
Coordination in Large-Scale Agile
Development

Ragnar Alexander T Morken

Master of Science in Informatics

Supervisor: Maria Letizia Jaccheri, IDI
Co-supervisor: Torgeir Dingsøyr, IDI

Department of Computer and Information Science

Submission date: May 2014

Norwegian University of Science and Technology

i

Abstract

In the last decade agile software development methods has become one of the
most popular topics within software engineering. Agile software development
is well accepted in small projects among the practitioner community and in
recent years, there has also been several large-scale projects adopting agile
methodologies, but there is little understanding of how such projects achieve
effective coordination, which is known to be a critical factor in software en-
gineering.

This thesis describe an exploratory case study on how practices in an agile
large-scale software development projects impact coordination. The goal is
to provide a rich description on how practices are implemented in large-scale
projects, and how they contribute to achieving effective coordination.

The main findings are that agile practices are implemented in the same fash-
ion as they are in small projects, and effective coordination is achieved by
reducing the needs for cross-team coordination through non-agile practices
and handling unforeseen cross-team dependencies with agile practices.

Keywords: Large-scale, Coordination, Agile, Scrum, Test driven develop-
ment, Critical path method, Software development, Software engineering

iii

Sammendrag

I det siste ti̊aret, har smidig systemutviklingsmetoder blitt et av de mest
populære emnene innen systemutvikling. Smidig systemutvikling er godt
akseptert i systemutviklingsmiljøet, og i senere år har ogs̊a store prosjekt
tatt i bruk smidig utvikling, men det er lite forst̊aelse om hvordan slike pros-
jekt oppn̊ar effektiv koordinering, som er vel annerkjent som en kritisk faktor
i systemutvikling.

Denne oppgaven beskriver en utforskende case study om hvordan praksiser i
et stor-skala smidig systemutviklingsprosjekt p̊avirker coordinering. Målet er
å gi en innholdsrik beskrivelse om hvordan disse praksisene er implementert
i stor-skala prosjekt, og hvordan de bidrar til å oppn̊a effektiv koordinering.

Hovedfunnene i denne oppgaven er at smidige praksiser er implementert p̊a
samme m̊ate som i mindre prosjekt, og at effektiv koordinering oppn̊as ved å
redusere behovet for koordinering p̊a tvers av teamene gjennom ikke-smidige
praksiser, og deretter h̊andtrere de uforutsette avhengighetene p̊a tvers av
teamene gjennom smidige praksiser.

Nøkkelord: Stor-skala, Koordinering, Smidig, Scrum, Testdrevet utvikling,
Kritisk sti metode, Programvareutvikling, Systemutvikling

v

Preface

This report was written as the final step in a 2 year Master program in In-
formatics at the Norwegian University of Science and Technology (NTNU).
The author would like to thank all the interviewees for letting him interview
them and the project management for letting him conduct the study on the
project. Without them, he wouldn’t have been able to write this thesis.
They took time out of a busy schedule in an important phase of the project
to provide valuable data for this study. Thank you!

The author would also like to thank his supervisor for this thesis, Torgeir
Dingsøyr. Due to a technical formality at NTNU, he is listed as the co-
supervisor in the documents at NTNU, but has, for all intents and purpose,
functioned as the primary supervisor. He has spent a lot of time with the
author for more than a year an a half, discussing the thesis and research
plan. Through a constant positive attitude, he has helped the author through
discussions, coaching and continuous feedback, which has been invaluable to
the author. This thesis would not become true without his great supervision.
Thank you so very much, Torgeir!

Contents

1 Introduction 1

1.1 Problem description . 1

1.2 Initial research question and significance 2

1.3 Scope of the report . 3

1.4 The target audience of the report 4

1.5 Report structure . 4

2 Software development 7

2.1 Historical evolution of software development methodologies . . 7

2.2 Traditional software development 9

2.3 Waterfall model . 10

2.4 Agile software development 11

2.5 Scrum . 12

2.6 Extreme programming . 18

2.6.1 Test driven development 20

2.6.2 Pair programming . 21

2.7 Lean . 21

2.7.1 Kanban . 23

2.8 Large-scale agile software development 24

3 Coordination 35

3.1 Malone and Crowsons coordination theory 36

3.2 Coordination mechanisms . 37

3.3 Critical path method . 37

3.4 Coordination in large scale software development 39

3.4.1 Coordination in software development 39

3.4.2 Coordination in large-scale projects 40

vii

viii CONTENTS

3.4.3 Research on coordination in large-scale software devel-
opment projects . 41

3.5 Strode’s coordination model 44

4 Research design 47

4.1 Research question . 47

4.2 Theoretical foundation . 48

4.2.1 The 6 Ps of research 48

4.2.2 Qualitative data . 49

4.2.3 The philosophical paradigm 50

4.3 Case study . 51

4.3.1 What is a case study? 52

4.3.2 Choice of case . 53

4.3.3 Presentation of the case 53

4.3.4 Interview structure . 54

4.3.5 Interview guide . 56

4.4 Ethical research . 56

4.5 Researchers bias . 57

4.6 How the analysis was done . 58

4.6.1 Synchronisation . 58

4.6.2 Structure . 58

4.6.3 Boundary spanning . 59

4.6.4 Reactive coordination 59

5 Results 61

5.1 Synchronisation . 61

5.1.1 Synchronisation activity 61

5.1.2 Synchronisation artefact 64

5.2 Structure . 65

5.2.1 Proximity . 65

5.2.2 Substitutability . 66

5.3 Boundary spanning . 68

5.3.1 Boundary spanning activity 68

5.3.2 Coordination role . 72

5.4 Reactive coordination . 72

5.4.1 Individual responsibility 73

CONTENTS ix

6 Discussion 75
6.1 Comparison to guidelines for scaling up agile development. . . 76
6.2 Coordination mechanisms and factors 77

6.2.1 Mintzbergs coordination mechanisms 77
6.2.2 The value of experience 78
6.2.3 Boundary spanning . 78

6.3 Practices . 79
6.4 Limitations and implications 83

6.4.1 Limitations . 83
6.4.2 Implications for existing theory and guidelines 83
6.4.3 Implications for the target audience 84

6.5 Evaluation of the study . 85
6.5.1 The research process 85
6.5.2 How agile is it? . 85
6.5.3 Generalisation . 86
6.5.4 Trustworthiness . 86

6.6 Summary . 88

7 Conclusion 91
7.1 Main conclusion . 91
7.2 Further work . 92

A Interview guide 101
A.1 Interview guide for management 101
A.2 Interview guide for developers 102

List of Tables

2.1 Seven wastes of software development (Poppendieck and Pop-
pendieck (2003) . 23

2.2 Suggested research agenda on large-scale agile software devel-
opment (Dingsøyr and Moe (2013)) 26

4.1 The 6 Ps of Research (Oates (2005)) 48

6.1 How does practices used in large-scale agile development affect
coordination . 89

xi

List of Figures

2.1 Traditional development (Wysocki and McGary (2003)) 9
2.2 The waterfall model (Royce (1987)) 10
2.3 The scrum process (Abrahamsson et al. (2002)) 13
2.4 Sprint backlog . 15
2.5 Daily scrum meeting . 17
2.6 The evolution from waterfall to XP as explained by Beck (1999) 19
2.7 Kanban board . 24
2.8 Large-scale framework by Larman and Vodde (2008) 28

3.1 Critical path diagram . 38
3.2 Comparison of use and value of coordination techniques (Kraut

and Streeter (1995)) . 43
3.3 A theory of coordination in agile software development projects

(Strode et al. (2012)) . 46

4.1 Suppliers organisation . 54

xiii

Chapter 1

Introduction

1.1 Problem description

Computer systems developed in the 1970s was designed primarily to com-
plete a single task e.g. a payroll system. Todays systems are usually a lot
more complex, which leads to a more complicated development process. In
addition to the increasing complexity of system development, the cost of sys-
tem development is fairly high. In addition to the complexity of the projects,
the technology is changing rapidly.

Agile software development methods are particularly designed to deal with
change and uncertainty. They favor intensive face-to-face communication
and other apparently simple practices. In 2013, the Norwegian Labour and
Welfare Administration (NAV) stopped a project after spending 700 million
Norwegian kroner on the development project. It is unknown how much re-
sources spent on development is currently usable. The NAV project is one
out of several projects that have been cancelled. Rubinstein (2007) esti-
mated that 19% of all software projects were cancelled, and 46% were over
time or over budget in 2006. Research done by Flyvbjerg and Budzier (2011)
shows one out of six projects studied had a cost overrun of 200%. Not only
is the costs related to development high, but modern information systems
are now integrated in so many aspects of the organisation that the develop-
ment of information systems pose a singular new risk for the organisation
as a whole. The German company Toll Collect (a consortium of Daimler-
Chrysler, Deutsche Telekom, and Confiroute of France) had an estimated

1

2 CHAPTER 1. INTRODUCTION

loss of $10 billion in lost revenue due to the developers struggled to combine
the different software systems.

There are several factors leading to the success or failure of a project, but
effective coordination has been acknowledged, long before the arrival of ag-
ile software development, as a critical component in organisations generally
(Curtis et al. (1988) and Van de Ven et al. (1976)). Coordination has also
been particularly emphasised as a critical factor in software development
(Kraut and Streeter (1995) and Strode et al. (2012)).

The enormous costs related to failed system development projects and the
critical impact effective coordination has on the failure or success of a project,
substantiates the importance of research in the field of coordination in large-
scale agile software development.

1.2 Initial research question and significance

When constructing a research question, there are several things to keep in
mind. It should be interesting for both the reader and the researcher and
there must be a balance so that it is not too open, nor too specific. It should
be a topic where the researcher is at least somewhat invested, and maybe
most important, it should be a problem that is actually worth studying. The
first step towards defining a research question, was through conversations
with the supervisor. These conversations made it easier to see both the pos-
sibilities and limitations of the thesis.

The authors interest for project management as well as the ability to draw
from the supervisors research and knowledge within the field of agile de-
velopment was a big factor into deciding what would be studied. Finally,
through these conversations, the topic of coordination in large-scale projects
using agile development emerged. The research question used in this thesis is:

How does practices used in large-scale agile development affect
coordination?

Further reasoning behind the research question can be found in chapter 4.1.

1.3. SCOPE OF THE REPORT 3

To conduct this study, the author was given the opportunity to do a case
study on an agile large-scale project, developing a community critical sys-
tem. An initial literature review was conducted, which proved valuable for
the author in order to better understand the challenges of scaling up the agile
development method, and to place the thesis in context of what has already
been published.

1.3 Scope of the report

Several important issues and potential research areas arise when studying
large-scale agile development, such as how does management operate com-
pared to traditional large-scale project management, how does large-scale
agile development compare to small-scale agile projects, how does agile devel-
opment compare to traditional development in large-scale projects and how
can/does agile development take place large-scale agile development projects.
These are all relevant research areas, so in order to limit the scope of this
study, this thesis will focus on coordination in large-scale agile development
projects. Through the initial literature review it was clear that there is little
research done on agile development in large-scale projects, and the research
done on coordination in agile development was rather scarce.

The outcome of this thesis should not be a new theory, but rather insight
and a thorough description of how coordination is done in large-scale agile
projects. As both coordination agile development in themselves are large
research areas, this thesis will limit to looking at how the practices used in
large-scale agile development project affects the coordination. As each prac-
tice in it’s own could be a research study in themselves, the scope of this
project is limited to looking at how they impact coordination.

In terms of coordination, this thesis focus on the coordination across teams,
rather than within the different teams. The research question in this theses
will be covered later (see section 4.1). The thesis will also give a brief intro-
duction to software development methodologies. Since development method-
ology in practice often differs from the pure theory based textbook examples,
traditional, agile and lean methodologies will be presented. In addition, there
will be a short introduction into the field of coordination in software devel-

4 CHAPTER 1. INTRODUCTION

opment. This is to give the reader of the report a better understanding of
the theory behind the research, and to put the discussion into context for
the reader. The chosen content of the theory chapters, is a result of what is
being used in the case studied.

1.4 The target audience of the report

Agile development is still rather young, but is rapidly emerging. Therefore
it will hopefully have some value for the following audiences:

• Computer science students might find it interesting to see how
agile methodologies are done in large-scale projects, since most of the
textbooks focus on smaller projects. It can also be interesting to see
how a theoretical framework is in a real life setting, in contrast to an
educational setting.

• Researchers in the field of computer science or coordination may find
it interesting to read a case study on a field with rather scarce infor-
mation.

• Practitioners who are interested in improving or adopting agile meth-
ods to a large-scale projects, can possibly gain valuable insight in how
it is done in a large-scale project, as well as what adaptations have
been made to make an agile methodology work in a large-scale project.

• Customers of software development may value a neutral third
party’s view upon how agile development works in practice in a large-
scale project.

1.5 Report structure

The thesis is written with the following report structure:

Chapter 1 - Introduction: An introductory chapter that gives a brief
overview of the report and its structure, the scope of the report and de-
scribes the target audience of the report.

Chapter 2 - Software development and coordination: This chapter is

1.5. REPORT STRUCTURE 5

where all the theory related to software development methodologies are pre-
sented. It contains a description of both the concept of agile development, as
well as some information about specific relevant methodologies and practices.

Chapter 3- Coordination: A theory based chapter that gives the reader
relevant introduction to coordination and coordination within the field of
software development.

Chapter 4 - Research design This chapter describes the theory and
choices behind the research method and describes how it is designed and
conducted.

Chapter 5 - Results This chapter presents the results that were collected
during the study. The results are grouped according to the grouping pre-
sented in section 4.6

Chapter 6 - Discussion This chapter discusses the results found, other
issues that are relevant for the discussion, and the validity of this thesis.

Chapter 7 - Conclusion This chapter presents the conclusion, further work
and possible improvements.

Chapter 2

Software development

When a software system is being developed, the methodology refers to the
chosen framework that is used to plan, structure and control the development
process. The goal of this chapter is to present relevant research and theory
to software development methodologies and practices, in order to establish
a foundation for the research design and the following discussion. The first
section will describe the historical evolution of software methodologies in or-
der to better understand the foundation of the modern software development
methodologies. After that, different methodologies and concepts that are rel-
evant to the research will be presented, in order to provide context for the
reader. Finally, existing guidelines, research and some challenges related to
scaling up the agile methodologies to a large-scale project will be presented.

2.1 Historical evolution of software develop-

ment methodologies

According to Avison and Fitzgerald (2003), software was created up to the
1960s without any kind of defined software development process. In the
1960s, the software engineering as a discipline emerged, and has in the fol-
lowing years grown in both scale and importance. Avison and Fitzgerald
(2003) has divided and defined 4 eras of software development methodology:
pre-methodology, early methodology, methodology and post-methodology era.

7

8 CHAPTER 2. SOFTWARE DEVELOPMENT

Pre-methodology era

In the pre-methodology era, around 1950s and 1960s, the emphasis was on
the programming and problem solving, often coupled tightly with hardware
constraints. The development was done without any formalised processes,
and too much responsibility without any control was put in the hands of
individuals. The developers were highly technical skilled, but had a negligible
communication with the stakeholders and a low understanding of the business
aspect of the company. This led to several problems such as difficulty meeting
business needs, inflexibility and dissatisfied users.

Early methodology era

In the 1970s and 1980s, there was a high focus on identifying the phases
and stages of the development process, in order to increase management of
software development. The system development life cycle, better known as
the waterfall model, which is an extension of traditional project development
life cycle, was introduced in this era.

Methodology era

The 1980s and 1990s is considered the methodology era. This era is in many
ways a response to the issues and limitations that the waterfall model had.
Several approaches emerged with a collection of recommended rules, tech-
niques, tools, documentation and management principles. Although these
approaches were rather different, their motivation were the same. Achiev-
ing better products, improve the development process, and standardize the
methodology.

Post-methodology era

The post methodology era lasted from the 1990s to present day, and can be
considered the reappraisal of some of the values from the pre-methodology
era. Previous eras had brought an overly complex and unrealistic sets of
rules and tools, with disappointing productivity. Among several other ap-
proaches, this reappraisal brought a focus on incremental methods, which is
the foundation of agile software development.

2.2. TRADITIONAL SOFTWARE DEVELOPMENT 9

2.2 Traditional software development

The methods from early methodology era, and the methodology era are in
modern day considered traditional software development methods. Accord-
ing to Wysocki and McGary (2003) traditional project management divides
a project development into 5 steps (See figure 2.1). This model is also con-
sidered to consist of four steps plus control, because the third and fourth
step are so intertwined.

Figure 2.1: Traditional development (Wysocki and McGary (2003))

Initiation: In the first step, the project is defined, a scope for the project
is set, milestones are created and the project manager is appointed.

Planning and design: In the second step, the project is broken down into
smaller components that are required for the overall success of the project.
This process is called a Work Breakdown Structure (WBS). The phase also
includes risk analysis and an estimation of resources and time.

Executing: Project execution simply means that the tasks listed in the plan
are accomplished in the way they were conceived.

Monitoring and controlling: In the execution phase challenges are bound
to come up that the project manager must handle accordingly.

Closing: The project is formally closed by writing a summary of the project.

10 CHAPTER 2. SOFTWARE DEVELOPMENT

2.3 Waterfall model

In 1970, dr. Winston Royce adapted the traditional project management
methodology to suit software development into a method known as the water-
fall method. The waterfall method is typically used in an ordinary large-scale
software development project.

Figure 2.2: The waterfall model (Royce (1987))

A major drawback to this model, which Royce (1987) presents in his paper, is
that the steps cannot be separated, and that they had to run in a sequential
order. Each phase produces a set of documents and reports, which creates
the basis for the next phase, e.g. the system analysis produces an analysis
document, which will be the foundation for the program design phase. This
means that the entire development process is very little flexible when it comes
to requirements and specifications throughout the project lifecycle.

Royce (1987) points out that there is room for feedback, and thereby making
the model more flexible, however Hawryszkiewycz (1994) argues the case
that this is seldom done, since every step has a single sign-off point where
one activity is terminated, thereby shifting the focus over to the next phase.

2.4. AGILE SOFTWARE DEVELOPMENT 11

2.4 Agile software development

There is no widespread agreement on what the concept of agile actually refers
to in software development, however it has generated a lot of interest among
practitioners and in the academia. The introduction of extreme programming
method (better known as XP), has been widely acknowledged as the start-
ing point for the various agile software development approaches. Since then,
there has been several methods which have been either invented or rediscov-
ered, that appears to be in the same family of methodologies (Abrahamsson
et al. (2002)).

Despite there not being a widespread agreement on what the concept ”agile”
actually refers to in software development, there have been several authors
who have tried to define agile development. In this master thesis, the author
has chosen to use the definition from Nerur and Balijepally (2007) in this
thesis:

”The traditional mechanistic worldview is today being challenged by a newer
agile perspective that accords primacy to uniqueness, ambiguity, complexity,
and change, as opposed to prediction, verifiability and control. The goal for
optimization is being replaced by flexibility and responsiveness.”

Agile software development is in many ways a reaction to the more tradi-
tional development. A core differences is how a problem is approached. In
traditional development, a problem is approached as fully specifiable, and
that optimal and predictable solutions exist for every problem. Problems are
therefore solved through extensive planning and a high degree of reuse to
make development as efficient and predictable as possible.

Agile development on the other hand sees problems in a constantly changing
and unpredictable environment, where one relies a high degree on people and
their creativity, rather than on process.

Agile development is also a subset of iterative and evolutionary software
development methods. Larman (2004) writes that iterative development is
a method, where the project life cycle consists of several iterations, where
every iteration ends up with a deliverable piece of software. Evolutionary
software development means building a software that changes over time. A
typical change is new requirements arriving as the project progresses.

12 CHAPTER 2. SOFTWARE DEVELOPMENT

2.5 Scrum

Scrum is a software development methodology building on the ideas of agile
development. It is an empirical approach applying the ideas of industrial
process control theory to systems development resulting in an approach that
reintroduces the idea of flexibility, adaptability and productivity (Schwaber
and Beedle (2002)). It does not focus on specific techniques for the system
development phase, but rather focus on how team members should function
in order to ensure production of a flexible system in an environment with
constantly changing factors.

The basic concept of scrum is that there are several environmental and tech-
nical variables involved in system development, which are likely to change
during the development process. This makes the development process unpre-
dictable and complex, which requires the development method to be flexible
and adaptive. Therefore, a traditional linear sequential development strategy
is ill suited, since it requires a much more stable and predictable environment.
Scrum helps to improve the existing engineering practices (e.g. testing prac-
tices) in an organization, since it involves frequent management activities
aiming at constantly identifying any deficiencies or impediments in the de-
velopment process as well as the practices that are used (Abrahamsson et al.
(2002)). This section will present the scrum guidelines as described by Abra-
hamsson et al. (2002), starting with the different phases of scrum, before
describing the different elements and practices used in scrum.

The different phases

The scrum process includes three phases. The pre-game phase, the develop-
ment phase and the post-game phase (see figure 2.3).

The pre-game phase: This first phase can be divided into two sub-phases:
Planning and Architecture.

• Planning includes defining the system being developed. This is done
through creating a product backlog list, which contains all the require-
ments that are currently known. The requirements are here gathered
from various origins e.g. sales, marketing, customer support, and are
prioritized in order of importance, and the effort needed to develop
features that meets these requirements are estimated. Planning also

2.5. SCRUM 13

Figure 2.3: The scrum process (Abrahamsson et al. (2002))

includes defining the project team, tools and other resources, risk as-
sessment, controlling, training needs and verification management ap-
proval (Abrahamsson et al. (2002));

• The architecture part of the pre-game phase, is the high level design of
the system, including the architecture which is planned for the system,
based on the current items in the product backlog.

The development phase: The development phase is the agile part of
Scrum. The development phase is where the product is developed through
iterations of sprints (see section 2.5). This is to handle all the unpredictable
variables such as time frame, quality, requirement, resources implementation

14 CHAPTER 2. SOFTWARE DEVELOPMENT

technologies and tools. Rather than taking these matters into consideration
only at the beginning of the project, they are continually reevaluated and
controlled in order to flexibly adapt to the changes.

The post-game phase: The post-game phase is the final phase of the
process. This phase is entered when an agreement has been made that the
requirements are completed. In this phase, no more items or issues can be
added to the backlog, and no new ones can be invented. The system is now
ready for release, and preparation for this should be done during this phase.

Scrum does not require or provide any specific software development meth-
ods/practices to be used. Instead, it requires certain management practices
and tools in the various phases of Scrum to avoid the chaos caused by un-
predictability and complexity (Schwaber (1997)).

Product backlog

The product backlog is an ordered list of everything that is needed in the fi-
nal product, based on current knowledge, such as features, bug fixes, require-
ments, functions, defects. It comprises a prioritized and constantly updated
list of technical and business requirements for the system being developed.
In figure ?? an example of a product backlog is displayed with a description
of the task that needs to be done, an estimation of how many hours it takes
to complete the task, and who is responsible for doing the task.

Effort estimation

Effort estimation is an iterative process, where the items in the backlog is
evaluated in order to give a best possible estimation of how much effort it
takes to solve an item, given the information available at the current time.

Sprint

A Sprint is a time period (typically 1 - 4 weeks) where development occurs
on a set of backlog items. The Scrum Team organizes itself to produce a
new executable product increment in a sprint. The working tools available
for the team are sprint planning meetings, sprint backlog and daily Scrum
meetings.

2.5. SCRUM 15

Sprint backlog

The sprint backlog is a list of items selected from the product backlog which
are to be implemented in the next sprint. Which items are to be included
in the sprint backlog is selected by the Scrum Team, Scrum Master and the
Product Owner in the sprint planning meeting based on their priority in the
product backlog, and the goals set for the sprint. The key difference between
the sprint backlog and product backlog is that the sprint backlog is stable
until the sprint is completed. When all the items in the sprint backlog are
completed, a new iteration of the system is delivered. An example of a sprint
backlog can be found in figure 2.4.

Figure 2.4: Example of a sprint backloga

ahttp://epf.eclipse.org/wikis/scrum/Scrum/workproducts/resources/productbacklog.jpg

Sprint planning meeting

The Sprint planning meeting is a meeting organized by the Scrum Master,
which is organised into two separate phases. In the first phase, the customers,

16 CHAPTER 2. SOFTWARE DEVELOPMENT

users, management, product owner and scrum team participate to decide
the goals and functionality of the next sprint. The second phase of the
meeting is held by the scrum master, and the focus is here on how the
product increments is to be implemented during the sprint.

Daily scrum meeting

The daily scrum meetings are held in order to keep track of progress of the
scrum team continuously. They are serve as a planning meeting to see what
has been done since the last meeting, and what should be done before the next
one. If anyone are experiencing problems, or other variable matters, these
should be discussed in this meeting. Any deficiencies in the development
process are looked for, identified and removed in order to improve the process.
The scrum master is responsible for the daily scrum meetings which should be
held every day, and last no more than 15 minutes, and everyone participating
should be standing through the entire meeting. For this reason the daily
scrum meeting is often referred to as a ”standup meeting.” The scrum master
and scrum team attend all the daily scrum meetings, but it is also possible
for e.g. management to participate in the meeting as observers.

Review meeting

Sprint review meetings happens on the last day of the sprint. Here the
results of the sprint is presented to the management, customers, users and
the product owner in an informal meeting. Typically this takes the form of
a demo of the new features. The goal is to assess the product increment and
make decisions about future activities. The review meeting may bring out
new problems, opportunities or other things that are added to the backlog
and even change the direction of the system being built.

Retrospective meeting

The retrospective meeting is facilitated by the scrum Master and takes place
after the sprint is completed. Here, the team discusses the previous sprint
and determines what could be changed in order to improve the next sprint.
While the review meeting focuses on what has been done, and what should
be done, the retrospective focuses on the process of how it’s done.

2.5. SCRUM 17

Figure 2.5: Example of daily scrum meeting / Standup meetinga

ahttp://www.xqa.com.ar/visualmanagement/wp-content/uploads/standup2.jpg

Roles and responsibilities

In Scrum, there are six different roles where each role has different tasks and
purposes. These are: Scrum Master, Product Owner, Scrum team, Customer
and Management. In the subchapters below, the different roles are presented
as they are described by Schwaber and Beedle (2002)

• Scrum Master. Scrum is facilitated by a Scrum Master, and works as
a manager role to ensure that the project is carried out according to the
practices, values and rules of Scrum, and that it progresses as planned.
The Scrum Master works as a link between the other roles by interacting
with the project team, the customer(s) and the management during
the project. He is also responsible for ensuring that any impediments
are removed and changed in the process to keep the team working as
productively as possible.

• Product Owner. The Product Owner is officially responsible for the

18 CHAPTER 2. SOFTWARE DEVELOPMENT

project, managing, controlling and making the product backlog list
visible. He is selected by the Scrum Master, the customer and the
management, and functions as the voice of the customer. The prod-
uct owner makes the final decision of the tasks related to the product
backlog and turns issues in the backlog into features to be developed.

• Scrum team. The Scrum team is responsible for developing the prod-
uct increments at the end of each sprint, and are involved in effort es-
timation, creating the spring backlog, reviewing the product backlog
list and suggesting impediments that needs to be removed from the
project.

• Customer. The customer participates in the tasks related to product
backlog.

• Management. Management is in charge of final decision making, as
well as standards and conventions to be followed in the project. The
management also participates in setting goals and requirements for the
project.

2.6 Extreme programming

Extreme programming (XP) is explained by Beck (1999) as an evolution
of the traditional development models (see figure 2.6). Due to the long
development cycle, the cost of changing a piece of software increased drastic
over time. Because of this, it was important to make the biggest, most far
reaching decisions as early in the life cycle as possible. This section present
the guidelines and theory related to extreme programming. Practices that
are particularly relevant for this study are presented in further detail in
subsections bellow.

Beck and Andres (2004) writes that XP was ”theorized” on the key principles
and practices used in a number of successful trials in practice. Although the
individual practices of XP were not new, they were collected and lined up
in order to function in symbiosis with each other, and thus forming a new
methodology within the field of software development. The name Extreme
programming comes from taking different principles viewed as common sense,
and taking them to extreme levels (Beck and Andres (2004)).

2.6. EXTREME PROGRAMMING 19

Figure 2.6: The evolution from waterfall to XP as explained by Beck (1999)

Here is a quick summary of each of the major practices in XP as explained
by Beck (1999). Those practices that are particularly relevant to this thesis
are explained further in a subsection below.

• Planning game. The customer decides the scope and timing of re-
leases based on estimates provided by programmers.

• Small releases. The system is put into production before solving the
whole problem. New releases are made often.

• Metaphor. The shape of the system is defined by a metaphor or set
of metaphors between the customer and programmers.

• Simple design. At every moment, the design runs all the tests, com-
municates everything the programmers want to communicate, contains
no duplicate code, and has the fewest possible classes and methods.

• Tests. Programmers write unit tests which all are collected and must
run correctly. The customer writes functional tests for the stories in
an iteration. See section 2.6.1 for more information

• Refactoring. The design of the system is evolved through transfor-
mations of the existing design that keeps all the tests running.

• Pair programming. All production code is written by two people at
one screen/keyboard/mouse. See section 2.6.2 for more information.

20 CHAPTER 2. SOFTWARE DEVELOPMENT

• Continuous integration. New code is integrated with the current
system after no more than a few hours. When integrating, the system is
built from scratch and all tests must pass or the changes are discarded.

• Collective ownership. Every programmer improves code anywhere
in the system at any time if they see the opportunity.

• On-site customer. A customer sits with the team full-time.

• 40-hour weeks. No one can work a second consecutive week of over-
time. Even isolated overtime used too frequently is a sign of deeper
problems that must be addressed.

• Open workspace. The team works in a large room with small cubicles
around the periphery.

• Just rules. By being part an extreme team, you must sign up to follow
the rules. But they’re just the rules. The team can change the rules
at any time as long as they agree on how they will assess the effects of
the change

2.6.1 Test driven development

Test driven programming (TDD), also referred to as test-first(TF) program-
ming, is described by Beck (2003) as a programming technique used in ex-
treme programming where the programmer writes unit tests before he writes
any new code. TDD is not a testing technique, but rather a programming
and design technique, which by its very nature is iterative. When writing
code, the programmer specifies how the program needs to work before he
writes the code. After that, the programmer writes the code needed to pass
the test. After the test has passed, the programmer looks at the code and if
needed, improves the design.

The positive properties of TDD is described by Erdogmus et al. (2005) as
follows. Through testing, the programmer gets constant feedback. Writing
tests encourages the programmer to decompose problems into smaller man-
ageable tasks, which also has a positive affect on low level design. Frequent
tests also ensure a certain degree of quality. Pančur and Ciglarič (2011)
writes that there are only a handful of controlled experiments on TDD, and

2.7. LEAN 21

the results have often been inconclusive or conflicting, and is a field of study
which needs more research in order to verify or disprove the believed benefits
of TDD.

2.6.2 Pair programming

Pair programming is a simple concept where all tasks must be performed by
pairs of programmers using only one display, keyboard and mouse. Padberg
and Muller (2003) points to two primary benefits with using pair program-
ming.

• A pair of programmer develops software faster. This is called the Pair
speed advantage.

• The code produced by a pair of programmers has less defect density
compared to code written by a single programmer. This is called the
pair defect advantage

According to Padberg and Muller (2003), the usual reasoning behind the
potential advantages are as follows. Pair programming allows the developers
to share their ideas and thought immediately. This allows them to come
to solutions faster, potentially on a better foundation and it also helps to
eliminate defects early. In addition to this, there is an ongoing review of the
code by the other programmer continuously, which reduces the defect density.

The primary challenge with pair programming is whether the extra cost in
manpower of pair programming is balanced by the potential benefits.
There has been research on the advantages and disadvantages vs cost, but
according to Lui and Chan (2006), the results have seemed to lead to contra-
dictory conclusions by different researchers, and Padberg and Muller (2003)
concludes that the amount of reliable empirical data is very limited.

2.7 Lean

Poppendieck (2007) describes Lean software development as an application
of the Toyota Product Development System to software development. It is a
product development paradigm with an end-to-end focus on creating values,
optimizing value steams, empowering people and continuously improving.

22 CHAPTER 2. SOFTWARE DEVELOPMENT

Lean thinking revolves around waste and value. The goal is to add value
in every chain as rapidly as possible, and eliminate waste, where everything
that does not directly add value is considered waste.

The method was first described by Tom and Mary Poppendieck when they
published a book (Poppendieck and Poppendieck (2003)), where they took
the methods described by the Toyota Product Development System, and
adapted it to fit software development. In their book, the seven principles
used in lean software development are described as follows

• Eliminate waste, is in many ways the foundation of lean thinking, and
is often referred to as the ”origins of lean thinking”. Nothing should
be done that doesn’t add value. Everything that doesn’t add value to
the customer should be considered waste.

• Amplify learning, also referred to as ”The nature of software devel-
opment”, means that you should strive for a better understanding and
learning of what’s going on in the project. This can be achieved by
letting developers work in different phases of the project (design, cod-
ing, testing), and keeping the feedback loops with the customer short
in order to generate knowledge better and faster.

• Decide as late as possible. By making decisions later, more knowl-
edge about the product is obtain, and it is also better suited for chang-
ing requirements and environments.

• Deliver as fast as possible. Delivering early, gives early feedback,
which is a critical factor in software development, and it also adds value
to the customer at an early stage.

• Empower the team. Bring decisions down to the team level. The
people who add value should be allowed to use their potential, and it is
important that company management listens attentively to them, and
not dismissing them when they are different from their own.

• Build integrity in. The systems separate components needs to work
well together in a balance between maintainability, efficiency, respon-
siveness and flexibility. Refactoring and testing are key techniques to
ensure integrity, but neither one should be a goal in themselves, but
rather a means to an end.

2.7. LEAN 23

• See the whole. Software systems are not simply a sum of their parts,
but rather a product of their interactions. Don’t optimize parts of the
product at the expense of the whole.

Taiichi Ohno of the Toyota production system, identified seven types of man-
ufacturing waste. The seven wastes are presented in 2.1, along with a de-
scription of the equivalent waste in software development as described by
Poppendieck (2011)

Original description Waste in software development
Overproduction Extra features

Inventory Requirements
Extra processing steps Extra steps

Motion Finding information
Defects Defects not caught by tests
Waiting Waiting, including customers

Transportation Handoffs

Table 2.1: Seven wastes of software development (Poppendieck and Pop-
pendieck (2003)

2.7.1 Kanban

Kanban originates fro the Japanese words kan(visual) and ban(card/board).
It is a method related to lean that also came from the automotive industry
at Toyota as a production method (Anderson (2010)). Cocco et al. (2011)
describes Kanban as a method where you write work tasks on a card and
place them on the Kanban board. As each team member starts on a task,
he moves the card over to ”in progress”. If the task has dependencies, or
for some other reason can’t be completed, it is moved to the waiting section.
When the task is finished, the card is moved over to the completed section.
There are also several variations with colour schemes that identifies priorities
of tasks, and other section to describe where in the development cycle a task
is, such as e.g development, test, deployment. Cocco et al. (2011) writes
that this is to make the flow of work visible to all team members, and the
work in process limits are made explicit on the board. This provides a high
visibility to the software process, since it shows the assignment of work to

24 CHAPTER 2. SOFTWARE DEVELOPMENT

the developers, communicates priorities and makes bottlenecks visible.

Figure 2.7: Example of a kanban boarda

ahttp://benjaminmitchell.files.wordpress.com/2011/07/img 0064.jpg

2.8 Large-scale agile software development

This section will first start with describing what is meant by large-scale in
software development context, before describing guidelines written in books
about how it is possible to scale up agile development to work properly for
large projects, before presenting some of the research done on the field. In the
initial literature review, the books written about large-scale agile software de-
velopment(Larman and Vodde (2008) and Eckstein (2004)), were extremely
positive to the possibility of scaling up the agile methodologies and practices
to work in large projects. Therefore this chapter will also include articles
at the end, which are published in magazines, (in contrast to published in
scientific journals) in order to show the negative viewpoints of large-scale
agile development.

Since both Eckstein (2004) and Larman and Vodde (2008) are very positive
to large-scale agile development, software magazine articles have also been

2.8. LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 25

included in this chapter in order to represent viewpoints of those who are crit-
ical to large-scale agile development.These have been included in this chapter
in order describe some of the criticism of large-scale agile development.

The term large-scale development project in itself is rather ambiguous. Large-
scale can be defined by the amount of time devoted to the project, by the
amount of people working on the project, by how many lines of code the
software has. This thesis follows the definition proposed by Dingsøyr et al.
(2013), where projects with two or more teams are considered large-scale.

A workshop in 2013 at the International Conference on Agile Software De-
velopment (XP2013), discussed the research challenges related to large-scale
development. In an article by Dingsøyr and Moe (2013), the discussion is
summarized and a suggested research agenda is presented in table 2.2.

26 CHAPTER 2. SOFTWARE DEVELOPMENT

Rank Topic Description

1 Inter-team coordination Coordination of work between
teams in large-scale agile develop-
ment.

2 Large project organisation / Port-
folio management

What are effective organisational
structures and collaboration mod-
els in large projects? How to han-
dle a distributed organisation?

3 Release planning and architecture How are large projects planned?
How can the scope be reduced?
What is the role of architecture in
large-scale agile?

4 Scaling agile practices Which agile practices scale and
which do not? Why and when do
agile practices scale?

5 Customer collaboration How do product owners and cus-
tomers collaborate with develop-
ers in large-scale projects?

6 Large-scale agile transformation How can agile practices be
adopted efficiently in large
projects?

7 Knowledge sharing and improve-
ment

When is the whiteboard not
enough? How can communities
of practice be established? What
measurements are relevant to fos-
ter improvement?

8 Agile Contracts How can contracts change the
mindset of the customers from
upfront planning to agile princi-
ples? What legal limitations exist
in contracts that reduce the agility
in large projects?

Table 2.2: Suggested research agenda on large-scale agile software develop-
ment (Dingsøyr and Moe (2013))

2.8. LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 27

Books on large scale agile software development

Although agile development is increasing rapidly in popularity, it is only
newly that it has been used in large-scale projects. Both Eckstein (2004)
and Larman and Vodde (2008) have written books on large-scale develop-
ment, but there is a limited amount of peer reviewed research on the topic.

Eckstein (2004) has a large focus on what she refers to as feature teams.
Each team should have the sufficient competence to deliver whole business
functionality. Through the use of feature teams, it is implied that business
functionality should never be split across several teams. Taking the whole
responsibility for a feature, allows teams to organize themselves and the work.

Larman and Vodde (2008) has a great focus on the core values of agile and
scrum when they described how it can be scaled up. The practices used
in small projects should still be practised in the separate teams in parallel
(see figure 2.8). The primary changes are the sprint planning meetings, the
addition of ”scrum of scrums meetings” and a joint retrospective meeting,
and they are explained by Larman and Vodde (2008) as follows. The sprint
planning meeting is changed by separating the sprint planning meetings in
two parts. Part one consists of a meeting with maximum two members per
team plus the product owner, where the team representatives self-manage
to decide their division of product backlog items. Part two of the sprint is
planning is done by each team independently, in the same manner a team
would perform a sprint planning meeting in a small project. A representative
from team B can however attend team A’s planning meeting if there are co-
ordination issues. Team retrospective meetings should be held individually
per team, but there should also be a joint retrospective meeting where the
scrum masters and one representative from each team meet to identify and
plan improvements for the overall product or organisation. Scrum of scrums
is an open meeting where all the scrum masters meet with the aim to increase
information sharing and coordination.

Larman and Vodde (2008) differs from Eckstein (2004) in the use of fea-
ture teams. Larman and Vodde (2008) emphasises that in order to maintain
agility across teams, there can not be speciality teams. Most teams should be
able to do any product backlog items, which is critical for large-scale agility.

28 CHAPTER 2. SOFTWARE DEVELOPMENT

Figure 2.8: Large-scale framework by Larman and Vodde (2008)

Previous research

In a systematic review of empirical studies on agile software development,
Dyb̊a and Dingsøyr (2008) writes that one of the most common criticisms
of agile development method is that agile development works well for small

2.8. LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 29

team, but other processes are more appropriate for larger projects.

In a case study on the impact of continuous release planning in large-scale
scrum development organisations by Heikkilä et al. (2013), they found that
the benefits were increased flexibility and decreased development lead time,
waste was eliminated in the planning process, and increased developer mo-
tivation. The challenges were overcommitment caused by external pressure
(Mainly because the product management still worked in the old way), man-
aging non-feature specific work and balancing between development efficiency
and building generalist teams.

Van Waardenburg and Van Vliet (2013) presents a grounded theory of the
challenges of using agile methods in traditional enterprise environments.
Projects with enterprise environments are typically confronted with a large
and complex IT landscape. The research results are in line with challenges
facing smaller companies and projects when going from traditional to agile
development.

In a case study conducted by Paasivaara et al. (2008), they look at how
agile practices work in a global software development project consisting of
40 people distributed between Norway and Malaysia. In order to communi-
cate, the project used several tools such as web camera, email, chat functions
and telephone conferences. The project transitioned from a combination of
waterfall and iterative development, to scrum 1.5 years before the study
was conducted. Paasivaara et al. (2008) reports that developers experience
several positive experiences with scrum such as, better quality in the code,
better and more frequent communication (both between the two countries
and within the teams) and an improved motivation. The applied agile prac-
tices used in the project have been modified to better face the challenges
faced. Some of the modification deals with challenges of being a large-scale
projects, while others deal with the challenges faced in a distributed project.
The practices implemented that have been modified due to the size of the
project is described bellow.

• Daily scrum meetings, where the meetings are held in consecutive
order in the same meeting room, so that it is possible for the same
person to attend several meetings

• Weekly scrum of scrums meeting where all scrum masters and one

30 CHAPTER 2. SOFTWARE DEVELOPMENT

team member per team meets and answers the same questions they
would in the daily scrum meeting. In addition, they answer two addi-
tional questions: ”Have you put any impediments in the other team’s
way” and ”Do you plan to put any impediments in the other teams’
way.

• Synchronized 4-week sprints, which means that all the teams sprints
starts and ends at the same time.

• Separate backlogs for each team. Each team has their own backlog,
which is updated by the respective product owners.

• Team rooms. Each team has their own room. If someone is trans-
ferred between teams, they also change rooms.

In a case study done by Cao et al. (2004), they propose the following general
guidelines on tailoring agile development methodologies to make them more
suitable for development of large software systems.

• Upfront Architecture design. The architecture works as a backbone for
the entire project. It helps to reduce the time and effort spent imple-
menting new functionalities. It also helps reduce developers training
time, and thereby mitigating the cost of bringing a new developer on
board. As the systems grows in size and complexity, it is also more
difficult for the developers to see the dependencies and interactions
between the user stories. The architectural backbone, helps the devel-
opers maintain a certain degree of overview.

• Short release cycles with a layered approach. This is in many ways one
of the central features of agile development, and it’s still very important
in large-scale and complex projects. The focus is to deliver production
code that supports functionalities end-to-end, rather than developing
heavily integrated modules.

• Surrogate customer engagement. In agile development, end-user in-
volvement is extremely important, and in small projects, the customer
is often also an end-user. The challenge when the complexity grows,
the problem is amplified and the domain is often beyond the experience
and expertise of a few users. The customers can therefore be surrogated
by product managers or business analysts who have direct contact with
the customers.

2.8. LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 31

• Flexible pair programming. Pair programming is not seen as realistic in
all situations and can be very dependent on the individual developers.
In the case studied, developers paired up for analysis, design, test case
development and unit testing are done in pairs. After this is done, the
developers return to solo coding.

• Identifying and managing developers. Developers who recognise the
importance of a pattern-based development and providing standard
interfaces across the system are seen as a key to a successful project.
Motivation and moral are also key factors. It is important that the
management respect the developers contribution and not only see them
as cogs in a machine. Flexible working hours, remote working, focus
on results rather than micro-management, are key factors that affect
the developers morale and motivation.

• Reuse with forward refactoring. Forward refactoring is an approach
where you reuse existing code for developing new features instead of
developing new solutions. Existing services remains untouched, while
new services are developed based on existing ones.

• Flatter hierarchies with controlled empowerment. Management should
be slim, and work to improve communications between stakeholders
and increase productivity. Developers are empowered to make their
own decisions, but exception handing is centralized to control potential
damages resulting from changes that are necessary.

Experience reports

In an experience report, written by Lyon and Evans (2008), from the de-
velopment of BBCs ”iplayer”, there was one primary challenge. They used
a single product backlog that was used across all teams that grew out of
control. The situation was greatly improved by creating separate product
backlogs for the different teams and a master product backlog which was a
generalisation of the product backlog items, grouped by themes.

Another experience report by Lee (2008), describes how a large-scale project
transitions from waterfall to agile through the four stages of team develop-
ment proposed by Tuckman (1965). In the experience report, Lee (2008)
writes that communication within the team improved drastic after the teams

32 CHAPTER 2. SOFTWARE DEVELOPMENT

were gathered into team rooms, but sharing knowledge cross teams were a
great challenge. Two teams could sometimes be working on a similar prob-
lem that a third team had already resolved. This was mitigated by weekly
scrum of scrums meetings and daily tech leads stand-up meeting.

Articles from magazines

A more critical approach to large-scale agile development is taken by Cock-
burn (2000), in a magazine article,where he argues that there is one ideal
method for each project size, but there’s not one methodology that fits all.
As the project grows larger, the less agile the methods become. The reason-
ing behind his statement is based upon four principles which they describes
as follows.

• A large group needs a larger methodology. A methodology is considered
larger when it contains more elements. It grows with the number of
roles, and not by the number of individual people. This indicates that
one should not expect small team methodology to work properly for
big teams and vice versa.

• A more critical system needs more publicly visible correctness in its
construction. This principle says greater development expenses can be
justified to ensure protection from mistakes and defects.

• A relatively small increase in methodology size or density adds a relative
large amount of project cost. Pausing development to coordinate with
other people takes time and steals concentration. This does not mean
that coordination is hazardous to the project progress. It does however
mean that the cost increases with the number of elements in the project.

• The most effective form of communication is interactive face-to-face,
as at a whiteboard. This principle implies that it is more efficient and
therefore cost effective for developers to sit close together with easy
communication. When the size of the project increases, the effective
communication is reduced, and the associated costs are increased.

In an article by Boehm (2002), he argues that agile methods are difficult to
scale up to larger projects due to the lack of sufficient architecture planning,

2.8. LARGE-SCALE AGILE SOFTWARE DEVELOPMENT 33

but emphasises the benefits of agile development when the future require-
ments are highly unpredictable.

Chapter 3

Coordination

In traditional development, effective coordination is acknowledged as a crit-
ical component in organisations generally, and in software development in
particular (Curtis et al. (1988)). Agile software development methodolo-
gies were particularly designed to deal with a changing environment and a
high degree of uncertainty, but they de-emphasise traditional coordination
mechanisms such as forward planning, extensive documentation, specific co-
ordination roles, contracts and strict adherence to a pre-specified process. In-
stead they favour intensive face-to-face communication and other apparently
simple practices (Strode et al. (2012)). Despite the absence of traditional
coordination tools, scrum has contributed to the success of many software
projects and is now being implemented in large projects, so arguably effective
coordination of some type is taking place within agile software development.
However, the form and nature of this coordination is not well understood.

In this chapter, the ambiguous term coordination is first described through
the use of Malone and Crowson’s coordination theory, in order to set a foun-
dation for what is meant by coordination in the rest of the thesis. The next
section examines the theoretical coordination mechanisms which takes place
in different organisations. The subsequent chapter describes the critical path
diagram, which is a coordination artefact used in the case studied. In order
to better understand the issues and challenges in the aspect of coordination
in large scale agile development and to put this thesis into context among
other studies, the third chapter describes previous research and theories on
coordination in software development, coordination in large scale projects,
and a combination of the two. The final section presents a model proposed

35

36 CHAPTER 3. COORDINATION

by Strode et al. (2012), as it was an important aspect of the initial motivation
for the research, and has been used as a foundation for analysis.

3.1 Malone and Crowsons coordination the-

ory

There are several different widely accepted definitions of the term coordina-
tion. Malone and Crowston (1990) defined it as follows

”When multiple actors pursue goals together, they have to do things to or-
ganise themselves that a single actor pursuing the same goals would not have
to do. We call these extra organising activities coordination”

This definition was later redefined by Malone and Crowston (1994) when they
redeveloped their interdisciplinary theory of coordination. ”The concept
evolved into coordination being the management of dependencies.”
Despite the term coordination being ambiguous, there exists a broad based
theory of coordination, developed by (Malone and Crowston (1994)). De-
pendencies occur when a task or event’s progress is halted due to the its
relationship with a different task, unit or resource

Malone and Crowsons coordination theory is based on ideas from manage-
ment theory, organisation, economics and computer science. The main con-
cept is that coordination is needed to address dependencies. Dependencies
arise when one action constraints a separate action in a situation. Coordi-
nation is made up of one or more coordination mechanisms, where each one
addresses one or more dependencies in a situation.

While coordination theory is useful for identifying dependencies, categorising
those dependencies and identifying the coordination mechanisms in a situa-
tion, it is a theory for analysis and is not intended to be used for prediction
(Strode et al. (2012)). Despite the coordination theory only being a theory
for analysis, it is still a valuable tool for better understanding the ways in
which particular activities or artefacts support coordination in organisational
settings.

3.2. COORDINATION MECHANISMS 37

3.2 Coordination mechanisms

In his synthesis of research on organisation design, Mintzberg (1980) states
that organisational structuring focuses on the division of labour into a num-
ber of distinct tasks, and the coordination of all of these tasks in order to
complete the labour in a unified way. Further on, he describes five different
organisational structures mechanisms for coordination in an organisation.

• In direct supervision. One person, typically a manager, coordinates
their work directly by giving specific orders to others.

• In the standardisation of work processes. The work is coordinated by
implementing a standard guide to doing the work itself. (e.g. work
orders, rules, regulations, etc)

• In the standardisation of outputs. The work is coordinated through
standard performance measures of the outputs of the work.

• In the standardisation of skills. The work is coordinated through a
standardisation of skills and knowledge that is usually learned before
the begin to do the work.

• In mutual adjustment. The work is coordinated through individuals co-
ordinating their own work through informal communication with each
other.

Agile development reflects some of these mechanisms, and in particular the
mutual adjustment. Mutual adjustment tends to occur in dynamic and com-
plex environments, young organisations and organisations involved with so-
phisticated innovation. In extreme programming, personal horizontal coor-
dination is achieved using pair programming and co-location. The scrum
development process itself relies on scheduled and unscheduled meetings,
which are achieved through sprint planning meetings, daily scrum meetings
and sprint review meetings.

3.3 Critical path method

The creation of a critical path diagram, also referred to as the critical path
method, is a coordination tool for planning and scheduling developed by

38 CHAPTER 3. COORDINATION

Kelley Jr and Walker (1959). In their article, they describe the goal of the
critical path diagram as a master plan to form a basis for prediction and
planning. The critical path diagram is constructed by mapping out all the
activities needed to complete the project, dependencies between these and
the time it takes to complete these activities. Through this diagram, one can
find the longest path of planned activities, which is called the ”longest path,”
or the ”critical path.” These activities are viewed as critical because a delay
in them will delay the project. Additional parallel paths through the project
with a shorter total time are called sub-critical or non-critical paths. The
critical path diagram may also contain certain logical milestones combined
with sub-critical paths in order to better distribute resources.

Figure 3.1: A simple example of a critical path diagrama

ahttp://www.acqnotes.com/Industry/Images/Critical%20Path.png

Kelley Jr and Walker (1959) describes seven benefits to the critical path
diagram for planners:

1. It provides a disciplined basis for planning a project.

2. It provides a clear picture of the scope of a project that can easily be
read and understood.

3. It provides a vehicle for evaluating alternative strategies and objectives.

4. It tends to prevent omission of jobs that naturally belong to the project.

3.4. COORDINATION IN LARGE SCALE SOFTWAREDEVELOPMENT39

5. In showing the interconnections among jobs, it pinpoints responsibili-
ties of the various operating departements involved.

6. It is an aid to refining the design of a project.

7. It is an excellent vehicle for training project personnel.

A simple example of a critical path diagram is shown on figure 3.1. Here the
blue squares indicate tasks to be done with a white text indicating how long
the task will take. The arrows indicate dependencies, and the red arrows
outline the critical path.

3.4 Coordination in large scale software de-

velopment

This section presents relevant theory and previous research to coordination
in large scale software development projects. To better understand the com-
plexity of large scale software development, challenges and issues when scal-
ing up software development project, this section has been divided into three
sub-sections. The first subsection presents research studies related to coor-
dination in software development. The second subsection presents organisa-
tional theory on coordination in large scale projects. The third subsection
functions as a combination of the two first subsections by presenting research
studies done on coordination in large scale software development projects.

3.4.1 Coordination in software development

Coordination is recognised as a critical component in software development.
In this subsection, a short description of previous research done and their
primary findings within the field of coordination in software development is
presented.

Mishra et al. (2012) conducted an empirical study on what impact physi-
cal environment in the workspace has on communication, collaboration and
coordination, in software development projects. They concluded that half-
height cubicles and boards had a very positive impact on the coordination
within the teams.

40 CHAPTER 3. COORDINATION

Hoda et al. (2010) found that despite agile teams ability to organise them-
selves, there was a need for a single representative for the team to coordinate
between the team and the customer representatives. Sharp and Robinson
(2004) identified story cards used for recording requirements, wall boards
displaying story cards and their progress and unit tests as important co-
ordination practices and artefacts in their ethnographic study of Extreme
programming practices.

In a case study conducted by Pries-Heje and Pries-Heje (2011), they set
out to answer ”why scrum works”. They found that the scrum framework
provides a support for coordination, and at the same time requires very
little time to foresee or negotiate the work flow. Product backlog, sprint
backlog, scrum board and daily meetings were identified as four aspects of
scrum which especially helped with coordination. Pries-Heje and Pries-Heje
(2011) identifies coordination as one of the four critical factors to ”why scrum
works”. Pikkarainen et al. (2008) identified sprint planning meetings, open
office space and daily meetings as important practices to provide efficient
communication in a case study on two co-located software projects. These
practices promoted an informal communication and substituted the need for
documentation as a communication mechanism. In a study by Moe et al.
(2010) on teamwork in a co-located project being introduced to scrum, they
found that the misapplication of scrum practices had a severe negative impact
on the coordination aspect, where team members ended up not knowing what
the others were doing.

3.4.2 Coordination in large-scale projects

Coordination in itself is a broad field of study. In this section, the thesis
presents coordination theory related to large-scale projects. This theory is
based upon large projects and large organisations in general, and not soft-
ware development in particular.

Van de Ven et al. (1976) states that large-scale complex organizations and
bureaucracy are often regarded as synonymous. In general, increases in size
increase structural differentiation at decreasing rates, which produces a cor-
responding trade off between increasing complexity and cost of coordination
at the administrative level, and decreasing the coordination burden within
work units because activities within units tend to become more homoge-

3.4. COORDINATION IN LARGE SCALE SOFTWAREDEVELOPMENT41

neous (Van de Ven et al. (1976)). In his research, he describes two different
coordination modes: Vertical and Horizontal. Vertical communication in-
volves coordination via supervisors, while horizontal coordination occurs via
one-to-one communication between individuals in a non-hierarchical relation-
ship. His findings suggest that as the group size increases, the coordination
becomes more vertical and impersonal. As complexity grows, Child (1973)
states that it is likely to generate administrative problems of coordination
and control. One of the ways in which such problems are dealt with, is
through increased formalisation. Control is maintained in the form of stan-
dard rules, procedures and systems. In his book, Miller (1952) argues that
as the size of the organisation increases, the cohesiveness decreases, and sub-
group formation increases.

Van de Ven (2007) suggests that as group size grows, the face-to-face tech-
niques of leadership behaviour gives way to more impersonal techniques of
coordination. There were also an issue with conflicts within the group. The
group would simply make a decision and decide how to proceed, rather than
resolve the issue at hand. This is coherent with research done by Hemphill
(1950), where he finds that group members are more tolerant of highly struc-
tured and directive leadership when the size of the group grows. In his
research, there is also a focus on the leader role, where the demands on the
leaders become increasingly more complex and numerous as the size of the
group grows. Hare (1976) writes that as the size of a group grows, the mem-
ber participation decreases. In line with Child (1973), Hare (1976) also draws
focus towards the formalisation that occurs in larger groups, which leads to
a use of more mechanical methods in order to communicate information.
Thompson et al. (1967) argues that large organisations doesn’t necessarily
have an enormous bureaucracy and the most elaborate administration. He
argues that the bureaucracy and impersonal coordination is a result of the
complexity, which tends to arise in large groups and organisations.

3.4.3 Research on coordination in large-scale software
development projects

In a study of large software development projects, Curtis et al. (1988) found
that communication bottlenecks and breakdowns are very common. They
found that a large-scale software project requires learning about the appli-

42 CHAPTER 3. COORDINATION

cation and its environment as well as new hardware, new development tools
and languages and other evolving technologies, early in the project. Software
developers were required to obtain knowledge from several domains and in-
tegrate this knowledge, before they could perform their jobs accurately. In
addition to integrating the knowledge of different domains themselves, there
was also a constant need to share and integrate information with others. The
documentation tools used were not enough to coordinate these dependencies,
so informal communication arenas would emerge across team borders. They
write that large projects are more successful if a single, often exceptional
individual with both application-domain knowledge and software knowledge
guides and coordinates the project, however this ideal is impossible for many
large-scale software system.

Kraut and Streeter (1995) describes the fundamental characteristic of large
software systems as being too large for one person, or even a groups ability
to understand in detail. Their result suggests that personal communication
is critical for successful coordination in large software development projects.
Figure 3.2 displays the relationship between the extent to which software
engineers used a technique to spread information and coordinate their work,
and how much they valued it. The underlined techniques had values that
were significantly different from what one would predict on the basis of how
much they were used.
Their research suggests both formal and informal interpersonal mechanisms
are used for sharing information and achieving coordination in software de-
velopment projects. From fig 3.2, they also emphasise on the high value
of personal communication as a tool for coordination. In their conclusion,
they argue this as a potential challenge in the aspect of large-scale project as
the software engineer need to acquire information and understanding from
those who are remote and otherwise barred from the core of the development
process as well.

3.4. COORDINATION IN LARGE SCALE SOFTWAREDEVELOPMENT43

Figure 3.2: Comparison of use and value of coordination techniques (Kraut
and Streeter (1995))

44 CHAPTER 3. COORDINATION

3.5 Strode’s coordination model

In a multi-case study by Strode et al. (2012), she proposes a theoretical model
for coordination in agile development projects, based upon the empirical
data from her study (see figure 3.3). The cases studied were co-located agile
project, and one non-agile project to contribute to contrasting evidence. Her
findings show that agile development draws upon three primary component:
synchronisation, structure and boundary spanning. This model has been
used in this thesis as a basis for analysing the data (See section 4.6 for more
information).
In the model, the coordination strategy is defined as a group of coordination

mechanisms that manage dependencies in a situation. As stated above, the
coordination strategy consists of three main components: Synchronisation,
structure and Boundary spanning, which each has their own components.
The different parts with their components is explained by Strode et al. (2012)
as follows:

• Synchronisation is achieved with synchronisation activities and syn-
chronisation artefacts.
Synchronisation activities are activities that bring all of the project
team members together at the same time and place for some pre-
arranged purpose.
Synchronisation artefacts are things produced during synchronisation
activities that contain information used by all team members in accom-
plishing their work.

• Structure refers to the arrangement of, and relations between, the
parts of something complex.
Close proximity refers is a feature of agile software development meth-
ods where all project team members should be located in the same
open-plan room without divisions between desks to promote an easy
flow of communication.
Availability refers to team members being available for contact with
each other.
Substitutability is when team members have expertise and skills to per-
form the task of another to maintain the project schedule.

• Boundary spanning occurs when someone within the project must
interact with other organisations, or other business units, outside the

3.5. STRODE’S COORDINATION MODEL 45

project.
Boundary spanning activity occurs when different organisations or groups
within organisations, separated by location, hierarchy, or function, in-
teract to share expertise.
Boundary spanning artefacts are physical things produced to support
boundary spanning activities and enable coordination beyond the team
and project boundaries.
Coordinator role is a person responsible for coordinating the commu-
nication between the team members and exterior units.

46 CHAPTER 3. COORDINATION

Figure 3.3: A theory of coordination in agile software development projects
(Strode et al. (2012))

Chapter 4

Research design

This chapter will present how the research is designed. The first section
presents the research question and the reasoning behind it, which is a vital
part in designing the research. The second chapter presents the theoretical
foundation on research which is used as a basis for designing this study. This
is presented because in all research there exists an underlying philosophical
assumption about what constitutes as valid research and which methodol-
ogy is appropriate for gathering knowledge in the given study. The chosen
methodology for research is imperative for the understanding gained from
the research. The following section presents relevant information about the
case studied and how it was conducted. Since the researcher is an important
tool when conducting qualitative studies, the chapters ethical research and
researchers bias, has been included to mitigate threats to validity and put
the researcher in context of the study. The final chapter describes how the
data was handled and processed, which is the basis of the next chapter.

4.1 Research question

In the previous chapters, there have been introduced challenges and issues
regarding scaling up agile development and coordination. Since large-scale
agile development is rather new, there is not a lot of literature on how ef-
fective coordination is done in these projects, or how the practises effect the
coordination. The research question is therefore designed to give a better
understanding and insight into these topics.

47

48 CHAPTER 4. RESEARCH DESIGN

How does practices used in large-scale agile development affect
coordination?

The outcome could be interesting for gaining knowledge and improving the
coordination in large-scale projects. Since most the practices used in agile
development originate from smaller projects, it is interesting to see the value
of these when they are used in large-scale projects. The research question
is not design to prove or disprove a hypothesis or theory, but rather to gain
information in a field with very little literature.

4.2 Theoretical foundation

Because the theoretical foundation of research is imperative to how the re-
search has been designed, this section contains three sub sections which gives
the reader a better insight into the theoretical foundation. The first section
presents a guideline to what should be included in a study, called the 6 Ps
of research, which the research design has been based upon. The second sec-
tion provides an overview of theoretical information about qualitative data.
The final section describes the philosophical paradigms which exists within
the scientific research community and which paradigm has been used for this
study.

4.2.1 The 6 Ps of research

How research is done varies a lot from study to study, and there exists several
views on how research should be done. One of the views is presented by Oates
(2005), where she presents the 6Ps of research (see table 4.1).

Purpose The reason for doing research
Product The outcome of the research
Process The sequence of activities undertaken in the project

Participants Who you directly involve in your research
Paradigm A pattern or model of shared way of thinking

Presentation The means by which the research is disseminated and
explained to others

Table 4.1: The 6 Ps of Research (Oates (2005))

4.2. THEORETICAL FOUNDATION 49

In a parallel to the several ways to conduct research, there are also several
different outcomes/products. Even given the same research question as a
starting point, two different researchers could produce completely different
types of knowledge and products of their research. Oates (2005) describes
the following potential products: A new or improved product, a new theory,
a re-interpretation of an existing theory, new or improved research tool or
technique, a new improved model or perspective, an in-depth study of a
particular situation, an exploration of a topic, area or field. This thesis aims
primarily at producing an in-depth study of coordination in a large-scale
software development project.

4.2.2 Qualitative data

There are two types of data gathered in research. Quantitative and qualita-
tive. Quantitative is data that can be measured in terms of numbers, while
qualitative data is more descriptive data which can not be measured. Gilgun
(1992) defines qualitative data as data represented as words, pictures and
other things not defined by numbers. Marshall (1996) states that the choice
between quantitative and qualitative research should be determined by the
research question, and not the preference of the researcher. This statement
is on the backbone of his view upon the choice as one of the most important
steps in any research project. Due to the research question, and the complex
nature of coordination, this thesis used qualitative data as its data source for
analysis.

Oates (2005) identifies the following as benefits when conducting qualita-
tive research. The data and its analysis can be rich and detailed since it is
not limited to that which can be measured in numbers. There is also the
possibility of alternative explanation which means that different researchers
may reach different, but still equally valid, conclusions. Seaman (1999) notes
that the large amount of potential information a researcher can gather from
qualitative research can however also be a negative aspect. There is a danger
of the researcher feeling overwhelmed by the volume of qualitative data that
can be gathered from just a small number of interviews. Researchers might
feel swamped and unable to identify patterns and themes. In addition the
analysis of qualitative data is very closely tied to the researcher. This leads
to conclusions being a lot more tentative, compared to conclusion based on
quantitative research. Seaman (1999) adds that when conducting qualitative

50 CHAPTER 4. RESEARCH DESIGN

research, the researcher is forced to delve into the complexity of the problem,
rather than abstract it away, which leads to more informative and richer re-
sults. She also adds that qualitative data is more enjoyable for the researcher
to work with, since it gives the researcher a sense of being closer to reality.

According to Galliers and Land (1987), research within the field of informa-
tion systems has traditionally been biased towards traditional, empirical and
quantitative research. This strong bias towards traditional, empirical and
quantitative research implies that information systems is purely technologi-
cal. Galliers and Land (1987) criticises this implication, and emphasises the
importance of of extending the study into aspects concerning organisation
and behaviour. Seaman (1999) argues that the nature of software engineer-
ing is complex due to technical issues, the awkward intersection of machine
and human capabilities. Both Brooks (1975) and Curtis et al. (1988) were
early to draw focus to the need for more qualitative research into both pro-
grammers and the development process. Seaman (1999) notes that the two
first aspects have kept software engineering researchers engaged, and it is
only recently that the focus on the last factor, human behavior, has gained
significant recognition in the broader software engineering research commu-
nity. The aspect of technical issues and intersection of machine and human
capabilities is drastically easier to measure in a quantitative matter compared
to measuring the human aspect.

Seaman (1999) credits the increased interest in qualitative data partly to
practitioners, whom have seen the advances gained by adapting to research
results in technical areas. She goes on to say that there are a lot of people
within the software development industry who recognises that there exists
a number of unique management and organisational issues, that must be
addressed and solved for the field to progress.

4.2.3 The philosophical paradigm

In order to evaluate research, it is important to establish a paradigm, which
is a set of shared assumptions or ways of thinking about some aspect of the
world. The different philosophical paradigms have different views about the
nature of our world and the way we can acquire knowledge about it (Oates
(2005)). There are three primary paradigms explained in short as follows:

4.3. CASE STUDY 51

• Positivism: Our world is ordered and regular, and can be investigated
objectively. Positivism is often a strong preference for quantitative
data.

• Interpretivism: There is no single version of the truth, but different
groups or cultures can see the world with different views. Researchers
are not neutral. Their own assumptions, beliefs, values and actions
will shape the research process. Interpretivism is often associated with
gathering qualitative data.

• Critical research: The social reality is created and recreated by peo-
ple, but social reality also possesses objective properties that tend to
dominate our experience. Critical researchers criticise interpretivists
for failing to analyse the pattern

In this thesis, the data is gathered with the author as the research tool. It is
therefore naturally that the thesis is considered interpretive research. Klein
and Myers (1999) explains interpretive research within information system as
interpretive if it is assumed that our knowledge of reality is gained through
social constructions such as language, consciousness, shared meanings, doc-
uments, tools and other artefacts. Interpretive research does not predefine
variables, but focuses on the complexity of human sense making as the situ-
ation emerges. One of the major critics of interpretive research is the lack of
a common standard evaluation criteria. The problem with finding a common
standard evaluation criteria, emerges from the nature of interpretive research
which does not subscribe to the idea of a set of pre-determined criteria can
be applied.

4.3 Case study

This section is divided into five smaller sections with the purpose of describ-
ing how the research was conducted. The first section presents theoretical
background and research on case studies as a research method. The second
chapter describes how the case was chosen and the third section describes
what was known about the case before gathering data. The final two sec-
tions describes how the interviews were constructed and conducted in order
to gather interesting data.

52 CHAPTER 4. RESEARCH DESIGN

4.3.1 What is a case study?

Gerring (2004) argues that for methodological purposes a case study is best
defined as an in depth study of a single unit (a relatively bounded phe-
nomenon) where the scholars aim is to elucidate features of a larger class of
similar phenomena. Oates (2005) lists the characteristics of a case study as
follows: A case study focuses on Depth rather than breadth, phenomenas
are studied in their natural setting, it has a higher focus on the complexity
of relationships and processes and how they are interconnected and inter-
related rather than trying to isolate individual factors. Yin (1984) defines
three types of case studies:

• Exploratory study: Is used to help a researcher understand a research
problem or to define questions or hypotheses to be used in a subsequent
study.

• Descriptive study: Set to describe the natural phenomena which occur
within the data in question, and is often presented in a narrative form.

• Explanatory study: Goes further than a descriptive study, and tries
to explain why events happened as they did or particular outcomes
occurred.

The case study conducted in this thesis is an exploratory study, as it aims
to obtain a deeper understanding about a field where there exists little liter-
ature, which may also give a better foundation for future research studies.

Some of the advantages and disadvantages with conducting case study-based
research has been identified by Oates (2005).

Advantages:

• It can deal with complex situations where it is difficult to study a single
factor in isolation

• It is appropriate when the researcher has little control over the events

• It is suitable for both theory building and theory testing

Disadvantages:

4.3. CASE STUDY 53

• It can be perceived as lacking rigour and leading to generalizations with
poor credibility

• It can be difficult and time-consuming to negotiate access to the nec-
essary settings, people and documents

It should also be noted that case studies have a large precedence within agile
studies. A systematic review of empirical studies of agile software develop-
ment done by Dyb̊a and Dingsøyr (2008), shows that 72% of the studies
found were from single or multi-case studies.

4.3.2 Choice of case

In order to find a large-scale project using agile development methodology,
it was first defined what qualified as a large-scale agile project, before con-
tacting companies and ask for an opportunity to study a case. In this thesis,
a large-scale agile (as presented in section 2.8) is a project consisting over
more than two development teams using an agile development methodology.
The choice of focusing on a single case is mainly due to time constraints and
the large amount of work and time related to gathering, transcribing and
analysing qualitative data through interviews. Since agile development is
still fairly new, and not very widespread among large-scale projects, finding
a representative case invited a few challenges, but through a contact of the
authors guidance supervisor from a related research project, contact was es-
tablished with a company which led to the choice between two different cases
that qualified for the criteria set earlier. The chosen case was selected since
it was still at a development stage, and also represents a typical instance, so
that the data gathered can be generalised.

4.3.3 Presentation of the case

The case is a development project of a community critical system governed
by an organisation under the Norwegian ministry of petroleum and energy.
As a community critical system, there exists information which is graded,
and can not be published. In order to not risk publishing graded material,
no pictures from the office or the people working on the project were taken.

The goal is to replace an old system that was adopted in 1993/94, and is
based upon outdated technology. There is approximately 50 people working

54 CHAPTER 4. RESEARCH DESIGN

daily on the project, distributed between the customer and the supplier. The
project started in autumn 2010, and through gradual deliveries, it is expected
to completely replace the old system at the end of 2014/beginning of 2015.
In the beginning of the project there were reports of some issues, however
through a solid effort on both the customer and suppliers side, the project is
now considered to be on ”the right track”, and is estimated to be completed
within both the planned budget and time constraints.

The supplier is organised according to figure 4.1. The project management
group consists of a project manager, a functional architect, a test manager,
a technical architect and a progress manager. The team size may vary, and
therefore it is not explicit that a person can only have one role. In addition
to the teams, there is also one person responsible for the GUI of the product.

Figure 4.1: Suppliers organisation

4.3.4 Interview structure

Nandhakumar and Jones (1997) classifies interviews into three different struc-
tures, where the degree of engagement between the interviewer and the in-

4.3. CASE STUDY 55

terviewee will vary based on these. The lower degree of structuring of the
interview, the more the interviewer must explore the interviewee’s answers.
The three types are structured, semi-structured and unstructured.

• Structured Interviews: These use pre-determined, standardised,
identical questions for every interviewee. The interview follows a pre-
defined schedule with the interviewer reading out questions, and note
the interviewee’s responses, in often pre-coded answers (e.g. ”yes, no,
high, low, etc’) Oates (2005) describes structured interviews as a verbal
questioner where the interviewer writes down the answers directly to
the computer.

• Semi-structured interviews: These still use a pre-determined list
of themes to be covered and questions to ask, but the order of ques-
tions can be changed, depending on the flow of the conversation, and
there can be other questions if the interviewee brings up issues that
was not prepared in the interview guide. Semi-structured interviews
can have both specific and open-ended questions which the interviewee
answers according to what they think can be relevant to the theme of
the question.

• Unstructured interviews: The interviewer introduces a topic, and
then let the interviewees talk freely and develop their ideas about
events, behaviour or beliefs, while the interviewer tries to not inter-
rupt and remain as unintrusive as possible.

Before the interviews were conducted, there was little known to the author
about the internal processes and structure of the project. Therefore a semi-
structured interview set-up was best suited in order to explore how coor-
dination was being performed, as well as ask questions related to theory,
previous research on the field and experience reports. The interview guide
was therefore constructed with more general and open-ended questions in
order to obtain as much information as possible early on. This information
was again used to develop new questions that could investigate further in
order to obtain more information and a better understanding of the issues
presented.

56 CHAPTER 4. RESEARCH DESIGN

4.3.5 Interview guide

Interviews are recognised by Walsham (2006) as a key way of accessing the
interpretations of informants in the field, and are part of most interpretive
studies. Walsham (2006) also underlines the importance of keeping the in-
terview time appropriate seeing as staff in contemporary organizations, as
we all know, are normally very busy and pressured. It is essential to be
sensitive to these time pressures in fixing a suitable interview time and then
not overstaying ones welcome during the interview. When the author was
visiting the projects office, the project was in a critical phase with a high
stress-level. Despite this, they were all extremely willing to give the time
needed to conduct a proper interview.

The interview guide was developed over several iterations with feedback from
the guidance supervisor. Since the topic of this thesis is rather similar to
the topic of Strode et al. (2012), professor Diane Strode was contacted in
order to ask for permission to look into the interview guide for the paper
she wrote. This both helped with improving the phrasing of the interview
guide and reconsider themes that may not have been covered in the original
draft. One of the most important changes that was made after reviewing
professor Strodes interview guide, was to separate the interview guide into
two parts. One part for project management and scrum masters, the other
for developers. There are several overlapping questions, however there are
certain questions that were better suited to ask developers, and others that
were best suited towards management. In addition, there are some of the
overlapping questions were phrased differently, depending on the role of the
interviewee. The interviews were conducted in Norwegian, which means that
text written in Italic in chapter 5 is not a direct quotation, but a translated
quote where the meaning and intention has been preserved. The full interview
guide is presented in appendix A.

4.4 Ethical research

In the studies of Walsham (2006), there are three complications, related to
ethics, addressed which tends to emerge in interpretive studies. Confidential-
ity and anonymity, working with the organization and reporting in literature.

4.5. RESEARCHERS BIAS 57

In order to maintain anonymity and confidentiality, all data such as personal
information, project name, company name and other identifiable aspects has
been kept anonymous. Any research material that can identify the people
involved in the project is not released, and is being kept confidential. All
the interviews were recorded with a dictaphone, which was transcribed af-
terwards. After the audio files were transcribed, the audio files were deleted.
All the names of people, projects and companies in the transcribed material
has been replaced with pseudonyms in order to safeguard the anonymity.
The original transcription without pseudonyms was sent to the respective
interviewees. This means that the people who were interviewed, are the only
people with an original exemplar of the transcribed document.

The primary challenge of working with the organisation is usually a differ-
ence in interest of the outcome of the research. It is mitigated somewhat,
although not completely, since coordination is an important factor in the
organizational structure. The primary challenge is potential organisational
issues that are not related to the coordination, but still relevant to the or-
ganisation that may emerge during the study.

Before the interviews were conducted, an agreement were made that the
author would send the final report to the project leader when the master
thesis was completed, so that the project leader could use the information
gained in the final process report for the project. Walsham (2006) writes
that he never agrees to reveal all his work to the organisation, which is a
natural consequence of maintaining anonymity and confidentiality.

4.5 Researchers bias

In order to maintain credibility in interpretive research with the researcher as
the research tool, it is imperative to be up front with anything that can affect
the researchers bias. During the study, the author was a fifth year student in
informatics. The author has learnt the theory behind agile development at
the university, but has limited practical experience. The hands on experience
with agile development was all from educational settings. The author has
previously had a summer job at the company represented in the case study,
and will start working there two months after the delivery of the thesis. Agile
development, and scrum in particular, was very popular at the university

58 CHAPTER 4. RESEARCH DESIGN

during the study, which may contribute to a more positive bias towards agile
development as a whole. Through the initial study, the author also gained a
positive bias towards agile methodology, however this was strongly negated
by the awareness of limited practical experience.

4.6 How the analysis was done

In the analysis, the model (see fig 3.3) introduced by Strode et al. (2012), was
used as a starting point for coding the data. Through the analysis, there were
themes that were represented in the data, but not in the initial coding, and
initial themes that proved to not be relevant for the data material. The initial
themes were therefore changed slightly to fit the themes in the data material.
The description of the themes are also slightly different from the description
presented by Strode et al. (2012), in order to better fit the coordination
challenges in relation to a large-scale project. The result was four themes.
An overview of the themes with sub-themes are described below. The results
of the analysis is presented in chapter 5.

4.6.1 Synchronisation

Synchronisation refers to activities and artefacts that helps the teams achieve
synchronisation in their work.

• Synchronisation activities are activities that bring together people from
different teams at a time and place for a pre-arranged purpose, where
the goal is to improve a common understanding of the task, process,
the expertise of other team members, or to work together against a
common goal.

• Synchronisation artefact refers to artefacts that helps to synchronise
the project. They can either be a result of synchronisation activities,
or tools implemented by the project management in order improve the
communication/coordination/progress.

4.6.2 Structure

Structure refers to the relationship between parts of something complex.

4.6. HOW THE ANALYSIS WAS DONE 59

• Proximity refers to the physical closeness of members in the project.
In agile development, close proximity is a feature. All members of the
project should be located in the same open plan room without divisions
between the desks.

• Substitutability refers to the ability to substitute a person, while still
keeping the time schedule.

4.6.3 Boundary spanning

Boundary spanning occurs when someone within the project must interact
with other organisations or someone outside the project to achieve project
goals. This project could be seen as a large project which combines both
the customers work and the suppliers work into one big project, but since
they are two separate organisations, I have chosen to limit the project to the
supplier side, and therefore treat the customers as an external organisation.

• Boundary spanning activities are activities performed, where interac-
tion with other units or organisations is needed.

• Coordination role is a role taken by a project member, with goal to
better improve the coordination, and better support the interaction
with people who are not on the project.

4.6.4 Reactive coordination

Reactive coordination, is coordination activities that happens as a reaction
to an event.

• Individual responsibility refers the responsibility of each team member
to coordinate activities when it is needed.

Chapter 5

Results

In this chapter, the result of the analysis will be presented. The subsequent
sections consists of the four themes synchronisation, structure, boundary
spanning and reactive coordination, with content according to the description
of the themes found in section 4.6. Whenever there is a difference in opinion
between developers, scrum masters or project management, has also been
presented in this chapter. However, there were no clear systematic coherence
between opinions and role in the project.

5.1 Synchronisation

There are several synchronisation activities and artefacts used in the project.
In the following sub-sections, the results of the data analysis is presented. A
description of the themes can be found in section 4.6.1

5.1.1 Synchronisation activity

Project synchronisation activities occur in several different formats in the
project. In the beginning of the project they used pair programming due
to a very positive experience on a previous large-scale agile project. The
effect of the pair programming in this case was however described as both a
positive and a negative experience. Those in the project management group
who had been there when pair programming was used said that it had not
given the effect they had hoped for in this project, while the developers who
had been part of it said it was very helpful, but after a while they simply

61

62 CHAPTER 5. RESULTS

didn’t have time to it because of time constraints.

”We’ve used a bit of pair programming. Especially in the beginning of the
project, and less now near the end. In the beginning it was very good to share
experiences and knowledge. Not only about the domain, but also on how you
should write code.”

One activity that the lead technical architect pointed out as an important
coordination activity that they felt yielded good results in both planning and
organising the partial deliveries, was to create a Critical Path Diagram.

”Last year we started making dependency diagrams between the user stories,
similar to PERT diagram or Critical Path Method, in order to find a critical
line, and find what epics had the most risk. In addition we did it so that
we could see what areas was possible to develop in parallel between different
smaller teams, or potentially what dependency we had to process in order to
make it possible”

None of the developers pointed towards the critical path diagram in explic-
itly, but several of them pointed out that the tasks were distributed among
the teams so that there were nearly none cross-team dependencies. It was
only recently that a part of the system was too big for one team to develop
and a separation without dependencies wasn’t possible.

The architects have what they call an architect forum, which is a forum where
they can discuss different technical problems and solutions. It also works as
a forum to discuss dependencies between teams. This is mentioned by all the
interviewees with an architect role, as an important tool for coordination.

”The architects meets to discuss technical solutions and dependencies between
the teams.”

The scrum masters also meet in similar fashion in a scrum of scrums meet-
ing. The scrum of scrums meetings are held once every week and are open
to all, including the costumer, but it is usually only the scrum masters and
the contracts manager in the project management team who attends. Scrum
of scrum meetings are used to share information, and talk about issues that
might have occurred, since there can often be similar issues. At an earlier

5.1. SYNCHRONISATION 63

stage, when some teams were working better than others, scrum of scrum
was also used to try to figure out what factors made a team work better than
another and what could be done to improve the other team. The challenge
with these meetings, is that it is impossible for the scrum master to keep an
overview of all the small details of all the team members and it has been at
the detail level where the need for clear communication has been a necessity.

”Scrum of scrum tends to work rather well. It depends on how much you
want to share and how much you can remember of small details, because it
tends to be on a small detail level that you need a clear communication.”

There is also a discrepancy between the scrum masters and the developers
when it comes to who is responsible for uncovering unforeseen dependencies
between teams. A few of the developers feel that the scrum masters should
uncover it through scrum of scrum meetings, while scrum masters say that
the developers has an individual responsibility to make sure that what they’re
doing doesn’t block the work of others. The individual responsibility will be
presented further in section 5.4.1.

”If you find that two people are working on the same thing, we tend to move
the communication between the two respective team members.”

Through the initial planning and the different communication arenas, good
synchronisation and thereby coordination is achieved, however there has still
been issues. There has been situations where teams work on very similar
things, but there is low or no cooperation and therefore they may end up
with two completely different things.

”Two teams can work on a very similar thing and still do it completely dif-
ferent”

Stand up meeting is a standard part of the scrum method and was also used
in this project. As a response to two different teams having user stories
where there were cross-team dependencies, it was decided to keep the morn-
ing standup meeting at different times, so that members from one team could
attend the other teams.

”A standup meeting in the morning helps us make the project more efficient.”

64 CHAPTER 5. RESULTS

Most interviewees mentioned standup meetings when talking about what
practices they felt were useful in this project. Nobody expressed a negative
attitude towards the standup meetings.

Retrospective meeting is another tool from scrum that has helped increase
the synchronisation and is being held every third week. They are however pri-
marily aimed towards enhancing the coordination and maintain a continuous
improvement within the teams. In addition to the coordination and contin-
uous improvement aspect, it is also a good tool for people who are new in
their role to get a better understanding of how they themselves can improve,
which again lowers the threshold for changing roles within the project. There-
fore the retrospective meetings improves both the synchronisation within the
teams, as well as improve the substitutability.

”Retrospective has worked very well. It was particularly useful for me, since
much of it was rather new, to get feedback from my team about what and how
we wanted to do things and reflect on what we can do to make things work
even better.”

”Retrospective meetings are a lot more important than how they are presented
in theory.”

There are also meetings between the functional architects and the people
responsible for testing on the different teams, but these meetings operate on
a more ”when needed” level.

5.1.2 Synchronisation artefact

In the studied project, the synchronisation artefacts include Kanban white-
board where the progress of the user stories are presented, the user stories
themselves, reports from the leader group, dependency diagrams, an hin-
drance log where developers can add things that hinders them from working
as efficient as possible and work items. There were also invisible artefacts
such as JIRA, the architecture, code standards, source code control and unit
tests. Kanban was mentioned explicitly by some of the developers as a useful
tool for coordination because it helped with visualising tasks to be done and
created transparency.

5.2. STRUCTURE 65

”One of the things that may have helped us the most is visualising things by
putting things on the board.”

5.2 Structure

This section describes how proximity and substitutability impacted coordi-
nation in the project. A further description of the themes can be found in
section 4.6.2.

5.2.1 Proximity

The project was set up in a large open area, where groups of people were
separated by either whiteboards, or a low wall. All interviewees agreed that
close proximity is a must for good communication.

”You have the formal arenas like meetings, mails etc, but the informal dis-
cussion you get at the coffee machine in the morning when you get here is
priceless.”

When asked about the open office landscape, all interviewees raised two fac-
tors. Increased communication and noise level. These two were weighted up
against each other, but all interviewees ended up with the positive outweigh-
ing the negative aspect. There were three groups that especially enjoyed the
open office structure. The project management group, the developers new to
the project and the and inexperienced developers. The project management
group said they tried to keep an overall view on what was going on in the
project and liked to hear what was being discussed. The newer members of
the project and the more inexperienced developers particularly enjoyed the
open office structure because it was very easy to initiate contact with other
members of the project

”I primarily think it’s very nice. It is very easy to contact others, and that
leads to a very low threshold asking for help, which I do rather often.”

A higher level of communication was a clear positive attribute to the close
proximity factor, however the need for communication was mainly within

66 CHAPTER 5. RESULTS

the teams. A few of the developers said that they sometimes could pick up
interesting things from overhearing what other people said, but usually the
communication need was within their own team. Three of the developers
noted that they would have preferred a larger separation of the teams on the
foundation of what information they actually needed, and where they felt
communication was most important. They believed this would still maintain
the important communication within the team, while at the same time low-
ering the general everyday noise.

”I believe separate team rooms would be the ideal, because it is the commu-
nication between team members that has the highest value. What the other
teams talk about can sometimes be interesting, but there is a high chance
that there is nothing relevant for you there, which leads to the ratio between
information and noise is lower than if you had team rooms. Of course, you
loose some information between the teams, but one of the benefits of us all
working for the same company, is that people start to know each other after
some time, and you still have the coffee machine and the fruit basket if you
need to ramble a bit”

In order to negate the negative effect of noise, almost all members of the
project had headphones on their desk, which they would use to listen to
music while working. All the interviewees except one said they felt like they
were able to concentrate and work on what they needed despite the noise.

One of the interviewees also mentioned that he encountered a problem with
the close proximity when he needed to work isolated and creatively.

”In periods where I need to work more creatively and isolated, I tend to use
home office. I find it a lot easier to work from home than to use a quite room
at work, because then you are still available.”

5.2.2 Substitutability

The results for substitutability varies from the different interviewees. The
management group has a strategy that anyone can be hit by the bus tomor-
row, and therefore, nobody can be indispensable. At the same time, they do
point out that as the code base and complexity grows, it is nearly impossi-
ble for everyone to know everything, and a certain level of specialisation has

5.2. STRUCTURE 67

emerged.

”In the beginning, when everyone knew everything, then almost everyone
could fix any problem. Now the solution is enormous, and it is impossible for
everyone to know everything. So we do have a certain degree of specialisa-
tion, but not an area that only one person knows.”

One developer is very critical to the way the emerging specialisation is han-
dled by the project management group. He feels that when there are tasks
that needs to be done, the project management goes directly to certain peo-
ple to ask if they can do the task, rather than give the task to the team, and
let them distribute the tasks among themselves. He feels that this creates a
degree of favouritism, and washes away the team concept.

In order to achieve substitutability, there has been some role rotation, which
creates redundant competence and decrease the negative effect it would have
on the project if someone had to be substituted. The pair programming also
helped improve the substitutability of the project.

Despite the project managements effort to achieve substitutability, several
of the developers, and especially those that are newer to the project, still
feels there are people on the project that are essential. They say the project
wouldn’t stop if they disappeared, but it would definitely hurt the project
progress.

”I do notice when the right people are working from home, because then all
of a sudden there are certain things that are a lot more difficult to get done.”

When asked what makes certain people essential, it is not the technical com-
petence that is valued as essential, but the tacit knowledge achieved by simply
being part of the project for a long time. The people who had been part of
the project the longest, were also the ones that were pointed out as peo-
ple with key knowledge. Through being part of the project for a long time,
these people had gained tacit knowledge and a general better overview of the
project as a whole.

”There is absolutely people with key knowledge. It’s the ones who have cared
the most, worked the hardest, been here the longest, and taken ownership to

68 CHAPTER 5. RESULTS

part of the development, code or functionality.”

”There are not so many people who have been here from the beginning, but
fortunately, there are more than one. I think that we who’ve been here from
the beginning have some tacit knowledge that is difficult to share with others.”

Abseloutly everyone who said there was people on the project with key knowl-
edge, mentioned the lead technical architect as a person with key knowledge.
This was generally because he had been here since the beginning, and he had
some part in nearly everything that had been done in the project. The lead
technical architect himself was aware that a lot of people would probably
point at him, but argued that this was not the case. Earlier in the project,
he might have had key knowledge, but as the project has grown, the com-
bination of what others possess, covers the same knowledge that he possesses.

”A lot of people will probably point at me, but I firmly believe that we have
covered my competence, though it might be a bit spread. I’m a bit of the old
man in the house here. I’ve been here the longest. I’ve had a central role for
the last three years, and I know most parts of the system, but I don’t believe
that any of my competence is irreplaceable.”

5.3 Boundary spanning

In this project, most communication and interaction outside the project
was towards the customer. There were also a few interactions with smaller
projects, but these didn’t bring any noteworthy coordination or organisa-
tional challenges to the progress of the project. There were also stakeholders
and communication between the customer and other external parties that
the customer had to deal with, but this exceeds the scope of this report.
This section presents the results of the data analysis related to proximity
and substitutability. A further description of the themes can be found in
section 4.6.3.

5.3.1 Boundary spanning activity

In the beginning fo the project, there was a skewed distribution between the
suppliers need for manpower on the customers side, and the actual manpower

5.3. BOUNDARY SPANNING 69

available. This turned into a bottleneck, because the customer simply didn’t
have the capacity to support the needs of the supplier.

”In the beginning the customer didn’t have the capacity to support the amount
of specifications and questions as we would have wanted.”

This uneven distribution naturally caused some turbulence for the project
in the first period. It was however clarified in a renegotiation of the con-
tract, and after that the customer scaled up their manpower and capacity.
All Interviewees who were present before and after the renegotiation points
out the renegotiation as an extremely important activity for the success and
progress of the project.

”In the renegotiation of the contract, it was made clear that the customer
simply had too little manpower. They have staffed up quite a lot, which we
definitely notice on the flow of the project.”

Another boundary spanning activity that has been improved later was the
construction of user stories. Developers report that in the early stages of
the project, the description were often too small and not specified enough.
Developers and scrum masters report of varied improvement rate on the spec-
ifications of user stories where some report they almost give too many details
of specifications, while others still feel the specifications are too thin.

”There were some challenges in the description of the solution in this deliv-
ery. It was not completely finished, so I felt we started at the wrong end.”

Despite the increase in manpower, clarification with the customer is still a
bottleneck. This is not due to the customer not scaling up enough, but there
is certain knowledge and competence that is shared among a few people. In
addition, the proprietors of this information tends to be very busy.

”Key competence on the customer side has been with only a few people who
has not been involved in a large degree with the project.”

This leads to certain questions taking a long time to clarify. Especially if
the decision affects other branches of the customers organisation or other
stakeholder. The long turnaround time has been a problem, and something

70 CHAPTER 5. RESULTS

a central person in the project management group points out as something
he wished had been done better.

”If I had to do things over, I would set a demand to turnaround time on
decisions.”

When talking about dependencies, the developers also pointed out the time
they wait for a response from the customer as a major factor. When bugs
or errors are found, it is often a question if it is a discrepancy or a change,
which one developer described as a question about who has to pay for it.

”Clarification from the customer is definitely what we spend the most time
waiting for.”

Despite this being a point of frustration at times, the developers felt they
had a good relationship with the customer, and the threshold for going over
to talk to them or ask them questions was very low. When asked why this
threshold was so low, the developers pointed to three factors. The project
had been going on for such a long time that they knew most of the people on
the customer side, the difficult business discussions were raised and moved
away from the project and the fact that the customer worked in the other
wing on the same floor of the building. Two of the developers said that they
would have preferred to have the customer even closer, the small distance still
raised the threshold a little bit, but their current setting still worked rather
well. One developer agreed that close proximity was an important factor,
but that in an agile project, you need to be close to the customer constantly,
and although it had improved, it was still not good enough simply because
the customer didn’t have the time nor the resources to be available constantly.

”I believe that a critical success factor in any project is that the customer
and supplier are collocated.”

Both the collocation and the the length of the project were viewed as a
strictly positive effect on the communication between the supplier and the
costumer. The abstraction of the contract discussions out of the project had
different views among the developers. Two of the developers mentioned this
as a critical factor in the good interaction between the developers and the
customer.

5.3. BOUNDARY SPANNING 71

”It is important that we have moved the difficult commercial discussions away
from the project.”

The negative aspect of this was brought up by a developer who felt that some
of these discussions were too important and affected his work to much for
him to not know what was going on. He was not directly negative to having
the discussions moved away from from the developers, but the information
about what was being discussed, and what had been decided was inadequate.
The developer felt that this information was extremely important, since it
was often information that would affect him or the whole project somewhere
down the line, that it was not sufficient to present them in bits and pieces.
He also stated that he understood that not everything could be presented
constantly, because that would create too much overhead for the project, but
the information should be made available so that those who are interested
can extract the information they find relevant.

”Some time back we had a couple of clean up meetings. After that we got a
few sentences in bits and pieces about what’s going on, and I feel that is not
enough. It affects us too much. They try to say that it shouldn’t affect us,
but it just doesn’t work that way.”

Another activity that the project management group find highly valuable, is
the customer sending over testers to sit in the team.

”The customer has sent their available resources to sit and test with us, and
that is worth it’s weight in gold, because in many cases they can see discrep-
ancies long before we can.”

This is also emphasised by a developer who believes this was a key factor to
the success of a previous large-scale agile project he worked on, although he
would not only like to have the customers sit there and test, but have users
directly involved in the project. In his previous project, their team had a
user within their team, which means he had first hand experience with the
system they were replacing. This is something he feels should be strived for
in a project.

72 CHAPTER 5. RESULTS

5.3.2 Coordination role

In each team there is a person that acts as responsible for the communica-
tion between their team and the costumer, which is usually the scrum master.
The scrum masters interviewed said that when team members need informa-
tion from the costumer, they should first check with the them to see if they
already have the information within the project.

”I think it’s important to have a few people who are responsible for the com-
munication with the customer. Especially when we’re as many as we are.”

This role is explained as very important in such a large project, because when
things get complicated and a lot of questions arise, there can’t be several dif-
ferent people interacting with the costumer, asking questions that they may
already have answered. In addition, similar questions can be asked to dif-
ferent people on the costumer side, who may give different answers, which is
not good.

One scrum master also differentiates between technical and functional ques-
tions, and says that functional questions should be ran by her first, but if it’s
technical questions, the developer can go directly to the costumer. Regard-
less if it’s a technical or functional question, she says that she would like to
be updated and kept in the copy field in emails, so that she can maintain a
general overview.

”If it is functional questions, he should ask me first, because it might be that
I already have the answer.”

5.4 Reactive coordination

Identifying and reacting to unknown dependencies was an important aspect
of coordination in the project. This section presents the results from the
data analysis related to individual responsibility. A further description can
be found in section 4.6.4.

5.4. REACTIVE COORDINATION 73

5.4.1 Individual responsibility

Due to the way the user stories were divided, there were, up until recently,
not many cross team dependencies. In the latest partial delivery however,
it was not possible to divide the stories up in such a manner. When the
developers were asked what they did to avoid affecting the work others have
done or are doing, the developers pointed towards the tests, and said that it
was peoples own responsibility to write good enough tests for themselves in
order to assure that other peoples work doesn’t effect them.

”To a certain degree, you have to trust that people have written and tested it
well enough. So if everything is green, then things should be okay. Especially
if you are fixing code that someone else has written, because then you don’t
know all the little tweaks they might have done.”

”I think it is every teams responsibility to write tests that makes it difficult
to ruin anything unless you have explicit intentions to do so.”

The developers also said that the other developers were good at writing suf-
ficient tests, and they trusted that the tests were good enough, so that they
did not risk accidentally interfering with the work that others had done. The
only issue was with GUI, which some developers claimed were either too
complicated to write sufficient tests, or they simply didn’t have the compe-
tence or experience to write sufficient tests. This was somewhat mitigated
by bringing up the GUI, and checking that there were not any immediate
problems. When cross team dependencies were discovered, it was also the
individual developers in the different teams responsibility to create and main-
tain communication. Some used pair programming, while others preferred to
work separate. The choice was up to the developers themselves, depending
on their preference.

There are also several interviewees who point to the importance of peoples
mentality as a coordination mechanism. They say that it is essential that all
individuals on a project are interested in continuously improving the process,
and takes responsibility to see the improvements done. Through this drive
for continuous improvement, coordination needs are met and the process it-
self evolves.

74 CHAPTER 5. RESULTS

”A lot of people here are concerned with always doing things better, and that
makes it so that things are better coordinated as time goes by.”

Chapter 6

Discussion

The objective in this thesis was to examine the research question through an
exploratory case study. The study gave the author a total of 17 interviews
to decompose and analyse, which is presented in chapter 5. This chapter
contains a discussion of the results in order to provide an answer to the
research question.”how does practices used in large-scale agile development
affect coordination.” This is done by first discussing the chosen model for
scaling up agile development up against previous research, which gives a bet-
ter understanding of how the practices are implemented and how it compares
to existing guidelines. Second, this chapter will look into the coordination
mechanisms and factors in order to better understand the underlying the-
oretical coordination foundation within the project. After that, the thesis
will look at the how specific practices works in the project and what impact
they have on coordination. The fourth section describes the limitations and
implications of the study, in order to better understand what context factors
exists, so that the reader can better evaluate if the findings of this study
is applicable on other similar projects and further discuss what implications
these findings have on existing theory and guidelines. This chapter also con-
tains an evaluation of the study, which describes challenges faced during the
study and brings up issues concerning trustworthiness and generalisation of
the case. Finally, a quick summary of the discussion chapter is presented.

75

76 CHAPTER 6. DISCUSSION

6.1 Comparison to guidelines for scaling up

agile development.

How the project has scaled up agile development to fit a large-scale project
is not one pre-defined by existing guidelines, but rather an continuous evolu-
tionary process. As the project has grown, it has become nearly impossible
for one person to keep a complete overview of the entire code base and a
certain degree of speciality has emerged. The emerging speciality in domain
knowledge and competence is a step away from the guidelines that Larman
and Vodde (2008) presents, where all teams should be able to complete any
item in the backlog.

This leads the project much closer to Ecksteins (2004) strategy for large-scale
agile development, through the use of feature teams. The results show that
this division of labour works well when development goes according to plan,
but creates a challenge when a team is finished earlier than scheduled. This
is because it makes it very difficult for a team that finishes early to relieve the
workload of different team. One could therefore argue that the introduction
of a critical path diagram works as a coordination mechanism by reducing
the dependencies and need for coordination between the teams, but it comes
at the cost of reduced agility and flexibility. Although the emerging use of
feature teams is a step away from Larman and Voddes (2008) guidelines, the
project still uses several of the practices introduced by Larman and Vodde
(2008), such as scrum of scrums meetings and joint retrospective meetings.
It is also evident that the project has grown in size and complexity beyond
the ability of one person to understand in detail, which is one of the fun-
damental characteristics of large software systems according to Kraut and
Streeter (1995).

In comparison to the seven guidelines Cao et al. (2004) on how to tailor agile
methodologies to make them more suitable for large scale development, there
are some similarities, but also some defects. The architecture in the project is
an important foundation and functions as a backbone for the entire project,
but it is not a strictly upfront architecture. Surrogated customer engagement
and reuse with forward factoring are not present in the project and pair
programming is used in a more ad hoc fashion, compared the guidelines
described by Cao et al. (2004). The biggest similarities with this project

6.2. COORDINATION MECHANISMS AND FACTORS 77

and the guidelines are short release cycles with a layered approach and a
flat hierarchy with controlled empowerment. Motivated developers is also
present in the project, but they are not recruited based on their recognition
of importance of pattern-based development, as this is not seen as a key to
success in this project.

6.2 Coordination mechanisms and factors

This section will look at the mechanisms introduced by Mintzberg (1980) and
how they exists within the project. There are also other factors that have
had an impact on how coordination is done in the project, which is described
in the second and third sub section.

6.2.1 Mintzbergs coordination mechanisms

Among the five coordination mechanisms introduced by Mintzberg (1980), it
is mutual adjustment, direct supervision and to some degree standardisation
of work process, that are the most prominent mechanisms in the project. The
mutual adjustment is referred to as priceless by the project management and
exists both within the the teams and across the teams. Mutual adjustment
is in many ways a foundation in agile development, unlike direct supervi-
sion which is rather discouraged. The direct supervision can be found in
the project through the distribution of absolute deadlines, the construction
of a critical path diagram and management personally distributing tasks to
people with special competence or domain knowledge. It is unclear whether
the use of direct supervision is a result of the project size or the complexity
of the project. When it comes to the distribution of tasks to people with
special competence or domain knowledge as a coordination mechanism, it
is unclear if this is an evolution based on necessity, or convenience for the
project management. A proposed solution by one developer was to distribute
the task to the teams and let team decide how to deal with it.

In terms of standardisation of work process as a coordination mechanism, one
could argue that defining and using a methodology in itself is a coordination
mechanism. The results show that there are several coordination arenas e.g.
architect forum and scrum of scrum meetings, that are planned structured
meetings created to enhance the level of coordination. These are all a result

78 CHAPTER 6. DISCUSSION

of a chosen methodology, which would suggest that standardisation of work
process is also an important coordination mechanism in the project.

6.2.2 The value of experience

The ideal situation for coordination in a large-scale software development
project is described by Curtis et al. (1988) as a situation where you have one
exceptional individual with both application domain knowledge and software
knowledge which guides and coordinates the project. There is not one such
individual in the project, but it is apparent that tacit knowledge is looked
upon as both valuable and important. The size of the project doesn’t only
refer to the amount of people working on it, but also the large timespan
of the project. When asked if there are people on the project with key
competence or key knowledge, it was always people with key knowledge that
was mentioned. In addition the knowledge people viewed upon as important
was the tacit knowledge obtained through being part of the project for such
a long time. This tacit knowledge combined with a coordination role, helps
improve the coordination of the project and is valued greatly. This would
suggest that a low turnaround of staff, especially on management level, would
be a great benefit for a large-scale project.

6.2.3 Boundary spanning

Although the project uses Jira to track and manage issues and dependencies,
the developers say that they prefer to simply walk over to the customer and
talk to them when they need clarification or information. Even though this
is the preferred way of communicating, they also use Jira for documentation
after they have clarified something with the costumer. This implies that
the developers value the personal communication, which is in line with the
findings of Kraut and Streeter (1995) and also contributes to maintaining a
horizontal coordination mode (Van de Ven et al. (1976)).

Although the communication works well, there is still room for improvement
when it comes to coordinating boundary spanning dependencies. Developers
report of a long feedback loop or time on deviations and change orders.
There is also issues regarding the specifications which leads to developers
not being able to work, and have to spend time seeking out information and
clarifications which again may take a long time. This is an area mentioned

6.3. PRACTICES 79

explicitly by several among both management and developers as an area
with room for improvement. Waiting on clarification from the customer is
also mentioned most frequently by the developers when talking about what
dependencies they spend the most time waiting on.

6.3 Practices

In order to better answer the research question, this section presents a discus-
sion of how the different practices impact coordination within the project, the
practices are also discussed up against relevant research presented in chapter
2 and 3.

Test driven development

The primary benefit with using test driven development is described by Er-
dogmus et al. (2005) as an increased quality insurance in the code written.
The data gathered in this study does not confirm, nor deny this hypothe-
sis, as quality of code is not analysed, however there are other benefits of
TDD displayed in the case. The developers describe an almost blind faith in
tests written by others. As long as others have written good enough tests,
the developers don’t risk interfering with or breaking functional code. Some
developers and architects said there was room for improvement when refac-
toring code that may impact the work of others through e.g. sending out
an email to inform the others, but the responsibility was primarily on the
other person to write sufficient tests. One downside is on the GUI side. It
is mentioned in the results that tests on the GUI side are not always very
good and may be due to the complexity of automated GUI tests, or the lack
of knowledge of writing GUI test code. This is mitigated by bringing up the
GUI and checking that the new code doesn’t haven’t changed anything no-
tably. This suggests that test driven development has a very positive impact
on coordination both internally in teams and across teams, as it helps to
discover dependencies and avoid conflicting code.

Critical path method

Using a critical path diagram as the basis for further planning was only men-
tioned as a valuable tool by the project management, where it is described
as a tool that yields good results in terms of coordination. Even though it

80 CHAPTER 6. DISCUSSION

is not mentioned explicit by the developers, the importance is still reflected
in their answers by reflection of the low amount of cross-team dependencies
that exist within the project. This low amount of cross team dependencies is
an important difference from previous experience reports (Lee (2008), Lyon
and Evans (2008)). Through the use of critical path diagram, the manage-
ment is able to divide and distribute work in the teams product backlog, so
that the need for coordination across the teams is greatly reduced. It is also
worth mentioning that critical path diagram is not an agile practice, and can
be said to reduce the agility of the project since it introduces substantial
planning to the project.

Although the critical path diagram has a positive effect on the internal co-
ordination, it is not without side effects. The knowledge of a certain domain
is solely within the team that develops a certain feature. This is not a chal-
lenge to substitutability, as there are others within the teams with domain
expertise, but it makes it difficult for a person on team B to develop an item
that is intended for team A.

The critical path method has yielded good results in the project, but it
does not help the project when bundles of tasks that are dependent of each
other become too big for one team to handle. One of the interviewed scrum
masters reported that the previous partial delivery was simply too big to be
handled by one team. This suggests that although the critical path diagrams
can yield great results in a large size project. It is a tool that reduces the
need for coordination across teams, but in this project there are no signs
of it handling the dependencies across teams that arise when a complete
separation is not possible. This means that although it is a good tool for
coordination, it still relies heavily on other coordination mechanisms in order
to function optimally.

Co-location

Co-location is a practice recommended in both Scrum (Schwaber (1997)) and
extreme programming (Beck and Andres (2004)), but it is not always possible
e.g. in distributed projects on a global level. On this project however, it
seems to be an imperative factor for success of the project. The ability to
communicate and coordinate within the teams are clearly important, but it
is unclear how efficient the open landscape is for cross-team coordination,

6.3. PRACTICES 81

as the information within other teams is seldom valuable for the developers.
The interviewees reports of a low or non-existing threshold for contacting
other people on the project, which helps to maintain a high degree of vertical
communication and makes mutual adjustment across teams much easier, but
it comes at the cost of a higher noise level. Since the critical path diagram
helps to reduce the need for cross-team coordination, the yield in terms of
coordination compared to the noise level is very low. The noise level is
so disturbing that most people on the project choose to use headphones,
which may reduce communication and the coordination within the teams in
a negative manner. On this foundation, it would seem as if team rooms as
used by Lee (2008), are a better solution for large-scale agile development.

Scrum of scrums

Scrum of scrums is implemented in the same manner as described by Lar-
man and Vodde (2008). The scrum of scrums meetings are held once every
week and is open for all. Although it is open for all, it is usually only the
scrum masters and the contracts manager in the project management team
that attends these meetings. Scrum of scrums helps distribute and coordi-
nate known dependencies across teams, but struggles to identify unknown
coordination needs. One developer mentions that it is on a more detailed
level, there really is a need for coordination. Since it’s close to impossible for
a scrum master to keep a detailed overview of everything happening within
the team, it also makes it difficult for scrum masters to detect these needs
on the scrum of scrums meeting.

Architect forum

The architects mentions the architect forum as an important forum for the
architects to discuss and coordinate work related to the software architecture,
resulting in a well defined architecture, which is the foundation which the
developers build upon. This is supported by Cao et al. (2004) where they
describe a good architecture design as a key factor for a successful large-scale
agile project.

Standup meeting

The standup meetings are slightly different from existing guidelines on large-
scale agile development (Larman and Vodde (2008), Eckstein (2004)), where

82 CHAPTER 6. DISCUSSION

each team holds separate standup meetings in order to keep updated on the
work being done within the team. The teams still hold separate standup
meetings, but it is explicitly not done in parallel. In order to allow for better
coordination, the standup meetings are held on different times so that de-
velopers on other teams can attend. This is a practice mentioned by several
interviewees as a good practice used in the project, but developers mentions
that there is still room for improvement in disseminating the information,
about what’s happening in the other team, to the rest of the team. This
arrangement of having standup meetings in different times has evolved on
the background of needs, and is something also found in the case studied by
Paasivaara et al. (2008). Daily standup meetings is an important practice
to improve coordination and provide efficient coordination, which is coherent
with the findings of Pikkarainen et al. (2008) and Pries-Heje and Pries-Heje
(2011). Pikkarainen et al. (2008) suggests that daily standup meetings pro-
mote an informal communication and substitutes the need for documentation
as a communication mechanism. The low degree of documentation as coor-
dination tools used in this project supports their findings.

Kanban

Kanban is used in the project, and is valued by the developers as tool for
visualisation. This visualisation is an important tool for coordination within
the team and creates transparency for other teams when there are cross-team
dependencies. This transparency is one of the key features of kanban accord-
ing to Cocco et al. (2011). It is through this transparency that the developers
are able to coordinate known dependencies, as they can see where tasks that
has dependencies connected to them, are in the development process.

Retrospective meetings

In this project, retrospective meetings has been an important tool for con-
tinuously improving the process, which some contributes as the key factor
to the success of the project. Both the developers and management points
to the retrospective meetings as a critical tool to continuously improving the
process. It is also noted that for retrospective meetings to work, the project
is depending on people who are not just interested in doing their own work,
but also interested in improving the process.

6.4. LIMITATIONS AND IMPLICATIONS 83

6.4 Limitations and implications

This section will first look at the limitations of the study, which presents
factors that have impacted how the project works. This is done so that the
reader will better understand the context of the project, and gain a better
foundation for evaluating if the findings of this study is applicable to similar
projects. The next subsection will focus on what implications this study have
on existing theory and guidelines. The final subsection will take a look at
what this study means for the target audience of the report.

6.4.1 Limitations

There are several factors which are important to describe in order to fully
understand the context of the study and to what degree the study is appli-
cable to other projects. One major factor that contributes to the success of
the project and the success of the practices used is the fact that the system
being developed is designed to replace an old system. Although not all de-
pendencies are discovered in the planning stage, it makes it easier to identify
dependencies earlier in the process and improves the accuracy of the require-
ment specifications. This may be an important factor in the success of the
critical path method. It is therefore uncertain whether this is a practice that
will yield good results in a large scale project that is being developed from the
ground up. Another important factor is that all the people working on the
supplier side is from the same consultant company, which is contributed as
an important factor to maintaining a very low threshold for communicating
with each other. Although co-location which is standard in agile develop-
ment, it is still an important factor that must be taken into account when
evaluating if the practices used in this project can be applicable in other
projects. The combination of everyone working for the same company and
co-location is important for the mutual adjustment coordination taking place
in the project. There is a low degree of synchronisation artefacts, which sug-
gests that developers and management prefer direct contact.

6.4.2 Implications for existing theory and guidelines

The methodology used in this project has evolved over time- It has evolved
further away from scrum, which implies that simply scaling up the scrum
practices as by Larman and Vodde (2008) suggests, may not be enough to

84 CHAPTER 6. DISCUSSION

handle the complexity of large-scale software development. The increased
specialisation also suggests that feature teams, as described by Eckstein
(2004), functions well in large scale agile development projects. Erdogmus
et al. (2005) describes two positive properties of test driven development, but
this study implies that contribution to effective coordination across teams in
large-scale projects may be another important property of test driven devel-
opment.

In comparison to the guidelines(see section 2.8) for tailoring agile develop-
ment methodologies to large software systems, proposed by Cao et al. (2004),
there are some similarities and some discrepancies between how the project
studied in this study operates, and their findings. This suggests that the
guidelines provided by Cao et al. (2004) may not apply to all large-scale
software development projects. This implies that the guidelines should be
re-evaluated, or eventually look at what differences in context factors, which
provides a foundation to when the guidelines are applicable.

Both this case and Paasivaara et al. (2008) found that running the daily
scrum meetings in a sequential order, had a positive impact on the project.
This suggests that this practice could be added to future guidelines for large-
scale agile development projects.

6.4.3 Implications for the target audience

Section 1.4 presents four types of target audiences for this report. Computer
science students, researchers, practitioners and customers of software devel-
opment. This subsection will look at what implication this study has for the
different types of audiences.

For practitioners and customers of software development, this study shows
that agile practices provide valuable coordination in large-scale software de-
velopment projects. It also shows how certain practices has been modified
to better suit the challenges faced when the size of the development project
increases.

For researchers, this study implies that more research is needed on this field.
It should also give a good starting point for researchers interested in further
increasing the knowledge on how agile development can apply to large-scale

6.5. EVALUATION OF THE STUDY 85

software development projects.

For computer science students, this report should provide valuable knowledge
in how an agile development can be applied in a large scale project, and also
shows the importance of the practices and frameworks learnt at university.

6.5 Evaluation of the study

In this section an assessment of the research process as a whole is done by
the author, where challenges and rooms for improvement is presented. In
addition the trustworthiness of the study is assessed according to a set of
pre-defined principles.

6.5.1 The research process

While doing the analysis of the data material gathered, there was a lot of
information obtained and understood that could be used for further examina-
tion and understanding of the coordination mechanisms within the project.
It would therefore have been beneficial to conduct the study in iterations,
and preferable over a longer time period, since this would have yielded even
richer and deeper data material.

One of the major challenges experienced while conducting the study was to
differentiate between process improvement and researching the current state.
While conducting the interviews, there were interesting topics that emerged,
which were not related to coordination, but still relevant for anyone interested
in improving the process. This implies that certain data might be valuable
to the company, but not interesting for this particular research. In order
to strike a balance, these topics were included in the data material, but not
included in the thesis. Since the data material is held confidential, the author
has agreed to give a presentation of the report, which will also include the
topics not included in this thesis.

6.5.2 How agile is it?

This case study set out to find out how practices used in large-scale agile
development affect coordination. Therefore it must also be addressed how

86 CHAPTER 6. DISCUSSION

agile the project actually is. Officially it is scrum that is the chosen method
for development, and the scrum practices are present in the project along with
other agile practices such as pair programming and test driven development.
At the same time, there are also tools such as creating a critical path diagram,
breaking the entire delivery into partial deliveries and creating a critical path
diagram, that reduces the agility and implies a certain degree of waterfall
methodology. In addition to this, there are factors, such as using kanban, a
high focus on continuous improvement and continuous delivery, that implies
a more lean methodology. Due to these factors, one can not say that the case
studied is a strictly agile project, but rather a combination of agile, lean and
waterfall.

6.5.3 Generalisation

It is relevant to see to what extent this study can be generalised for other
projects. It is important to note that this is a re-engineering of an old soft-
ware system, which greatly contributes to creating well-defined requirements,
compared to a project which develops a new system from the ground up. In
addition it must be taken into account that everyone, working on the supplier
side, works for the same consulting company. Many of the big organisations
in need of large-scale systems, already have some sort of IT system already
implemented, so it is reasonable to say that re-engineering is common when
developing large-scale systems, and therefore the findings of this study should
be applicable to several large-scale development projects.

6.5.4 Trustworthiness

The evaluation of this study is based upon seven principles proposed by Klein
and Myers (1999), for evaluating interpretive field research. The goal for
this evaluation is to establish trustworthiness of the study. In the following
section, the seven principles are presented with a description based upon
Klein and Myers (1999) article, followed by a description of how the principle
is applied on this thesis.

The Fundamental Principle of the Hermeneutic Circle

This principle suggests that human understanding is achieved by iterating
between considering the independent meaning of parts and the whole that

6.5. EVALUATION OF THE STUDY 87

they are from. This is a fundamental principle to interpretive work, and
works as meta-principle upon which the following six principles are based
upon.

The Principle of Contextualization

There is an inevitable difference in understanding between the interpreter
and the author of a text that is created by the historical distance between
them. To negate this difference, critical reflection of social and historical
background of the research setting is required. This principle has been ap-
plied to the thesis through chapter 2 and 4, which are devoted to background
information and existing theory on both software development and coordi-
nation. A description of the case is also presented in section 4.3.3, where
the reasoning for research design is explained by describing the contextual
background that the decisions were made upon.

The Principle of Interaction Between the Researchers and the Sub-
jects

Since the research material is socially constructed through interaction be-
tween researcher and participants, there must also be critical reflection upon
the researchers part in the context. In order to apply this principle to the
research, chapter 4.5 describes the previous knowledge and experience of the
author, as well as relations that may affect the researchers point of view.

The Principle of Abstraction and Generalization

Unique instances and ideas can be related to ideas and concepts that apply
to multiple situations. Validity does not depend on representative cases, but
on the plausibility and cogency of the logical reasoning used in describing
the results from the case, and in drawing conclusions from them In chapter
4, the logical reasoning used to describe results from the case is presented
with the help of pre-existing theoretical frameworks. An evaluation for the
generalisation of the case is also presented in section 6.4.1.

The Principle of Dialogical Reasoning

This principle requires the researcher to confront his prejudices which guided
the original research design, with the data that emerge through the research

88 CHAPTER 6. DISCUSSION

process. One benefit and challenge when conducting this research was the
limited experience with agile development and coordination in practice. This
means that there is little existing prejudice, beyond the theory presented in
the earlier chapter. However, in order to further apply the principle, the
principle of dialogical reasoning, the thesis has been reviewed by both the
supervisor, a fellow student and an external non-technical person, in order
to make sure the results discussion and conclusion does not follow a pre-
determined opinion, but rather reflects the actual results.

The Principle of Multiple Interpretations

This principle requires sensitivity to possible differences in interpretations
among the participants as are typically expressed in multiple narratives or
stories of the same sequence of events under study. A major benefit with
semi-structured interviews, was that they allowed to further investigate is-
sues and statements brought up in previous interviews. Through this, the
principle of multiple interpretations were applied to the study. Although
there were very few contradicting viewpoints, the different views were pre-
sented whenever a contradiction existed in the chapter 5.

The Principle of Suspicion

The principle of suspicion refers to sensitivity to possible biases in the narra-
tives collected from the participants. In this thesis, the statements were not
taken at face value. In the analysis, the general consensus of management
was compared to the developers to see if there were a conflict of interests,
however no such conflicts were discovered.

6.6 Summary

As this study is an exploratory study, it was never intended to create a model
for coordination in large-scale agile development projects, but rather increase
the knowledge on a complex field. The case studied has been able to maintain
a high degree of horizontal coordination, with the exception of one practice
that works very vertical. In table 6.1, the different practices discussed in this
chapter is presented along with a short description of how they works and
what type of dependency the practice handles.

6.6. SUMMARY 89

Practice How it affects cross-
team coordination

Dependency type

Critical path diagram Greatly reduces the need
for cross-team coordi-
nation and maps the
known dependencies

Known dependencies.

Test driven development Improves the cross-team
coordination and identi-
fies unknown dependen-
cies

Unknown dependencies.

Co-location Improves coordination
at the cost of increased
noise level

Both known and un-
known dependencies

Scrum of scrums Distributes tasks to
avoid cross team depen-
dencies.

Both types, but primar-
ily known dependencies.

Architect forum Improves coordination
between the architects

Both known and un-
known dependencies

Standup meeting Improves cross-team
dependencies, especially
when there are known
dependencies

Both types, but primar-
ily known dependencies.

Kanban Creates transparency
which allows for easier
coordination

Known dependencies

Retrospective meetings Indirectly improves co-
ordination through pro-
cess improvement

Both known and un-
known dependencies

Table 6.1: How does practices used in large-scale agile development affect
coordination

Chapter 7

Conclusion

This master thesis aimed to explore and improve the understanding of how
coordination is done through different practices in a large-scale agile project,
which is a field with little literature. The conclusion is based upon the
discussion presented in the previous chapter. Further work is presented as
directions on what could be done in order further improve the understanding
of a complex topic.

7.1 Main conclusion

As presented in the discussion in chapter 6, there are several factors and
practices, both agile and non-agile that has a positive effect on coordination
across teams.
Most of the agile practices on the project had a direct positive impact on
the coordination, but there was also one non-agile practice that had a very
positive effect.
The most important practices that contributed to a solid coordination tasks
across teams were:

• Critical path diagram, which helped to distribute the tasks among
the teams in order to minimize the amount of cross-team dependencies.

• Test driven development, which helped prevent conflicting code
across teams, and discover unknown cross-team dependencies.

Other practices that also helped improve the coordination were Feature teams,

91

92 CHAPTER 7. CONCLUSION

Co-location, Scrum of scrums, Architect forum, Standup meetings on differ-
ent times, Kanban and Retrospective meetings.
The need for a non-agile practice and the positive impact it has on coordi-
nation also implies that keeping a project completely agile, while scaling it
up, can be challenging.

7.2 Further work

Both coordination and large-scale agile projects are in themselves complex
topics, so further studies on coordination in large-scale projects are needed.
It would be interesting to compare the results of this study to other large-
scale agile projects, to see what similarities and differences in practices used
in order to achieve good coordination. A comparative study could be very
valuable as it could produce ”best practices” lists of how to achieve good
coordination in large-scale agile projects. In addition, the case studied in
this thesis did not follow a pre-defined agile methodology, so it would be
interesting to conduct a research to see to what extent large-scale projects
actually follow the agile principles and practices.
As test driven development had a very positive impact on coordination in
this project, it would be interesting to study the impact of test driven devel-
opment on coordination in another large-scale development project, in order
to see if this could be an added benefit to test driven development.
In this study, the open landscape had a positive impact on coordination, but
with a negative side-effect of noise. It would be very interesting to further
study the impact of open landscape in large-scale projects in order to see if
the noise to coordination ratio is actually worth it.

Bibliography

Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile
software development methods: Review and analysis, 2002.

D.J. Anderson. Kanban. Blue Hole Press, 2010. ISBN 9780984521401.

David Avison and Guy Fitzgerald. Information systems development:
methodologies, techniques and tools. McGraw Hill, 2003.

Kent Beck. Embracing change with extreme programming. Computer, 32
(10):70–77, 1999.

Kent Beck. Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

Kent Beck and Cynthia Andres. Extreme programming explained: embrace
change. Addison-Wesley Professional, 2004.

Barry Boehm. Get ready for agile methods, with care. Computer, 35(1):
64–69, 2002.

Fred P. Brooks, Jr. The mythical man-month. SIGPLAN Not., 10(6):193–,
April 1975. ISSN 0362-1340. doi: 10.1145/390016.808439.

Lan Cao, Kannan Mohan, Peng Xu, and Balasubramaniam Ramesh. How
extreme does extreme programming have to be? adapting xp practices
to large-scale projects. In System Sciences, 2004. Proceedings of the 37th
Annual Hawaii International Conference on System Sciences, pages 10–pp.
IEEE, 2004.

John Child. Predicting and understanding organization structure. Adminis-
trative Science Quarterly, 18(2), 1973.

93

94 BIBLIOGRAPHY

Luisanna Cocco, Katiuscia Mannaro, Giulio Concas, and Michele Marchesi.
Simulating kanban and scrum vs. waterfall with system dynamics. In Agile
Processes in Software Engineering and Extreme Programming, pages 117–
131. Springer, 2011.

Alistair Cockburn. Selecting a project’s methodology. IEEE Softw., 17(4):
64–71, July 2000. ISSN 0740-7459. doi: 10.1109/52.854070.

Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design
process for large systems. Communications of the ACM, 31(11):1268–1287,
1988.

Torgeir Dingsøyr and Nils Brede Moe. Research challenges in large-scale
agile software development. ACM SIGSOFT Software Engineering Notes,
38(5):38–39, 2013.

Torgeir Dingsøyr, Tor E Fægri, and Juha Itkonen. What is large in large-
scale? a taxonomy of scaling in agile software development. Work in
progress, 2013.

Tore Dyb̊a and Torgeir Dingsøyr. Empirical studies of agile software devel-
opment: A systematic review. Information and software technology, 50(9):
833–859, 2008.

Jutta Eckstein. Agile Software Development in the Large: Diving Into the
Deep. Dorset House Publishing Co., Inc., 2004.

H Erdogmus, M Morisio, and M Torchiano. On the effectiveness of the test-
first approach to programming. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 31(3):226–237, MAR 2005.

Bent Flyvbjerg and Alexander Budzier. Why your it project might be riskier
than you think. Harvard Business Review, 89(9):23–25, 2011.

Robert D Galliers and Frank F Land. Viewpoint: choosing appropriate in-
formation systems research methodologies. Communications of the ACM,
30(11):901–902, 1987.

John Gerring. What is a case study and what is it good for? American
political science review, 98(2):341–354, 2004.

BIBLIOGRAPHY 95

Jane Frances Gilgun. Definitions, methodologies, and methods in qualitative
family research. Sage Publications, Inc, 1992.

A Paul Hare. Handbook of small group research.. Free Press, 1976.

Igor T Hawryszkiewycz. Introduction to systems analysis and design. Prentice
Hall PTR, 1994.

Ville T Heikkilä, Maria Paasivaara, Casper Lassenius, and Christian En-
gblom. Continuous release planning in a large-scale scrum development
organization at ericsson. In Agile Processes in Software Engineering and
Extreme Programming, pages 195–209. Springer, 2013.

John K Hemphill. Relations between the size of the group and the behavior
of superior leaders. The Journal of Social Psychology, 32(1):11–22, 1950.

Rashina Hoda, James Noble, and Stuart Marshall. Organizing self-organizing
teams. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1, pages 285–294. ACM, 2010.

James E Kelley Jr and Morgan R Walker. Critical-path planning and schedul-
ing. In Papers presented at the December 1-3, 1959, eastern joint IRE-
AIEE-ACM computer conference, pages 160–173. ACM, 1959.

Heinz K. Klein and Michael D. Myers. A set of principles for conducting and
evaluating interpretive field studies in information systems. MIS Q., 23
(1):67–93, March 1999. ISSN 0276-7783. doi: 10.2307/249410.

Robert E Kraut and Lynn A Streeter. Coordination in software development.
Communications of the ACM, 38(3):69–81, 1995.

Craig Larman. Agile and Iterative Development: A Manager’s Guide.
Addison-Wesley Professional, 2004.

Craig Larman and Bas Vodde. Scaling lean & agile development: thinking
and organizational tools for large-scale Scrum. Pearson Education, 2008.

Eric C. Lee. Forming to performing: Transitioning large-scale project into
Agile. In AGILE 2008, PROCEEDINGS, pages 106–111, 2008. AGILE
2008 Conference, Toronto, CANADA, AUG 04-08, 2008.

96 BIBLIOGRAPHY

Kim Man Lui and Keith CC Chan. Pair programming productivity: Novice–
novice vs. expert–expert. International Journal of Human-computer stud-
ies, 64(9):915–925, 2006.

R. Lyon and M. Evans. Scaling up pushing scrum out of its comfort zone.
In Agile, 2008. AGILE ’08. Conference, pages 395–400, Aug 2008. doi:
10.1109/Agile.2008.19.

Thomas W Malone and Kevin Crowston. What is coordination theory and
how can it help design cooperative work systems? In Proceedings of the
1990 ACM conference on Computer-supported cooperative work, pages 357–
370. ACM, 1990.

Thomas W Malone and Kevin Crowston. The interdisciplinary study of
coordination. ACM Computing Surveys (CSUR), 26(1):87–119, 1994.

Martin N Marshall. Sampling for qualitative research. Family practice, 13
(6):522–526, 1996.

N.E.D.D. Miller. The effect of group size on decision-making discussions.
University of MICHIGAN, 1952.

Henry Mintzberg. Structure in 5’s: A synthesis of the research on organiza-
tion design. Management science, 26(3):322–341, 1980.

Deepti Mishra, Alok Mishra, and Sofiya Ostrovska. Impact of physical am-
biance on communication, collaboration and coordination in agile software
development: an empirical evaluation. Information and Software Technol-
ogy, 54(10):1067–1078, 2012.

Nils Brede Moe, Torgeir Dingsøyr, and Tore Dyb̊a. A teamwork model for
understanding an agile team: A case study of a scrum project. Information
and Software Technology, 52(5):480–491, 2010.

Joe Nandhakumar and Matthew Jones. Too close for comfort? distance
and engagement in interpretive information systems research. Information
Systems Journal, 7(2):109–131, 1997.

Sridhar Nerur and VenuGopal Balijepally. Theoretical reflections on agile
development methodologies. Communications of the ACM, 50(3):79–83,
2007.

BIBLIOGRAPHY 97

Briony J Oates. Researching information systems and computing. Sage, 2005.

Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Distributed
agile development: Using scrum in a large project. In Global Software
Engineering, 2008. ICGSE 2008. IEEE International Conference on, pages
87–95. IEEE, 2008.

Frank Padberg and Matthias M Muller. Analyzing the cost and benefit of
pair programming. In Software Metrics Symposium, 2003. Proceedings.
Ninth International, pages 166–177. IEEE, 2003.

Matjaž Pančur and Mojca Ciglarič. Impact of test-driven development on
productivity, code and tests: A controlled experiment. Information and
Software Technology, 53(6):557–573, 2011.

Minna Pikkarainen, Jukka Haikara, Outi Salo, Pekka Abrahamsson, and
Jari Still. The impact of agile practices on communication in software
development. Empirical Software Engineering, 13(3):303–337, 2008.

M. Poppendieck and T. Poppendieck. Lean Software Development: An Agile
Toolkit. The Agile software development series. Addison-Wesley, 2003.
ISBN 9780321150783.

Mary Poppendieck. Lean software development. In Companion to the Pro-
ceedings of the 29th International Conference on Software Engineering,
ICSE COMPANION ’07, pages 165–166, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 0-7695-2892-9. doi: 10.1109/ICSECOM-
PANION.2007.46.

Mary Poppendieck. Principles of lean thinking. IT Management Select, 18,
2011.

Lene Pries-Heje and Jan Pries-Heje. Why scrum works: A case study from
an agile distributed project in denmark and india. In Agile Conference
(AGILE), 2011, pages 20–28. IEEE, 2011.

W. W. Royce. Managing the development of large software systems: Con-
cepts and techniques. In Proceedings of the 9th International Conference
on Software Engineering, ICSE ’87, pages 328–338, Los Alamitos, CA,
USA, 1987. IEEE Computer Society Press. ISBN 0-89791-216-0. URL
http://dl.acm.org/citation.cfm?id=41765.41801.

98 BIBLIOGRAPHY

D. Rubinstein. Standish group report: Theres less development chaos today.
Software Development Times, 1, 2007.

K. Schwaber and M. Beedle. Agile software development with scrum. Series
in agile software development. Prentice Hall, 2002. ISBN 9780130676344.

Ken Schwaber. Scrum development process. In Business Object Design and
Implementation, pages 117–134. Springer, 1997.

Carolyn B. Seaman. Qualitative methods in empirical studies of software
engineering. Software Engineering, IEEE Transactions on, 25(4):557–572,
1999.

Helen Sharp and Hugh Robinson. An ethnographic study of xp practice.
Empirical Software Engineering, 9(4):353–375, 2004.

Diane E Strode, Sid L Huff, Beverley Hope, and Sebastian Link. Coordination
in co-located agile software development projects. Journal of Systems and
Software, 85(6):1222–1238, 2012.

J.D. Thompson, W.R. Scott, and M.N. Zald. Organizations in Action: Social
Science Bases of Administrative Theory. Transaction Publishers, 1967.

Bruce W Tuckman. Developmental sequence in small groups. Psychological
bulletin, 63(6):384, 1965.

Andrew H Van de Ven. Group decision making and effectiveness. The Com-
parative Administration Research Institute of the Center for Business and
Economic Research, Kent State University Press., 2007.

Andrew H Van de Ven, Andre L Delbecq, and Richard Koenig Jr. Determi-
nants of coordination modes within organizations. JSTOR, 1976.

Guus Van Waardenburg and Hans Van Vliet. When agile meets the enter-
prise. Information and Software Technology, 55(12):2154–2171, 2013.

Geoff Walsham. Doing interpretive research. European journal of information
systems, 15(3):320–330, 2006.

Robert K Wysocki and Rudd McGary. Effective project management: tradi-
tional, adaptive, extreme. John Wiley & Sons, 2003.

BIBLIOGRAPHY 99

Robert K Yin. Case study research: Design and methods, volume 2. sage,
1984.

Appendix A

Interview guide

A.1 Interview guide for management

Background information

• What is your name?

• What is your role in this project?

• How many years of IT experience do you have?

• What is your educational background?

• What are your previous experience with agile development?

Agile development

• What practices, agile or not, do you think have been particularly useful
in this project, and what makes them useful?

• Which challenges has come up due to the choice of development method?

• An important aspect of agile development is that work should always
be done on the most important tasks. Do you feel that this is still the
case with so many people working on the same project?

• Has the size of the project affected how you work, compared to previous
experiences?

Coordination

101

102 APPENDIX A. INTERVIEW GUIDE

• How is coordination done in this project?

• What do you think makes/doesn’t make this project a well-coordinated
project?

• How should members of the development teams proceed if they need
information from a different team?

• Are there members of the project that has key knowledge or compe-
tence, whose role can not be filled by others on short notice?

• Are there any bottlenecks within the project?

Boundary spanning

• How are tasks handled when interaction with people outside the project
is required?

• What happens when information is needed from the customer?

Other

• Would you recommend a similar development method to other projects?

• Anything else to add?

A.2 Interview guide for developers

Background information

• What is your name?

• What is your role in this project?

• How many years of IT experience do you have?

• What is your educational background?

• What are your previous experience with agile development?

Dependencies

• What are some typical dependencies in this project?

A.2. INTERVIEW GUIDE FOR DEVELOPERS 103

• How are there reported?

Agile development

• What practices, agile or not, do you think have been particularly useful
in this project, and what makes them useful?

• How is coordination done in this project?

• What do you think makes/doesn’t make this project a well-coordinated
project?

• Which challenges has come up due to the choice of development method?

• An important aspect of agile development is that work should always
be done on the most important tasks. Do you feel that this is still the
case with so many people working on the same project?

• Has the size of the project affected how you work, compared to previous
experiences?

Information flow

• How would you proceed if yuo need information from someone in a
different team?

• How much do you know of what is happening within the other teams?

• How do you ensure that the work you’re doing doesn’t affect develop-
ment in other teams

• How does working in an open office structure affect how you work?

• Are there members of the project that has key knowledge or compe-
tence, whose role can not be filled by others on short notice?

• Are there any bottlenecks within the project?

Boundary spanning

• How are tasks handled when interaction with people outside the project
is required?

• What happens when you need information from the customer?

104 APPENDIX A. INTERVIEW GUIDE

• Do you feel there are tasks that are delayed because you were waiting
on someone outside the project?

Other

• Would you recommend a similar development method to other projects?

• Anything else to add?

Index

Agile development, 11

Boundary spanning, 42, 57

Case study, 49
Continuous integration, 19
Coordination, 34
Critical path, 35

Daily scrum meeting, 16

Effort estimation, 14
Extreme programming, 18

Interpretivism, 49

Kanban, 23

Lean, 21
Longest path, 35

Mintzberg coordination mechanisms,
35

Philosophical paradigm, 48
Product backlog, 14
Product owner, 17
Proximity, 41, 56

Qualitative data, 47

Review meeting, 17

Scrum, 12

Scrum master, 17
Scrum team, 18
Sprint, 14
Sprint backlog, 15
Sprint planning meeting, 14
Standup meeting, 16
Substitutability, 42, 56

TDD, 20
Test driven development, 20

Waste, 23
Waterfall, 10
Work breakdown structure, 9

XP, 18

105

