
Abstract

BACKGROUND: Tangible user interfaces and end user development are two in-
creasing research areas in software technology. Physical representation promote
opportunities to ease the use of technology and reinforce personality traits as cre-
ativeness, collaboration and intuitive actions. However, designing tangible user
interfaces are both cumbersome and require several layers of architecture. End
user development allows users with no programming experience to create or cus-
tomize their own applications. OBJECTIVE: This dissertation aims to ease de-
velopment of tangible user interfaces by creating a toolkit, called RAPT (Rapid
Arduino-Prototyping Toolkit), on the Arduino platform. RAPT will be developed
as an Android application to support mobility and accessibility. The requirements
of the toolkit are based on three scenario analysis; home assistance, restaurant and
buddy notifier. RESEARCH METHOD: First, this dissertation will explore the
underlying concepts of tangible user interfaces and end user development. Second,
examine the state of the art within the domains of tangible user interfaces and end
user development. Third, we will look at benefits of using a software toolkit when
developing a tangible user interface through an end user development interface. To
solve these enquiries, we have conducted a systematic mapping study of tangible
user interface and end user development domains. Finally, requirement specifica-
tions have been formed based on the scenario analysis. MEASUREMENTS: To
evaluate the toolkit, we have conducted a usability test with ten non-programmers
as the target group. RESULTS: As a prototype, basic functionality is implemented
and the usability test confirms that the toolkit is heading in the right direction by
letting non-technical individuals create and modify simplistic tangible user inter-
face applications. Main improvements are to support other hardware than Arduino
and making it easier to add new devices. The usability test illustrates that parts of
the toolkit’s user interface can be hard to understand immediately, yet, it is easy
to master.

Keywords: tangible user interface, physical user interface, end user development,
end user programming, prototype development, arduino toolkit, toolkit, android,
rapt.

i

ii

Sammendrag

Fysiske brukergrensesnitt og sluttbruker utvikling er forskningsomr̊ader med økende
fokus innen applikasjonsutvikling. Fysiske brukergrensesnitt fremmer mulighetene
for å forenkle bruk av teknologi og fremheve personlige egenskaper som kreativitet,
samarbeidsevne og intuitivitet. En utfordring med fysiske brukergrensesnitt er
selve utviklingen. Den er b̊ade tungvinn og krever flere arkitektur- og design lag,
som gjør det b̊ade kostbart og krevende å utvikle. Sluttbrukerutvikling kan gi
brukere uten programmeringserfaring muligheten til å lage eller endre sine egne
applikasjoner.

Masteroppgavens m̊al er å forenkle utvikling av applikasjoner som bruker fysiske
brukergrensesnitt ved å lage et verktøysett til maskinvareplattformen Arduino. Vi
har laget et verktøysett som kalles RAPT (Rapid Arduino-Prototyping Toolkit)
som er en Android applikasjon. En Android applikasjon ble valgt p̊a grunnlag
av mobilitet og tilgjengelighet. Kravene til verktøysettet er blitt utformet ved
hjelp av en analyse av tre scenarioer; ”home assistance”, ”restaurant” og ”buddy
notifier”. Denne masteroppgaven vil starte med å utforske de underliggende kon-
septene til domenene fysiske brukergrensesnitt og sluttbrukerutvikling. Deretter vil
vi gjennomføre en systematisk undersøkelse for å samle den nyeste kunnskap om
disse domenene. Videre vil denne masteroppgaven omhandle fordeler ved å bruke
et ferdiglaget verktøysett ved utvikling av fysiske brukergrensesnittapplikasjoner
gjennom et sluttbrukergrensesnitt. En scenarioanalyse vil s̊a blie gjennomført for
å forme kravene som stilles til verktøy-settet. Til slutt vil vi evaluere designet til
verktøysettet gjennom en brukertest med 10 brukere uten programmeringserfaring
som m̊algruppe.

RAPT er en prototype og har basisfunksjonaliteten implementert. Brukertesten
bekrefter at brukergrensesnittet er p̊a rett vei, til å la brukere uten programmer-
ingserfaring lage og endre applikasjoner som bruker fysiske brukergrensesnitt. I
forhold til funksjonalitet s̊a bør det vurderes å implementere støtte for flere typer
maskinvareplattformer enn Arduino, samt gjøre det enklere å legge til nye fysiske
enheter gjennom verktøysettet. Brukertesten illustrerte at RAPT sitt brukergrens-
esnitt har forbedringspotensiale p̊a spesifikke elementer, men at brukerne forstod
konseptet veldig raskt.

iii

iv

Preface

This submission is Anders Palfi, Haakon Svendsen Sønsteby and Daniel Tandberg
Abrahamsen’s Master dissertation in Informatics at Norwegian University of Sci-
ence and Technology (Department of Computer Science and Information Science).
Our master specialisation is software.

The assignment was given by our supervisors Babak A. Farshchian and Monica
Divitini, and is due June 2014.

We would especially like to thank Babak A. Farshchian for his engagement,
guidance and feedback throughout the entire project, as well as giving us access to
needed hardware and labs. We really appreciate your time and commitment.

Additionally we are grateful for Terje Røsand’s help and time during user evalu-
ation of the prototype application. Moreover, we would like to thank Simone Mora
and Alfredo Perez Fernandez for help and advice regarding hardware.

Trondheim, May 30, 2014

Daniel Tandberg Abrahamsen Anders Palfi

Haakon Svendsen Sønsteby

v

vi

Terminology

Acronyms

Acronyms
APK Android Application Package
EUD End User Development
PUI Physical User Interface

RAPT Rapid Arduino-Prototyping Toolkit
RFID Radio-frequency identification
TUI Tangible User Interface

Table 1: Acronyms

Definitions

Actuator: Type of device that handles digital output or environmental actions.
Example: Led.

Android: ”Mobile operating system developed by Google. Android phones typi-
cally come with several built-in applications and also support third-party programs.
Developers can create programs for Android using the free Android SDK (Software
Developer Kit). Android programs are written in Java and run through Google’s
”Davlik” virtual machine, which is optimized for mobile devices.” [1]

Arduino: ”Tool for making computers that can sense and control more of the
physical world than your desktop computer. It’s an open-source physical comput-
ing platform based on a simple microcontroller board, and a development environ-
ment for writing software for the board.” [2]

Arduino board: The physical (hardware) microcontroller board.

Board representation: The representation, illustration, of an Arduino board
within RAPT.

vii

viii

cpp-code: The code format (a variation of C++) that an Arduino IDE can com-
pile to run at Arduino boards [3].

Device: A representation of a hardware device attached to an Arduino board.
Example: RFID reader.

End User Development: ”A set of methods, techniques and tools that allow
users of software systems, who are acting as non-professional software developers,
at some point to create, modify, or extend a software artifact.” [Lieberman et al
2006] in [4].

Installation (of a RAPT app): The process of translating rules to a sketch, com-
pile the sketch, and upload the compiled sketch to an Arduino board.

Modes: There are two modes in RAPT: drag and connect. Drag is used to move
a device, while connect is used to draw arrows between devices to connect them
and to open a device’s configuration dialog.

RAPT: This dissertation’s implementation of an Android application, which is a
prototype toolkit that creates applications for Arduino.

RFID: ”Automatic identification technology which uses radio-frequency electro-
magnetic fields to identify objects carrying tags when they come close to a reader.”
[5]

Rule: A connection of a configured sensor and one or several actuators (with one
or more configurations).

Rule container: The white space, where the user can drag, drop and configure
devices and create rules.

Sensor: Type of device that handles digital input, or physical input from a human
or the environment. Example: RFID reader.

Sketch: Code (cpp-code) that can be compiled into code that can be run on an
Arduino application. Usually mentioned together with ”generator” that produces
the sketch within RAPT.

Social computing: ”Social computing has to do with digital systems that sup-
port online social interaction.” Even though the contact is not directly directed
towards another person, ”online activity also count as social. Actions may not
involve people we know, and may not lead to interactions, but nevertheless they
are social because we do them with other people in mind.” [6]

ix

Tabletop computing: ”The definition states that an interactive tabletop is a
large surface that affords direct, multi-touch, multi-user interaction. (..) In table-
tops, the display is the interactive surface itself.” [7]

Tangible user interface, also known as physical user interface and gras-
pable user interface: The crossing point, interface, between users and hardware.
Unlike a graphical user interface, the interaction happens through physical objects
or hardware. The input and the output device can often be the same. These terms
are used interchangeably throughout the report.

Ubiquitous computing: ”The word ubiquitous can be defined as existing or be-
ing everywhere at the same time, constantly encountered, and widespread. When
applying this concept to technology, the term ubiquitous implies that technology
is everywhere and we use it all the time.” [8]

Uploading (a RAPT app): The upload (of compiled sketch) to an Arduino board.

x

Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Problem Domain . 2
1.3 Motivation . 2
1.4 Research Questions . 3
1.5 Methodology . 3

1.5.1 Lean Development . 3
1.5.2 Final Evaluation Approach 6

1.6 Expected Results . 6
1.7 Report Outline . 6

2 Problem Elaboration 9
2.1 Introduction . 9
2.2 Background of Physical User Interface 9
2.3 Background of End User Development 10
2.4 Requirements Analysis . 11

2.4.1 Introduction . 11
2.4.2 Home Assistance . 11
2.4.3 Restaurant . 12
2.4.4 Buddy Notifier . 13
2.4.5 Requirements Overview . 13

3 Related Work 17
3.1 Introduction . 17
3.2 Research Method . 17

3.2.1 Systematic Mapping Study 17
3.2.2 Manual Search . 20

3.3 Related Toolkits . 20
3.3.1 ECCE Toolkit . 20
3.3.2 GALLAG Strip . 21
3.3.3 Modkit . 21
3.3.4 Tangible Learning Framework 21

3.4 Related Ideas . 22
3.4.1 ArduinoCommander . 22

xi

xii CONTENTS

3.4.2 Amarino . 23
3.4.3 ArduinoDroid . 24

4 Proposed Solution 25
4.1 Introduction . 25
4.2 Conceptual model . 25
4.3 Functionality . 27

4.3.1 Introduction . 27
4.3.2 Creating apps . 27
4.3.3 App Store . 33
4.3.4 Tutorial . 34

4.4 Technical Overview . 34
4.5 Rules Pattern . 36
4.6 Sketch Compiling . 37
4.7 Installing Sketches on Arduino Boards 37
4.8 Selection of End User Development Techniques 37
4.9 App Store . 38

5 Development 41
5.1 Introduction . 41
5.2 Architecture . 41

5.2.1 Introduction . 41
5.2.2 Data Flow . 41
5.2.3 Graphical User Interface . 43
5.2.4 Generator . 44
5.2.5 Compilation Server . 44
5.2.6 Bluetooth Connection . 44
5.2.7 Class Diagrams . 44

5.3 Design . 50
5.3.1 STK500 and ComputerSerial 50
5.3.2 XML Parsers . 50
5.3.3 Generator . 51
5.3.4 WiFi and IP Address Handling 54
5.3.5 App Store . 55

5.4 Presumptions . 56
5.5 Issues . 56

5.5.1 Compatibility issues . 56
5.5.2 Software issues . 57

6 Evaluation and Validation 59
6.1 Introduction . 59
6.2 Iterative Design . 59
6.3 Final Evaluation . 60

6.3.1 Background Summary . 60
6.3.2 Test Execution . 60
6.3.3 Test Results . 63

CONTENTS xiii

6.3.4 Findings and Recommendations 66

6.4 Conceptual Validation . 68

7 Conclusion 73

7.1 Introduction . 73

7.2 Summary . 73

7.3 Discussion . 74

7.4 Further Work . 75

7.4.1 Compilation . 75

7.4.2 Local Storage . 75

7.4.3 Devices . 75

7.4.4 Store Sensor States . 76

7.4.5 Ease Usability . 76

7.4.6 App Store . 76

7.4.7 IP mapping . 77

A Systematic Mapping Study 79

B Hardware Selection 105

B.1 Arduino versus Raspberry Pi versus BeagleBone Black 105

B.2 Bluetooth v2.1 Versus Bluetooth v4.0 107

B.3 Electric Imp Versus RN-XV Wifly 107

C Guides 109

C.1 Installation Guide . 109

C.1.1 Introduction . 109

C.1.2 Compilation Server Setup . 109

C.1.3 Installation of APK . 110

C.1.4 Installation from Source Code 110

C.2 Wire Guide . 111

C.2.1 Introduction . 111

C.2.2 Wiring . 112

C.2.3 Corresponding XML . 113

D Versions of RAPT 115

E Usability Test Attachments 119

E.1 Tasks . 119

E.1.1 English . 119

E.1.2 Norwegian . 120

E.2 System Usability Scale Questionnaire 122

E.2.1 English . 122

E.2.2 Norwegian . 123

E.3 System Usability Scale Questionnaire Results 123

E.4 Declaration of Consent . 128

xiv CONTENTS

F Compile Server 131
F.1 Python Server . 131
F.2 Compile Batch Script . 132

G Generator Example 135
G.1 Graphical Application . 135
G.2 Cpp code . 135
G.3 IP lookup code . 137

List of Figures

1.1 Report structure: Introduction . 1

1.2 Working process . 5

2.1 Report structure: Problem Elaboration 9

3.1 Report structure: Related Work . 17

3.2 Screenshot of ArduinoCommander 22

3.3 Screenshot of Amarino . 23

3.4 Screenshot of ArduinoDroid . 24

4.1 Report structure: Proposed Solution 25

4.2 RAPT with a rule created in rule container 26

4.3 Main menu . 28

4.4 Navigation drawer . 29

4.5 Screen for creating an app . 29

4.6 Mode buttons . 30

4.7 Settings menu . 31

4.8 Network settings . 31

4.9 Board settings . 32

4.10 App including both Arduino board Alpha and Arduino board Bravo 32

4.11 Selecting board type in app store . 33

4.12 Selecting app in app store . 34

4.13 Simplified flow diagram of the system 35

4.14 Illustration of a rule – a condition is connected to one action 36

5.1 Report structure: Development . 41

5.2 Flow diagram . 42

5.3 Components and their connections 43

5.4 Class diagram: Objects, part 1 . 45

5.5 Class diagram: Objects, part 2 . 46

5.6 Class diagram: Parses and Readers 47

5.7 Class diagram: Help Classes . 48

5.8 Class diagram: Appstore Classes . 49

xv

xvi LIST OF FIGURES

6.1 Report structure: Evaluation and Validation 59
6.2 Test subject and team member . 61
6.3 Camera control room . 62
6.4 Complete rate by task . 64
6.5 Complete rate by test subject . 64
6.6 Success rate by task . 65
6.7 Success rate by test subject . 66
6.8 Board settings when installing app that requires multiple board rep-

resentations . 67
6.9 Outlined mode buttons . 68
6.10 Screenshot of restaurant app . 69
6.11 Screenshot of receive message . 70
6.12 Screenshot of send message . 70
6.13 Screenshot of buddy notifier app . 71
6.14 Screenshot of home assistance app 72

7.1 Report structure: Conclusion . 73

B.1 Front of Raspberry Pi [67] . 106
B.2 Front of Arduino Uno R3 [68] . 106
B.3 Front of BeagleBone Black [63] . 106

C.1 Alpha . 111
C.2 Alpha Wiring . 112

D.1 User interface, draft 1 of RAPT. Screenshot from a tablet 115
D.2 User interface, draft 2 of RAPT . 116
D.3 User interface, draft 3 of RAPT, Screenshot from a tablet 116
D.4 User interface, final version of RAPT 117

E.1 Questionnaire statement 1 . 124
E.2 Questionnaire statement 2 . 124
E.3 Questionnaire statement 3 . 125
E.4 Questionnaire statement 4 . 125
E.5 Questionnaire statement 5 . 126
E.6 Questionnaire statement 6 . 126
E.7 Questionnaire statement 7 . 127

G.1 Simple Application . 135

List of Tables

1 Acronyms . vii

1.1 Research Questions . 3
1.2 Expected Deliverables . 6

2.1 Home assistance scenario requirements 12
2.2 Restaurant scenario requirements . 12
2.3 Home assistance scenario requirements 13
2.4 Tangible user interface requirements 14
2.5 Functional requirements . 14
2.6 Non-functional requirements . 15

3.1 Systematic Mapping comparison to Systematic Review 18

4.1 RAPT concepts . 27

6.1 Test subject demographics . 63

xvii

Chapter 1

Introduction

Figure 1.1: Report structure: Introduction

1.1 Problem Definition

End User Development Toolkit for Developing Physical User Interface
Applications

Physical user interaction (PUI), also called tangible interaction or tangible user in-
terfaces (TUI) is an emerging field within human computer interaction. As opposed
to desktop computing, PUI utilizes physical form factor and affordance in physical
objects in order to support a more natural and fluid interaction with computer
systems. PUI is inspired by ubiquitous computing and product design.

In order to develop good PUI we need to be able to construct PUI prototypes
easily and rapidly and test these with real users. There is a growing number
of hardware toolkits for constructing physical prototypes, e.g. the open source
framework Arduino. What is missing is a well-constructed and easy-to-use software
toolkit to bridge the gap between the hardware prototype and the software system
to interact with. This dissertation will investigate different models for such a
software toolkit. The expected deliverables are the following:

• An analysis of the underlying concepts of PUI.

• A state of the art survey of existing systems and toolkits.

• An open source software toolkit with focus on Arduino as the hardware pro-
totyping platform.

1

2 CHAPTER 1. INTRODUCTION

• A prototype set of applications to demonstrate the utility of the toolkit.

All software will be written in Java for the Android OS and Arduino toolkit.
All software will be released as open source under Apache 2.0 and as part of the
UbiCollab.org project.

1.2 Problem Domain

The research area of tangible user interfaces (TUI) and the possibilities to extend
the software centred domain, have the recent years increased by a huge extent. We
will examine scenarios of how TUI, with Arduino as hardware prototyping plat-
form, can utilize physical objects. Additionally, end users desire flexibility and
customization of applications to a greater extent than before. The challenge is
how end users can develop TUI applications without needing any programming
expertise. Mobility and accessibility have also become wanted functionalities, if
not requirements. Moreover, sharing and learning from the environment and peers
are emerging through app stores, interactive information sharing and virtual envi-
ronments.

To research and solve these enquiries, we are going to develop a prototype
toolkit for non-programmers to create their own app running on an Arduino board.
Moreover, to attend accessibility and mobility, the prototype will be a mobile
application. To investigate the current state of TUI and end user development
(EUD), we will conduct a pre-study through a systematic mapping. The pre-
study will additionally explore how the toolkit can make use of current end user
development techniques. Thereafter, a usability test will evaluate the software
toolkit.

The problem domain covers end users (non-programmers) and their capability
to develop applications for a programmable device given a proper tool. Explicit,
the domain of the assignment: We will develop a toolkit as an Android application
with Arduino as hardware prototyping platform.

The dissertation is part of the UbiCollab.org project. “UbiCollab (Ubiquitous
Collaboration) is about supporting natural collaboration using mobile and ubiqui-
tous computing technologies.” [9]. UbiCollab projects provide code as open source.
These projects focuses primarily on Java programming using technologies such as
Android. In addition, the focus of UbiCollab is device-centric, and most of the
development is done on mobile devices.

1.3 Motivation

User interaction through tangible interfaces is an increasing research area in soft-
ware technology. Physical representation promotes opportunities to ease the use
of technology and reinforce personality traits as creativeness, collaboration and
intuitive actions [10], [11]. End user development aims to allow users to create,
customize and tailor applications, in contrast of hiring a professional software de-
veloper. Demanding users and a vast increase of data availability have made it

1.4. RESEARCH QUESTIONS 3

important to adapt applications to users and not the other way around [12]. Thus,
this dissertation will investigate opportunities for a non-programmer and how he
or she can benefit and make use of physical objects in an end user environment.
The main focus is to create a toolkit for non-programmers to easy development of
physical user interaction applications.

1.4 Research Questions

First, we will explore the underlying concepts of tangible user interfaces and end
user development. Second, examine the state of the art within the domains of
tangible user interfaces and end user development. Third, we will look at benefits
of using a software toolkit when developing a tangible user interface through an
end user development interface. We will conduct a systematic mapping study
of tangible user interface and end user development domains. Finally, scenario
analysis will contribute to form requirement specifications. To evaluate the toolkit,
the team will conduct a usability test with non-programmers as the target group.
The pre-study aims to answer the research questions presented in Figure 1.1.

Research Questions
RQ-1 In which fields of social computing are tangible user interfaces

developed or suggested, and what characterises these tangible user
interfaces?

RQ-2 What are the characteristics, challenges and advantages of tangi-
ble user interfaces in social computing?

RQ-3 What types of user interfaces in end user development exist and
what are their weaknesses and strengths?

Table 1.1: Research Questions

The research questions, the results from the pre-study, user evaluation and
scenario analysis will together form this report.

However, after evaluating the results of the systematic mapping study, we de-
cided not to pursue the element of social domain. Further explanation can be found
in Section 3.2.1.4.

1.5 Methodology

1.5.1 Lean Development

1.5.1.1 Background

Lean was originally a manufacturing process developed by Toyota for use in their
car making industry [13]. Lean software development derived from lean manu-
facturing process in the early 1990s by taking the industry specific elements and

4 CHAPTER 1. INTRODUCTION

adapting them to software development practices. “Lean targets to reduce the un-
necessary overhead activities and outputs as well as wastes from the production
line“ [14].

Five principles are specified in lean practice [14]:

1. Customer value – Focus on what the customer wants and how to make the
product a success.

2. Value stream – Knowledge of the complete system is necessary to make the
best decisions.

3. Flow - Minimize overhead and waste.

4. Pull – Pull work from a queue, not push.

5. Perfection – Cheaper to fix errors early than late.

A software development project consists of several phases. Situational specific
knowledge is often forgotten by the authors [15]. Errors discovered in an early phase
requires the authors to regain that specific knowledge, making the cost of errors
that is undiscovered until late, high. This is why optimal flow and communication
between each step in the development process important. Starting with a minimum
viable product (MVP) will either prove or disprove the solution in the beginning
of the development. No time and effort is wasted creating features that end up not
being used due to structural, technical or architectural changes.

One of lean’s key features is postponing decisions until latest possible time with-
out affecting the rest of the production line [14]. The decisions can be made based
on facts and experience, rather than assumptions and uncertainty. By maintaining
a smooth flow, errors can be spotted and addressed, and quickly be sent back in
the value chain to be solved. Implementing lean has a high entry barrier and does
not only require identifying and implementing lean principles. It also requires an
organisational change and commitment [15].

Lean is an agile development method, and in true agile spirit another key feature
is the ability for early and continuous deliveries. This minimises possible misun-
derstandings during requirements gathering and any corrections early in the de-
velopment process. Continuous deliveries enforce frequent communication between
customer and development team, proving easy and quick access to any informa-
tion needed by the team members. Progress in a development project is primarily
measured in working software [16].

Lean acknowledges that few people are able to complete a task optimally the
first time. Therefore, refactoring has high focus. The idea is to rewrite old code
with new knowledge to optimise current code and improve code quality. Old code
could also need refactoring as an effect of architectural changes or restructuring.
The most efficient refactoring is done with knowledge of the code fresh in mind and
lean encourages quickly and rapidly refactoring [17].

1.5. METHODOLOGY 5

1.5.1.2 Approach

Figure 1.2 presents the working process in this dissertation. The team has adopted
lean’s principles, however, a flexible working policy has been applied to eliminate
waste. All principles have been tailored in order to suit the team in a best possible
way. An MVP was created to prove the different parts of the system and the
connections between them. Figure D.1 is a screenshot of the first MVP. This
provided confidence that the main base of architecture and technology worked,
and focus was moved to expanding, refactoring and optimise the application.

Figure 1.2: Working process

The perfection and flow principles have been assessed through working iter-
ative. A total of eleven iterations have been completed. Two iterations on the
systematic mapping, five development iterations and four report iterations. Each
iteration has been between 2-4 weeks and included an overall goal. An example
of an iteration goal is “Implement 1st draft of generator to translate from GUI
elements to cpp-code”. After each iteration, a prototype or a technical demon-
stration has been presented to the supervisor. The frequent demonstrations of the
prototypes have minimised misunderstandings between the team and supervisor,
and always ensured a working product available. Customer value is based on the
supervisor’s feedback after each iteration, in addition to the problem definition.
Due to unknown aspects in the problem definition, the value stream has been in
constant development when acquiring new knowledge.

The team created a lean board for the project through the issue tracking soft-
ware JIRA [18]. This helped organizing and keeping track of both technical tasks
related to development, and research and report tasks. The team members picked
their desired tasks. In addition to using Jira, the team held short daily meetings
during the development periods. These short meetings can be compared to the

6 CHAPTER 1. INTRODUCTION

agile development method, SCRUM’s stand-up meetings.

1.5.2 Final Evaluation Approach

The final evaluation was a usability test. The test group consisted of ten subjects
in the age from 19-49 years old. The location of the usability test was in a lab
with two remotely controlled cameras and sound recorders. The equipment was
used to record the subjects. Each subject was interviewed before the test to collect
demographic data. The test consisted of six tasks with an increasing rate of com-
plexity. Observations made during task executions were presented and discussed
in the evaluation interview. The subjects were encouraged to explain their experi-
ences during the interview. Finally, the subjects answered a System Usability Scale
(SUS) questionnaire. The results from the final evaluation are based on video and
sound recordings, observations, task complete rate and the SUS questionnaire. For
further details see Section 6.3.2.

1.6 Expected Results

From the systematic mapping pre-study, we expect to gain knowledge and un-
derstanding of the two fields of research; tangible user interfaces and end user
development. It is also expected to acquire insight of existing toolkits and appli-
cations related to these fields, regarding to techniques and solutions selected. This
knowledge, together with a requirements analysis, will create the foundation of a
toolkit, allowing non-programmers to rapidly create tangible user interface applica-
tions through an end user development environment. The toolkit will be evaluated
through a usability test where non-programmers from the target group are given
a variety of tasks. The toolkit will be released as open source under Apache 2.0
license and as part of the UbiCollab.org project.

Expected Deliverables
D-1 An analysis of the underlying concepts of PUI and EUD
D-2 A state of the art survey of existing systems and toolkits
D-4 A prototype of a toolkit (RAPT) based on requirement specifica-

tion and related work
D-5 Evaluation of RAPT including a usability test

Table 1.2: Expected Deliverables

1.7 Report Outline

Chapter 2: Problem Elaboration

This chapter explores the domain of both tangible user interfaces and end user de-
velopment. Furthermore, toolkit requirements are created based on three presented

1.7. REPORT OUTLINE 7

scenarios.

Chapter 3: Research Study

This chapter contains a summary of the systematic mapping ”Systematic Mapping
Study of Tangible User Interfaces in Social Computing, and End User Develop-
ment” that were done as a pre-study. Moreover, this chapter presents similar and
relevant toolkits and ideas. This chapter discusses why the toolkits and ideas are
relevant, in addition to what lessons can be learnt.

Chapter 4: Proposed Solution

This chapter presents the proposed solution RAPT (Rapid Arduino-Prototyping
Toolkit) at a high level. In addition to explain the conceptual model of RAPT,
this chapter describes RAPT’s functionality. Design decisions are presented and
explained.

Chapter 5: Development

This chapter contains technical aspects of the proposed solution RAPT (the imple-
mentation of an android application for developing Arduino applications). More
specific, this chapter provides an overview of the architecture, including data flow
and class diagrams. Lower level design of the different parts of the toolkit is pre-
sented. Furthermore, presumptions are explained.

Chapter 6: Evaluation and Validation

This chapter presents several steps of evaluation during the development process.
Versions of RAPT from earlier iterations are presented, which is followed up by a
description of a usability test conducted of the final version. Usability test results
are presented, and recommendations are made on the basis of result findings. In
addition, created apps for the scenarios are presented with screenshots.

Chapter 7: Conclusion

This chapter summarises the dissertation, and discusses results of the usability test
while also adding reflections in hindsight. Moreover, recommendations for further
work and development are presented.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Problem Elaboration

2.1 Introduction

This chapter explores the domain of both tangible user interfaces and end user de-
velopment. Furthermore, toolkit requirements are created based on three presented
scenarios.

Figure 2.1: Report structure: Problem Elaboration

2.2 Background of Physical User Interface

The evolution of user interaction is continuously: From mid- 1960 with command
based user interface (CUI) to 1970 with graphical user interface (GUI) and the
latest type, physical user interaction (PUI) [19]. All three of these solutions are
aiming for one goal: To help users interact with computers in a more intuitive and
effective way. The idea of PUI is to take advantage of human’s ability to sense, feel
and manipulate physical environment [19, 20]. People are familiar with handling
physical objects to accomplish tasks. Everyday life surround people with physical
objects.

There are many definitions of PUI. [21] states the following: “This field of re-
search (PUI) relies on tangibility and full-body interaction and gives computational
resources and data material form”. [22] divides PUI into 4 characteristics:

1. Physical representations are linked to the digital information.

2. Physical representations include mechanisms for interactive control.

3. Physical representations are perceptually attached to digital representations.

9

10 CHAPTER 2. PROBLEM ELABORATION

4. The physical state of the objects are associated with the state of the digital
system.

[23] explains PUI with the iceberg metaphor. Only a small percentage of the
iceberg’s mass is visible over the surface. The rest of the mass, is below the surface.
PUI technology can be viewed the same way. Most of the functionality is hidden
from the user, and only a limited set of objects are available for interaction. How
the iceberg looks below the surface is irrelevant for the user.

The key idea of PUI is to manipulate digital information through physical in-
teraction [22]. People generally have a natural touch with physical objects. These
objects represent digital information and create new possibilities compared to com-
mand and graphical user interfaces. “The intuitive perception of the tangible prod-
ucts could help to reduce spatial cognition load and thus enhance design creativ-
ity” [24]. Ubiquitous computing is the name of the research area where all these
acronyms belong.

One of the major challenges with PUI is how to integrate it seamlessly into
people’s daily life. When adapting a system based on the users’ routines and
movements, the user will not experience the system as a burden, rather a useful
and intuitive tool to help to perform a task. The information flow in a general PUI
system can be simplified as follows: The user sends an input through a physical
object. The input is being processed by the underlying computer. In case of a
feed back or response, output is returned to the user. For example, a user claps,
and the information is sent to a computer (e.g. “John clapped”). Based on the
information and configuration set up within the system, the computer replies with
turning the lights on in John’s room. Distinguishing between input and output is
one of the biggest challenges when developing PUI applications [22].

Due to the tight coupling between the physical and digital world, a downside of
PUI is the challenging process of developing a good system [19]. Advanced sensors
and feedback systems are necessary to realize the tight coupling. A typical factor
for success in PUI applications are the metaphor and analogy to the physical objects
used by the user to communicate with the system. Due to the challenges, many PUI
systems have a fixed location or context requirement. Tabletops are an example of
this. Physical user interaction is not necessarily the best way to handle interactions
with the user. Some examples of aspects that should be taken into consideration:
type of task, group of users, evaluation of efficiency, and intuitiveness [23]. When
creating a physical user interface, the designers are facing a new set of requirements
compared to the development of a traditional GUI. While GUI is usually targeting
one single user, with a single device, at one time, PUI is trying to target several
users concurrently, multiple sensors, displays, and input types, all at the same time
[25]. “The computer is embedded into the environment, becoming invisible” [22].

2.3 Background of End User Development

According to Lieberman et al ”The main goal of End-User Development is to study
and develop techniques and applications for empowering users to develop and adapt
systems themselves” [26].

2.4. REQUIREMENTS ANALYSIS 11

Furthermore, Lieberman et al, defines EUD as ”a set of methods, techniques,
and tools that allow users of software systems, who are acting as non-professional
software developers, at some point to create or modify a software artifact” [27].

”End-User Development (EUD) is a study within the field of computer science
and human-computer interaction which explains the activities or techniques that
allow amateur developers to produce or modify a software artifact. Early attempts
in End-user development were concentrated in adding simple scripting program-
ming languages to expand and familiarize oneself to an existing application, such
as an office suite” [28].

”According to Nardi, three criteria are essential for end user programming to
achieve a success level. The following three criteria are considered to be essential”
[28]:

• A visual environment.

• A tack specific language.

• Support for collaborative practices.

Even though the criteria above is met, end user development can suffer from
disadvantages. For instance, it generally produces narrow inflexible systems, can
cause loss of quality of data, duplication of effort and incompatibles that can pre-
vent sharing [28]. All of the mentioned factors, both success criteria and disad-
vantages, must be carefully considered and remembered when creating end user
programming systems.

2.4 Requirements Analysis

2.4.1 Introduction

Three scenarios have been used to create requirements for RAPT. This section
presents all three scenarios. Each scenario is described, and requirements for each
are created. At the end of the section, an overview of all requirements for RAPT
is presented.

2.4.2 Home Assistance

In today’s society, many people need special care which often needs to be person-
alised. The target group in this domain consists of care takers and family members.
Care takers and family members know their patients’ needs, which make them the
most viable users of the toolkit.

There are many possible usages for RAPT within the home assistance domain.
This paragraph focuses on one specific application used to conclude the require-
ments for RAPT. A device that can sense when the stove is powered, in addition
to being able to turn the stove off, is placed in the kitchen. A light bulb is placed
on the wall above the patient’s bed in the bedroom. An additional pressure sensor
device is placed in the patient’s bed. The application of these devices are when

12 CHAPTER 2. PROBLEM ELABORATION

Home assistance scenario requirements
HAR-1 Power device can sense that stove is turned on.
HAR-2 Power device can turn the stove off.
HAR-3 Light device can turn light on/off.
HAR-4 Pressure sensor device that can sense someone laying down in bed.
HAR-5 Sending messages between devices.

Table 2.1: Home assistance scenario requirements

the stove is turned on, the light bulb device over the patient’s bed lights up. If
the stove is turned off, the light is also turned off. If the patient forgets to turn
off the stove before going to bed, the patient will see the light above the bed and
will hopefully be reminded of the powered stove. If the patient still does not turn
the stove off before going to bed, the pressure sensor senses somebody laying on
the bed. The pressure sensor then sends a message to the device in the kitchen,
turning the stove off.

The requirements created for this scenario is found in Table 2.1.

2.4.3 Restaurant

Food serving at pubs, bars and restaurants often require customers to approach the
counter to place orders. The target group in this scenario is employees that create
and maintain the restaurant’s menu, e.g. the restaurant owners. The restaurant
owners should be able to create their own tangible ordering system.

Restaurant scenario requirements
RSR-1 RFID reader device being able to read RFID tags.
RSR-2 Led device can both blink slow and fast.
RSR-3 Led device can be turned on for 5 seconds.
RSR-4 Screen device. Write text on screen device.
RSR-5 Button device that can sense if someone presses it for 3 seconds.
RSR-6 Pair different types of dishes to RFID tags.
RSR-7 Sending messages from RFID device to kitchen server.
RSR-8 Screen device receiving messages from kitchen server.
RSR-9 Led device receiving messages from kitchen server.

Table 2.2: Restaurant scenario requirements

A customer enters a restaurant, and wants to order food. The customer sits
down at a table in the restaurant and can use small blocks to order food. On top
of these blocks is a picture of the dish the block represents. Inside the block is an
RFID tag. In addition to the blocks, the table includes two led devices in green
and yellow colour, a small screen device, an RFID reader device, and a button
device. A green led device will blink slowly to signal that the system is ready
to take orders. The customer chooses which dishes he/she would like to order,
and register the order by hovering the block over the RFID reader. When a dish

2.4. REQUIREMENTS ANALYSIS 13

is registered, the led will increase blinking speed indicating that the order is in
progress. For each dish registered, a message will be sent to the kitchen server
containing a table number and dish number. When the kitchen server receives the
order of a dish, it sends a message to the screen on the restaurant table displaying
the dishes ordered. When all the dishes are registered, the customer presses the
confirmation button for three seconds on the restaurant table. The green led will
now have a constant green led signalling that all the orders have been placed. When
the food is ready, the kitchen server sends a message to the yellow led turning it
on for 5 seconds, indicating the food is ready. In addition, the kitchen server sends
messages resetting the green led and the screen to default state (green led blinking
slowly, and screen clear).

The requirements created for this scenario is found in Table 2.2.

2.4.4 Buddy Notifier

Pudge and Blitz are friends. Pudge is always struggling to keep track of time. They
both live by the same lane and has decided to take the same bus. Blitz enters the
bus two stops before Pudge. Due to his laziness, Pudge is often not on this bus.
Blitz is starting to get annoyed and has implemented a system to help his friend.
When Blitz walks from his house, he presses a button, which notifies Pudge by
sound. Pudge now gets a reminder that Blitz has left the house and that Pudge
needs to leave his house to be able catch the bus.

The requirements created for this scenario is found in Table 2.3.

Buddy Notifier scenario requirements
BNR-1 Button device can register button clicks.
BNR-2 Speaker can play a sound.
BNR 3 Devices should be able to send messages between each other.

Table 2.3: Home assistance scenario requirements

2.4.5 Requirements Overview

2.4.5.1 Tangible User Interface Requirements

The toolkit’s requirements can be split in two parts; end user development re-
quirements and tangible user interface requirements. The tangible user interface
requirements are both hardware required and the hardware’s functionality. Tangi-
ble user interface requirements are found in Table 2.4.

2.4.5.2 End User Development Requirements

End user development requirements focus on functionalities that allow users to
create tangible user interfaces. These requirements can be found in Table 2.5.

Note that not all requirements are directly extracted from the scenarios. For
example, EUDR-5 is created to simplify the process of installing the menu to all

14 CHAPTER 2. PROBLEM ELABORATION

Tangible user interface requirements
TUIR-1 Arduino microcontroller controlling devices.
TUIR-2 Power device can sense that stove is turned on.
TUIR-3 Power device can turn the stove off.
TUIR-4 Light bulb can turn light on.
TUIR-5 Pressure sensor device can sense someone laying down in bed.
TUIR-6 Sending messages between Arduino boards.
TUIR-7 RFID reader device can read RFID tags.
TUIR-8 Led device can both blink slow and fast.
TUIR-9 Led device can be turned on for 5 seconds.
TUIR-10 Small screen and the possibility to write text on it.
TUIR-11 Button device that can sense if someone presses it for 3 seconds.
TUIR-12 Send different types of messages based on what RFID tags are

read.
TUIR-13 Devices should be able to send messages between each other.
TUIR-14 Devices should be able to send messages to external sources.
TUIR-15 Devices should be able to receive messages to external sources.

Table 2.4: Tangible user interface requirements

End user development requirements
EUDR-1 Upload compiled sketches from Android to Arduino board through

Bluetooth.
EUDR-2 Wireless communication between Arduino boards hidden from the

user.
EUDR-3 Specify actions based on which RFID tag is read.
EUDR-4 Generate sketches based on user graphical GUI elements.
EUDR-5 Install compiled sketches on to several Arduino boards at once.
EUDR-6 App store which users can publish apps and loads apps.
EUDR-7 Load/save drafts when creating an app.
EUDR-8 Look up an Arduino board’s IP address after an app has been

installed.
EUDR-9 Specify IP address, port and body of messages sent to external

sources.

Table 2.5: Functional requirements

tables is the restaurant. EUDR-6 is a requirement the team developed together
with the supervisor. This feature will allow more advanced users to publish their
apps and other users can use these apps for learning and inspiration. App store
is explained further in Section 4.9. EUDR-2, EUDR-4, EUDR-7 and EUDR-8 are
requirements aimed at improving usability by hiding technical aspects.

2.4. REQUIREMENTS ANALYSIS 15

2.4.5.3 Non-Functional Requirements

The non-functional requirements for the toolkit can be found in Table 2.6. These
requirements are based on the problem definition presented in Section 1.1.

Non-functional requirements
NFR-1 Users should not need programming skills.
NFR-2 Users should be given proper feedback, and not be able to cause

errors.
NFR-3 Provide an efficient way of creating tangible for non-programmers

using an Android phone.
NFR-4 Provide flexibility to support further development and implemen-

tation of new devices, and hardware platforms.
NFR-5 Run on any Android device with Android version >= 4.3 (API

level 18).

Table 2.6: Non-functional requirements

16 CHAPTER 2. PROBLEM ELABORATION

Chapter 3

Related Work

3.1 Introduction

This chapter contains a summary of ”Systematic Mapping Study of Tangible User
Interfaces in Social Computing, and End User Development” that was done as a
pre-study. The entire study is attached in Appendix A. Moreover, this chapter
discusses relevant toolkits and ideas.

Figure 3.1: Report structure: Related Work

3.2 Research Method

3.2.1 Systematic Mapping Study

3.2.1.1 Background

In order to acquire knowledge of the domains physical user interaction and end
user development, the team conducted a systematic mapping study during the
first semester. The full study is attached in Appendix A. Below is a summary of
the findings and how it affected the work with RAPT.

”The main goal of a systematic mapping studies is to provide an overview of a
research area, and identify the quantity and type of research and results available
within it” [29]. While it is often neglected in software engineering, the method is
often used in medical research [29]. The usual outcome is a visual map classifying
the results. It requires less effort than a systematic literature review while providing
a more coarse-grained overview [30].

The steps within in a systematic mapping study can be as follows [29]:

17

18 CHAPTER 3. RELATED WORK

1. Definition of Research Questions

• Outcome: Review Scope

2. Conduct Search for Primary Studies

• Outcome: ”All” possible papers that could be relevant

3. Screening of Papers for Inclusion and Exclusion

• Outcome: Relevant Papers

4. Key wording using Abstracts

• Outcome: Classification Scheme

5. Data Extraction and Mapping Process

• Outcome: Systematic Map

Systematic mapping and systematic review are two acknowledged research meth-
ods for exploring a specific domain. Both study types share the aim of identifying
research gaps, though with slightly different focus.

Systematic Mapping Systematic Review
Goals Classification and con-

ducting thematic analysis
and identifying trends.

Publication for identifying
best practices.

Process Thematic summary, and
not evaluation regarding
quality.

Evaluated with focus on
quality.

Breadth and
Depth

More articles, due to no
need to evaluate each ar-
ticle in detail.

More specific focus.

Classifying
the Research
Approach

Classification has to be
high level.

Could be very specific
(low level).

Validity
Considera-
tion

A high level evaluation
could lead to a higher er-
ror rate. Can consider
more papers.

Detailed evaluation of the
research methodology.

Industrial
accessibil-
ity and
relevance

Easier to spark interest,
visual appeal.

Focus on depth and em-
pirically validated results.
This gives higher impor-
tance for practitioners.

Table 3.1: Systematic Mapping comparison to Systematic Review

3.2. RESEARCH METHOD 19

In accordance to [29], there are six main differences between a systematic
mapping and a more commonly used, within software engineering, systematic re-
view.The distinctions are illustrated in Table 3.1. Note that only the differences
are listed, and that they have several universal elements not present in the table.

Our findings are that the study methods differ in terms of goals, breadth and
depth. We have chosen the systematic mapping approach to better get a complete
picture, though not necessarily in detail, of existing papers and toolkits within TUI
and EUD.

3.2.1.2 Tangible User Interface Findings

The pre-study revealed the following: Tangible user interfaces are a new research
area, 97 % of the articles were published later than year 2000, and the majority
of documents were published in 2011. Tabletop is the most frequent researched
type of tangible user interface, whereas children (and the support of children’s
learning) is the most focused target group. General characteristics are still not
absolutely defined, however, some general trends were found. Real time feedback,
one input/out channel and space-multiplexed are some mentioned characteristics
that apply to several tangible user interfaces. Advantages and challenges are even
more context dependent than characteristics. Still, as for advantages, tangible
user interfaces tend to support creativeness, they are often and should be easy to
use, they often provide collaborative benefits and perhaps the most important, the
significance of the cognitive mind. Studies in the pre-study state that tangible
objects have a bigger impact when users can relate to the object, and make use of
already known knowledge. When a tangible object does not represent an intuitive
or graspable idea, tangible user interfaces become harder to grasp and use. Except
the latter described situation, there is none absolute challenges, but many elements
to be aware of in different contexts. For example, how to standardize common
functions, hardware limitations, seamlessness, lack of TUI modelling capability
and that finger gestures may not be the best alternative compared to physical
objects.

An aspect that should be emphasised is that the tangible research area is still
evolving, and there is no final solution at the time being. Today’s research in this
field consists of analysis and empirical studies that can point studies, including
this dissertation, in the right direction. The team should carefully select the type
of physical interface to ensure to mitigate cognitive load. Interfaces with actual
physical objects would be to prefer, and keep in mind that users are more creative
when given the opportunity.

3.2.1.3 End User Development Findings

The idea to offer end users possibilities to create and customize own software is
not completely new, however, the domain is increasingly in focus. The pre-study,
in Appendix A, identified a great escalation of research in this domain from 2006.

End user development is a rapidly increasing area of research. Many of the
studies specialises in providing interfaces for a specific, narrow, target group. In

20 CHAPTER 3. RELATED WORK

general, children and elderly are heavily represented, and the desired outcome of
prototypes are often increased learning experience or ease of everyday tasks for
elderly or in smart-homes.

Two categories of interfaces stand out: Component based interfaces and cus-
tomization based interfaces. Several techniques, within each category mentioned
above, are considered viable, which means that selecting an interface type depends
on context. With correct set of tools, users have no problems developing, tai-
loring or customizing their applications. The challenge is to provide the correct
tools. Within end user development, component based interfaces and customiza-
tion based interfaces are the most attractive. Both categories supports intuitive
and easy-to-use interfaces which provide visual advantages. Additionally, there is
no need for programming expertise or even knowledge, and it is easier to control
and track legal and illegal operations which leads to giving users proper feedback
while making user validation less complicated.

3.2.1.4 Refinement of Problem Definition

The systematic mapping study revealed that the social domain of tangible user
interfaces still is at an early research stage. Tangible user interfaces were often
directed towards handicapped users, children or elderly. Additionally, by applying
both a tangible user interface and an end user development technique combined
with Android development, the scope became large. We decided to not focus on the
social domain, other than implementing a stubbed app store for sharing knowledge
between users. However, Section 7.3 and 7.4 suggest several elements within the
social domain.

3.2.2 Manual Search

In addition to the systematic mapping in Appendix A, the team has used Google
Play [31] and Google Scholar [32] for manual searches. The reasons were to ensure
that most relevant studies were found, even though they were not present in the
databases/search engines of the systematic mapping, and to specifically search for
existing toolkit applications.

3.3 Related Toolkits

3.3.1 ECCE Toolkit

The ECCE (Entities, Connections, Couplings and Ecologies) toolkit aims to “(. . .)
seamlessly manage interactions between heterogeneous networked devices without
necessarily having to deal with low level implementation details” [33]. ECCE uses a
custom made XML to define the software logic. The software logic is used to handle
the digital and physical input/output. This is a toolkit originally aimed to allow
users to rapidly setup ‘device ecologies’. This is “collections of devices interacting
synergistically with one another, with users, and with the Internet resources” [33].

3.3. RELATED TOOLKITS 21

MyMemodules [34] is a very similar toolkit with the overall same architecture. The
team has used both of these toolkits for inspiration.

The ECCE toolkit is relevant for RAPT in many ways. First, the overall goal
similar to RAPT’s goal. Second, the structure and flow in ECCE, by using the
custom XML language to generate the software logic. Finally, end user development
where users create the coupling between different devices themselves through an
interface.

Lessons learnt: Other people are trying to solve a similar problem as RAPT.
XML files to generate system logic and GUI is a flexible solution. An example of
end user development where users configure the physical and digital input devices
themselves.

3.3.2 GALLAG Strip

GALLAG Strip is a mobile application that combines physical interfaces with end
user programming [35]. GALLAG Strip has a ‘recording mode’ where the system
listens for senor events that is triggered by user actions. When an event is triggered,
the user can configure appropriate actions through an intuitive GUI. This action
will be executed next time the sensor is triggered. E.g. if GALLAG Strip is in
recording mode and the TV is turned on. This triggers an event and the user can
configure that a sound should be played.

GALLAG Strip is relevant for RAPT in two ways. The type of EUD technique
with sensors and actuators used is very similar to the one the team has pictured
RAPT will be based on. In addition, the concept of users creating rules is used.
Lessons learnt: The system listens for sensor events which users can configure a
corresponding action to. The rule-based end user customization was proven very
well by GALLAG Strip’s user testing.

3.3.3 Modkit

Modkit is a web-browser based tool for novice and experienced programmers. It
provides the functionality to program an Arduino board using a graphical, block
based, interface [36]. Each block represents a simplified Arduino programming
command, very similar to the Scratch [37] programming environment. The blocks
can be removed and regular source code displayed. This feature is intended for
more experienced programmers. The codes is transferred to the Arduino board
through a USB cable.

Modkit is relevant for RAPT in that it used a block based programming envi-
ronment.

Lessons learnt: Block based programing is best suited for motivated end users
with some technical interest.

3.3.4 Tangible Learning Framework

Tangible Learning Framework (TLF) “(. . .) enables teachers, caretakers, and ther-
apists of disabled children to create tangible learning experiences for this target

22 CHAPTER 3. RELATED WORK

group without the need for programming expertise“ [38]. The creation of these
applications are done through a GUI on a computer. The EUD techniques are
pattern based, component based and model based. The user selects the digital
representation and binds this to a physical object, e.g. a RFID tag.

TLF is relevant for RAPT due to its complete implementation of EUD. Every-
thing from linking the physical and digital objects together to create actions on
these objects are implemented. TLF has received positive feedback over a three
years evaluation period at a primary school. A useful feature for RAPT is to
support registration of new RFID. TLF provides one possible solution.

Lessons learnt: Registration of RFID tags through a TLF application has in this
case proven to be very user friendly.

3.4 Related Ideas

3.4.1 ArduinoCommander

ArduinoCommander is an Android application that allows the user to control an
Arduino board through Bluetooth, Ethernet or USB [41]. The application consists
of a WYSIWYG (What You See Is What You Get) interface where the user can
configure the Arduino board through a mobile device in real time.

Figure 3.2: Screenshot of ArduinoCommander

The configuration is a graphical user interface that presents many of the features
the Arduino Programming language offers trough the Arduino IDE. The most
common usage is to upload the Arduino code through the IDE and then control it
by using ArduinoCommander. Figure 3.2 displays a screenshot of the application.

The application is relevant for RAPT mainly because of its concept: To program
an Arduino board through a mobile device. The fact that Bluetooth is a possible
communication protocol between mobile device and Arduino board is also very
interesting.

Lessons learnt: Existing possibilities regaring communication between mobile
device and an Arduino board, in addition to how one end user development inter-
action is designed when configuring an Arduino board.

3.4. RELATED IDEAS 23

3.4.2 Amarino

Amarino is a toolkit that allows the user to connect the phone to an Arduino board
and use the features the Arduino library provides in real time [42]. The library
is developed by Amarino and consists of three modules. First, is the Bluetooth
Manager. It provides the possibility to pair and connect the phone with an Ar-
duino board through Bluetooth. Second, the EventManger offers handling of both
internal phone events, collection of events and custom events. For example phone
receiving an SMS or an alarm goes off, can easily be selected and configured. The
configuration can then be connected to an action on an Arduino board. Third
and finally, is the Monitoring module. This module is very useful for debugging
and allows the developer to see received messages and if the events are sent. 3.3
presents a screenshot of the application.

The application is relevant for RAPT because of its concept: To program an
Arduino board from a mobile device through Bluetooth. The end user interaction
design can be used as inspiration.

Lessons learnt: One example on how to integrate an end user development
environment, Bluetooth as communication protocol provides flexibility.

Figure 3.3: Screenshot of Amarino

24 CHAPTER 3. RELATED WORK

3.4.3 ArduinoDroid

ArduinoDroid is an Android application that provides functionality to program
an Arduino board through an Android phone [40]. The user uses the built-in
keyboard to write Arduino code and upload through USB. Offered functionality is,
offline opening, editing with syntax highlighting, compiling and upload of Arduino
sketches. The user interface is similar to the Arduino Sketch IDE. Figure 3.4
displays a screenshot of the application.

ArduinoDroid is relevant to RAPT mainly because of the concept of program-
ming an Arduino board on Android.

Lessons learnt: Not very user-friendly to write code on a mobile phone. Compil-
ing Arduino sketches on an Android phone might set limitations on phone storage
due to size on SDK.

Figure 3.4: Screenshot of ArduinoDroid

Chapter 4

Proposed Solution

4.1 Introduction

This chapter presents the proposed solution RAPT (Rapid Arduino-Prototyping
Toolkit) at a high level. In addition to explain the conceptual model of RAPT, this
chapter describes RAPT’s functionality, a technical overview and design decisions.

Figure 4.1: Report structure: Proposed Solution

To accomplish rapid and convenient prototyping of physical user interaction
applications for non-programmers, a mobile application has been developed. This
provides ease of access and makes use of the increasingly extensive number of smart-
phones and mobile applications available. The idea is that a mobile application will
facilitate and lower the bar for creating prototypes involving Arduino boards. The
connection to UbiCollab [43] requires the use of Android. There is no need for USB
cables, downloading additional software, libraries, or learning a new programming
language.

4.2 Conceptual model

To illustrate how RAPT can be used to create tangible user interfaces, the home
assistance scenario (Section2.4.2) has been selected for demonstration. A care
worker has gotten the task to install a new TUI in a care patient’s home using
RAPT and a hardware kit that includes two Arduino boards equipped with different
hardware devices. The care worker places the two Arduino boards in the necessary
location, one in the bedroom and the other by the stove. Thereafter, the care
worker starts RAPT and creates a new app. The Arduino boards found nearby
is presented in RAPT as board representations. Each board representation has a

25

26 CHAPTER 4. PROPOSED SOLUTION

set of corresponding devices, which matches the hardware devices on the Arduino
boards. Each board representation got a board type. What board type a board
representation has are decided by its devices and how they are connected to the
Arduino board. The devices of each board representations are divided into sensors
and actuators. Sensors are devices that handles digital input, or physical input
from a human or the environment. Actuators are devices that handles digital
output or environmental actions.

Figure 4.2: RAPT with a rule created in rule container

In RAPT, the devices can be dragged by the care worker into an area called
rule container. This is the area between the sensor and actuator containers. When
the care worker drags a device into the rule container, an alert dialog appears.
This alert dialog can be used to configure the dragged device. Examples of device
configurations are to read a specific RFID tag (configuration of a RFID reader
device), or play a melody (configuration of a speaker device). A rule is created
when connecting two devices. A rule is illustrated in Figure 4.2 and implies the
following: When a specific RFID tag is read by the RFID device, play a melody
through the speaker. After the care worker have created all necessary rules the
required functionality of the tangible user interface, the app can be installed. An
overview of concepts are found in Table 4.1.

4.3. FUNCTIONALITY 27

RAPT concepts
App Application created within RAPT that consists of

one or more rules.
Board representation The representation, illustration, of an Arduino board

within RAPT.
Device A representation of a hardware device attached to an

Arduino board. Example: RFID reader.
Device configuration A function of a device that can be chosen by the user.

Example: Blink led.
Rule A connection of a configured sensor and one or mul-

tiple actuators. Example seen in Figure 4.2.
Sensor Type of device that handles digital input, or physical

input from a human or the environment. Example:
RFID reader.

Actuator Type of device that handles digital output or envi-
ronmental actions. Example: Led.

Board type What type of Arduino board the board representa-
tion represents. What board type a board represen-
tation has are decided by its devices and how they
are connected to the Arduino board.

Table 4.1: RAPT concepts

4.3 Functionality

4.3.1 Introduction

RAPT is used for creating, and installing apps on Arduino devices. In addtion an
app can be published to an app store. The main functions that are utilized when
creating, publishing and uploading apps are introduced in the following sections.
The main functions are reflected in the choices that can be made in the main menu
screen. The main menu screen is presented in Figure 4.3.

4.3.2 Creating apps

The easiest way to create an app is to click on the button “Create New App”
in main menu. This part of RAPT is designed to be as easy as possible for the
user. When clicking “Create New App”, representations of all nearby Arduino
boards will be listed in the navigation drawer illustrated in Figure 4.4. In this
view, the user can choose the active board representation. Depending on active
board representation, different sensors and actuators are available.

After the user has chosen the active board representation, the user is presented
the most important screen of RAPT, presented in Figure 4.5. An Arduino board
can have multiple devices, and these are listed on the left side, the right side or on
both sides depending type of device. It can be a sensor, which is used to collect

28 CHAPTER 4. PROPOSED SOLUTION

Figure 4.3: Main menu

data or trigger on events, it can be an actuator, which are used to execute actions,
or it can be both. In this view, the user can drag devices into the rule container.
The available actuators and sensors changes based on which board representation
the user has chosen as the active board representation. If the user wants to change
active board representation he/she can select a new board representation from the
navigation drawer, which can be opened by clicking on the icon at the top left
corner.

The active board representation’s name is displayed on the toolbar as shown in
Figure 4.5. If the user wants to change the name of the board representation, it can
be done by clicking the name in the toolbar. This will not change the name of the
Arduino board, only what the board representation is called in current the RAPT
session. The user might want to use this functionality when creating apps for two
Arduino boards with similar board types. If the boards are of similar type they
will get the same name with a number in RAPT. This ensures that the name will
be unique, but it can be hard for the user to distinguish between which Arduino

4.3. FUNCTIONALITY 29

Figure 4.4: Navigation drawer

Figure 4.5: Screen for creating an app

board is mapped to which board representation. Giving the board representations
new names can help if the user are having a troubles with names.

When dragging a device from either the sensors or the actuators container into
the rule container an alert dialog will open, prompting the user to configure what
the dragged device should do. If the dragged device is a led, the user can choose
between different functions such as led blinking and turning the led on. Another
example is when the user drags a WiFi device it can either send a message or
receive a message. These functions can be changed at any time by clicking on
the icon of the device when in connect mode. When creating apps, two different

30 CHAPTER 4. PROPOSED SOLUTION

modes are used: connect mode and drag mode. Buttons used to toggle these modes
can be found on the toolbar, marked in Figure 4.6. Connect mode is chosen by
clicking the arrow button, and drag mode is chosen when clicking the hand button.
The connect mode is used to connect sensors to actuators. When the user touches
a sensor device in the rule container and continue to hold, an arrow is drawn
between the sensor and location of the user’s finger. When releasing this arrow on
an actuator device, the user connects the sensor and the actuator. An arrow with a
black dot, called connector, will be drawn. If the user wants to connect a sensor to
multiple actuators, the user has two options; Draw two arrows from the sensor, or
draw an arrow from the sensor to the first actuator and draw another arrow from
the connector created to the second actuator. The second option is illustrated in
Figure 4.5. Drag mode is used when the user is not pleased with the layout of
the devices and arrows in rule container. When in drag mode, the user can drag
devices and connectors around which gives the user the freedom to organise the
layout.

Figure 4.6: Mode buttons

To erase all rules, there is a functionality that clears the rule container. This
functionality can be used by clicking the X in the top right corner of rule container.
RAPT supports saving and loading of drafts when creating apps. As of current
version of RAPT, these drafts do persist multiple sessions, but will be deleted every
time the user manually closes RAPT. If the user has created an app which the user
is satisfied with, it can be saved as a draft by clicking the save draft option in
RAPT’s settings menu. The settings menu is presented in Figure 4.7. Loading is
also done from this settings menu.

When the user is installing an app that requires the Arduino boards to have
a WiFi connection the app will need to know the SSID and password to the local
WiFi network. This can either be set during the start of the installation process,
after the user have clicked the install button, or it can be set in network settings

4.3. FUNCTIONALITY 31

Figure 4.7: Settings menu

Figure 4.8: Network settings

from the settings menu. The network settings are shown in Figure 4.8. After an
installation, all the Arduino boards that are connected to the WiFi network will
have its IP addresses displayed in the network settings. This is useful if the user has
installed an app that includes an Arduino board receiving messages from external
systems. When sending packages from external systems to Arduino boards, the
external systems need to know the IP addresses.

The board settings can be entered from the settings menu in RAPT. This
functionality is used when the user wants to pair a board representation with an
Arduino board. When the user starts to create an app the board representations

32 CHAPTER 4. PROPOSED SOLUTION

Figure 4.9: Board settings

are already paired with an Arduino board, but this can be overridden from board
settings. Board settings screen is shown in Figure 4.9.

Figure 4.10: App including both Arduino board Alpha and Arduino board Bravo

When the user clicks the installation button, the app created will automatically
be installed. The app will be installed on all the Arduino boards that are required
for the app to work. Figure 4.10 illustrates an app including devices from two
board representations. If the user clicks the installation button, both of the board
representations used will get their corresponding sketch.

Users who desire more complex functionality can select “Advanced Mode” in-

4.3. FUNCTIONALITY 33

stead of “Create New App” in the main menu. In advanced mode the board types
used to create an app is not automatic chosen by RAPT. The user has to choose
board type. The installation process in advanced mode differentiates from normal
installation. In normal installation, the app is installed automatically to the Ar-
duino boards represented by board representations in RAPT. In advanced mode
the user has to manually select which Arduino boards that corresponds to the dif-
ferent board representations. An additional feature is that the user can install an
app to multiple Arduino boards with only one installation process.

4.3.3 App Store

RAPT users can take advantages of the app store especially in terms of learning
experiences. When loading an app from app store, the end user can either use the
app as it is, or further customize the app. The end user has the same features as
if he/she created the app from the beginning. Allowing a new user to explore how
more experienced users have put together apps could be incredibly helpful.

Figure 4.11: Selecting board type in app store

When the user enters the app store from the main menu, the user needs to
select a board type. This selection screen is presented in Figure 4.11. All apps that
includes the selected board type are displayed on the next screen, shown in Figure
4.12. By selecting an app from this screen, the user will be redirected to the view
where the user can create rules.

34 CHAPTER 4. PROPOSED SOLUTION

Figure 4.12: Selecting app in app store

4.3.4 Tutorial

RAPT comes with a tutorial to assist users on how to create apps. The tutorial
gives a step-by-step guide on how to create an app using the toolkit. The guide is
a series of pictures, which all consists of a screenshot from RAPT with descriptive
text.

4.4 Technical Overview

RAPT has been designed for a wide spectre of users. This is because of RAPT’s
main goal: To be a toolkit for non-programmers to create physical user interaction
applications. Anyone can buy a hardware board and RAPT should therefore be
designed for all potential users.

Using Arduino boards require understanding of electrical engineering and spe-
cific wire instructions based on selected components. In the scenarios the team has
envisioned, the Arduino boards are bought pre-wired from a retailer. An Arduino
board can consist of several devices. XML [44] is used to specify the hardware
attached to an Arduino board. XML is a common mark-up language, easily read
and great extension possibilities. RAPT makes use of the XML files when defining
devices in the graphical user interface.

The graphical user elements is based on drag and drop functionality. The user
selects desired device from its container and drags it into rule container. The device
can be configured to achieve the appropriate functionality. Two connected devices
is a valid rule and the app can be installed to the Arduino board.

Programming an Arduino board is based on the programming language called
Arduino programming language [45]. It is a variation of the programming language
C++. Arduino code, from here on called a sketch, requires to be compiled before

4.4. TECHNICAL OVERVIEW 35

uploaded to an Arduino board. When a user creates a new app in RAPT, a
Bluetooth scan is started. The scan will discover all nearby Arduino boards that
are paired with the mobile device running RAPT. When the user has created or
modified the app he/she would like to install on an Arduino board, the app needs
to be parsed from the rules created by the user into a sketch. The team has
created a generator that translates these rules into a sketch. The sketch is sent to
an external compile server through WiFi that returns the compiled sketch. The
compiled sketch is then transferred to the Arduino board through Bluetooth. See
Figure 4.13 for a simplified flow diagram.

Figure 4.13: Simplified flow diagram of the system

RAPT communicates with Arduino boards through Bluetooth. Bluetooth is
a commonly used technology for wireless transfer of data over short distances.
Bluetooth was the team’s preferred choice due to its widespread implementation in
devices, low energy consumption and support in Android [46]. In addition, many
existing solutions trying to program an Arduino requires the code to be transferred
using a USB cable. Wireless communication is crucial for extensive usage of the
app among non-programmers because of the ease of access it provides. WiFi was
another technology the team considered for communication between RAPT and
Arduino boards (EUDR-1, see Table 2.5). Due to the task’s scope, the team quickly
explored the java implementation of the STK500 protocol [47], and concluded that
the implementation provided the needed functionality. The java implementation
provides a working Bluetooth connection between Android and an Arduino board.
TUIR-13, see Table 2.4, specifies communication between Arduino boards as a
requirement. WiFi was selected as the communication protocol. WiFly RN-XV
Module [48] and the belonging WiFly library provided the functionality. WiFi

36 CHAPTER 4. PROPOSED SOLUTION

not only allows communication between Arduino boards, but communication with
anything that is connected to Internet. This provides the possibility to create apps
integrated with external systems. See Appendix B for further information about
hardware selection.

4.5 Rules Pattern

During the pre-study, the team discovered that several of the applications using
physical user interfaces were using the same pattern. Two of these articles will
be presented with a simplified example to illustrate the pattern. Example 1: [49]
presents a wireless remote communication system called ”BuddyWall”. On a wall,
there are mounted multiple removable ‘buddies’ (round, light emitting balls), where
each buddy represents a friend. Each buddy has one BuddyWall. If buddy-A would
like to talk to buddy-B, buddy-A picks up buddy-B’s ball and squeezes it. This will
make buddy-A’s ball play a sound and flash a light in buddy-B’s home indicating
that buddy-A is trying to communicate.

Example 2: Shoppers often have the need to gather additional information
about a product before buying it [50]. Each product has product information that
can be transferred to a NFC [51] token the shopper is carrying. If the shopper
would like the information to be displayed, he/she places the token on a kiosk,
where the product information is transferred and displayed.

Both of these examples are using a pattern where you have a condition and
one or more actions. If the condition is fulfilled, the corresponding actions are
executed. In example 1: Squeezing the buddy is the condition. If the buddy is
squeezed, another buddy plays a sound and flashes. Here playing a sound and
flashes are actions that are executed when the condition is fulfilled. In example 2,
the placing of the NFC token on the kiosk is the condition. If this token is read, the
product information is displayed. The action is displaying the product information.
In RAPT, a condition is configured sensor and an action is a configured actuator.
A condition with one or many actions are called a rule. In RAPT, a rule is created
when one condition is connected to at least one action (see Figure 4.14).

Figure 4.14: Illustration of a rule – a condition is connected to one action

4.6. SKETCH COMPILING 37

4.6 Sketch Compiling

An external compile server is used when compiling a generated sketch. After the
sketch has been compiled, it is returned to RAPT and installed on the Arduino
board. There were one architectural decision regarding the compilation flow. The
sketch could either be compiled on the Android phone or be compiled on an external
server. The Android application ArduinoDroid described in Section 3.4.3 compiles
sketches on Android. This requires ArduinoDroid to download an sdk, making the
size of the app several hundred megabytes. If this solution were adopted to RAPT,
the current requirement of a working Internet connection would be eliminated.
A disadvantage would be the time required to download the sdk and the large
size of the RAPT. An external compile server was chosen, because the benefits of
compiling on Android does not outweigh the disadvantages.

4.7 Installing Sketches on Arduino Boards

One issue that required the team’s attention is how to tell RAPT which board
representation that corresponds to which Arduino board. If an app includes mul-
tiple board representations, multiple sketches are generated. One for each board
representation. Two solutions has been implemented to solve this problem. 1)
The user manually selects which board representation that corresponds to which
Arduino board. 2) RAPT starts a Bluetooth scan, maps the XML configuration
file names with the name of the Arduino boards nearby. The second solution re-
quires no interaction from the user. When the user clicks the button ”Create New
App” it starts a Bluetooth scan. If an Arduino board is found during the scan it
will be displayed as a board representation in RAPT. Solution 2 increases usability
because the user does not need to manually map Arduino board with the board
representation. However, this has a great set of functionality limitations. The user
is limited to only create apps of nearby Arduino boards. In addition, solution 2
lacks the important functionality for users to upload the same app to multiple Ar-
duino boards. This is specified as a requirement EUDR-5 in Table 2.5. To maintain
the benefits of solution 2 and keep the desired functionality from solution 1, it was
decided to split the functionality. By creating an additional ‘advanced mode’, this
would give experienced users freedom to use more complex functionality, without
confusing the normal user.

4.8 Selection of End User Development Techniques

Acquiring knowledge of different types of end user development techniques were
primarily done through the systematic mapping study found in Appendix A. A
characteristic among many of the studied applications was that they all tend to
include more than one EUD technique. For example, wizard driven technique is
often combined with the component tailoring. Even though many applications are
using the same techniques, they often vary in level of integration. One aspect of
end user development not considered in the systematic mapping study, is the fact

38 CHAPTER 4. PROPOSED SOLUTION

that the team is developing EUD on a mobile device. Ideally, this should have
been included in the search string to narrow the number of results and increase the
precision and recall.

When selecting end user development techniques there were several aspects de-
manding the team’s focus. First, the limitation due to device restrictions. No tra-
ditional mice and keyboard forces touch elements to be bigger and minimize text
input from a touch keyboard. Second, the limited screen size requires thought-
through solutions for optimal touch interaction and usability. Third, the perfor-
mance aspect where users expect applications to be quick and responsive, few bugs
and no application crashes. Finally, the challenge with several mobile platforms
and many screen resolutions. The problem definition specifies to make use of An-
droid. Regarding the screen resolution, the team decided that it is easier to scale
up than down. By using dynamic dimensions RAPT will work fine on a tablet, but
not optimal.

By developing a mobile application instead of a desktop or website solution,
it limits suitable type of end user development technique. However, the process
of selecting techniques started with brainstorming and wireframe drafts. Due to
general population’s intuitiveness and familiarity with touch on a mobile device,
drag and drop were selected as a technique.

4.9 App Store

According to [52], an app store (application store) ”refers to an online shop where
customers can purchase and download various software applications. The apps
sold through app stores are usually intended for mobile devices. App stores are
cloud-based in the sense that users access the content via free client software or a
Web browser.” Moreover, ”Apps are extremely popular among smartphone users
(. . .). The mobile app market reached nearly $7 billion in 2010 and is expected to
grow to $15 billion by 2015.”

The precursors of app store was among others packet mangers, mainly connected
to Linux distributions [53]. However, Apple originally created the term ”app store”
in 2007. Later, the court deemed the term as a descriptive term rather than Apple
specific [54]. Not only is app store a concept of revenue and proliferation, but it
has become a way for users to take part in the development, increase diversity and
introduce aspects that corporations behind the app store ignored or forgot.

Having a RAPT app store would greatly increase the functionality of RAPT.
Being able to download apps other people already have created gives RAPT another
field of application. An app store could be used to share apps with friends, used as
inspiration for new apps, or used by large groups or companies to publish updates
to their apps.

The team had to make a decision on what information to store in app store.
During the early stages of development of RAPT, the idea was to upload compiled,
generated sketches to the app store. This idea was rejected because users would
not be able to look at or modify the app’s rules when loading an app from app
store. Another problem was IP addresses of the Arduino boards included in the

4.9. APP STORE 39

app, as IP addresses are found before compiling each sketch. These IP addresses
would be hard-coded into the apps in app store, making the app unusable for the
users installing the app from app store.

Based on requirements from the scenarios analysis, the team decided to go for
an app store where only rules were stored. Users can publish apps to app store
without generating or compiling the app first. This is great for users who do not
want to install the app on his/her device, but only share it with others.

40 CHAPTER 4. PROPOSED SOLUTION

Chapter 5

Development

5.1 Introduction

This chapter will provide technical aspects of the proposed solution RAPT. First,
the architecture including data flow and description of particular parts and class
diagrams. Second, this chapter provides more in-depth details of selected technical
solutions in the section Design. Third, presumptions are explained, and finally,
this chapter looks into software and compatibility issues.

Figure 5.1: Report structure: Development

5.2 Architecture

5.2.1 Introduction

This chapter will describe how RAPT is constructed from a detailed perspective.
However, instead of going into detail about each class and activity in the system,
this chapter will explain data flow, graphical user interface, generator, compila-
tion server and Bluetooth communication. Data flow between these parts is first
described and illustrated. Thereafter, each of the mentioned elements are given
attention in a separate section. At the end, we find the most detailed diagram, the
class diagram.

5.2.2 Data Flow

The high-level client architecture is based a layered approach. This type of architec-
ture splits the responsibility of each layer preventing high coupling and increasing

41

42 CHAPTER 5. DEVELOPMENT

reusability. This makes it easier to develop and deploy parts of the system if needed,
as well as change and further develop only selected components.

Figure 5.2: Flow diagram

Figure 5.2 illustrates how the system handles information flow. When a user
creates a new app, the mobile phone searches and for nearby Arduino boards.
RAPT’s compiled sketches are uploaded to the discovered Arduino boards. Com-
pilation of sketches happens externally on a server. Sketches are sent to this server
and compiled sketches are returned to RAPT. Before uploading a compiled sketch
to the Arduino board, RAPT prompts the user for Service Set Identifier (SSID) and
password if the created app makes use of a WiFi component. SSID and password
are sent to the Arduino board, which returns the given IP address. The messages
are set to UDP (User Datagram Protocol) packets due a lower total roundtrip
time. The wireless network information is then integrated into the created app
(for example, it is needed to receive external messages and communication directly
between boards). Thereafter, the compilation server is contacted for each sketch
that is to be compiled, and the returned compiled code is uploaded individually to
each Arduino board.

The flow sequence when installing an app is described in Figure 4.13.
Figure 5.3 explains in a simplified version how the user interface is connected

to other components. ConfigureRules is the activity that handles the main screen
where users can drag and drop sensors and actuators. The diagram does not
necessary represent the exact coupling, however, it gives the idea of how main
components are connected. ConfigureRules instantiates Bluetooth, RulesIntaller
and several listeners that handles touch effects on the screen. In addition, Con-

5.2. ARCHITECTURE 43

Figure 5.3: Components and their connections

figureRules make use of the help class ElementConnector to extract information
from data objects, and to save changes to these objects. The following sections will
cover the most important about these classes.

5.2.3 Graphical User Interface

The main functionality of the graphical user interface is to handle user input (espe-
cially drag and drop functionality). When a user drag at least one condition, one
action and connect them together, it creates a rule. These rules are constructed in
order for the generator to generate cpp-code that can run on an Arduino compiler.
The graphical user interface, mainly ConfigureRules, is the junction for most of
the functionality of RAPT, as well as to control that valid user input is received,
and give the user a proper feedback on his or her actions.

44 CHAPTER 5. DEVELOPMENT

5.2.4 Generator

The generator generates cpp-code based on rules. These rules are created according
to state of sensors, actuators, their configurations and their connections in the
user interface. When building the cpp-code, the generator reads text files that
contains predefined cpp-code. These text files are located in the folders actions
and conditions in the path: android-toolkit/assets/configurations. An example of
output from the generator can be found in Appendix G.2.

5.2.5 Compilation Server

The compilation server is a remote server that receives cpp-code (Sketches), and
returns the compiled code (Compiled code) as hexadecimal characters. Appendix
F holds the code that executes the compilation. Our implemented compilation
server uses AVR [55], which is the same as the Arduino IDE compiler [56].

The server is partially outside the scope of this master dissertation, however, a
necessity to hide data streams from the user and improve user experience. There-
fore, we have not implemented a scalable version with extra functions such as
response messages or support of other operating systems than Windows.

The server is a Python server that execute a batch script (See Appendix F).
The server also writes received data to a text file, which for example could look
like the code in Appendix G.2.

5.2.6 Bluetooth Connection

Bluetooth connections are used when uploading, getting IP addresses, and when
searching for nearby Arduino boards. For uploading to an Arduino board via Blue-
tooth, the system utilizes the stk500 for uploading compiled sketches to Arduino
boards.

A precondition, in order to make the upload work, the ComputerSerial library
must already be imported to the Arduino boards’ memory (that is, a running sketch
with a ComputerSerial import), due to use of STK500. STK500 has set this as a
requirement.

5.2.7 Class Diagrams

This section presents RAPT’s class diagram, divided in five different diagrams.
The two first, Figure 5.4 and Figure 5.5, show the main data objects. Thereafter,
Figure 5.6 shows how readers and parsers are implemented, followed by help classes
in Figure 5.7 and Appstore classes in Figure 5.8. Graphics and Android activities
(which also mainly represent user interfaces) are excludes. These are hardly rele-
vant, in addition to the huge amount of space it would require. Furthermore, most
of the classes implements the Java interface Serializable, however, the extent of
extra arrows lead to exclude them.

5.2. ARCHITECTURE 45

Figure 5.4: Class diagram: Objects, part 1

46 CHAPTER 5. DEVELOPMENT

Figure 5.5: Class diagram: Objects, part 2

5.2. ARCHITECTURE 47

Figure 5.6: Class diagram: Parses and Readers

48 CHAPTER 5. DEVELOPMENT

Figure 5.7: Class diagram: Help Classes

5.2. ARCHITECTURE 49

Figure 5.8: Class diagram: Appstore Classes

50 CHAPTER 5. DEVELOPMENT

5.3 Design

5.3.1 STK500 and ComputerSerial

RAPT uses the java implementation of the STK500 [47] protocol to deploy compiled
sketches, generated by the cpp-code generator and compiled by the compile server,
to Arduino boards. This java implementation uses the ComputerSerial library [57]
to trigger a soft reset of the Arduino board. The process of uploading the compiled
sketch with STK500 is abstracted into a method call which returns a result based
on the success of the upload done. We use this result to give feedback to the user,
and cancels any further uploads if the result if negative.

5.3.2 XML Parsers

There are two different types of XML content in RAPT. They both use the FolderScanner-
class (which scans a selected folder for files), and implements the XmlPullParser
library [58]. XmlPullParser reads XML files, and the parsers, DeviceParser and
HardwareSeupParser, create Java-objects from XML files.

There are several XML-parser libraries for Java-based environment such as An-
droid. XmlPullParser is not the easiest nor cleanest. However, XmlPullParser
is small (118 KB) and at the same time fast, which is possibly two of the most
important criteria when working on mobile applications.

The reasons behind use of XML files are reusability and to give future de-
velopers an easy way to add representations of Arduino boards, in addition to
add new functionality to a device. Figure X presents a snippet of how to add
a new board representation as an XML file. This file is in the folder: android-
toolkit/assets/boardTypes.

A led, green, is connected to pin 11 at a board called Alfa as is described in the
following snippet:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <board>
3 <name>Alfa</name>
4 <description>Has wireless network, 2 buttons, 1 RFID

reader and 1 yellow led</description>
5 <devices>
6 <device>
7 <type>LED</type>
8 <text>Green</text>
9 <pins>

10 <pinmode>OUTPUT</pinmode>
11 <pinnumber>11</pinnumber>
12 </pins>
13 </device>
14 </devices>
15 </board>

5.3. DESIGN 51

The next snipped shows how an XML file representing functionality. This file
is located in the folder: android-toolkit/assets/devices.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <devices>
3 <device>
4 <type>led</type>
5 <action>
6 <name>switchf</name>
7 <guiName>Switch led</guiName>
8 </action>
9 </device>

10 </devices>

Text files with code used by the generator are needed as well when adding new
functionality. is needed as well when adding new functionality. This is located in
the folders ”actions” or ”conditions” in android-toolkit/assets/configurations.

The code below is the cpp-code for the switch function declared in the XML
above, written in a text file that is read by the generator.

1 void switchf(int pin) {

2 if (digitalRead(pin) == LOW) {

3 digitalWrite(pin, HIGH);

4 } else {

5 digitalWrite(pin, LOW);

6 }

7 }

In the current version, one must open the unpacked version of RAPT and
redeploy the application to the phone in order to add new board representations or
add or change functionality. In Section 7.4 there is more about how make the end
user able to further develop RAPT’s functions without the need for redeploying
the application.

5.3.3 Generator

The generator is designed to generate sketches based on rules created by the RAPT
user. Logic in RAPT’s GUI forces rules to only have one condition, still, the genera-
tor is designed to handle multiple conditions and actions in one rule. The generator
produces sketches by combining pre-defined cpp-code and the rules created through
GUI.

Generated sketches can be split into seven parts; imports, class declarations,
variable declarations, the setup function, the loop function, device functions, and
the serial event function. Imports and the serial event function are defined within
the generator class itself while the rest are defined in text files. There are two
serial event functions, and depending on whether an Arduino board has a WiFi
device or not, one of the versions is added. If the board representation has a WiFi

52 CHAPTER 5. DEVELOPMENT

device, the WiFlyHQ library [59] is imported. In addition, the serial event function
of the sketch will support looking up IP addresses. More about the IP address
handling can be found in Section 5.3.4. The ComputerSerial library [57] and the
SoftwareSerial library [60] are always imported, as these libraries are required by
all generated sketches.

The setup function is executed each time the Arduino board restarts. If the
board representation contains a WiFi device, the generated setup function includes
code for connecting to a WiFi network.

The class declarations, variable declarations, the setup function, the loop func-
tion and device functions, are fully or partially generated by combining cpp-code
from text files. Each configuration (a condition or an action) in a rule can have up
to five text files with code, one text file for each part of the sketch.

Examples of device functions are blink (function of led device) and button-
Pressed (function of button device). The code below show the content of the text
file for a led’s blink function.

1 void blink(int pin, int timeon, int timeoff, class Long& time, class

Continuous& continuous) {

2 if (digitalRead(pin) == HIGH && time.t + timeon < millis()) {

3 time.t = millis();

4 digitalWrite(pin, LOW);

5 }

6 else if (digitalRead(pin) == LOW && time.t + timeoff < millis()) {

7 time.t = millis();

8 digitalWrite(pin, HIGH);

9 }

10 }

The main part of each sketch is the loop function. The loop function loops
consecutively when an Arduino board is powered. The loop function primarily
consists of if-sentences. An example of a loop including one if-sentence is shown
below.

1 void loop(){

2 previousState18 = state18;

3 state18 = digitalRead(buttonPressed18_10);

4

5 if (buttonPressed(buttonPressed18_10, state18, previousState18)){

6 switchf(switchf15_9);

7 led(led16_8, HIGH);

8 }

9 }

Each if-sentence in the loop represents one rule. The code above does the
following: When a button is pressed, a led (led device with ID 15, connected to
pin 9 on the Arduino board) should switch (turn on or off depending on its current
state). In addition to switching a led, the button pressed should also turn on
another led (led device with ID 16, connected to pin 8 on the Arduino board).

5.3. DESIGN 53

The switchf() and led() functions are only called once, when the buttonPressed()
function returns true. Each time the user presses the button, true is returned only
once.

An additional feature is that a device function can be declared as continuous in
the XML files. As opposed to the standard non-existing or “false”, when continuous
is set to “true”, it ensures that the function is called several times: A new method
call in every loop before the variable is set to false. For example, when a button
is pressed, a led should turn on for five seconds before turning off. By declaring
a function continuous, the rules will be represented by two if-sentences instead of
one.

To end the loop method call, the variable is set to false by the clearLED3()
function, or from within the flash function after five seconds have passed. The
complete sketch generated by this app can be found in Appendix G. The code
below are taken from the loop function of a sketch generated based on this app.

1 if (flash37Continuous.b == true) {

2 flash(flash3_11, 5000, time37, flash37Continuous);

3 }

4 if (buttonPressed(buttonPressed4_10, state4, previousState4)){

5 clearLED3();

6 flash37Continuous.b = true;

7 }

The generator ensures that no conflict occurs when rules include several usages
of the same device function. For example the generator needs to handle two leds
blinking simultaneously in the same sketch. This is handled by parameterisation,
in addition to include markers in text file code. All variables are declared in
the variable declaration text file belonging to each device function and they are
parameters of the corresponding device function. The markers are used to generate
unique variables for each configuration or device. An example code using markers
are shown below. The code is taken from the variable declaration text file for the
buttonPressed function.

1 int #d[state]d#;

2 int #d[previousState]d# = LOW;

The tags for creating unique variables are ”#d[” and ”]d#”, and ”#c[” and
”]c#”. The ”#d[” and the ”#c[” tags are start tags, and the ”]d#” and ”]c#” are
the end tags. The text between the start and end tag is the variable name. The
generator searches for these tags, and creates sketch variables based on each variable
combined with a unique number. The ”d” notation represent that a variable should
be unique for the device, while the ”c” notation is a variable that is unique to the
configuration. The code below presents an example of generated variables.

1 int state18;

2 int previousState18 = LOW;

54 CHAPTER 5. DEVELOPMENT

To exclude a variable from being a parameter, use the special character (ˆ). A
variable that will be included in the sketch, but not given as a parameter to the
device function, is shown in the code below.

1 Long #d[^startTime]d# = Long(0);

5.3.4 WiFi and IP Address Handling

For connections between Arduino boards, there need to be an identifier and a
transfer protocol. The team has implemented functions for sending messages over
wireless network, thus, enabling conditions and actions on different Arduino boards.
At the same time, this solution makes it possible to contact other devices with
Internet connection. The implementation is explained in the following paragraphs.

RAPT sends, via Bluetooth, a flag to the Arduino board to indicate that the
next messages will contain a Service Set Identifier (SSID) and a password. For
the Arduino board to be able to proper handle this information, our overridden
method of SerialEvent() must be present in the running sketch. This method is
attached in Appendix G.3.

On receiving SSID and password, the Arduino board, will try to connect to
the wireless network. Upon success the given IP address is return to RAPT via
Bluetooth. If the network settings are wrong, or the Arduino board is not able to
connect for some other reason, the Arduino board returns the string “null”.

The returned IP address is used as a destination address. For example, “board1”
has a button and when pressed a led should be turned on at “board2”. The desti-
nation address for the button pressed at “board1” is the IP address to “board2”.
This IP address is a part of the compiled sketch. The port of WiFly components
used by the Arduino boards is defaulted to 2000. The following code snippet rep-
resent an RFID tag reading, which leads to a message being sent to the IP address
10.0.0.8.

1 if (rfidread(" 010B9900D546,", readTag6)){

2 sendMessage("10.0.0.8", 2000,

"AutomaticSendMessage-Source:28-target:20-con:7");

3 }

However, there are some issues with this approach. For example, if an Arduino
board, connected to a wireless network, receives a new IP address from the access
point, the sketch needs to be recompiled with the new IP address. Usually access
points try to give the same network device the same IP address, but there is no
guarantee, especially if the access point is reset.

As a temporally solution the access point can be set to give out static IP
addresses instead of dynamically.

A possible long term solution could be to implement a separate server with an
IP routing table.

For one Arduino board to be able to communicate with another Arduino board,

5.3. DESIGN 55

the Arduino boards needs to have an IP in order to send and receive messages. To
be able to send messages directly to the Arduino boards, it also requires knowledge
of the other Arduino board’s IP address. To increase usability, the team removed
the need for a user to set IP addresses manually. This would cause unwanted
complexity.

When users wants to create a rule that involves devices from different boards,
the only action necessary is to connect the devices with an arrow. In the back-
ground, not visible for the user, two rules are created. Rule one is for the selected
sensor device’s board. The rule consists of selected sensor device with a send mes-
sage as an actuator. Rule two is for the second board. Here, a receive message is
the sensor and the action is the selected actuator device the user selected. Send
message in rule one contains an ID that maps to the receive message in rule two.
This ensures correct action being executed. When installing the configuration, rule
one is in board one’s sketch and rule two is in the sketch installed on board two.

5.3.5 App Store

RAPT has a stubbed implementation of an app store where data is stored locally.
Saved data (in RAPT app store) is only stored in memory, thus, deleted when the
memory is cleared or overridden. A full implementation of a complete app store is
outside the scope of this master dissertation, however, the benefits of an app store
can be extremely valuable for the end user as described in 4.9.

To override the current connection to the stubbed application store, locate
AppServerConnection class, and make an implementation of this interface. Fur-
thermore, in AppStore’s and AppStoreConfiguration’s onCreate methods, replace
the instantiation of AppServerConnectionStub with your implementation. Frist,
make an implementation of AppServerConnection.

1 public interface AppServerConnection {

2 public byte[] save(byte[] savedToolkitApplication);

3 public byte[] delete(byte[] savedToolkitApplication);

4 public byte[] getAllApplications();

5 public byte[] getApplicationsIncludingName(byte[] names);

6 public byte[] getExactHardwareNames(byte[] names);

7 public byte[] getAllBoardTypeNames();

8 }

To for transformation from and to byte array, use Serialization.serializeObject()
and Serialization.deserialize() methods. Note: It is essential to use the same under-
lying methods for serialization at server side as well as client side. These methods
are:

1 // Serialization

2 ObjectOutputStream out = new ObjectOutputStream(byteStream);

3 out.writeObject(object);

4

5 // Deserialization

56 CHAPTER 5. DEVELOPMENT

6 ObjectInputStream in = new ObjectInputStream(new

ByteArrayInputStream(byteArray));

7 object = in.readObject();

However, if there is no need to extract the data server side, the data can be
stored binary without the need to use the specific serialization methods.

Thereafter, replace AppServerConnectionStub with your implementation:

1 @Override

2 protected void onCreate(Bundle savedInstanceState) {

3 super.onCreate(savedInstanceState);

4 //Some other code

5 appServerConnection = new AppServerConnectionStub();

6 //Some other code

7 }

5.4 Presumptions

RAPT is designed for non-technical users, and therefore, we cannot expect users
to be able to configure their own device (wiring) or create corresponding XML
files. RAPT comes with a set of predefined board types. RAPT identifies the
board type of an Arduino board by looking at the name of the Arduino board’s
Bluetooth device. The user must have acquired the configuration file (XML file)
belonging to the Arduino board (for example from an external vendor). See Section
7.4.3 on how optimise this process.

The user can only use Arduino boards in RAPT if the Bluetooth device on the
Arduino board is paired with the user’s mobile phone. Therefore, the user needs
to pair Arduino boards with the phone before creating or installing apps.

To be able to upload a sketch via Bluetooth, there must be a running app on
the Arduino board that imports the ComputerSerial library [60]. Section 5.5.1.1
describes the needs and benefits to this library. A guide on how to install a sketch
with the ComputerSerial library is attached within Appendix C.2.2.

5.5 Issues

5.5.1 Compatibility issues

5.5.1.1 Serial Ports

Arduino Uno has only one hardware serial port. Yet, several components such as
Bluetooth components, WiFi components and RFID readers, need a serial port
to function. To solve the issue of having too few serial ports, the SoftwareSerial
library [60] allows us to add several serial ports. However, Arduino Uno, can only
listen to a total of two serial ports at the same time. In comparison, Arduino Mega
has 4 hardware ports. This limitation of Arduino Uno affect RAPT by limiting

5.5. ISSUES 57

the number of components that make use of a serial port to two. The Bluetooth
transfer claims one serial port, which means that only one more serial port is
available. The WiFi device and the RFID device both need a serial port. The
result is, apps can only have one RFID reader or one WiFi sensor (WiFi device
that receives messages) at each Arduino Uno board in addition to the Bluetooth
device.

5.5.1.2 WiFly

When WiFly components (WiFi device) are requesting an IP address from the local
WiFi network, it sometimes fails to connect to the WiFi network even though the
SSID and passphrase are correct. Furthermore, the WiFly device seems not to be
able to reset and try again. A restart of the Arduino board, or a new sketch upload
are needed to fix the problem.

5.5.2 Software issues

5.5.2.1 WiFi device without IP lookup

This issue is regarding Arduino boards that contain a WiFi device, but does not
have the WiFi component specified in the configuration (defined in the correspond-
ing XML file). If the configuration is changed to a configuration with the WiFi
component, there will not be possible to get the IP address.

This is somewhat a rare issue, however, still an issue when encountered.
An example of how to encounter the issue: Select ”Advanced mode”, choose a

board type without a WiFi device. Create an app and select upload. Since the
selected board type does not contain a WiFi device, the sketch will not include WiFi
lookup (as defined in Appendix G.3). In this case, we have an Arduino board with
a WiFi device that does not support IP lookup. Next time the user selects a board
type that includes the WiFi device, the user will get the following message when
trying to install the app: “Error: The app you are trying to install require a board
with WiFi device. If the board you are trying to install on have a WiFi device,
please install an app that does not require WiFi to fix this problem.” In order to
solve this issue, the user must upload an app that does not make use of the WiFi
device, but still have the WiFi device explicit defined in the configuration (XML
file). This new sketch will include the ”IP lookup” method (found in Appendix
G.3). RAPT needs this method to be available to retrieve the given IP address, to
handle wireless network connections.

58 CHAPTER 5. DEVELOPMENT

Chapter 6

Evaluation and Validation

6.1 Introduction

This chapter presents iterative design which describes iterations during the project,
in addition to give a short insight to early versions of RAPT. Thereafter, the
usability test is described with a background section, an execution section, a result
section, and findings and recommendations in the last section. At the end, this
chapter gives a conceptual validation of the scenarios, presented with screenshots.

Figure 6.1: Report structure: Evaluation and Validation

6.2 Iterative Design

The team has applied Lean and its principles during the project period. As a result,
several prototype demonstrations have been held for the supervisor. The supervisor
provided the team with feedback and thoughts on how to continue develop RAPT
in the upcoming iteration. The focus on the demonstrations has always been the
graphical user interface and how RAPT appears from a user perspective. Each
release of a new version has always been based on feedback from previous iterations,
and any comments the supervisor has given.

In this paragraph four versions of the graphical user interface in RAPT are
presented. Note that only the rule creation space is displayed. The first work-
ing graphical user interface is displayed in Figure D.1. The focus in this version
was to display sensors and actuators and implement a simplified drag and drop
functionality.

The second version, displayed in Figure D.2, emphasized that one sensor triggers
an action event.

59

60 CHAPTER 6. EVALUATION AND VALIDATION

A complete redesign was decided for the third version, displayed in Figure D.3.
The sensor and actuator containers have been placed vertically on each side of the
rule container and the devices can now be connected by users drawing arrows.

The final version has been updated with a new colour theme, redesign of the
toolbar and new navigation. A figure of the final version is presented in Figure
D.4.

6.3 Final Evaluation

6.3.1 Background Summary

This section describes a usability test of RAPT conducted on 24 and 25 April 2014
at St. Olavs Hospital in Trondheim, Norway. The test consisted of four parts;
first, an interview with the test subject focusing on collecting demographic data,
second, the test subjects were given tasks to complete, third, another interview
focused on the tasks and how the test subjects completed them, and finally, the
test subjects was given a simplified System Usability Scale (SUS) questionnaire
[61]. SUS consists of ten statements with five response options. The test team
simplified the questionnaire by removing three statements that was considered not
applicable to this usability test of RAPT. The response option for each statement
represents the test subject’s agreement with the statement, from strongly agree to
strongly disagree. The tasks and SUS questionnaire can be found in Appendix E.
Declaration of consent was signed at the beginning of the first interview and can
be found in Appendix E.4. The usability test and its tasks were primarily focused
on the test subject’s understanding of the main functionality of RAPT: to create
apps. The test was conducted in a usability test lab, with both video and sound
recorded. The equipment used during the test was three Arduino boards and two
Samsung S4 mobile phones. One of the mobile phones was running RAPT, the
other was used a WiFi hotspot. The test team conducting the test consisted of
Anders Palfi and Haakon Svendsen Sønsteby.

6.3.2 Test Execution

The test location consisted of the two rooms, one room that the tasks were executed
and the interviews were done, another room for cameras, recording, and audio
control. The test subjects were first presented the camera room, and the test team
showed the test subjects where the cameras were mounted. The first camera was
placed straight above the table where the test subjects were seated zooming onto
the mobile phone’s screen. The second camera was placed so it could record an
overview of the scene.

The test layout consisted of two mobile phones, three SINTEF RFID access
cards, and three Arduino boards. The mobile phone running RAPT, was laying
on the table in front of a chair where the test subject was seated. Three Arduino
boards were placed in front of the mobile phone within arm reach of the test subject.

6.3. FINAL EVALUATION 61

The other mobile phone was placed on the other side of the table. This phone was
working as WiFi hotspot.

When the test started one of test team members went to the camera room.
The other test team member explained the test structure, what an Arduino board
is, what a usability test is, and what are being tested. In addition, the test team
member answered any questions the test subject had. The test subject was also
given a small introduction to this master dissertation, problem description and how
the team is trying to solve the problem by creating RAPT. This introduction was
not technical as it is important not to overwhelm the test subject. The test member
told the test subject to explain what they were thinking during the execution of
the tasks, both positive and negative thoughts. The test team had estimated 45
minutes for each test subject.

During the execution of the test tasks one of the test team members was seated
next to the test subject. The test subject was told that this person could not help,
but could answer questions if the test subject did not understand the tasks given.
The test team member could also guide the test subject if the test subject was
completely stuck on a task. The other member of the team was in the camera
room taking notes, recording, and controlling cameras. Pictures displaying the
usability test is presented in Figure 6.2 and Figure 6.3.

Figure 6.2: Test subject and team member

The test started with a short introduction interview where the test team col-
lected demographic data. Ten people, six female and four male, were the test
subject group of the usability test. A wide spread of professions were chosen be-
cause one of the goals of RAPT is that everyone, that knows how to use a mobile
phone with touch screen, should be able to create apps. The test subject group
primarily consisted of students, due to them being most easy to recruit. Majority
of the test subjects were students, therefore, the average age were early- or mid-
twenties. All test subjects characterised their mobile usage as normal. There was
both people with experience with Android and iOS in the test subject group. Only
one test subject had previous experience with programming. An overview of the
test subjects are presented in Table 6.1.

62 CHAPTER 6. EVALUATION AND VALIDATION

Figure 6.3: Camera control room

After the introduction, the main part of the test began. One task at a time was
given to the test subject. This was done to not confuse the test subjects with a
paper with too much text, as this could lead the test subjects to feel overwhelmed.
The test subject was not told the total number of tasks because it could have
stressed the test subject to complete tasks quick. The test subject had to complete
their current task to get the next task. The least complex task was given first. Each
new task handed to the test subject increase the complexity. The first task was to
complete the tutorial. The test team decided to start with the tutorial, because
the tutorial is an introduction to how to create apps. If the test subject was on
a task that needed WiFi authentication information (SSID and password), they
were given the information needed on a paper note. If the test subject was stuck a
task, the team member guided him/her on how to complete it. If the test subject
needed guidance on a task, the task was deemed not completed. Even though the
test subject used several tries, or felt confused, before finishing a task, the task was
still considered completed. If the test subject completed the task on the first try,
and without being confused, the task execution was considered successful.

The third part of the test was an interview focusing on the tasks and the
difficulties that had occurred during the test. The test member that had been
sitting in the camera room now joined the other test member and the test subject
to discuss findings. During the task execution, the team member in the camera
room had been observing and taking notes, besides controlling the cameras and
audio. These notes were used during the discussion with the test subject. The
test subject was asked what was inconsistent and difficult, and what was easy and
intuitive. In addition, the test subject had the opportunity give suggestions that
could solve the difficulties that he/she experienced.

After the interview, the test subject answered a SUS questionnaire. The ques-

6.3. FINAL EVALUATION 63

tionnaire can be found in Appendix E.2. The test team explained the test subject
that the questionnaire was anonymous, and honest answers were both preferred
and a necessity for further development of RAPT.

Test
subject
number

Age Gender Profession Mobile
oper-
ating
system

1 23 Female Studying master’s degree in Indus-
trial Design

Android

2 24 Male Studying master’s degree in Geology iOS
3 24 Female Studying master’s degree in Natural

Science with Teacher Educationn
Android

4 19 Male Studying bachelor’s degree in Infor-
matics

Android

5 24 Female Studying master’s degree in Natural
Science with Teacher Education

Android

6 24 Male Finished a master’s degree in
Civil and Environmental Engineer-
ing. Currently a studying a year of
pedagogy

Android

7 25 Female Studying master’s degree in Special
Pedagogy

Android

8 23 Female Taking preliminary courses to
higher education

iOS

9 49 Male Working as a doctor at St. Olavs
Hospital in Trondheim

iOS

10 24 Female Studying master’s degree in Natural
Science with Teacher Education

iOS

Table 6.1: Test subject demographics

6.3.3 Test Results

Test results are based on an interview done after the test subject had executed all
the tasks, and notes taken by test team members during task execution, In addition,
the SUS questionnaire, and recordings of the test is used in the test results. The
first task have been ignored due to the task only focusing on the tutorial giving
the user an introduction to RAPT.

There are limitations of the test results. The majority of the test subject group
were students. They were recruited from a broad spectre of field of studies, but
very with very little variation regarding age. Ideally, the test group should have a
broad variation of both age, profession, and smartphone usage.

The usability test was conducted in a lab. This is an artificial context for
the test subjects and might place them outside their comfort zone. The idea of

64 CHAPTER 6. EVALUATION AND VALIDATION

Figure 6.4: Complete rate by task

cameras recording every movement does not help the test subject to feel more
comfortable. In addition, people often have a pattern on how and when they use
their smartphone. Sitting in a silenced lab with curtains closed does not make
them feel at home.

Figure 6.5: Complete rate by test subject

By a few occasions, RAPT crashed during the usability test. The test team
member sitting next to the test subject paused the test and restarted RAPT.

6.3. FINAL EVALUATION 65

Figure 6.6: Success rate by task

Although, this do not affect the rest results directly, it forces the user to start over
and might have affected the results indirectly.

The requirements for a task to be considered completed is that the test subject
managed to solve the task, even after multiple tries. Task not completed due to time
constraint have been excluded when calculating complete rate by task. Complete
rate are illustrated in Figure 6.4 and Figure 6.5.

The usability test has shown that some test subjects managed to complete all
tasks within the given time constraint. Test subject five and seven failed one tasks
each because they did not manage to solve the task without guidance from the test
team. Test subject two and seven did not finish task six, in addition to test subject
9 who did not complete both task five and six. The reason the three test subjects
did not finishing the tasks was the 45 minutes time constraints given to each test
subject.

For a task execution to be included in the success rate, the test subject must
complete the task on the first try without being confused. Tasks not completed
due to time constraints have not been included when calculating success rates by
task. Success rates are presented in Figure 6.6 and Figure 6.7.

The task with the highest success rate are task six. This task was considered
the most difficult of all the tasks by the test team. During this task the user had
to create two rules on the same board representation, both rules using the same
RFID reader, but depending on the RFID card read different led should flash. All
seven test subjects that was given this task completed it successfully. The least
successfully completed task was task four. This task was the only task that forced
the user to create an app including multiple board representations. Only one out of
ten test subjects managed to complete task on the first try without being confused.

The results of the SUS questionnaire can be found in Appendix E.3.

66 CHAPTER 6. EVALUATION AND VALIDATION

Figure 6.7: Success rate by test subject

6.3.4 Findings and Recommendations

The task most test subjects had difficulties solving was task four. The problem
test subjects had during this task was creating rules including multiple board rep-
resentations. The test subjects did not find the speaker device belonging to the
second board representation when they had dragged in a button device from the
first board representation. Some test subjects said in the second interview, done
after the tasks, that they did not manage to navigate to the second board repre-
sentation. Others said they were certain the button they had already dragged from
the first board representation would be removed when switching between board
representations. Even though many found switching between board representa-
tions difficult at first, they thought the current solution is a good solution after
they first had learnt it. The test team was recommended to implement a button
on the task bar that should be used for switching between board representations,
as some test subjects felt the need for button with this functionality.

Almost all test subjects were confused during the installation process after
loading an app from RAPT app store. The test subjects that had chosen an app
that required only one Arduino board managed to pair board representation with
the correct Arduino board. Test subjects that had chosen an app that required
two Arduino boards was confused with the board settings screen, where they had
to pair both boards representations with the correct Arduino boards. The board
settings screen are shown in Figure 6.8. Many test subjects thought they had to
tell RAPT which Arduino boards should communicate with each other. Therefore,
the two sketches generated during installation was installed on the wrong Arduino
boards. The test team did not manage to get feedback on how to solve this problem,
but some test subjects mentioned they were surprised that the installation process

6.3. FINAL EVALUATION 67

differed from the installation process on previous tasks.

Figure 6.8: Board settings when installing app that requires multiple board repre-
sentations

The test team observed that the test subjects had an easy time creating apps.
Dragging devices from the sensor and actuator containers into the rule container
to create rules, was intuitive as all members of the test subject group managed
this. Connecting devices together was also easy for the majority of test subjects,
as well as removing devices from the rule container. A few test subjects were
confused when they were given the task to rearrange the layout of a rule. The
test subjects did not understand what the different editor modes were, and how to
switch between them. A few test subjects clicked the connect devices mode button
between every action. From observation it seemed plausible that there is three
possible reasons for these problems. First, test subjects did not understand which
buttons switched between modes. Second, test subjects did not understand which
mode were currently active. Finally, test subjects did not know that there were
any modes at all. The mode buttons are presented with a red outline in Figure 6.9.
Recommended improvement to solve the difficulties surrounding editor modes are
making the mode buttons more intuitive, or focusing more on the different modes
in the tutorial.

Multiple test subjects told the test team during the second interview that they
thought RAPT was easy to use once learnt. This is reflected in the success rate of
task six where every test subject handed this task completed it successfully, even
though they had problems on previous, easier tasks. The success rate of task six
can indicate that the previous tasks where harder than task six even though the
app created in task six where more complex compared apps created in previous
tasks. Another indication, test subjects learnt the system quick and found it easy

68 CHAPTER 6. EVALUATION AND VALIDATION

Figure 6.9: Outlined mode buttons

to use. In addition, the results from the SUS questionnaire found in Appendix E.3
indicates that the test subjects found RAPT easy to learn.

6.4 Conceptual Validation

To validate that RAPT has implemented necessary requirements, this section will
present apps created for all three scenarios. With RAPT’s current device sup-
port it is not possible to fully implement the apps for home assistance scenario or
restaurant scenario, as some of the devices needed for these scenarios are not imple-
mented. Apps for these scenarios will be presented, with the missing devices added
as GUI elements. No underlying functionality for these devices is implemented.

Restaurant

To implement the restaurant scenario, the following devices are needed; an RFID
reader, one RFID tag for each dish, a green led, a screen, a button, a yellow led
and two Arduino boards with WiFi. Two Arduino board is required because there
is a limit of how many devices that can be wired to an Arduino board. The first
Arduino board contains all devices, except the screen. The screen is wired to the
second Arduino board. The restaurant needs to make use of minimum five rules to
realise the scenario. The app is shown in Figure 6.10.

First rule is with RFID reader as a sensor and send message as an actuator.
The RFID reader is configured to read the RFID tag of a dish. When the tag is
read a message will be sent to the external kitchen server with the dish’s number,
in addition to the table number. For each dish, a new rule is required. Second

6.4. CONCEPTUAL VALIDATION 69

Figure 6.10: Screenshot of restaurant app

rule states that when the first Arduino board receives a specific message from
the kitchen server, the green led will start blinking. In addition, the screen on
the second Arduino board will display the name of the dish ordered. Third rule
consists of a button as a sensor and send message and green led as actuators. The
functionality of this rule is that when the button is pressed for three seconds, the
Arduino board sends a message to the kitchen telling the kitchen that the order
is complete. In addition, turns the green led on. Forth rule is created by using
receive message and yellow led. This rule is configured to turn on the yellow led
for five seconds when the kitchen server sends a message to notify that the food
is ready. The last rule resets the green led and screen to default state. Note that
the current version of RAPT does not support screen device. Screen is a device
that should be supported in later versions. Figure 6.11 displays the screen the user
is presented when configuring a receive message. The text written in the receive
message must be mapped with the messages sent by the kitchen server. Example
of the message sent by the kitchen server when an order has been received could
be “orderReceivedNumber16”. Then the dish with number 16 will be displayed
on the screen when the Arduino board receives this message. Figure 6.12 presents
the interface for configuring a send message. Port, IP and a message is required.
Example of the message text for the first rule can be “orderNumber16Table1”.
When the kitchen server receives a message with the text “orderNumber16Table1”,
it registers this dish as ordered by table 1. After the dish is registered, it sends the
message “orderReceivedNumber16” back to the Arduino board.

70 CHAPTER 6. EVALUATION AND VALIDATION

Figure 6.11: Screenshot of receive message

Figure 6.12: Screenshot of send message

Buddy Notifier

To implement the buddy notifier scenario, the following devices are needed; a
button, a speaker and two Arduino boards with WiFi. As these two boards are
not in the same local network, the messages sent between the Arduino boards are
needed to be specified explicit in the apps. Two apps are needed in this scenario,
one for each board. The first Arduino board needs an app with the rule: When a
button is clicked, send a message to the second Arduino board.

The second board needs an app with the rule: When a specific message (message
with the same text as the message sent by the first board) is received, play a melody
on the speaker. The app for the first board needs the IP address of the second
Arduino board. This can be found by connecting the second board to its WiFi

6.4. CONCEPTUAL VALIDATION 71

Figure 6.13: Screenshot of buddy notifier app

network. The IP address of the Arduino board is then displayed in network settings.
Figure 6.13 presents the two rules. Board representation “Alfa” corresponds to the
first Arduino board and board representation “Bravo” corresponds to the second
Arduino board. Note that the rules are displayed in 6.13 should be split into two
apps, and not just the one app presented.

Home Assistance

To implement the home assistance scenario, following devices are needed; a power
device, a light bulb, a pressure sensor and two Arduino boards with WiFi. The
first Arduino board, with the power device attached, is placed in the kitchen by the
stove. The second Arduino board, with the light bulb and pressure sensor, is placed
in the bedroom. Figure 6.14 presents the app created for this scenario. The first
rule needed is a rule with the power device as a sensor and a light bulb. The power
device is configured to sense if the stove is turned on. If it is turned on a message
will be sent from the kitchen Arduino board, to the Arduino board placed in the
bedroom. When the bedroom Arduino board receives this message the light will
be turned on. Additionally, a second rule is required that configures the pressure
sensor to feel that trigger a send message when it feels pressure. Furthermore, the
light is turned off. This message will be sent to the Arduino board in the kitchen.
When this message is received the power device will turn the stove off.

72 CHAPTER 6. EVALUATION AND VALIDATION

Figure 6.14: Screenshot of home assistance app

Chapter 7

Conclusion

7.1 Introduction

This chapter summarises the dissertation, and discusses results of the usability test
while also adding reflections in hindsight. Moreover, recommendations for further
work and development are presented.

Figure 7.1: Report structure: Conclusion

7.2 Summary

We used systematic mapping study to research and find the state of the art within
tangible user interfaces and end user development. Thereafter, we used the gained
knowledge of the domains as a foundation to create a toolkit to program Arduino
boards through a mobile phone.

Drag and drop became the selected end user development technique after dis-
cussing several techniques discovered in the pre-study. In general, important ben-
efits of drag and drop technique are: It is intuitive, Android or mobile phones in
general have touch screen, as well as the importance to use the most of a limited
screen space.

Findings in the physical user interface domain were among others the impor-
tance of using cognitive advantages and that it often is easy for users to relate to
objects. These are aspects to be aware of and simultaneously exploit. We manually
searched for toolkits that made use of both tangible user interfaces and end user
development to further discover existing implementations within the domains. The
relevant toolkits helped to give insight to both drawbacks and advantages which
contributed to enhanced decision making.

73

74 CHAPTER 7. CONCLUSION

RAPT (Rapid Arduino-Prototyping Toolkit) is our technical implementation.
It is designed for non-technical users to create apps for Arduino boards. RAPT
maps hardware devices on the physical Arduino board with icons representing
these within the graphical user interface. Furthermore, the user can configure the
behaviour on each device. To create an app, the user drag and drops devices and
connect them with arrows to make a sensor active an actuator. Thereafter, the user
is able to install the app on his/her Arduino board via Bluetooth. Alternatively,
the user can search within an app store to find existing apps to further develop or
directly install.

As the final evaluation, a usability test was conducted. The test gave positive
results, indicating that the concept of configuring an Arduino board through a
mobile phone is easy to understand. At the same time, user feedback from the test
provides us with several possible future expansions of RAPT.

7.3 Discussion

This dissertation has performed a usability test on RAPT. The test group consisted
of ten people. They were mostly students with no programming experience. The
age of the people in the test group varied from 19 to 49 years. They were recruited
from a broad spectre of fields of studies. Due to the majority of student in the
test group, the composition was not optimal regarding age and occupation. The
optimal test group would consist of a wider spread of age. Additionally, having
both students and people with regular jobs would be desirable. We believe that the
test results would not be as different from the test results collected. This is because
the test group already had large variations of technical experience. Increasing the
age variety would not significant increase the variations of technical experience.
Therefore, we believe that the parts of the app the test subjects had difficulties
with would not change by increasing the age variety of the test group.

The usability test revealed some areas with room for improvements. There were
especially two design decisions that did not appear intuitive for the test users at
first sight. First issue was switching between board representations, which allow
users to create communication between Arduino boards. Second issue was mapping
board representations to Arduino boards. We were not surprised by test subjects
having these issues, since these parts of RAPT were considered by us to be least
intuitive.

The usability test was expected to find issues and room for improvements. How-
ever, looking at the large picture, a majority of the test persons explicit claimed
that RAPT’s concept was easy to use once learned. No test user had any major is-
sues with using sensors and actuators, and connects them by an arrow. In addition,
results from the system usability scale questionnaire in Appendix E.2 were overall
positive and they indicated that RAPT is developing in the correct direction.

The hardware prototyping platform selection of this master dissertation was
specified to be Arduino (see Section 1.1). There are several microcontrollers on the
market, for instance Raspberry Pi [62] and Beagle Bone Black [63]. Adding support
creating apps using other hardware prototyping platforms (microcontrollers) would

7.4. FURTHER WORK 75

both be a realistic and a useful addition to RAPT.
As presented in [64], adding communication with existing social media and other

social applications would be important in further development of RAPT. Sending
emails, updating status on Facebook, or tweeting by clicking a button or tilting a
physical object would be a great addition to RAPT. These external systems could
also work as sensor devices. For example, a led could start blinking when an email
is received.

7.4 Further Work

7.4.1 Compilation

The current implementation of RAPT uses an external compilation server to com-
pile the generated sketch. Internet connection is therefore required before an app
can be uploaded to an Arduino board. If the compilation is accomplished directly
on the phone, rather than on a server, the Internet requirement would be excluded.
Compiling cpp-code on an Android phone is possible to do as proven by Arduin-
oDroid [40]. However, there are also issues such as the compiler size. Section 3.4.3
elaborates the issues and advantages.

7.4.2 Local Storage

As for now, RAPT does not save data to the file system or other persistent storage.
Saved data, for example drafts and apps in apps store, are saved to the phones
memory. To be able to access saved data later, RAPT’s memory allocation must
be unaltered (for example the garbage collector cannot not to free up this space,
the memory cannot be cleaned up manually, and phone restart cannot happen).
However, this is not a way to save data for longer sessions or persist saved data
over multiple sessions. A useful feature would be to create files on Android’s file
system or use a database.

7.4.3 Devices

RAPT has added some devices (sensors and actuators) with functions that each
device can perform. Pressure sensors, temperature sensors, light sensors, GPS and
motors are examples of devices that should be added as these would be useful when
creating tangible user interfaces with RAPT. In addition, coffee makers, TVs, ovens
and more can with adjustments be future devices.

One of the design choices in RAPT is separation of concerns, with focus on
further development at a later stage. However, there is still need for some further
development to optimize adding new functionality.

All device specifications and their possible functions are separated in XML files,
and the translation code to cpp-code is defined in text files. However, these lies
within the RAPT APK (the application package). To be able to change these
files one must decode the APK-file (or get hands on source code) and redeploy

76 CHAPTER 7. CONCLUSION

the application. For new devices, a corresponding picture must be added as well
(currently in the res/drawable folder). This is too cumbersome for any user. The
goal, the further work, is to save these files outside the application package in
order to use the same deployed version of RAPT. It would be beneficial to create
a download function for the XML- and text files, alternatively read them directly
from an URL. Another solution to get configuration files, for example when RAPT
is launched for the first time, is to make use of QR codes. On the Arduino board’s
box, a QR code can redirect the user to download or read configuration files.

7.4.4 Store Sensor States

To greatly increase complexity of apps created within RAPT, a user could be able
to create apps that can store information about sensors. For example, a triggered
sensor could set a flag, that later could be used to trigger actions. A scenario
could be somebody lying down in the bed and the stove is turned on. These two
conditions then trigger an alarm. More specific, when the stove in the kitchen is
turned on a flag is set, and similar when bedroom’s pressure sensor receives an
input of someone lying there. If both flags are set an alarm will trigger.

7.4.5 Ease Usability

In the current version of RAPT, installing an app to multiple Arduino boards
simultaneously is done in advanced mode. During the user evaluation, see Section
6.3.3, it was clear that manually connecting boards (software) to a corresponding
Arduino board was confusing. There is no doubt that this operation can be made
easier and more intuitive in further improvements of RAPT.

Results from the user evaluation, see Section 6.3.3, also reveal that some users
found it difficult to navigate between different boards in RAPT. Rather than hav-
ing a list of available boards in the Android slide in menu, images of the actual
boards and how they are connected might increase users overall understanding. For
example, one could add a snapshot of nearby boards as a network diagram, with
updated connections as the users draw arrows between board representations.

RFID tags must be specified in the XML file of the boards’ specification, and
new tags cannot be added from within RAPT. For this to be possible. A possible
solution is to create a standard Arduino sketch that reads RFID input and stores
them. This sketch could be uploaded to the Arduino board on user command.
Another possibility is to add the functionality in every generated sketch, as the IP
lookup utility (see Section 5.3.4).

7.4.6 App Store

The app store in RAPT is only a stubbed implementation of what the app store
could be. Having a complete app store with search functions, categories, user rating
and user submitted content would be a logical next step in further development of
RAPT.

7.4. FURTHER WORK 77

7.4.7 IP mapping

To avoid problems if an Arduino board gets an new IP address from the network’s
access point, a solution could be to implement an address resolution protocol (ARP)
[65]. In the current version of RAPT, the IP addresses are set in the compiled code
and the sketch needs to be recompiled if IP addresses change. ARP’s function is to
map MAC addresses with IP addresses, and thereby not be dependent on a static
IP address. This solution is only possible when all the connected devices are within
the same local network.

When the Arduino boards are connected to different network, it is the job of
each network router (if existing) to keep track of the connected devices IP addresses.
However, if the ISP (Internet Service Provider) not offer static IP addresses, a
similar problem as above can occur. A possible solution could be to implement
an own mapping of MAC addresses or another unique name to IP addresses on a
server. The sketch would then be compiled with the unique key (MAC address or
name), and use the server to lookup the current belonging IP address.

78 CHAPTER 7. CONCLUSION

Appendix A

Systematic Mapping Study

79

Systematic Mapping Study of
Tangible User Interfaces in Social

Computing, and End User
Development

May 21, 2014

Authors:
Daniel T. Abrahamsen
Anders Palfi
Haakon S. Sønsteby

Supervisor:
Babak A. Farshchian

Abstract

The progressive research and use of tangible user interfaces, also called
physical user interaction, have revealed major opportunities within the
field of human computer interaction. Types of interfaces are continuing to
emerge and combining these interfaces with the social domain to support
collaboration. Demanding users and a vast increase of data availability
have made it more important than ever to adapt the application to the
users and not the other way around. End user development aims to allow
the user to create, customize and tailor applications, in contrast of hiring
a professional software developer.

This study is a preliminary study for a master dissertation regarding
tangible user interfaces and end user development within the domain of
social computing. This paper conducts a systematic mapping study in
three main fields: End user development, tangible user interfaces and
social computing. The goal of the research was to identify solutions that
are using tangible user interfaces in the domain of social computing, and
gather knowledge regarding characteristics, advantages and challenges of
these different solutions. Furthermore, the paper presents an overview of
various end user development interfaces found in existing solutions, and
strength and weaknesses of these.

45 studies of tangible interfaces and 23 studies of end user develop-
ment were identified. The outcome of this study is a visual map giving
an overview of the research area, classifications of the studies found, in
addition to a literature base to be used for further development.

Keywords: Tangible user interfaces, physical user interfaces, social computing,
social software, end user development, end user customization

1

Introduction

The progressive research and use of tangible user interfaces, also called physical
user interaction, have revealed major opportunities within the field of human
computer interaction. Types of interfaces are continuing to emerge and combin-
ing this technology with the social domain to support collaboration and learning
is a challenge [S41], [S43]. Demanding users and a vast increase of data avail-
ability have made it more important than ever to adapt the application to users
and not the other way around. End user development aims to allow the user
to create, customize and tailor applications, in contrast of hiring a professional
software developer [S80].

Software engineering studies are affected by a huge number of empirical studies,
which leads to the need for a systematic research when studying particular topics
within computer science [3]. Most commonly method used is the systematic
review with the goal of Identify Best and Typical Practices [4]. In the growing
field of tangible user interfaces and end user development, a detailed research
such as systematic review could be too much to comprehend. By focusing on
classification and thematic analysis a larger number of articles and documents
can be analysed and processed. Systematic mapping is a method that make use
of classification, thorough overview, and visual mapping. It is worth noticing
that one methods does not exclude the other [4].

This paper will present an execution of a systematic mapping study focusing on
the characteristics, advantages and challenges, of tangible user interface solu-
tions within the domain of social computing. Additionally, the paper identifies
different types of interfaces in end user development and strength and weak-
nesses of these. This paper is written as a preliminary study for a master
dissertation. This paper is devided into sections. In chapter Research method
the research method used, systematic mapping, will be described along with the
steps of implementation. Furthermore, in the chapter Result, the result of the
study will be presented, before the Discussion chapter discuss the method as
well as the findings, limitations and conclusions of the findings.

Research method

The objectives of this study are to find studies presenting tangible user interfaces
in social computing, or studies presenting different kinds of end user develop-
ment, as a preliminary study for a master dissertation. The relevant studies
found are going to be used as a literature base that will be used to guide and
direct further research within the area. A systematic mapping study has been
selected because the main goal of a systematic mapping studies is according to
[4] not to provide specific details, but to get an overview of a research area. This
mapping study follows the steps described in [5].

In order to address the wide scope of a systematic mapping study, the research

2

Table 1: Research questions
ID
RQ1 In which fields of social computing are tangible user interfaces devel-

oped or suggested, and what characterises these tangible user inter-
faces?

RQ2 What are the characteristics, challenges and advantages of tangible
user interfaces in social computing?

RQ3 What types of user interfaces in end user development exist and what
are their weaknesses and strengths?

questions are likely to be much broader than in a normal systematic literature
review [5]. By following the mentioned guideline and our goal of finding relevant
studies of both tangible user interfaces in social computing and end user devel-
opment, three research questions were created. These questions are presented
in Table 1.

According to Budgen [5] a mapping study is very time-consuming. Budgen sug-
gests to constrain searches to a set of digital databases to reduce the amount
of search results. The limited set of electronic databases for this study con-
sists of EngineeringVillage[1] and Scopus[2] online databases. Only studies
found in these databases are used in this systematic mapping study. To fur-
ther limit the amount of results only the title and abstract of each study will
be searched.

The process of building the search string consisted of three stages. First us-
ing our research questions to find important terms, second finding terms from
already known relevant literature, and third finding synonyms for these terms.
The search string for each database can be found in the Appendix A.

Relevant studies where found by filtering the search results with the use of
both inclusion- and exclusion criteria. Inclusion criteria used: (1) Only studies
written in English; (2) Only journal articles, conference papers, books, reports,
book sections, master dissertations and doctorate thesis; (3) Only studies which
of the abstract or title must give the impression of being relevant to find answers
to one or more of this mapping study’s research questions. The exclusion criteria
were: (1) Studies not accessible; (2) Duplicate studies. In this case, just one
study will be considered; (3) Studies reporting similar results; (4) Collection of
studies. If this is the case, only the most complete study will be considered.
After applying the inclusion and exclusion criteria we were left with a subset of
the search results consisting of relevant studies.

The method of keywording the papers’ abstract described in [5] was used to
help later classification and characterisation of each relevant study. To answer
the research questions all relevant studies found were read. Studies that were
found not relevant were removed from the set of relevant studies.

3

Results

By applying the search string to EngineeringVillage[1] and Scopus[2] 415 studies
were found, 197 from Scopus and 218 from EngineeringVillage. 405 studies were
downloaded, as Scopus marked 10 of the 197 studies as unavailable for download.
We started considering the inclusion and exclusion criteria by removing 201
studies because of duplication. 87 studies were deemed relevant after all studies
were filtered by inclusion and exclusion criteria. Each study were given a study
ID from S1 to S87. All relevant studies were read and a spreadsheet was made to
record data about how each relevant study would answer one or more research
question. After reading all studies, 65 studies were still considered relevant, as
22 studies were removed because of not answering the research questions. The
main steps of the process is presented in Figure 1. All 65 studies judged relevant
are listed in the Appendix B. The answers found for each research question are
presented in the following paragraphs.

Figure 1: Steps of finding relevant studies

Figure 2 presents the publication date of the studies, sorted by research ques-
tion.

4

Figure 2: Publication year

RQ1: In which fields of social computing are tangible user interfaces developed
or suggested, and what characterises these tangible user interfaces?

Table 2 presents fields of social computing in which tangible user interface solu-
tions are developed or suggested. Figure 3 visualizes that the findings indicate
tangible user interfaces focused on children are the most common based on
the relevant studies, along with solutions trying to improve both remote and
face-to-face collaboration.

Table 2: Relevant studies in which field of social computing
Field Study ID
Elderly S21, S67
Children S1, S2, S14, S20, S31, S32, S36, S48, S78
Disabled S31, S32, S67
Remote collaboration S4, S34, S47
Face-to-face collaboration S6, S15, S28, S70, S82
Augmented/Mixed reality S4, S6, S16, S70, S74
Entertainment S12, S16, S20, S64, S74
Travel S26
Shopping S84
Cooking S63
Home S50, S63, S69
Friends S69
Healthcare S53

A notable observation is that all relevant studies found in the field of elderly,
children or disabled are mainly focused on one user at one location. [S1], [S2],

5

[S14], [S20], [S78] are focused on children learning, creating or solving problem
with the use of some kind of interactive tabletop. There have been less to
none focus on remote collaboration or communication between remote users,
comparable to the communication between remote friends in [S69], in these
fields.

Figure 3: Amount of solutions within fields of social computing

Table 3: Characteristics of tangible user interface solutions in relevant studies
Characterstic Study ID
Tabletop S1, S2, S14, S15, S20, S28, S47, S53, S63,

S64, S78, S82
Head-mounted display S4, S6, S16, S70, S74
Infrared communication S12
Wireless communication S16, S53, S64
RFID S26, S31, S32, S36, S48, S67
NFC S21, S67, S84
Bluetooth S26, S34, S48, S53, S69
Kinect S15
Sensors S16, S50, S53, S64, S69
Mobile phone S50, S67
Personal digital assistant S70
Wearable S16

Table 3 lists what characterises the solutions found in this study. Tabletop is
used as a wide term: Solutions involving interaction with a horizontal surface
have been included in the characteristic named tabletop. The solutions which
have ”Sensors” as a characteristic are using sensors which is not presented as

6

another characteristic, e.g. pressure sensors [S69], accelerometer [S64] and home
automation sensors [S50]. A notable result is that head-mounted displays from
Table 2 and augmented/mixed reality are heavily coupled. This is because
every solution found with augmented/mixed reality uses a head-mounted display
to create illusions of virtual objects, as seen by the user, into the physical
world.

RQ2: What are the characteristics, challenges and advantages of tangible user
interfaces in social computing?

Tangible user interfaces can appear in several forms (for example as tabletop or
physical blocks), and the characteristics will vary depending on the implemented
solution. However, there are several similar characteristics, listed in Table 4,
that can be seen as almost universal in tangible user interfaces, and in contrast
to normal graphical user interfaces. It is important to notice that this is not a
complete nor a definitive list.

Table 4: Characteristics of tangible user interfaces
Characteristic Description Study ID
Real-time feed-
back

Users receive feedback from physical objects
as they grasp and manipulate them.

S43, S44,
S49

Persistency of
tangibles

Physical objects hold an informative state,
even when a connected device is turned off.

S43

Input/output There is no separation of input and output
channels.

S43, S44

Space-
multiplexed
input

In contrast to GUI (time-multiplexed), TUI
can provide space-multiplexed input.

S43, S49

Support IUUI
(Intuitive Use of
User Interfaces)

The affordances of physical objects are often
highly apparent.

S46

Table 5 contains advantages of tangible user interfaces. Easy-to-use, collab-
orative benefits and the reinforcement of creativeness are generally the most
emphasized. In addition, study [S83] mentions that tangible user interfaces
mimic the F2F environment, which is stated in [7] that is the best kind of
communication, which can be seen as an indirectly benefit.

Even though it is not directly mentioned that co-location is important in sev-
eral articles, the studies [S33], [S38], [S14], [S41], [S49], [S54], [S55] and [S79], all
make use of tabletops that require users to be located around the same tabletop.

Another aspect observed in [S54] and [S55]: When graphical user interfaces are
used, with users co-located, communication and cooperation are often verbally,
while when use of tangible user interfaces, the communication is object oriented
(users try by doing, moving and gesturing).

7

Table 5: Advantages of tangible user interfaces
Advantage Description Study ID
Reinforce cre-
ativeness

Especially in modelling, designing, and visual
testing.

S33, S37,
S44, S49,
S54, S55,
S83

Enhance co-
creativeness

The creative process enhanced when co-
located.

S37, S49,
S55

Easy to use Usually little training needed to incorporate
TUI: Users explore, and are often able to use
TUI with minimum effort (even if the interface
is not optimal).

S12, S21,
S22, S26,
S33, S35,
S49

Cognitive ad-
vantages

When handing objects that exist in real life,
TUI is proven more effective and useable than
GUI, due to that objects are more graspable.
Effective TUI design can result in pragmatic,
exploratory, collaborative and cognitive bene-
fits.

S2, S14, S46,
S54, S55,
S79, S83

Collaborative
benefits

Physical objects, e.g. passed around between
users, can make collaboration effective. It
could also be easier to understand each other
even with different backgrounds.

S2, S26, S44,
S54

Easy to manip-
ulate objects
found in real
life (Free-form
modelling)

Gesturing and grasping with mechanical sys-
tems (e.g. 3D modelling, CAD Systems)

S9, S44, S55

Benefits im-
paired users

For example, impaired children and elderly
can benefit highly from TUI compared to nor-
mal GUI. Cognitive aspects play a role.

S21, S31

8

Table 6: Challenges of tangible user interfaces
Challenge Description Study ID
Lack of TUI
modelling capa-
bility

Currently, TUI often uses pre-defined mod-
els (that does not support real-time free form
modelling)

S33

Remote collab-
oration must
be implemented
carefully

Users often benefit more when they are lo-
cated together (especially in a collaborate set-
ting). Presence disparity (the awareness of
others) are important.

S33

Finger gestures
might not be the
best alternative

Using physical objects for controlling digital
information improves performance compared
to using finger gestures.

S38, S79

Object selection Studies have shown that in object selection, a
mouse may be the best input device.

S2

Cognitive chal-
lenges

When the handled information object is ab-
stract (e.g. as query tool for database) or un-
natural action must be taken on an object, it
could apply a cognitive load.

S12, S14

Hardware limi-
tations

Different sensors must be in place. S26, S28

Standardization
of common
functions

E.g. functions such as save, write, exit, delete
are standard for GUI-experienced users. The
question is how to make a standard that is
efficient and possible to all TUIs.

S28

Commercial via-
bility

It is challenging to turn a TUI-based product
into a commercial product.

S28

Specific/concrete
vs.
generic/abstract

Tailored TUI applications cannot be reused
for most other applications (due to the physi-
cal objects)

S43

Tangible ele-
ments could
distract

If mixed (tangible and non-tangible), the tan-
gible could distract from intangible elements.

S50

Seamlessness Need to be seamless and without overhead to
be usable.

S79

9

Other studies, [S4] and [S50], suggest that mixed reality is one of the best
solutions within the domain of collaborative tangible user interfaces due to both
users’ backgrounds and skills, and that tasks differ in how they are easiest
executed.

10

RQ3: What types of user interfaces in end user development exist and what
are their weaknesses and strengths?

Looking at the variety of the papers found relevant, the terminology used to
describe the interfaces is often ambiguous. To overcome the difference in termi-
nology, similar types of interfaces were combined and categorized. Table 7 is an
explanation of the different terms.

Table 7: Explanation of end user interface terms
Type of interface Explanation
Natural language Eliminate the syntax difficulties and turn

the programming language into more nat-
ural language.

Block structured/ drag and
drop/component based/ rule
based

One component, possible to customize and
tailor, containing functionality, usually in-
tegrated into a bigger piece of software.

Wizard driven/ step-by-
step/form-filling

A sequence allows the user to incremen-
tally insert and configure the component.

Application customization/ com-
ponent tailoring/ unwitted pro-
grammers

An application/component developed by
an expert user, possible to tailor in order
to adapt the application/component to the
preferred context.

Model driven development A model, presumably using abstrac-
tion/metaphors, to transform a problem
into objects, structure and create a re-
lationship between them. The result is
a well-proven solution given it’s context.
The model is created and visualized, be-
fore the programming begins.

Programing by example An example problem is inserted and ex-
plained by the user to the computer. Next
time the computer is presented a similar
task, it tries to use the previous example
to solve the new problem.

Incremental programming Extending the current applications func-
tionality by gradually increasing the level
of functionality when needed.

Table 8 presents the studies that identified different types of end user inter-
faces.

As Table 8 and Figure 4 present, application customization/ component tai-
loring / unwitted programmers along with block structured/ drag and drop/
component based/rule based have the highest amount of studies related to
them. Furthermore, it is worth noticing that all of the papers in wizard driven/
step-by-step design pattern/ form-filling, with [S17] as an exception, are also

11

Table 8: Types of interfaces found in the relevant studies
Type of interface Study ID
Natural language S13
Block structured/ drag and
drop/ component based/rule
based

S17, S21, S32, S42, S50, S51, S61, S62, S77,
S86

Wizard driven/ step-by-step de-
sign pattern/ form-filling

S17, S29, S21, S31

Application customization/ com-
ponent tailoring / unwitted pro-
grammers

S5, S18, S42, S75, S21, S31, S32, S86, S19,
S29

Model driven development S27, S32, S31, S75
Programming by example S66
Incremental programming S42, S86

Figure 4: Amount of studies in the different categories

present in application customization/ component tailoring / unwitted program-
mers.

RQ3 questions the weaknesses and strengths of the different interfaces. Many
studies explicit state the strengths of the technique(s) discussed in the study.
This is not necessarily general for entire category used in this paper, but for
one or more subcategories. Very few studies mention the weaknesses of their
solution. For this paper to be as objective as possible, the weaknesses need to be
stated explicit in the study, in order to make it a general disadvantage for a sub-

12

category. Table 9 presents a summary of the strengths and weaknesses.

Table 9: Overview of strengths and weaknesses in end user devel-
opment interfaces

Type of interface Strengths Weaknesses
Natural language Overcomes the barrier with the end

user needing to learn and understand
a new language in order to create the
desired application [S13].

Block based/ com-
ponent based/ drag
and drop/ rule
based

- Mitigating the risk of user errors by
having predefined components [S62].
- Very often visual, with color refer-
ences and intuitive interface [S86].
- Tailoring flexibility [S86].
- No programming knowledge needed
[S77].
- Eases work distribution of the actual
development of components, main-
tainability, parallel development and
extensibility [S62].

- Communica-
tion overhead,
development
timing, diffi-
cult integration
when the de-
velopment of
the components
takes place
[S62].

Wizard driven/
step-by-step/
design pattern/
form-filling

- Supports easy interaction by elderly
people [S21].
- Ensures validation of the data and
that all the necessary data are inserted
[S29].
- No direct manipulation of source code
or underlying structure [S31], [S29].
- No programming expertise needed
[S31].
- Visual, instead of textual [S21], [S29].

13

Table 9 – continued from previous page
Type of interface Strengths Weaknesses
Application cus-
tomization/ com-
ponent tailoring/
unwitted program-
mers

- Mitigates the possibility for user er-
rors [S18].
- Users are not conscious about cus-
tomization or overcoming difficulties
[S19].
- Use of tacit and cognitive skills [S29].
- No direct manipulation of source code
[S31].
- Flexible customization for the end
user [S5].
- Visual elements improve the overview
of the application [S5, S21].
- No programming expertise needed
[S31].

- Domain ex-
pertise is some-
times acquired
[S5].

Model driven devel-
opment

- Flexible and solid: It enables devel-
opers to analyze the structure and be-
havior of application to support future
extensions [S32], [S75].
- Proven to solve a problem in a given
context [S32].
- Facilitates the capturing and sharing
of design expertise [S31], [S32], [S75].

- Needs guid-
ance on issues
that the users
should carefully
observe after
they have put a
specific pattern
in place [S75]

Programming by
Example

[S66] does not explicit mention any
strengths using Programming by Ex-
ample. However, nesting out references
in [S66], [6] is referenced. The title of
the book is ”Programming by Exam-
ple” and the book claims that the chal-
lenge is to train the computer. Once
this barrier is overcome, it tends to
work very well.

Incremental pro-
gramming

- Suspend important design decisions to
the point in the design and development
process when the decision really needs
to be made [S42].
- Gradual design and problem solving
process [S42].
- Tailoring flexibility [S86].
- The level of expertise is increasing pro-
portionate with the level of functional-
ity added [S86].

- Security issues
[S86].

14

Discussion

The purpose of this study was to find relevant studies of tangible user interfaces
in social computing and end user development, which will later be used as a
literature base for further study. The main limitation of this mapping study is
the decision of not doing a manual search and to only use two digital databases.
This limits the amount of relevant studies found, and there are probably many
relevant studies of both tangible user interfaces and end user development not
found because of this limitation. However, we believe enough studies were found
with only the two databases to defend our choice of limiting the search. By using
a systematic mapping study, even with the limit of two databases, the goal of
finding enough relevant articles was achieved.

Our research questions were not specifically addressed in several studies, thus
making data extraction from these studies difficult. These studies were either
deemed irrelevant or a conclusion was drawn even though it was not explicitly
stated in the reviewed study.

Table 6 describes some of the possible challenges of tangible user interfaces.
None of them is especially repeated throughout the study, however, there are
several pitfalls to be aware of. The use of tangible interfaces have a huge poten-
tial with the mentioned advantages in Table 5, though ”Realizing the context
dependence of the potential of tangible interaction is not only important in
terms of user experience, but also important to understand the products learn-
ing, usability, or collaboration benefits.” [S85].

As Table 5 and Table 6 presents, tangible user interfaces have both cognitive
advantages and cognitive challenges. How users grasp an idea, an object or
any other physical or abstract concept, has shown to be connected to how con-
crete or ”real life”-like the tangible interface was. The cognitive payload plays
an essential role, and is one of the more important aspects of tangible user
interfaces.

Regarding RQ3, a number of studies have selected an interface to their solution
based on previous studies, target groups and/or environment. This has affected
in a large number of the studies, not mentioning the specific weaknesses ex-
plicit. Therefore, answering RQ3 completely with the current set of studies is
a challenge. Creating a new, more specific study, should be considered in order
to fully answer the weaknesses of the question.

Many of the studies have very specific interfaces, with an overall goal to support
end user interaction in the best possible way. To ease readability of this paper,
the terminology were categorized. Similar types of interfaces were placed in the
same category. Categorization was selected since systematic mapping focuses
on width, rather than depth. Arguments can be stated that this is not optimal
regarding to the overview of strengths and weaknesses. It is important to no-
tice that one strength may not necessarily be a general strength for the entire
categorization, but at least for one subcategory.

15

Acknowledgements

We appreciate the guidance from Researcher and Research Manager at SIN-
TEF and Adjunct Associate Professor at Norwegian University of Science and
Technology Babak A. Farshchian by being our supervisor during this systematic
mapping study.

16

References

[1] Engineering Village, http://www.engineeringvillage.com/ (Accessed: 21 Oc-
tober 2013)

[2] Scopus, http://www.scopus.com/ (Accessed: 21 October 2013)

[3] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
”Lessons from applying the systematic literature review process within the soft-
ware engineering domain,” Journal of Systems and Software, vol. 80, no. 4, pp.
57183, Apr. 2007.

[4] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, ”Systematic Mapping Stud-
ies in Software Engineering”. School of Engineering, Blekinge Institute of Tech-
nology.

[5] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, ”Using Mapping Studies
in Software Engineering”. Department of Computer Science, Durham Univer-
sity.

[6] H. Lieberman, ”Your Wish is My Command: Programming by Example”.
Academic Press, 2001, pp. 21 - 43.

[7] C. Lee, Face-to-face Versus Computer-mediated Communication: Exploring
Employees Preference of Effective Employee Communication Channel. INTER-
NATIONAL JOURNAL FOR THE ADVANCEMENT OF SCIENCE & ARTS,
Vol 1, No 2, 2010, pp. 38 - 48.

17

Appendix A

Search string:

((”tangible user interface*” OR ”tangible interaction” OR ”physical user inter-
face*” OR ”graspable user interface*” OR ”tangible ui” OR ”tabletop comput-
ing”) AND (”social computing” OR ”social informatics” OR ”social software”
OR ”social app*” OR collaboration OR communication OR cooperation OR
co-operation))

OR

((”end user development” OR ”end user customization” OR ”end user customi-
sation” OR ”end user programming”) AND ((type* OR method* OR approach*
OR category OR categories) AND (limitation* OR benefit* OR weakness* OR
strength* OR advantage* OR disadvantage* OR drawback* OR characteristic*
OR aspect* OR tendency OR tendencies OR attribute*)))

18

Appendix B

The selected studies:

[S1] A. Alves, R. Lopes, P. Matos, L. Velho, and D. Silva, ”Reactoon: Story-
telling in a Tangible Environment,” in Third IEEE International Conference on
Digital Game and Intelligent Toy Enhanced Learning (DIGITEL 2010), 12-16
April 2010, 2010, pp. 1615.

[S2] A. N. Antle, ”Exploring how children use their hands to think: An embodied
interactional analysis,” Behaviour and Information Technology, vol. 32, no. 9,
pp. 938954, 2013.

[S3] P. G. Austrem, ”Using EUREQA for End-user UML Model Development
through Design Patterns,” Journal of Software, vol. 6, no. 4, pp. 690704, Apr.
2011.

[S4] Y. Bannai, H. Tamaki, Y. Suzuki, H. Shigeno, and K. Okada, ”A tangible
user interface for remote collaboration system using mixed reality,” in 16th Inter-
national Conference on Artificial Reality and Telexistence, ICAT 2006, Novem-
ber 29, 2006 - December 1, 2006, 2006, vol. 4282 LNCS, pp. 143154.

[S5] M. Baron and P. Girard, ”Bringing robustness to end-user programming,”
in Proceedings: IEEE Symposia on Human-Centric Computing Languages and
Environments, September 5, 2001 - September 7, 2001, 2001, pp. 142149.

[S6] D. Belcher and B. Johnson, ”MxR A physical model-based mixed reality
interface for design collaboration, simulation,visualization and form generation,”
in 28th Annual Conference of the Association for Computer Aided Design in
Architecture: Silicon + Skin: Biological Processes and Computation, ACADIA
08, October 16, 2008 - October 19, 2008, 2008, pp. 464471.

[S9] W. Bruns, ”Grasping, communicating, understanding: Connecting reality
and virtuality,” AI and Society, vol. 10, no. 1, pp. 614, 1996.

[S12] K. Camarata, E. Yi-Luen Do, B. R. Johnson, and M. D. Gross, ”Nav-
igational blocks navigating information space with tangible media,” in 2002
International Conference on intelligent User Interfaces (IUI 02), January 13,
2002 - January 16, 2002, 2002, pp. 3138.

[S13] J. Cao, ”An idea garden for end-user programmers,” in Conference on
Human Factors in Computing Systems - Proceedings, 2012, pp. 915918.

[S14] S. Cecilia, G. Andrea, D. G. Armando, B. Sandra, M. Javier, and C. Eva,
”Games as educational strategy: A case of tangible interaction for users of Al-
ternative and Augmentative Communication,” in 2013 International Conference
on Collaboration Technologies and Systems, CTS 2013, May 20, 2013 - May 24,
2013, 2013, pp. 377381.

[S15] T. Chen and A. Kratky, ”Touching buildings - a tangible interface for
architecture visualization,” in Universal Access in Human-Computer Interac-

19

tion. Design Methods, Tools, and Interaction Techniques for eInclusion. 7th
International Conference, UAHCI 2013, 21-26 July 2013, 2013, vol. pt. I, pp.
31322.

[S16] A. D. Cheok, Wang Weihua, Xubo Yang, S. Prince, Fong Siew Wan, M.
Billinghurst, and H. Kato, ”Interactive theatre experience in embodied + wear-
able mixed reality space,” in Proceedings of the IEEE and ACM International
Symposium on Mixed and Augmented Reality, 30 Sept.-1 Oct. 2002, 2002, pp.
59317.

[S17] S. Chimalakonda and K. V. Nori, ”GURU: An Experimental Interactive
Environment for Teachers/Learners,” in 2013 IEEE 13th International Confer-
ence on Advanced Learning Technologies (ICALT), 15-18 July 2013, 2013, pp.
2489.

[S18] M. F. Costabile, D. Fogli, R. Lanzilotti, P. Mussio, and A. Piccinno, ”Sup-
porting work practice through end-user development environments,” Journal of
Organizational and End User Computing, vol. 18, no. 4, pp. 4365, 2006.

[S19] M. F. Costabile, P. Mussio, L. P. Provenza, and A. Piccinno, ”End users
as unwitting software developers,” in 30th International Conference on Software
Engineering, ICSE 2008 - 4th International Workshop on End-user Software
Engineering, WEUSE IV, May 12, 2008 - May 12, 2008, 2008, pp. 610.

[S20] A. Crevoisier and C. Picard-Limpens, ”INSIDE: Intuitive Sonic Interac-
tion Design for Education and Entertainment,” in 4th International ICST Con-
ference on Intelligent Technologies for Interactive Entertainment, INTETAIN
2011, May 25, 2011 - May 27, 2011, 2012, vol. 78 LNICST, pp. 236239.

[S21] J. Criel, M. Geerts, L. Claeys, and F. Kawsar, ”Empowering elderly end-
users for ambient programming: The tangible way,” in 6th International Con-
ference on Grid and Pervasive Computing, GPC 2011, May 11, 2011 - May 13,
2011, 2011, vol. 6646 LNCS, pp. 94104.

[S22] N. Dalton, G. MacKay, and S. Holland, ”Kolab: Appropriation improvisa-
tion in mobile tangible collaborative interaction,” in Designing Interactive Sys-
tems Conference, DIS 12, June 11, 2012 - June 15, 2012, 2012, pp. 2124.

[S23] B. De Silva and A. Ginige, ”Solving design issues in web meta-model
approach to support End-User Development,” in 2nd International Conference
on Software and Data Technologies, ICSOFT 2007, July 22, 2007 - July 25,
2007, 2007, vol. PL, pp. 298304.

[S24] D. Edge, A. Blackwell, and L. Dubuc, ”The physical world as an abstract
interface,” in Contemporary Ergonomics 2006, 2006, pp. 224228.

[S25] L. Ehrenstrasser and W. Spreicer, ”kommTUi - A design process for a tan-
gible communication technology with seniors,” in 1st International Conference
on Human Factors in Computing and Informatics, SouthCHI 2013, July 1, 2013
- July 3, 2013, 2013, vol. 7946 LNCS, pp. 625632.

20

[S26] A. Esteves and I. Oakley, ”Mementos: A tangible interface supporting
travel,” in 6th Nordic Conference on Human-Computer Interaction: Extending
Boundaries, NordiCHI 2010, October 16, 2010 - October 20, 2010, 2010, pp.
643646.

[S27] R. Farmer and P. Gruba, ”Towards model-driven end-user development
in CALL,” Computer Assisted Language Learning, vol. 19, no. 23, pp. 149191,
2006.

[S28] M. Fjeld, M. Morf, and H. Krueger, ”Activity theory and the practice
of design: evaluation of a collaborative tangible user interface,” International
Journal of Human Resources Development and Management, vol. 4, no. 1, pp.
94116, 2004.

[S29] D. Fogli, ”End-user development for E-government website content cre-
ation,” in 2nd International Symposium on End-User Development, IS-EUD
2009, March 2, 2009 - March 4, 2009, 2009, vol. 5435 LNCS, pp. 126145.

[S30] F. G. Furtmller and S. Oppl, ”A tuple-space based middleware for collab-
orative tangible user interfaces,” in Proceedings of the Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WETICE, 2007, pp.
418423.

[S31] F. Garzotto and M. Bordogna, ”Paper-based multimedia interaction and
disabled children: from experience to learning-for-all,” International Journal of
Arts and Technology, vol. 5, no. 24, pp. 12650, 2012.

[S32] F. Garzotto and R. Gonella, ”An open-ended tangible environment for
disabled childrens learning,” in 10th International Conference on Interaction
Design and Children, IDC 2011, June 20, 2011 - June 23, 2011, 2011, pp.
5261.

[S33] N. Gu, M. J. Kim, and M. L. Maher, ”Technological advancements in
synchronous collaboration: The effect of 3D virtual worlds and tangible user
interfaces on architectural design,” Automation in Construction, vol. 20, no. 3,
pp. 270278, 2011.

[S34] F. Guo, C. Zhang, and L. Cui, ”Sketching interfaces for remote collabo-
ration,” in Proceedings of the 2007 11th International Conference on Computer
Supported Cooperative Work in Design, CSCWD, 2007, pp. 6368.

[S35] A. Hang, G. Broll, and A. Wiethoff, ”Visual design of physical user inter-
faces for NFC-based mobile interaction,” in DIS 2010 - Proceedings of the 8th
ACM Conference on Designing Interactive Systems, 2010, pp. 292301.

[S36] B. Hengeveld, C. Hummels, K. Overbeeke, R. Voort, H. Van Balkom, and
J. De Moor, ”Tangibles for toddlers learning language,” in 3rd International
Conference on Tangible and Embedded Interaction, TEI09, February 16, 2009
- February 18, 2009, 2009, pp. 161168.

21

[S37] J. Herstad and H. Holone, ”What we talk about when we talk about co-
creative tangibles,” in 12th Participatory Design Conference, PDC 2012, August
12, 2012 - August 16, 2012, 2012, vol. 2, pp. 109112.

[S38] C. Holzmann and A. Ferscha, ”Tangible interaction in collaborative en-
vironments,” in 16th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE 2007, June 18, 2007 -
June 20, 2007, 2007, pp. 409411.

[S39] K. Hook, ”Knowing, communication and experiencing through body and
emotion,” IEEE Transactions on Learning Technologies, vol. 1, no. 4, pp.
248259, 2008.

[S40] E. Hornecker, ”A design theme for tangible interaction: Embodied facilita-
tion,” in 9th European Conference on Computer-Supported Cooperative Work,
ECSCW 2005, September 18, 2005 - September 22, 2005, 2005, pp. 2343.

[S41] E. Hornecker and J. Buur, ”Getting a grip on tangible interaction: A
framework on physical space and social interaction,” in CHI 2006: Conference
on Human Factors in Computing Systems, April 22, 2006 - April 27, 2006, 2006,
vol. 1, pp. 437446.

[S42] A. Ioannidou, A. Repenning, and D. C. Webb, ”AgentCubes: Incremental
3D end-user development,” Journal of Visual Languages and Computing, vol.
20, no. 4, pp. 236251, 2009.

[S43] H. Ishii, ”Tangible bits: Beyond pixels,” in TEI08 - Second International
Conference on Tangible and Embedded Interaction - Conference Proceedings,
2008, pp. xvxxv.

[S44] H. Ishii, C. Ratti, B. Piper, Y. Wang, A. Biderman, and E. Ben-Joseph,
”Bringing clay and sand into digital design - continous tangible user interfaces,”
BT Technology Journal, vol. 22, no. 4, pp. 287299, 2004.

[S46] J. H. Israel, J. Hurtienne, A. E. Pohlmeyer, C. Mohs, M. C. Kindsmuller,
and A. Naumann, ”On intuitive use, physicality and tangible user interfaces,”
International Journal of Arts and Technology, vol. 2, no. 4, pp. 34866,
2009.

[S47] S. Izadi, A. Agarwal, A. Criminisi, J. Winn, A. Blake, and A. Fitzgibbon,
”C-Slate: A multi-touch and object recognition system for remote collabora-
tion using horizontal surfaces,” in 2nd Annual IEEE International Workshop on
Horizontal Interactive Human-Computer Systems, Tabletop 2007, October 10,
2007 - October 12, 2007, 2007, pp. 310.

[S48] A. Karime, M. A. Hossain, A. S. M. M. Rahman, W. Gueaieb, J. M.
Aljaam, and A. E. Saddik, ”RFID-based interactive multimedia system for the
children,” Multimedia Tools and Applications, vol. 59, no. 3, pp. 749774,
2012.

[S49] M. J. Kim and M. L. Maher, ”The impact of tangible user interfaces on

22

spatial cognition during collaborative design,” Design Studies, vol. 29, no. 3,
pp. 222253, 2008.

[S50] J. Lee, L. Garduo, E. Walker, and W. Burleson, ”A tangible programming
tool for creation of context-aware applications,” in UbiComp 2013 - Proceedings
of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, 2013, pp. 391400.

[S51] G. Leitner, A. J. Fercher, and C. Lassen, ”End users programming smart
homes - A case study on scenario programming,” in 3rd International Work-
shop on Human-Computer Interaction and Knowledge Discovery in Complex,
Unstructured, Big Data, HCI-KDD 2013, Held at SouthCHI 2013, July 1, 2013
- July 3, 2013, 2013, vol. 7947 LNCS, pp. 217236.

[S52] M. A. Linton, J. M. Vlissides, and P. R. Calder, ”Composing user interfaces
with InterViews,” Computer, vol. 22, no. 2, pp. 822, Feb. 1989.

[S53] Magnus Bang and T. Timpka, ”Ubiquitous computing to support co-
located clinical teams: Using the semiotics of physical objects in system de-
sign,” International Journal of Medical Informatics, vol. 76, pp. 5864, Jun.
2007.

[S54] M. L. Maher and M. J. Kim, ”Do tangible user interfaces impact spatial
cognition in collaborative design?,” in 2nd International Conference on Cooper-
ative Design, Visualization, and Engineering, CDVE 2005, September 18, 2005
- September 21, 2005, 2005, vol. 3675 LNCS, pp. 3041.

[S55] M. L. Maher and M. J. Kim, ”Studying designers using a tabletop sys-
tem for 3D design with a focus on the impact on spatial cognition,” in First
IEEE International Workshop on Horizontal Interactive Human-Computer Sys-
tems, TABLETOP06, January 5, 2006 - January 7, 2006, 2006, vol. 2006, pp.
105112.

[S56] I. Mantegh and N. S. Darbandi, ”Knowledge-based task planning using
natural language processing for robotic manufacturing,” in ASME 2010 Inter-
national Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, IDETC/CIE2010, August 15, 2010 - August
18, 2010, 2010, vol. 3, pp. 13091316.

[S57] N. Marquardt and S. Greenberg, ”Distributed physical interfaces with
shared phidgets,” in 1st International Conference on Tangible and Embedded
Interaction, February 15, 2007 - February 17, 2007, 2007, pp. 1320.

[S58] T. McGill and C. Klisc, ”End-user perceptions of the benefits and risks of
end-user web development,” Journal of Organizational and End User Comput-
ing, vol. 18, no. 4, pp. 2242, 2006.

[S59] D. Merrill, J. Kalanithi, and P. Maes, ”Siftables: Towards sensor network
user interfaces,” in TEI07: First International Conference on Tangible and Em-
bedded Interaction, 2007, pp. 7578.

23

[S61] S. N. H. Mohamad, A. Patel, R. Latih, Q. Qassim, L. Na, and Y. Tew,
”Block-based programming approach: Challenges and benefits,” in 2011 Inter-
national Conference on Electrical Engineering and Informatics, ICEEI 2011,
July 17, 2011 - July 19, 2011, 2011, p. IEEE Indonesia Section; IEEE Eng.
Med. Biol. Soc. Indonesia Chapter; IEEE Circuit and Systems Society In-
donesia Chapter; IEEE Electron Devices, Educ., Signal Process.,; Power Energy
Syst. Soc. Indonesia Jt. Chapter.

[S62] S. N. H. Mohamad, A. Patel, Y. Tew, R. Latih, and Q. Qassim, ”Principles
and dynamics of block-based programming approach,” in 2011 IEEE Symposium
on Computers and Informatics, ISCI 2011, March 20, 2011 - March 22, 2011,
2011, pp. 340345.

[S63] T.-Y. Mou, T.-S. Jeng, and C.-H. Ho, ”Relationship enhancer: Interactive
recipe in kitchen island,” in 13th International Conference on Human-Computer
Interaction, HCI International 2009, July 19, 2009 - July 24, 2009, 2009, vol.
5612 LNCS, pp. 641650.

[S64] B. Nadeau and A. Williams, ”Tactful interaction: Exploring interactive
social touch through a collaborative tangible installation,” in 3rd International
Conference on Tangible and Embedded Interaction, TEI09, February 16, 2009
- February 18, 2009, 2009, pp. 147152.

[S66] A. C. Pena Rios, J. S. Y. Chin, and V. L. Callaghan, ”A web based
approach to virtual appliance creation, programming and management,” in 2010
6th International Conference on Intelligent Environments, IE 2010, July 19, 2010
- July 21, 2010, 2010, pp. 174177.

[S67] K. Peternel, M. Pogacnik, J. Beter, L. Zebec, M. Pustiek, and A. Kos,
”Touch to communicate using NGN open interfaces,” in 2011 9th Annual Com-
munication Networks and Services Research Conference, CNSR 2011, May 2,
2011 - May 5, 2011, 2011, pp. 130136.

[S69] M. S. Quintanilha, ”BuddyWall: A tangible user interface for wireless
remote communication,” in 28th Annual CHI Conference on Human Factors in
Computing Systems, April 5, 2008 - April 10, 2008, 2008, pp. 37113716.

[S70] H. T. Regenbrecht, M. T. Wagner, and G. Baratoff, ”Magicmeeting: A
collaborative tangible augmented reality system,” Virtual Reality, vol. 6, no. 3,
pp. 151166, 2002.

[S74] U. Sargaana, H. S. Farahani, J. W. Lee, J. Ryu, and W. Woo, ”Collabora-
tive billiARds: Towards the ultimate gaming experience,” in 4th International
Conference on Entertainment Computing - ICEC 2005, September 19, 2005 -
September 21, 2005, 2005, vol. 3711 LNCS, pp. 357367.

[S75] T. Schummer and J. M. Haake, ”Shaping collaborative work with proto-
patterns,” in 2nd International Symposium on End-User Development, IS-EUD
2009, March 2, 2009 - March 4, 2009, 2009, vol. 5435 LNCS, pp. 166185.

24

[S77] M. Spahn and V. Wulf, ”End-user development for individualized infor-
mation management: Analysis of problem domains and solution approaches,” in
11th International Conference on Enterprise Information Systems, ICEIS 2009,
May 6, 2009 - May 10, 2009, 2009, vol. 24 LNBIP, pp. 843857.

[S78] A. I. Starcic and M. Zajc, ”An interactive tangible user interface applica-
tion for learning addition concepts,” British Journal of Educational Technology,
vol. 42, no. 6, pp. 1315, Nov. 2011.

[S79] S. Subramanian, D. Pinelle, J. Korst, and V. Buil, ”Tabletop collaboration
through tangible interactions,” in Proceedings of the Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WETICE, 2007, pp.
412417.

[S80] A.-L. Syrjanen and K. Kuutti, ”From technology to domain: The context
of work for end-user development,” in 6th Annual Conference on 2011 iConfer-
ence: Inspiration, Integrity, and Intrepidity, iConference 2011, February 8, 2011
- February 11, 2011, 2011, pp. 244251.

[S82] M. Waldner, J. Hauber, J. Zauner, M. Haller, and M. Billinghurst, ”Tan-
gible tiles: Design and evaluation of a tangible user interface in a collaborative
tabletop setup,” in 18th Australia Conference on Computer-Human Interac-
tion, OZCHI 06, November 20, 2006 - November 24, 2006, 2006, vol. 206, pp.
151158.

[S83] W. Wang, X. Wang, and R. Wang, ”A spatial faithful cooperative system
based on mixed presence groupware model,” in 6th International Conference on
Cooperative Design, Visualization, and Engineering, CDVE 2009, September
20, 2009 - September 23, 2009, 2009, vol. 5738 LNCS, pp. 269275.

[S84] A. Wiethoff and G. Broll, ”SoloFind: Chains of interactions with a mobile
retail experience system,” in 29th Annual CHI Conference on Human Factors
in Computing Systems, CHI 2011, May 7, 2011 - May 12, 2011, 2011, pp.
13031308.

[S85] B. Zaman, V. Vanden Abeele, P. Markopoulos, and P. Marshall, ”Editorial:
The evolving field of tangible interaction for children: The challenge of empirical
validation,” Personal and Ubiquitous Computing, vol. 16, no. 4, pp. 367378,
2012.

[S86] L. Zhu, I. Vaghi, and B. R. Barricelli, ”A meta-reflective wiki for collab-
orative design,” in 7th Annual International Symposium on Wikis and Open
Collaboration, WikiSym 2011, October 3, 2011 - October 5, 2011, 2011, pp.
5362.

25

Appendix B

Hardware Selection

B.1 Arduino versus Raspberry Pi versus Beagle-
Bone Black

The problem definition clearly specifies the requirement to use the toolkit to bridge
the gap between a hardware prototype and a software system. The hardware
platform, however, is not specified. There are numerous of hardware prototyping
platforms out there, each with their strengths and weaknesses. Common for all
the platforms are the low price and the encouragement to get people to learn basic
programming and computer knowledge. Below is a summary of three popular
platforms the team considered when selecting prototyping platform.

Raspberry Pi is a small computer originally aiming to encourage kids to learn
basic programming [62]. The device is a circuit board with CPU, RAM, USB, LAN,
HDMI, audio and SD card slot, all the basic elements of a computer. It requires
installation of an operation system, and will function as a mini-computer [66].
The operating system is installed on the SD card. Depending on the selected
programming language, there are many libraries possible to install. Because of its
rich set of features, the many projects created are typically software based with
media centers, multimedia and other software tricks (see Figure B.1).

“Arduino is an open-source electronics prototyping platform based on flexible,
easy-to-use hardware and software” [2]. The board itself is contains a USB con-
nection, power jack, a set of digital input and output pins, a set of analog inputs
and a ceramic resonator. It has a very flexible solution with a high number of kits,
shields and other devices that can be connected to the Arduino by using the pins.
The Arduino is a micro controller. Programming an Arduino is done by writing
Arduino code. Arduino code is a variation to the programming language C. Ar-
duino offers an easy to use IDE preloaded with examples lowering the entry bar
(see Figure B.2).

BeagleBone Black is, like Raspberry Pi, a tiny computer and has many of the
same features. Connectivity interfaces with HDMI, Ethernet, USB and 2 x 46 pin
headers among with a powerful set of processing power [63]. These pins in one of

105

106 APPENDIX B. HARDWARE SELECTION

Figure B.1: Front of Raspberry Pi [67]

Figure B.2: Front of Arduino Uno R3 [68]

the biggest advantages with the device, as it gives great flexibility when it comes
to connecting external sensors or other hardware to your device. It was originally
designed to support teaching of open source software used in combination of open
source hardware. It is more powerful than Raspberry Pi and has official support
for both Android and Ubuntu (Raspberry Pi does not have this). In contrast to
Raspberry Pi the BeagleBone Black ships with a Linux operating system already
installed, so getting started with the device is very easy [69] (see figure B.3).

Figure B.3: Front of BeagleBone Black [63]

The team chose the Arduino as the prototyping platform. This is mainly be-

B.2. BLUETOOTH V2.1 VERSUS BLUETOOTH V4.0 107

cause of its features as a micro controller. The team had no need for a small sized
computer. The Arduino gave us simple and flexible hardware with a low level of
complexity. This allowed the team to quickly wire prototypes and connect different
kinds of component and sensor to the input and output on the board. The board
used is called Arduino Uno, model R3.

B.2 Bluetooth v2.1 Versus Bluetooth v4.0

The selected Bluetooth module, Bluetooth Mate Silver, uses Bluetooth version
2.1+EDR support [70]. Bluetooth 2.1 has a theoretical data rate of 3 Mbit/s
and a maximum application throughput larger than 80 Kbit/s. The Mate Silver
has a Bluetooth class 2, this means that the device has a rage up to 10 meters
[71]. The continuously improvement of technology encourages rapidly releases of
new versions. Bluetooth v4.0, marketed as Bluetooth Smart, is a new standard.
Beside from a drastically increased application throughput of 24 Mbit/s, the main
focus is on the low power consumption. This makes Bluetooth 4.0 very suitable
for use in sensors and applications utilizing these sensors. Typical industries are
healthcare, security, technology and fitness. A product using Bluetooth Smart can
run for months or years on a small coin battery [72] and this makes it ideal for
all the scenarios the team has pictured. The reason the team selected the Silver
Mate Bluetooth dongle with Bluetooth version 2.0 is because of an advice from a
PhD candidate at NTNU. He stated that the few modules out there supporting
Bluetooth v4.0, is unreliable and not worth taking the risk. However, if the toolkit
were to be published this would be a feature with high importance.

B.3 Electric Imp Versus RN-XV Wifly

There are several Arduino components available offering the functionality to con-
nect the Arduino board to a wireless network. At NTNU the Electrical Imp has
previously been used successfully. Due to its availability and previously successful
usage, the team decided to start with this device and determine it had the desired
functionality. The Electrical Imp consist of the actual Imp, a SD-card shaped de-
vice that is inserted into a device called Electric Imp April, that allows the device
to be connected to the Arduino board via pins [73]. Using your smartphone, you
make the Electrical Imp go online by using a mobile application, which connects
it to the Imp Cloud. The Imp Cloud has a web based IDE, allowing the user to
configure the Imp in a language called Squirrel [74].

The architecture Electrical Imp provided turned out quickly not to provide the
optimal functionality for the team. However, the RN-XV WiFly adapter provided
functionality to control the WiFly adapter from the Android application, which
means generation of needed Arduino code based on the input from the user [48,59].
This solution makes it possible not only to have two or more Arduino boards
communicate, like the Imp, but also having an Arduino communicating with local
servers and servers on the Internet.

108 APPENDIX B. HARDWARE SELECTION

Appendix C

Guides

C.1 Installation Guide

C.1.1 Introduction

The following sections are a guide to install and setup what is needed in order to
install and use RAPT as intended. You will either need the APK-file or the source
code, and depending on what you have available you can skip either Section C.1.3
or Section C.1.4. However, in the current version of RAPT, to be able to change
the compilation server IP within RAPT, you need the source code (or extract it
from the APK).

Note that the compilation server, located in Appendix F (Python script and
batch script), is only tested on Microsoft Windows 7.

C.1.2 Compilation Server Setup

To be able to compile sketches, a compilation server must be set up. The server
consists of two parts, a Python script F.1 that servers as a server, and a batch
script F.2 that the server executes in order to do the compilation from cpp-code to
hexadecimals.

There are two necessities for the Python script to function:

• Change the IP address to the local IP address at line 62.

• A folder named ”sketch” must be located in the same directory as the script.

Furthermore, log path at line 10 can be changed to wherever desired.

The batch script, however, needs a few more tweaks:

• The avr library [75] needs to be installed and added to the environment path.
You can download the Arduino IDE [56] which comes with avr library.

109

110 APPENDIX C. GUIDES

• At line 5, make sure the sketch folder (referring to the Python script list),
include the folders ComputerSerial, SoftwareSerial and WiFlyHQ, each con-
taining their corresponding two files, with the endings: .cpp.o and cpp.d.
These files are attached, or it is possible to generate them importing the
libraries and pressing ”compile” or ”verify” using the Arduino IDE.

• The batch script must be named compiler.bat and be located in the same
folder as the Python script (if you want to change the name and path, make
sure to change it respectively at line 35 in the Python script).

Remember to make sure necessary ports are open if the server is behind a router
or similar.

C.1.3 Installation of APK

If you seek to install the APK without any changes there are several ways to do so:

• Download the APK on the phone: Click on the downloaded APK to install.

• Download the APK on the computer: Transfer the APK via USB cable to
the storage on the phone (turn on USB storage). Locate the APK, then click
the APK to install.

• From command line, type: adb install <APK path>, while connected to the
phone via an USB cable. You will need the ADB from Android [76] installed.

C.1.4 Installation from Source Code

The project is set up with Maven [77] to help organise dependencies and building
the application.

Note: To change the compilation server IP address and port, the Settings class
in Figure 5.7 can be changed.

The following is two simple commands to build and deploy the project to a
connected phone (through USB cable). You will need the ADB from Android [76]
installed. Depending on the version of Android installed, remember to set your
phone in USB debugging, Connected as media device and/or check the Media
device (MTP) option.

1 mvn clean install & mvn deploy

C.2. WIRE GUIDE 111

C.2 Wire Guide

C.2.1 Introduction

This chapter will describe how to wire a board with a corresponding XML file
(the XML file defines the wired Arduino board within RAPT). The board that is
presented is called Alpha, and is one of the three board types currently defined in
RAPT. A picture taken of Alpha, the Arduino prototype, is presented in Figure
C.1.

Figure C.1: Alpha

Alpha consists of:

• 1 x Arduino Uno Board

• 1 x Arduino Breadboard

• 1 x Led (green)

• 2 x Button

• 1 x RFID Reader ID-20LA (125 kHz)

• 1 x RFID USB Reader

• 1 x RN-XV WiFly Module - Wire Antenna

• 1 x Breakout Board for XBee Module

• 1 x Bluetooth Mate Silver

• 2 x 10k ohm resistor

112 APPENDIX C. GUIDES

• 1 x 220 ohm resistor

• Additionally, in this setup there are used 19 wires, however, changes can be
made to reduce the number.

C.2.2 Wiring

To ease readability, this section shows the wiring of Alpha. It is important to
remember to connect a wire from pin 4 to reset as shown. This connection enables
code to be transferred via Bluetooth without actually pressing the reset button on
the Arduino board.

An additionally note is to remember that RX and TX on the modules, here the
Bluetooth Mate Silver must be switched when connecting to the Arduino board’s
TX and RX. Thus, RX (Bluetooth Mate Silver) to TX (Arduino) and TX (Blue-
tooth Mate Silver) to RX (Arduino).

The red wires are connected to power (vcc), the grey wires are connected to
ground (gnd) and the blue wires handles signals.

Figure C.2: Alpha Wiring

In order to make your board eligible for RAPT, you need to setup the board

C.2. WIRE GUIDE 113

with a running sketch that imports ComputerSerial. This sketch cannot be trans-
ferred via Bluetooth, and must be transferred via USB. You can use the sketch
from Appendix G.2, and replace the SerialEvent function with the SerialEvent in
Appendix G.3. Additionally, you need to disconnect the RX and TX pins while
transferring.

C.2.3 Corresponding XML

1 <?xml version="1.0" encoding="UTF-8"?>

2 <board>
3 <name>Alfa</name>
4 <description>Has wireless network, 2 buttons, 1 RFID

reader and 1 yellow led. Perfect for RFID

apps.</description>
5 <devices>
6 <device>
7 <type>LED</type>
8 <text>Green</text>
9 <pins>

10 <pinmode>OUTPUT</pinmode>
11 <pinnumber>11</pinnumber>
12 </pins>
13 </device>
14 <device>
15 <type>Button</type>
16 <text>No. 1</text>
17 <pins>
18 <pinmode>INPUT</pinmode>
19 <pinnumber>10</pinnumber>
20 </pins>
21 </device>
22 <device>
23 <type>Button</type>
24 <text>No. 2</text>
25 <pins>
26 <pinmode>INPUT</pinmode>
27 <pinnumber>8</pinnumber>
28 </pins>
29 </device>
30 <device>
31 <type>RfidReader</type>
32 <pins>
33 <pinmode>NONE</pinmode>
34 <pinnumber>12</pinnumber>
35 </pins>

114 APPENDIX C. GUIDES

36 </device>
37 <device>
38 <type>Wifi</type>
39 <text>Message</text>
40 <pins>
41 <!--rx pin must be first-->

42 <pinmode>NONE</pinmode>
43 <pinnumber>6</pinnumber>
44 </pins>
45 <pins>
46 <pinmode>NONE</pinmode>
47 <pinnumber>7</pinnumber>
48 </pins>
49 </device>
50 </devices>
51 <RFIDTags>
52 <Groups>
53 <Group>
54 <RFIDName>Student card</RFIDName>
55 <Tags>
56 <Tag>210B38A54C71</Tag>
57 <Tag>21104268A00A</Tag>
58 </Tags>
59 </Group>
60 </Groups>
61 </RFIDTags>
62 </board>

Appendix D

Versions of RAPT

Figure D.1: User interface, draft 1 of RAPT. Screenshot from a tablet

115

116 APPENDIX D. VERSIONS OF RAPT

Figure D.2: User interface, draft 2 of RAPT

Figure D.3: User interface, draft 3 of RAPT, Screenshot from a tablet

117

Figure D.4: User interface, final version of RAPT

118 APPENDIX D. VERSIONS OF RAPT

Appendix E

Usability Test Attachments

E.1 Tasks

E.1.1 English

1. Complete the tutorial

(a) Navigate back to the main menu by pressing the back button top left or
the back button on the phone.

(b) You can always go back to the tutorial if you need.

2. Create a new app

(a) Create a new app, where a button is pressed will make a led blink.

(b) Install the app on the board.

(c) If everything went ok: Press the button on the board you install the app
on to check if it works.

3. Create a new app

(a) Create a new app for the board ”Bravo”.

(b) If Haakon’s access card is read should:

i. The green led be lit for 2 seconds.

ii. The speaker should play a optional melody.

(c) Drag the speaker so it is below the RFID reader.

(d) Install the app on the board.

(e) If everything went ok: Read Haakon’s SINTEF card to check if the led
is lit and the melody plays.

4. Create a new app

(a) Create a app, where

119

120 APPENDIX E. USABILITY TEST ATTACHMENTS

i. Button on one board should

ii. Play a melody on another board.

(b) Install the app.

(c) If everything went ok: Press the button to check if the melody plays.

(d) Publish the app to RAPT App Store.

5. Navigate to app store

(a) Choose a board.

(b) Choose a app.

(c) Modify the app so it does what you want.

(d) Install the app.

(e) Check if everything is OK by testing the app you just created/modified.

6. Create a access control app on one board. Start by creating a new app.

(a) Goal:

i. Anders’ student card does not have access. If this card is read a red
led should be lit for 2 seconds.

ii. Daniel’s student card does have access. If this card is read a green
led should be lit in for 2 seconds.

(b) Install your app.

(c) If everything went ok: Read the RFID cards and see if correct accesses
are given by checking the green/red leds.

E.1.2 Norwegian

1. Gjennomfør tutorial

(a) G̊a tilbake til hovedmenyen ved å trykke p̊a tilbakeknappen øverst til
venstre eller tilbakeknappen p̊a telefonen.

(b) Du kan alltid g̊a tilbake til tutorial hvis du ønsker det.

2. Lag en ny app

(a) Lag en app, der en knapp som trykkes vil f̊a et led til å blinke.

(b) Installer appen p̊a boardet.

(c) Hvis alt gikk ok: Trykk p̊a knappen p̊a det boardet du installerte appen
p̊a for å sjekke at det fungerer.

3. Lag en ny app

(a) Lag en ny app til boardet ”Bravo”.

(b) Hvis adgangskortet til Haakon blir lest skal:

E.1. TASKS 121

i. Den grønne led’en lyse i 2 sekunder.

ii. Høyttaleren skal spille av en valgfri melodi.

(c) Dra høytaleren slik at den st̊ar under RFID leser.

(d) Installer appen p̊a boardet.

(e) Hvis alt gikk ok: Les Haakon sitt SINTEF kort for å sjekke at led lyser
og melodien spilles.

4. Lag en ny app

(a) Lag en app, der

i. Knapp p̊a et board skal.

ii. Spille av en melodi p̊a et annet board.

(b) Installer appen.

(c) Hvis alt gikk ok: Trykk p̊a knappen for å sjekke at melodien blir avspilt.

(d) Publiser appen til RAPT App Store.

5. G̊a til app store

(a) Velg et board.

(b) Velg en app.

(c) Modifiser appen til å oppfylle eget ønske

(d) Installer appen p̊a boardet

(e) Sjekk at alt er OK ved å teste appen du akkurat har laget/endret

6. Lag en adgangskontroll app p̊a ett board. Dette starter du å gjøre ved å lage
en ny app.

(a) Mål:

i. Anders sitt studentkort ikke har tilgang. Hvis dette leses skal rødt
lys lyse i 2 sekunder.

ii. Daniel sitt studentkort har tilgang. Hvis dette leses skal grønt lys
lyse i 2 sekunder.

(b) Installer din app.

(c) Hvis alt gikk ok: Les RFID kortene og se om riktige tilganger er satt
ved at grønt/rødt lys lyser.

122 APPENDIX E. USABILITY TEST ATTACHMENTS

E.2 System Usability Scale Questionnaire

E.2.1 English

E.3. SYSTEM USABILITY SCALE QUESTIONNAIRE RESULTS 123

E.2.2 Norwegian

E.3 System Usability Scale Questionnaire Results

124 APPENDIX E. USABILITY TEST ATTACHMENTS

Figure E.1: Questionnaire statement 1

Figure E.2: Questionnaire statement 2

E.3. SYSTEM USABILITY SCALE QUESTIONNAIRE RESULTS 125

Figure E.3: Questionnaire statement 3

Figure E.4: Questionnaire statement 4

126 APPENDIX E. USABILITY TEST ATTACHMENTS

Figure E.5: Questionnaire statement 5

Figure E.6: Questionnaire statement 6

E.3. SYSTEM USABILITY SCALE QUESTIONNAIRE RESULTS 127

Figure E.7: Questionnaire statement 7

128 APPENDIX E. USABILITY TEST ATTACHMENTS

E.4 Declaration of Consent

Samtykke og taushetserklæring
Jeg deltar frivillig i brukervennlighetstesting i forbindelse med master-gruppen «RAPT». Som

testbruker har jeg rett til å avbryte testen når som helst uten begrunnelse. Jeg er anonym, og mine

personalia og kontaktinformasjon skal ikke offentliggjøres eller brukes i annen sammenheng. Dersom

jeg ønsker det, har jeg rett til å få slettet video opptaket. Som kompensasjon for deltakelse mottar

jeg et gavekort hos Trondheim Kino på 100 kr.

Samtykke til opptak
Det vil bli gjort opptak av lyd, bilde og skjerminteraksjon. Jeg samtykker til at disse opptakene kan

brukes til brukervennlighetsanalyse, og jeg fraskriver med herved alle rettigheter til opptaket.

Taushetserklæring
Den informasjon og kunnskap om systemet som jeg tilegner meg, erklærer jeg herved at jeg ikke skal

dele med andre.

Navn Signatur Sted/Dato

130 APPENDIX E. USABILITY TEST ATTACHMENTS

Appendix F

Compile Server

F.1 Python Server

1 import SocketServer

2 import subprocess

3 import os

4 import datetime

5 import codecs

6 import time

7

8 class MyTCPHandler(SocketServer.BaseRequestHandler):

9 def handle(self):

10 log = codecs.open("C:\Users\Daniel\Dropbox\Masteroppgave

2013-14\ServerOutput\serverlog.txt", ’a+’, ’utf-8’)

11 # self.request is the TCP socket connected to the client

12 log.write("---------" + str(datetime.datetime.now()) +

"---------\n")

13 time.sleep(1)

14 self.data = self.recv_all(8192)

15 log.write("Read: " + str(len(self.data)) + " bytes\n")

16 log.write("{} wrote:".format(self.client_address[0])+"\n")

17 log.write(self.data + "\n")

18 file = open("sketch/sketch.cpp", ’w’)

19 file.write(self.data)

20 file.close()

21

22 #Remove old hex in case of compile fail

23 try:

24 os.remove("sketch/sketch.cpp.hex")

25 print("Removed old file")

26 except OSError:

27 pass

28

131

132 APPENDIX F. COMPILE SERVER

29 #Operating System

30 if os.name == "posix":

31 #linuxStuff

32 pass

33 elif os.name == "nt":

34 #windows

35 subprocess.call("compiler.bat", shell=True)

36 print subprocess.CalledProcessError

37

38 else:

39 log.write("Only support for Linux/Windows (none detected)\n")

40 log.close()

41

42 if os.path.isfile("sketch/sketch.cpp.hex"):

43 file = open("sketch/sketch.cpp.hex", ’r’)

44 hex = file.read();

45 file.close()

46 hex = hex.replace(":", "3A")

47 self.request.sendall(hex)

48 else:

49 self.request.sendall("fail")

50

51 def recv_all(self, readSize):

52 total_data=[]

53 data = self.request.recv(readSize)

54 total_data.append(data)

55 while len(data) == readSize:

56 data = self.request.recv(readSize)

57 total_data.append(data)

58 return ’’.join(total_data)

59

60

61 if __name__ == "__main__":

62 HOST, PORT = "192.168.0.102", 8000

63

64 server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

65 server.serve_forever()

F.2 Compile Batch Script

1 @ECHO off

2 ECHO %DATE% %TIME%

3 ECHO Compile Starting ...

4 avr-g++ -c -g -Os -Wall -fno-exceptions -ffunction-sections

-fdata-sections -mmcu=atmega328p -DF_CPU=16000000L -MMD -DUSB_VID=null

-DUSB_PID=null -DARDUINO=105 -I"C:\Program Files

(x86)\Arduino\hardware\arduino\cores\arduino" -I"C:\Program Files

F.2. COMPILE BATCH SCRIPT 133

(x86)\Arduino\hardware\arduino\variants\standard" -I"C:\Program Files

(x86)\Arduino\libraries\ComputerSerial" -I"C:\Program Files

(x86)\Arduino\libraries\WiFlyHQ" -I"C:\Program Files

(x86)\Arduino\libraries\SoftwareSerial" "sketch\sketch.cpp" -o

"sketch\sketch.cpp.o"

5 avr-gcc -Os -Wl,--gc-sections -mmcu=atmega328p -o "sketch\sketch.cpp.elf"

"sketch\sketch.cpp.o" "sketch\ComputerSerial\ComputerSerial.cpp.o"

"sketch\WiFlyHQ\WiFlyHQ.cpp.o"

"sketch\SoftwareSerial\SoftwareSerial.cpp.o" "sketch\core.a"

-L"sketch" -lm

6 avr-objcopy -O ihex -j .eeprom --set-section-flags=.eeprom=alloc,load

--no-change-warnings --change-section-lma .eeprom=0

"sketch\sketch.cpp.elf" "sketch\sketch.cpp.eep"

7 avr-objcopy -O ihex -R .eeprom "sketch\sketch.cpp.elf"

"sketch\sketch.cpp.hex"

8 ECHO Compile finished

134 APPENDIX F. COMPILE SERVER

Appendix G

Generator Example

G.1 Graphical Application

Figure G.1: Simple Application

The sketch generated by the app displayed in Figure G.1 are presented in Ap-
pendix G.2. When the button is pressed a led should turn on (flash) for five
seconds.

G.2 Cpp code

1 #line 1 "Sketch.ino"

2 #include <ComputerSerial.h>

135

136 APPENDIX G. GENERATOR EXAMPLE

3 #include <SoftwareSerial.h>

4 #include "Arduino.h"

5 void setup();void loop();void serialEvent();

6 boolean buttonPressed(int pin, int state, int previousState);

7 void flash(int pin, int timeon, class Long& startTime, class Continuous&

continuous);

8 void clearLED15();

9 #line 2

10 class Continuous { public: boolean b; Continuous(boolean a){ b = a;} };

11 class Long{

12 public:

13 long t;

14 Long(long start) {

15 t = start;}

16 };

17

18 int buttonPressed18_10 = 10;int flash15_9 = 9;

19 int state18;

20 int previousState18 = LOW;

21 Long time66 = Long(0);

22 Continuous flash66Continuous = Continuous(false);static ComputerSerial

comp;

23 void setup(){

24 comp.begin(115200);

25 pinMode(buttonPressed18_10, INPUT);pinMode(flash15_9, OUTPUT);}

26 void loop(){

27

28 previousState18 = state18;

29 state18 = digitalRead(buttonPressed18_10);

30 if (flash66Continuous.b == true) {

31 flash(flash15_9, 5000, time66, flash66Continuous);

32 }

33

34 if (buttonPressed(buttonPressed18_10, state18, previousState18)){

35 clearLED15();

36 flash66Continuous.b = true;

37 }

38 }

39

40 boolean buttonPressed(int pin, int state, int previousState) {

41 if (state == LOW && previousState == HIGH) {

42 return true;

43 }

44 return false;

45 }

46

47 void flash(int pin, int timeon, class Long& startTime, class Continuous&

continuous) {

48 if(startTime.t == 0 || startTime.t + timeon + 500 < millis()){

49 digitalWrite(pin, HIGH);

G.3. IP LOOKUP CODE 137

50 startTime.t = millis();

51 }

52 else if (startTime.t + timeon < millis()) {

53 digitalWrite(pin, LOW);

54 startTime.t = 0;

55 continuous.b = false;

56 }

57 }

58 void clearLED15() {

59 flash66Continuous.b = false;

60 }

61 void serialEvent() {if (Serial.peek() == 0xFD) {

62 Serial.read();

63 Serial.print("not_supported");

64 Serial.write(0xFE);

65 }

66 else {comp.serialEvent();}

67 }

G.3 IP lookup code

1 void serialEvent() {

2 if (Serial.peek() == 0xFD) {

3 delay(1000);

4 Serial.read();

5 boolean ssidDone = false;

6 String ssid = "";

7 String pass = "";

8 while (Serial.available() > 0) {

9 if (ssidDone) {

10 pass = pass + (char)Serial.read();

11 } else if (((char)Serial.peek()) == ’:’) {

12 Serial.read();

13 ssidDone = true;

14 } else {

15 ssid = ssid + (char)Serial.read();

16 }

17 }

18 wifiSerial.begin(9600);

19 wifiSerial.listen();

20 if (wifly.begin(&wifiSerial)) {

21 if (wifly.isAssociated()) {

22 wifly.leave();

23 }

24 delay(1000);

25 char ssidc[64];

26 ssid.toCharArray(ssidc, sizeof(ssidc));

138 APPENDIX G. GENERATOR EXAMPLE

27 wifly.setSSID(ssidc);

28 char passc[64];

29 pass.toCharArray(passc, sizeof(passc));

30 wifly.setPassphrase(passc);

31 wifly.enableDHCP();

32 if (wifly.join()) {

33 char buff[64];

34 wifly.getIP(buff, sizeof(buff));

35 Serial.print(buff);

36 Serial.write(0xFE);

37 } else {

38 Serial.print("null");

39 Serial.write(0xFE);

40 }

41 } else {

42 Serial.print("null");

43 Serial.write(0xFE);

44 }

45 } else {

46 comp.serialEvent();

47 }

48 }

Bibliography

[1] “Android,” accessed 6 May 2014. [Online]. Available: http://www.techterms.
com/definition/android

[2] “What arduino can do,” accessed 1 Mars 2014. [Online]. Available:
http://arduino.cc/

[3] “Arduino development environment,” accessed 01 May 2014. [Online].
Available: http://arduino.cc/en/guide/Environment

[4] M. M. Burnett and C. Scaffidi, End-User Development. Aarhus,
Denmark: The Interaction Design Foundation, 2013. [Online]. Available:
http://www.interaction-design.org/encyclopedia/end-user development.html

[5] “Definition of rfid,” accessed 6 May 2014. [Online]. Available: http:
//www.centrenational-rfid.com/definition-of-rfid-article-71-gb-ruid-202.html

[6] T. Erickson, Social Computing. Aarhus, Denmark: The Interaction Design
Foundation, 2013. [Online]. Available: http://www.interaction-design.org/
encyclopedia/social computing.html

[7] A. M. Andrea Bellucci and I. Aedo, “Light on horizontal interactive surfaces:
Input space for tabletop computing.” ACM Comput. Surv. 46, 3, Article 32
(January 2014), 2014. [Online]. Available: http://dx.doi.org/10.1145/2500467

[8] “Ubiquitouscomputing,” accessed 6 May 2014. [Online]. Available: http:
//www.rcet.org/ubicomp/what.htm

[9] “About ubicollab project,” accessed 16 May 2014. [Online]. Available:
http://www.ubicollab.org/about/

[10] E. Hornecker and J. Buur, “Getting a grip on tangible interaction: A frame-
work on physical space and social interaction,” on Human Factors in Com-
puting Systems, April 22, 2006 - April 27, 2006, 2006, vol. 1, pp. 437–446.,
2006.

[11] H. Ishii, “Tangible bits: Beyond pixels,” Second International Conference
on Tangible and Embedded Interaction - Conference Proceedings, 2008, pp.
xv–xxv., 2008.

139

http://www.techterms.com/definition/android
http://www.techterms.com/definition/android
http://arduino.cc/
http://arduino.cc/en/guide/Environment
http://www.interaction-design.org/encyclopedia/end-user_development.html
http://www.centrenational-rfid.com/definition-of-rfid-article-71-gb-ruid-202.html
http://www.centrenational-rfid.com/definition-of-rfid-article-71-gb-ruid-202.html
http://www.interaction-design.org/encyclopedia/social_computing.html
http://www.interaction-design.org/encyclopedia/social_computing.html
http://dx.doi.org/10.1145/2500467
http://www.rcet.org/ubicomp/what.htm
http://www.rcet.org/ubicomp/what.htm
http://www.ubicollab.org/about/

140 BIBLIOGRAPHY

[12] A.-L. Syrjanen and K. Kuutti, “From technology to domain: The context of
work for end-user development,” Inspiration, Integrity, and Intrepidity, iCon-
ference 2011, February 8, 2011 - February 11, 2011, 2011, pp. 244–251., 2011.

[13] F. Balle and M. Balle, “Lean development,” 2005.

[14] Perera and Fernandoe, “Enhanced agile software development – hybrid
paradigm with lean practice,” Second International Conference on Industrial
and Information Systems, 2007.

[15] P. MIDDLETON, “Lean software development: Two case studies,” Software
Quality Journal, 2001.

[16] A. A. Inc., “The twelve principles of agile software,” accessed 17
January 2014. [Online]. Available: http://www.agilealliance.org/the-alliance/
the-agile-manifesto/the-twelve-principles-of-agile-software/

[17] S. Ambler, “Strategies for scaling agile software develop-
ment,” May 2010, accessed 17 January 2014. [Online]. Avail-
able: https://www.ibm.com/developerworks/community/blogs/ambler/
entry/principles lean software development?lang=en

[18] “Jira - atlassian,” accessed 6 May 2014. [Online]. Available: https:
//www.atlassian.com/software/jira

[19] A. Esteves and I. Oakley, “Mementos: a tangible interface supporting travel,”
Proceedings of the 6th Nordic Conference on Human-Computer Interaction:
Extending Boundaries, 2010.

[20] H. ISHII, “Tangible user interfaces,” CHI 2006 workshop, 2006.

[21] E. Hornecker and J. Buur, “Getting a grip on tangible interaction: A frame-
work on physical space and social interaction,” Proceedings of the 6th Nordic
Conference on Human-Computer Interaction: Extending Boundaries, 2010.

[22] A. Alves, R. Lopes, and P. Matos, “Reactoon: Storytelling in a tangible envi-
ronment,” Digital Game and Intelligent Toy Enhanced Learning (DIGITEL),
2010 Third IEEE International, 2010.

[23] H. Ishii, “Tangible bits: Beyond pixels,” Second International Conference on
Tangible and Embedded Interaction, 2008.

[24] W. Wang, X. Wang, and R. Wangi, “A spatial faithful cooperative system
based on mixed presence groupware model,” pp. 269–275, 2009.

[25] R. Ballagas, M. Ringel, M. Stone, and J. Borchers, “istuff: A physical user
interface toolkit for ubiquitous computing environments,” 2003.

[26] D. Fogli, “End-user development for e-government website content creation,”
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 126–145, 2009, 2009.

http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
https://www.ibm.com/developerworks/community/blogs/ambler/entry/principles_lean_software_development?lang=en
https://www.ibm.com/developerworks/community/blogs/ambler/entry/principles_lean_software_development?lang=en
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira

BIBLIOGRAPHY 141

[27] M. Spahn and V. Wulf, “End-user development for individualized information
management: Analysis of problem domains and solution approaches,” J. Filipe
and J. Cordeiro (Eds.): ICEIS 2009, LNBIP 24, pp. 843–857, 2009, 2009.

[28] Y. T. R. L. Q. Q. Siti Nor Hafizah Mohamad, Ahmed Patel, “Principles and
dynamics of block-based programming approach,” IEEE Symposium on Com-
puters and Informatics, 2011.

[29] S. M. M. M. Kai Petersen, Robert Feldt, “Systematic mapping studies in
software engineering.”

[30] C. A. Olavo Barbosa, “A systematic mapping study on software ecosystems,”
Proceedings of the Workshop on Software Ecosystems 2011, 2011.

[31] “Google play,” accessed 6 January 2014. [Online]. Available: https:
//www.play.google.com

[32] “Google scholar,” accessed 6 January 2014. [Online]. Available: http:
//scholar.google.com

[33] A. Bellucci, A. Malizia, I. Aedo, and P. Dı́az, “Prototyping device ecologies:
Physical to digital and viceversa,” 2010.

[34] E. Mugellini, S. Gerardi, D. Baechler, and O. A. Khaled, “Mymemodules: a
graphical toolkit for the easy creation of personal tui,” 2006, journal =.

[35] J. Lee, L. Garduño, E. Walker, and W. Burleson, “A tangible programming
tool for creation of context-aware applications,” UbiComp’13, 2013.

[36] E. Baafi and A. Millne, “A toolkit for tinkering with tangibles & connecting
communities,” 2011.

[37] “Scratch,” accessed 2 May 2014. [Online]. Available: http://scratch.mit.edu/

[38] F. Garzotto and R. Gonella, “An open-ended tangible environment for disabled
children’s learning,” 2011.

[39] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay, “Papier-mâché: Toolkit sup-
port for tangible input,” 2004, journal =.

[40] “Arduino droid,” accessed 16 April 2014. [Online]. Available: http:
//arduinodroid.blogspot.co.uk/

[41] “Arduino commander,” accessed 16 April 2014. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=name.antonsmirnov.
android.arduinocommander

[42] “Amarino,” accessed 16 April 2014. [Online]. Available: http://www.
amarino-toolkit.net/

[43] “Ubicollab,” accessed 18 April 2014. [Online]. Available: http://www.
ubicollab.org/

https://www.play.google.com
https://www.play.google.com
http://scholar.google.com
http://scholar.google.com
http://scratch.mit.edu/
http://arduinodroid.blogspot.co.uk/
http://arduinodroid.blogspot.co.uk/
https://play.google.com/store/apps/details?id=name.antonsmirnov.android.arduinocommander
https://play.google.com/store/apps/details?id=name.antonsmirnov.android.arduinocommander
http://www.amarino-toolkit.net/
http://www.amarino-toolkit.net/
http://www.ubicollab.org/
http://www.ubicollab.org/

142 BIBLIOGRAPHY

[44] “Xml,” accessed 15 May 2014. [Online]. Available: http://www.w3schools.
com/xml/xml whatis.asp

[45] “Language reference,” accessed 18 April 2014. [Online]. Available: http:
//arduino.cc/en/Reference/HomePage

[46] “Bluetooth,” accessed 9 May 2014. [Online]. Available: http://developer.
android.com/guide/topics/connectivity/bluetooth.html

[47] “Github: Java implementation of stk500 protocol,” accessed 29 Jan-
uary 2014. [Online]. Available: https://github.com/Prosjekt2-09arduino/
STK500-Android

[48] “Rn-xv wifly module - wire antenna,” accessed 18 April 2014. [Online].
Available: https://www.sparkfun.com/products/10822

[49] M. S. Quintanilha, “Buddywall: A tangible user interface for wireless remote
communication,” CHI 2008, 2008.

[50] M. Wiethoff and G. Broll, “Solofind: Chains of interactions with a mobile
retail experience system,” CHI 2011, 2011.

[51] “Near field communication,” accessed 9 May 2014. [Online]. Available:
http://www.nearfieldcommunication.org/

[52] “App store,” accessed 11 April 2014. [Online]. Available: http://www.
techopedia.com/definition/27519/app-store

[53] “Application store,” accessed 11 April 2014. [Online]. Available: http:
//en.wikipedia.org/wiki/Application store

[54] “Court dismisses apple false advertising claim over amazon appstore name,”
accessed 11 April 2014. [Online]. Available: http://appleinsider.com/articles/
13/01/02/court-dismisses-apple-trademark-suit-over-amazon-appstore-name

[55] “Using avr libraries,” accessed 01 May 2014. [Online]. Available: http:
//arduino.cc/en/Reference/UsingAVR

[56] “Download the arduino software,” accessed 01 May 2014. [Online]. Available:
http://arduino.cc/en/main/software

[57] “Github: Computerserial,” accessed 3 February 2014. [Online]. Avail-
able: https://github.com/Prosjekt2-09arduino/ArduinoStore/tree/master/
Arduino/ComputerSerial/

[58] “Xmlpullparser,” accessed 01 May 2014. [Online]. Available: http:
//developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html

[59] “Wiflyhq,” accessed 3 Mars 2014. [Online]. Available: https://github.com/
harlequin-tech/WiFlyHQ

http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3schools.com/xml/xml_whatis.asp
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage
http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://developer.android.com/guide/topics/connectivity/bluetooth.html
https://github.com/Prosjekt2-09arduino/STK500-Android
https://github.com/Prosjekt2-09arduino/STK500-Android
https://www.sparkfun.com/products/10822
http://www.nearfieldcommunication.org/
http://www.techopedia.com/definition/27519/app-store
http://www.techopedia.com/definition/27519/app-store
http://en.wikipedia.org/wiki/Application_store
http://en.wikipedia.org/wiki/Application_store
http://appleinsider.com/articles/13/01/02/court-dismisses-apple-trademark-suit-over-amazon-appstore-name
http://appleinsider.com/articles/13/01/02/court-dismisses-apple-trademark-suit-over-amazon-appstore-name
http://arduino.cc/en/Reference/UsingAVR
http://arduino.cc/en/Reference/UsingAVR
http://arduino.cc/en/main/software
https://github.com/Prosjekt2-09arduino/ArduinoStore/tree/master/Arduino/ComputerSerial/
https://github.com/Prosjekt2-09arduino/ArduinoStore/tree/master/Arduino/ComputerSerial/
http://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html
http://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html
https://github.com/harlequin-tech/WiFlyHQ
https://github.com/harlequin-tech/WiFlyHQ

BIBLIOGRAPHY 143

[60] “Softwareserial library,” accessed 3 May 2014. [Online]. Available: http:
//arduino.cc/en/Reference/SoftwareSerial

[61] D. C. D. in the U.S. Department of Health and H. S. H. O. of the Assistant
Secretary for Public Affairs, “System usability scale (sus),” accessed 01
May 2014. [Online]. Available: http://www.usability.gov/how-to-and-tools/
methods/system-usability-scale.html

[62] “What is a raspberry pi?” accessed 1 Mars 2014. [Online]. Available:
http://www.raspberrypi.org/help/faqs/#introWhatIs

[63] “Beaglebone black,” accessed 2 Mars 2014. [Online]. Available: http:
//beagleboard.org/Products/BeagleBone+Black

[64] A. M. Kaplan and M. Haenleini, “Users of the world, unite! the challenges
and opportunities of social media,” 2009.

[65] “Rfc 826 - ethernet address resolution protocol.” [Online]. Available:
http://tools.ietf.org/html/rfc826,note=

[66] “Arduino vs raspberry pi: Which is the mini computer for you?”
accessed 1 Mars 2014. [Online]. Available: http://www.makeuseof.com/tag/
arduino-vs-raspberry-pi-which-is-the-mini-computer-for-you/

[67] “Raspberry pi,” accessed 30 May 2014. [Online]. Available: http:
//upload.wikimedia.org/wikipedia/commons/3/3d/RaspberryPi.jpg

[68] “Arduino uno r3,” accessed 30 May 2014. [Online]. Avail-
able: https://www.gorilladistribution.com.au/wp-content/uploads/2012/02/
ArduinoUno R3 Front.jpg

[69] “Everything you need to know about the beaglebone black,” accessed
2 Mars 2014. [Online]. Available: http://www.tested.com/art/makers/
459278-everything-you-need-know-about-beaglebone-black/

[70] “Rn-42/rn-42-n data sheet,” accessed 3 Mars 2014. [Online]. Avail-
able: http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/Bluetooth/
Bluetooth-RN-42-DS.pdf

[71] “A look at the basics of bluetooth technology,” accessed 3 Mars 2014.
[Online]. Available: http://www.bluetooth.com/Pages/Basics.aspx

[72] “Welcome to bluetooth technology 101,” accessed 3 Mars 2014. [Online].
Available: http://www.bluetooth.com/Pages/Fast-Facts.aspx

[73] “Electric imp,” accessed 3 Mars 2014. [Online]. Available: https:
//electricimp.com/docs/

[74] “Squirrel’s syntax,” accessed 3 Mars 2014. [Online]. Available: http:
//www.squirrel-lang.org/#look

http://arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Reference/SoftwareSerial
http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://www.raspberrypi.org/help/faqs/#introWhatIs
http://beagleboard.org/Products/BeagleBone+Black
http://beagleboard.org/Products/BeagleBone+Black
http://tools.ietf.org/html/rfc826, note =
http://www.makeuseof.com/tag/arduino-vs-raspberry-pi-which-is-the-mini-computer-for-you/
http://www.makeuseof.com/tag/arduino-vs-raspberry-pi-which-is-the-mini-computer-for-you/
http://upload.wikimedia.org/wikipedia/commons/3/3d/RaspberryPi.jpg
http://upload.wikimedia.org/wikipedia/commons/3/3d/RaspberryPi.jpg
https://www.gorilladistribution.com.au/wp-content/uploads/2012/02/ArduinoUno_R3_Front.jpg
https://www.gorilladistribution.com.au/wp-content/uploads/2012/02/ArduinoUno_R3_Front.jpg
http://www.tested.com/art/makers/459278-everything-you-need-know-about-beaglebone-black/
http://www.tested.com/art/makers/459278-everything-you-need-know-about-beaglebone-black/
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/Bluetooth/Bluetooth-RN-42-DS.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/Bluetooth/Bluetooth-RN-42-DS.pdf
http://www.bluetooth.com/Pages/Basics.aspx
http://www.bluetooth.com/Pages/Fast-Facts.aspx
https://electricimp.com/docs/
https://electricimp.com/docs/
http://www.squirrel-lang.org/#look
http://www.squirrel-lang.org/#look

144 BIBLIOGRAPHY

[75] “Avr libc home page,” accessed 17 January 2014. [Online]. Available:
http://www.nongnu.org/avr-libc/

[76] “Android debug bridge:installing an application,” accessed 19 Mai 2014.
[Online]. Available: http://developer.android.com/tools/help/adb.html

[77] “Apache maven,” accessed 19 Mai 2014. [Online]. Available: http:
//maven.apache.org/

http://www.nongnu.org/avr-libc/
http://developer.android.com/tools/help/adb.html
http://maven.apache.org/
http://maven.apache.org/

	Introduction
	Problem Definition
	Problem Domain
	Motivation
	Research Questions
	Methodology
	Lean Development
	Background
	Approach

	Final Evaluation Approach

	Expected Results
	Report Outline

	Problem Elaboration
	Introduction
	Background of Physical User Interface
	Background of End User Development
	Requirements Analysis
	Introduction
	Home Assistance
	Restaurant
	Buddy Notifier
	Requirements Overview
	Tangible User Interface Requirements
	End User Development Requirements
	Non-Functional Requirements

	Related Work
	Introduction
	Research Method
	Systematic Mapping Study
	Background
	Tangible User Interface Findings
	End User Development Findings
	Refinement of Problem Definition

	Manual Search

	Related Toolkits
	ECCE Toolkit
	GALLAG Strip
	Modkit
	Tangible Learning Framework

	Related Ideas
	ArduinoCommander
	Amarino
	ArduinoDroid

	Proposed Solution
	Introduction
	Conceptual model
	Functionality
	Introduction
	Creating apps
	App Store
	Tutorial

	Technical Overview
	Rules Pattern
	Sketch Compiling
	Installing Sketches on Arduino Boards
	Selection of End User Development Techniques
	App Store

	Development
	Introduction
	Architecture
	Introduction
	Data Flow
	Graphical User Interface
	Generator
	Compilation Server
	Bluetooth Connection
	Class Diagrams

	Design
	STK500 and ComputerSerial
	XML Parsers
	Generator
	WiFi and IP Address Handling
	App Store

	Presumptions
	Issues
	Compatibility issues
	Serial Ports
	WiFly

	Software issues
	WiFi device without IP lookup

	Evaluation and Validation
	Introduction
	Iterative Design
	Final Evaluation
	Background Summary
	Test Execution
	Test Results
	Findings and Recommendations

	Conceptual Validation

	Conclusion
	Introduction
	Summary
	Discussion
	Further Work
	Compilation
	Local Storage
	Devices
	Store Sensor States
	Ease Usability
	App Store
	IP mapping

	Systematic Mapping Study
	Hardware Selection
	Arduino versus Raspberry Pi versus BeagleBone Black
	Bluetooth v2.1 Versus Bluetooth v4.0
	Electric Imp Versus RN-XV Wifly

	Guides
	Installation Guide
	Introduction
	Compilation Server Setup
	Installation of APK
	Installation from Source Code

	Wire Guide
	Introduction
	Wiring
	Corresponding XML

	Versions of RAPT
	Usability Test Attachments
	Tasks
	English
	Norwegian

	System Usability Scale Questionnaire
	English
	Norwegian

	System Usability Scale Questionnaire Results
	Declaration of Consent

	Compile Server
	Python Server
	Compile Batch Script

	Generator Example
	Graphical Application
	Cpp code
	IP lookup code

