.11e−16, 149, 39)

15 (0.0, 170, 26)

Lévy See above N/A

2 (0.0, 0, 234)

5 (0.0, 1, 236)

10 (0.0, 1, 240)

15 (0.0, 2, 237)

2 (6.38e−9, 120, 49)

5 (5.91e−10, 75, 97)

10 (0.0, 211, 1)

15 (0.0, 240, 0)

2 (0.0, 0, 244)

5 (0.0, 0, 243)

10 (0.0, 0, 242)

15 (0.0, 0, 242)

Organized See above See above N/A

2 (0.0, 234, 5)

5 (0.0, 231, 9)

10 (0.0, 242, 1)

15 (0.0, 243, 1)

2 (0.0, 77, 147)

5 (0.0, 148, 64)

10 (0.0, 202, 14)

15 (0.0, 200, 29)

Extended PSO See above See above See above N/A

2 (0.0, 0, 232)

5 (0.0, 0, 242)

10 (0.0, 0, 243)

15 (0.0, 0, 243)

Table 4.5: Results for the general test comparing simulated time. Each strategy is compared against every other strategy. The bold number represents
the number of agents compared. The following numbers are, the probability of the two strategies being equal, the number of times the strategy along
the row performed better than the column and the last number is how many times the strategy along the column outperformed the row.



4.3.
R

ESU
LT

S
63

Call-out with Random Lévy Organized Extended PSO Chemotaxis

Random

2 (1.0, 19, 72)

5 (1.41e−1, 16, 117)

10 (3.76e−1, 25, 102)

15 (6.74e−3, 54, 90)

2 (0.0, 188, 5)

5 (0.0, 188, 10)

10 (0.0, 209, 0)

15 (0.0, 234, 0)

2 (0.0, 47, 143)

5 (2.85e−8, 24, 143)

10 (0.0, 12, 190)

15 (1.83e−2, 37, 104)

2 (1.0, 0, 0)

5 (0.0, 168, 49)

10 (0.0, 224, 2)

15 (0.0, 239, 1)

2 (0.0, 7, 184)

5 (7.76e−12, 45, 132)

10 (0.0, 98, 95)

15 (6.32e−14, 123, 59)

Call-out with Random N/A

2 (0.0, 201, 2)

5 (0.0, 209, 8)

10 (0.0, 227, 5)

15 (0.0, 233, 2)

2 (1.11e−16, 70, 118)

5 (0.0, 78, 119)

10 (2.49e−2, 22, 118)

15 (8.88e−16, 96, 90)

2 (1.0, 0, 0)

5 (0.0, 196, 27)

10 (0.0, 230, 5)

15 (0.0, 236, 2)

2 (1.79e−5, 1, 156)

5 (6.38e−9, 87, 82)

10 (0.0, 138, 62)

15 (0.0, 157, 49)

Lévy See above N/A

2 (0.0, 0, 234)

5 (0.0, 1, 236)

10 (0.0, 1, 240)

15 (0.0, 2, 237)

2 (1.0, 0, 0)

5 (2.78e−15, 74, 111)

10 (0.0, 202, 7)

15 (0.0, 236, 2)

2 (0.0, 0, 244)

5 (0.0, 0, 244)

10 (0.0, 0, 243)

15 (0.0, 0, 244)

Organized See above See above N/A

2 (1.0, 0, 0)

5 (0.0, 228, 10)

10 (0.0, 242, 2)

15 (0.0, 242, 2)

2 (0.0, 73, 151)

5 (0.0, 144, 78)

10 (0.0, 187, 33)

15 (0.0, 185, 44)

Extended PSO See above See above See above N/A

2 (1.0, 0, 0)

5 (0.0, 0, 239)

10 (0.0, 0, 243)

15 (0.0, 0, 243)

Table 4.6: Results for the general test comparing length traveled where each strategy is compared against every other strategy. The bold number
represents the number of agents compared. The following numbers are, the probability of the two strategies being equal, the number of times the
strategy along the row traveled less than the column and the last number is how many times the strategy along the column outperformed the row.
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Figure 4.4: Transmitter positions divided into discrete areas. The blue circles
represents the transmitter positions which are within 10% of the total distance
to an edge. The red circles represents transmitter positions which are within a
10% distance to a corner. The green circles are the remaining circles which are
not within range of any edge.

In addition to total time searching, used as a metric for comparison in table
4.5, the combined length traveled for all agents was also compared. The result
of this comparison is found in table 4.6. The length was compared in the same
way as time was compared, following appendix B.

To explore the results above, further analysis was performed on the data in
table 4.5. By dividing the search area into some discrete smaller areas along
the edges the comparison was performed again to see whether any of the agent
performed better in specific circumstances regarding the search area. To illustrate
this discretization figure 4.4 shows how the search area was divided.

The result of this discretization is only shown in brevity in this chapter and
the full result is added in appendix D. As can be seen in figure 4.4 there are few
transmitters placed in the corners. This means that the statistical basis is quite
limited. For this reason the data concerning the corners will not be analysed any
further.

As mentioned, the discretized results will not be shown in full here, below are
the results which deviated from the general results in such a way that the outcome
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Comparison Data

Call-out with Random compared to Chemotaxis 5 (5.36e−5, 25, 34)

Call-out with Random compared with Organized 15 (1.33e−4, 6, 52)

Random compared to Call-out with Random 15 (2.23e−1, 42, 3)

Table 4.7: Data showing disparity between the general results shown in table 4.5
and the results for the edge analysis shown in table D.2.

was changed. Since the probability of the strategies being equal is shown, any
change in the number of transmitters could give a change in probability. Because
of this the limit in the following have been placed at 95% certainty in the results.
This means that the probability of the agent being equal have to be less than
0.05 and subsequently this means that to deviate it is not enough to reduce the
probability, it must move over this 0.05 boundary.

Data in table 4.7 are highlights of data in table D.2. As explained the data
shown deviates from the general results and are therefore highlighted here. The
highlighted data should be interpreted as the first strategy named is the second
number in the triplet and the other strategy is the third number in the triplet.

In table 4.8 the highlighted results from table D.3 are shown. The interpre-
tation used is the same as for table 4.7.

One of the goals of this thesis is to show that using more than one agent,
i.e. a swarm, is beneficial to searching. In order to show this the statistics in
figure 4.5 was created. The figure shows the relative increase in time when using
more agents. The data is a comparison where each strategy is compared against
itself with two agents. The statistics is produced by comparing each transmitter
configuration with the corresponding transmitter configuration when more agents
are added. When all relative times are calculated for each discrete number of
agents an average and standard deviation is produced. Table 4.9 illustrates how
the statistics is created. The statistics is produced from the same underlying data
as table 4.5, but is analysed in a different way. It is important to notice that
figure 4.5 does not compare the different strategies against each other. A relative
increase for one strategy does not mean it is faster than another, it is only faster
compared to itself.

Since an average taken from all the different transmitter positions is not pos-
sible, as explained above. One other option is to select a few positions and only
calculate the average for those. This would give a comparable result, but the
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Comparison Data

Random compared to Call-out with Random
5 (2.8e−9, 0, 112)

10 (3.43e−5, 0, 101)

Random compared to Chemotaxis 10 (5.24e−8, 52, 57)

Random compared to Organized 15 (5.95e−1, 13, 62)

Call-out with Random compared to Organized

2 (3.39e−10, 58, 56)

5 (0.0, 69, 58)

10 (9.85e−1, 19, 44)

Table 4.8: Data showing disparity between the general results shown in table 4.5
and the results for the middle analysis shown in table D.3.
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Table 4.9: An illustration of how the relative averaged data, shown in figure 4.5,
is created.
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Figure 4.5: This figure shows the average relative time for each strategy. The
relative time is a comparison between the average time it took for each strategy
to find the transmitter with two agents. The figure shows that all strategies
benefit from having more agents.
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problem is that selecting a transmitter position would always be biased. For
instance, one could select a transmitter position at random. If the transmitter
is to far to the right, the Organized strategy would always be at a disadvantage.
The same problem also arise for the other strategies in different context. As will
be dicussed in the next chapter, each strategy have some places it has affinity
for. Because of this such single position selection was not used in the comparison
between the different strategies.



Chapter 5

Evaluation and Conclusion

In this last chapter an evaluation and discussion about the results from chapter
4 is presented. This chapter will go into detail about the results and will give
both an explanation along with a discussion. The last part of this chapter will
be devoted to the conclusion and future work.

5.1 Evaluation
The goal of this thesis was to gain a deeper understanding of the potential for
swarm intelligence to solve probelms related to detecting a hidden signal trans-
mitter. In order to show this, several experiments were run with different search
strategies.

5.1.1 Time analysis
Table 4.5 contains a lot of information and thus require some interpretation. By
comparing different strategies, from the simple random walk to the more complex
PSO strategy, further insight into searching for a hidden transmitter is obtained.
A point of note, for this work a confidence of 95% is required. That means that a
superior strategy must have more victories and the difference between the values
must be below 0.05.

Random

Starting with the Random strategy, it performs similar to the Call-out strategy.
This is quite natural as the Call-out strategy acts random until some threshold.
For 2, 5 and 10 agents the Call-out strategy does not outperform the Random

69
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strategy. With 15 agents, the Call-out strategy outperforms the Random strat-
egy. The Call-out strategy, as implemented, should not perform any worse than
the Random strategy. The small difference is down to the way in which the Call-
out strategy utilizes the information in the environment. Further elaboration in
future work should yield some interesting results.

The Random strategy perform very well compared to the Lévy strategy. This
is most likely attributed to the long walks across the search area for the Ran-
dom strategy. The Lévy strategy performs small jumps, contained in one area,
followed by longer leaps, but this exploration is slower than stretching out. This
result is supported by theory surrounding Lévy flight[45], which shows for many
cooperative foragers, continually performing long leaps is superior. For this work
it was decided that it would be interesting to compare the normal Lévy flight
α = 2[61]. This was decided because the Random strategy behaves as the co-
operative Lévy flight α ∼ 1[45], meaning it would give little extra information
comparing the Random strategy with the cooperative Lévy flight.

When comparing the Random strategy with the Organized strategy, it would
seem like the Organized strategy is superior. The results are quite unanimous
even when 15 simultaneous agents are used. This indicates that the random
strategy is not effective enough. There are some indications in the results that
with 15 agents the Random strategy is starting to become more effective, yet the
Organized strategy is better. The reason for this result is most likely down to how
the Organized strategy utilizes all the agents effectively. Because the Random
strategy often will travel to places where other agents have explored before, some
of the effectiveness of the strategy is lost. In this respect the Organized strategy
performs quite a bit better, because it is able to evenly space the agents, thus
never visiting the same spot twice.

Comparing the Random strategy with the Extended PSO strategy, it is clear
that the Random strategy performs better. This indicates that the Extended
PSO has problems separating noise from the signal and moves slowly towards
the transmitter. This result can to some extent, be viewed when running the
simulator in graphics mode. The reason for the performance advantage is most
likely because the Random strategy is able to search in a much larger portion of
the search area. When the Extended PSO agents is far away from the transmitter
and standing still estimating the gradient towards the transmitter is difficult.
While the Extended PSO agents stands still, or moves very little, the Random
strategy is spreading out and moving to potentially new areas. This is a very
interesting result because it indicates that when searching for a small object in
a large area, covering as much of the search area as possible is very important.
This is an indications that using the Random strategy as a metaheuristic to get
closer to the transmitter could improve search times.

The Chemotaxis agents were another interesting comparison for the Random
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strategy. When using few agents, 5 and fewer, the chemotactic strategy performs
well. Then a shift appears, and when using a large amount of agents the Random
strategy performs well. This result is an interesting combination of the strengths
and weaknesses of both strategies interacting. When there are few agents the
Random strategy is not capable of spreading enough. This means that the agents
must use more time to search the same amount of space. The Chemotaxis strategy
on the other hand, tries to utilize the information in the environment to search
for the transmitter and performs quite well. Compared to the result above, with
the Extended PSO strategy, the chemotactic strategy has a good mix of random
exploration and exploitation of the signal. If it can not sense the transmitter it
will move randomly, but the strategy will try and exploit the signal when close.
This combination makes the Chemotaxis strategy superior at low numbers, before
the Random strategy has enough agents to spread out. This result indicates that
when there are few agents cooperating, some heuristic must be employed to find
the transmitter faster. At some point the Random strategy becomes saturated
with enough agents and can effectively spread out and search the area. When
this transition occurs the Random strategy becomes more effective compared to
Chemotaxis.

It is important to point out that the Random strategy is heavily influenced by
the initial random conditions. The exploration achieved by the Random strategy
is predicated on the initial conditions and are not guaranteed. This is important
because it means that predicting the outcome is hard. There is nothing in this
strategy which prevents all the agents from moving to the same location, resulting
in very poor performance. The results indicate that over a large sample size these
random conditions are not deteriorating the performance too much. Because of
this, adding some form of coordination in the initial spread can be important in
real world experiments.

Call-out with Random

Because of the results above, comparing the Random strategy with different other
strategies, it was observed that spreading out was important. The reason for
this observation is most likely attributed to the increased probability of getting
close to the transmitter, thus increasing the information available. The Call-out
strategy was developed from this and to make it simple, it was paired with just
a random approach to see how it performed. The Call-out strategy is a strategy
shifting approach, trying to balance the need for exploration with the need for
exploitation. The strategy shift occurs when the need for exploitation is larger
than the need for exploration.

Against the Lévy strategy the Call-out performed well. This is reasonable as
the Call-out strategy should not perform worse than the Random strategy.

Comparing the Call-out with the Organized does show some improvements,
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compared to the Random strategy. At few agents the Organized strategy per-
forms better. However, as the amounts of agents increase the performance is not
only equal, but at 15 agents the Call-out strategy performs better. This per-
formance increase, compared to the Random strategy, is a result of the Call-out
strategy using the information in the environment. Since the Call-out strategy
calls all agents when a certain threshold is met, it can avoid situation where
the Random strategy just barely misses the transmitter. This slight increase in
performance is enough to improve compared to the Organized strategy. The re-
sult is a further indication that getting closer to the transmitter before changing
strategy can be beneficial. It also shows that, by spreading out randomly, one
can approach the efficiency of coordinating such separation. This is also inter-
esting because of the simplicity of the Call-out strategy compared to what the
Organized strategy would require in a real world scenario.

This strategy also seems to be quite novel within this field of research. Only
Chemotaxis used any form of exploration/exploitation technique, and none of the
RF related, show in section 2.3.3, used such a technique.

This strategy, as with the Random strategy, is very dependant on the initial
random conditions. Because of the preliminary design of the Call-out strategy no
further steps are incorporated to avoid this limitation. There is nothing in this
strategy which would hinder such additions and it could be added later.

Lévy

The Lévy strategy performs almost as expected, most of its flaws has been ex-
plained above. Yet it is interesting to see that even the Lévy strategy perform
better than the Extended PSO. The reason behind this is the same as the reason
for the superior performance of the Random strategy. It shows that spreading out
can be more important than trying to estimate a direction towards the transmit-
ter. By spreading out and getting closer to the transmitter it is easier to estimate
the signal gradient and not get trapped in local minima.

Organized

The Organized strategy performs quite well compared to all other strategies.
However, it is interesting to note that with few agents, even this strategy performs
worse than the chemotactic strategy. With only two agents it is quite clear
that Chemotaxis manages to both spread out and utilizes the information in the
environment maximally compared to the other strategies. This further shows that
with few agents, some approximation must be done. It also shows that it can be
easier to utilize the information in the environment than to search exhaustively.

For many agents the Organized strategy is outperformed by the Call-out strat-
egy. This is likely attributed to the organizational work the strategy has to per-
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form in the beginning. Both the Random and the Call-out strategy is able to
move towards potential transmitters in the middle of the search area right away.
During this time the Organized strategy has to spread out and move to the initial
starting positions. The time spent doing this warm up is enough for the strategy
to be outperformed by the Call-out strategy.

Extended PSO

The worst performer, the Extended PSO strategy, did not function as well as
expected. Since the strategy tries to exploit all signals and coordinates movement
according to these measurements, it was assumed that the strategy would be able
to estimate the gradient towards the transmitter. The strategy was designed to
overcome the difficulties of estimating the gradient towards the transmitter. The
idea was to use several agents with several different samples to minimize noise
and find the transmitter. The results here indicate that this strategy was not
good enough. Since the agents potentially started quite some distance away from
the transmitter trying to compensate for the noise is difficult. This strategy
illustrate that some approximation is necessary before trying to estimate the
gradient, when noise is present.

Chemotaxis

Chemotaxis performed quite well compared to most strategies. The strategy
shows that some amount of randomness to aid exploration together with an at-
tempt to estimate the direction of the transmitter works well. The strategy
performed well with few agents which most likely indicates that the other strate-
gies performed poorly with few agents. Compared with Random and Call-out
this strategy shows that if massive parallel exploration is not possible, some other
measure is necessary. Compared to the Extended PSO strategy it is clear that a
balance between exploitation and exploration is necessary. Chemotaxis illustrates
that using random exploration can work quite well.

5.1.2 Length analysis
The results shown in table 4.6 mirrors the results above quite closely. Using less
time is also an indication that the strategy as a whole has traveled less. The
only result that stand out is the Extended PSO strategy with two agents. Even
though the strategy uses a lot more time, it is equal with all other strategies when
it comes to length traveled. This indicates that with two agents the Extended
PSO strategy moves very little in wrong directions, but it does so very slowly.
The reason for this movement is that the two agents will always move towards the
best agent. Because of the way the strategy is designed, the two agents will move
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very little unnecessarily, but they will also stand still much of the time. With
more agents the strategy will have more random perturbation and the favourable
travel length disappears.

5.1.3 Divided area analysis
Analyzing the results further lead to the separation of areas as shown in figure
4.4. The simplified results has some interesting items, and some further insight
into the performance of the different strategies was obtained.

Edge

From the edge analysis it is clear that the Organized strategy performs better
than the other strategies. Many of the results from the discussion above have
been changed. This change is quite natural as most of the other strategies,
especially the ones containing random movement, do not follow edges well. Since
the Random strategy will turn whenever it hits an edge, wall following does not
naturally occur. The same is true for Chemotaxis which will also try to turn
180◦ when faced with a wall. In addition, the Organized strategy will always be
the specified distance away from the wall and thus is guaranteed, in the tests
performed above, to find any transmitter along the edges. The same insight is
also apparent in the comparison between Lévy and Extended PSO. Since the Lévy
strategy has the same propensity to avoid edges as the other random strategies it
is also at a disadvantage along the edges. The Extended PSO on the other hand
tries to follow the signal, and will follow walls if that is necessary.

To illustrate the difference further, all strategies were run, without a trans-
mitter, for an extended period of time. During this time, the movement of each
strategy was recorded, producing figure 5.1. In the figure, the a priori proba-
bility of where each strategy will search is illustrated. The figure shows that
the Organized strategy will search in perfectly rigid lines. The Random strategy
has a much higher probability of finding anything in the corners. While the Lévy
strategy has a much more uniform probability. Chemotaxis is quite evenly spread
out, but prefers the corners. Extended PSO seems to move slightly towards the
middle, but compared to the other strategies is very stationary.

The reason for the Random strategy preference for corners is due to how it
selects the next direction to move in. Since the strategy will choose uniformly
between all possible direction it has a higher chance of choosing a direction that
keeps the strategy in the corner. However, this a priori probability is a bit mis-
leading. The probability is collected over a long period, but the search for a
transmitter is over relatively quickly compared to this period. It is therefore
unlikely that this, a priori probability, has much effect on the propensity of the
strategies to search where the probability is highest. However, the figures help
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illustrate that because of the task involved in the search relying on prior probabil-
ity might not be the best match. The figure illustrates how the search would be
conducted if no transmitter is present. A desired effect would be the even spread
as is seen in the random inspired strategies as well as the Organized. Such an
even spread indicates that the strategy searches the area completely which is
important for exploration. As mentioned several times in the previous sections,
exploration is very important to achieve lower search times. Figure 5.1 shows
this exploratory property of each strategy.

Middle

When looking at the comparison with transmitters in the middle, more changes
have occurred. The notable difference is that the Call-out agent performs bet-
ter than the Organized strategy at even fewer agents. This is another sign of
the good characteristics of spreading out in the search area. Since the Call-out
strategy has a larger chance of getting close to the transmitter, when it is placed
further away from the edges, it naturally performs better. Another change is
the result for the Random strategy. The full results shows some improvements
in the Random strategy, compared to the Organized, and for 15 agents the im-
provement is statistically significant. This shows that the strategies containing
random movement is at quite a disadvantage along the edges. It also shows that
combining the effective spread, inherent in the Random strategy, with some other
means of utilizing the information in the environment result in a better outcome.

5.1.4 Research question I
One of the many interesting properties of SI is the ability for many simple agents
to cooperate when solving a task. This property relates to the first research
question, do several agents perform better than a single agent. It is therefore an
important result to show that using several agents to search for a hidden trans-
mitter is more beneficial than using few. By searching for a hidden transmitter
with different amounts of agents this result could be obtained. In figure 4.5 a
comparison was performed to see if this assumption was valid. The figure shows
that for most strategies, adding more agents improved search times. In addition
the figure shows that the relative gain increases as more agents are added indi-
cating that using several agents together can decrease search time. One thing to
note about the result is the standard deviation. For some of the agents the stan-
dard deviation is quite large which indicates that mean values might not be the
best representation of the performance. Unfortunately because of limited time
more experiments could not be run, but a natural progression from the result is
to see when each strategy would become saturated with agents. One thing to
notice about the result is that the organized strategy shows, for 15 agents, perfect
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Figure 5.1: This figure displays the a priori probability of where the different
strategies will search when no transmitter is present. This probability distribu-
tion illustrates the most likely places the different strategies will search. The
probability is normalized and the axis have the same values for all strategies,
making direct comparisons possible. The starting position is the corner pointing
out towards the reader. For all strategies 15 agents was used, as can clearly be
seen in the Organized figure.
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utilization. Because of the size of the search area and the current transmitter
radius, the organized strategy can not become more effective by adding more
agents. The only strategy not to have a constant decline, in relative time spent
searching, is the Extended PSO strategy. Since this strategy always tries to uti-
lize the information in the environment it can easily be misguided by noise. As
can be seen in the figure, this strategy has the highest variance which is a result
of the noise. By adding more agents to the Extended PSO strategy there are
more agents that can be influenced by noise. Because of this, when the transmit-
ter is far away progress towards the transmitter can be slow. However, even for
this strategy adding enough agents does increase performance, eventually. The
results indicates that several cooperative searchers can perform a search quicker
than few or single searchers. Thus answering the first research question.

5.1.5 Research question II

In regards to the second research question, whether a random walk exploration
could compare to an organized search, several interesting points should be made.
In this context, random walk applies to all strategies which uses some form of ran-
dom process to explore the search area. From the evaluation above, the Random
strategy performed worse than the Organized strategy. This would indicate that
it is difficult for a random walk to outperform an organized search. However,
several strategies have been included in this thesis and many of them contain
random movement. It is therefore important to point out that using the Call-out
agent, moving randomly did perform better when enough agents were added. In
addition the chemotactic agent performed better with few agents, compared to
the organized search. This indicates that, by using some of the information in
the environment together with random exploration a good strategy can emerge.
This is important because as explained in the background chapter, an organized
search is both difficult to construct and vulnerable to faults within the system.
It is difficult to organize, because each agent needs to coordinate with all other
agents. The vulnerability comes from the fact that if an agent fails to perform, or
is taken out, the system must take over the agents duty. In an organized search
this means that the other agents must regroup and be certain that they search
the positions where the malfunctioning agent was supposed to search. In all of
the random strategies tested, none of these issues would present a challenge. If
an agent failed in the Random strategy, the performance might drop, but the
other agents would not have to take into consideration that another agent failed.
In addition, as mentioned above, the Organized strategy as presented can not
scale any further, with the given search area and transmitter radius. While the
Call-out strategy would be able to scale almost indefinitely. In addition, if the
transmitter radius is unknown the organized search would be difficult to use. The
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Organized strategy, as implemented, is reliant on a given distance to space the
agents. If the radius of the transmitter is smaller than this distance the agent
would be at risk of not detecting the transmitter. The Random strategy, on the
other hand, would not experience this problem and can function regardless of the
radius. Because of these considerations, a random walk can compare relatively
favourably to an organized search.

5.1.6 Research question III
The last research question, posed in section 1.2, was, can a technique which does
not use any information available in the environment compare to a technique
which uses that information. When evaluating the different strategies above
many interesting points in regards to this was mentioned. Probably the most im-
portant indication that using the information in the environment is needed, is the
comparison between the Random strategy and Call-out. The Call-out strategy
moves randomly until it measures something above a given threshold, in other
words using the information in the environment. If no transmitter is present, the
Call-out and the Random strategy would move in the same fashion. Since the
Call-out strategy performs slightly better than the Random strategy and per-
forms better against other strategies, using the information in the environment
is shown to be advantageous. In addition one can see that Chemotaxis performs
quite well which also indicates that using the information in the environment
is meaningful. However, it is important to point out that this exploitation of
the transmitted signal must be balanced against exploration when the distance
between agents and transmitter is large. This is evident in the poor performance
of the Extended PSO strategy which almost performs worse than all the other
strategies. This discussion should therefore be seen in light of the above discus-
sion, about random movement. Both are important, but together they become
even better. It is important to explore the search area, which can be done effec-
tively with random movement, but at the same time it is important to use the
information in the environment. How the information is used is important and
should be considered in future work.

5.1.7 Using SI to detect a hidden transmitter
The goal of this thesis was to gain a deeper understanding of the potential for SI to
solve problems related to detecting a hidden transmitter. In relation to this several
points are worth making. The discussions above have to some degree gone into
different areas where SI can often perform well. As mentioned in the introduction,
SI is often associated with large systems containing several cooperating agents.
These agents are often simple, yet together perform complex tasks. The answers
to the research questions above, indicates that in some way, detecting a hidden
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transmitter can be done with methods inspired by SI. The Call-out agent is simple
in its design and performs quite well. The number of Call-out agents searching
simultaneously should be able to scale. Both of these traits are often found in
other SI systems, which again should give some indication. Since this has only
been an initial attempt to view a complex domain any definite conclusions are
hard to draw, but using inspiration from SI within this domain can certainly
reveal new interesting solutions and insight.

5.2 Threats Against Validity
Many of the algorithms described in section 2.3.3 are not included in this thesis.
Some are explained in the text, but others were not included even though they
could potentially work within this thesis framework. Because this is an initial
foray into a complex domain, it was decided that the included strategies should
be quite basic. This should give a deeper insight into some of the more pressing
problems of the domain, yet still allow inspiration from other works to influence
the direction taken.

Because of limited time and limited computational power some compromises
have been made in order to produce results. This section will address these
issues and explain why the different choices were made. To ease readability this
section is separated into a RF section, an agent movement section and a simulator
section.

5.2.1 RF model
As explained in section 2.1, simulating a RF signal is an extensive task. Because
of this difficulty, the work done in this thesis has used a simplified propagation
model. The assumptions being that there is line-of-sight to the transmitter, only
the amplitude of the signal is used, that there is only the free space loss affecting
the signal and that the antennas used are isotropic.

Any elevated platform will be limited in where it can operate. For this reason
any UAV envisioned for the task of detecting and locating a RF signal will not
be able fly in ideal conditions. This means that the platform will have to oper-
ate near terrains containing trees, buildings and other objects that will affect a
propagating signal. In addition to this the transmitter will not always be placed
in such a way that it will give a line-of-sight to the platform. Because of this, the
assumption used in this work, is a simplification of many real world situations.
Modelling the RF signal assuming line-of-sight will therefore result in conclusions
that can not be generalized to all areas. However, because the assumption makes
modelling a RF signal easier and can be valid when using an elevated platform,
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see section 2.1.1, it was decided that such a model would be suitable for this
work.

A RF signal is quite complex. There are many components which can be ex-
tracted and, as explained in section 2.1, different locating techniques use different
properties. For this work only the amplitude was used. This simplifies the sim-
ulator, but there are some problems. The reason for this choice was the desire
to utilize PDOA in future work. The simplicity and the cheap real world sensors
also makes the choice compelling. The drawback is that potentially more agents
needs to be deployed to achieve good location estimates. By using SI techniques
this drawback can be reduced.

Connected with the assumption, that there is line-of-sight, is the assumption
that only the free space loss is affecting the signal. In most varied environments
there will be several different effects modifying the propagation of a RF signal.
In addition to the free space loss, there will be several effects, among them multi-
path, which can strongly influence the signal. Multi-path is constructive and
destructive interference between multiple waves reaching the receiver. It occurs
when two or more radio signals reach the receiving antenna, due to for instance
reflection. As shown in section 2.1.1 these effects are quite reduced when elevat-
ing the sensor platform, but the effect should still be taken into consideration.
Because this work is intended to be used on UAVs it was decided that assuming
very little multi-path is a good approximation to real world conditions.

Assuming that the antennas used are isotropic also limits the results. In the
simulation run, both the receiver and the transmitter antenna is assumed to be
isotropic, meaning it measures the same value in all directions. This simplification
makes the signal easier to model. In a real world setting most antennas are not
isotropic which should be considered. The assumption was made because this
work comes as a preliminary before real world experiments. As such there is
currently no selected antenna which means that there is no antenna diagram to
emulate. However, the antenna is none the less important in search and must
therefore be considered.

Another implicit assumption was that the frequency is known. As mentioned
in 2.1.1, the frequency of a radio signal is bound to some given values. In addition
to this, it is assumed that the agents are capable of detecting the transmitter,
meaning they have to know which frequency it is operating in. In real systems
the receivers are limited to only seeing a portion of the frequency spectrum. If
the agents have to search a large portion of the frequency spectrum, they could
do so by sweeping the spectrum. Alternatively the agents could collaborate by
searching a portion of the spectrum each. By searching in this way, the agents
would have to use a lot more time interpreting the spectrum analysis and the
possibility of misinterpretation would be a large possibility. To simplify the RF
model this spectrum analysis was not considered. This limits the scope to some
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extent, but if the frequency spectrum is limited this assumption could still hold.
Relating to the RF model is the assumption that the transmitter is continu-

ously sending and that there is only one transmitter. Many real world transmitter
only send a signal intermittently. This conserves power and since data is usu-
ally produced in bursts, e.g. a cellphone needs only transmit when a phone call
is under way, continuously sending is rarely done. For these reasons, assuming
that the transmitter is always sending makes the strategies simpler. If the trans-
mitter was sending intermittently an organized search would be much harder to
perform and any strategy not using the information in the environment would
end up with a severe disadvantage. By incorporating an always-on transmitter
this work becomes simpler, but intermittent sending must be considered at some
point. Because of the complexity of the RF domain this trade-off was deemed
necessary to be able to get some initial work done.

Another RF related assumption made was that there is only one transmitter.
In a real world environment more than one transmitter is usually the norm. Most
devices often have multiple receivers and transmitters, such as the Bluetooth
and WiFi in a mobile phone. Any operation trying to detect and locate such
a transmitter will be required to handle several transmitters. Since this work
serves as an initial attempt at understanding the complexities of detecting a
transmitter it was decided that including one transmitter should be the first
goal. Once an understanding of the difficulties of detecting one transmitter had
been undertaken, more transmitter could be added in later work.

In this work the transmitter was assumed to be stationary. Since the trans-
mitter is standing still, one can feasibly calculate the gradient towards it and just
move in that direction. With a moving transmitter this would not be possible
and the strategy employed would have to take this into consideration. Many real
world objects that one would be interested in, both detecting and locating, will
most likely be moving. However, there are cases where the transmitter will not
be moving. One example of such a stationary target could be detecting a mobile
phone of a person trapped in an avalanche. To tackle one problem at a time, this
work does not consider moving transmitters. This makes the strategies easier to
design, but it limits the scope of the strategies.

Because of these assumptions the RF model is limited in scope. The assump-
tions will limit the generality of the result, but it can make this work serve as an
initial entry to a large and complex domain.

5.2.2 Agent movement
In this work the agent movement has also been simplified. By assuming that the
agents only move in two-dimensional space and that the agents do not collide,
the resulting scope is limited. In addition the agents are assumed to be able to
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sense their position, they can move perfectly with no uncertainty and they have
the same acceleration and speed in all directions.

By containing the movement to two-dimensional space the agent movement
becomes easier than it would in three dimensions. Each strategy is therefore easier
to implement and rapid testing of different strategies was enabled. However, by
assuming that the movement is in two dimensions the results are not directly
applicable to any airborne platform. As the work on this thesis progressed it
became clear that a comparison between different search techniques was desirable.
Because of this, the assumption was kept in place. The rational behind this is
the difference between two and three dimensions should not impact the search
algorithms. Since all algorithms had the same basic movement the difference
between them would be inherent in the algorithm and not the movement. It is
also worth noting that this can be viewed as UAVs flying at a specific altitude.

One of the assumptions made about the search area, that the agents work
within, is that it is rectangular. This assumption is made because it is envisioned
that this work could be used on UAVs which fly in an unobstructed area. For
simple search scenarios this assumption might be correct, but for most real world
situations this will not hold. In many settings there will be environmental obsta-
cles which will hinder movement. If the area to search is a city, large buildings
may stand in the way making it difficult to perform an organized search. In
other situations some information may be available which restricts the area of
interest to some complex polygon. In both of these situation it is not clear how
the different strategies might perform. If one assumes a situation where there
are two circular areas connected by a thin rectangle, strategies like random may
search the just one circle for far too long before some agents moves to the other
circle. In such a situation it is also difficult to perform an organized search and
care would be needed to handle this. For these reasons, the rectangle search area
severely limits the results. The assumption was deemed acceptable for this work
because of the unknown nature of the problem. By starting with a simple known
shape, for the search area, some of the basic difficulties could be worked on before
embarking on different challenges. In addition early real world testing could be
performed in a unobstructed rectangular airspace.

Assuming that the agents do not collide is a different matter. Collision can
have a severe impact if the agents try to move on top of each other all the
time and a strategy which tries to separate the agents would therefore have an
advantage. This assumption was included to make the transition from abstract
idea to implementation easier. To mitigate this, each agent could use some form
of collision avoidance on a lower level than the operation of the search strategy. If
such a technique was used the strategies could be kept as they are now and should
still function. This design has often been used in robotic movement[7, 18, 67] and
as such the assumption that there is no collision should be acceptable for early
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testing.
By assuming that the agents know their exact position and can move perfectly

makes this extremely hard to transition to real world robotics. The assumption
that the agents know where they are is a simplifying assumption and is a topic
of active research. Since these are assumptions that all strategies would have
to deal with in the same way, their removal should not impact the individual
performance. None of the implemented strategies tries to reason about these
subjects which should mean that none of them are at a disadvantage.

5.2.3 Simulator setup
Several assumptions are made about the simulator, relating to both the statistics
produced and the simulation setup.

One assumption made about the simulator setup is that the agents always
start in one corner. Since the area tested is quadratic, starting in the corner
means the result should be the same no matter which corner is selected. One
criticism of this however is that the agent could be started along one of the edges.
In a real world scenario starting in a corner or along one edge of the search area
is quite realistic. Therefore it is natural to allow the agents to start in a corner,
but it should also be tested along an edge. In the current setup this was not
done because of limited time. The simulator described in chapter 3 used several
days to produce relevant results of statistical significance. This meant that full
testing iterations took some time and it was decided that proper statistics, i.e.
more repetitions, was more important than testing different starting locations.

Another limiting factor of this work is the statistics produced. Because of
limited time, only a small number of transmitters and repetitions per transmitter
was tested. This has an effect on the conclusions made, since the limited sample
size means that analysis are not as robust as they could be. As was noted in
chapter 4, the corner analysis was not considered because of the small number
of transmitter placements. The limited statistics is a result of time limitations,
the simulator often needs to simulate several tens of thousands of steps in order
for a strategy to find a transmitter. In addition the simulator must repeat each
simulation, resulting in over a million simulations consisting of several thousands
of simulations steps. On the hardware available this took around five days to
complete.

5.3 Conclusion
There are many interesting aspects to conclude this work with. Below are some
of the key insights discovered.
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• Few agents should prefer exploitation over exploration. Many agents should
prefer exploration over exploitation.

When few agents N < 5 are searching, exploitation of the information in
the environment should be preferred. Chemotaxis was the best strategy with
few agents. This strategy has a good combination of exploitation of the signal
information and exploration. Since few agents are limited in their capability to
search a large area quickly, exploitation is necessary. When the number of agents
is increased organizing the search performs better. The Organized strategy had
lower search times than the other strategies for N >= 5 to N <= 10. When
the number of agents is increased further, organizing the search efficiently seems
to become problematic. If many agents N >= 15 are searching, exploration
becomes more important. This is shown by the Call-out strategy outperforming
every other strategy for many agents.

• A novel search algorithm, the Call-out strategy, is proposed.

The Call-out strategy, developed in this thesis, showed the best performance
for many agents. The Call-out strategy is a basic strategy shift, using different
strategies at different parts of the search. It utilized random exploration to
increase the probability of quickly getting close to the transmitter. While at the
same time used the information in the environment when possible.

• Several SI agents decreases search time.

The results shows that several agents decreases search time. This increase
in performance is the result of having several cooperating agents. However, it
is important to point out that the performance does not need to come at an
increased cost of organizational complexity. The most important conclusion to
reach is that the task of searching for a hidden RF transmitter is suitable for
many cooperating agents using simple, amplitude sensors. This means that many
techniques derived from SI can be used in this setting.

The insight gained in this thesis builds a basic understanding of the key
challenges within this field. The work is therefore a good starting point for
further exploration.

5.4 Future Work
There are several aspects of this work that can, and should be, explored further.
Several exciting directions in both the RF and the agent strategy domain could
be explored.
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Within the RF domain several problems relating to the transmitter could be
studied. In this work the transmitter was stationary. Therefore introducing a
moving transmitter could be quite interesting. Both movement during search and
movement after the detection of the transmitter would be interesting to study.
In many real world settings the transmitter is not continually sending a signal.
For this reason exploring search relating to transmitter sending intermittently
would be quite interesting. In addition to these two aspects, exploring the use
of several transmitters would be highly beneficial. Since several transmitter are
usually found in places of interest, creating a search strategy which can handle
this is of high importance.

In this work it was assumed that the transmitter would transmit on a known
frequency. Changing this assumption and using several agents to cooperate on
discovering such a transmitter would be interesting. In many real world scenarios
not knowing the frequency of the transmitter is quite usual. Having a system
which could handle a large frequency spectrum would therefore be highly bene-
ficial. One interesting direction to take this in, would be to distribute the task
among the agents. If each agent would only have to search a small portion of
the spectrum, it could work faster and the system could become more effective.
This would however require care so that the system could handle failure when
analysing the spectrum.

While the agents in this work behaved very predictable, such reliability is
not always possible in the real world. It would therefore be interesting to see
how each of the strategies would handle failure. By adding random failure to
an incidental agent, the strategies would be tested in more realistic situations.
This failure would also highlight which strategies copes better with problems
surrounding the agents. This information would be valuable before transitioning
to real world UAVs.

Designing the ultimate search strategy for any given problem will probably
never happen. It is therefore important to explore as many options as possible
before selecting the preferred strategy. Exploring different search strategies de-
signed by hand can be a slow and time consuming process. For this reason it would
be interesting to explore the creation of search strategies through the use of Evo-
lutionary Algorithms (EAs). If the search problem and agents could be expressed
in a way that an EA could work with, exploring different possibilities would be-
come much quicker. This also opens up the possibility of using several objectives
as optimization parameters, so called multi-objective optimization[10, 18]. Us-
ing several different objectives could lead to systems which can handle several
different aspects of the search. In addition, EAs have a tendency to explore pos-
sibilities not envisioned by regular methods[18], meaning new strategies, hard for
people to imagine, could emerge.

Another unexplored direction, is the incorporation of information about the
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search area. In a real world scenario the area of interest is usually not rectangular.
For this reason it would be interesting to test different strategies and how they
manage unusual search areas. Exploring different, irregular formed, search areas
could lead to insights into both what information is relevant for the search and
which properties of the search area most affect the agents.

In section 1.1, three different phases were proposed. Different aspects relating
to phase 1 is described above, yet the two other phases are not mentioned. For
phase 2 it would be interesting to see how many agents are needed to converge,
which is connected with phase 3. In addition looking at how strategies would
handle the transition from phase 1 to 2 would also be interesting. Phase 3 is
necessary to research. In phase 3 it would be interesting to see how agents can
cooperate and share information. As mentioned in section 2.1, all the location
techniques need paired measurements to estimate the position. This information
sharing should be as distributed as possible to increase fault tolerance, yet all
agents must have it. A distributed calculation would also be an interesting di-
rection to move towards, but problems such as redundancy, fault tolerance and
performance are unknown. On top of this comes which method to use. PDOA re-
quires relatively inexpensive equipment, but if the position estimates are greatly
inferior to TDOA this trade-off might not be desirable.

The Call-out strategy was created for this work after inspiration from prelim-
inary results. In this work, the Call-out strategy was only used in conjunction
with random movement towards the call-out point. Further work into this strat-
egy would therefore be quite interesting. It would be interesting to see which
strategies one should shift to in addition to optimizing the strategy. Such opti-
mization related to when a call-out is performed could give important insight, in
addition to decreasing search time.



Appendix A

Understanding and
generating the Lévy flight
distribution

This appendix is included to aid in understanding how to generate Lévy flight
and try and help avoiding some of the confusion around the difference between
Lévy flight and the Lévy distribution.

This chapter and its content is thanks to Boye Annfelt Høverstad.
Lévy flight is a random walk with a distribution that is described as

P (l) ∼ l−µ (A.1)

for P (l > 1) and it should not be confused with the Lévy distribution which
is defined as √

c

2π

e−
c

2(x−µ)

(x− µ)3/2
(A.2)

for x ≥ µ. The Lévy distribution defines a tail heavy function which is
centered around some value and trailing of on both sides. While Lévy flight is a
simple tail heavy power law function. Both functions are shown in figure A.1.

To generate values for the Lévy flight one must convert the function into
an inverse cumulative distribution function because of the relation between the
uniform distribution and the other distribution.

The relation ship is characterized by

x = F−1(u) (A.3)
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Figure A.1: A comparison of Lévy flight and the Lévy distribution

where F is the distribution to generate from and u is a uniformly distributed
number between [0, 1].

Since the Lévy flight is described for P (l > 1) and it is need as a cumulative
distribution function defined for P (X ≤ x) subtracting 1 from the Lévy flight in
A.1 gives the needed function given as

P (l) = 1− l−µ (A.4)

The final step is to create the inverse cumulative distribution given as

P−1(u) = (1− u)−1/µ (A.5)

which will create our Lévy flight using a random uniformly distributed num-
ber, u, as input.



Appendix B

Statistical comparison of
search results

This appendix will explain in detail how the search results gathered from the
experimental runs, when searching, are compared, how that comparison is calcu-
lated and the statistical background it is built upon.

As explain in section 3.2 the data collected when searching can be quite a lot.
Because of the many repetitions for each individual transmitter configuration and
the many repetitions for placing a transmitter randomly, simply calculating the
mean and standard deviation does not give much information. In addition to
this a large disparity occurs because of the random placement of the transmitter
in a possibly very large search area which means that calculating an average
for a single agent configuration results in a standard deviation as large as the
mean. For this reason a different comparison was implemented, namely a Paired
t -test[32]. This comparison not only gives a confidence interval, but it also
enables a reduction in the disparity resulting from the random placement of the
transmitters.

The table below, table B.1, illustrates how the result from the search experi-
ments look. The data in table B.1 are random values and not actual result values,
but the table illustrates how data looks after collection.

For each transmitter configuration many repetitions are performed for each
agent configuration. The last line of the table illustrates how much the data can
change from one transmitter configuration to the next showing that calculating
a mean and standard deviation is not meaningful.

Since the goal is to compare Agent configuration #1 with Agent configuration
#2 the first thing to compare is the results from each transmitter configuration.
This is done by using the Paired t-test to produce a confidence interval for each
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Transmitter configuration Agent configuration #1 Agent configuration #2
1 [500, 600, 10000, 2000 ...] [450, 700, 9000, 2200 ...]
2 [700, 200, 100, 3000 ...] [850, 300, 90, 2000 ...]
3 [100, 300, 500, 7000 ...] [180, 900, 2300, 8200 ...]
4 [3400, 1900, 1800, 40000 ...] [2000, 2000, 1900, 32000 ...]

...

Table B.1: Example output from the searching experiments

Transmitter configuration Confidence interval(95%)
1 (-0.034, -0.002)
2 (-0.057, 0.013)
3 (0.78, 0.944)
4 (-0.15, 0.23)

...

Table B.2: Result after applying the Paired t-test to the result of table B.1

transmitter configuration.
The first step is to subtract the agent configurations against the other agent

configuration, e.g. take the array under Agent configuration #1 Transmitter
configuration 1 and subtract the array in Agent configuration #2 Transmitter
configuration 1. This creates a new array Zi = Ai − Bi. On this new array
perform the Paired t-test given in equation B.1,

Z(n)± tn−1,1−α/2

√
V̂ ar[Z(n)] (B.1)

where V̂ ar is given in equation B.2, Z is the average of all Zi values and
tn−1,1−α/2 is the critical point for the t-distribution with n as the number of
samples for the distribution and 1− α/2 is the degree of certainty or confidence
level.

V̂ ar[Z(n)] =

∑n
i=1[Zi − Z(n)]2

n(n− 1)
(B.2)

The result is a table like B.2, note the confidence intervals are also random
and are not calculated from table B.1.

Since the data in table B.2 is still not that easy to interpret another conversion
is performed. The confidence intervals can be interpreted to be able to tell if
the null hypothesis can be rejected. In this setting the null hypothesis is the



91

Transmitter configuration Hypothesis test result
1 Rejected, interval does not contain zero
2 The null hypothesis can not be rejected
3 Rejected, interval does not contain zero
4 The null hypothesis can not be rejected

...

Table B.3: Result after testing the null hypothesis on the confidence intervals
from table B.2

assumption that there is no difference between the different agent configurations.
The null hypothesis can be rejected if the confidence interval does not contain
zero and it can then be rejected with a confidence of 95%. Results are shown in
table B.3 where the data from table B.2 is evaluated.

The final step is to perform a Binomial test[64] on the results in table B.3. Be-
cause similarities in performance means it is hard to separate two strategies, the
binomial test is performed to give a confidence in the difference of the strategies.
By assuming that it is equally probable for the null hypothesis to be rejected as
not rejected one can use the Binomial distribution to calculated the probability
of the results in table B.3. By summing the number of rejections, where rejec-
tions refer to data in table B.3, the probability of the results holding under the
hypothesis that the difference test is inconclusive can be calculated as,

b(x;n, p) =

(
n

x

)
px(1− p)n−x (B.3)

where x is the number of rejections, n is the total number of hypothesis tests
performed and p is the probability of rejection which, as stated above for the test
performed here, is 0.5. In other words, the two hypothesis are expected to tie
most of the time. To calculate the significance of the results obtained, Pr < 0.05,
equation B.4 is needed.

F (x;n, p) = Pr(X ≥ x) =

bnc∑
i=x

(
n

i

)
pi(1− p)n−i (B.4)

By applying equation B.4 to table B.3 an answer to whether or not the two
agent configurations are equal or different in performance can be given. For
the example data in table B.3 the calculated probability is Pr = 0.3125, using
equation B.4, which means that the test is inconclusive, because Pr > 0.05, and
the significance of the difference is not large enough.
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To compare several agent configuration together the same procedure as shown
above can be used, but the confidence level needs to be calculated differently
depending upon the way the comparison is performed[32]. When comparing one
and one the confidence level can be calculated as,

1− α

2
(B.5)

When comparing one against a list of others the level needs to be calculated
as,

1− α

k − 1
(B.6)

where k is the number of other configurations to compare with. The last
possibility is to compare every one against every one which needs a confidence
level calculated according to,

1− α
k(k−1)

2

(B.7)

where again k is the number of configurations to compare.
The current implementation allows each of these possibilities, but if not oth-

erwise state every strategy is compared against every other strategy.



Appendix C

Configuration

Below is the specific JSON configuration used in the experiments shown in chapter
4. The code is included so that the specific results could be recreated. The file
shown below can be used together with the simulator to recreate the results. The
meaning of the different variables is explained below.

Listing C.1: Configuration code used to replicate the results shown in table 4.5
1 {
2 "seed" : 42,
3 "simulations" : 250,
4 "numberOfAgents" : [2, 5, 10, 15],
5 "numberOfTransmitters" : 250,
6 "agentSpeed" : 45,

In the code shown above, the simulator specific variables are shown. The
variables are described in table 4.3.

The ”world” parameter describes the world. The following representation al-
lows the search area to become rectangular and does not require it to be quadratic.

7 "world" :
8 {
9 "worldX":1590,

10 "worldY":1590
11 },

The transmitter parameter describes the necessary parameters for the trans-
mitter to be used. The ”effect” is the amplitude at the transmitter. The ”alpha”
characterizes the propagation model. ”Sigma” is the variance used to generate
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the noise. The ”threshold” variable describes the probability of a detected signal
being an actual signal and not random noise.

12 "transmitter" :
13 {
14 "type":"AlphaTransmitter",
15 "effect": 500,
16 "alpha":2,
17 "sigma":1,
18 "threshold":0.999999
19 },

The different agent variables are described in table
4.4.

20 "agents" : [
21 {
22 "type" : "RandomAgent"
23 },
24 {
25 "type" : "RandomDirAgent",
26 "numMeasurements" : 30,
27 "ticks" : 200,
28 "threshold" : 3.9,
29 "radians" : 1.0
30 },
31 {
32 "type" : "LevyAgent",
33 "alpha": 2.0,
34 "scale": 100
35 },
36 {
37 "type": "OrganizedAgent",
38 "distance": 150
39 },
40 {
41 "type": "ModPSO",
42 "numMeasurements" : 30,
43 "threshold": 5.2565,
44 "moveMin": 25,
45 "moveMax": 50
46 },
47 {



95

48 "type": "ChemoTaxisAgent",
49 "numMeasurements" : 30,
50 "stride" : 40,
51 "school" : false
52 }
53 ],

Lastly, the ”output” describes how output is produced. When wanting to
recalculate some statistics, the ”output” variable is the only thing that needs to
be changed. In other words, when running the simulator with the ”-s” option,
this is the place to make changes.

The ”name” variable is the name appended on the output folder. To be certain
that folders with similar names are not overwritten the simulator will prepend
the date and time of creation. The ”confidence” variable is described in table
4.3. ”outputTypes” is also described in table 4.3 along with ”outputMethod”.
To generate the statistics shown in table 4.5, use the code shown below. To
generate the statistics shown in table 4.6, change the ”outputTypes” variable
with ”LengthTraveled”.

To generate the data behind figure 4.5, have the ”outputTypes” as ”Simula-
tionSteps” and change the ”outputMethod” variable to ”RelativeMean”. These
are shown below.

54 "output" :
55 {
56 "name":"Nonfixed_transmitter_large",
57 "confidence":0.95,
58 "outputTypes": [{"type":"SimulationSteps"}

],
59 "outputMethod":{"type":"RoundRobin"}
60 }
61 }

To recreate the data shown in figure 4.6, retain all above, but change the
following lines.

54 "output" :
55 {
56 "name":"Nonfixed_transmitter_large",
57 "confidence":0.95,
58 "outputTypes": [{"type":"LengthTraveled"}]

,
59 "outputMethod":{"type":"RoundRobin"}
60 }
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61 }

To recreate the data shown in figure 4.5, change to the following.

54 "output" :
55 {
56 "name":"Nonfixed_transmitter_large",
57 "confidence":0.95,
58 "outputTypes": [{"type":"SimulationSteps"}

],
59 "outputMethod":{"type":"RelativeMean"}
60 }
61 }



Appendix D

Extended results

This appendix contains the full results of the edge analysis. The following results
contains the data obtained after the discretization shown in figure 4.4.
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Call-out with Random Lévy Organized Extended PSO Chemotaxis

Random

2 (0.0, 9, 0)

5 (1.95e−3, 8, 0)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

2 (0.0, 9, 0)

5 (0.0, 9, 0)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

2 (5.00e−1, 0, 4)

5 (8.98e−2, 0, 6)

10 (8.98e−2, 0, 6)

15 (1.95e−3, 2, 6)

2 (0.0, 9, 0)

5 (0.0, 9, 0)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

2 (2.54e−1, 3, 2)

5 (1.95e−2, 7, 0)

10 (1.95e−3, 8, 0)

15 (0.0, 9, 0)

Call-out with Random N/A

2 (0.0, 9, 0)

5 (0.0, 9, 0)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

2 (0.0, 0, 9)

5 (0.0, 0, 9)

10 (0.0, 0, 9)

15 (0.0, 0, 9)

2 (0.0, 9, 0)

5 (0.0, 9, 0)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

2 (2.54e−1, 0, 5)

5 (7.46e−1, 1, 2)

10 (1.95e−3, 6, 2)

15 (8.98e−2, 5, 1)

Lévy See above N/A

2 (0.0, 0, 9)

5 (0.0, 0, 9)

10 (0.0, 0, 9)

15 (0.0, 0, 9)

2 (7.46e−1, 3, 0)

5 (8.98e−2, 3, 3)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

2 (0.0, 0, 9)

5 (0.0, 0, 9)

10 (0.0, 0, 9)

15 (0.0, 0, 9)

Organized See above See above N/A

2 (0.0, 9, 0)

5 (0.0, 9, 0)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

2 (8.98e−2, 4, 2)

5 (0.0, 9, 0)

10 (0.0, 9, 0)

15 (0.0, 9, 0)

Extended PSO See above See above See above N/A

2 (0.0, 0, 9)

5 (0.0, 0, 9)

10 (0.0, 0, 9)

15 (0.0, 0, 9)

Table D.1: This table shows the results after discretization of the general results shown in table 4.5. This table contains the corner results, shown in
red in figure 4.4. The meaning of the numbers in this table mirrors the meaning in the result table 4.5.
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Call-out with Random Lévy Organized Extended PSO Chemotaxis

Random

2 (1.0, 10, 0)

5 (1.0, 8, 5)

10 (1.0, 17, 1)

15 (2.23e−1, 42, 3)

2 (7.33e−6, 59, 2)

5 (2.04e−5, 56, 4)

10 (2.04e−5, 60, 0)

15 (1.12e−12, 72, 0)

2 (3.93e−11, 22, 48)

5 (7.33e−6, 13, 48)

10 (7.33e−6, 8, 53)

15 (1.33e−4, 22, 36)

2 (0.0, 51, 28)

5 (1.64e−13, 49, 24)

10 (3.93e−11, 69, 1)

15 (0.0, 77, 0)

2 (2.93e−1, 5, 39)

5 (1.75e−8, 30, 36)

10 (3.93e−11, 43, 27)

15 (3.14e−4, 46, 11)

Call-out with Random N/A

2 (5.36e−5, 57, 2)

5 (7.92e−7, 55, 8)

10 (2.03e−10, 64, 5)

15 (6.97e−12, 69, 2)

2 (6.66e−8, 12, 53)

5 (7.33e−6, 9, 52)

10 (9.69e−10, 3, 65)

15 (1.33e−4, 6, 52)

2 (2.55e−15, 47, 28)

5 (6.66e−8, 46, 19)

10 (2.15e−14, 69, 5)

15 (0.0, 77, 1)

2 (1.07e−2, 1, 51)

5 (5.36e−5, 25, 34)

10 (3.93e−11, 41, 29)

15 (9.69e−10, 45, 23)

Lévy See above N/A

2 (0.0, 0, 77)

5 (0.0, 0, 80)

10 (0.0, 1, 80)

15 (0.0, 1, 78)

2 (2.55e−15, 41, 34)

5 (1.75e−8, 32, 34)

10 (1.49e−3, 54, 1)

15 (0.0, 77, 0)

2 (0.0, 0, 81)

5 (0.0, 0, 80)

10 (0.0, 0, 79)

15 (0.0, 0, 79)

Organized See above See above N/A

2 (0.0, 74, 5)

5 (0.0, 79, 1)

10 (0.0, 80, 1)

15 (0.0, 80, 1)

2 (0.0, 40, 39)

5 (1.64e−13, 62, 11)

10 (1.64e−13, 71, 2)

15 (0.0, 71, 8)

Extended PSO See above See above See above N/A

2 (2.03e−10, 0, 69)

5 (0.0, 0, 79)

10 (0.0, 0, 80)

15 (0.0, 0, 80)

Table D.2: This table shows the results after discretization of the general results shown in table 4.5. This table contains the edge results. The
transmitter positions used in this table are labeled as blue in figure 4.4. The meaning of the numbers in this table mirrors the meaning in the result
table 4.5.
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Call-out with Random Lévy Organized Extended PSO Chemotaxis

Random

2 (7.66e−1, 0, 72)

5 (2.80e−9, 0, 112)

10 (3.43e−5, 0, 101)

15 (1.46e−2, 4, 86)

2 (4.44e−15, 120, 3)

5 (0.0, 123, 6)

10 (0.0, 140, 0)

15 (0.0, 153, 0)

2 (3.58e−11, 25, 91)

5 (6.79e−5, 11, 89)

10 (0.0, 4, 131)

15 (5.95e−1, 13, 62)

2 (0.0, 119, 12)

5 (0.0, 111, 20)

10 (0.0, 151, 0)

15 (0.0, 154, 0)

2 (0.0, 1, 133)

5 (2.04e−8, 15, 95)

10 (5.24e−8, 52, 57)

15 (2.18e−2, 75, 14)

Call-out with Random N/A

2 (0.0, 134, 0)

5 (0.0, 145, 0)

10 (0.0, 154, 0)

15 (0.0, 154, 0)

2 (3.39e−10, 58, 56)

5 (0.0, 69, 58)

10 (9.85e−1, 19, 44)

15 (3.30e−12, 89, 29)

2 (0.0, 131, 5)

5 (0.0, 142, 0)

10 (0.0, 154, 0)

15 (0.0, 154, 0)

2 (2.32e−3, 0, 94)

5 (7.43e−7, 68, 38)

10 (2.04e−8, 102, 8)

15 (1.80e−14, 120, 2)

Lévy See above N/A

2 (0.0, 0, 148)

5 (0.0, 1, 147)

10 (0.0, 0, 151)

15 (0.0, 1, 150)

2 (9.58e−3, 76, 15)

5 (6.79e−5, 40, 60)

10 (0.0, 148, 0)

15 (0.0, 154, 0)

2 (0.0, 0, 154)

5 (0.0, 0, 154)

10 (0.0, 0, 154)

15 (0.0, 0, 154)

Organized See above See above N/A

2 (0.0, 151, 0)

5 (0.0, 143, 8)

10 (0.0, 153, 0)

15 (0.0, 154, 0)

2 (0.0, 33, 106)

5 (0.0, 77, 53)

10 (0.0, 122, 12)

15 (0.0, 120, 21)

Extended PSO See above See above See above N/A

2 (0.0, 0, 154)

5 (0.0, 0, 154)

10 (0.0, 0, 154)

15 (0.0, 0, 154)

Table D.3: This table shows the results after discretization of the general results shown in table 4.5. The transmitter positions used in this table are
labeled as green in figure 4.4 and is contained in the middle of the search area. The meaning of the numbers in this table mirrors the meaning in the
result table 4.5.



Appendix E

Running the simulator

This appendix contains the necessary information to both setup and run the
simulator used in this thesis.

E.1 Setup
In order to run the simulator, created for this thesis, there are a few necessary
setup steps.

The first thing that needs to be done is to install the latest version of the
Haskell Platform1. The latest version can be found at http://www.haskell.
org/platform/.

Once the Haskell Platform is installed, the next step is to download and install
the necessary requirements for the simulator. Move to the directory where the
simulator code is found, the directory will contain a file ending in a ”.cabal”.
When this is done perform the following command2:

$ caba l i n s t a l l −−only−dependenc ies

This action will likely take some time, the Haskell system is now downloading
and compiling dependencies for the simulator.

The last step is to build the simulator. This is done with the command:

$ caba l bu i ld

1On most Linux distributions one can install GHC and Cabal through the package manager
instead of installing the Haskell Platform

2Note that, in the commands shown in this appendix ”$” represents the command-line.
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this is done in the same directory as above. Note that if cabal complains
during any step, make sure that the current directory is correct and that it
contains the ”SearchSimulation.cabal” file.

Once all these steps are done, the simulator can be run.

E.2 Running
The simulator is run with the executable created after the successful completion
of the previous section. To run try:

$ . / d i s t / bin / SearchSimulat ion / SearchSimulat ion

The executable has three different options to run with.

-f The configuration file to use. Always needed. An example with an explanation
is given in appendix C.

-g Run simulation in graphical mode. This is used in conjunction with the ”-f”
option to view the implemented strategies. If several options are present
the simulator will ask which alternative should be used.

-s Raw result file to recalculate statistics. Since the simulator uses some time
when running it is often handy to be able to recalculate some statistics with-
out waiting for another run. By using the ”-s” flag this can be accomplised
quite easy.

Below are some examples of how to run and what will be accomplished.

$ . / d i s t / bin / SearchSimulat ion / SearchSimulat ion −f c o n f i g .
j son

The above code, will make the simulator run with the parameters specified
in the file ”config.json”. Because the simulator is capable of running on multiple
processors this run can be further improved by adding:

$ . / d i s t / bin / SearchSimulat ion / SearchSimulat ion +RTS −N −
RTS −f c o n f i g . j son

this will tell Haskell to use all available processors to run the simulation.
To run the simulator in graphics mode, just add the ”-g” option, as shown

below.

$ . / d i s t / bin / SearchSimulat ion / SearchSimulat ion −g −s
c o n f i g . j son
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To recalculate some statistics, just call the following

$ . / d i s t / bin / SearchSimulat ion / SearchSimulat ion −f
config_with_updated_output . j son −s /path/ to / old_raw_fi le .

txt

This will create a new output folder, but will not run the full simulator.
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